Acceleratori Futuri -‐ 1
Transcription
Acceleratori Futuri -‐ 1
Acceleratori Futuri -‐ 1 Massimo.Ferrario@LNF.INFN.IT XXVIII Seminario Nazionale di Fisica Nucleare e Subnucleare – Otranto 4 Giugno 2016 Fermi Globatron: ~5000 TeV Proton accelerator 1954 è 1994 Bmax 2 Tesla ρ 8000 km fixed target 3 TeV cm 170 G$ Globatron energy was comparable to the highest energy cosmic ray proton known at the time. ADA: (Anello Di Accumulazione), 1961-1964 the first e+e- Collider ECM ≈ 2 E1m2 ECM ≈ 2 E Fixed Target equivalent accelerator energy versus year GeV Hawking: the Solartron Without further novel technology, we will eventually need an accelerator as large as Hawking expected. The Universe in a Nutshell, by Stephen William Hawking, Bantam, 2001 Accelerator on a Chip? Future of Accelerators FCC LHC HiLumi E-XFEL SuperKEKb FAIR ILC Conceptual Design started muons Technical Design exists Waiting funding decision LHeC ERL SwissFEL ESS LBNL LWFA 2014 Hadron acc. project Lepton acc. project Hadron acc. proposal Lepton acc. proposal R. Assmann, EAAC 2015, 9/2015 Modern accelerators require high quality beams: ==> High Luminosity & High Brightness ==> High Energy & Low Energy Spread – N of particles per pulse => 109 – High rep. rate fr=> bunch trains N e + N e− f r L= 4 πσ xσ y – Small spot size => low emittance 2I Bn ≈ 2 εn – Short pulse (ps to fs) – Little spread in transverse momentum and angle => low emittance 2 WAYS NTA ROAD MAP ① Miniaturization of the accelerating structures (resonant) ② Wake Field Acceleration (transient) (LWFA,PWFA,DWFA) • • • Power sources Accelerating structures High quality beams $ E = γE' x & x % β ' β B = γ Ex = Ex & y ' c c € # ωt & eE x F⊥ ≅ 2 cos % 2 ( 2γ $ 2γ ' € Taking into account the boundary conditions the accelerating component of the field becomes: Ez ( x,z,t ) = ( E+ sin θ )e iωt−ik( z cosθ −x sin θ ) − ( E+ sin θ )e iωt−ik( z cosθ +x sin θ ) = 2iE+ sin θ sin( kx sin θ )e iωt−ikz cosθ x-SW pattern z-TW pattern xy E- 2d Ez E+ d d/2 E+ Ez E- β≈1 z vφz = € ω ω c = = >c k z k cos θ cos θ vϕ ≡ c Conventional RF accelerating structures High field ->Short wavelength->ultra-short bunches-> low charge High field ->Short wavelength->ultra-short bunches-> low charge Miniaturization of the accelerating structures Measured so far: @ 130 GHz ⇒ 300 MV/m acceler. (INFN-NORCIA) Accelerator on a Chip Dielectric Structure Design Philosophies Why dielectric? Dissipation and breakdown in metals Why photonic structures? Natural in dielectric Advantages of burgeoning field design possibilities Fabrication Laser pulses 180 degrees out of phase e-beam Biharmonic ~2D structure Dynamics concerns External coupling schemes Schematic of GALAXIE monolithic photonic DLA Laser-Structure Coupling: TW GALAXIE Dual laser drive structure, large reservoir of power recycles Laser pulses (180 degrees out of phase) e-beam 5th Gen Light Source: A Table-top X-ray FEL P [W] GALAXIE: GV-per-meter AcceLerator And Ultra-high brightness X-ray-source Integrated Experiment 6 electron source 10 <2 m 800 MeV Dielectric 5 LCLS photons in <1m(DLA) 10 Laser Accelerator <2 m EM undulator 4 10 um) (λ=100 3 10 2 10 40 keV quantum SASE FEL 1 10 0.0 0.2 0.4 0.6 z [m] 0.8 Long wavelength (5 um) laser source All EM system with GV/m fields Many interconnected physics challenges Ambitious program supported by DARPA AXiS initiative Plasma Wake Field Acceleration 0 Plasma Oscillations Surface charge density Surface electric field Restoring force Plasma frequency Plasma oscillations Breakdown limit? What about positrons? positrons 300 µm Wake Field Acceleration 1 Laser Driven LWFA Direct production of e-beam Laser beam 1 mm Electron beam Active Plasma Lens ! µo I c $ Fr = ec # r = ecBϑ' r 2& " 2π Rc % Protons and Ions? TNSA Wake Field Acceleration 2 Beam Driven PWFA Blumenfeld, I. et al. Energy doubling of 42 GeV electrons in a metre-‐scale plasma wakefield accelerator. Nature 445, 741–744 (2007). Litos, M. et al. High-‐efficiency accelera@on of an electron beam in a plasma wakefield accelerator. Nature 515, 92–95 (2014). 2014 Results: Two-Bunch Acceleration in a 1.5 m Plasma Plasma Density: 3 ⇥ 1016 [cm 3 ] 5 ⇥ 1016 [cm 3 ] 8 ⇥ 1016 [cm 3 ] We are working to improve our spectrometer’s ability to precisely quantify energy spread. Results from last week! Good agreement between observed and expected energy gain in a longer plasma for several plasma densities. 70 Positrons and Hollow Channel Plasma • A special optic called a kinoform is used to create a hollow channel plasma. −400 −400 −300 −300 −200 −200 −100 −100 Y [µm] • Hollow channel plasmas might be a viable method for accelerating positrons in a plasma. Laser Profile forJ5 @ J560Bessel Focus cm Y [µm] • The physics of accelerating positrons in a plasma is different than that of electrons! 0 0 100 100 200 200 200 µm 300 400 −400 −200 0 X [µm] 300 200 400 −400 400 J4 @ 60 cm −400 −400 Positrons plasma acceleration is a crucial step −300 towards a plasma based linear collider. FACET hosts the only active−200 research on positron PWFA. 0 −200 71 −100 Y [µm] Y [µm] −100 −300 0 ILC – International Linear Collider Dielectric Wakefield Accelerator § Electron bunch (β ≈ 1) drives wake in * cylindrical dielectric structure § Dependent on structure properties § Generally multi-mode excitation § Wakefields accelerate trailing bunch § Mode wavelengths (quasi-optical § Design Parameters The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again. The image canno t be T h e i m § Peak decelerating field The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again. Extremely good beam needed § Transformer ratio (unshaped beam) The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again. Ez on-axis, OOPIC 3 Steps towards a reliable PWA ① High Gradient – Low e- Beam Quality ② High e+e- Beam Quality – Low Gradient ③ High e+e- Beam Quality - High Gradient Horizon 2020: First Decisions on EU Design Studies in 2015 • Two design studies approved in the accelerator area. Big success for accelerator field! Amazing success for novel accelerators! R. Assmann, EAAC 2015, 9/2015 R. Assmann, EAAC 2015, 9/2015 Moving towards a European Plasma Acc. in the 2020’s Invited to prepare contract at end of July 2015 à Excellent signal from European Commission – Research and Innovation R. Assmann, EAAC 2015, 9/2015 EuPRAXIA Research Infrastructure Goal Parameters R. Assmann, EAAC 2015, 9/2015 EuroCirCol Arc Design EU co-‐funded design study for FCC-‐hh, focus on core acZviZes Accepted in 2015 EIR Design Japan KEK Cryo Beam Vacuum Finland TUT United Kingdom STFC, UNILIV, UOXF Netherlands UT Germany KIT, TUD France CEA, CNRS CERN Switzerland EPFL, UNIGE Italy INFN Spain ALBA, CIEMAT M. Boscolo, What Next 2016 High Field Magnet CERN TUT CEA CNRS KIT TUD INFN UT ALBA CIEMAT STFC UNILIV UOXF KEK EPFL UNIGE NHFML-‐FSU BNL FNAL LBNL IEIO Finland France France Germany Germany Italy Netherlands Spain Spain United Kingdom United Kingdom United Kingdom Japan Switzerland Switzerland USA USA USA USA rd 3 EAAC 2017 September, 2017 Isola d’Elba TALKS DINNER LUNCH COFFEE DISCUSSIONS BREAKFAST Commenti Finali • I grandi progetti spesso trascinano sviluppi tecnologici inaspettati e rivoluzionari (FCC, EUPRAXIA, Muon collider?). • Grande interesse internazionale nello sviluppo di nuove tecniche di accelarazione => alti gradienti, macchine compatte, => utilizzabili non solo per la fisica fondamentale ma anche in ospedali, in campus universitari e per applicazioni industriali. • La tecnologia dei laser di potenza avra’ sempre maggior importanza anche nel mondo degli acceleratori. • Lunga tradizione nell’INFN nello sviluppo tecnologico e creativo nel campo della fisica degli acceleratori. Ben posizionata anche nei nuovi progetti internazionali. • Ruolo fondamentale delle test facilities (BTF, SPARC_LAB) • “L'INFN promuove, coordina ed effettua la ricerca scientifica nel campo della fisica nucleare, subnucleare, astroparticellare e delle interazioni fondamentali, nonché la ricerca e lo sviluppo tecnologico pertinenti all'attività in tali settori, prevedendo forme di sinergia con altri enti di ricerca e il mondo dell'impresa”