Surface - INL
Transcription
Surface - INL
Ce colloque (28ième édition) offrira, comme chaque année, une occasion aux spécialistes de la matière condensée (solide, matière molle, ...) de se rencontrer pour échanger dans le domaine de la physico‐chimie des surfaces et des interfaces, et en particulier, sur tous les aspects concernant les techniques d’élaboration (auto‐organisation, nano‐structuration,…) les techniques de caractérisation (chimiques, électriques, magnétiques, mécaniques, optiques, ...), le développement de l’instrumentation la théorie et la simulation L’édition 2014 de ces journées est organisée par l’INL à l’Ecole Centrale de Lyon (Ecully), conjointement avec les autres laboratoires de physique et de chimie de l’université de Lyon, en mettant l’accent sur le rôle des surfaces et interfaces pour les nanosciences et nanotechnologies. Dans la tradition des éditions précédentes (Nantes 2010, Poitiers 2011, Saclay 2012, Orléans 2013), le programme scientifique des JSI 2014 s’articule autour d’une quinzaine de conférences invitées qui présenteront l’état de l’art et les développements récents des disciplines représentées et de deux sessions de communications par affiche. Conférenciers Invités Mathieu Abel Olivier Balmes Nicolas Combes Tristan Cren Christophe Demaille Frank Fournel Olaf Magnussen Christine Mottet Enrique Ortega Hamid Oughaddou Olivier Pierre‐Louis Alessandro Siria Véronique Soulière Jean‐Marc Tonnerre Frank Vidal Institut Matériaux, Microélectronique et Nanosciences de Provence (IM2NP), MAX IV Laboratory, Grenoble Centre d'élaboration des Matériaux et d'études structurales (CEMES) Toulouse Institut des NanoSciences de Paris, (INSP), Paris Laboratoire d'Electrochimie Moléculaire, Paris Laboratoire d’électronique et de technologie de l’information (DTSi), Grenoble Institut fuer Experimentelle und Angewandte Physik, Kiel, Allemagne Centre Interdisciplinaire de Nanonosciences de Marseille (CINaM ), Marseille Nanophysics LAB, San Sebastián Institut des Sciences Moléculaires d’Orsay,(ISMO),Orsay Institut Lumière Matière, (ILM), Villeurbanne Institut Lumière Matière (ILM), Villeurbanne Laboratoire Multimatériaux et Interfaces (LMI), Villeurbanne Institut Néel,Grenoble Institut des NanoSciences de Paris (INSP), Paris 1 Comité Scientifique Philippe Allongue Pascal Andreazza David Babonneau Marie‐Paule Besland Alessandro Coati Emmanuelle Lacaze Pierre Müller Vincent Repain Nicolas Rougemaille Philippe Sonnet PMC, Palaiseau, CRMD, Orléans, Institut P’, Poitiers, IMN, Nantes, Synchrotron Soleil, Gif/s/Yvette, INSP, Paris CINaM, Marseille MPQ, Paris Institut Néel, Grenoble IS2M, Mulhouse Comité local d’organisation Coordination : Geneviève Grenet INL‐ECL Laurent Carrel INL‐ECL Alexandre Danescu INL‐ECL Maryline Di Serio INL‐ECL Raphael Lopez INL‐ECL Annie Suslec INL –INSA Patricia Dufaut INL‐ECL José Penuelas INL‐ECL Photos : Pedro Rojo Romeo INL‐EC L Francisco Aires Eric Ehret Swamy Prakash IRCELyon IRCELyon IRCELyon Site web : http://inl.cnrs.fr/jsi2014 EXPOSANTS http://www.altec‐equipment.com www.omicron.de http://www.specs.de http://www.vatvalve.com 2 PROGRAMME Mercredi 29 janvier 2014 12h30 Accueil + buffet (déambulatoire) 14h00 Hamid Oughaddou ISMO, Orsay Silicène : L'équivalent du graphène pour le silicium. 14h45 Jean-Marc Institut Néel, Films minces et hétérostructures à anisotropie Grenoble perpendiculaire par réflectivité résonante des rayons X Tonnerre mous. 15h30 Café + Session POSTERS 17h00 Frank Vidal INSP, Paris Nanofils de Co, Ni et d'alliages CoxNi1-x auto-assemblés dans CeO2/SrTiO3(001) : croissance, structure et propriétés magnétiques. 17h45 Olivier Pierre-Louis ILM, Wetting and dewetting of solids on solid substrates. Villeurbanne Jeudi 30 janvier 2014 9h00 Véronique Soulière LMI, Croissance localisée par transport VLS pour hétéro- Villeurbanne matériaux. 9h45 Christine Mottet CINaM , Compétition ou synergie entre ordre et ségrégation dans les Marseille alliages métalliques: des surfaces d'alliages aux nanoalliages. 10h30 Café + Session POSTERS 11h15 Olaf Magnussen IEAP, Kiel, 12h00 Frank Fournel DTSi –LETI, 13h00 Repas (Ecureuil) 14h00 Mathieu Abel IM2NP, Formation de nanostructures organiques sur surfaces : Marseille d'édifices supramoléculaires aux réseaux covalents. 14h45 Olivier Balmes MAX IV Réactivité de la surface Pd(100) et des nanoparticules de Laboratory, Palladium en conditions d'oxydation du CO: SXRD et XPS. Surface dynamics at electrochemical interfaces. Allemagne Rôle de l’interface dans les mécanismes du collage direct. Grenoble Lund 15h30 Café + Session POSTERS 17h00 Nicolas Combe CEMES, Auto-organisation induite par une onde de surface Toulouse acoustique stationnaire. 17h45 Alessandro Siria ILM, Nanofluidique: transport fluidique et ionique dans un Villeurbanne nanocanal individuel. 20h00 Repas de la conférence 3 Vendredi 31 janvier 2014 9h00 Christophe Demaille LEM, Paris Caractérisation de la dynamique de chaînes polymères greffées par microscopie électrochimique à force atomique (AFM-SECM). 9h45 Enrique Ortega Nanophysics Curved crystals: a different approach to surface science . LAB, San Sebastián 10h30 Café + Session POSTERS 11h15 Tristan Cren INSP, Paris 12h00 Repas (Ecureuil) La supraconductivité en conditions de confinement ultime : des nano- îlots à la monocouche de Pb/Si. 4 CONTRIBUTIONS ORALES 5 6 Oral 1 Silicène : L'Equivalent du Graphène pour le Silicium M.R. Tchalala1, H. Enriquez1, A. Mayne1, G. Dujardin1 H. Oughaddou1,2 1 Institut des Sciences Moléculaires d'Orsay, ISMO-CNRS, Université Paris-Sud, 91405 Orsay-France 2 Département de physique, Université de Cergy-Pontoise, 95000 Cergy-Pontoise, France ABSTRACT Peu après la découverte du graphène et la confirmation de ses propriétés exceptionnelles, de nombreux théoriciens se sont intéressés au silicène, l’équivalent du graphène pour le silicium1-3. Il a été montré que le silicène aurait une stabilité intrinsèque et présenterait des propriétés électroniques analogues à celles du graphène. La différence essentielle entre le carbone et le silicium est la tendance forte du silicium à s’hybrider en sp3. Ceci explique pourquoi le silicène ne présente pas une structure atomique plane contrairement au graphène. Les dépôts de silicum sur des surfaces d’argent orientées montrent une structure de silicium bidimensionnelle sous forme de nids d’abeilles comme celle du graphène4-6. Peu après cette découverte plus d’une vingtaine de groupes à travers le monde ont commencé à travailler sur le silicène confirmant cette nouvelle structure cristallographique de silicium. C’est ainsi que la croissance du silicène sur d’autres substrats (Ir7, ZrB28 et Au9) a été rapportée. Cependant la question de sa structure électronique reste ouverte. En effet des études très récentes montrent l’existence d’un couplage entre la structure électronique de silicène et celle du substrat10. Le gros enjeu actuel est de synthétiser le silicène sur des substrats isolants afin d’accéder à sa structure intrinsèque avec comme perspective ultérieure de l'intégrer dans de futurs dispositifs micro-électronique. REFERENCES 1. Phys. Rev. B 76, 75131 (2007), 2. Phys. Rev. B 79 115409 (2009) 3. Phys. Rev. Lett. 102 236804 (2009) 4. Surf. Sci. Rep. 67 1–18 (2012) 5. Appl. Phys. Let. 96, 183102 (2010) 6. Appl. Phys. Let. 97, 223109 (2010) 7. Nano Lett. 13, 685 (2013) 8. Phys. Rev. Lett. 108, 245501 (2012) 9. Appl. Phys. Let. 102, 083107 (2013) 10. Phys. Rev. Let. 110, 076801 (2013) 7 8 Oral 2 Thin Films And Heterostructures With Perpendicular Anisotropy Investigated By Soft X-ray Resonant Magnetic Reflectivity J.-M. Tonnerre1,2, M. Przybylski3,4, E. Jal1,2, M. Dabrowski3, F. Yildiz3,5, N. Jaouen6, S. Grenier1,2, H. C. N. Tolentino1,2, J. Kirschner3,7 1 Univ. Grenoble Alpes, Inst NEEL, F-38042 Grenoble, France 2 CNRS, Inst NEEL, F-38042 Grenoble, France 3 Max-Planck-Institut für Mikrostrukturphysik, Halle, Germany 4 Academic Centre of Materials and Nanotechnology and Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Krakow, Poland 5 Department of Physics, Gebze Institute of Technology, P.K. 141, 41400 Gebze-Kocaeli, Turkey 6 Synchrotron SOLEIL, Saint-Aubin, Gif-sur-Yvette, France 7 Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany ABSTRACT The presentation will focus on the capabilities of the soft x-ray resonant magnetic reflectivity to describe magnetic profiles throughout ultrathin films [1]. The measurements are carried out in a UHV reflectometer [2] operated today at the SEXTANTS beam line at synchrotron SOLEIL. The technique combined the x-ray reflectivity, providing depth-resolved information, with the x-ray magnetic circular dichroism, providing chemical selectivity and magnetization sensitivity. Heterostructures, based on the stack of multi-element ultrathin films with different magnetic states, are nowadays intensively studied, particularly in the context of nanomagnetism and spintronics. The size reduction increases the role of the interfaces and of the coupling either at the interfaces or through a spacer layer. The determination of the magnetization profile and modifications that occur at interfaces is an important challenge in order to contribute to the understanding of the properties of these nanosystems. The sensitivity of polarized soft x-ray resonant magnetic reflectivity to probe the three components of the magnetization will be discussed and illustrated through selected examples where the coupling between magnetic films with orthogonal magnetic anisotropy can produce complex magnetic configurations [3], and where the extension of the interfacial changes can be determined [4]. Particular attention will be paid to the possibility to probe the out-of-plane magnetic component for layers exhibiting perpendicular magnetic anisotropy and layers deposited on a vicinal surface. REFERENCES 1. J.-M. Tonnerre, E. Jal, E. Bontempi, N. Jaouen, M. Elzo, S. Grenier, H.L. Meyerheim, and M. Przybylski, Eur. Phys. J. Special Topics 208, 177 (2012) 2. N. Jaouen, J.-M. Tonnerre, G. Kapoujian, P.Taunier, J.-P. Roux, D. Raoux and F. Sirotti, J. Synchrotron Rad. 11, 353 (2004) 3. J.-M. Tonnerre, M. Przybylski, M. Ragheb, F. Yildiz, H. C. N. Tolentino, L. Ortega, and J. Kirschner, Phys. Rev. B 84, 100407(R) (2011); M. Przybylski, J.-M. Tonnerre, F. Yildiz, H. C. N. Tolentino, and J. Kirschner, J. Appl. Phys. 111, 07C103 (2012) 4. E. Jal, M. Dabrowski, J.-M. Tonnerre, M.Przybylski, S. Grenier, N. Jaouen, and J. Kirschner, Phys. Rev. B 87, 224418 (2013) 9 10 Oral 3 Nanofils de Co, Ni et d'alliages CoxNi1-x autoassemblés dans CeO2/SrTiO3(001) : croissance, structure et propriétés magnétiques. F. Vidal Institut des NanoSciences de Paris, UPMC, CNRS UMR 7588, Boîte courrier 840, 4 Place Jussieu, 75252 Paris Cedex 05, France ABSTRACT The most commonly used technique in order to grow ferromagnetic nanowires consists in electro-depositing a ferromagnetic metal into a porous alumina template. An alternative technique consists in using self-assembly phenomena occurring in sequential deposition by pulsed laser deposition. In the present contribution, we illustrate this by demonstrating the possibility to obtain self-assembled ferromagnetic nanowires of Co, Ni and CoNi alloy embedded in an epitaxial ceria matrix deposited on strontium titanate. The nanowires are oriented along the growth direction and have diameters in the 3-5 nm range, depending on the growth conditions. In the case of Co, the hcp/fcc transition leads to nanowires composed of hexagonal grains with preferential orientations, making this system a testing ground for nanomagnetism studies. The magnetic properties of these wires were thus probed using static and dynamic magnetization measurements. Micromagnetic modeling based on the structural analysis allows us to correlate the structure and the magnetic behavior of the wires, revealing competition between shape anisotropy, magnetocrystalline anisotropy and exchange in the localized reversal of the magnetization within Co hcp oriented grains [1]. Contrary to Co, Ni crystallizes in the fcc structure only and we will show that in this case it is possible to obtain a fully epitaxial system: Ni is epitaxied in the matrix, itself epitaxied on the substrate. However, the magnetic anisotropy is surprisingly small in such epitaxial wires. Combined electron microscopy and synchrotron radiation x-ray diffraction studies reveal a tensile strain along their axis. This gives rise to a strong magnetoelastic anisotropy that competes with the magnetostatic term. In order to avoid this detrimental effect, we will show that it is possible to use the combinatorial nature of the deposition process in order to grow epitaxial CoNi alloy nanowires and that the anisotropy of this system can be controlled through the composition of the alloy [2]. Work done with Y. Zheng, D. Demaille, P. Schio, F. Bonilla, V. Schuler, V. Etgens, S. Hidki (INSP) ; A. de Oliveira (UFSCar) ; J. Milano, M. Barturen (CNEA Bariloche) , E. Fonda, A. Novikova, A. Coati, A. Vlad, M. Sauvage-Simkin, Y. Garreau (Soleil); Y. Dumont (GEMaC). We acknowledge support from C’nano IdF and ANR (contract ANR-2011-BS04007). REFERENCES 1. F. Vidal, Y. Zheng, P. Schio, F. J. Bonilla, M. Barturen, J. Milano, D. Demaille, E. Fonda, A. J. A. de Oliveira, and V. H. Etgens, Phys. Rev. Lett. 109, 117205 (2012). 2. F.J. Bonilla, A. Novikova, F. Vidal, Y. Zheng, E. Fonda, D. Demaille, V. Schuler, A. Coati, A. Vlad, Y. Garreau, M. Sauvage-Simkin, Y. Dumont, S. Hidki, V.H. Etgens, ACS Nano 7, 4022 (2013). 11 12 Oral 4 Solid-state wetting and dewetting O. Pierre-Louis Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon 69622 Villeurbanne, France ABSTRACT At the nanoscale, the dynamics of the morphological evolution of solid films and islands under annealing is strongly influenced by wetting properties. We explore two situations where wetting plays a crucial role. In a first part, we discuss the dewetting dynamics of a thin solid film based on 2D Kinetic Monte Carlo (KMC) simulations and analytical models. We focus on the role of the faceting of the dewetting rim, which changes the asymptotic behavior of the dewetting velocity. In addition, we analyze the instability of the dewetting front, which leads to the formation of fingers. In a second part, we will present some results on the wetting statics and dynamics of islands (or nanoparticles) on surface topographical structures with a large aspect ratio, such as pillars or trenches using 3D KMC simulations including elastic effects. KMC Simulations-- Left: Dewetting of a thin solid film; Right: Cassie-Baxter state for a nanoparticle REFERENCES 1. 2. 3. 5. 5. 6. 6. M. Ignacio, Y. Saito, P. Smereka, O. Pierre-Louis, preprint (2013) M. Ignacio, O. Pierre-Louis, Phys Rev B (2012) P. Gaillard, Y. Saito, O. Pierre-Louis, Phys Rev Lett 106 195501 (2011) E. Bussmann, F. Cheynis, F. Leroy, P. Müller, O. Pierre-Louis, New Journ. Phys. (2011) K. Takano, Y. Saito, O. Pierre-Louis, Phys Rev B 82 075410 (2011) O. Pierre-Louis, A. Chame, Y. Saito, Phys rev. Lett 103 195501(2009) O. Pierre-Louis, Y. Saito, EPL 86 46004 (2009) 13 14 Oral 5 Croissance Par Transport VLS Pour HétéroMatériaux. Application Au Carbure De Silicium V. Soulière Université Claude Bernard Lyon 1, CNRS, UMR 5615, Laboratoire des Multimatériaux et Interfaces, 43 Bd du 11 Novembre 1918, 69622 Villeurbanne – France ABSTRACT La croissance par mécanisme Vapeur-Liquide-Solide (VLS) consiste à intercaler une phase liquide entre la phase gazeuse nourricière et le solide à faire croître. Le liquide sert de catalyseur pour la croissance qui se déroule à l’interface solide-liquide. Cette technique est donc plus assimilable à une croissance en phase liquide qu’à un dépôt en phase gazeuse. Elle présente les avantages de la croissance en solution i.e. conditions proches de l’équilibre, fortes vitesses de croissance, basses températures de croissance, alliés à ceux de l’épitaxie en phase vapeur dont la maîtrise de la croissance via un débit de gaz précurseur. Cette technique, connue depuis plusieurs dizaines d’années, a été utilisée pour la croissance de whiskers, notamment dans la filière SiC [1-2]. L’apport des espèces réactives est réalisé par la phase vapeur ; elles se décomposent à la surface du liquide, diffusent pour ensuite réagir à la surface du substrat solide. Le moteur de la croissance est un gradient d’activité isotherme de l’espèce dissoute entre l’interface vapeur-liquide et l’interface liquidesolide, ce qui implique une sursaturation du liquide. Le choix du liquide, qui conditionne les conditions de croissance, est primordial. Il s’agit généralement d’un métal pur tel que le fer, le cobalt, l’aluminium. L’application à l’épitaxie de couches minces sur un substrat a nécessité un ajustement de la technique et d’un certain nombre de paramètres expérimentaux. Les premiers essais concernaient l’homoépitaxie du carbure de silicium [3, 4]. Dans tous les cas, la source de silicium est incorporée à la phase liquide. Nous nous intéresserons particulièrement à l’hétéroépitaxie du carbure de silicium SiC cubique sur substrat de SiC hexagonal par transport VLS [5-7]. Des études concernant la nucléation et la stabilisation du polytype cubique seront présentées. L’élimination des parois de mâcles permettant l’obtention de SiC 3C dit monodomaine sera également abordée. Enfin, nous évoquerons la nucléation du carbure de silicium sur différents types de substrat, principalement par localisation du mécanisme VLS [8,9]. REFERENCES 1. J.J Petrovic and R.B. Roof, J. Am. Ceram. Soc. 67(10), C219 (1985). 2. D.E. Dougherty et al., J. Mat. Research 10(1), 113 (1995). 3. A. Leycuras, Mat.Sci. Forum. 338-342, 241-244 (2000). 4. C. Jacquier, Thèse de doctorat Université Claude Bernard (2003). 5. A. Tanaka et al., J. Cryst. Growth 269(2-4) 413-418 (2004). 6. M. Soueidan et al., J. Cryst. Growth 293(2) 433-437 (2006) 7. O. Kim-Hak, Thèse de doctorat Université Claude Bernard (2009) 8. S. Berckmans et al. J. Cryst. Growth 354 119-128 (2012) 9. A. Vo-Ha et al., Diamond and Rel. Mat. 35 24-28 (2013). 15 16 Oral 6 Ordering and Surface Segregation: From Surface Alloys to Nanoalloys. A. Lopes, G. Tréglia and C. Mottet Centre Interdisciplinaire de Nanoscience de Marseille, CNRS/AMU, Campus de Luminy, Marseille. ABSTRACT Bimetallic nanoparticles alloying Pt with a 3d magnetic metal (Fe, Co, Ni) present promising magnetic properties for next-generation recording media or electrocatalytic properties in fuel cells. These systems have the particularity to form ordered compounds as the Cu-Au system in bulk alloy but the question arises if the ordering will remain in nanosized particles and how possible surface segregation can be associated with core ordering. Although it is a challenging task to produce a monodisperse distribution of bimetallic nanoparticles, experimental studies have shown that it was possible to order CoPt nanoalloys up to a few nanometers in size [1,3] displaying eventually multi-domains inside one nanoparticle [4]. From a theoretical point of view, the study of CoPt nanoalloys with the ordering tendency allows characterizing the nature of the order/disorder transition and in particular the decrease of the transition critical temperature and its first order type even though it is smoother with decreasing size [5]. Extending the study to the whole composition range of the Co1-cPtc alloys, we performed systematic Monte Carlo simulations in semi-grand canonical ensemble with semi-empirical potentials based on the tight binding approximation either on a rigid lattice (Tight Binding Ising Model) or allowing atomic relaxations (many-body potential within the Second Moment Approximation of the density of states), each of these methods being fitted to ab initio calculations. The FCC nanoparticles of 2 to 3 nm with the truncated octahedral (TOh) shape present (100) and (111) facets. This is why we first characterized the segregation isotherms of (100) and (111) Co1-cPtc infinite alloys surfaces in the ordered and disordered states. Then we study how the segregation profile is accommodated in finite size systems such as the TOh of 405 and 1289 atoms in order to draw nanoalloys phase diagrams. REFERENCES 1. F. Tournus, A. Tamion, N. Blanc, A. Hannour, L. Bardotti, B. Prével, Ph. Ohresser, E. Bomet, T. Epicier, and V. Dupuis, Phys. Rev. B 77, 144411 (2008). 2. D. Alloyeau, C. Ricolleau, C. Mottet, T. Oikawa, C. Langlois, Y. Le Bouar and A. Loiseau, Nat. Mater. 8, 940 (2009). 3. P. Andréazza, C. Mottet, C. Andréazza-Vignolle, J. Penuelas, H.C.N. Tolentino, M. De Santis, R. Felici, and N. Bouet, Phys. Rev. B 82, 155453 (2010). 4. F. Tournus, K. Sato, T. Epicier, T.J. Konno, and V. Dupuis, Phys. Rev. Lett. 110, 055501 (2013). 5. F. Calvo, and C. Mottet, Phys. Rev. B 84, 035409 (2011). 17 18 Oral 7 Surface Dynamics At Electrochemical Interfaces O.M. Magnussen Kiel University, Institute of Experimental and Applied Physics Olshausenstr. 40, 24098 Kiel, Germany magnussen@physik.uni-kiel.de ABSTRACT Electrochemical interfaces are the key to many current and emerging technologies, for example in energy storage or micro-/nanofabrication. All of these applications involve atomicscale processes on the electrode surface, such as the surface diffusion and mutual interactions of the atomic and molecular species, participating in the reactions. How is the motion of atoms across the surface affected by the presence of the electrolyte, in particular by coadsorbed species? Which role does the strong electric field at electrochemical interfaces play? What kinds of interactions between adsorbed species on the electrode surface exist, how strong are they, and what is their distance dependence? How do these effects influence electrochemical reactivity and the results of electrochemical reactions, e.g. the morphology of electrochemically deposited films? These are only a few of the many open questions on the elementary dynamic events at the interface. A direct and powerful way to clarify such phenomena are direct observations of the atomic motion at the interface, provided the employed technique has a sufficient high spatial and temporal resolution for such studies. For this we have developed a scanning tunneling microscopy (Video-STM) for in situ studies of electrochemical interfaces between solid metals and liquid electrolyte solutions, which allows following the atomic-scale dynamics at image acquisition rates of up to 30 images per second. By detailed statistical analysis quantitative data on the diffusion barriers and interaction energies is obtained from these video data, providing insight into the role of the electrode potential and coadsorbed species. As examples, I will discuss the diffusion of isolated anionic, cationic, and organic adsorbates on noble metal electrodes as well as the interactions between identical and different adsorbate species [1-6]. The latter includes novel observations of short-term metal adatom trapping by metastable thiolate dimers, which shed new light on sulfurorganic self-assembly and additive applications [4,5]. To demonstrate the relevance of these observations for interfaces processes under technologically relevant conditions, case studies of electrochemical Au and Cu deposition will be discussed [7-9]. Using in situ x-ray surface scattering at modern synchrotron facilities these irreversible processes can be studied with a time resolution down to 5 ms, enabling studies at growth rates up to 11 ML per second. They reveal surprising differences between Au and Cu electrodeposition, specifically an inverse potential dependence, demonstrating the pronounced influence of surface active coadsorbates on real-life electrode reactions. REFERENCES [1] T. Tansel, O.M. Magnussen, Phys. Rev. Lett., 96, 026101 (2006) [2] A. Taranovskyy, T. Tansel, O.M. Magnussen, Phys. Rev. Lett., 104, 106101 (2010) [3] S. Guézo, A. Taranovskyy, H. Matsushima, O.M. Magnussen, J. Phys. Chem. C. 115, 19336 (2011) [4] Y.-C. Yang, A. Taranovskyy, O.M. Magnussen, Angew. Chem. Int. Ed. 51, 1966 (2012) [5] Y.-C. Yang, A. Taranovskyy, O.M. Magnussen, Langmuir 48, 14143 (2012) [6] Y.-C. Yang, O.M. Magnussen, PCCP 15, 12480 (2013) [7] K. Krug, J. Stettner, O. M. Magnussen, Phys. Rev. Lett., 96, 246101 (2006) [8] F. Golks, K. Krug, Y. Gründer, J. Zegenhagen, J. Stettner, O. M. Magnussen, J. Am. Chem. Soc. 133, 3772 (2011) [9] F. Golks, J. Stettner, Y. Gründer, K. Krug, J. Zegenhagen, O.M. Magnussen, Phys. Rev. Lett. 108, 256101 (2012) 19 20 Oral 8 Interfacial behavior in direct bonding mechanism F. Fournel, P. Gondcharton, E. Beche, B. Imbert, F. Baudin, L. Di Cioccio, P. Gueguen, F. Rieutord, C. Ventosa, H. Moriceau CEA, LETI, Minatec Campus, 38054 GRENOBLE, France ABSTRACT Direct bonding is more and more used in different applications in microelectronic, microsystems, and optical devices [1]. Direct bonding consists in joining two surfaces enough smooth and clean to induce a spontaneous adhesion at room temperature [2]. Besides all the surface preparation issue, the behavior of the bonding interface during the post bonding annealing is a very interesting research area. Direct bonding mechanism is then very linked to the behavior of the bonding interface [3]. Direct bonding could be done between many different kind of surface as silicon, silicon dioxide, InP, AsGa, Copper, Titanium or Tungsten for example whatever the surface is amorphous or crystalized. Indeed, as direct bonding starts with Van der Waals forces, in theory, it should always be possible to join at room temperature any kind of surface which respects the direct bonding specifications. But, in order to strengthen the direct bonding interface, usually, a post bonding annealing has to be done to obtain covalent bonds between both surfaces and to overcome the surface roughness in order to have a completely closed interface. During this annealing, all the bonding will not have the same behavior. Interfacial trapped species (as water molecules for instance), by products of the covalent bonds formation, surface or sub-surface contaminant or extrinsic species will have to be managed. The Physical material properties as the grain boundaries for polycrystalline material for instance will also have to be taken into account to elaborate the direct bonding mechanism of the different bonding types. This interaction between bonding interface and bonding mechanism will be illustrated using different example. First of all, the Si/Si, Si/SiO2 or SiO2/SiO2 [4] bonding mechanism will be described and will be used as reference regarding the other type of bonding that could be exanimated as the SiOC/SiOC, Al2O3/Al2O3 [5], Cu/Cu [6], Ti,Ti [7] and W/W [8] for example.After analysing these different bonding types, main interfacial parameter will be extracted. The management of interfacial water will appear to be one of the main parameter but especially for the metallic bonding, the material microstructure will also play an important role [9]. In some case, for the hydrophobic Si/Si bonding for example, the macroscopic crystal orientation could also induce different bonding interface evolution. REFERENCES 1. Handbook of Wafer Bonding, P. Ramm, J. Jian-Qiang Lu, M. M. V. Taklo, Wiley Edition, January 2012 2. F. Rieutord, L. Capello, R. Beneyton, C. Morales, A.M. Charvet, H. Moriceau, ECS Transac-tion 3 (6) IX Wafer Bonding Conference, 205 (2006). 3. U. Gösele and Q. Y. Tong, The Electrochem. Society series, ed. Wiley Inter-Science (1999) 4. C. Ventosa, F. Rieutord, L. Libralesso, C. Morales, F. Fournel, H. Moriceau, Proceding of Halle conference on wafer bonding (2007) 5. E Beche, F. Fournel, F. Rieutord, Proceedings WaferBond’13, Décembre-2013. 6. P. Gueguen, L. D. Cioccio, P. Gergaud, M. Rivoire, D. Scevola, M. Zussy, A. M. Charvet, L. Bally, D. Lafond, and L. Clavelier, J. Electrochem. Soc., vol. 156, no. 10, pp. H772–H776, Oct. 2009. 7. F. Baudin, L. D. Cioccio, P. Gergaud, N. Chevalier, V. Delaye, D. Mariolle, J.-M. Fabbri, B. Imbert, and Y. Bréchet, Meet. Abstr., vol. MA2012–02, no. 40, pp. 2965–2965, Jun. 2012. 8. L. Di Cioccio, P. Gueguen, E. Grouiller, L. Vandroux, V. Delaye, M. Rivoire, J. F. Lugand, and L. Clavelier, Electronic Components and Technology Conference (ECTC), 2010 Proceedings 60th, 2010, pp. 1359 –1363. 9. P. Gondcharton, B. Imbert, F. Baudin, and M. Verdier, Proceedings WaferBond’13, Décembre-2013. 21 22 Oral 9 Formation de nanostructures organiques sur surfaces : d'édifices supramoléculaires aux réseaux covalents E. Nardi, T. Faury, S. Clair, M. Koudia, L. Porte and M. Abel IM2NP, Aix-Marseille Université CNRS UMR 7334, Faculté des Sciences Campus Saint Jérôme Case 151, 13397 Marseille Cedex 20, FRANCE ABSTRACT The manipulation of intermolecular forces to construct new molecular architectures at surfaces opens new vistas for the control of matter at nanoscale and the exploration for future nanodevices. The concept of using selective and directional non-covalent interactions -van der Waals or hydrogen bonds – has been successfully exploited to produce highly organised supramolecular architectures on well-oriented metal surfaces, by depositing molecular tectons under ultra-high vacuum conditions. However, because of the weak nature of these non-covalent (supramolecular) chemistries the networks lack the necessary stability to be used for the patterning of many nano-technological devices. By contrast, covalently bonded systems show higher stability but the lateral extension of 2D polymers is often delicate to control1,2,3. Many defects are usually present because of the irreversible nature of the formation of the covalent bond. It results in a local incomplete reaction or deformation of the polymer. Only very high temperature synthesis of graphen or boron-nitride by cracking of molecular precursors can produce large scale single domain of 2D covalent polymers. I will present recent developments in this field with different examples of on-surface synthesis of polymers: from nanoporous polymers4 to carbonitride single sheet of polymers and finally the elaboration of new pi-conjugated organometallic compounds. Surface reactions are obtained by co-evaporation of metallic atoms and molecule in ultrahigh vacuum (UHV) conditions onto atomically clean and well-defined surfaces. The synthetic films formed were characterized mainly by room temperature scanning tunneling microscopy (STM) on singlecrystal metallic surfaces. REFERENCES 1. Zwaneveld, N.A.A., R. Pawlak, M. Abel, D. Catalin, D. Gigmes, D. Bertin, and L. Porte, Organized formation of 2D extended covalent organic frameworks at surfaces. Journal of the American Chemical Society, 2008. 130(21): p. 6678. 2.. Ourdjini, O., R. Pawlak, M. Abel, S. Clair, L. Chen, N. Bergeon, M. Sassi, V. Oison, J.M. Debierre, R. Coratger, and L. Porte, Substrate-mediated ordering and defect analysis of a surface covalent organic framework Physical Review B, 2011. 84(12): p. 125421. 3. Faury, T., S. Clair, M. Abel, F. Dumur, D. Gigmes, and L. Porte, Sequential linking to control the growth of a surface covalent organic framework. Journal of Physical Chemistry B. 2012. 116 (7) 4819 . 4.. Faury, T., F. Dumur, S. Clair, M. Abel, L. Porte and D. Gigmes Side Functionalization of Diboronic Acid Precursors for Covalent Organic Frameworks CrystEngComm (2013) accepted DOI: 10.1039/C3CE26494G 23 24 Oral 10 Reactivity of the Pd(100) Surface and Palladium Nanoparticles Under CO Oxidation Conditions: SXRD et XPS. Olivier Balmes *a, Andrea Resta a, Didier Wermeille a, Roberto Felici a, Maria E. Messing b, Knut Deppert b, Zhi Liu c, Michael E. Grass c, Hendrik Bluhm d, Richard van Rijn e, Joost W. M. Frenken e, Rasmus Westerström f, Sara Blomberg g, Johan Gustafson g, Jesper N. Andersen g and Edvin Lundgren g a ESRF, B. P. 220, F-38043 Grenoble, France. E-mail: olivier.balmes@maxlab.lu.se b Solid State Physics, Lund University, Box 118, S-221 00 Lund, Sweden c ALS, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA d Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA e Kammerlingh Onnes Laboratory, Leiden University, P. O. Box 9504, 2300 RA, Leiden, The Netherlands f Surface Physics Group, University of Zürich, Winterthurerstr. 190, CH-8057 Zurich, Switzerland g Division of Synchrotron Radiation Research, Department of Physics, Lund University, Box 118, S-221 00 Lund, Sweden ABSTRACT The reactivity of the Pd(100) surface was studied at near ambient pressure in a flow reactor by SXRD. The structure of the surface was also studied in a High Pressure XPS setup, under a pressure of 0.5 mbar. The structure and chemical composition of Pd nano particles (15 and 35 nm) exposed to pure CO and mixtures of CO and O2 at elevated temperatures have been studied in situ by a combination of X-ray Diffraction and X-ray Photoelectron Spectroscopy in pressures ranging from ultra-high vacuum to 10 mbar. Our investigation shows that under CO exposure in a flow reactor, the lattice parameter of the nanoparticles change from the nominal parameter of palladium to a larger lattice parameter. This lattice parameter change is also observed when the gas flow is composed of CO-rich CO/O2 mixtures (with respect to stoechiometric ratio for CO2 production). The lattice parameter decreases back to nominal Pd value when the CO/O2 ratio is under stoechiometric. This lattice parameter change, which is reversible, is consistent with carbon dissolving into the Pd particles forming PdCx.1,2 This phenomenon demonstrates that dissociation of CO on palladium is possible, and that the excess carbon readily dissolves into the lattice. This result contrasts with the results obtained on single crystals, where CO dissociation was not observed,3 and is an argument in favor of the existence of a material gap. REFERENCES 1. M. Maciejewski and A. Baiker J. Phys. Chem. 98, 285-290 (1994). 2. N. Seriani, J. Harl, F. Mittendorfer, G. Kresse J. Chem. Phys. 131, 054701 (2009). 3. V. V. Kaichev, I. P. Prosvirin, V. I. Bukhtiyarov, H. Unterhalt, G. Rupprechter, H-J. Freund J. Phys. Chem. B 107, 3522-3527 (2003). 25 26 Oral 11 Auto-organisation induite par une onde acoustique stationnaire Nicolas Combe, Chistophe Taillan et Joseph Morillo Centre d’Elaboration de Matériaux et d’Etudes Structurales, CNRS UPR 8011, 29 rue J. Marvig, BP 94347, 31055 Toulouse cedex 4, France Université de Toulouse, UPS, 31055 Toulouse, France ABSTRACT Au début de 19ieme siècle, Ernst Chladni saupoudre un disque de cuivre avec du sable et frotte le bord du disque avec un archet: le sable s'auto-organise pour former des figures géométriques. L'interprétation de cette expérience est aujourd'hui bien connue. Le déplacement de l'archet crée dans le disque une onde acoustique stationnaire ayant une longueur d'onde typique de quelques centimètres. Le sable se déplace des ventres de déplacements transverses de l'onde vers les nœuds1. Cette auto-organisation induite par une onde mécanique stationnaire peut être reproduite avec des longueurs d'onde plus petites. A l'échelle mésoscopique, des objets (sphères de polystyrène de taille micro-métrique, ensemble de nanofils...) peuvent s'auto-organiser en solution sous l'effet d'une onde acoustique stationnaire de longueurs d'onde d'environ 100 m2,3. Nous avons récemment proposé de transposer cette idée à l'échelle du nanomètre en étudiant la diffusion d'un adatome ou d'un agrégat sur un substrat cristallin soumis à une onde acoustique stationnaire de surface de longueur d'onde nanométrique. Des simulations de dynamiques moléculaires et des calculs analytiques nous ont permis de montrer qu'une onde acoustique stationnaire de surface pouvait induire une autoorganisation sur une substrat cristallin4,5,6. Nous expliquerons le mécanisme physique conduisant à cette auto-organisation dans le cas de la diffusion d'un adatome. En particuliers, nous mettrons en évidence une force induite par l'onde acoustique stationnaire sur l'adatome et montrerons l'effet d'une telle force sur sa diffusion. Par des simulations de dynamiques moléculaires, nous montrerons la possibilité d'auto-organiser non seulement des adatomes mais aussi des agrégats sur un substrat cristallin. REFERENCES 1. E.N. Da C. Andrade and D. H. Smith, Proceedings of the Physical Society, 43, 405 (1931). 2. J. Shi et al., Lab. Chip, 9, 2890 (2009) 3. Y. Chen et al. , ACS Nano, 7, 3306-3314 (2013) 4. C. Taillan, N. Combe and J. Morillo, Phys ReV Letter, 106, 076102 (2011) 5. N. Combe, C. Taillan and J. Morillo, Phys Rev. B 85, 155420 (2012) 6. C. Taillan, N. Combe and J. Morillo, Phys Rev. B 85, 155421 (2012) 27 28 Oral 12 Nanofluidics in nanopores and nanotubes: from fundamentals to applications Alessandro Siria, Anne-Laure Biance, Remy Fulcrand, Philippe Poncharal et Lyderic Bocquet Institut Lumiere et Matiere, CNRS et Université Claude Bernard Lyon 1, Villeurbanne ABSTRACT New models of fluid transport are expected to emerge from the confinement of liquids at the nanoscale, with potential applications in ultrafiltration, desalination and energy conversion. Nevertheless, advancing our fundamental understanding of fluid transport on the smallest scales requires mass and ion dynamics to be ultimately characterized across an individual channel to avoid averaging over many pores. A major challenge for nanofluidics thus lies in building distinct and well-controlled nanochannels, amenable to the systematic exploration of their properties. In this talk we will discuss on how Focused Ion Beam nanopores drilled in ultra-thin solid state membranes and hierarchical fluidic systems made of individual nanotubes allows to explore the fluid behavior at the limit of the classic description. We will show how the fluid-solid interface governs the transport in nano channels and how tuning the surface properties may lead to new tools that can profit of exotic behavior of fluid at nanoscale 29 30 Oral 13 Caractérisation de la Dynamique de Chaînes Polymères Greffées par Microscopie Electrochimique à Force Atomique (AFM-SECM) Agnès Anne, Christophe Demaille Laboratoire d’Electrochimie Moléculaire, UMR 7591 CNRS, Univ Paris Diderot, Sorbonne Paris Cité, 15 rue Jean-Antoine de Baïf, F-75205 Paris Cedex 13, France. E-mail: demaille@univ-paris-diderot.fr ABSTRACT La microscopie électrochimique à force atomique (AFM-SECM) est une technique à sonde locale in-situ utilisant une sonde AFM hybride capable de mesurer simultanément des forces interfaciales mais aussi des courants électrochimiques. Cette combinaison permet notamment d’amener de façon non destructive la sonde AFMSECM au contact de chaines polymères linéaires nanométriques, que ce soit des chaines polyethylène glycol1 ou des brins DNA (oligonucleotides),2 greffées par une de leur extrémité à la surface d’une électrode, et portant un label redox à leur extrémité libre. Par simple mouvement brownien des chaines le marqueur redox rentre aléatoirement en collision avec la sonde et la surface où il est respectivement oxydé et réduit. La mesure du courant électrochimique résultant de ce cyclage redox permet ainsi d’accéder directement à la dynamique « interne » du mouvement des chaines. La mesure simultanée de la force de compression des chaines permet de plus de corréler l’état de confinement des chaines dans l’espace sonde-surface avec leur dynamique conformationnelle. Cette microscopie originale, plus précisément désignée par Mt/AFMSECM pour Molecule touching AFM-SECM,3 permet a priori d’étudier ainsi la dynamique conformationnelle de toute macromolécule ou bio-macromolécule immobilisée, pourvu que celle-ci porte un marqueur redox. De plus, combinant la résolution nanométrique de l’AFM à la spécificité de la détection électrochimique, le mode imagerie de la microscopie Mt/AFMSECM permet la cartographie sélective de la distribution de macromolécules, ou autres nano-objets redox, immobilisées sur surface d’électrode.4 REFERENCES 1. J. Abbou; A. Anne; C. Demaille « Probing the Structure and Dynamics of End-Grafted Flexible Polymer Chain Layers by Combined Atomic Force - Electrochemical Microscopy. Cyclic Voltammetry within Nanometer-Thick Macromolecular Poly(ethylene glycol) Layers. » J. Am. Chem. Soc. 2004, 126,10095-10108. 2. K. Wang; C. Goyer; A. Anne; C. Demaille « Exploring the Motional Dynamics of End-Grafted DNA Oligonucleotides by in Situ Electrochemical Atomic Force Microscopy. » J. Phys. Chem. B 2007,111, 6051-6058. 3. A. Anne; E. Cambril; A. Chovin; C. Demaille « Touching Surface-Attached Molecules with a Microelectrode: Mapping the Distribution of Redox-Labeled Macromolecules by Electrochemical-Atomic Force Microscopy. » Anal. Chem. 2010, 82, 6353-6362. 4. K. Huang; A. Anne; M. A. Bahri; C. Demaille « Probing Individual Redox PEGylated Gold Nanoparticles by Electrochemical-Atomic Force Microscopy » ACS Nano 2013, 7, 4151-4163. 31 32 Oral 14 Curved crystals: a different approach to surface science Enrique Ortega Nanophysics LAB, San Sebastián ABSTRACT Atomic steps strongly influence many physical-chemical phenomena that occur at surfaces, such as growth, chemical reactions, and electron scattering. It is therefore desirable to investigate the role of steps through the accurate control of the step density that can be achieved with a curved surface. We are capable of fabricating curved surfaces of different materials with a smooth variation of the crystal orientation (miscut angle) with respect to a high symmetry plane. Sample shapes and dimensions allow easy processing in vacuum, and are ideal for the exploration of step-dependent properties through scanning probe techniques, including 100-micron-size light beams. It will be shown the powerful analytical capabilities of the curved surface approach, their advantages with respect to flat surfaces, as well as the new physics that arises by studying curved crystals: the complexity of the surface state scattering at step arrays of noble metals [1], the interplay of steps and dislocation networks to define exotic 2D lattices and band structures, the periodic texturing of quantum well states in ultrathin stepped metallic films [2], and the smooth variation of surface core-level shifts in transition metals and overlayers. REFERENCES [1] M Corso, F Schiller, L Fernández, J Cordón and J E Ortega, Phys.: Cond. Matter 21, 353001 (2009); J. E. Ortega, M. Corso, Z. M. Abd-el-Fattah, E. A. Goiri, and F. Schiller, Phys. Rev. B 83, 085411 (2011); J. E. Ortega, J. Lobo-Checa, G. Peschel, S. Schirone, Z. M. Abd-el-Fattah, M. Matena, F. Schiller, P. Borghetti, P. Gambardella, and A. Mugarza, Phys.Rev. B 87, 115425 (2013). [2] F. Schiller at al. (submitted). 33 34 Oral 15 Supraconductivité en Conditions de Confinement Ultime : Des nano-Ilots à la Monocouche de Pb/Si Tristan Cren, Lise Serrier-Garcia, Christophe Brun, Vladimir Cherkez, François Debontridder et Dimitri Roditchev Institut des Nanosciences de Paris, CNRS et Université Pierre et Marie Curie, Paris ABSTRACT En 2011 nous fêtions le centenaire de la découverte de la supraconductivité par Kamerlingh Onnes à Leiden. Ce phénomène fascinant est loin d’avoir livré tous ses secrets, depuis quelques années quelques équipes s’intéressent à ce qu’il se passe quand les dimensions des supraconducteurs deviennent nanométriques. En effet, la supraconductivité est caractérisée par deux échelles de longueur : la profondeur de pénétration du champ magnétique λ, et la longueur de cohérence ξ qui est la taille typique des paires de Cooper. Quand la taille des systèmes supraconducteurs devient comparable voire plus petite que λ et ξ on s’attend à voir émerger de nouvelles propriétés liées au confinement. Alors que de nombreux travaux théoriques prévoyaient des états quantiques exotiques induits par le confinement, rares étaient les travaux expérimentaux à s’aventurer sur ce terrain. Cependant, les progrès techniques récents en matière d’études par microscopie en champ proche de nano-systèmes élaborés par croissance in situ ont permis de venir enfin sonder des systèmes extrêmement confinés présentant des propriétés radicalement nouvelles. Pour aborder cette thématique plusieurs équipes, dont la nôtre, ont choisi Pb/Si(111) comme système modèle [1-6]. Selon les conditions de croissance, nous sommes en mesure de produire des nano-cristaux supraconducteurs de différentes tailles et de formes variées. Dans les nano-îlots en confinement latéral extrême nous avons observé de nouveaux objets quantiques : des vortex géants résultant de la fusion de plusieurs vortex d’Abrikossov [3]. La structure de ces nouveaux objets quantique est conforme à celle prédite par D. Saint James il y a 46 ans ! En 2010 la communauté des supraconducteurs a été très surprise par l’annonce de la découverte de la supraconductivité dans une monocouche reconstruite de Pb/Si(111) par un groupe de l’Université Tsinghua (Pékin) [4]. Nous avons depuis confirmé ce résultat surprenant et nous avons étudié comment les divers défauts structuraux perturbent l’état supraconducteur dans un système aussi ultime. Nous avons en particulier trouvé que de banales marches atomiques deviennent de sérieux obstacles à cette échelle. REFERENCES 1 Scanning Tunneling Spectroscopy Study of the Proximity Effect in a Disordered Two-Dimensional Metal, L. Serrier-Garcia et al., Phys. Rev. Lett. 110, 157003 (2013) 2 Visualization of Geometric Influences on Proximity Effects in Heterogeneous Superconductor Thin Films, J. Kim, V. Chua, G. A. Fiete, H. Nam, A. H. MacDonald, and C.-K. Shih, Nat. Phys. 8, 464 (2012). Vortex Fusion and Giant Vortex States in Confined Superconducting Condensates, T. Cren, L. Serrier-Garcia, F. Debontridder et D. Roditchev, Phys. Rev. Lett. 107, 097202 (2011) Superconductivity in One-Atomic-Layer Metal Films Grown on Si(111), T. Zhang et al., Nature Phys. 6, 104 (2010). Ultimate Vortex Confinement Studied by Scanning Tunneling Spectroscopy, T. Cren, D. Fokin, F. Debontridder, D. Roditchev, Phys. Rev. Lett. 102, 127005 (2009) Superconducting Pb Island Nanostructures Studied by Scanning Tunneling Microscopy and Spectroscopy, T. Nishio et al., Phys. Rev. Lett 101, 167001 (2008 3 4 5 6 35 36 CONTRIBUTIONS POSTERS 37 38 P01 Electrochemical manipulation of the magnetic anisotropy energy in ultrathin layers. N. Di, F. Maroun et P. Allongue P02 Segregation in Sequentially Deposited PtCo and AgCo Nanoalloys Studied by Anomalous X-ray Scattering. P. Andreazza, Z. Kataya, A. Lemoine, H. Khelfane, C. Andreazza-Vignolle, O. Lyon, Y. Garreau, A. Coati, A. Ramos, J. Creuze P03 Profilage Argon pour analyses XPS d'un film de polyphosphazene sur InP. D. Aureau , C.Njel , A. Wright, A.-M Goncalves, A. Etcheberry P04 Self-patterned ABO3(001) substrates: a playground for functional nanostructures. R. Bachelet, C. Ocal, F. Sánchez, and J. Fontcuberta P05 Micrometric And Nanometric Metal Patterns Onto Various Substrates Using Microcontact Printing of Palladium Colloids. J. Coulm, D. Leonard, F. Bessueille P06 Donor-to-acceptor core-level shift in molecular blend/metal interfaces. Patrizia Borghetti*, Afaf El-Sayed, Elizabeth Goiri, Celia Rogero,Luca Floreano, Duncan John Mowbray,Jose Luis Cabellos, Angel Rubio, Jose Enrique Ortega, Dimas G. de Oteyza. P07 Compréhension de l’évolution de la chimie de surface après profilage GD-OES D. Mercier, M. Bouttemy, J. Vigneron, I. Gérard, P. Chapon, A. Etcheberry P08 Recent Analytical Methods For Physical And Chemical Characterization Of Surfaces And Interfaces – Application For Surface Treatments And Modification For Control Of Adhesive or Anti-Adhesive Properties J.Brissot P09 Electron transport simulations through organic adlayers on metal surfaces M. Cobian, F.D. Novaes, H. Ueba, A. Garcia, P. Ordejon and N. Lorente P10 Ly-EtTEM – Lyon Environmental Tomographic Transmission Electron Microscope: Gaseous Environments and Variable Temperatures Within An Aberration-Corrected ETEM For Spatially-resolved Real-time Adsorption, Reaction, Growth, Controlled Modification Studies M. Aouine, F.J. Cadete Santos Aires, N. Blanchard, C. Langlois, T. Epicier P11 Étude de la formation et de la désorption de SiO2 en surface de l’hétérostructure Au/Si par photoémission résolue en temps D. Ferrah, J. Penuelas, B. Gobaut, C. Botella, M. Silly, F. Sirotti, G. Grenet 39 P12 Role of Strain in the Stability of Hetero-Epitaxial Island on Nanopillars M. Ignacio, O. Pierre-Louis, Y. Saito, P. Smereka P13 Controlling the 2D self-assembly of triphenylene molecules: a new role for azobenzenes P. Sleczkowski, N. Katsonis,K. Uchida, A. Marchenko, and E. Lacaze P14 Structure, Exchange Coupling And Spin Orientation Of An Ultrathin CoO/PtFe DoubleLayer On Pt(001) A. D. Lamirand M. M. Soares, H. C.N. Tolentino, M. De Santis, A. Y. Ramos, S. Grenier, O. Geaymond, J. C. Cezar, A. de Siervo and M. Jamet P15 Adsorption of iron and cobalt porphyrins on Ag(111): Ab initio prediction of unusual interaction with O2 and CO. Tangui Le Bahers, Torsten Houwaart, Philippe Sautet and Marie-Laure Bocquet P16 Arrays of Preformed Pt Clusters on Graphene in Epitaxy on Ir(111). S. Linas, F. Jean, C. Albin, F.Tournus, L. Bardotti and GIRenaud. P17 Morphology of alloy monolayers studied by STM F. Maroun, F. Lecadre, P. Allongue P18 Electronic and Chemical Properties of Advanced Metal Semiconductor Contacts Studied by Photoelectron Spectroscopy A. Fadjie-Djomkam, E. Martinez, V. Beugin, C. Leroux, F. Martin, F.Nemouchi P19 Experimental characterisation and multi-physic modelling of a direct bonded interface N. Cocheteau, A. Maurel-Pantel, F. Lebon, I. Rosu, F.Mazerolle, S. Ait-Zaid, I. Savin De Larclause, Y. Salaun P20 BaTiO3 grown on Si (001) by Molecular Beam Epitaxy for low power field-effect devices L. Mazet, R. Bachelet, L. Louahadj, D. Albertini, B. Gautier, G. Saint-Girons, C. Dubourdieu P21 Implementation Of Bonding And Layer Transfer Technology For The Realisation Of Hybrid Photonic Devices J. Pilarczyk , R. Mazurczyk, Z. Lisik P22 Ti-based interface engineering for heteroepitaxial growth of SrTiO3 on GaAs B. Meunier, L. Louahadj, G. Grenet, C. Botella, P. Regreny, R. Bachelet, J. Penuelas, G. Renaud, G. Saint-Girons P23 Etude par microscopie à électrons lents (LEEM) du système Au/Si. S .Curiotto, F.Leroy, F.Cheynis, P.Müller 40 P24 In-situ evolution of surfaces at various stresses and temperatures using a unique experimental device under ultra-high vacuum Y. Nahas, J. Colin, M. Drouet, C. Coupeau and J. Bonneville P25 Adsorption of Organic Molecules on Water-Saturated Si(001) Surface: Radical Adducts and Concerted Hydrosylation Products. The case of Benzaldehyde D. Pierucci, A. Naitabdi, F. Rochet, F. Bournel,J.-J. Gallet, H. Tissot, M. Silly, and F. Sirotti P26 Elaboration And Characterization Of Self-Assembled Monolayers On Gold And Silica F. Palazon, D. Ferrah, C. Botella, G. Grenet, J.-F. Bryche, B. Bartenlian, P. Rojo Romeo, É. Souteyrand, Y. Chevolot, J.-P. Cloarec P27 Growth of semiconducting core / functional oxide shell nanowires F. Boudaa, R. Bachelet, A. Benamrouche, M. Gendry, G. Grenet, Y. Robach, G. SaintGirons, B. Vilquin, J. Penuelas, A. Descamp-Mandine, B. Masenelli, N. P. Blanchard, C. Andreazza, P. Andreazza P28 Rôle du glycocluster dans la formation de nanostructures biologiques lectines/glycoclusters sur surface F. Zuttion, D.Sicard, Y. Chevolot, F. Morvan, J.-J. Vasseur, S.Vidal, E. Souteyrand1 et M. Phaner-Goutorbe P29 Surface electronics of individual Si-doped GaN wires studied by XPS spectromicroscopy O. Renault, J. Morin, N. Chevalier, E. Martinez, P. Tchoulfian P30 Interfaces entre métaux magnétiques et molécules V. Repain, A. Bellec, J. Lagoute, Y. Girard, C. Chacon et S. Rousset P31 Complementarity Of Inelastic Background and High Resolution Core-Level Analysis In HAXPES P. Risterucci, O. Renault, E. Martinez, D. Bertrand, B. Detlefs, D. Ceolin, J-P Rueff, S Tougaard, G Grenet P32 Etude de la Rétention de Deutérium dans le Tungstène par Désorption à Température Programmée (TPD) O. Saidi, R. Bisson, O. Mourey, S. Markelj, C. Grisolia T. Angot P33 DFT Study of the Growth of C60 Molecules on a Nanoporous TBB/SiB Molecular Network K.Boukari, E. Duverger, R.Stephan, M.C.Hanf, and Ph.Sonnet P34 Theoretical Study of Intermolecular Interactions in Nanoporous Networks on the SiB Surface K. Boukari, E. Duverger, Ph. Sonnet 41 P35 Surface Analysis Techniques (XPS/AES-SEM) And Cross-sectioning Method Used To Reveal The Inner Structure Of Core/Shell Nanoparticles J.B. Ledeuil, A. Uhart, J. Allouche, J.C. Dupin, H. Martinez P36 Ageing process of CZT submitted to aqueous HBr/Br2 etching : X-ray Photoelectron Spectroscopy, nano-Auger and Microscopies Characterization. A. Vallée, I. Gérard, L. Mollard, G. Bourgeois, J. Vigneron, M. Bouttemy and A. Etcheberry 42 P01 Formation de nanostructures organiques sur surfaces : d'édifices supramoléculaires aux réseaux covalents E. Nardi, T. Faury, S. Clair, M. Koudia, L. Porte and M. Abel IM2NP, Aix-Marseille Université CNRS UMR 7334, Faculté des Sciences Campus Saint Jérôme Case 151, 13397 Marseille Cedex 20, FRANCE ABSTRACT The manipulation of intermolecular forces to construct new molecular architectures at surfaces opens new vistas for the control of matter at nanoscale and the exploration for future nanodevices. The concept of using selective and directional non-covalent interactions -van der Waals or hydrogen bonds – has been successfully exploited to produce highly organised supramolecular architectures on well-oriented metal surfaces, by depositing molecular tectons under ultra-high vacuum conditions. However, because of the weak nature of these non-covalent (supramolecular) chemistries the networks lack the necessary stability to be used for the patterning of many nano-technological devices. By contrast, covalently bonded systems show higher stability but the lateral extension of 2D polymers is often delicate to control1,2,3. Many defects are usually present because of the irreversible nature of the formation of the covalent bond. It results in a local incomplete reaction or deformation of the polymer. Only very high temperature synthesis of graphen or boron-nitride by cracking of molecular precursors can produce large scale single domain of 2D covalent polymers. I will present recent developments in this field with different examples of on-surface synthesis of polymers: from nanoporous polymers4 to carbonitride single sheet of polymers and finally the elaboration of new pi-conjugated organometallic compounds. Surface reactions are obtained by co-evaporation of metallic atoms and molecule in ultrahigh vacuum (UHV) conditions onto atomically clean and well-defined surfaces. The synthetic films formed were characterized mainly by room temperature scanning tunneling microscopy (STM) on singlecrystal metallic surfaces. REFERENCES 1. Zwaneveld, N.A.A., R. Pawlak, M. Abel, D. Catalin, D. Gigmes, D. Bertin, and L. Porte, Organized formation of 2D extended covalent organic frameworks at surfaces. Journal of the American Chemical Society, 2008. 130(21): p. 6678. 2.. Ourdjini, O., R. Pawlak, M. Abel, S. Clair, L. Chen, N. Bergeon, M. Sassi, V. Oison, J.M. Debierre, R. Coratger, and L. Porte, Substrate-mediated ordering and defect analysis of a surface covalent organic framework Physical Review B, 2011. 84(12): p. 125421. 3. Faury, T., S. Clair, M. Abel, F. Dumur, D. Gigmes, and L. Porte, Sequential linking to control the growth of a surface covalent organic framework. Journal of Physical Chemistry B. 2012. 116 (7) 4819 . 4.. Faury, T., F. Dumur, S. Clair, M. Abel, L. Porte and D. Gigmes Side Functionalization of Diboronic Acid Precursors for Covalent Organic Frameworks CrystEngComm (2013) accepted DOI: 10.1039/C3CE26494G 43 P02 Electrochemical manipulation of the magnetic anisotropy energy in ultrathin layers N. Di, F. Maroun et P. Allongue Physique de la Matière Condensée, CNRS, Ecole Polytechnique F-91128 Palaiseau ABSTRACT Magnetoelectric coupling (MEC) in ferromagnetic ultrathin films refers to a phenomenon in which the easy axis of magnetization or, equivalently, the magnetic anisotropy energy (MAE) is altered by application of an external voltage. Different strategies exist. Among them one is receiving increasing attention since two initial publications [1] [2] suggested that an electric field can significantly modify the MAE. The exact origin of MEC is however a matter of debate because theoretical works predict very small electric field effects [3] and also because recent surface studies are suggesting that MEC is rather related to a modification of the oxidation state of the magnetic layer. Nonetheless MEC is considered as a mean to assist and thereby electrically address magnetization reversal in nanostructures [4], modify magnetic domain wall motion [5]. It is also a mean to reduce spintronic device power consumption. This work aims at studying the origin of MEC by investigating MEC in well defined epitaxial Co/Au (111) layers. To avoid the deposition of a dielectric layer (indispensable for solid state systems), we grow the layer from an electrolyte, keep it under potential control to prevent any surface oxidation. MEC is investigated using in situ real time magneto optical Kerr effect (MOKE). While a pure electric field effect is demonstrated at as deposited layer [6], it will be shown that potential induced modifications of the surface chemistry may dominate in certain cases. The poster will in particular focus on the influence of oxidation of Co(0001)/Au(111) in alkaline solutions and the adsorption of small molecules. REFERENCES [1] Y. Shiota, T. Maruyama, T. Nozaki, T. Shinjo, M. Shiraishi, and Y. Suzuki, "Voltage-Assisted Magnetization Switching in Ultrathin Fe80Co20 Alloy Layers," Applied Physics Express 2 (6) (2009). [2] M. Weisheit, S. Fahler, A. Marty, Y. Souche, C. Poinsignon, and D. Givord, "Electric Field-Induced Modification of Magnetism in Thin-Film Ferromagnets," Science 315 (5810), 349-351 (2007). [3] Kohji Nakamura, Riki Shimabukuro, Toru Akiyama, Tomonori Ito, and A. J. Freeman, "Origin of electric-field-induced modification of magnetocrystalline anisotropy at Fe(001) surfaces: Mechanism of dipole formation from first principles," Phys. Rev. B 80 (17), 172402 (2009). [4] Yoichi Shiota, Takayuki Nozaki, Frédéric Bonell, Shinichi Murakami, Teruya Shinjo, and Yoshishige Suzuki, "Induction of coherent magnetization switching in a few atomic layers of FeCo using voltage pulses," Nat Mater 11 (1), 39-49 (2012). [5] Uwe Bauer, Satoru Emori, and Geoffrey S. D. Beach, "Electric field control of domain wall propagation in Pt/Co/GdOx films," Appl. Phys. Lett. 100 (19), 192408-192404 (2012). [6] N. Tournerie, A. P. Engelhardt, F. Maroun, and P. Allongue, "Influence of the surface chemistry on the electric-field control of the magnetization of ultrathin films," Phys. Rev. B 86 (10), 104434 (2012). 44 P03 Segregation in Sequentially Deposited PtCo and AgCo Nanoalloys Studied by Anomalous X-ray Scattering P. Andreazza1*, Z. Kataya1, A. Lemoine1,2, H. Khelfane1,3, C. AndreazzaVignolle1, O. Lyon2, Y. Garreau2, A. Coati2, A. Ramos4, J. Creuze5 1 Centre de Recherche sur la Matière Divisée, UMR 6619, CNRS & Université d'Orléans, 1bis rue de la Férollerie, 45071 Orléans Cedex 2 2 Synchrotron Soleil, L'Orme de Merisiers, Saint Aubin, 91192 Gif-sur-Yvette 3 Département de physique, Université de Béjaia, Route de T. Ouzamour, 06000 Algérie 4 Institut Néel - CNRS – Université Joseph Fourier, 25 av des Martyrs, 38042 Grenoble Cedex 5 Laboratoire d'Etude des Matériaux Hors Equilibre, Université Paris-Sud, 91405 Orsay Cedex * pascal.andreazza@univ-orleans.fr ABSTRACT As atomic structure and morphology of particles are directly correlated to their functional properties, experimental methods probing local and average features of particles at the nanoscale elicit a growing interest [1]. Especially, to discriminate “core-shell” or “alloyed” atom arrangement in ultrasmall multimetallic particles obtained by codeposition ou sequential deposition method, anomalous X-ray scattering techniques are very attractive chemical investigation tools to obtain morphological or structural data about segregation phenomena. The idea was to choose a system CoM (M=Ag or Pt) having a strong tendency either for alloying (Pt case) or for segregating (Ag case) and to study the atomic diffusion and stability leading to mixed or segregated CoM nanoparticles (core-shell formation, phase separation or alloying). The anomalous variation of the scattering factor close to an absorption edge enables element specific investigations. In the case of supported nano-objects, the use of grazing incidence is necessary to limit the probed depth [1]. The combination of grazing incidence with the anomalous technique provides a powerful new method, anomalous grazing incidence small-angle X-ray scattering (AGISAXS), to disentangle complex chemical patterns in supported multi-component nano-structures [2,3]. Nevertheless, a proper data analysis requires accurate quantitative measurements associated to an adapted theoretical framework. We will presented anomalous methods applied to pure nanoparticles in matrix and nanoalloys phase separation in the 1-10nm size range, and focuses on the application of AGISAXS in bimetallic systems: nanocomposite films [4] and core-shell supported nanoparticles [3,5]. In addition, very recent results about the structural chemical selectivity obtained by anomalous grazing incidence wide-angle X-ray scattering (AGIWAXS) combined with AGISAXS results will be presented on the CoAg system. REFERENCES [1] P. Andreazza in « Nanoalloys: Synthesis, Structure and Properties », Eds D.Alloyeau et al., p69-114 (2012) Springer-Verlag, London [2] B. Lee, S. Seifert, S. J. Riley, G. Tikhonov, N. A. Tomczyk, S. Vajda, and R. E. Winans, J. Chem. Phys. 123, 074701 (2005). [3] P. Andreazza, H. Khelfane, O. Lyon, C. Andreazza-Vignolle, A. Ramos, and M. Samah, Eur. Phys. J., 218, 231-244 (2012) [4] J.-P. Simon, D. Babonneau, M. Drouet and O. Lyon, J. Appl. Cryst. 42, 312-322 (2009) [5] H. Khelfane, P. Andreazza, C. Andreazza-Vignolle, A. Ramos, and O. Lyon, to be published (2014) 45 P04 Profilage Argon pour analyses XPS d'un film de polyphosphazene sur InP Aureau D.,1 Njel C, 1 Wright A.,2 Goncalves A.-M., 1 Etcheberry A. 1 Institut Lavoisier, UMR 8180 CNRS-UVSQ, Versailles, France Thermo Scientific, East Grinstead, United Kingdom ABSTRACT Les mesures de spectroscopies de photoélectron X (XPS) sont des analyses de composition de surface permettant d'identifier la nature et l'environnement chimique des éléments présents. Cette technique sensible d'analyse sonde les premiers nanomètres au voisinage de la surface. Cette caractéristique est à l'origine de l'obtention de spectre contenant les diverses contaminations qui peuvent fausser l'analyse par la difficulté de les décorréler des éléments constitutifs de la surface. Par ailleurs, il n'est pas aisé de connaitre à partir des pics observés la position des différents éléments au sein de l'épaisseur sondée, i.e. extrême surface ou zone plus enfouie. Afin de résoudre ce problème, une des stratégies consiste à réaliser un bombardement ionique afin de pénétrer progressivement dans le matériau et d'estimer les profils en profondeur des différents éléments. Le travail présenté ici propose le profilage d'un film de polyphosphazene (constitué de liaisons "P-N") généré sur le phosphure d'indium (InP) par traitement électrochimique dans NH3 liquide. 1 La figure ci-contre montre clairement l'évolution des signaux de phosphore et d'azote (le spectre d'indium reste inchangé) au cours du profilage (temps total du bombardement: 10 s) de la couche polymère en surface de l'InP. Le fait que le pic à haute énergie, noté N1, présent dans la zone N1s du spectre diminue avant celui à plus basse énergie, noté N2, montre que ce pic N1 est associé avec un azote plus proche de la surface que celui noté N2 plus proche de l'interface avec le semi-conducteur. La diminution de la contribution à haute énergie sur le phosphore (associé à des phosphores de type "P-N") montre la disparition progressive du film de polyphosphazene. Le déplacement chimique de cette contribution montre néanmoins une dégradation du film au cours du bombardement par les ions Argon. Afin de préserver le polymère et de réaliser un etching plus progressif de la couche, une nouvelle source générant des clusters d'Argon a été développé. Cette dernière permet également dans les premiers temps du bombardement de réaliser un nettoyage de la surface sans modification de celle-ci afin de réaliser des analyses des surfaces non contaminées. REFERENCES 1. A.-M. Gonçalves, C. Njel, C. Mathieu, D. Aureau, A. Etcheberry Thin Solid Films 538 (2013) 21–24 46 P05 Self-patterned ABO3(001) substrates: a playground for functional nanostructures R. Bachelet1,2, C. Ocal1, F. Sánchez1, and J. Fontcuberta1 1 Institut de Ciència de Materials (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra, Barcelona, Spain 2 Institut des Nanotechnologies de Lyon (INL), CNRS UMR 5270, Ecole Centrale de Lyon, 36 avenue Guy de Collongue, 69134 Ecully cedex, France ABSTRACT Cost-effective fabrication of ordered nanostructures and novel devices with increased functionalities are nowadays required. These last years, the chemical terminations (CT) of functional ABO3(001) perovskites (i.e. AO and BO2) have appeared critical to control interfaces (properties) of heterostructures. More recently, the possibility to self-assemble at the nanoscale the CT with lateral order has paved the way towards nanostructure fabrication by selective growth exploiting the CT-dependent interface energy [1-7]. We will show here that several atomically-flat ABO3(001) substrates with self-ordered (charged and neutral) CT can be used as template to realize distinct nanostructures of epitaxial oxides [1-2,5-7] and hybrid organic-inorganic [3]. The epitaxial oxide nanostructures have been grown by pulsedlaser deposition monitored by in-situ reflection high-energy electron diffraction and all the nanostructures have been characterized mainly by ex-situ atomic force microscopy (AFM) techniques (amplitude-modulation, friction, and conductive modes). Particularly, we will show that the selectivity, driven by interface energy differences between materials, allows to generate different nanostructures and that the morphology of the deposited ordered-arrays of oxides can be controlled by epitaxial strain. Selected results will be presented as the fabrication of one-dimensional array of conducting nanostripes (e.g. SrRuO3/SrTiO3) [1], dots (e.g. SrRuO3/LSAT) [5], electrostatically-modulated nanostripes (BaTiO3/SrTiO3) [6], and conducting interfaces (LaAlO3/SrTiO3) [7]. We will then show that these self-patterned substrates can also provide selective adsorption of inorganic and organic matter (water, molecules, etc…) [2-3]. These results point-out the importance of CT of functional perovskites for sensing applications in micro-fluidic environment. REFERENCES 1. R. Bachelet, F. Sánchez, J. Santiso, C. Munuera, C. Ocal, and J. Fontcuberta, Chemistry of Materials 21, 2494 (2009). 2. R. Bachelet, F. Sánchez, F. J. Palomares, C. Ocal, and J. Fontcuberta, Applied Physics Letters 95, 141915 (2009). 3. M. Paradinas, L. Garzón, F. Sánchez, R. Bachelet, D. B. Amabilino, J. Fontcuberta, and C. Ocal, Physical Chemistry Chemical Physics 12, 4452 (2010). 4. J. E. Kleibeuker, G. Koster, W. Siemons, D. Dubbink, B. Kuiper, J. L. Blok, C.-H. Yang, J. Ravichandran, R. Ramesh, J. E. ten Elshof, D. H. A. Blank, and G. Rijnders, Advanced Functional Materials 20, 3490 (2010). 5. R. Bachelet, C. Ocal, L. Garzón, J. Fontcuberta, and F. Sánchez, Applied Physics Letters 99, 051914 (2011). 6. C. Ocal, R. Bachelet, L. Garzón, M. Stengel, F. Sánchez, and J. Fontcuberta, Chemistry of Materials 24, 4177 (2012). 7. M. Foerster, R. Bachelet, V. Laukhin, J. Fontcuberta, G. Herranz, and F. Sánchez, Applied Physics Letters 100, 231607 (2012). 47 P06 Donor-to-acceptor core-level shift in molecular blend/metal interfaces Patrizia Borghetti*1,2, Afaf El-Sayed,3 Elizabeth Goiri,1 Celia Rogero,1,2 Luca Floreano,4 Duncan John Mowbray,1,5 Jose Luis Cabellos,1,5 Angel Rubio,1, 2, 5 Jose Enrique Ortega,*1, 2, 3 Dimas G. de Oteyza.2 1 Donostia International Physics Center, Paseo Manuel Lardizabal 4, E-20018 San Sebastian, Spain Centro de Fisica de Materiales CSIC/UPV-EHU-Materials Physics Center, E-20018 San Sebastian, Spain 3 Dpto. Fisica Aplicada I, Universidad del Pais Vasco UPV/EHU, E-20018 San Sebastian, Spain 4 CNR-IOM, Laboratorio Nazionale TASC, Basovizza SS-14 Km. 163.5, I-34149, Trieste, Italy 5 Nano-Bio Spectroscopy Group and ETSF Scientific Development Center, Departamento de Fisica de Materiales, Universidad del Pais Vasco UPV/EHU, Avenida de Tolosa 7, E-20018 San Sebastian, Spain * e-mail: patrizia_borghetti@ehu.es; enrique.ortega@ehu.es 2 ABSTRACT Self assembled donor-acceptor complexes on metallic electrodes are at the heart of novel organic optoelectronic applications such as solar cells. In these devices, the organic/metal interface is of fundamental importance, since it defines the charge injection barrier that determines the ultimate device performance. Despite the dramatic progress of the organic electronic field so far, the ability to accurately model and predict the electronic properties at interfaces is still inadequate, thereby hampering the translation of organic thin film growth into an established technology. One of the key issues is how the molecule/metal interaction plus the intermolecular interactions affect the energy-level alignment, i.e., how do the Highest Occupied Molecular Orbital, HOMO, and the Lowest Unoccupied Molecular Orbital, LUMO, align with respect to the metal Fermi energy. However, the HOMO and LUMO alignment is not easy to elucidate in complex multi-component, molecular/metal systems. Here we demonstrate that core-level photoemission from donor-acceptor/metal interfaces can straightforwardly and transparently determine molecular level alignment. We focus on 2D crystalline networks, and carry out a systematic investigation over a number of donoracceptor/metal systems. In particular, we use Au(111), Cu(111) and Ag(111) as substrates, perfluorinated copper-phthalocyanine (F16CuPc) and perfluoropentacene (PFP) as aromatic acceptors, and copper-phthalocyanine (CuPc) and pentacene (PEN) as electron donors. For each combination, XPS spectra show a characteristic binding energy shift in core-levels as a function of molecular donor/acceptor ratio, irrespectively of the molecule or the metal. Such shift reveals how the level alignment at the molecule/metal interface varies as a function of the donor-acceptor stochiometry in the contact blend. We also show that the energy level alignment is barely affected by donor-to-acceptor charge transfer, and majorly determined by the electron potential created by donor (high attractive potential) or acceptor (low attractive potential) molecules in their vicinity, i.e., by the average change in work function. REFERENCES [1] A. El-Sayed, P. Borghetti et al. ACS NANO, 7 (2013) 6914. 48 P07 Compréhension de l’évolution de la chimie de surface après profilage GD-OES D. Merciera, M. Bouttemya, J. Vignerona, I. Gérarda, P. Chaponb, A. Etcheberrya a Institut Lavoisier de Versailles, UMR CNRS/UVSQ 8180, 45 av des Etats-Unis, 78035 Versailles cedex, France. b HORIBA Jobin Yvon, 16 Rue du Canal, 91160 Longjumeau, France. ABSTRACT Les absorbeurs photovoltaïques basés sur la technologie dite des couches minces et plus particulièrement les chalcogénures connaissent actuellement un grand essor et semblent être une alternative intéressante à la technologie Silicium. Les derniers rendements obtenus pour des absorbeurs de type CIGS (Cu(In,Ga)Se2), de l’ordre de 21% en laboratoire et 14% en production, confirment cet intérêt. L’amélioration des performances de ces cellules à haut rendement nécessite un contrôle parfait de l’absorbeur (composition, impuretés…). Ainsi, des techniques comme le SIMS ou bien l’XPS sont utilisées, mais le temps d’analyse reste long. La spectroscopie de décharge luminescente (GD-OES pour Glow Discharge - Optical Emission Spectroscopy) est une technique alternative intéressante pour la caractérisation des films minces. En effet, elle permet une analyse rapide (quelques minutes) et qualitative des absorbeurs. Dans un premier temps, nous avons utilisé la spectroscopie de photoélectrons pour réaliser la calibration de la GD-OES. Dans un second temps, nous nous sommes intéressés à la chimie de surface de l’absorbeur après analyse GD-OES. Les résultats obtenus par XPS montrent une forte modification de la chimie de surface avec un fort enrichissement en gallium. L’imagerie effectuée par Microscopie Electronique à Balayage (Figure 1a) a mis en évidence la présence de fines gouttelettes à la surface du substrat caractéristique de Gallium fondu. Un profilage XPS du substrat après analyse GD-OES a aussi été réalisé (Figure 1b). Les résultats confirment la présence de gallium sous forme oxydée à la surface de l’absorbeur. Le non-retour à la stœchiométrie du CIGS suggère un mélange CIGS/Ga métallique dans les 100 premiers nanomètres. Dans le but d’éliminer le gallium redéposé après analyse GD-OES, des travaux sont en cours sur l’effet de la nature du gaz plasmagène. Le décapage chimique est aussi envisagé. Figure 1. (a) Image électronique (SEM-FEG) du fond de cratère GD-OES. (b) Profil XPS en profondeur réalisé en fond de cratère GD-OES. 49 P08 Recent Analytical Methods For Physical And Chemical Characterization Of Surfaces And Interfaces – Application For Surface Treatments And Modification For Control Of Adhesive or AntiAdhesive Properties Jacques Brissot SCIENCE ET SURFACE Centre Scientifique Auguste Moiroux 64, Chemin des Mouilles 69130 Ecully ABSTRACT Advances in surface treatments and surface modifications of materials to give specific properties of adhesion or anti-adhesion, as well as control of surface contaminants requires a thorough knowledge material surfaces during their production, use and sometimes after failure. In some cases, surface analytical techniques are powerful tools for control and diagnostics to determine composition, nature and thickness of surface treatments or contaminants. Several examples showing capabilities and performances of XPS and ToF-SIMS techniques on industrial applications related to adhesion phenomena are presented. 50 P09 Electron transport simulations through organic adlayers on metal surfaces M. Cobiana,d, F.D. Novaesa, H. Uebab, A. Garciaa, P. Ordejonc and N. Lorentec a ICMAB-CSIC, Campus de la UAB, 08193 Bellaterra, Spain b Departement of electronics, Toyama University, Gofuku, Toyame 930-855, Japan c CIN2, Campus de la UAB, 08193 Bellaterra, Spain d LTDS-ECL, 36 avenue Guy de Collongue, 69134 Ecully, France ABSTRACT Molecular entities at the interface with an inorganic surface are the basis for new hybrid functional materials for microelectronics. In most cases, strong bonding of molecules to metal surfaces perturbs the discrete molecular energy levels leading to a broadening of the molecular density of states. Deposition of C 60 on a Au(111) surface previously exposed to tetraphenyl adamantane give rises to a nanostructured organic layer where the electronic coupling between the C60 and the Au(111) surface is significantly reduced compared to C60 on a clean Au(111) surface [1]. In this case molecular states of C60 remain more localized and less broadened, thus giving rise to strong non-linearities in the electron transport through the organic-inorganic interface. Calculations based on Density Functional Theory reveal that intermolecular interactions lock C60 into a particular orientation. Scanning tunneling spectroscopy experiments on such system exhibit the presence of negative differential resistance that motivated the simulation of the transport properties at ab-initio level using TRANSIESTA [2]. REFERENCES 1. K. J. Franke, G. Schulze, N. Henningsen, I. Fernandez-Torrente, J. I. Pascual, S. Zarwell, K. Rück-Braun, M. Cobian and N. Lorente , Phys. Rev. Letters 100, 036807 (2008). 2. F. D. Novaes, M. Cobian, A. Garcia, P. Ordejon, H. Ueba,and N. Lorente, arxiv:1101.3714. 51 P10 Micrometric And Nanometric Metal Patterns Onto Various Substrates Using Microcontact Printing of Palladium Colloids Jérémy COULM, Didier LEONARD, François BESSUEILLE Institut des Sciences Analytiques, CNRS UMR 5280, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France ABSTRACT Micro- and nano- metal patterns are of great interest in numerous applications like plasmonic1, chemistry2, solar energy3, sensors, lab on chip. Soft Lithography4 represents a non-photolithographic strategy based on self-assembly and replica molding for carrying out micro- and nanofabrication. It provides a convenient, effective, and low-cost method for the formation and manufacturing of micro and nanostructures. Among these techniques, microcontact printing (µCP)5 is based on an elastomeric stamp [usually made from poly(dimethylsiloxane) (PDMS)] with a selected relief (obtained from a topographically patterned Si master) wetted by the “ink” solution of the chemical species to be transferred and brought into intimate physical contact with the substrate surface. To allow the homogeneous metal growth of isolated nanometric dots onto 3-D substrate, the autocatalytic electroless deposition way in solution was used. To initiate the metal deposition in an electroless bath, a catalyst (usually metallic palladium) is needed. This work is based on an original approach to synthetize palladium-thiol complexes directly onto a PDMS stamp, and then transferred onto functionalized surface. Functions of interest are those having an affinity with palladium species, to ensure colloid transfer and practical adhesion of the subsequent metal deposited. A reducer plasma treatment on the palladium complexes allow the formation of metallic palladium nanoparticles onto the surface and so the subsequent metallization growth of the pattern. Using this technique, various copper and nickel patterns were obtained on silica wafer and also onto flexible and transparent polymers (Polyimide and Polycarbonate). Resolution such as 200 nm nickel dots with a period of 400nm were obtained. Figure 1: 200 nm nickel dots with a period of 400 nm made using µCP of palladium colloids, reducer plasma treatment and subsequent electroless deposition onto silanized silica wafer (A) and (B) observed by SEM, and onto plasma functionalized polycarbonate (C) observed by AFM. REFERENCES (1) Stewart, M. E.; Anderton, C. R.; Thompson, L. B.; Maria, J.; Gray, S. K.; Rogers, J. a; Nuzzo, R. G. Chem. Rev. 2008, 108, 494– 521. (2) Jones, R. a. L. Faraday Discuss. 2009, 143, 9. (3) Kubacka, A.; Fernández-García, M.; Colón, G. Chem. Rev. 2012, 112, 1555–1614. (4) Lipomi, D. J.; Martinez, R. V; Cademartiri, L.; Whitesides, G. M. Polym. Sci. Compr. Ref. 2012, 7, 211–231. (5) Kumar, A.; Whitesides, G. Appl. Phys. Lett. 1993, 63, 2002–2004. 52 P11 Caractérisation de la Dynamique de Chaînes Polymères Greffées par Microscopie Electrochimique à Force Atomique (AFM-SECM) Agnès Anne, Christophe Demaille Laboratoire d’Electrochimie Moléculaire, UMR 7591 CNRS, Univ Paris Diderot, Sorbonne Paris Cité, 15 rue Jean-Antoine de Baïf, F-75205 Paris Cedex 13, France. E-mail: demaille@univ-paris-diderot.fr ABSTRACT La microscopie électrochimique à force atomique (AFM-SECM) est une technique à sonde locale in-situ utilisant une sonde AFM hybride capable de mesurer simultanément des forces interfaciales mais aussi des courants électrochimiques. Cette combinaison permet notamment d’amener de façon non destructive la sonde AFMSECM au contact de chaines polymères linéaires nanométriques, que ce soit des chaines polyethylène glycol1 ou des brins DNA (oligonucleotides),2 greffées par une de leur extrémité à la surface d’une électrode, et portant un label redox à leur extrémité libre. Par simple mouvement brownien des chaines le marqueur redox rentre aléatoirement en collision avec la sonde et la surface où il est respectivement oxydé et réduit. La mesure du courant électrochimique résultant de ce cyclage redox permet ainsi d’accéder directement à la dynamique « interne » du mouvement des chaines. La mesure simultanée de la force de compression des chaines permet de plus de corréler l’état de confinement des chaines dans l’espace sonde-surface avec leur dynamique conformationnelle. Cette microscopie originale, plus précisément désignée par Mt/AFMSECM pour Molecule touching AFM-SECM,3 permet a priori d’étudier ainsi la dynamique conformationnelle de toute macromolécule ou bio-macromolécule immobilisée, pourvu que celle-ci porte un marqueur redox. De plus, combinant la résolution nanométrique de l’AFM à la spécificité de la détection électrochimique, le mode imagerie de la microscopie Mt/AFMSECM permet la cartographie sélective de la distribution de macromolécules, ou autres nano-objets redox, immobilisées sur surface d’électrode.4 REFERENCES 1. J. Abbou; A. Anne; C. Demaille « Probing the Structure and Dynamics of End-Grafted Flexible Polymer Chain Layers by Combined Atomic Force - Electrochemical Microscopy. Cyclic Voltammetry within Nanometer-Thick Macromolecular Poly(ethylene glycol) Layers. » J. Am. Chem. Soc. 2004, 126,10095-10108. 2. K. Wang; C. Goyer; A. Anne; C. Demaille « Exploring the Motional Dynamics of End-Grafted DNA Oligonucleotides by in Situ Electrochemical Atomic Force Microscopy. » J. Phys. Chem. B 2007,111, 6051-6058. 3. A. Anne; E. Cambril; A. Chovin; C. Demaille « Touching Surface-Attached Molecules with a Microelectrode: Mapping the Distribution of Redox-Labeled Macromolecules by Electrochemical-Atomic Force Microscopy. » Anal. Chem. 2010, 82, 6353-6362. 4. K. Huang; A. Anne; M. A. Bahri; C. Demaille « Probing Individual Redox PEGylated Gold Nanoparticles by Electrochemical-Atomic Force Microscopy » ACS Nano 2013, 7, 4151-4163. 53 P12 Ly-EtTEM – Lyon Environmental Tomographic Transmission Electron Microscope: Gaseous Environments and Variable Temperatures Within An Aberration-Corrected ETEM For Spatially-resolved Real-time Adsorption, Reaction, Growth, Controlled Modification Studies M. Aouine1, F.J. Cadete Santos Aires1, N. Blanchard2, C. Langlois3, T. Epicier1,3 1 IRCELYON. UMR 5256 CNRS/Univ. Lyon 1. 2, Ave. Albert Einstein, F-69626, Villeurbanne cedex. ILM, UMR 5306 CNRS/Univ. Lyon1. Bât. Kastler, 10 rue Ada Byron, F-69622 Villeurbanne cedex. 3 MATEIS, UMR 5510 CNRS/INSA de Lyon, Bât. Blaise Pascal, F-69621 Villeurbanne cedex 2 ABSTRACT Environmental Transmission Electron Microscopy (ETEM) is not a new concept. It has been developed decades ago and yielded numerous striking results (see [1-2] for reviews). Commercial solutions are now available, both for SEM and TEM. ETEM is indeed currently developed in France. Following a first prototype available at CINAM, Marseille [2], the first commercial ETEM, with a differential pumping system around the objective lens has just been installed in Lyon. Contrarily to the previous unit where environmental conditions (i.e. gas and temperature) are obtained inside a dedicated cell mounted on a special specimen holder, this new machine, designed by FEITM on the basis of a 80-300 kV TITAN platform, provides a complete in-built environmental configuration in the column. Compared to previous FEI-ETEM versions, this last generation machine has been improved from the point of view of pumping efficiency, gas entries, general stability and software controls. It is also equipped with a dedicated plasma cleaner, a mass spectrometer and an optional Cscorrector for HREM imaging. Additional EDX (Oxford InstrumentsTM SDD spectrometer) and EELS (GatanTM Imaging Filter) equipments have been added for local chemical analysis. We will present examples of some ongoing studies in progress at the Centre Lyonnais de Microscopie (CLYM), associating high spatial resolution and real-time imaging under gaseous environments: surface cleaning and etching of a YAG under N2, CO2 adsorption on ceria nanoparticles, carbon nanotubes growth [3]. REFERENCES [1] L. Marton, Nature (1934) p.11; L Marton, Bull. Acad. Roy. Belg. Cl. Sci. 21(1935) p.553, RTK Baker et al, J. Catal. 26 (1972), p.51; RTK Baker, Carbon 27 (1989), p.315; RTK Baker et al, Stud. Surf. Sci. Catal. 111 (1997), p.99; S Helveg et al, Nature 427 (2004), p.426; S Hofmann et al, Nano Lett. 7 (2007), p.602; H Yoshida et al, Nano Lett. 8 (2008), p.2082; R Sharma et al, Nano Lett. 9 (2009), p.689; M Moseler et al, NANO ACS 4 (2010), p.7587; H. Yoshida et al, Science 335 (2012) p. 317; S Takeda, H Yoshida, Microscopy 62 (2013), p.193 [2] S Giorgio, S Sao Joao, S Nitsche, D Chaudanson, G Sitja, CR Henry, Ultramicroscopy 106 (2006), p.503. [3] Thanks are due to the CLYM (Centre Lyonnais de Microscopie, www.clym.fr) for its guidance in the Ly-EtTEM (Lyon Environmental tomographic TEM) project, which was financially supported by the CNRS, The Région Rhône-Alpes, The ‘Greater Lyon’ and the French Ministry of Research and Higher Education. The authors acknowledge the assistance of Remy Boucher, Romain Felus and Luc Gilbert (FEI) respectively before and during the installation of the microscope. 54 P13 Étude de la formation et de la désorption de SiO2 en surface de l’hétérostructure Au/Si par photoémission résolue en temps D. Ferraha, J. Penuelasa, B. Gobauta, C. Botellaa, M. Sillyb, F. Sirottib, G. Greneta a Université de Lyon, Institut des Nanotechnologies de Lyon, Ecole Centrale de Lyon, 36 avenue Guy de Collongue, 69134 Ecully, France b Synchrotron SOLEIL, l’Orme des Merisiers, Saint-Aubin, 91192 Gif-sur-Yvette, France ABSTRACT Le système Au/Si suscite beaucoup d’intérêt depuis de nombreuses années car il permet des études fondamentales sur les aspects cinétiques et thermodynamiques de l’interaction entre une couche mince d’un métal noble et un semiconducteur. L’hétérostructure Au/Si est aussi au cœur d’applications prometteuses dans le domaine de la nanoélectronique en particulier pour la croissance des nanofils par la technique VLS (Vaport- Liquid- Solid). Cette technique de croissance implique la formation d’une phase liquide eutectique entre la couche métallique d’or et un autre élément en phase vapeur (Si) permettant de provoquer la croissance d’une phase solide à partir d’une phase liquide. Récemment, le développement des techniques d’analyse de surface a permis l’étude de l’évolution de la cristallinité et de la composition chimique de l’alliage AuSi au voisinage de la température eutectique. Ces travaux ont permis de mettre en évidence des phénomènes rares comme le phénomène de solidification de surface d’un liquide désordonné [1] et le phénomène de surfusion [2]. Dans ce travail, nous nous sommes intéressés à l’hétérostructure constituée d’une fine couche métallique de l’or déposée par évaporation sous vide sur substrat de Si(100) traité HF. Les mesures de photoémission ont été menées au Synchrotron Soleil sur la ligne TEMPO équipée d’un détecteur rapide grâce un dispositif de contrôle et de mesure de la température en temps réel. Dans cette étude, nous avons clairement identifié la formation d’une surcouche d’oxyde de silicium en surface de l’hétérostructure Au/Si lorsqu’elle est exposée à un milieu oxygéné en raison de la diffusion du silicium à travers le film d’or [3] et cela malgré un dépôt à température ambiante. L’objectif de ce travail a été de suivre l’évolution de l’hétérostructure en temps réel durant la désorption thermique de la silice. L’analyse des niveaux de cœur Si2p, Au4f, C1s, O1s montre que l’or diffuse dans la couche d’oxyde de silicium tout en jouant un rôle de catalyseur dans la désorption thermique de la silice. REFERENCES 1. O. G. Shpyrko, et coll, Science 313, 77 (2006). 2. T. U. Schulli, et coll, Nature 464, 1174 (2010). 3. A. Hiraki, et coll, Applied Physics Letters 18, 178 (1971). 55 P14 L'Effet de Fréquence et de Température sur les Propriétés Rhéologiques de le Couche d`Adsorption de Caséine-β Arayik HAMBARDZUMYAN, Véronique AGUIE-BEGHIN, Roger DOUILLARD INRA, UMR Fractionnement des Agro-Ressources et Emballages, Equipe Parois et Matériaux Fibreux, CRA 2-Esplanade R. Garros, BP 224, 51686, Reims, France ABSTRACT L’adsorption des protéines à l’interface de fluide revêt une grande importance dans la stabilisation des mousses et des émulsions dans les domaines agro-alimentaire, cosmétique et galénique, entre autres. La compréhension de la relation entre la structure des macromolécules et leurs propriétés de surface est un challenge qui a été abordé depuis longtemps. Au cours des dernières années, un modèle a été développé pour décrire l`adsorption des protéines et d'autres macromolécules en supposant que la protéine est une alternance de blocks hydrophiles et de blocks hydrophobes [1]. La comparaison entre les propriétés du modèle théorique et celles du polymère expérimental (multi-block) s’effectue assez simplement en analysant les variations du module de dilatation en fonction de la pression de surface à l’aide d’un tensiomètre à bulle (ou à goutte). Les résultats obtenus dans le cas de la caséine-β sont en très bon accord avec les prévisions du modèle théorique [2,3] (Fig. 1). Fig. 1 Le module de dilatation en function de la pression de surface Les données expérimentales montrent que les galettes hydrophobes bidimensionnelles sont contractes en raison de l'attraction entre les monomères. Le but de ce travail est de définir les conditions expérimentales qui permettent de mesurer le module de dilatation dans un état de quasi-équilibre et d'obtenir un aperçu sur la nature de l'attraction entre les monomères en vérifiant l'effet de température sur la relation entre le module de dilatation et la pression de surface [4] . REFERENCES [1] [2] [3] [4] Aguié-Béghin V., Leclerc E., Daoud M. and Douillard R., J. Colloid Interface Sci., 214, (1999) 143. Aschi A., Gharbi A., Bitri L., Calmettes P., Daoud M., Aguie-Beghin V., Douillard R., Langmuir, 17 (2001), 1896. F. Boury, Tz. Ivanova, I. Panaïotov, J.E. Proust, A. Bois and J. Richou, J. Colloid Interface Sci. 169 (1995) 380. Hambardzumyan A., Aguié-Béghin V., Panaïotov I., Douillard R., Langmuir, 2003, 19(1), 72-78. 56 P15 Role of Strain in the Stability of Hetero-Epitaxial Island on Nanopillars M. Ignacio, O. Pierre-Louis, Y. Saito1, P. Smereka2 Institut Lumière Matière, Université Lyon 1, 43 Bd du 11 novembre 1918, 69622 Villeurbanne, France (corresponding author: M. Ignacio, e-mail: maxime.ignacio@univ-lyon1.fr) 1 Department of Physics, Keio University, 3-14-1 Hiyoshi, Hohoku-ku, Yokohma 223-8522, Japan 2 Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA ABSTRACT Optoelectronics and microelectronics call for new techniques aiming at producing even smaller crystalline components of higher quality. Hetero-epitaxial growth on nanopatterned substrates such as nanopillar forests, is a promising direction to reduce mismatch strain and to obtain higher quality crystals. Indeed, 3D islands are grown on top of the pillars in a configuration which is similar to that of superhydrophobic liquid drops. However, as opposed to the case of liquids, elastic strain plays a major role in hetero-epitaxy. Using Kinetic Monte Carlo Simulations including elastic effects, we have studied in details the stability of a solid hetero-epitaxial island at the top of a nanopillar. We show that mismatch strain strain induces novel states for the island, including spontaneous symmetry-breaking and partial impalement of the islands in the nanopillars. Our results also suggest a non-trivial behavior and possible instabilities for solid-state catalytic particles governing nanowire growth. REFERENCES [1] M. Ignacio, Y. Saito, P. Smereka, O. Pierre-Louis, preprint (2014) [2] M. Ignacio, O. Pierre-Louis, Phys Rev. B 86 23410 (2012) [3] P. Gaillard, Y. Saito, O. Pierre-Louis Phys Rev Lett 106 195501 (2011) [4] K. Takano, Y. Saito, O. Pierre-Louis, Phys Rev B 82 075410 (2010) 57 P16 Controlling the 2D self-assembly of triphenylene molecules: a new role for azobenzenes PIOTR SLECZKOWSKI1,2,3, NATHALIE KATSONIS3, KINGO UCHIDA4, ALEXANDR MARCHENKO5, AND EMMANUELLE LACAZE1,2 1 Institut des Nano-Sciences de Paris (INSP), CNRS-UMR7588, UPMC Univ Paris 06, Paris for Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands 4Department of Materials Chemistry, Ryukoku University, Seta, Otsu, Japan 5Institute of Physics, National Academy of Sciences of Ukraine, Kiev, Ukraine 3Laboratory ABSTRACT Using triphenylene molecules with chains containing azo-benzene groups (Figure a) [1], we build a new kind of organized 2D architecture, with particularly large hexagonal crystallographic cell. We demonstrate that the stability of this architecture is directly inducedby a new type of intermolecular interaction between two neighbouring azo-benzene groups(See Figure b), which appears monitored by the underlying gold substrate. The study of the monolayer dynamics at the intramolecular scale, then reveals that thisinteraction is extremely sensible to the geometric of facing azo-benzene groups, leading to two hypotheses for the nature of this interaction, either hydrogen bonding or dipolarinteractions. REFERENCES 1. Shimizu, 1676. Y.; Kurobe, A.; Monobe, H.; Terasawa, N.; Kiyohara, K.; Uchida, K. Chem. Commun. 2003, 14, 58 P17 Structure, Exchange Coupling And Spin Orientation Of An Ultrathin CoO/PtFe Double-Layer On Pt(001) A. D. Lamirand1,* M. M. Soares2, H. C.N. Tolentino1, M. De Santis1, A. Y. Ramos1, S. Grenier1, O. Geaymond1, J. C. Cezar3, A. de Siervo4 and M. Jamet5 1 Institut Néel, CNRS and UJF, BP166, 38042 Grenoble, France 2 ESRF, 6 rue Jules Horowitz, BP 220, 38043 Grenoble, France 3 Laboratorio Nacional de Luz Sincrotron, LNLS, CNPEM, Campinas, Brazil 4 Instituto de Fisica, UNICAMP, Campinas, Brazil 5 Institut Nanosciences et Cryogénie, INAC, CEA, 38054 Grenoble, France ABSTRACT We report on the growth, exchange coupling properties and magnetic structure of an ultrathin CoO/PtFe double-layer system with perpendicular magnetic anisotropy. The growth and the structure have been studied by in situ surface x-ray diffraction at grazing incidence at the BM32 beamline at the ESRF, France. The growth by reactive molecular beam epitaxy of the cobalt oxide on a Pt-terminated PtFe/Pt(001) surface gives rise to an hexagonal (111)like surface. The strain imposed by the substrate on the CoO layer leads to a monoclinic distorted structure at room temperature. This monoclinic distortion resembles that of the low temperature antiferromagnetic (AFM) phase of the bulk CoO compound [1]. Soft x-ray absorption spectroscopy (XMCD and XMLD) experiments have been performed at the PGM beamline of the LNLS, Brazil. XMCD is sensitive to the ferromagnetic component of both Fe and Co, while XMLD provides information on the AFM spin orientation and on the transition temperature [2,3]. The study yielded an ordering temperature of TN=293 K and demonstrated that the Co and Fe spins at the interface are coupled orthogonally to each other (fig.1). Polar magneto-optic Kerr effect shows that the exchange coupling of such a distorted CoO layer with the PtFe(001) gives rise to a robust perpendicular exchange bias shift, kept up to the AFM ordering temperature TN. This finding provides a unique example where the blocking and ordering temperatures of an ultrathin CoO layer are identical and match the bulk AFM transition temperature. Such exceptional behavior shares a close relationship with the good crystalline quality and the strain-induced monoclinic distortion of the CoO layer. Moreover, our description of the magnetic structure is in close agreement with a recent theoretical prediction for a CoO(111) overlayer on Ir(001) [4]. Figure 1: CoO layer on PtFe(001) surface showing spin structure REFERENCES 1. 2. 3. 4. A. D. Lamirand et al, Phys. Rev. B (2013) (in preparation) A. D. Lamirand et al, Phys. Rev. B 88, 140401(R) (2013) A. D. Lamirand et al, JMMM, (2013) (in reviewing) F. Mittendorfer et al, Phys. Rev. Lett. 109, 015501 (2012) 59 P18 Adsorption of iron and cobalt porphyrins on Ag(111): Ab initio prediction of unusual interaction with O2 and CO Tangui Le Bahers, Torsten Houwaart, Philippe Sautet and Marie-Laure Bocquet Université de Lyon, Université Claude Bernard Lyon 1, Centre National de Recherche Scientifique, ENS Lyon, Laboratoire de Chimie (UMR5182), 46 allée d’Italie 69342 Lyon Cedex 07, France ABSTRACT Metallo-Porphyrins are important molecules for many biological processes. Among them, iron and cobalt porphyrins are particularly involved in natural phenomena such as in respiratory of gases or for sensing and catalytic functions. It has been proven that the interaction of small diatomic molecules with such metallo-porphyrins can induce conformational modifications of the porphyrinic core, which in turn, gives rise to an unusual interaction of these macromolecules with the small diatomic molecules1. Scanning tunnelling microscopy is a powerful tool to study such phenomena since it can “image” at a molecular level these molecular structures, at the condition that the metallo-porphyrin is adsorbed to a metallic surface. Unfortunately, STM images are generally tricky to analyse. DFT calculations are now able to deal with these very large systems (hundreds of atoms) and can support experimentalists for their STM analysis1-3. The poster first presents an analysis of the adsorption sites of FeTPP on Ag(111) surface. Then, unusual interactions of O2 and CO molecules with CoTPP and FeTPP are presented. More precisely, interaction of two O2 and two CO molecules with CoTPP and FeTPP are investigated. (a) (b) Figure 1: (a) Optimized structure of FeTPP on Ag(111) surface, along with two O2 molecules interacting on the central iron atom. (b) Corresponding simulated STM image (-0.6 V). REFERENCES [1] K. Seufert, M.-L. Bocquet, W. Auwärter, A. Weber-Bargioni, J. Reichert1,3, N. Lorente, J. V. Barth Nature Chem. 2011, 3, 114. [2] M.-L. Bocquet, H. Lesnard, N. Lorente Phys. Rev. Lett. 2006, 96, 096101. [3] S. R. Burema, K. Seufert, W. Auwärter, J. V. Barth, M.-L. Bocquet ACS Nano 2013, 7, 5273. 60 P19 Arrays of Preformed Pt Clusters on Graphene in Epitaxy on Ir(111). Sébastien Linas1, Fabien Jean2, Clément Albin1, Florent Tournus1, Laurent Bardotti1 and Gilles Renaud3. 1 Institut Lumière Matière, Université de Lyon, UMR5306 Université Lyon 1-CNRS, 69622 Villeurbanne 2 Institut NEEL, CNRS and Université Joseph Fourier, 38042 Grenoble 3 CEA-UJF, INAC, SP2M, 17 rue des Martyrs, 38054 Grenoble ABSTRACT Physical and chemical properties of clusters are influenced by their size. Examples of unique cluster properties are plasmon resonance, [1] superparamagnetism, [2] or size dependant catalytic activity. [3] In addition to their size, the local environment of the nanoparticles (NPs) can modify their behavior. A regular array of clusters provides a similar environment to each NP, facilitating the study of its properties. In this domain, the moirés resulting from graphene in epitaxy on metal (GEM) have been previously used as nanotemplates for lattices of metallic clusters grown by vapor phase deposition. [4] This work presents the organization of preformed Pt clusters on the moiré lattice of GEM. The Pt NPs, produced by a laser vaporization source, size selected by a quadrupolar deviator are then deposited in ultra high vacuum at room temperature (RT). [5] This technique allows to tune the NPs density independently of their size. Surface X-rays diffraction and grazing incidence small angle X-ray scattering experiments (GISAXS), figure 1a as well as scanning tunneling microscopy imaging (STM), figure 1b have revealed the organization of the NPs on the moiré lattice. The evolution of this ordering with annealing as well as the epitaxy of Pt clusters with the Ir(111) surface will be also discussed. Figure 1: (a) 2D GISAXS Intensity at RT of Pt clusters deposited on Ir(111) supported graphene, showing that the NPs are organized on the graphene/iridium moiré network. (b) STM image of the same system. The scale bar is 10 nm. REFERENCES [1] S. Eustis and M. A. El-Sayed, Chem. Soc. Rev. 35, 209 (2006). [2] M. B. Knickelbein, Phys. Rev. Lett. 86, 5255 (2001). [3] H.-G. Boyen, Science 297, 1533 (2002). [4] A. T. N’Diaye, S. Bleikamp, P. J. Feibelman, and T. Michely, Phys. Rev. Lett. 97, 215501 (2006). [5] D. Tainoff, L. Bardotti, F. Tournus, et al., J. Phys. Chem. C 112, 6842 (2008). 61 P20 Morphology of alloy monolayers studied by STM F. Maroun, F. Lecadre, P. Allongue Laboratoire Physique de la Matière Condensée, CNRS–Ecole Polytechnique, 91120 Palaiseau ABSTRACT Electrodeposition has long been used to form metal alloy films having interesting physicochemical properties. In the fields of heterogeneous catalysis and magnetism, the properties depend on the structure and the morphology of the films at the atomic scale . For these reasons we undertook the study of the early stages of bimetallic alloy growth by in-situ electrochemical scanning tunneling microscopy. In this poster, we present the results of growth in the first atomic plane of nickel -based alloys on a Au(111) substrate. As we succeeded in preparing a Au(111) surface with and without its well–known 22 x 3 reconstruction, we will first show the influence of this reconstruction on the morphology o a Ni submonolayer. Then we will present the morphology of NiAu, NiAg and NiPd alloys prepared either by a simultaneous deposition of the two metals either by sequential deposition. We will show how a nanoscale detailed and precise study of the alloy morphology can bring insight into segregation processes at the nanoscale, structural transition depending on the alloy composition and preferential substitution processes [1, 2]. We also show how the study of selective dissolution of nickel alloy allowed us to establish a quantitative relationship between the dissolution potential of nickel and the local atomic environment. Morpholgy of alloy monolayers: (a) PdNi, (b) AuNi, (c) AgNi. REFERENCES 1. Lecadre, F.; Maroun, F.; Braems, I.; Berthier, F.; Goyhenex, C.; Allongue, P. Surface Science 2013, 607, 25-32. 2. Damian, A.; Braems, I.; Maroun, F.; Allongue, P. Electrochimica Acta in press. 62 P21 Electronic and Chemical Properties of Advanced Metal Semiconductor Contacts Studied by Photoelectron Spectroscopy A. B. Fadjie-Djomkam*, E. Martineza, V. Beugin, C. Leroux, F. Martin, F. Nemouchi CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France. ABSTRACT For the sub-14 nm technology nodes used in microprocessors, metal-semiconductor contacts should have reduced sizes and contact resistances. Nowadays, most of the studies focus on silicidation processes [1] which are facing up to some issues such as thermal stability, semiconductor consumption and junction damage. An original approach aims to modulate the Schottky barrier [2] between the semiconductor and the metal. Ultrathin high-k interlayers, such as Al2O3 on p-type semiconductor, are promising candidates for futurecontacts. Indeed, this dielectric tends to reduce the contact barrier height through the formation of an interfacial dipole. Ultra-violet and X-ray photo-emission spectroscopy (UPS and XPS) are used to investigate the dipole strength versus the Al2O3/Si interface chemistry. We compare results obtained with a controlled silicon oxide (SiOx) interfacial layer or with a Si-H passivated surface. We follow the changes in Al 2p core level position versus Al2O3 thickness which are related to a dipole moment and charge storage in the oxide. The valence band maximum (VBM) and workfunction (WF) variations are also measured with increasing alumina thickness. A monotonic work function evolution versus Al2O3 thickness is observed in fair agreement with Zhu et al. [3]. These variations in Al 2p core level positions, WF and VBM are attributed to the presence of a dipole which modifies the band alignment at the Al2O3/Semiconductor interface. Results are compared with electrical C(V) measurements measured on MIS capacitors and discussed in terms of optimum Al2O3 thickness and Si surface preparation for maximizing the dipole intensity. REFERENCES 1. L. J. Chen, “Silicide Technology for Integrated Circuits”, IEEE Materials and devices, 2004. 2. B. E. Coss, W. Y. Loh, R. M. Wallace, J. Kim, P. Majhi, R. Jammy, App. Phys. Letters. 95, 222105 (2009). 3. L. Q. Zhu, N. Barrett, P. Jégou, F. Martin, C. Leroux, E. Martinez, H. Grampeix, O. Renault, A. Chabli, J. of Appl. Phys. 105, 024102 (2009). *Present address : IEMN, CNRS, Cité Scientifique, Avenue Poincaré BP 60069, Villeneuve d’Ascq Cedex, 59652 France corresponding author : eugenie.martinez@cea.fr This work was partially performed at the NanoCaracterization Platform (PFNC) of MINATEC in the frame of the ACESS Dipolar Contact program financed by the CARNOT Institute. a 63 P22 Experimental characterisation and multi-physic modelling of a direct bonded interface N. Cocheteaua, A. Maurel-Pantela, F. Lebona, I. Rosua, F.Mazerollea, S. Ait-Zaidb, I. Savin De Larclauseb, Y. Salaunc a LMA, Mechanics and Acoustics Laboratory, CNRS, UPR 7051, Aix-Marseille Univ, Centrale Marseille, 31, Chemin Joseph Aiguier, F-13402 Marseille Cedex 20, France b CNES, National Center for Spatial Studies,18 Avenue Édouard Belin 31400 Toulouse, France c WINLIGHT OPTICS, 135 rue Benjamin Franklin, ZA Saint Martin, 84120 Pertuis, France ABSTRACT Direct bonding consists in joining two surfaces without the use of any adhesives or additional material. Usually, by bringing two flats, well-polished surfaces into contact at room temperature, they locally attracted to each other by Van der Waals or hydrogen bonds and adhere or bond. This technology is already used in optical system manufacturing due to the very high precision of the process moreover complex geometries are able to bond. More recently, this process is used in the manufacturing of high performance optical systems for terrestrial application such as Fabry-Perot interferometers, prism assemblies, etc. For instance, this bonding process has been used in the manufacturing of the largest slicer ever used in the Multi Unit Spectroscopic Explorer (MUSE) for the Very Large Telescope (VLT). Nowadays direct bonding is of particular interest for optical system manufacturing for spatial application. However, even if a first spatial prototype already passed with success space environment test, quantification and improvement of the mechanical strength of assemblies are essential to validate the assembly’s life expectancy and to validate the European Space Agency standards. Thus, this work proposes to study the influence of some process parameters, such as roughness, relative air humidity during room temperature bonding, annealing time and temperature, on mechanical strength of an elementary mechanical structure using a double shear test procedure and cleavage tests. A confrontation is also proposed between the performances of silica and Zerodur® glasses. For the Winlight Optics process considered in this study, a parallel is presented between chemical phenomena, surface roughness and mechanical strength. Then the choice of the optimal process parameters is confirmed with cleavage tests and they highlight a damaging phenomenon of bonded interfaces with successive re-adhesion. In the same time, an interface mechanical model of the direct bonding is developed. The implemented law relates the bonding energy, the mechanical critical strain energy, the process parameters and the kinetic of chemical reactions with a multi-physic and multi-scale formalism. A usual wedge test is also developed to measure the bonding energy versus process parameters in order to identify the law of the direct bonding model. Then the direct bonding model is implemented in a finite elements code, in the end a confrontation is led between numerical and experimental results. Keywords: Direct Bonding, Mechanical Strength, Bonding Energy, Double Shear Test, Annealing Temperature, Roughness, Humidity, Annealing Time, silica glasses, Zerodur® glasses, Interface model. 64 P23 BaTiO3 grown on Si (001) by Molecular Beam Epitaxy for low power field-effect devices L. Mazet1, R. Bachelet1, L. Louahadj1, D. Albertini2, B. Gautier2, G. SaintGirons1, C. Dubourdieu1 1 Institut des Nanotechnologies de Lyon, CNRS UMR 5270, ECL, 36 avenue Guy de Collongue, 69134 Ecully cedex, France 2 Institut des Nanotechnologies de Lyon, CNRS UMR 5270, INSA de Lyon, 20, avenue Albert Einstein, 69621 Villeurbanne, France ABSTRACT Ferroelectric oxides are of particular interest as a gate oxide in field-effect transistors (FET) since it has been proposed that the theoretical subthreshold swing of a FET could be reduced using such materials as a gate oxide. Therefore, these structures could enable lowvoltage operation and thus power consumption reduction. Among the ferroelectric materials, BaTiO3 is an attractive candidate for memory and logic applications. It is a well-known perovskite largely studied for its dielectric, piezoelectric and ferroelectric properties. However, direct integration of BaTiO3 on silicon is challenging due to the oxidation of the silicon surface and due to the large lattice mismatch (~ 4.0%) and thermal expansion mismatch between them2. Moreover, the control of the ferroelectric polarization is a crucial point for the targeted applications. It is desirable that the polarization be pointing perpendicular to the Si channel. In the present work, epitaxial BaTiO3 was grown on Si (001) by molecular beam epitaxy (MBE) using a 4nm-thick SrTiO3 epitaxial buffer layer to adapt both thermal and lattice mismatches3,4. Different growth conditions such as temperature and oxygen pressure were varied to optimize the BaTiO3 film quality. Also, the effect of thickness from 2 to 40nm was investigated. The surface quality was monitored in-situ by reflection high-energy electron diffraction (RHEED) and ex-situ by x-ray reflectometry (XRR), atomic force microscopy (AFM) and scanning electron microscopy (SEM). X-ray diffraction (XRD) was performed to determine the lattice parameters. The ferroelectric properties were studied by piezoresponse force microscopy (PFM) that enables both the detection and the switching of the ferroelectric state with a resolution down to 10 nm5. Ferroelectric films were obtained in optimized conditions that will be discussed. REFERENCES 1. S. Salahuddin et al., Nano Lett. 8(2), 405 (2008) 2. V. Vaithynathan et al., J. Appl. Phys. 100, 024108 (2006) 3. G. Niu et al., Microelectronic Engineering 88, 1232 (2011) 4. C. Dubourdieu et al., Nature Nanotechnology 8, 748 (2013) 5. A. Gruverman, S. Kalinin, J. Mat. Science 41, 107 (2006) 65 P24 Implementation Of Bonding And Layer Transfer Technology For The Realisation Of Hybrid Photonic Devices J. Pilarczyk 1), R. Mazurczyk 2), Z. Lisik1) 1) Katedra Przyrządów Półprzewodnikówych i Optoelektronicznych, Wólczańska 211/215, 90-924 Łódź, POLAND 2) Institut des Nanotechnologies de Lyon, 36, Avenue Guy de Collongue 69134 ECULLY Cedex, FRANCE ABSTRACT One of the prospective approaches in the telecommunication domain is the concept of high-density, hybrid devices. However, the development of this concept requires integration of the silicon-based passive photonic devices with the III-V semiconductor based active components. In this work the feasibility of wafer bonding technique [1-4] for realization of this purpose was tested. Essential process steps such us surface activation, bonding and annealing were elaborated and optimized. Two types of reactors were used for plasma activation: Alcatel NEXTRAL 110 reactive ion etching and Plasma Photoresist Etcher ANATECH MP600. Activation process efficiency was estimated assessed with the use of contact angle measurements. Bonding experiments of InP to fused silica and InP to SiO2 on Si joining turned out to be successful. Finally, samples underwent layer transfer procedure by wet etching. REFERENCES 1. 2. 3. 4. L. Ferrier, O.E. Daif, X. Letartre, P. Rojo Romeo, C. Seassal, R. Mazurczyk, P. Viktorovitch, Optics Express 17, No. 12, pp. 97809788 (2009) M.H. Shih, W. Kuang, t. Ang, M. Bagheri, Z.-J. Wei, S.-Jun Choi, L.Lu, J.D. O'Brien, IEEE Photonics Technology Letters 18, No. 3, pp. 535 - 537 (2006) J.R. Cao, W. Kuang, Z.-J. Wei, S.-J. Choi, H. Yu, M. Bagheri, J.D. O'Brien, IEEE Photonics Technology Letters, 17, No. 1, pp. 4 - 6 (2005) M. Bagheri, M. Shih, Z.-J. Wei, S.J. Choi, J. O'Brien, P.D. Dapkus, W.K.Marshall, IEEE Photonics Technology Letters 18, No. 10, pp. 1161 - 1163 (2006) 66 P25 Ti-based interface engineering for heteroepitaxial growth of SrTiO3 on GaAs B. Meunier1, L. Louahadj2, G. Grenet1, C. Botella1, P. Regreny1, R. Bachelet1, J. Penuelas1, G. Renaud3, G. Saint-Girons1 1 Ecole Centrale de Lyon, INL-UMR5270-CNRS, 36 av. Guy de Collongue, F69134 Ecully, France 2 RIBER SA, 31 rue Casimir Périer, 95870 Bezons, France 3 CEA Grenoble, INAC/SP2M, 17 Rue des Martyrs, F-38054, Grenoble, France ABSTRACT Functional oxides with perovskite structures present a variety of physical properties (ferroelectricity, piezoelectricity) that make them very attractive for various applications. Using these oxides in a realistic applicative context requires their integration on semiconductor platforms. In fact, SrTiO3 (STO) substrates, commonly used for the growth of these materials, are small sized and present a high density of structural defects. Additionally, combining ferroelectric/piezoelectric oxides to GaAs-based heterostructures open the way for the development of novel optoelectronic devices such as optical memories or agile/tunable optical sources. Even if the GaAs/STO/PZT heterostructures has already been realized at the INL [1], the process still must be improved. In the present contribution, we will show how molecular beam epitaxy (MBE) can be used to grow high quality single-crystalline STO thin layers on GaAs substrates [1], on the basis of the pioneering results published by Liang et al. [2]. Most especially, we will focus on the contribution of a Ti half monolayer deposition prior to STO growth, that has been shown by Liang et al. as providing convenient surface structure and chemistry for further STO growth, and as avoiding Fermi level pinning at the STO/GaAs interface. Both structural and chemical aspects of this interface engineering strategy will be discussed based on X-ray Diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS) analyses. We will in particular describe the structure and chemistry of the GaAs:Ti surface, and discuss to what extent the Ti interlayer protect the GaAs surface against oxidization during the early stages of STO growth. We will also discuss the influence of the growth parameters on the structural properties of ultrathin STO layers deposited on GaAs:Ti. REFERENCES [1] L. Louahadj, D. Le Bourdais, L. Largeau, G. Agnus, L. Mazet, R. Bachelet, P. Regreny, D. Albertini, V. Pillard, C. Dubourdieu, B. Gautier, P. Lecoeur, G. Saint-Girons, Appl. Phys. Lett. [2]Y. Liang, J. Kulik, T. C. Eschrich, R. Droopad, Z. Yu and P. Maniar, Appl. Phys. Lett. 85 1217 (2004). 67 P26 Etude par microscopie à électrons lents (LEEM) du système Au/Si. S .Curiotto, F.Leroy, F.Cheynis, P.Müller Aix-Marseille Université, CINaM UMR CNRS 7325, Campus de Luminy ,case 913, 13288 Marseille ABSTRACT Les systèmes Au/Si et Ag/Si sont depuis longtemps considérés comme des systèmes modèles des interfaces métal/semiconducteur [1]. Les premières études de formation de l’interface in-situ et en temps réel par microscopie à électrons lents remontent aux années 90. C’est en particulier le cas de l’interface Au/Si(111) où la formation de phases bidimensionnelles a été largement étudiée [2]. L’étude par LEEM a également permis la mise en évidence, au dessus de la température eutectique, de la formation de gouttes liquides 3D animées d’un mouvement non Brownien [2,3]. De tels types de mouvements de micro ou nanoparticules ont été, depuis, mis en évidence sur d’autres systèmes [4-6]. Dans la plupart des cas ce mouvement a pour origine la réactivité interfaciale entre la particule et le substrat sous-jacent. La compréhension fine de ces processus est de première importance pour appréhender l’exaltation de réactivité observée pour des nanoparticules déposées sur des substrats étrangers. Image LEEM de particules mobiles Visualisation du sillage formé par une formant un sillage (FOV : 25 microns) particule mobile (FOV : 7 microns) C’est dans ce contexte que nous avons repris l’étude, par LEEM, des systèmes Au/Si(001) et Au/Si(111) dont nous présentons ici les premiers résultats obtenus au CINaM. A cette fin, (1) nous comparerons les transitions de phase bidimensionnelles observées sur les systèmes Au/Si(001) et Au/Si(111) et (2) nous présenterons quelques résultats concernant le mouvement des gouttes 3D avec une attention particulière sur les effets d’interface. A cette fin nous présentons sur la figure deux images de particules mobiles. On peut ainsi voir que les particules laissent une trace de leur passage, traces résultant de la consommation locale de silicium conduisant à une modification morphologique locale des marches monoatomiques du substrat de silicium. Des premières pistes d’interprétation seront proposées. Références : (1) (2) (3) G . Le Lay, Surf. Sci. 132 (1983) 169. W. Swiech et al. Surf. Sci.253 (1991) 283 B. Ressel et al. J . Appl. Phys. 93 (2003) 3886 (4) (5) (6) 68 A. Schmid et al. Science 290 (2000) 1561 J. Tersoff et al. Science 324 (2009) 236 F. Leroy et al. Phys. Rev. Lett. (soumis) P27 In-situ evolution of surfaces at various stresses and temperatures using a unique experimental device under ultra-high vacuum Y. Nahas, J. Colin, M. Drouet, C. Coupeau and J. Bonneville Institut Pprime, UPR 3346, CNRS – Université de Poitiers – ENSMA, Département Physique et Mécanique des Matériaux, Bd Marie et Pierre Curie, 86962 Futuroscope Chasseneuil ABSTRACT Nanoscience became the last ten years a promising domain of research where the new fundamental properties of matter have been highlighted. They are currently the focus of intensive researches, their applications being plethoric in several areas including microelectronics, spintronics, biomedical science, metallurgy and catalysis. Different approaches can be used to elaborate the nano-particules and the templates are an important one. This work uses an original way to produce nanostructures using strain and temperature to pattern different templates. The main objective is to investigate how strain can be used to modify the patterns of nanostructures, and to characterize the influence of these strains on the morphological evolution of these nano-objects. An experimental device working under ultra-high vacuum environment has been developed to follow in-situ the evolution of surfaces under stress at various temperatures. The first results obtained with this experiment are very promising1. After surface preparation under ultra-high vacuum we can compress various materials in the elastic and plastic stages and then induce various nanostructures. For the first time using mechanical strain, nanostructures evolutions have been seen at the nanometer scale: on Au(111) surface in the elastic and plastic stage with very interesting atomic rearrangements (see fig. 1), on Ni3AlTa(541) surface with dislocation cross-slip events very well characterized at the nanometer scale and at a very high resolution (atomic scale) on Nb(111) surface. FIG. 1 Compression of Au(111) single crystal in the elastic stage at 300 K at 4.25 MPa (a) and 4.40 MPa (b). Grey arrows indicate the stress-induced modifications of some nanometer scale steps. The profile is associated with the grey dashed line. REFERENCE 1. Y. Nahas et al., Rev. Sci. Instrum. 84, 105117 (2013) 69 P28 Adsorption of Organic Molecules on WaterSaturated Si(001) Surface: Radical Adducts and Concerted Hydrosylation Products. The case of Benzaldehyde D. Pierucci,1,2,3 A. Naitabdi,1,2 F. Rochet,1,2 F. Bournel,1,2 J.-J. Gallet,1,2 H. Tissot,1,2,3 M. Silly,3 and F. Sirotti3 1 Sorbonne Universités, UPMC Univ Paris 06, UMR 7614, Laboratoire de Chimie Physique Matière et Rayonnement, 11, rue Pierre et Marie Curie, 75005 Paris 2 CNRS, UMR 7614, LCPMR, 75005 Paris 3 Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, 91192 Gif sur Yvette ABSTRACT The water-saturated Si(001)-21 surface (denoted in the following (H,OH)-Si(001)-2×1) is attracting a large interest within the surface science community as it can be the starting substrate in the atomic layer deposition of high dielectrics with organometallics or alkoxysilanes. On the other hand, little is known about its interaction with π-bonded organic molecules, like aldehydes. This study contributes to the understanding of the molecule/surface interactions and, specifically, to the role played by the isolated dangling bonds (IDB) in the adsorption process. We have investigated the adsorption mechanism of benzaldehyde molecules on a (H,OH)Si(001)-2×1 surface using a scanning while dosing approach with real-time scanning tunneling microscopy (STM) in combination with synchrotron radiation photoemission. We demonstrated that benzaldehyde attaches to the silicon dangling bonds of (H,OH)-Si(001)2×1, but remains trapped as a radical adduct. The latter is unable to scavenger a nearby H. On the other hand, the concerted hydrosilylation reaction involving the carbonyl moiety and a surface monohydride is observed. These observations contrast with the H-terminated case for which a radical chain reaction can propagate after abstraction of a nearby H by the radical adduct. Therefore we propose that, the reactivity of benzaldehyde with (H,OH)-Si(001)-2×1 differs from that of H-Si(001)-2×1, due to hydrogen bonding between surface silanols and the molecules in the reaction path. Indeed H-bonding can lower the transition state energy of the direct hydrosilylation process, and the activation barrier, while it stabilizes the radical intermediate state (the adduct) in the reaction induced by the silicon dangling bond, to such an extent that the latter species cannot further abstract a nearby H. Figure 1: Real-time filled-state STM images of (H,OH)-Si(001)-2×1 exposed to benzaldehyde (a) pristine surface; (b) after 14 min dosing. (c) and (d) are schematics shown to illustrate the position of the IDB and its disappearance after the adsorption of a Benzaldehyde molecule. 70 P29 Elaboration And Characterization Of Self-Assembled Monolayers on Gold And Silica F. Palazon1, D. Ferrah1, C. Botella1, G. Grenet1, J.-F. Bryche2, B. Bartenlian2, P. Rojo Romeo1, É. Souteyrand1, Y. Chevolot1, J.-P. Cloarec1,3 1 Université de Lyon, Institut des Nanotechnologies de Lyon, site École Centrale de Lyon, CNRS, UMR 5270; 36, Avenue Guy de Collongue, 69134, Écully, France 2 Institut d'Electronique Fondamentale, IEF, CNRS UMR 8622, Université Paris Sud, Orsay, France 3 Laboratoire Nanotechnologies & Nanosystèmes, UMI 3463 CNRS, UdeS, INSA de Lyon, ECL, UJF, CPE Lyon. Université de Sherbrooke; 3000 Boulevard de l’Université; Sherbrooke (Québec) J1K 0A5; Canada ABSTRACT Self-Assembled Monolayers (SAMs) are the result of spontaneous binding and selforganization of appropriate organic molecules onto a solid surface. SAMs can be viewed as organic thin films (typically 1-2nm thick) which can be tailored to tune the surface properties of the substrate and give it a specific function (surface functionalization). SAMs can have different applications such as allowing a surface to specifically capture a target biomolecule from a complex medium in biosensing technology. Our work focuses on functionalization of heterogeneous gold / silica surfaces by means of two different SAMs (orthogonal functionalizations). These orthogonal functionalizations can be used to define micro and nanometric sites on a macroscopic substrate for the selective deposition of target molecules or nanoparticles. Chemical characterization is a key element in understanding the processes of surface functionalization, ensuring the presence of the desired SAMs on the different substrates and evaluating their chemical composition (e.g: oxidation of terminal groups) and physicochemical environment (e.g: hydrogen bonding between adjacent molecules). We have tested different functionalizations with alkylthiols on gold and polyethyleneglycolsilanes on silica, investigated by X-ray Photoemission Spectroscopy (XPS) as well as Polarization-Modulation InfraRed Reflection Absorption Spectroscopy (PMIRRAS). Furthermore, these orthogonal functionalizations have been succesfully used for the selective deposition of nanoparticles on a micropatterned gold/silica substrate as evidenced by Scanning Electron Microscopy (SEM). 71 P30 Growth of semiconducting core / functional oxide shell nanowires F. Boudaa1, R. Bachelet1, A. Benamrouche1, M. Gendry1, G. Grenet1, Y. Robach1, G. Saint-Girons1, B. Vilquin1, J. Penuelas1, A. DescampMandine2, B. Masenelli2, N. P. Blanchard3, C. Andreazza4, P. Andreazza4 1. Université de Lyon, Institut des Nanotechnologies de Lyon INL-UMR5270, CNRS, ECL, Ecully, France 2. Université de Lyon, Institut des Nanotechnologies de Lyon INL-UMR5270, CNRS, INSA, Villeurbanne, France 3. Institut Lumière Matière, Université de Lyon, UMR5306 Université Lyon 1-CNRS, 69622 Villeurbanne, France 4. Centre de Recherche sur la Matière Divisée CRMD-FRE3520, 45071 Orléans, France ABSTRACT Combination of heterogenous materials could lead to the fabrication of new electronic / photonic devices. Perovskite oxide (BaTiO3, PbZrTiO3 etc.) exhibit a wide range of properties (thermoelectricity, ferroelectricity, ferromagnetism) that could be combined with classical semiconductor (Si, Ge or III-V). In this context we report on the growth of Ge nanowires on Si substrates which could be used as template for the subsequent growth of oxides in order to fabricate Ge core / oxide shell nanowires. A complementary study concerns the growth of functional oxides from the perovskite family (BaTiO3, PbZrTiO3) on the facets of ZnO nanowires. Ge nanowires were grown using the Vapor Liquid Sold method [1] with gold catalyst by molecular beam epitaxy [2]. We show the substrate temperature and the Ge flux allow for tuning the morphology of the nanowires on Si(001), Si(110) and Si(111) substrates. The nanowires structure as well as the nanowires / substrate interface is studied by High Resolution Transmission Electron Microscopy (HRTEM). The growth of ZnO nanowires was performed by hydrothermal synthesis [3]. BaTiO3 shell was grown by molecular beam epitaxy, HRTEM observation show the presence of facetted BaTiO3 islands on the ZnO facets. Moreover an epitaxial relationship was found. PbZrTiO3 shell was grown by sputtering at room temperature, HRTEM observation show the presence of an amorphous conformal oxide shell that completely wrap the core nanowires. Annealing at 500°C allow to obtain a crystalline shell made of epitaxial islands. REFERENCES [1] R.S. Wagner, W. C. Ellis, Appl. Phys. Lett. 4 (5): 89.(1964) [2] C. Porret, T. Devillers, A. Jain, R. Dujardin, A. Barski, Journal of Crystal Growth 323, 334 (2011) [3] S.-N. Bai, S.-C. Wu, J. Mater Sci, Mater Electron 22, 339 (2011) 72 P31 Rôle du glycocluster dans la formation de nanostructures biologiques lectines/glycoclusters sur surface Francesca Zuttion1, Delphine Sicard1, Yann Chevolot1, François Morvan3, J.-Jacques Vasseur3, Sébastien Vidal2, E. Souteyrand1, et Magali Phaner-Goutorbe1 1 Université de Lyon, Institut des Nanotechnologies de Lyon (INL, UMR CNRS 5270), site Ecole Centrale de Lyon, 36 avenue Guy de Collongue, 69134 Ecully, France 2 Université de Lyon, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS, UMR CNRS 5246), Laboratoire de Chimie Organique 2 - Glycochimie, 43 boulevard du 11 Novembre 1918, 69622 Villeurbanne, France 3 Université de Montpellier, Institut des Biomolécules Max Mousseron (IBMM, UMR CNRS 5247), CC1704 place Eugène Bataillon, 34095 Montpellier Cedex 05, France ABSTRACT La bactérie Pseudomonas aeruginosa est un pathogène opportuniste responsable de graves infections chez les personnes affaiblies immunitairement et en particulier les patients atteints de mucoviscidose. Une approche thérapeutiques consiste à empêcher l’adhésion de la bactérie sur les cellules épithéliales. Cette adhésion s’effectue entre autres, par l’interaction entre des protéines, appelées lectines, capable de reconnaître et de se lier de manière spécifique et réversible aux glycoconjugués des cellules-hôtes [1]. A l’aide de glycoclusters synthétiques, il semble possible de bloquer l’action de la lectine en créant une interaction lectine/glycoclusters. Dans notre étude, nous nous sommes intéressés à la lectine soluble PA-IL, spécifique du galactose (fig.1) [3]. Pour développer l’approche thérapeutique proposée, de nombreux glycoclusters ont été élaborés. En effet, plus l’affinité entre le glycocluster et la lectine est grande, plus le glycocluster est susceptible d’écranter l’interaction lectine/glycoconjugué et donc de bloquer le processus d’infection [4,5]. Dans ce contexte, nous avons souhaité observer l’arrangement de complexes lectines/glycoclusters par microscopie à force atomique pour 4 glycoclusters différents. Nous avons montré que les nanostructures formées prenaient la forme de filaments [6], de structures bidimensionnelles ou tridimensionnelles suivant le glycocluster choisi et que la concentration en glycoclusters influençait aussi l’arrangement des complexes [7]. Nous avons ainsi pu mettre en évidence que la géométrie de cœur de la glycomolécule ainsi que la nature et l’orientation de ses bras espaceurs avaient une influence sur les arrangements. REFERENCES 1. 2. 3. 4. 5. 6. 7. A.Imberty, Y. M. Chabre, R. Roy, Chem. Eur. J. 2008, 14, 7490. J. Kocourek , V. Horejsi,, Nature 1981, 290, 188. G. Cioci, E. P. Mitchell, C. Gautier, M. Wimmerová, D. Sudakevitz,S. Pérez, N. Gilboa-Garber, A. Imberty, FEBS Lett. 2003, 555, 291. S. Cecioni, R. Lalor, B. Blanchard, J-P. Praly, A. Imberty, S. E. Matthews, S. Vidal, Chem. Eur. J. 2009, 15, 13232. S. Cecioni, J.-P. Praly, S. E. Matthews, M. Wimmerová, A. Imberty, S. Vidal, Chem. Eur. J. 2012, 18, 6250. D. Sicard, S. Cecioni, S., M. Iazykov, Y. Chevolot, S. E. Matthews, J-P. Praly, E. Souteyrand, A. Imberty, S. Vidal, M. PhanerGoutorbe, Chem. Comm. 2011, 47, 9483. D.Sicard, Y Chevolot ,E. Souteyrand S. Vidal M. Phaner-Goutorbe , J. Mol.Recognit., 26, 694, (2013) 73 P32 Surface electronics of individual Si-doped GaN wires studied by XPS spectromicroscopy O. Renault, J. Morin, N. Chevalier, E. Martinez, P. Tchoulfian CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France. ABSTRACT Heavily Si-doped GaN wires are at the basis of innovative LEDs used in advanced solidsate lightning. Understanding how silicon incorporation influences the electronic properties and the measured electrical characteristics of recently emerged very high-conductivity GaN wires [1] is of prime importance for future device optimization. Here, we have implemented photoemission microscopy with synchrotron radiation (XPEEM) [2] and scanning Auger nanoprobe microscopy (SAM) [3] to investigate the incorporation of Si at the surface of individual GaN wires of 2 µm diameter and the local work function. The high-resolution Si2p micro-spectra evidence complex incorporation of Si pointing on intentional (Si substitution in Ga sites) and un-intentional doping (Si substitution in N-vacancies). By combining elemental analysis from SAM and XPEEM core-level results, we can quantitatively discriminate these two contributions to the doping. Next, we have studied the influence of illumination flux on both the work function and Ga3d binding energies, the strong variations of which evidence, through a surface photovoltage effect, a band bending of at least 0.8 eV at the wire surface. The band bending is arising from surface states in the band gap, directly observed in the valence band spectra, in agreement with cathodoluminescence results. The method applied here can be transferred to other types of doped semiconducting wires. REFERENCES 1. P. Tchoulfian et al., Appl. Phys. Letters 102, 122116 (2013). 2. C. M. Schneider et al., J. Electron Spectrosc. Relat. Phenom. 185, 330 (2012); O. Renault, Surf. Interface Anal 42, 816 (2010). 3. E. Martinez et al., J. Electron Spectrosc. Relat. Phenom., in press (2014). 74 P33 Interfaces entre métaux magnétiques et molécules V. Repain, A. Bellec, J. Lagoute, Y. Girard, C. Chacon et S. Rousset Laboratoire MPQ, UMR 7162, Université Paris Diderot et CNRS, 10 rue A. Domon et L. Duquet, 75205 Paris Cedex ABSTRACT La compréhension du couplage entre une couche moléculaire et une électrode magnétique est un élément central de l’électronique de spin moléculaire. Nous avons plus particulièrement travaillé sur les molécules de C60, relativement simples à simuler de par leur haute symétrie. L’adsorption de ces molécules sur des substrats de cobalt et de chrome modifie leurs propriétés ainsi que celles du substrat. Nous avons dans un premier temps étudié la modification du magnétisme du cobalt par magnéto-optique in situ lorsqu’une couche de C60 est déposée sur des films ultraminces Co/Au(111) et Co/Pt(111). Etonnamment, la couche moléculaire peut induire une transition de réorientation de l’aimantation, favorisant l’aimantation hors plan. Nous avons également réalisé des expériences de microscopie à effet tunnel polarisé en spin sur des molécules individuelles déposées sur une surface de chrome et de cobalt. Sur le chrome, nous avons mesuré une forte polarisation de spin du C60 [1] alors que sur le cobalt, le C60 ne semble pas se polariser. Des comparaisons avec des calculs ab initio réalisés au CEA permettent de mieux comprendre l’influence du substrat et des géométries d’adsorption sur les propriétés observées. REFERENCES 1. “Large Magnetoresistance through a Single Molecule due to a Spin-Split Hybridized Orbital”, S. L. Kawahara, J. Lagoute, V. Repain, C. Chacon, Y. Girard, S. Rousset, A. Smogunov, and C. Barreteau, Nano Letters, 12, 4558 (2012).. 75 P34 Complementarity Of Inelastic Background and High Resolution Core-Level Analysis In HAXPES Paul Risterucci1-3-4, Olivier Renault1, Eugénie Martinez1, D. Bertrand1, B. Detlefs1 Denis Ceolin2, Jean-Pascal Rueff2, Sven Tougaard3, Geneviève Grenet4 1 CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 GRENOBLE Cedex 9, France. Synchrotron SOLEIL - L'Orme des Merisiers Saint-Aubin - BP 48 91192 GIF-sur-YVETTE. 3 Dept. of Physics, Chemistry and Pharmacy, University of Southern Denmark,DK-5230 Odense M, Denmark. 4 Institut des nanotechnologies de Lyon (INL), UMR CNRS 5270, Ecole Centrale de Lyon, 36 avenue Guy de Collongue 69 134 ECULLY Cedex. 2 ABSTRACT Non destructive analysis of interfaces is of prime importance to study elemental intermixing in nanoelectronic devices at depths usually around 30nm. We have recently extended the probing depth of HArd X-ray Photoelectron Spectroscopy (HAXPES) above 50 nm [1] with the use of inelastic background analysis. Here we present the complementarity of this approach with the usual core-level analysis. Samples processed for this study are based on an Al0.25Ga0.75N/GaN (24/1000 nm) epitaxial stack and a Ti/Al (15/10 nm) metal layers. Then, samples were annealed in a Rapid Thermal Annealing (RTA) system under N2 atmosphere. The annealings were respectively: 600°C for 300s, 600°C for 300s then 800°C for 60s and 600°C for 300s then 900°C for 60s. We show results of two different photoemission experiments both carried out at GALAXIES beamline [2] with photon energy of 8 keV. The first experiment is Figure 1: Ti 1s spectra measured at 8 keV. The to measure high resolution spectra of Al 1s and Ti 1s inset shows high resolution spectra of Ti1s with (inset of Fig. 1), performed with an overall resolution their attributions of 0.35 eV. In this experiment, the chemical environment of the element in the first few nanometers (estimated to be 15.9 nm) is unraveled. We find three major components corresponding to a metallic state (labeled A), oxide state (labeled B) and two alloy states (labeled C and D) with changing relative intensity depending on the annealing process. However this classic method is unreliable for determining depth profile of inhomogeneous samples; therefore a second experiment, performed with an optimized photon flux is used for inelastic background analysis based on Tougaard’s method [3]. This method allows to obtain elemental depth distribution over a larger probing depth (estimated to be 42 nm). The results show that Ti is located from 17 to 31 nm below the surface for the as deposited sample and diffusion is quantitatively determined for each annealing process; toward the surface and up to 40 nm toward the substrate. We show the complementarity of core level and inelastic background analysis, unraveling the chemical state and the depth distribution of a specific element giving an overall description of the technological sample up to 40 nm below the surface. REFERENCES 1. P. Risterucci, O. Renault, B. Detlefs, E. Martinez, J. Zegenhagen, G. Grenet, S. Tougaard, Surf Interface Anal. accepetd (2014) 2. D. Céolin, J. M. Ablett, D. Prieur, T. Moreno, J. P. Rueff, T. Marchenko, L. Journel, R. Guillemin, B. Pilette, T. Marin and M. Simon, Journal of Electron Spectroscopy and Related Phenomena 190, Part B, 188-192 (2013). 3. S. Tougaard, Journal of Electron Spectroscopy and Related Phenomena 178–179, 128-153 (2010). 76 P35 Etude de la Rétention de Deutérium dans le Tungstène par Désorption à Température Programmée (TPD) O. Saidia, R. Bissona, O. Moureya, S. Markeljc, C. Grisoliab, T. Angota a Aix-Marseille Université, PIIM, CNRS, UMR 7345, 13397 Marseille, France b c CEA, IRFM, 13108 St Paul Lez Durance, France Jožef Stefan Institute, Association EURATOM-MESCS, Jamova cesta 39, 1000 Ljubljana, Slovenia ABSTRACT Le projet ITER (International Thermonuclear Experimental Reactor) est destiné à valider scientifiquement et techniquement la fusion thermonucléaire contrôlée par confinement magnétique. L’un des enjeux majeurs pour ce tokamak est lié à l’interaction plasma paroi. Le tungstène (W) est pressenti comme l’élément principal dans la région du divertor d'ITER. Lors de l’opération de ce réacteur ce matériau sera soumis à des flux importants de chaleur et de particules. Le tritium, l’un des deux éléments principaux du fuel de la réaction, est un élément radioactif. Son piégeage dans les parois constitue un problème crucial pour des raisons de sureté. Il est donc essentiel de connaître d’une part la quantité d’hydrogène piégé dans le tungstène et d’autre part de déterminer les procédés de piégeages de cet élément. Dans ce contexte, la rétention de deutérium dans le tungstène est étudiée en fonction de la fluence dans le domaine 1017 D+/m² jusqu’à 1021 D+/m², par la technique de la désorption à température programmée(TPD). Sur les échantillons implantés in situ à 300K, un seul pic de désorption autour de 470K est observé contrairement aux deux pics reportés à 470k et 650K dans d’autres études [2-4]. Nous avons aussi constaté un phénomène de saturation de la quantité de deutérium détectée pour les fluences les plus importantes utilisées. L’effet de la durée de stockage (entre l’implantation et l’analyse TPD) sous vide et à l’air à température ambiante (300K) a été étudié. La quantité de deutériums piégés diminue considérablement en augmentant le temps de stockage. Nos observations mettent en évidence pour la première fois un phénomène de désorption spontanée à température ambiante ce qui permet de rationaliser le phénomène de saturation de la rétention observé pour les grandes fluences. La prise en compte de ce phénomène s’avère essentielle pour la compréhension et la réalisation de l’inventaire de tritium dans les machines de la fusion thermonucléaire. REFERENCES [1] R. Toschi et al. Fusion Eng. Des. 56–57, 163 (2001) [2] Z. Tian, et al. , J. Nucl. Mater. 399 (2010) 101 [3] O.V. Ogorodnikova, et al., J. Nucl. Mater. 313 (2003) 469 [4] A.A. Haasz, et al., J. Nucl. Mater. 258(1998) 889 77 P36 DFT Study of the Growth of C60 Molecules on a Nanoporous TBB/SiB Molecular Network K.Boukari1, E. Duverger2, R.Stephan1, M.C.Hanf1, and Ph.Sonnet1 1 Institut de Science des Matériaux de Mulhouse, UMR CNRS 7361 - UHA, 15 rue Jean Starcky, 68057 Mulhouse, France. 2 Institut FEMTO-ST, Université de Franche-Comté, CNRS, ENSMM, 32 avenue de l’Observatoire, 25044 Besançon cedex, France. ABSTRACT C60 fullerene assemblies on surfaces have attracted considerable attention because of their interesting electronic properties. Now because of the competition between the molecules-substrate and the molecule-molecule interactions, an ordered C60 array is rather difficult to obtain on silicon surfaces. However it has been shown that a non compact hexagonal C60 assembly can be observed when the molecules are deposited on a supramolecular honeycomb network grown on a boron doped silicon substrate1. Here we present DFT (density functional theory) simulations on C60 molecules located in the nanopores of a TBB (1,3,5-tri(1’-bromophenyl) benzene) network lying on the Si(111) 3 x 3R30 boron surface (denoted SiB). Adsorption energy calculations show that the SiB surface governs the C60 vertical position, whereas the TBB network imposes the C60 lateral position, and stabilizes the molecule as well. Top view of the atomic structure of C60 molecules on a TBB/SiB network. Carbon, bromine, silicon and hydrogen atoms are represented by blue, red, yellow and pink balls, respectively. The low charge density between the C60 and the SiB substrate on one hand, and on the other hand between the C60 and the TBB molecules, indicates that no covalent bond is formed between the C60 and its environment. However, a drastic charge reorganisation takes place within the space located between the Si adatoms and the C60 molecules. According to charge density differences, there is also an electrostatic interaction between the C60 and the surrounding TBB molecules2. REFERENCES 1. 2. B.Baris, V.Luzet, E.Duverger, Ph.Sonnet, F.Palmino and F.Cherioux, , Angew. Chem. Int. Ed. 50, 4095-4098 (2011). K.Boukari, E. Duverger, R. Stephan, M.C.Hanf, and Ph.Sonnet, ChemPhysChem (submitted) 78 P37 Theoretical Study of Intermolecular Interactions in Nanoporous Networks on the SiB Surface Khaoula Boukari1, Eric Duverger2, Philippe Sonnet1 1 Institut de Science des Matériaux de Mulhouse (IS2M) CNRS UMR 7361 - Université de Haute Alsace, 3b rue A. Werner 68093 Mulhouse cedex. 2 Institut FEMTO-ST, Université de Franche-Comté, CNRS, ENSMM, 32 Avenue de l’Observatoire, F-25044 Besançon cedex. ABSTRACT The formation of supramolecular layers represents a promising strategy for surface functionalization providing well controlled properties such as corrosion resistance, surface superhydrophobicity or antifouling coatings. Moreover, the ordering of the molecular buildingblocks deposited on solid surfaces is relevant for the performance of many organic electronic and optoelectronic devices, such as organic field-effect transistors (OFETs), organic lightemitting diodes (OLEDs) or photovoltaic solar cells. Bidimensionnal molecular selfassemblies on solid surfaces studies concern mostly metallic surfaces, HOPG substrates or, more recently, the epitaxial graphene superstructure. Only few works are devoted to the adsorption on semiconductor substrates, and particularly on silicon surfaces due to the high reactivity of the silicon dangling bonds. To overcome this drawback, we have used a boron passivated silicon surface (denoted SiB). Three years ago, we have reported the formation of a 2D large-scale (over 250x250 nm2) supramolecular network on the SiB surface with 1,3,5-tri(4’-bromophenyl)benzene molecules denoted TBB1. More recently, we have calculated atomic and electronic structures of this network. We have confirmed the importance of the substrate effect to achieve the molecular network on the boron doped silicon surface without covalent bond2. TBB supramolecular network is governed by the subtle interplay between intermolecular and molecule-surface interactions. In order to highlight the role of chemical nature of the molecule termination, we conduct a new adsorption study of two novel molecules presenting the same atomic structure than TBB molecule but with different endatoms. In this present work, we present DFT-D calculations of the adsorption of 1,3,5-tri(4iodophenyl)benzene (denoted TIB) and 1,3,5-triphenylbenzene (denoted THB) on the boron doped Si(111)√3x√3R30° surface. The determination of the interaction energies is the first step to understand the formation mechanism of these systems. Via an electronic study, we demonstrate that the molecule-molecule interactions between TBB, TIB or THB molecules on the SiB surface are driven by no covalent bond. Indeed, charge difference calculations allow us to identify dipolar and quadrupolar intermolecular interactions in the supramolecular networks3. REFERENCES 1. B. Baris, V. Luzet, E. Duverger, Ph. Sonnet, F. Palmino, F. Chérioux, Angew. Chem. Int. Ed. 50, 4180 (2011). 2. K. Boukari, E. Duverger, Ph. Sonnet, J. Chem. Phys. 138, 084704 (2013). 3. K. Boukari, E. Duverger, Ph. Sonnet, J. Chem. Phys. (submitted) 79 P38 Surface Analysis Techniques (XPS/AES-SEM) And Cross-sectioning Method Used To Reveal The Inner Structure Of Core/Shell Nanoparticles J.B. Ledeuil, A. Uhart, J. Allouche, J.C. Dupin, H. Martinez IPREM –ECP - UMR CNRS 5254, Université de Pau et des Pays de l'Adour, Techopole Helioparc, 2 Avenue Président Pierre Angot, 64053 PAU cedex 09 – France ABSTRACT The present work reports a deep and detailed chemical and morphological characterization at nanoscale of Au/Ag alloy core mesoporous silica shell nanoparticles1. We used a combination of high resolution microscopic and spectroscopic techniques such as Scanning Electron microscopy (SEM), micro X-ray photoelectron spectroscopy (µXPS) and Scanning Auger Electron Spectroscopy (AES, SAM)2. Moreover, we used an original sample crosssection preparation method using an ion milling cross polisher (CP) equipment as a unique tool to obtain non damaged, well-defined and planar layer of cross-cut core-shell particles3. Such preparation coupled with the previous analytical methods allowed us to reveal the inner chemical and morphological interfaces heterogeneous structure of particles at nanoscale. Particularly, we clearly demonstrated that AES line scanning mode profiles near the metal/silica interfaces put in evidence a non homogeneous distribution of silver and gold elements in the core. Indeed, a silver rich phase is localized in the innermost and middlemost part of the core while gold is concentrated in the outermost part. To our knowledge, this is the first time that Auger spectroscopy has been successfully used and optimized to study complex inorganic interfaces at such high degree of resolution (ie ≈ 6 nm). REFERENCES 1. S. Soulé, J. Allouche, J.-C. Dupin, H. Martinez, Design of Ag-Au nanoshell core/mesoporous oriented silica shell nanoparticles through a sol-gel surfactant templating method, Microporous Mesoporous Mater. 71 (2013) 72-77. 2. . G. Hota, S.B. Idage, K.C. Khilar, Characterization of nano-sized CdS-Ag2S core-shell nanoparticles using XPS technique., Colloids Surf., A. 293 (2007) 5–12. 3. K. Tsutsumi, Auger Analysis of Cross Sections Prepared by Cross Section Polisher, (46) JEOL News Vol. 41E No.1 46 (2006). 80 P39 AGEING PROCESS OF CZT SUBMITTED TO AQUEOUS HBR/BR2 ETCHING : X-RAY PHOTOELECTRON SPECTROSCOPY, NANO-AUGER AND MICROSCOPIES CHARACTERIZATION. A. Vallée1,2, I. Gérard1, L. Mollard2, G. Bourgeois2, J. Vigneron1, M. Bouttemy1 and A. Etcheberry1 1 Institut Lavoisier Versailles, UMR 8180, University of Versailles St Quentin En Yvelines, 45 avenue des Etats Unis, F-78035 Versailles, France 2 CEA, LETI, 17 rue des Martyrs, F-38054 Grenoble, France ABSTRACT Crystalline Cd1-xZnxTe (CZT) is a choice material for the preparation of numerous detectors either as a support for growth of Hg1-xCdxTe for Infra-red detection1 or by itself for X-Ray and gamma rays detectors2. During the material preparation chemical polishing can induce surface damage and changes in surface chemistry that can strongly influence its performance3. In this study, a multi scale characterization of the CZT surface composition and morphology was performed after HBr/Br2 process. XPS and Auger characterization allowed us to determine the global and local surface composition immediately after the HBr/Br2 treatment and after five days of ageing. The results show a surface oxides free, just after the treatment, with a tellurium excess due to the presence of elemental Te (Te°). The XPS analyses of the same sample ageing in air surface shows an additional ultra thin layer which seem mainly attributed to the direct oxidation of the CZT matrix. The AR-XPS and depth profiling by Ar+ sputtering provides us a rough picture of how the different layers organized on the surface. There are actually three different layers present on the surface, one made up of Te°, one of TeO2 and one of a mixture of tellurium and cadmium oxides. In addition, SEM and AFM analyses reveal the presence of pegs on a porous surface. The Auger local analysis shows that the extreme surface of the pegs is composed of Te only, whereas the background around the pegs is composed of a mixture of Cd and Te with an excess of Te. This suggests the presence of TeO2 on the top of the mixture oxides. Based on these combined results, we propose a schematic model of the surface composed of Te ° pegs surrounded by mixture of oxides, which all of these components covered by TeO2. REFERENCES 1. Norton, P. Opto-Electron. Rev. 10, 159-174 (2002) 2. Babar, S.; Sellin, P.J.; Watts, J.F.; Bakre M.A. Appl. Surf. Sci. 264, 681-686 (2013) 3. Badano, G.; Million, A.; Canava, B.; Tran-Van, P.; Etcheberry, A. J. Electron. Mater. 36, 1077-1084 (2007) 81 P40 Controlled synthesis of mono- and bimetallic nanoparticles in ionic liquids I. Helgadottir1,2, W. Darwich2, P. Arquillière2, P.H. Haumesser1* and C. C. Santini2 1 CEA, LETI, MINATEC - 17, rue des Martyrs 38 054 Grenoble Cedex 9, France de Lyon, UMR 5265 CNRS-Université de Lyon-ESCPE Lyon, C2P2, 43 Boulevard du 11 Novembre 1918, 69616 Villeurbanne Cedex, France paul.haumesser@cea.fr 2 Université ABSTRACT Recently, metallic nanoparticles (NPs) have attracted much interest in a range of applications such as the fabrication of advanced microelectronic, magnetic or optical devices.[1] However, the controlled synthesis of metallic NPs in the range of 1 to 10 nm is still an on going challenge. Unlike traditional solvents, ionic liquids (ILs) can be used to generate metallic NPs and stabilize them in the absence of further additives.[2] Indeed, our group has demonstrated that they can dissolve organometallic (OM) precursors, which precipitate into metallic NPs by decomposition under dihydrogen.[3] This process has been shown to readily provide suspensions of Ru and CuNPs, with accurate size control and high stability. We will show that this is a general route for the synthesis of various metallic NPs, provided that a suitable OM precursor can be found. Even more interestingly, upon mixing two OM precursors, bimetallic NPs can be obtained.[4] Depending on the decomposition kinetics of the OM precursors, specific structures (such as core-shell) can even be obtained, with improved size control. The mechanisms involved in this configuration will be elucidated. The generalization of this concept will be discussed as well. REFERENCES 1. H. Goesmann and C. Feldmann, Angew. Chem. Int. Ed., 2010, 49, 1362 2. J. Dupont, J.D. Scholten, Chem. Soc. Rev., 2010, 39, 1780 3. T. Gutel, C.C. Santini, K. Philippot, A. Padua, K. Pelzer, B. Chaudret, Y. Chauvin, J.-M. Basset, J. Mater. Chem., 2009, 19 3624 4. P Arquilliere, P.-H. Haumesser, I. S. Helgadottir, and C. C. Santini. “COMPOSITION FOR THE SYNTHESIS OF BIMETALLIC NANOPARTICLES IN AN IONIC LIQUID AND ASSOCIATED METHOD”, 2012, US Patent 20,120,295,110; P Arquilliere, et al. Top. Catal, 2013, 56, 1192 82 LISTE PARTICIPANTS 83 84 P. Allongue philippe.allongue@polytechnique.edu M.Abel mathieu.abel@im2np.fr P.Amsalem Jeanne.dAntras@oxinst.com P.Andreazza pascal.andreazza@univ-orleans.fr D.Aureau damien.aureau@uvsq.fr D.Babonneau david.babonneau@univ-poitiers.fr R.Bachelet romain.bachelet@ec-lyon.fr O.Balmes olivier.balmes@maxlab.lu.se S.Benayoun stephane.benayoun@ec-lyon.fr F.Bessueille francois.bessueille@univ-lyon1.fr P.Borghetti patrizia_borghetti@ehu.es M.Bouttemy muriel.bouttemy@uvsq.fr J.Brissot jbrissot@science-et-surface.fr A.Coati coati@synchrotron-soleil.fr M.Cobian manuel.cobian@ec-lyon.fr N.Combe combe@cemes.fr J.Coulm coulmjeremy@yahoo.fr T.Cren tristan.cren@upmc.fr S.Curiotto curiotto@cinam.univ-mrs.fr C.Demaille demaille@univ-paris-diderot.fr J.Dupin dupin@univ-pau.fr T.Epicier thierry.epicier@insa-lyon.fr D.Ferrah djawhar.ferrah@ec-lyon.fr F.Fournel frank.fournel@cea.fr Y.Garreau yves.garreau@synchrotron-soleil.fr G.Grenet genevieve.grenet@ec-lyon.fr P.Haumesser paul.haumesser@cea.fr M.Ignacio maxime.ignacio@univ-lyon1.fr E.Lacaze emmanuelle.lacaze@insp.jussieu.fr A.Lamirand anne.lamirand@grenoble.cnrs.fr T.Le Bahers tangui.le_bahers@ens-lyon.fr S.Linas sebastien.linas@univ-lyon1.fr O9 P02, P27 P03 P04, P20, P22, P27 O10 P05 P06 P07, P36 P08 P02 P09 O11 P05 O15 P23 O13 P35 P10 P11, P26 O8 O.Magnussen magnussen@physik.uni-kiel.de 85 P01, P17 P02 P11, P22, P26, P27 P40 P12 P13 P14 P15 P16 O7 F.Maroun fouad.maroun@polytechnique.edu E.Martinez eugenie.martinez@cea.fr H.Martinez herve.martinez@univ-pau.fr A.MaurelPantel maurel@lma.cnrs-mrs.fr L.Mazet lucie.mazet@ec-lyon.fr R.Mazurczyk Radoslaw.Mazurczyk@ec-lyon.fr B.Meunier benjamin.meunier@ec-lyon.fr C.Mottet mottet@cinam.univ-mrs.fr P.Muller muller@cinam.univ-mrs.fr Y.Nahas yasmine.nahas@cnrs.pprime.fr A.Naitabdi ahmed.naitabdi@upmc.fr E.Ortega enrique.ortega@ehu.es H.Oughaddou Hamid.oughaddou@u-psud.fr F.Palazon francisco.palazon@ec-lyon.fr J.Penuelas jose.penuelas@ec-lyon.fr M. PhanerGoutorbe magali.phaner@ec-lyon.fr O.Pierre-Louis olivier.pierre-louis@univ-lyon1.fr O.Renault olivier.renault@cea.fr H.Renevier hubert.renevier@grenoble-inp.fr V.Repain vincent.repain@univ-paris-diderot.fr P.Risterucci paul.risterucci@cea.fr Y.Robach yves.robach@ec-lyon.fr P01, P17 P18, P31 P35 P19 P20 P21 P22 O6 P23 P24 P25 P06 O14 O1 P26 P11, P22, P27 P28 O4 P12 P12 P29, P32 P30 P31 N.Rougemaille nicolas.rougemaille@neel.cnrs.fr O.Saidi P32 P20, P22, P27 othmen.saidi@etu.univ-amu.fr G.Saint-Girons guillaume.saint-girons@ec-lyon.fr C.Santini catherine.santini@univ-lyon1.fr A.Siria Alessandro.siria@univ-lyon1.fr P.Sonnet philippe.sonnet@uha.fr B.Soukhal Benaziza soukhal.bachira@yahoo.fr V.Soulière veronique.souliere@univ-lyon1.fr A.Tanguy Anne.Tanguy@univ-lyon1.fr J.Tonnerre jean-marc.tonnerre@neel.cnrs.fr A.Uhart arnaud.uhart@univ-pau.fr P33, P34 86 O12 O5 O2 P35 P36 A.Vallée anne.vallee@uvsq.fr F.Vidal franck.vidal@insp.jussieu.fr C.Viguier omicron.nanotechnology@wanadoo.fr B.Vilquin bertrand.vilquin@ec-lyon.fr 87 O3 P27