B - Molecular Imaging Center
Transcription
B - Molecular Imaging Center
SCUOLA NAZIONALE DI RISONANZA MAGNETICA NUCLEARE Concetti di base Parametri NMR Esperimento 1D-FT NMR Torino 23-27 Settembre 2013 Stefano Mammi Dipartimento di Scienze Chimiche Università di Padova stefano.mammi@unipd.it RIFERIMENTI BIBLIOGRAFICI M. Levitt “Spin Dynamics” ”, 2nd ed., John Wiley & Sons, 2008. J. Keeler, “Understanding NMR Spectroscopy”, 2nd ed., John Wiley & Sons, 2010. T. D. W. Claridge, “High-Resolution NMR Techniques in Organic Chemistry”, Pergamon Press, 1999. J. Cavanagh, “Protein NMR spectroscopy: principles and practice”, 2nd ed., Elsevier, 2007. http://www.cis.rit.edu/htbooks/nmr http://www.chem.queensu.ca/FACILITIES/NMR/nmr/webcourse http://www-keeler.ch.cam.ac.uk/lectures/index.html 1 RIFERIMENTI BIBLIOGRAFICI H. Günther, "NMR Spectroscopy", 2nd ed., John Wiley & Sons, 1995. J. K. M. Sanders and B. K. Hunter, "Modern NMR Spectroscopy", 2nd ed., Oxford University Press, 1994. H. Friebolin, "Basic One- and Two-Dimensional NMR Spectroscopy", VCH, 1991. R. M. Silverstein and F. X. Webster, "Identificazione Spettroscopica di Composti Organici", Casa Editrice Ambrosiana, 1999. A. E. Derome, "Modern NMR Techniques for Chemistry Research", Pergamon Press, 1987. The Nobel Prize in Physics 1943 "for his contribution to the development of the molecular ray method and his discovery of the magnetic moment of the proton" The Nobel Prize in Physics 1944 "for his resonance method for recording the magnetic properties of atomic nuclei" Otto Stern Isidor Isaac Rabi The Nobel Prize in Physics 1952 "for their development of new methods for nuclear magnetic precision measurements and discoveries in connection therewith” Felix Bloch Edward Mills Purcell 2 The Nobel Prize in Chemistry 1991 "for his contributions to the development of the methodology of high resolution nuclear magnetic resonance (NMR) spectroscopy" The Nobel Prize in Chemistry 2002 "for his development of nuclear magnetic resonance spectroscopy for determining the three-dimensional structure of biological macromolecules in solution” Richard R. Ernst Kurt Wüthrich 1/2 of the prize The Nobel Prize in Physiology or Medicine 2003 "for their discoveries concerning magnetic resonance imaging” Paul C. Lauterbur Sir Peter Mansfield The Nobel Prize in Physics 2003 ”for pioneering contributions to the theory of superconductors” Alexei A. Abrikosov 1/3 of the prize Vitaly L. Ginzburg 1/3 of the prize 3 I = h I(I+1) - I ≤ m ≤ +I I z = hm z B0 dI dt µ = γI µz = γhm µ I ω0 dI = µ × B 0 dt ω0 = -γB0 E = −µB0 E = −γhmB0 I=1/2 M0 B0 Pβ Pα =e − ∆E kT M0 = Σ µ = M z α: m = +½ µα = +½γh Eα = −½γhB0 ∆E = γhB0 = hω0 = hν0 Mx = M y = 0 β: m = −½ µβ = −½γh Eβ = +½γhB0 4 Pβ Pα =e − ∆E kT M0 = Σ µ = M z ∆E = γhB0 = hω0 = hν0 the new arrival! Season greetings - 2003 CERM, University of Florence 5 Which Elements or Molecules are NMR Active? • Any atom or element with an odd number of neutrons and/or an odd number of protons • Any molecule with NMR active atoms • 1H - 1 proton, no neutrons, AW = 1 • 13C - 6 protons, 7 neutrons, AW =13 • 15N - 7 protons, 8 neutrons, AW = 15 • 19F - 9 protons, 10 neutrons, AW = 19 • 31P - 15 protons, 16 neutrons, AW = 31 http://www.bruker.de/guide/eNMR/chem/NMRnuclei.html 6 Different Isotopes Absorb at Different Frequencies 15N 2H 13C 31P 19F 1H 50 MHz 77 MHz 125 MHz 200 MHz 470 MHz 500 MHz low frequency high frequency NMR Parameters for some nuclei Isotope 1 1/2 2 1 1/2 1/2 H H C 15 N 13 19 NMR Resonance Frequencies Sensitivity Relative Absolute (MHz) at a field of (T): 4.6975 9.395 14.0926 99.98 1 1 200 400 600 1.50E-02 9.65E-03 1.45E-06 30.701 61.402 92.102 Spin Nat. Ab. % 1.108 1.59E-02 1.76E-04 50.288 100.577 150.864 0.37 1.04E-03 3.85E-06 20.265 40.531 60.796 100 0.83 0.83 188.154 376.308 564.462 1/2 F 1/2 100 6.63E-02 6.63E-02 80.961 161.923 242.884 P Relative Sensitivity = at the same field and for the same number of nuclei Absolute Sensitivity = (relative sensitivity * natural abundance) 31 7 z B0 B0 M z Bx(t) = Bx * cos (ω ωot) M y x B1 y x x y time BR (t ) = B1 / 2(i cos ωrf t + j sin ωrf t ) B x (t ) = B1 cos ω rf t BL (t ) = B1 / 2(i cos ωrf t − j sin ωrf t ) 8 So how does that help? z, B0 ω0 = ωL ωrf ( B1 ) − ωrf ( B1 ) x z, B0 ω0 = ωL ωrf ( B1 ) 9 The Rotating Frame z, B0 ω0 = ωL ω rf ( Bω1 )rf =( Bω1 )L x y time z’ = z z B0 M M y –ω0 +ω0 y’ ω0 x’ x LAB. 2ω0 (neglected) ROTATING 10 z’ = z z’ = z M z’ = z M y’ y’ B1 x’ x’ M B1 z’ = z θ M y’ x’ y’ θ = π/2 x’ z z B0 M ω0 x y ω0t y ω0 x 90° Pulse ν = γBo/2π 22 11 90°x FT relax. Preparation Detection z 90°x y t2 ω0 x +∞ F(ω) = ∫ f ( t )eiωt dt −∞ M 0 = M z ∝ Pα0 − Pβ0 = δ Pα0 = (N + δ ) 2 Pβ0 = (N − δ ) 2 Pα + Pβ = N M z = M 0 cos θ ∝ δ cos θ = Pα − Pβ z Mcosθ θ M y x Pα = (N + δ cos θ ) 2 Pβ = (N − δ cos θ ) 2 If θ = 90° ⇒ cosθ = 0 ⇒ Pα = Pβ = N/2 12 Relaxation 90° Pulse Effect on Population: 90° Pulse M 0 = M z`0 = ∑ µ z0 Mz = 0 Relaxation 90° Pulse Effect on Phase: 90° Pulse M xy0 = ∑ µ xy0 = 0 M y = ∑ µ z0 = M 0 M xz = 0 13 Relaxation Excitation • Different populations • No phase coherence ( • Equal populations • Partial phase coherence Relaxation dM z M 0 − M z = dt T1 M z = M 0 1 − e − t T1 T1 T2 dM xy dt ) =− M xy T2* M xy = M 0ze − t T2 * Bloch Equations dJ( t ) = M(t ) × B(t ) dt Multiply by γ dM( t ) = M(t ) × γB(t ) dt 14 Bloch Equations dM ( t ) = M(t ) × γB(t ) − R( M(t ) − M0 ) dt Relaxation Matrix M (t ) − M 0 dM z (t ) = γ [ M x (t ) B y (t ) − M y B x (t )] − z dt T1 Magnetization along the z-axis dM x (t ) M (t ) = γ [ M y (t ) Bz (t ) − M z B y (t )] − x dt T2 Magnetization along the x-axis dM y (t ) Magnetization along the y-axis dt = γ [ M z (t ) Bx (t ) − M x Bz (t )] − M y (t ) T2 ROTATING FRAME OF REFERENCE faster slower 15 z, B0 ω0 = ωL ω rf ( B1 ) = ω L z, B0 ω0 − ωrf ω rf ( B1 ) < ω 0 ∆B = (ω0 − ω rf ) / γ = B0 − ωrf / γ Ω=(ω0-ωrf) ∆B= -Ω/γ 16 Bloch Equations in the Rotating Frame Ω = −γB0 − ω rf (where B0=Bz and is not time-dependent) dM z (t ) M (t ) − M 0 = γ [ M x (t ) B yr (t ) − M y Bxr (t )] − z dt T1 dM x (t ) M (t ) = −ΩM y (t ) − γM z B yr (t ) − x dt T2 dM y (t ) dt = γM z (t ) Bxr (t ) + ΩM x − M y (t ) The “r” superscript refers to a magnetic field in the rotating frame T2 Bloch Equations in the Rotating Frame Example: 90° pulse along x dM z (t ) M (t ) − M 0 = γ [ M x (t ) B yr (t ) − M y Bxr (t )] − z dt T1 dM z (t ) = −γM y Bxr (t ) dt dM x (t ) M (t ) = −ΩM y (t ) − γM z B yr (t ) − x dt T2 dM x (t ) =0 dt dM y (t ) M y (t ) dM y (t ) T2 dt dt = γM z (t ) Bxr (t ) + ΩM x − = γM z (t ) Bxr (t ) 17 Bloch Equations in the Rotating Frame Example: Free Precession dM z (t ) M (t ) − M 0 = γ [ M x (t ) B yr (t ) − M y Bxr (t )] − z dt T1 dM x (t ) M (t ) = −ΩM y (t ) − γM z B yr (t ) − x dt T2 dt = γM z (t ) Bxr (t ) + ΩM x − dM x (t ) M (t ) = −ΩM y (t ) − x dt T2 M y (t ) dM y (t ) T2 dt = +ΩM x − M y (t ) T2 Typical 1H NMR Spectrum Absorbance dM y (t ) dM z (t ) M (t ) − M 0 =− z dt T1 18 Chemical Shift O N C6H5−CH2−O−C−CH3 e Bo σBo H H H H H H | — C —H | H H | —C— | H 8 7 6 5 δ(ppm) = TMS 4 3 2 1 0 ω − ωTMS × 10 6 ω0 “Chemical” Shift 1951 19 ω = −γ (B0 + Bloc) = ω0 + ωloc ∆E·∆t≈h h∆ν·∆t≈h ∆ν≈1/∆t For 1H at B0 = 11.744 T (ω0 = 500 MHz): if ∆ν ≥ ±2500 Hz (10 ppm) then ∆t ≤ 400 µs Effective Field Strength If a spin is not on resonance, B0 cannot be completely neglected: Beff = ∆B2 + B12 ωeff = Ω 2 + ω12 20 We have two fields! z B0 z B(t) B B0 – ωrf/γ y’ y B1 B1(t) x’ x Move into rotating frame (sit on the carousel) Flip Angle and Field Strength z’ = z z’ = z M M y’ x’ z’ = z y’ B1 x’ M B1 z’ = z θ x’ M y’ x’ y’ θ = π/2 ω1 = −γB1 = 2πν1 = (π/2)/PW90 ν1 = γB1 1 = 2π 4PW90 21 Effective Field Strength γ 1 B1 = 2π PW (360o ) γB1eff = (γB1 ) 2 + ( ∆ω ) 2 γB1eff ∆ω θ γB1 If (γB1)/2π = 25000 Hz [PW(360°) = 40 µs] and ∆ν = ±2500 Hz (10 ppm @ 500 MHz) then (γB1eff )/2π = 25125 Hz Rotation under an Offset 22 Offset Excitation Effect of a 90° Pulse Effect of a 180° Pulse Offset Excitation Rotation under a 180° Pulse for Ω = 0.2 − 0.6 ω1 Effect of a 180° Pulse 23 DE P1 = 1/BW PL1 AQ = DW·TD Acquisition Time D1 RG Repetition Time Precession and Relaxation 1 1 0.75 0.5 0.5 0.25 Mx 1 2 3 4 5 t My 1 2 3 4 5 t -0.25 -0.5 -0.5 -0.75 1 0.8 0.75 Mz Mz 0.6 0.5 1 0.25 0.5 0 -1 0.4 0 -0.5 0.2 0 My Mx -0.5 0.5 1 t A. S. Edison University of Florida 24 Detection 1 1 0.5 0.5 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 -0.5 -0.5 analog -1 -1 1 0.5 20 40 60 80 100 -0.5 digital -1 Nyquist: ∆t = 1/(2·νmax) A B C ω0 = ωB Static: z z y 90°−x x z y t2 x Rotating (ω0 = ωB): z y’ x’ A. S. Edison University of Florida y x z 90°−x z y’ x’ ω ≈ 108 Hz t2 y’ x’ ω ≈ 103 Hz 25 500 MHz ± 2500 Hz ± 2500 Hz NMR Signal ADC Det. Computer Memory ω0 (reference) 500 MHz Nyquist: ∆t = 1/(2·νmax) 100 µs 1/2· νmax = 10-4 s DW = 1/SW νmax = 5.0 kHz ν = 2.0 kHz ν = 4.5 kHz ν = 2.0 kHz ν = 8.0 kHz 26 Effect of Incorrect Sampling Rate z x M0cos(ωt) y +∞ M0sin(ωt) ω0t ω0 F(ω) = ∫ f ( t )eiωt dt −∞ eiωt = cos(ωt ) + i ⋅ sin (ωt ) +∞ Re[F(ω)] = ∫ f ( t ) cos(ωt )dt −∞ +∞ Im[F(ω)] = ∫ f ( t )sin (ωt )dt −∞ 27 z x M0cos(ωt) +∞ M0sin(ωt) ω0t +∞ F (ω) = A(ω) + iD(ω) A(ω) = −∞ eiωt = cos(ωt ) + i ⋅ sin (ωt ) ω0 y F(ω) = ∫ f ( t )eiωt dt Re[F(ω)] = ∫ f ( t ) cos(ωt )dt −∞ 1 (ω − Ω)2 T22 + 1 +∞ Im[F(ω)] = ∫ f ( t )sin (ωt )dt −∞ D(ω) = (ω − Ω)T2 (ω − Ω)2 T22 + 1 Phase Correction F (ω) = A(ω) + iD(ω) F (ω ) = exp(iφinstr ){A(ω ) + iD (ω )} Re[F (ω )] = A(ω ) Re[F (ω )] = {cos(φinstr ) A(ω ) − sin (φinstr )D(ω )} Im[F (ω )] = D (ω ) Im[F (ω )] = {cos(φinstr )D(ω ) + sin (φinstr )A(ω )} 28 Pulses and Phases My y y t x x Mx y y t x x 29 Quadrature Phase Detection Quadrature Phase Detection PSD ADC Computer Memory A 0° reference NMR Signal ω0 90° reference PSD ADC Computer Memory B 30 The Redfield Trick PSD ∆t = DW/2 = 1/2·SW 0° reference ω0 NMR Signal ADC Computer Memory (+ + − −) 90° reference PSD Each subsequent point is phase-shifted by 90° The period of this added frequency is 4·∆t The added frequency is therefore SW/2 The Redfield Trick Original SW: Added frequency: Final SW: −νmax ↔ +νmax SW/2 = νmax 0 ↔ +2νmax 31 How does an NMR receiver work? 20 MHz 620 MHz 600 MHz * sin Sample Cable V~ µV 1st mixer preamplifier I.F. (20MHz) Probe Coil 10 kHz spectral window = 599,995,000.0 – 600,005,000.0 Hz V ~ mV 2nd mixer V ~ Volt amplifier * cos Audio (+-kHz) 1st ADC 0o 2nd ADC 90o -5,000.0 - + 5,000.0 Hz 19,995,000.0 – 20,005,000.0 Hz • The amplifiers – mixers amplify both the signal and the noise!! • We do not gain S/N with these components!! Problems… If the two ADCs are not perfectly matched we have “quad images” 32 Problems with Quadrature Phase Detection z z y M0sin(ωt) y t2 M0cos(ωt) 90°y ωt x x z z y 90 x t2 -M0sin(ωt) ° −x ωt y M0cos(ωt) x 33 z z y ωt t2 -M0sin(ωt) 90°−y x x z z y 90 x -M0cos(ωt) y t2 -M0cos(ωt) ωt ° x y M0sin(ωt) x CYCLOPS 34 The “Direct Digital” receiver… 620 MHz 600 MHz Sample Cable V~ µV 1st mixer preamplifier I.F. (20MHz) V ~ mV ADC We digitize directly at the I.F. Probe Coil 19,995,000.0 – 20,005,000.0 Hz 10 kHz spectral window = 599,995,000.0 – 600,005,000.0 Hz •Using fast ADCs we can digitize at the 20 MHz I.F. •There are no positive and negative frequencies and there is no need to distinguish between them. •Quad images and other artifacts are not there at all since the mechanism that is generating them is absent! Some spectra… Spectra acquired with a single transient Quad Images Quadrature Receiver 16-bit ADC with oversampling This is the peak you want Varian DDR Center Spike 35 FID Clipping The effects of Relaxation FT FT 36 The effects of Relaxation ν ν NMR parameters and relaxation in a simple 1D experiment f.i.d. f.i.d. rd aq Acquisition time Recycle delay 37 Length of Acquisition S(t) ∝ exp[-(t/T2)] ∆ν = 1/(πT2) Acquire until S(t) = 0.01•S(0) if T2 ≈ 0.15s and S(0) = 1 0.01 = exp(-tmax/0.15) tmax = 0.7s Acquisition time vs T2 I e −t T2 2π (ω I − ω1 ) t I t 38 Recycle delay vs T1 I −t I e T2 t −t e T2 t 2π (ω I − ω1 ) 2π (ω I − ω1 ) Zero-Filling spectral width (Hz) DR DR==SW SW//SI SI data size (n. of points) 39 Zero-Filling spectral width (Hz) DR DR==SW SW//SI SI data size (n. of points) Fourier Pairs +∞ F(ω) = ∫ f ( t )e iωt dt −∞ 40 Truncation and Apodization Truncation and Apodization 41 Window Functions: Sensitivity Enhancement S = A exp{-t/T2} exp{-at} = A exp{-t (a+ 1/T2)} a = 1/T2 (matched filter) RESOLUTION Resolution is the ability to distinguish between two frequencies AQ = DW*TD No resolution AQ = DW*TD’ Resolution DIGITAL RESOLUTION 42 Window Functions: Resolution Enhancement S = A*exp{-t/T2} exp{-at}exp{-bt2} a = -1/T2 ; b>0 Other Window Functions: Sine Bell and Sine Bell Squared S = A*exp{-t/T2} sin{(π-φ)t/tmax +φ} S=A S = A*exp{-t/T2} sin2{(π-φ)t/tmax +φ} 43 Linear Prediction Integration O C6H5−CH2−O−C−CH3 52 TMS 32 21 8 7 6 5 4 3 2 1 0 44 Spin-Spin Coupling H H H H | | | | C-Y X C - CH Z X Z C - CH2 X C - CH3 Z X Z J singlet AX System, doublet triplet quartet E/h = −ΣiνimI(i) +ΣΣi<jJijmI(i) mI(j) J= ≠0 ββ ββ A2 A2 X2 αβ βα X1 A1 αα Eαα = − ½νA − ½νX + ¼JAX Eαβ = − ½νA + ½νX − ¼JAX Eβα = + ½νA − ½νX − ¼JAX Eββ = + ½νA + ½νX + ¼JAX ¼JAX X2 αβ βα X1 A1 αα EA1 = Eβα − Eαα = νA − ½JAX EA2 = Eββ − Eαβ = νA + ½JAX EX1 = Eαβ − Eαα = νX − ½JAX EX2 = Eββ − Eβα = νX + ½JAX 45 Origin of Scalar Coupling H H C αβ (and βα) levels are stabilized C J>0 H H C C αα (and ββ) levels are destabilized Origin of Scalar Coupling αβ (and βα) levels are stabilized J>0 αα (and ββ) levels are destabilized 46