PDF here - nova

Transcription

PDF here - nova
ISSN 1867-1217, Edition 8, March 2011
www.bio-based.eu
Report on Bio-based Plastics and Composites
nal
4th Internatio
Bio-based
Congress on
omposites
C
d
n
a
s
c
ti
s
Pla
th
rch 15th + 16
Cologne, Ma
5 materials
r the
nominated fo
ward
Innovation A
Source: Evonik Degussa GmbH
page 26
Introduction to
Biotechnology
Standardization
& Policy
The Bioplastic
Design Challage
Biorefinery projects
The Lead Market Initiative
The Latest Literature
Measuring bio-based content
The revised
„Top 10“ bio-based
building blocks
Page 44
An opportunity for
audacious materials
innovations involving
numerous industrial
sectors
Page 16
Lead article
“Switched on to biopolymers”,
Jan Ravenstijn
Page 4
Page 48
Switched on to biopolymers
Editorial
Biowerkstoff-Report
Sehr geehrte Leserin, sehr geehrter Leser,
die neue, achte Ausgabe des Biowerkstoff-Reports steht im Zeichen des 4. Biowerkstoff-Kongresses, der wieder zu seinem Ursprungsort Köln zurück gekehrt ist und zukünftig dort auch
bleiben wird. Mit 150 bis 200 Teilnehmern - so die Schätzung bei Drucklegung - würde der Kongress zum zweitgrößten seiner Art in Europa!
Michael Carus
Geschäftsführer
Die Seiten 26 ff. geben Ihnen einen umfassenden Vorgeschmack auf den 4. BiowerkstoffKongress: Programm, Kurzfassungen der Vorträge, Anwärter auf den Preise „Biowerkstoff des
Jahres“ sowie Vorstellung unserer Partner.
Zum Biowerkstoff-Kongress erscheint die erste internationale Ausgabe des Branchenführers
für innovative Biowerkstoffe: iBIB2011. Mehr hierzu erfahren Sie auf Seite 14 f.
Lena Scholz
Biowerkstoffe
Weitere Höhepunkte der vorliegenden Ausgabe sind:
Der Biokunststoff-Experte Jan Ravenstijn gibt einen aktuellen und umfassenden Überblick
über die Aufnahme von bio-basierten Polymeren durch den wachsenden KonsumelektronikSektor, auf Seite 4 ff.
Um Biokunststoffe auf ihrem steinigen Weg zur Marktfähigkeit zu unterstützen, hat der Cluster Biopolymere/Biowerkstoffe die „Bioplastics Design Challenge“ für die Landesgesellschaft
BIOPRO Baden-Württemberg GmbH ins Leben gerufen. Dieses Vorhaben soll innerhalb der
Kunststoff verarbeitenden Industrie und in den Endanwenderbranchen das Nachhaltigkeitsbewusstsein und die Innovationsdynamik stärken, um die Markteinführung von biobasierten Materialien zu begünstigen. Einen Überblick über das Projekt gibt der Sonderteil auf Seite 48 bis 55.
Interessante und höchst positive Ergebnisse zeigt der Beitrag „Assessment of Life Cycle Studies on Hemp Fibre Composites“ auf S. 22 f. Bio-Verbundwerkstoffe weisen gegenüber anderen
Materiallösungen erhebliche CO2-Einsparungen auf und sind damit aus Sicht des Klimaschutzes
erste Wahl.
Zukünftig sollen im Biowerkstoff-Report mehr Beiträge zum Thema Industrielle Biotechnologie erscheinen, der prozesstechnischen Vorstufe vieler Biowerkstoffe. Ab Seite 16 finden Sie
Informationen zu Bioraffinerie-Projekten, Buchbesprechungen und die neuen „Top 10“ der biobasierten Chemie.
Mit freundlichen Grüßen
Michael Carus, Geschäftsführer nova-Institut
Lena Scholz,
im nova-Institut verantwortlich für Biowerkstoffe
P.S.: Mit den letzten Ausgaben hat sich der Biowerkstoff-Report zu einer primär englisch-sprachigen
Zeitschrift entwickelt. Hiermit tragen wir der zunehmenden Internationalisierung des Biowerkstoff-Marktes
sowie der großen Nachfrage aus dem englisch-sprachigen Raum Rechnung.
P.P.S.: Bitte beachten Sie auch unser neues „Fachportal für bio-basierte Ökonomie - das Portal für Biowerkstoffe und Industrielle Biotechnologie“, das Sie täglich auf deutsch und englisch auf dem Laufenden
hält. Mehr dazu auf der Rückseite.
2 Biowerkstoff-Report, Edition 8, March 2011
Switched
Edition
on to
8,biopolymers
March 2011
Inhalt
Lead Article
Switched on to biopolymers (Jan Ravenstijn)
Dear reader,
The new, eighth edition of Biomaterials Reports is dedicated to the 4th Biomaterials
Congress, which has returned to its original location in Cologne and is there to stay in
the future. With 150 to 200 participants (according to current estimates) the Congress
would become the second largest of its kind in Europe!
Bio-based Plastics & Composirtes
Freies Fachwissen zum Thema Nachwachsende Rohstoffe
08
News
10
The pages 26 ff. give you a comprehensive preview of the 4th Biomaterials Congress:
Program, abstracts of papers, candidates for the prices, “Biomaterial of the Year” and
presentation of our partners.
Biorefinery
At the Congress on Bio-based Plastics and Composites the first international edition
of the directory for innovative biomaterials: iBIB2011 will be published. For further
information, refer to page 14 f.
Biotechnology
Other highlights of this edition will be:
Bioplastic expert Jan Ravenstijn gives a recent and comprehensive overview on the
uptake of bio-based polymers by the growing consumer electronics sector, see pages
4 ff.
The ‘Automotive Bioplastics Design Challenge – abdc’ on behalf of BIOPRO BadenWürttemberg GmbH will evaluate and further develop design aspects of commercially
available biomaterials and biomaterials under development with regard to their suitability for automotive sector applications. An overview over the project with possibilities of
participation and reached milestones is given on the pages 48 to 55.
04
European Commission steps up biomass use
16
A revision of the US DoE “Top 10“ for bio-based products from carbohydrates
18
BASF and PURAC: Joint development of bio-based succinic acid
19
Book reviews
20
Bio-Composites
Assessment of Life Cycle Studies on Hemp Fibre Composites
22
Targets for bio-based composites and natural fibres
24
The article “Assessment of Life Cycle Studies on Hemp Fiber Composites”, p. 22 f.
shows interesting and very positive results. Bio-composites results in significant CO2
savings in comparison to other material, and are thus of first choice from the perspective of climate change.
4th International Congress on
Bio-based Plastics and Composites
In the future, Biomaterials report should include more articles on Industrial Biotechnology , from the technical precursor of many biomaterials. Starting at page 16 you will
find information on biorefinery projects, book reviews and the new “top 10” of the
bio-based chemistry.
Standardization & Policy
Programme, Speakers, Absteracts, Partners, Sponsors, Media partners
How to Measure the bio-based content
44
The European Lead Market Initiative for 45
and Standardisation of bio-based Products
Book reviews
Yours sincerely,
26
46
Cluster Biopolymere/Biowerkstoffe
Michael Carus, Managing nova-Institut
Lena Scholz,
the nova-Institut responsible for Biomaterials
PS: With the recent issues, the Biomaterials report has developed into a primarily English magazine. We hereby take into account the increasing internationalization of the Biomaterials market
and the high demand from English-speaking countries.
PPS: Please also see our new Portal for Bio-based Economy, Biomaterials and Industrial Biotechnology, daily news in English and German. More information on the back.
More news: www.bio-based.eu/news
Cluster Biopolymere/Biowerkstoffe
Biopolymers/Biomaterials Cluster
48
Die BioKunststoff Design Challenge 52
Bioplastics Design Challenge
nova-Institut
For Bio-based Economy — Green Chemistry and Bio-based Products
Biowerkstoff-Report, Edition 8, March 2011 3
56
Switched on to biopolymers
Switched on to biopolymers
Uptake of bio-based polymers by the growing consumer
electronics sector promises to help reduce energy consumption
and carbon dioxide emissions
C
urrent investment plans among
some companies for a number of
bio-based thermoplastics (such as
thermoplastic starch, or TPS; PLA; PHA;
and polybutylene succinates, or PBS[X])
aim to quadruple their production volume, from 435 kilotonnes to 1,685 kilotonnes per year, over the next five years.
Whether this all will happen, the future will
tell, but these figures represent plans that
have been formally announced by various
companies. Then there are the many initial
investments in bio-based polyamides, aliphatic polycarbonates, and new bio-based
monomers.
With bio-based polymers, new functionalities are being achieved. These include biodegradability, compostability,
and anaerobic digestion (for some biobased products), but also new property
combinations suitable for some electronic
applications for instance. For most products, lower energy consumption and fewer
emissions during the entire life cycle will
be observed, mainly due to the fact that
application of biotechnology reduces both
energy requirements and CO2 emissions
during production. (There can, however,
be a lot of water waste, so a complete life
cycle assessment is important.) New combinations of properties are now possible,
as is biocompatibility for biomedical applications. And the replacement of undesired
chemicals, such as styrene and bisphenol
A, is also possible, which leads to new
business opportunities.
Potential applications include one-timeuse (personal care, home care, adhesives,
packaging, medical materials, cheese coatings, and chewing gum bases) as well as
durable applications, including automotive,
electronics/electrical, durable biomedical
4 Biowerkstoff-Report, Edition 8, March 2011
materials, consumer goods, textiles, and
coatings.
Based on the status of technology from
a few years prior, Kline & Company reported an addressable market for biobased plastics of 34,000 kilotonnes per annum, which is substantial. The automotive
and packaging markets represent the majority of this, but electronics and electrical
items are also an important part (about 15
percent); this is still quite significant. However, technology progresses very rapidly,
and in 2009, Dr. Martin Patel (of Copernicus Institute of Utrecht University in The
Netherlands) reported that the maximum
technical substitution potential of biobased polymers replacing their fossil-based
counterparts is estimated at 90 percent, including fibers. Will the market see this 90
percent realized? Certainly not overnight.
But it is interesting that it is beginning to
be widely recognized that there are many
opportunities. If these drivers discussed
herein coalesce, companies will pursue
these opportunities.
Economic drivers for bio-based
plastics & contributions of
industrial biotechnology
Certainly the obvious economic driver
is the increased cost of fossil resources, as
well as cost fluctuations. Oil prices can vary
wildly from US$140 a barrel back to $50,
before rising back again to, say, $95 and up.
It is variable daily, which creates instability
in planning for use of feedstocks.
Alternative feedstocks thus provide a
mechanism to hedge the chemical companies’ exposure to oil price increases, or
fluctuations. Based on studies of data from
the consultancies McKinsey & Company,
SRI, PEP, and CMI, it is clear that there
is a cutoff point at which either the fossilfuel-based route or the bio-based route
becomes more economical. Currently, the
bio-route is reported to be cheaper than
the fossil-route at oil prices above $50/
barrel and provided the bio-route operates
at scale. So at current oil prices, the bioroute would seemingly be more cost-effective at scale. And of course, while a lot
of developments are in the works, several
new technologies are not yet at scale. Also,
using bio-waste materials as feedstock
would further decrease the cost of the bioroute. As these developments materialize,
the bio-based routes will shift so that they
cost far less than traditional petrochemical
production, even at lower oil prices.
Environmental drivers for
bioplastics
There has been an obvious increase in
public concern about cli-mate change (with
regards to CO2 and CO2-equivalents, energy use, water consumption, and pollution).
There is also public concern about waste
management and global warming (despite
ongoing debates about the latter).
Worldwide, the human population produces about 8 billion tonnes of CO2-equivalents per annum. Five billion are added
each year (from the sum of human activity and regular cyclical activity in the biosphere); three billion are absorbed by land
and ocean. Even if land and ocean were to
absorb more (due to, for example, slight increases in ocean temperatures), these gases
eventually reach the ocean surface. For us
to return to pre–industrial Revolution levels, we would need to reduce greenhouse
gas emissions substantially, and this is not
something that can be accomplished in the
Switched on to biopolymers
Lignin
Photosynthesis
CO2
> 10 years
Combustion
Figure 1: Carbon Cycle
immediate short-term. It might take us to
the middle of this century, if not longer to
be at the right CO2 emission levels and it
will then take more than 100 years to get
back to pre-industrial revolution levels.
A new value chain
As Figure 2 depicts, a new context, a new
value chain, is being established. I mention
this because this poses challenges for companies with focused expertise seeking to
expand their activities across the entirety
of that value chain. A number of companies, for instance, conduct in-house plastics
manufacturing; these companies can have
substantial expertise in polymer processing
applications, often have fermentation skills
in house, may have established competencies in metabolic engineering, et cetera. But
this does not necessarily translate into a capacity to put all the components of that
value chain together. For that, people with
skills and competencies on the left side of
the value chain (feedstocks and additives,
as depicted in Figure 2) should understand
the needs and competencies on the righthand side (polymers, fibers, markets), and
More news: www.bio-based.eu/news
Starch
Cellulose
Incineration
ns
ee
Gr
t
> 106 years
cu
rt
ho
Natural gas
Chemical industry
Fossil
recoures
Coal
Petroleum
Figure 2: A new value chain is being established for biobased polymers.
Vegetable oils
Biorefinery
Figure 1 describes how bioplastics can
contribute towards carbon management.
For end-of-life options, there are incineration and combustion, which occur in the
short term. Industrial biotechnology adds
to these options anaerobic digestion, composting, and biodegradation. The timelines
for these end-of-life scenarios can be ten
to twenty years or more, depending on
the specific use of the material. For a car,
the end-of-life “breakdown,” by industrial
biotechnological means, could be 20 to 30
years. Concerning materials for single-use
applications (such as packaging), the endof-life scenario becomes relevant within 1
to 2 years.
Biomass
biodegradation
Chemicals
fuels
polymers
Vegetable oil
Biobased
building
blocks
Polymer
additives
Bioplastics
Biopolymers
Bioplastics
Biopolymers
Technology platforms
vice versa.
Biorefineries and downstream processes
are complex clusters of industrial activities, and cooperation and synergy must
be designed into a process if it is to be
successful for bio-based monomers and
polymers. Companies are discovering this.
Agri-biotech companies making forays
into polymers are finding themselves on
rapid learning curves. Some may be missing the expertise to see definitive success in
the polymer market. And the biopolymer
companies extending their reach into feedstocks and biorefining may be experiencing similar limitations.
Plastic
parts
Markets
Natural
fibers
be run on vegetable oil as fuel. Henry Ford
long ago created flex-fuel cars capable of
running on E85. His vision was that individual farmers would be able to make their
own fuel. During the Second World War,
in 1941, Ford also introduced an all-plastic
motor-car body, with panels made of 70
percent cellulose fiber, and 30 percent phenolic resin extended with soybean meal.
Historic photographs depict Ford swinging an axe at the body of this automobile
and the car withstanding the impact. That
technology, however, didn’t come to commercial fruition, very simply because oil
was cheap and petroleum-based materials
were therefore plenty.
Renewable monomers
A growing number of renewable monomers for thermoplastics and for thermosets
are now being investigated for cost attractive manufacturing through white biotechnology routes, while several of them are
on the market already. A distinction can be
made between monomers that used to be
produced from fossil resources (drop-in
bio-based plastics) and monomers that are
based on renewable resources and bring
differentiation options to the polymer
industry. The idea of drop-in bio-based
plastics is not actually new. When Rudolf
Christian Karl Diesel invented the diesel
engine in 1892, he originally designed it to
There are several examples of bio-based
monomers that are relevant for thermosets,
but are still produced in small quantities
or are in the development stage. Itaconic
acid, isosorbide, isoidide, long chain diols, diacids, and diamines, adipic acid, and
2,5-furandicarboxylic acid (FDCA), for
example, are all examples of renewable
monomers that are being developed and
investigated for use in thermosets, thermoplastics, and composite materials.
Recently, isosorbide has come to attention as a potential replacement for bisphenol-A, an intermediate in the production
of polycarbonates (PC) and in epoxy res-
Biowerkstoff-Report, Edition 8, March 2011 5
Switched on to biopolymers
ins that has been linked to various adverse
health impacts including infertility and
birth defects. The cyclo-aliphatic structure
of isosorbide is likely to give some extra
rigidity to the polymer chain and better
UV properties, but the question is to what
extent that will suffice to replace some of
the existing resins. Moisture sensitivity appears to be worse compared with the original PC. A 300 t/ year demonstration plant
is under construction in Japan for Bio-PC
based on isosorbide. Mitsubishi claims
that the material has better optical properties than traditional PC and comparable
to polymethyl methacrylate (PMMA). It
has mechanical properties comparable to
traditional PC, however, and has a glass
transition temperature (Tg) – above which
the material changes from a solid state to a
melt – of about 130 °C. This combination
of properties makes the material suitable
for functional optical films for flat panel
displays.
Currently, the newly developed biobased FDCA is being investigated for use
in thermosets and also for thermoplastics: polyesters, polyamides, and polyester
amides. The developer of FDCA, Avantium, expects that the cost of this new
monomer to the polymer industry will be
$600- 800/t when produced at scale. In the
meantime, a whole series of new polymers
is being evaluated for potential in the near
future.
Bio-based polymers
Initial market interest in bio-based plastics came from producers of one-time-use
applications or applications that generate
a lot of plastic waste. Every year, for example, we discard 365m mobile phones,
3.7bn plastic cups, 350bn plastic bottles
and 3,750bn plastic bags. It’s useful to
distinguish bio-based polymers and biodegradable polymers. One definition relates
to the raw material, the other, to the functionality of the material. Today, there are
many more durable bio-based polymers
than there are biodegradable bio-based
polymers. Biodegradability was considered to be the most important property,
although it is a mistake to think that biobased polymers are biodegradable, since
most of them are not. Several oil-based
polymers are biodegradable, but don’t
6 Biowerkstoff-Report, Edition 8, March 2011
contribute to energy or to CO2 emission
reductions. To call these ‘biopolymers’ is
misleading.
In more recent times, the focus has shifted towards thinking of bio-based polymers
as a means of moving away from fossil fuel
feedstocks and lowering CO2 emissions.
Although the bio-based polymer business
is only 1000 kt/year or 0.4% of the total
polymer business in 2010, current annual
growth rates are 30%. Some processing
companies have reported a more than
50% growth and state that this could be
further exceeded if only there were greater
supply, both in terms of actual volumes
and in terms of a more diverse palette of
bio-based polymers. New technology developments and related product introductions could further boost these numbers
during this decade. In fact, the number of
new polymer introductions that are wholly
or partly based on renewable feedstock
is comparable to the number of new oilbased polymer introductions 60 years ago.
Based on the state-of-the-art technologies, polylactic acid (PLA), polyurethane,
starch, and polyethylene (PE) are expected
to be the dominant contributors to the
growth in biopolymers – thermoplastics
and thermosets – in the next five years.
However, tremendous R&D and capital
investments are being made around the
world to advance product and application
technologies for polymer groups including
bio-polypropylene, PLA, polyhydroxyalkanoates (PHA), poly(butylene succinate)
(PBS), polyamides, unsaturated polyesters
– composites and resins, natural fibres
such as bamboo and kenaf, and polymers
based on new renewable building blocks
like isosorbide, itaconic acid, succinic acid,
adipic acid, and furanics. Materials are biobased or partly bio-based and have significantly improved performance, compared
with the earlier bio-based polymers.
PLA, which is actually a family of copolymers of D-lactic acid and L-lactic
acid units, can be designed by controlling
the D- and L- units separately, to make
PL-LA and PD-LA, and then combining
these to make stereocomplex PLA. The
melting point of the resultant polymer is
thus increased from 160°C up to as much
as 230°C or 240°C. The product’s impact
strength, however, stays relatively low. The
polymer might be combined with other
polymers or fibers to improve strength and
toughness.
There are many more not yet commercially available bio-based polymers, but
that may change in the next one to three
years, such as PA-2,4, PA-4,2, PA-4,4, PA5,10, and PAs based on long-chain diacids
and diamines C10– C18. The bio-based
content varies between 20 and 100 percent, depending somewhat on the specific
polymer. Interestingly, Wallace Carothers,
who was the first to develop polyamides
(nylons) at DuPont, in the 1930s, insisted
that nylon 5,10 is better than nylon 6 or
nylon 6,6, the latter two of which are the
most common for textiles and plastics.
Carothers had wanted to bring nylon 5,10
to commercial status, but was unable to,
because he could not identify an economically effective production process. Today,
BASF is investing into a group dedicated
to developing a bio-based nylon 5,10.
In a number of countries, including Brazil, China, Japan and the US, local authorities stimulate these developments and capital investments through large subsidies.
Consumer electronics
Additional drivers for consumer electronic markets are the use of renewable
raw materials, in combination with measures to reduce energy consumption and
CO2 emissions throughout the value chain
for branding purposes. New functionalities, or the convergence of functionalities
offered by bio-based polymers, are also attracting attention.
In consumer electronics, bio-based polymers are used for connectors, PC housings, battery packages and chargers, electronic equipment chassis, mobile phones,
personal music systems, and keyboards.
Original equipment manufacturers like
Dell, Fujitsu, NEC, Nokia, Philips, Siemens, and Sony have mainly focused on
commercially available bio-based polymers,
and have shown a growing interest in new
bio-based polymer developments and in
biodegradable and bio-based polymers for
packaging their electronic products. Many
Switched on to biopolymers
Source: Fujitsu
have also been making progress in-house
to improve polymer functionality.
So far, Dell’s focus has been predominantly on sustainable materials and certification of packaging applications for
its products. To that effect, it has been
looking at the first wave of bio-based and
biodegradable polymers. Many of their
competitors go a step further and look at
durable materials.
packaging
and 100% recycled
materials for leaflets, and is
97% free of PVC to limit the use of
halogens.
German company FKuR has developed Biograde C 75 CL, a cellulose acetate
based compound used for the keyboard of
a Fujitsu-Siemens computer (see photo).
Japanese Electronics company NEC has
developed a PLA/kenaf composite resin
with 90% biomass, produced by Unitika,
to replace glass reinforced polycarbonate
composite for cellular phones, commercialised since 2006. Other developments by
NEC are a flame retardant PLA for personal computer housings, a shape-memory
PLA composite based on thermo-reversible crosslinking, and heatconductive PLA
composites based on carbon fibre modified PLA for mobile phones and notebook
PCs. The company used renewable raw
materials at 10% of its total polymer needs
in 2010, and aims for more beyond that.
Last, but not least, it is worth mentioning
the efforts of Sony to develop bio-based
polymer solutions for a broad range of applications in mobile phones, camcorders,
laptops PCs, portable audio applications,
home video/audio and TVs/displays. Of
course, requirements for flame retardancy
and heat resistance still stand. Today, the
company already uses bio-based PLA and
polyamides for some applications, but aims
to further evolve this.
Nokia developed and introduced its 3110
Evolve in 2008, a mobile device with biobased covers made from more than 50%
renewable material. The device is presented
in a small package made of 60% recycled
material and it comes with Nokia’s most
energy efficient charger yet, using 94% less
energy than the Energy Star Requirements
for such products, as defined by the US
Environmental Protection Agency.
New types and improved models of
electronic devices, telecommunications
equipment, and electrical appliances –
mobile phones, computers, DVD players,
televisions, GPS finders etc – are flooding
the marketplace. Given the speed at which
new technology is developed, last year‘s
model is frequently discarded in favour of
the latest features. According to my analysis of available data, the world collectively
disposes of 1 million mobile phones every
day, 10 million plastic cups, 1 billion plastic
bottles, and 10 billion plastic bags. This is
an enormous volume, and the latter three
items involve packaging alone.
End-of-life options
Expanding volumes, shorter life cycles,
and an evergrowing waste stream are the
three main reasons why environmental
regulations have targeted electronics and
electrical equipment.
trolled
composting. The nature
of the waste stream determines
the best option in this respect.
I’ll offer a word about biodegradation.
Uncontrolled biodegradation, in my mind,
is a waste, because it involves throwing
away resources, if you will: throwing away
energy and materials. If uncontrolled, in
many cases, it can lead to such things as the
formation of methane and other gas emissions that are worse than CO2. Controlled
biodegradation would involve composting
or anaerobic digestion and would mitigate
these harmful effects. So although biodegradation is a useful property for some applications, uncontrolled biodegradation is
a wasteful end-of-life option.
Growing demand
Philips has developed a new vacuum
cleaner consisting of 25% bio-based plastics and 50% recycled plastics. During the
development process, the company adopted a lifecycle approach to determine
the product’s overall environmental improvement and aimed to achieve an environmental impact improvement of at least
10%, compared with the most competitive
product then on the market. It includes
a new high energy motor to save energy,
which makes it 35% more efficient than
other green vacuum models on the marketplace, uses >90% recycled materials for the
More news: www.bio-based.eu/news
The impact on waste disposal resources,
both landfills and incinerators, is a practical
concern for many governments. The principle ‘reduce, reuse, recycle… and in that
order’ is practiced, but not enough. When
a waste stream has to be recycled, there
is the choice to recycle it to polymer, to
chemicals, to energy, to energy through anaerobic digestion, and to compost by con-
The growing demand for plastics cannot be satisfied by oil in the longer term.
Also, the need to generate no more CO2
than we consume becomes ever more important. Waste from electronic equipment
has value as a material, raw material or energy source. It will take decades to convert
the polymer industry from fossil fuel to renewable resources, but this also offers new
business opportunities, especially in durable applications like consumer electronics.
The business of renewable resource based
plastics is still small, but major global efforts and investments will boost their development significantly. l
Author: Jan Ravenstijn,
industrial bio-material expert
Derived from articles published in:
• Chemistry & Industry, 27 September 2010
• Industrtial Biotechnology, October 2010
j.ravenstijn@kpnmail.nl.
Biowerkstoff-Report, Edition 8, March 2011 7
Wikipedia
Freies Fachwissen zum Thema
Nachwachsende Rohstoffe
Öffentlich gefördertes Projekt in der Wikipedia erfolgreich abgeschlossen. Am 30. April 2010 konnte das
von der nova-Institut GmbH und dem gemeinnützigen Verein Wikimedia Deutschland realisierte Projekt
„Nachwachsende Rohstoffe in der Wikipedia“ erfolgreich beendet werden. Begleitet und unterstützt wurde
das Projekt durch die Fachagentur Nachwachsende Rohstoffe e.V. (FNR) und finanziert aus Mitteln des
Bundesministeriums für Ernährung, Landwirtschaft und Verbraucherschutz (BMELV). Im Verlauf dieser
Maßnahme konnte das Projektteam über 500 Stichworte ausarbeiten bzw. ganz neu hinzufügen.
Ambitionierte Ziele
rechte Realisierung zu gewährleisten.
Medium auch zu diesem Thema belegt.
Sowohl bei Schülern und Studenten, als
auch bei Journalisten und Wissenschaftlern wird Wikipedia als Nachschlagewerk
heute meistens als erstes und häufig als
einzige Quelle genutzt. Die einzelnen
Artikel erzielen insbesondere verglichen
mit wissenschaftlichen Publikationen und
Printmedien enorme Leserzahlen. Selbst
Nischenthemen wie „Naturdämmstoff“
liegen bei monatlich über 500 Seitenaufrufen, die Zahlen für „Biokunststoff“ liegen
sogar bei über 2.700 und „Bioethanol“
erhält mehr als 5.500 Aufrufe pro Monat. Sehr zentrale Begriffe wie „Mais“ mit
rund 20.000 Aufrufen/Monat oder „Glycerin“ mit ca. 30.000 Aufrufen/Monat bilden den am häufigsten nachgeschlagenen
Bereich ab.
Von Beginn an waren die Ziele des
2007 gestarteten Projekts „Nachwachsende Rohstoffe in der Wikipedia“ hoch
gesteckt – ein Qualitativ hochwertiges
Nachschlagewerk sollte entstehen, welches
den Gesamtbereich der Nachwachsenden
Rohstoffe innerhalb der Online-Enzyklopädie abdeckt. Bis dahin war es nur
schwer möglich, ertragreiche Recherchen
zu diesem Themenbereich durchzuführen
– wenigen einzelnen, dafür aber teilweise
ausgezeichneten Artikeln standen zahlreiche unvollständige oder veraltete Beiträge gegenüber; viele Begriffe suchte man
vergeblich. Während der Projektlaufzeit
von drei Jahren wurden die WikipediaEinträge zu Fachartikeln aus dem Bereich
Nachwachsende Rohstoffe optimiert. Damit kann nun eine breite Öffentlichkeit
umfassend zu diesen Themen informiert
werden. Initiiert wurde das Projekt von
der nova-Institut GmbH. Als Projektpartner konnte Wikimedia Deutschland
gewonnen werden, um die Wikipedia-ge-
Ein kompetentes
Nachschlagewerk
Zusammenarbeit mit der
Wikipedia-Community
Das beachtliche Ergebnis des Projekts:
Insgesamt 557 Stichworte sind fachlich
kompetent bearbeitet worden, dabei wurden 434 Artikel teilweise komplett neu
erstellt oder umfangreich „saniert“. Das
Themenspektrum erstreckte sich von einzelnen Rohstoffpflanzen über zahlreiche
Themen im Umfeld der Bioenergie bis
hin zu den vielfältigen Optionen der stofflichen Nutzung. Der Leser findet heute
komfortabel alle relevanten Informationen
zu Ackerfrüchten wie Raps, Mais und Rüben oder Nischenkulturen wie Miscanthus
und Hanf – aber auch zu den zentralen
Stichworten aus den Bereichen Holzwirtschaft, Bioenergie, Biotechnologie, Verbundwerkstoffe, Papier oder Holzwerkstoffen muss nicht lange gesucht werden.
Bis heute hohe Zugriffszahlen zeigen den
erhofften Erfolg dieser Maßnahme, die die
Bedeutung der Wikipedia als Recherche-
Das Projekt konnte nur aufgrund der
aktiven Beteiligung der zahlreichen freiwilligen Wikipedia-Autoren aus den unterschiedlichsten Themenredaktionen durchgeführt und erfolgreich abgeschlossen
werden. Millionen Menschen nutzen die
Wikipedia täglich und profitieren von dem
ehrenamtlichen Engagement der Community, nicht nur in dem hier dargestellten
Bereich. Die Projektpartner fordern Sie
als Leser entsprechend ebenfalls auf, die
Wikipedia zu besuchen und sich ein Bild
von den Inhalten zu machen.
8 Biowerkstoff-Report, Edition 8, March 2011
Über die nova-Institut GmbH
Für eine Übersicht über weitere Aktivitäten des nova-Insituts beachten Sie bitte
die Seiten 48ff.
Wikipedia
Free expert knowledge on
Renewable Resources’
A Publicly funded project in the German Wikipedia, carried out by the nova-Institute and Wikimedia
Deutschland e.V. was successfully completed on the 30th of April 2010. The project was supported by the
Fachagentur Nachwachsende Rohstoffe e.V. (FNR) and financed by funds of the German Federal Ministry
of Nutrition, Agriculture and Consumer Protection (BMELV). During the project more than 500 articles
could be improved respectively added.
Über Wikimedia Deutschland –
Verein zur Förderung
Freien Wissens.
Der gemeinnützige Verein Wikimedia
Deutschland wurde 2004 in Berlin von
aktiven Autoren der Wikipedia gegründet
und finanziert sich durch Spenden und
freiwillige Mitarbeit. Wikimedia Deutschland hat eine Geschäftstelle in Berlin und
unterstützt mit seinen derzeit zehn Mitarbeitern die Wikipedia und ihre Schwesterprojekte. Der Verein versteht den Zugang
zu Freiem Wissen als ein Menschenrecht
und fördert durch intensive Presse- und
Öffentlichkeitsarbeit, gezielte Spendengewinnung, technische Infrastruktur und
zahlreiche Aktivitäten das rasante Wachstum der Wikimedia-Projekte. Mehr über
den Verein und die Aktivitäten unter
www.wikimedia.de l
Pressemitteilung vom 14.07.2010
Achim Raschka
(Projektkoordination, nova-Institut GmbH)
Telefon: 02233-48 14 51
E-Mail: achim.raschka@nova-institut.de
Internet: http://www.nova-institut.de/nr/
Catrin Schoneville
(Wikimedia Deutschland e.V)
Telefon: 030 – 219 158 260
E-Mail: catrin.schoneville@wikimedia.de
Internet: http://wikimedia.de
Wikipedia-Portal Nachwachsende Rohstoffe:
http://de.wikipedia.org/wiki/P:NR
V.i.S.d.P.: Michael Carus, GF der novaInstitut GmbH
More news: www.bio-based.eu/news
Biowerkstoff-Report, Edition 8, March 2011 9
News
Sustainable Compounding of
Biodegradable Materials
Turnkey Plant for Biodegradable
Plastics Compounding
The first compounding plant for biodegradable plastics in Portugal underlines the
expertise of Coperion GmbH, formerly
Werner & Pfleiderer, in biodegradable material processing systems. The extrusion
line is being operated by the Portuguese
compounding company Cabopol, S. A.
based in Porto de Mós and went into trial
operation in January 2010. The official
opening ceremony took place in spring of
this year and was attended by the Portuguese President. Cabopol is now the first
manufacturer of biodegradable polymers
on the Iberian Peninsula.
The processing system includes materials handling for all raw materials – that is
storage, conveying, weighing and dosing –
as well as compounding with downstream
pelletizing and drying. Biodegradable
compounds based on compostable polyesters with and without starch are being
manufactured. The materials supply system stands out for a high flexibility, allowing the addition of several different components. The processing extruder, a ZSK
MEGAcompounder PLUS, has a ZS-B
twin screw side feeder and a venting unit.
The die discharges into a water bath for
strand cooling followed by suction drying
of the strand surface prior to strand pelletizing. All the peripherals are integrated
into the EpcNT plant control system. A
modem allows remote software updates
and monitoring of the compounding
plant.
Cabopol procured a ZSK 26 MEGA-
compounder laboratory extruder especially for this project and during the optimisation of the screw geometry and process
technology was able to make use of
know-how from Coperion. It is the formulations including starch that represent
a particular challenge: The melting zone
in the compounding extruder has to not
only melt the polymer, but also plastify the
non-melting starch by adding liquid.
The plant was installed in a three storey
steel framework. The upper level is used
for the management of pellets and powders. It houses the intermediate materials
storage system with day bins, four big bag
emptying stations (one of which is ATEX
rated for the starch), a sack station as
well as the central aspiration system. On
the mezzanine level there are gravimetric dosing stations for solid material, and
pumping stations for liquids are located
on the ground level along with the ZSK
MEGAcompounder PLUS compounding
extruder.
The biodegradable compounds are sold
by Cabopol under the BIOMIND brand.
Their most important markets are nondurable products for household, industrial
and agricultural applications. Examples
of these are disposable nappies and cutlery, rubbish bags, food packaging, shopping bags, drinking straws and agricultural
films.
For an overview of Coperion (www.coperion.com) see outline on page 36.
Cabopol, S. A. (www.cabopol.com),
Porto de Mós, Portugal, is part of the
Grupo Meneses and belongs to the ten
largest compounding companies in Europe, with a capacity of 75.000 tons per
year. The current product portfolio in-
10 Biowerkstoff-Report, Edition 9, Monat 2011
cludes unplasticised and plasticised PVC,
various thermoplastic elastomers, halogen
free flame retardant compounds and polypropylene compounds for the automotive industry. As a result of its R&D work
targeted at securing its future business
Cabopol has launched its new biodegradable and compostable compounds under
the BIOMIND trade name on the European market.
Three storey turnkey plant for biodegradable polymer compounding: The ZSK MEGAcompounder PLUS twin
screw extruder with its downstream equipment is located
at the ground level
Photo: Cabopol, S. A., Porto de Mós, Portugal
Press Release Coperion GmbH
Author: Kathrin Steimle
Marketing & Communication
kathrin.steimle@coperion.com
www.coperion.com
Biokunststoffe für den
Laden- und Displaybau
Als Spezialist für Kunststoffhalbzeuge
beschäftigt sich das Unternehmen GEHR
GmbH bereits seit 2007 mit dem Thema Biokunststoffe. Mit der Produktlinie
ECOGEHR® bietet das Unternehmen
schon heute eine breite Auswahl der verschiedensten Biopolymere als Vollstäbe,
Platten, Profile und Rohre an.
Als innovativer Familienbetrieb ist
GEHR stets bestrebt diese Produktlinie
weiter zu entwickeln und arbeitet seit August 2010 an der Kalandrierung verschiedener ECOGEHR-Materialien.
Mit dieser Technologie lassen sich Tafeln mit einer Dicke von derzeit 1-8mm
herstellen. Das Material wird bei diesem
Prozess über mehrere Walzen geführt,
wodurch man sehr glatte oder speziell
strukturierte Oberflächen erzeugen kann.
Ein Zielmarkt für solche Tafeln ist der
Laden- und Displaybau. Die Designer und
Produktentwickler in dieser Branche sind
besonders stark an neuen und zukunftsweisenden Materialien interessiert.
In diesem Marktsegment gibt es viele
Endkunden (z.B. Kosmetik-, Schreibgeräteindustrie, Biomärkte, …) welche mit
ihrer Firmenphilosophie auf ein verstärktes Nachhaltigkeitsmanagement und/
oder Grünes Marketing setzen. Hinzu
News
Bild:
ECOGEHR
kommt, dass es bereits einige Produkte
aus Biokunststoffen gibt, welche mit den
entsprechenden biobasierten Displays in
einem ganzheitlichen Konzept präsentiert
werden können.
Auf der EUROSHOP 2011 werden diese Tafeln aus verschiedenen Materialien
und in verschiedenen Farben dem Fachpublikum vorgestellt. Um die Verarbeitung
der „ECO-Tafeln“ zu erleichtern, können
sich Interessenten künftig in einer technischen Produktbroschüre über Richtwerte
bzw. Empfehlungen informieren:
• So lassen sich die Tafeln auf herkömmlichen Maschinen tiefziehen und abkanten.
• Das Fügen der Tafeln ist sowohl durch
Verschweißen als auch mit handelsüblichen Klebstoffen möglich, und auch die
Bedruckbarkeit ist mit verschiedenen
Farbsystemen gegeben.
• Zurzeit wird noch das Laser- und Wasserstahlschneiden geprüft und soll die
Broschüre abrunden.
culture). Main advantages of these materials are their origin in renewable resources
and good biodegradability.
Collagen is a protein which can be processed by thermoplastic methods. Using
animal (bovine, porcine) hide splits from
the tanning industry, the raw material is
treated in a process of partial denaturation, drying and milling, developed at
FILK, resulting in a powder. This so called
Thermoplastic Collagen can be melted
in a conventional extruder by input of
thermal-mechanical energy and using water and glycerol as plasticizer at temperatures around 90 °C. Possible products are
sheets, molded parts, coatings or blown
films. In order to improve the material
properties (e. g. moisture sensitivity, biodegradability, mechanical stability), hydrophobic substances (fatty acids) or other
biodegradable polymers (PLA, PVA etc.)
can be added. At FILK biodegradable
sheets of collagen in combination with
synthetic polyester were manufactured being appropriate for the use as agricultural
mulch films for short-term cultures (e. g.
lettuce, Fig. 1). They show an additional
fertilizing effect due to the release of collagen during film decomposition.
Commercially available plant protein
isolates contain different amounts of
non protein minor components, such as
carbohydrates, fat and mineral materials.
Under appropriate conditions these raw
materials can also be processed by thermoplastic methods, which was performed
Fig. 2 Pellets of thermoplastic plant proteins (from left
to right: wheat gluten, soy protein, pea protein)
at FILK with wheat gluten, soy and pea
protein isolates (see Fig. 2). In comparison
to collagen, higher temperatures above
140 °C are needed, and glycerol is used as
plasticizer. Under these conditions Maillard reactions take place between proteins
and carbohydrates, which lead to changes
in color and odor. Rheological measurements show that the protein melts behave
like thermoplastic material.
Our investigations proved that it is possible to process proteins under appropriate
conditions by thermoplastic methods with
subsequent treatment by rolling or film
blowing. The physical-mechanical properties of purely protein based products are
Author: Thomas Stintzing, ECOGEHR
Stintzing@gehr.de
Thermoplastic treatment of proteins using collagen and selected
plant proteins
As biopolymers proteins are an interesting alternative to synthetic polymers.
Proteins of animal and plant origin can
be used as resource for technical products.
Since these raw proteins often appear as
coproducts in industrial processes (e. g.
wheat gluten is a by-product of starch
extraction), they are available in large
amounts at reasonable prices. These raw
materials show high potential for the production of different technical products
(sheets, coatings, molded parts) in various
application areas (e. g. packaging or agriFig. 1 Collagen containing mulch film used in the cultivation of lettuce
More news: www.renewable-resources.de
Biowerkstoff-Report, Edition 9, Monat 2011 11
News
often insufficient for competition with
established polymer materials. Chemical
modification or blending with other polymers provides considerable potentials for
technical applications.
Authors: Dr. Enno Klüver, Dr. Michael Meyer,
Research Institute of Leather and Plastic Sheeting (FILK), (Meißner Ring 1-5, D-09599
Freiberg) enno.kluever@filkfreiberg.de
UltraFibre
Development of a radial cell hydroacoustic process and atmospheric
plasma treatment for the clean,
continuous, high volume production
of high quality natural fibres for the
SME natural fibre sector
Fibre reinforced polymers find wide
commercial application in the aerospace,
leisure, automotive, construction and
sporting industries. In recent years there
has been much interest in developing
natural fibre reinforced polymers for a
sustainable substitution of synthetic materials, and also to develop markets for the
European non-food crop industry sector.
The major impediment to growth facing
the European natural fibre sector is the
high processing costs needed to produce
the fibres themselves. While natural fibres
can be used for a wide variety of applications, other fibres are considerably more
cost-effective. The growth in the agromaterials / energy crop sector is causing
competition for land with food production
and this is driving up the costs of both
food and non-food crop products. There
is an urgent need in Europe for more sympathetic integration of food and non-food
production; this can be partially achieved
through improved process efficiency and
productivity. Natural fibre crops cannot
be easily separated into fibres of consistent quality. Therefore, to commercially
exploit past research investment on the
world market, new research must be undertaken to reduce processing costs and
to improve fibre quality, consistency, and
efficiency. The UltraFibre project will address these restrictions in the supply chain
by delivering: A scalable, economic, continuous, clean- fluidsonics technology to
deliver tonnage quantities of high quality
fibre, conferring:
• Reduced production costs
• High quality elementary natural fibres
• Higher quality commercial thermoplastic and thermosetting composites in targeted end-user applications
• Integration of a Soft Plasma fibre treatment process conferring a 25% increase
in mechanical properties compared with
the untreated fibre.
Contacts:
Girolamo Dagostino, Assocomaplast
g.dagostino@assocomaplast.org –
Project Co-ordinator
Gary Foster, Smithers Rapra
GFoster@Rapra.net – Project Manager
www.ultrafibre.org
Evonik engagiert sich für
Bambusfasern und WPC
Neue Kooperation mit Reifenhäuser
zur WPC-Entwicklung
Evonik Industries, Essen, präsentierte
Foto Evonik
auf der Kunststoffmesse „K 2010“, vom
27. Oktober bis 3. November 2010 in Düsseldorf, biobasierte Polyamid-Formmassen, die mit Bambusfasern verstärkt sind.
Biobasierte Polyamide, wie die „Vestamid-Terra“-Produkte von Evonik, haben
exzellente mechanische und physikalische
Eigenschaften und stehen anderen technischen Kunststoffen in nichts nach. Durch ihre im Vergleich zu rein erdölbasierten
Polyamiden günstigere CO2-Bilanz leisten
einen wichtigen Beitrag zur Schonung fossiler Rohstoffe und zur Verringerung des
Treibhauseffektes. Die Rezeptur „Vestamid Terra DS“ basiert auf Rizinusöl und
wird nach Herstellerangaben zu 100 % aus
nachwachsenden Rohstoffen hergestellt.
Sie kann mit 5 bis 50 % Bambusfasern verstärkt werden. Im Pressegespräch war zu
erfahren, dass die Bambusfaser allerdings
in einem chemischen Prozess modifiziert,
wodurch die Rohstoffbasis austauschbar
wird. Die Benennung als Naturfaser ist
daher kritisch zu betrachten (vgl. HolzZentralblatt Nr. 34 vom 27.08.2010,
Seite 848). Die DIN-Certco-Gesellschaft
100 % aus der Natur und hochleistungsfähig: Mit Bambus verstärktes „Vestamid-Terra“. Foto: Evonik
12 Biowerkstoff-Report, Edition 8, March 2011
News
bestätigt dennoch die Konformität des
Produktes mit den entsprechenden Normen als „>85% biobasiert“.
Details zur Kooperation mit dem
Troisdorfer Extrusions-Spezialisten Reifenhäuser hält man bei beiden Partnern
zunächst noch zurück. Klar ist, dass es als
Zwischenergebnis bereits verheißungsvolle
Profile auf Basis von PMMA („Plexiglas“)
mit Holzfasern gibt, die besonders UV-stabil sind und alle VHI-Kriterien an WPCTerrassendielen erfüllen. Der E-Modul soll
deutlich über jetzigen WPC-Rezepturen
liegen, wodurch zukünftig höherwertige
Anwendungen auch im technischen Bereich wahrscheinlich werden.
Quelle: Holz-Zentralblatt
Nr. 44 vom 05.11.2010, Seite 1101
Autor: Christian Gahle
CGahle@Holz-Zentralblatt.com
www.Holz-Zentralblatt.com
Prof. Dr.-Ing. Bohumil
Kasal the new director of
the Fraunhofer Institute for
Wood Research
Following the retirement of Professor
Dr. Rainer Marutzky the Fraunhofer WKI
has a new director. On 1st October 2010
Prof. Dr.-Ing. Bohumil Kasal takes over
responsibility for the institute.
Professor Kasal will at the same time
also take up the Chair of Organic and
Wood Construction Materials at the Technical University of Braunschweig, thereby
creating a close personal connection to the
Department of Architecture, Civil Engi-
More news: www.bio-based.eu/news
neering and Environmental Engineering.
From 2005 to 2010 Professor Kasal occupied the Hankin Chair at Pennsylvania
State University, holding professorships in
architecture and in civil and environmental engineering. His work focused on the
fields of residential design and construction, wood science, historic preservation,
the effects of natural hazards on buildings and the application of composite
materials in structures. At Penn State he
also headed the Pennsylvania Housing Research Center.
Before this, Kasal was from 1992
to 2005 professor in the Department
of Wood and Paper Science as well as
in the Department of Civil Engineering at the University of North Carolina.
Professor Kasal is an honorary research
fellow at the University of Bristol, a professor at the Czech Technical University
in Prague and also an honorary research
associate at the University of New Brunswick, Canada.
Source: Press Release, Octobre 2010, WKI
simone.peist@wki.fraunhofer.de
www.wki.fraunhofer.de
FKuR strengthens
its management team
Bioplastics specialist FKuR Kunststoff
GmbH has announced a new member in
its management team. With effect from
October 1st 2010 Mrs. Carmen Michels
has strengthened the team and assumed
responsibility for Technology and Production. She will reinforce the current
management board of Dr.-Ing. Edmund
Dolfen, Managing Director, and Patrick
Zimmermann, who is responsible for
Marketing & Sales.
Mrs. Carmen Michels, a graduate engineer, is moving from FKuR’s Research
and Development partner, institute
Fraunhofer for Environmental, Safety and
Energy Technology UMSICHT, where
she was responsible for the management
of the branch office in Willich and deputy
manager for the business area Renewable
Resources. Following her mechanical engineering studies, which majored in plastics
engineering at the RWTH Aachen, Carmen began her career as a project engineer
within the Research Institute for Plastics
and Recycling.
“For me personally, the task of taking
an active part in the strongly growing market of bioplastics from the perspective of
an industrial partner represents a very interesting challenge”, stated Michels when
explaining her change to FKuR. “We are
pleased to welcome Carmen Michels back
in our team. This personnel move will help
us to benefit from the professionalism and
research & development potential of one
of the world’s largest Research Institute.
With the excellent experience of Mrs. Michels, FKuR will continue strengthening
its worldwide leading role as a developer
and manufacturer of technically sophisticated bio-compounds“, said Mr. Dolfen.
Bioplastics are a class of polymers,
which have properties comparable to conventional polymers, but are made from
renewable resources or enable the biodegradability of the products made from
this material.
FKuR Kunststoff GmbH produces
and markets special customized biopolymers under the brand names Bio-Flex®
(polylactic acid/copolyester compound),
Biograde® (cellulose ester compound)
and Fibrolon® (natural fibre reinforced
polymers). The close cooperation of the
company with the Fraunhofer Institute
UMSICHT assures outstanding knowhow and quality standards.
Press Release, 10th of November, FKuR
Kunststoff GmbH
Contact: Mrs. Denise Winkelmann
Denise.Winkelmann @fkur.de
www.fkur.de
Biowerkstoff-Report, Edition 8 ,March 2011 13
News
Panel Discussion, Lignin Conference 2010
Photo: EconCore
Ontario BioAuto Council Hosts
International Lignin
Conference
High performance
composite panels from
renewable, bio-based polymers
On November 17th & 18th, 2010, the
Ontario BioAuto Council hosted the “International Lignin Biochemicals Conference” in Toronto, Canada. This unique
event was a great success with over 140
international participants and speakers
from forestry, agriculture, industry and
academia in attendance. The entire supply chain came together to discuss stateof-the-art sources of lignin production,
lignin characterization and quality control,
advanced lignin conversion and upgrading
technologies, and product and market opportunities. On the second day, an expert
panel focused on action items and next
steps to further advance the commercialization of lignin. The conference ended
with exclusive tours of the Magna-NRC
Composites Centre of Excellence and
Centre for Biocomposites and Biomaterials Processing at the University of Toronto.
The Ontario BioAuto Council looks
forward to continue working with its
members and others on lignin commercialization opportunities and expects to
hold future meetings and workshops
geared around these efforts. Visit www.
bioautocouncil.com for upcoming conference and event listings.
EconCore is proud to present the first
100% bio-based composite panel. Recently EconCore has optimized the patented
ThermHex production technology to produce honeycomb cores and sandwich panels made from bio-based plastics.
“Today, the exploitation of the economical advantages of weight reduction have
become essential for many industries.”says
Francois de Bie, EconCore head of sales
and marketing. “Bio-based polymer materials are still relatively expensive compared
to for example PP alternatives which has
limited the use of these materials in structural application. Bio-based sandwich panels can be used in for example re-usable
packaging, furniture, automotive interiors
or separation walls.”
By combining our cost efficient production technology with renewable materials,
EconCore is able to present a sandwich
panel that has excellent mechanical properties, while still being cost competitive to
traditional sheet materials.
“The last 6 months EconCore has optimized the production technology to produce PLA based hexagonal honeycomb
cores using a continuous production
process. Only moments after the core is
produced skin layers are added in a second step of the continuous production
process.” These skins could be made from
unfilled PLA material to make a mono
material panel or, in case a higher performance is required, could be replaced with
consolidated flax in a PLA matrix.
Author:
Vicki Leith, Ontario BioAuto Council
vleith@bioautocouncil.com
14 Biowerkstoff-Report, Edition 8, March 2011
Poly-Lactic Acid (PLA) is a biopolymer used to make for example packaging, consumer goods and furniture and is
derived from renewable resources instead
of oil. A biopolymer offers more disposal options and is more environmentally
friendly to manufacture than traditional
petroleum-based plastics. Derived from
100% annually renewable resources such
as plants, PLA generates significantly less
greenhouse gas emissions over the life
time when compared to traditional materials like PP.
Author François de Bie. EconCore NV
francois.debie@econcore.com
Picture: honey comb cores and panels made from
renewable resources
iBIB 2011 - International Directory
for Innovative Bio-based Plastics
and Composites - 74 companies
and institutes from 15 countries
have booked
For the first time worldwide - an entire
overview of all suppliers of bio-based
plastics and composites! On March 15th
the very first international directory of
major suppliers of bio-based plastics and
composites is published. Use this chance
to present your company, products and
services to more than 20,000 potential
clients from all over the world: International Business Directory for Innovative Bio-based Plastics and Composites
(iBIB2011)
The print version will be distributed by
the publishers and partners at trade fairs,
exhibitions and conferences worldwide.
News
The PDF-version will be distributed widely by
email and websites.
Online-database with detailed index to reach
your supplier in a target oriented way (more than
100 specific criteria).
Who can join?
Suppliers of renewable raw materials (RRM),
bio-based plastics and composites and green
additives can join along with engineers, associations, R & D and consultants. The cost of a
double page - company profile and product portfolio incl. an online database entry - is only 1,000
Euro. For research & development, consultants
and associations a single page starts with only
700 Euro.
You are still welcome to join the iBIB2011 and
will directly be included in our online-database.
You will automatically be included in the print
edition iBIB2012.
Worldwide connectivity for
suppliers and customers
The international business directory iBIB2011
enables industrial suppliers and customers to
reach out with one another. New markets such
as bio-based plastics, composites and green additives are mostly based on ‚insider-knowledge‘ and
therefore lack transparency. This in turn harms
the steady growth of the sector. In order to deal
with this issue, iBIB2011 will help firms to find
the best bio-based solutions available worldwide.
MEET THE
BIOPLASTICS
INDUSTRY
IN HALL 9
COME TO THE EUROPEAN BIOPLASTICS
STAND 9E02 AND SEE OUR PRESENTATIONS
ON THE NEWEST DEVELOPMENTS IN
Online-database with index search:
www.bio-based.eu/iBIB
BIOPLASTICS PACKAGING!
JOIN US FOR A DRINK AND
MEET NEW BUSINESS CONTACTS
AT DAILY SOCIAL EVENTS
SPONSORED BY OUR PARTNERS.
AND OUR STRONG
PARTNERS IN
BIOPLASTICS
More news: www.bio-based.eu/news
www.bio-based.eu
Biowerkstoff-Report, Edition 8 ,March 2011 15
Biorefinery
European Commission
steps up biomass use
Nearly € 80 million for
biorefinery research
A
major research initiative of the
European Commission about
the sustainable use of biomass
has started in march 2010. Researchers
and industry are going to develop new
ways to convert biological feedstock
into energy and valuable material using biorefinery technology. The Commission will fund the programme with
€ 52 million for 4 years. 81 partners
from universities, research institutes
and industry in 20 countries will invest
an additional € 28 million.
The programme will contribute to the
European Lead Market initiative on BioBased products. It aims to facilitate the
translation of technological and nontechnological innovation into commercial products and services. Biorefinery
research will also contribute to the implementation of the European Energy &
Climate Package. The goal is that by 2020
transport in every Member State will use
a minimum of 10% renewable energy –
especially biofuels. Biorefinery is also an
important feature of the Bio-energy European Industrial Initiative, one of the
six industrial initiatives of the European
Strategic Energy Technology (SET) Plan.
Its objective is that by 2020 at least 14 %
of the EU energy mix will be bio-energy.
More than 200 000 local jobs could be created as a result.
Multidisciplinary research is needed to
achieve the full potential of biomass, so
the Commission is bringing together the
most advanced developers in Europe of
biorefineries. On the energy side they are
developing new methods to convert biomass into so called second generation
biofuels in which feedstock doesn‘t compete with food production and which will
produce heat and electricity. The other approach is to crack the components of biomass in order to produce chemicals and
materials.
Three large collaborative projects will
address the entire value chain from the
production of biomass, logistics, intermediary processing steps and its conversion
into end-products withthe feasibility of
the techniques shown at pilot scale. One
coordination action project will provide
immediate support to and coordination of
ongoing biorefinery research projects with
potential high impact, as well as providing
a framework for collaborations and information exchange, a common vision and a
roadmap for 2020.
Projects overview:
Designing the Next Generation
Bio-Refinery: The EuroBioRef
Project
The EuroBioRef project (European
Multilevel Integrated Biorefinery Design
for Sustainable Biomass Processing) is
supported by €23 million of funding from
the European Commission‘s 7th Framework Program and additional €14.4 million from partners. The project is going to
run for 4 years and will deal with the entire
process of transformation of biomass,
from fields to final commercial products.
It involves 28 partners from 14 different
countries and will be coordinated by Centre National de la Recherche Scientifique,
France. The 4 SME partners of the proj-
16 Biowerkstoff-Report, Edition 8, March 2011
ect represent 21% of the total contribution of the European Commission.
Internet:: www.eurobioref.org/
BIOCORE builds lignocellulosic
biorefinery
The project BIOCORE will create and
demonstrate a lignocellulosic biorefinery.
It will process agricultural residues such as
wheat and rice straws and different sorts
of woods. The products will be second
generation biofuels, bulk chemicals, polymers, speciality molecules, heat and power.
BIOCORE involves 24 partners from 13
different countries and will be coordinated
by the Institut National de la Recherche
Agronom, France. The European Commission funds the project with € 14 million out of the 7th Framework Program,
the partners will invest additional € 6,3
million. There are 7 SMEs participating in
this project, representing 18 % of the total
European Commission contribution.
www.biocore-europe.org
SUPRA-BIO for sustainable products from economic processing of
biomas
Economic and sustainable production
of fuels, chemicals and materials from
biomass requires capture of the maximum
energy and monetary value from sustainable feedstock. SUPRA-BIO achieves this
by focussing on innovative research and
development of critical unit operations.
A technology toolbox for conversion and
separation operations will be developed
that adapts to various scenarios of product mix and feedstock. The aim is to op-
European Commission steps up biomass use
düsseldorf, Germany
12 – 18 May 2011
timise utilities to minimise environmental impact
and maximise value from the product mix. The
University of Oxford is going to coordinate the
project which will get over € 12.5 million funding from the 7th Framework Programme of the
European Commission. The 17 partners out of
8 countries are contributing an additional € 6.5
million. There are 9 SMEs participating in this
project, representing 47% of the total EU contribution.
Internet: www.suprabio.eu (online soon)
Star-COLIBRI to coordinate
biorefinery sector
How do we know
tHat you will be
successful in
May 2011?
From experience.
solutions ahead!
www.interpack.com
Star-COLIBRI (Strategic Targets for 2020 - Collaboration Initiative on Biorefineries) promotes
coordination to overcome fragmentation in the
field of biorefineries research. Five industry-driven European Technology Platforms and five research partners will work on concepts concerning
the whole value-chain of the biorefinery concept.
The results will be validated by the International
Civil Society Organisation IUCN. The consortium
is led by the European Federation of Woodworking Industries and comprises 12 partners from 6
countries. The European Commission is supporting the project with nearly € 2 million the consortium is contributing € 400,000. l
Internet:: www.star-colibri.eu/
Contacts:
• EC press officer: Florian Frank,
florian.frank@ec.europa.eu, Tel.: +32 2 29 97934
• EC Scientific Officer: Maria Georgiadou,
maria.georgiadou@ec.europa.eu, Tel: +32 2 29 59846
Source: Press Release European Commission Reasearch,
2010-03-04
Messe Düsseldorf GmbH
Postfach 10 10 06
40001 Düsseldorf
Germany
Tel. +49 (0)2 11/45 60-01
Fax +49 (0)2 11/45 60-6 68
www.messe-duesseldorf.de
More news: www.bio-based.eu/news
Biowerkstoff-Report, Edition 8, March 2011 17
Biotechnology
A revision of the US DoE “Top 10“ for
bio-based products from carbohydrates
O
ne of the most interesting papers for the bio-based industry
of 2010 was the revision of the
US Department of Energy’s “Top 10“ of
bio-based products from biorefinery carbohydrates, first screened by Werpy & Petersen 2004. It was published as a critical
review in the magazine Green Chemistry
in March 2010 by Joseph Bozell and Gene
R. Petersen and leads to a new set of Top
Value Added Chemicals from sugars.
Bozell & Petersen stated in their revision that a biorefinery “that supplements
it’s manufacture of low value biofuels
with high value biobased chemicals can
enable efforts to reduce non-renewable
fuel consumption while simultaneously
providing the necessary financial incentive
to stimulate expansion of the biorefining
industry.” The choice of these products
to the biorefinery’s portfolio challenges
on “the lack of broad-based” conversion
technology coupled with a plethora of
potential targets.” In 2004 the US Department of Energy tried to face these challenges with a screening of the “Top Value
Added Chemicals from Biomass” with a
first Volume concentrating on sugars and
synthesis gas by Werpy and Petersen and a
second Volume on Lignin by Holladay et
al. in 2007.
Werpy & Petersen 2004 identified the
following list of chemicals from biomass
as the most promising:
• Succininic, fumaric and malic acids
• 2,5-Furan dicarboxylic acid
• 3-Hydroxypropionic acid
• Aspartic acid
• Glucaric acid
• Glutamic acid
• Itaconic acid
• Levulinic acid
• 3-Hydroxybutyrolactone
• Glycerol
• Sorbitol
• Xylitol / Arabinitol
The revisited Top 10 of Bozell & Petersen of 2010 was based on the first
screening with the same methodology
taking in account the technology development and leads to an evaluation of the
older selection. Some of the new members were part of the original list but several new compounds appear and represent
advances in technology development. On
the other hand some products from the
2004 list do not appear because of different criteria given from the methodology
of the screening. The following list shows
the list of new top chemical opportunities
from biorefinery carbohydrates:
18 Biowerkstoff-Report, Edition 8, March 2011
• Ethanol
• Furans
• Glycerol and derivatives
• Biohydrocarbons
• Lactic acid
• Succinic acid
• Hydroxypropionic acid / aldehyde
• Levulinic acid
• Sorbitol
• Xylitol
As a conclusion the authors stated,
that “the methodology presented
in DOE’s 2004 report and updated
in this review attempts to provide a
framework for using specific chemical structures to select broader biomass conversion technologies and research opportunities.” With this idea
they provide a promising tool for researchers and industry to handle the
Top 10 of bio-based chemicals. l
Further readings:
• Joseph J. Bozell, Gene R. Petersen
(2010): “Technology development
for the production of biobased
products from biorefinery carbohydrates – the US Department of
Energy’s ‘Top 10’ revisited.” Green
Chemistry 12, 539-554
• T. Werpy, G. Petersen (Ed., 2004):
“Top Value Added Chemicals from
Biomass. Volume I – Results of
Screening for Potential Candidates
from Sugars and Synthetic Gas.”
Published by the U.S. Department
of Energy.
• J.E. Holladay, J.J. Bozell, J.F. White,
D. Johnson (2007): “Top Value Added Chemicals from Biomass. Volume II – Results of Screening for
Potential Candidates from Biorefinery Lignin.” Published by the U.S.
Department of Energy.
Author:
Achim Raschka, nova-Institut GmbH
Achim.raschka@nova-institut.de
Biotechnology
BASF and PURAC:
Joint development of bio-based succinic acid
From the statement 2009:
BASF Future Business and PURAC
form a strong partnership by combining
their respective strengths in the technology development and application of
biobased succinic acid. BASF is a global
leader in intermediates, chemical building
blocks and polymers. PURAC is the world
leading producer of lactic acid and lactides
from renewable feedstocks.
Using a fully equipped fermentation
and down stream purification plant the
partners will demonstrate the economical
production of succinic acid on industrial
scale using a highly innovative route on the
basis of renewable substrate. In addition,
the greenhouse gas CO2 will be used as a
raw material and fixed during the highly
efficient fermentation process, contributing further to sustainable development.
More news: www.bio-based.eu/news
Photo: www.shutterstock.com
I
n Septembre 2009 BASF SE and
CSM nv have announced the cooperation between their respective subsidiaries BASF Future Business GmbH and
PURAC for the development of the production of biobased succinic acid. Both
partners have been working on the development of the industrial fermentation
and down-stream processing of biobased
succinic acid.
Hans van der Pol, Marketing Manager
at PURAC, adds: „The campaign on commercial scale fermentation of succinic
acid was carried out as planned in June
2010. Critical process steps have been
validated. Sample material has been evaluated by BASF in a variety of applications,
and samples have been made available to
selected customers and development partners.“
Biobased succinic acid will be applied as
a monomeric building block in a variety
of biopolymers, e.g. biodegradable polyesters. Furthermore, low cost succinic acid
has high potential as a platform chemical and its downstream products. Both
companies will work together in order to
achieve manufacturing cost levels making
biobased succinic acid competitive for a
wide variety of novel applications.
„We are happy to partner with PURAC,
the world leader of lactic acid production
and an expert in fermentation and purification of biobased chemicals“ said Dr.
Thomas Weber, Managing Director of
BASF Future Business GmbH. „Combining our competencies, we open the door
to make biobased succinic acid a success
story.“
Gerard Hoetmer, Chief Executive Officer
of CSM. „This partnership has great potential because it leverages the combined
strengths of two leading companies in
their fields.“ l
Press Release 30th September 2009,
BASF SE
And recent statement from Hans
van der Pol, Purac
www.basf.com
www.purac.com
„Through this biobased succinic acid
collaboration we aim to add an important
new monomeric building block to PURAC next to our lactide products“ says
Biowerkstoff-Report, Edition 8, March 2011 19
Biotechnology
Book reviews Biotechnology
More and more books for experts and interested communities handle topics around Green Chemistry,
Industrial Biotechnology and Biorefineries. Some of those published in 2010 should be introduced here:
Birgit Kamm, Patrick R. Gruber,
Michael Kamm (ed.; 2006, 2010):
Biorefineris – Industrial Processes and Products.
Status quo and Future Directions.
Wiley-VCH, Weinheim.
Reprint, 994 pages, ca. 114,- Euro.
ISBN 978-3-527-32953-3.
Wim Soetart, Erick J. Vandamme
(ed.; 2010):
Industrial Biotechnology:
Sustainable Growth and
Economic Success.
Wiley-VCH, Weinheim. 499 pages,
ca. 114,- Euro. ISBN 978-3-52731442-3.
Ayhan Demirbas (2010):
Biorefineries.
For Biomass Upgrading Facilities.
Springer, London.
240 pages, ca. 140,- Euro.
ISBN 978-1-84882-720-2.
Kamm et al. 2006 somehow is one of
the most important references of Biorefineries over the last years. It was first published in 2006 in a two volumes hardcover
version and in 2010 a softcover versions
was brought to market – a very good reason to review this book here at first: This
book was one of the first of his kind,
bringing a holistic overview of the whole
world of biorefineries. After a very helpful
introduction to biorefinery concepts and
the most promising feedstocks and products, the editors covered all aspects of
biorefining in different sections written by
international experts. The selection leads
from the biomass refining global impacts
through the technical and economic challenges to all the different kinds of known
biorefinery concepts based on different
feedstocks from sugar and lignocellulose
to plant juices and biochemical as well as
thermochemical technologies. In further
parts it covers the biomass production
and conversion technologies, the biobased
product family trees (carbohydrates, lignin
fats and oils) and leads to the “Economy,
Commercialization and Sustainability” of
the biobased industry.
With their book on Industrial Biotechnology Soetart and Vandamme published
a very interesting overview of all aspects
of this field. They start with a very interesting overview on the history of the
Industrial biotechnology which shows the
very long and interesting story of this approach coming from the early history from
7000 BC, when Sumeria and Babyloniy
started their first brewing receipts and the
Egypts with their applications for cheese
production until the newest aspects of the
21st century. In other chapters the authors
show a wide variety of aspects on fermentation technologies covering aspects like
the directed evolution of industrial biocatalysts, enzyme production, nanobiotechnology and downstream processing. It
also handles different field of utilizations
like the chemical and pharmaceuthical industry, the food and feed sector , pulp and
paper and biofuels. To finish the last chapters handle with aspects of sustainability
– environmental, economical and social
aspects - of the Industrial Biotechnology.
All chapters are written by international
experts in their fields so beside the joy of
reading it is an excellent source for getting
experts knowledge.
In his book published in the Springer
series “Green Energy and Technology”
the author Demirbas concentrates on energy opportunities from biorefineries. He
describes the main biorefinery concepts
for the production of fuels based on biomass and their technical opportunities.
For this he starts with an overview to the
current situation of fossil fuels and the
need of biomass for fuels, introducing the
different types of biofuels. In the more
technical parts he shows the biomass
fractionation and valorisation, the different thermochemical and biochemical
processes and an overview to economical,
political and environmental impacts of
biorefineries. Overall this book is a good
reference for biofuel production in biorefineries.
20 Biowerkstoff-Report, Edition 8, March 2011
Biotechnology
Author: Achim Raschka,
nova-Institut GmbH
Achim.raschka@nova-institut.de
Michael Wink (Hrsg..; 2010):
Molekulare Biotechnologie.
Konzepte, Methoden und
Anwendungen.
2., aktualisierte Auflage.
Wiley-VCH, Weinheim.
654 pages, 79,- Euro.
ISBN 978-3-527-32655-6.
William J. Thieman, Michael A Palladino (ed.; 2007):
Biotechnologie.
Pearson Studium, München.
445 pages, 44,95 Euro.
ISBN 978-3-8273-7236-9.
Some books on chemistry
Biochemie für Dummies
The book from Michael Link written in
German is acompetent educational work
for students, professionals and all who
are interested in the topics of molecular
biotechnology, mainly focussed on pharmaceuthical and medical applications. For
this reason it starts with a description the
whole area of molecular and cell biology
before concentrating on standard methods
and main topics of the modern molecular
biotechnology. It covers the fields of genomics and functional genomics, system
biology, bioinformatics, molecular diagnostics and pharmacological biotechnology, transgenetics and gene therapy as well
as the plant biotechnology and methods
of the biocatalysis in the industrial biotechnology. In a last part it informs about
the economical aspects and the ways of
industrial applications of molecular biotechnology including patents, regulations
of therapeuthic goods and a guidance for
start-up in this business.
This book from 2007 also from his concept is an educational book for students
and others who are interested in this area;
for students this book is available as a
“Bafög” version for a price of 29,95 Euro.
It covers the whole field of biotechnology
as an overview not reaching too much in
all the different topics to get an overview
of the biotechnology field. It starts with a
geral overview on the history of biotechnology and genetic engineering, following
by a description of the biotechnology of
microorganisms, plants and animals and
leading to the genetic fingerprint and applications for forensics, environmental
remediation and medicine to end with a
short part on ethics. As an educational
book to get an overview on biotechnology and mainly genetic engineering it works
well but for a deeper view especially into
the industrial biotechnology area which
is only edged in this book one will need
other literature.
Especially for all those people who don’t
have an understanding on all the complex
aspects of chemistry and biochemistry or
need to refresh their knowledge on the
basics, several books came to market to
handle these “Dummies”. For this reason
we want to advice to you the series “für
Dummis”, written in German (in English
a series “for Dummies” also exists). For
example:
More news: www.bio-based.eu/news
John T. Moore (2008):
Chemie für Dummies.
Wiley-VCH, Weinheim. 19,95 Euro.
ISBN 978-3-527-70473-6.
Arthur Winter (2008):
Organische Chemie für Dummies.
Wiley-VCH, Weinheim. 19,95 Euro.
ISBN 978-3-527-70508-5.
John Moore, Richard Langley (2009):
Biochemie für Dummies.
Wiley-VCH, Weinheim. 19,95 Euro.
ISBN 978-3-527-70292-3.
Biowerkstoff-Report, Edition 8, March 2011 21
Bio-Composites
Assessment of Life Cycle Studies
on Hemp Fibre Composites
Hemp fibres are very suitable replacements for a variety of fossil-based materials. In this study,
hempbased reinforced plastics are compared to non-renewable materials like acrylonitrile butadiene
styrene (ABS) and glass fibre reinforced polypropylene (PP-GF) regarding their environmental
impacts on climate change and primary energy use.
T
tion with low density. The material, moreover, does not splinter and leaves no sharp
edges (which is an important characteristic especially in the case of automobile
accidents). The majority of the currently
produced applications are manufactured
using thermoplastics and thermoset compression moulding for which the natural
fibre fleece and the polymer material are
heated and pressed. A wide range of natural fibre automobile interior applications
are produced in this way, including door
panels and car boot trims, rear shelf and
roof liner panels, dashboards, pillar trims,
seat shells, under-bodies and other parts.
Another, currently less common, process-
*: no information
available
100%
hemp-based
composites,
accounted for
carbon storage
hemp-based
composites, not
accounted for
carbon storage
fossil-based
composites
80%
60%
40%
20%
3
4
5
6
*
Hemp fibre/PTP
vs. GF/PES bus
exterior panel
Hemp fibre/Epoxy
vs. ABS automotive
door panel
Hemp fibre/PP vs.
PP composite
*
Hemp fibre/PP vs.
GF composite
0%
2
Hemp/PP vs.
GF/PP battery tray
1
Hemp fibre/PP vs.
GF/PP mat
GHG emissions in %: fossil- and hemp-based composites compared
he analysed products are compared based on their functionality. The assessment encompasses
the extraction of raw materials, where applicable the cultivation of crops, the processing of materials and transports. Hemp
fibre reinforced plastics are materials that
are composed of a polymer and hemp fibres from which the composite receives
its stability. Hemp fibre reinforced plastics
are mainly used in the automobile industry
for interior, but also exterior, applications,
and also for the production of furniture
or other consumer products. The material
shows favourable mechanical properties
such as rigidity and strength in combina-
Figure 1: GHG emissions expressed in percent for the production of fossil-based and hemp-based composites
for a number of studies – where available showing the effects of biogenic carbon storage
(PTP: Polymer material made of Triglycerides and Polycarbon acid anhydrides, PES: Polyester)
22 Biowerkstoff-Report, Edition 8, March 2011
ing technique is injection moulding which
is expected to quickly gain market shares in
the near future.
Six of the LCA studies included in the
analysis of hemp fibre reinforced plastics
are depicted in the chart. All of the hemp
fibre reinforced plastics examined show
energy and greenhouse gas (GHG) savings in comparison with their fossil-based
counterparts. The chart shows the considerable savings that are achieved when the
functionally-equal hemp-based composites
are used instead of fossil-based composites. Because internationally no agreement
has yet been made on whether or not to
include the storage of biogenic carbon in
product-based life cycle assessment, both
methods have been included in this study.
Therefore without accounting for biogenic
carbon storage, GHG savings range between 12 and 55%. When biogenic carbon
storage is taken into account savings between 28 and 74% can be reached. Even
larger savings can be reached: Because of
the higher density of glass fibres for example, a weight reduction of the application can be achieved when hemp fibres are
used. This can result in considerable GHG
and energy savings during use.
Also, hemp fibre reinforced plastics
contain to a smaller or larger extent fossilbased resources. In order to decrease the
use of fossil energy and mitigate GHG
emissions, inputs of fossil-based materials
should be reduced as much as possible or
replaced by bio-based plastics. At the current time those fully bio-based composites
are only used in the Japanese automotive
industry. Result: Hemp fibre reinforced
plastics show considerable energy and
greenhouse gas (GHG) savings in comparison with their fossil-based counterparts.
Bio-Composites
Pictures: Werzalit, Kosche
Wood Plastic Composites (WPC) are
thermoplastic compound materials
made from wood and plastic for the
building, furniture, automotive, consumer goods, packaging industry and
other applications. With a production
of about 170,000 t / a, WPC are the
most important and most successful
new bio-based products in Europe.
The Fourth German WPC-Congress (December 13th and 14th 2011, Maritim Hotel of Cologne / Germany)
Already for the fourth time the nova-Institute GmbH is organizing the German WPC-Congress on December 13th and 14th
2011. Leading enterprises and research establishments present their newest developments regarding Wood Plastic Composites in the elegant ambience of the Cologne Maritim Hotel. A large exhibition, various association activities and an innovation award will be forming the framework of the biggest European WPC event.
The congress
is putting the focus on theSources
subjects
the German-speaking
The full study ‘Hemp Fibres
for Green
of of
information
for the graph: WPC branch, however, the speakers, exhibitors and
participants are international – all talks are translated simultaneously. In 2009 300 participants from several countries visited the
An assessment
of German
life cycle
Second
WPC-Congress and made it thus the biggest branch meeting in Europe.
¢ Products
Industries and –
applications
 Pervaiz, M. and M. M. Sain. 2003. Carbon storage potential in natural
¢ Market situation and trends
hemp fibre applications’ will be
fiber composites. Resources, Conservation and Recycling 39:325-340.
¢ studies
Processingon
methods
and material at
properties
available
www.eiha.org
by
April
2011.
l
 + establishments
Boutin, M.-P., C.will
Flamin,
S. Quinton,
and
G. Gosse.
Etude
Speakers of leading enterprises and research
be talking
about
their
newest2006.
material
developments regarding
¢ Research and Development
¢ Innovation Awards
“product” and “process”
www.nova-institut.de
caractéristiques
environnementales
duand
chanvre
l’analyse of
de bioplastics.
son
injection moulding, window and facadesdes
elements,
pieces of
furniture, design
the par
application
Current inforcyclemarkets
de vie. L‘complete
Institut National
de la Recherche Agronomique (INRA),
mation about high-class standards and new
the programme.
Lille, France.
Praxis-oriented for developers,
producers, commerce and users.
 Wötzel, K., R. Wirth, and M. Flake. 1999a. Life cycle studies on hemp
reinforced
for automotive parts.
Die Ang- / products and for proceThisThe
year
the was
innovation
regardingfibre
WPC
will alsocomponents
be awardedand
by ABS
the nova-Institute:
for materials
Article contributed by
study
financed award
by:
Sponsor
ewandte
Chemie
dures. Election, presentation and awarding
of theMakromolekulare
winners will take
place272:121-127.
at the Fourth German WPC-Congress.
www.eiha.org
Juliane Haufe
 Müssig, J., M. Schmehl, H. B. von Buttlar, U. Schönfeld, and K. Arndt.
Further
informations are available at www.wpc-kongress.de
and at
www.bio-based.eu
www.drbronner.com
and Michael Carus
2006. Exterior components
based
on renewable resources produced with
SMC technology-Considering a bus component as example. Industrial
nova-Institut, Hürth, Germany www.hempflax.com
Organiser
www.bafa-gmbh.de
Crops and Products 24:132- 145.
 Magnani,
2010.
Motor
Company‘s Sustainable Materials. 3rd
Contact: Dipl.-Geogr. Dominik Vogt, Phone:
+49 (0) M.
2233
48 Ford
– 1449,
dominik.vogt@nova-institut.de
International Congress on Bio-based Plastics and Composites, 21st of
April 2010, Hannover, Germany
nova-Institute GmbH | Chemiepark Knapsack | Industriestrasse 300 | 50354 Huerth | Germany | www.nova-institut.de/nr
www.eiha.org/8
8th International Conference of the European Industrial Hemp Association (EIHA)
8th International Conference
of the European Industrial Hemp Association (EIHA)
May 18th – 19th 2011, Rheinforum, Wesseling / near Cologne (Germany)
/8
www.eiha.org
Focus on
es
bio-composit
Pictures: Hempro Int., Lotus Cars, Hemp Technology Ltd, NPSP Composites
Don’t miss the
biggest industrial
hemp event in
2011 – world wide!
Exhibition
You are welcome to present
your latest products, technologies or developments –
book a stand and a bulletin
board now for only 200 EUR
(plus 19% VAT).
Sponsor
Hempro
Int.
Production Sales Consulting
www.hempro.com
www.hempro.com
The congress will focus on the latest developments concerning hemp
and other natural fibres.
Congress language: English
The spectrum of participants will range from
• cultivation consultants,
• primary and further processors,
• traders, mechanical engineers,
• investors to enterprise to
• suppliers (for example: insulation material, pulp & paper, automotive).
They all share common interest in the industrial utilisation of hemp fibres and shivs.
Other topics are hemp seeds and hemp oil in nutrition.
Organiser
In co-operation with
Partner
www.nova-institut.de/nr
www.eiha.org
www.internationalhempbuilding.org
www.hemptrade.ca
Contact: Dipl.-Geogr. Dominik Vogt, Phone: +49 (0) 2233 48 – 1449, dominik.vogt@nova-institut.de
More news: www.bio-based.eu/news
Biowerkstoff-Report, Edition 8, March 2011 23
Bio-Composites
Targets for bio-based composites
and natural fibres
The European Hemp Association (EIHA) welcomes and supports the discussions on targets for different bio-based products, such as bio-polymers, bio-lubricants, and certain chemical building block chemicals, within the Lead Market Initiative (LMI), the Ad-hoc Advisory Group, the EU-RRM Group and the
European Association for Bioindustries (EuropaBIO).
H
owever, EIHA wishes to point
out that the field of Bio-Composites and Natural Fibres
should not be forgotten, but fully integrated within these targets for bio-based
products. The implementation of a specific target for Bio-Composites should
also be considered: for example, from a
technical point of view, more than 30%
of fibre reinforcement can be achieved by
natural fibres.
Currently at least 315.000 t of BioComposites reinforced by natural fibres,
are already being used in European Industry, mainly in the automotive and construction sectors. By 2020 this quantity
could be more than doubled.
In fact, automotive interior parts with
natural fibres already today are between 30
and 80% bio-based and bring the added
advantage of lightweight construction.
Both of these factors would lead to a significant reduction in CO2 emissions in the
order of 30% and more, replacing plastics
and glass fibre. Using bio-based plastics as
a matrix, fully bio-based composites could
be achieved with even lower CO2 emissions. Natural fibre can improve the profile of bio-based plastics at low cost and
with additional environmental benefits.
The European Industrial Hemp Association (EIHA) will soon present a MetaLife Cycle Assessment on Hemp Fibre
Bio-Composites to prove their environmental advantages.
Furthermore, the EU Commission is
already supporting the development of
Bio-Composites by funding research and
development. We should point out that
currently, in the area of natural fibres,
there are important projects on natural
fibre modification with enzymes (biotechnology) and ultrasound or plasma treatment to achieve a better compatibility
with (bio-)plastics.
Bio-Composites
Estimated
Quantities
in the EU 2010
Estimated
Quantities
in the EU 20203
40,000 t
120,000 t
100,000 t
50,000 t
100,000 t
150,000 t
120,000 t
360,000 t
5,000 t
100,000 t
Bio-Composites in total
315,000 t
830,000 t
Composites in total
(glass, carbon and natural fibre-reinforced plastics)2
2.4 Mio t
3.0 Mio t
Bio-based Share
ca. 13%
Compression moulding
- with natural fibres like flax, hemp, jute, kenaf, sisal,
abaca, coir (> 95% automotive, 5% cases and others)1
- with cotton fibre (automotive, mainly lorries)
- with wood fibre (mainly automotive)1
Extrusion and injection moulding
- Wood Plastic Composites (WPC) (construction,
furniture1, automotive1, consumer goods1)
- with natural fibres like flax, hemp, jute, kenaf,
sisal, cork (construction, furniture1, automotive1,
consumer goods1)
24 Biowerkstoff-Report, Edition 8, March 2011
ELV Directive: an opportunity
to increase the use of bio-based
products
Finally, we wish to point out that the
ELV Directive seems to offer an excellent
opportunity to fulfil the bio-based product targets. The Directive states that no
later than January 1st 2015, for all end-of
life vehicles, the re-use and recovery target
will be increased to a minimum of 95%
of the average weight per vehicle and year.
Within the same time limit, the re-use and
recycling will be increased to a minimum
of 85% of average weight per vehicle and
year.
Something which could easily be implemented and furthermore, would have a
high impact on the use of bio-based plastics and composites, would be if the biobased share of the products could count
as “re-used and re-cycled”, independent
of their intended route: in other words,
even if they go for energy recovery. A jus-
Source: nova-Institut 2010
1: Suitable for using bio-based plastics as matrix
2: AVK 2010, Ellis, P. 2010, nova 2010
3: Estimate for the year 2020, under favourable
ca. 28%
political framework
Bio-Composites
tification for this change in classification
could be that bio-based materials will only
emit green carbon during incineration. l
John Hobson, President of the European
Industrial Hemp Association (EIHA) and
Manager of HempTechnology Ltd (UK)
Michael Carus, Managing Director of the
European Industrial Hemp Association
(EIHA) and Managing Director of
nova-Institute GmbH (Germany)
The European Industrial Hemp
Association (EIHA)
c/o nova-Institute,
Chemiepark Knapsack,
50354 Hürth,
Industriestr. 300 (Germany)
Email: michael.carus@eiha.org,
Tel.: +49-(0)2233-48-14 41
More information on industrial hemp wanted?
Please download the leaflet:
“European Hemp Fibre for diverse bio-based products”
http://www.eiha.org/attach/8/2010_Hemp_Fibres_for_Green_Products_EIHA.pdf
Huerth (Germany), 25th November 2010
Pictures: Werzalit, Kosche
Wood Plastic Composites (WPC) are
thermoplastic compound materials
made from wood and plastic for the
building, furniture, automotive, consumer goods, packaging industry and
other applications. With a production
of about 170,000 t / a, WPC are the
most important and most successful
new bio-based products in Europe.
¢ Industries and applications
¢ Market situation and trends
¢ Processing methods
and material properties
¢ Research and Development
¢ Innovation Awards
“product” and “process”
The Fourth German WPC-Congress (December 13th and 14th 2011, Maritim Hotel of Cologne / Germany)
Already for the fourth time the nova-Institute GmbH is organizing the German WPC-Congress on December 13th and 14th
2011. Leading enterprises and research establishments present their newest developments regarding Wood Plastic Composites in the elegant ambience of the Cologne Maritim Hotel. A large exhibition, various association activities and an innovation award will be forming the framework of the biggest European WPC event.
The congress is putting the focus on the subjects of the German-speaking WPC branch, however, the speakers, exhibitors and
participants are international – all talks are translated simultaneously. In 2009 300 participants from several countries visited the
Second German WPC-Congress and made it thus the biggest branch meeting in Europe.
Speakers of leading enterprises and research establishments will be talking about their newest material developments regarding
injection moulding, window and facades elements, pieces of furniture, design and the application of bioplastics. Current information about high-class standards and new markets complete the programme.
Praxis-oriented for developers,
producers, commerce and users.
Sponsor
This year the innovation award regarding WPC will also be awarded by the nova-Institute: for materials / products and for procedures. Election, presentation and awarding of the winners will take place at the Fourth German WPC-Congress.
Further informations are available at www.wpc-kongress.de and at www.bio-based.eu
Organiser
Contact: Dipl.-Geogr. Dominik Vogt, Phone: +49 (0) 2233 48 – 1449, dominik.vogt@nova-institut.de
nova-Institute GmbH | Chemiepark Knapsack | Industriestrasse 300
| 50354 Huerth | Germany
| www.nova-institut.de/nr
More news: www.bio-based.eu/news
Biowerkstoff-Report,
Edition
8, March 2011 25
www.bio-based.eu
Pictures: MAS, Gala, nova-Institute.
rman and English.
Ge
s:
ge
ua
ng
la
ce
en
er
nf
Co
Simultaneous translation!
4th International Congress on Bio-based Plastics
and Composites & Industrial Biotechnology
4. Biowerkstoff-Kongress 2011
March 15th + 16th 2011, Maternushaus, Cologne (Germany)
Sponsor
The year 2010 has experienced acceleration regarding the raw material shift in the
chemical and plastics industry. Clear political requirements towards a bio-based economy have become a world-wide phenomenon, which includes bio-based plastics and
composites along with bio-based additives andgreen chemistry. An increasing amount
www.infraserv-knapsack.de
of discussions have been taking place in Brussels how to support “Knowledge Based
Bio-Economy (KBBE)”. In Asia and North-America they have already implemented instruments to support bio-based products, for example Japan (quota for bio-based
plastics) and US (public procurement program).
www.proganic.de
Sponsor Innovation Award
www.coperion.com
market leader for twin screw
extrusion systems
The conference will present the newest developments, investments and product
placements from the leading countries in the European Union: France, Benelux and
Germany, rounded off by highlights from Asia and America.
Our thanks go to:
Partner
www.arbeit-umwelt.de
www.avk-tv.de
www.bio-pro.de
www.clib2021.com
www.eiha.org
www.europabio.org
www.nachwachsenderohstoffe.de
www.iar-pole.com
www.kunststofflandnrw.de
www.nnfcc.co.uk
www.rapra.net
www.sinal-exhibition.fr
www.umsicht.fraunhofer.de
www.vhi.de
TM
Organiser
VERBAND DER DEUTSCHEN
HOLZWERKSTOFFINDUSTRIE E.V.
www.nova-institut.de
nova-Institute GmbH | Chemiepark Knapsack | Industriestrasse 300 | 50354 Huerth | Germany | www.nova-institut.de/nr
Programme
Day one, March 15th (9:30 – 18:00 h)
09:30 h
Welcome Coffee
Opening
10:00 h
Michael Carus, nova-Institut GmbH
10:10 h
Gabriele Peterek, Fachagentur
Nachwachsende Rohstoffe e.V.
Bio-based materials on their way
to the consumer
10:30 h
France
11:00 h
11:30 h
12:00 h
Jan Ravenstijn, industrial
bio-material expert
Bio-based polymers –
a renaissance for plastics
Christophe Luguel, Association
Industries et Agro-Ressources, IAR
Latest Investments and R&D in
France concerning Industrial
Biotechnology & Bio-based
products and current production
Christophe Lacroix, Arkema SA
Sustainable Development through
Performance Products
Lunch Break
Netherlands
13:30 h
Marcel van Berkel, Royal DSM BV
Focus on green materials with
better performance
14:00 h
Dirk den Ouden, Avantium
YXY – Biobased Building Blocks for
Durable Plastics
14:30 h
15:00 h
Coffee
Belgium
15:30 h
Hans van der Pol, Purac Biochem BV
Lactic Acid and Succinic acid as
building blocks for bio-based
plastics
Steve Dejonghe, Galactic
LOOPLA a Cradle-to-Cradle end of
life for PLA
16:00 h
16:30 h
François de Bie, EconCore
Econcore – PLA Honeycomb
Sandwich Structure
Innovation Award
“Biomaterial of the year 2011”
16:30 h
Uta Kühnen und Frank Mack,
Coperion GmbH
Compounding of bio-based
materials
Presentations of the top 5:
17:00 h
Mona Bielmeier, DSM
Palapreg® Eco
Sam Harrington, Ecovative Design
EcoCradle™
Emerenz Magerl, Pfleiderer
BalanceBoard
Jean Bernard Leleu, Roquette
Gaïalene®
Richard Hurding, Zelfo Technology
Zelfo®
18:00 h
19:45 h
Break
Awarding Ceremony and Gala Buffet
Book now!
ress.de
www.biowerkstoff-kong
Two days: 550 € + VAT
www.bio-based.eu
Day two, March 16th (9:00 – 16:15 h)
Highlights from Asia and America
09:00 h
Wolfgang Baltus, National Innovation
Agency, NIA
Current status and future
developments of bio-based
plastics in Asia
09:30 h
10:00 h
Tuula Mannermaa, Ashland Finland
Oy, Plastics Division
The First Step to Sustainable
Composites – Unsaturated
Polyester Resins from
Renewable Resources
Alexander Shroff, Beta Analytics
Measuring the bio-based content
of bioplastics and Composites via
ASTM D6866
10:30 h
Coffee
Germany
11:00 h
11:30 h
12:00 h
Francesca Aulenta, BASF SE
Overview over BASF’s activities in
the field of bio-based materials
Dr. Jürgen Herwig, Evonik
Industries AG
Biobased Polyamides
Andreas Grundmann, Uhde
Inventa-Fischer GmbH
Insights on the first industrial PLA
plant in Germany
12:30 h
Lunch Break
13:30 h
14:00 h
14:30 h
Markus Götz, BioPro
Baden-Württemberg GmbH
The Cluster Biopolymers/
Biomaterials: working jointly to
establish a bio-based plastics
industry
Oliver Türk, Bio-Composites And
More GmbH
Thermosetting Materials based on
plant oil resins
Coffee
15:00 h
Carmen Michels, FKUR Kunststoff GmbH
New applications for bio-based
plastics
15:30 h
Michael Carus, nova-Institut GmbH
Bio-Composites – Technologies
and Applications
16:00 h
Bernd Frank, BaFa GmbH
Hemp fibre soft pellets for natural
fibre reinforcement of (bio-)plastics
More than
150 participants expected
Exhibitors
• H. Hiendl GmbH & Co.KG • Coperion GmbH • Innovation Award
• European Industrial Hemp Association (EIHA) • Proganic GmbH & Co.KG
• Fraunhofer UMSICHT • Fraunhofer-Institute for Chemical Technology ICT
• Fachagentur Nachwachsende Rohstoffe e.V. • DASGIP AG • Friul Filiere SPA
• Beta Analytic Ltd. • PURAC • Linotech GmbH & Co.KG
nova-Institute GmbH | Chemiepark Knapsack | Industriestrasse 300 | 50354 Huerth | Germany | www.nova-institut.de/nr
Innovation Award – Bio-based Plastics
and Composites of the year 2011
www.bio-based.eu
The neck-and-neck-race has found its end: The jury of sponsors (Coperion, Chemiepark Knapsack and Proganic) and partners (see front page)
„
of the Congress on bio-based Plastics and Composites nominated five industrial bio-materials for the “Bio-material of the year 2011 out of
numerous applications. On the first day of the Congress on the 15th and 16th of March in Cologne, Germany, the three winners will be elected by
the audience and awarded at the evening reception.
Join the Congress on bio-based Plastics and Composites! Meet more than 150 experts from Industry and Research, visit the accompanying
trade exhibition and cast your vote for one of the five industrial bio-materials selected by the jury!
On this page you will find short descriptions of the five nominated materials. Detailed information you can find on the Congress-website
www.biowerkstoff-kongress.de. At the Congress the nominated companies will present their materials and then the audience has the choice.
Don’t miss it!
DSM Composite Resins AG, Netherlands/
Switzerland: Palapreg® ECO P55-01
The bio-based “high-performance”-thermoset
resin Palapreg® ECO P55-01 is a patented
product consisting of 55 % bio-based material, which is the highest bio-based content
currently available on the market. Palapreg®
ECO not only matches the performance of
petrochemical based materials in the market
without any compromise on its processability,
it even outperforms some of the best traditional, oil-based plastic materials.
Biomass: Plant oil
Ecovative Design LLC, USA: EcoCradle™
ROQUETTE, France: GAÏALENE®
EcoCradle™ is a low embodied-energy, compostable, protective packaging material that
is literally grown into any custom shape and
competes with petrochemical foams in terms
of both performance and cost. The self-assembling bonds formed by mycelium (mushroom
“roots”) produce this material as it grows
around a substrate of regionally sourced agricultural byproducts.
Biomass: Agricultural byproducts, fungus
mycelium
GAÏALENE® is a new “high-performance” range
of bio-based plastics for packaging, which
can compete in performance terms (mechanical, thermal, soft touch, etc.) with fossilbased plastics. GAÏALENE® resin is for lasting
applications that usually use polyolefins, ABS
and more technical polymers – with an excellent cost/efficiency profile.
Biomass: Starch
Pfleiderer AG, Germany: BalanceBoard
Zelfo Technology, Germany: Zelfo®
The BalanceBoard is a composite material
solely based on natural raw materials. The
wood span based medial layer is mixed with
about 30 % of light biomass granules based
on renewable raw materials respectively annual crops (corn, wheat). The board shows a
weight reduction of 30 % compared to common particle boards while maintaining comparable mechanical properties.
Biomass: Wood, wheat and corn
The “Cellulose Optimization Resource Efficient (CORE)”-technology up-cycles cellulosic
and ligno-cellulosic waste without the addition of any chemicals, catalysts or binders
to create Zelfo®, a micro and nano-fibrillated
cellulose fibre (MFC/NFC). Zelfo® can be formed into finished objects (bio-composites),
or used as a bio-additive to improve plastic or
paper material characteristics.
Biomass: Cellulose and ligno-cellulose biomass
Media partner
www.bioplasticsmagazine.com
www.bio-based.eu/news
www.ecocomposites.net
www.plasticker.de
www.euwid.de
www.heise.de/tr
nachhaltigwirtschaften.net
www.timberweb.com
www.bio-based.eu
www.materialsgate.de
4. Biowerkstoff-Kongress
Abstracts to the congress
François de Bie,
EconCore NV
In line production technology
for bio polymer based
sandwich panels.
Today, the exploitation of the economical advantages of weight reduction has become essential for many industries. Today
bio polymer type materials are relatively
expensive compared to for example PP
alternatives which has limited the use of
these materials in structural application. A
PLA based sandwich panels that uses a
minimal amount of resources to deliver
maximal performance could change the
application areas where bio polymer based
composites can be used.
The selection and optimization of the
different materials according to their demands enables to improve the weight
and/or cost specific properties of the
composite panel. The potential is a key
factor in this equation. It is well known
that a hexagonal honeycomb core delivers
highest possible performance at minimal
material usage. Until recently production
of honeycomb cores was a costly, batch
wise process. In addition, the application
of the right skins to the core was a, completely separated secondary production
step, which adds additional transportation,
handling and trimming costs to the panel.
The last 12 month EconCore has fur-
ther optimized the highly efficient production of PLA based hexagonal honeycomb
cores. EconCore would like to share with
the industry:
• Examples of PLA honeycomb cores
and PLA or bio material composite
skins that have exceptional cost vs performance ratio’s. Comparison vs for example PP panels.
• Production technology that allows to
continuously produce PLA sandwich
panels. Only moments after the core is
produced these skin layers are added in
a continuous in-line operation.
We will show real life examples of fully
operational production lines using our
manufacturing technology. We also show
PLA based sandwich panels that outperform traditional PP panels on strength
and performance characteristics, while being significantly lower in total manufacturing cost.
Uta Kühnen,
Coperion GmbH
Compounding of bio materials
Materials from renewable sources and
biodegradable materials are of an increasing public interest. But so far most of the
polymers and composites have a petro-
30 Biowerkstoff-Report, Edition 8, March 2011
chemical basis. The speech will show possibilities how to process bio materials with
a co-rotating closely intermeshing twin
screw extruder.
First the main components of a twin
screw extruder are explained as well as the
modular design and the dimensions which
are necessary for the technical characterisation of the extruder.
Like nearly all novel products also bio
materials require special processing features. Therefore the machine and process
technology were adapted and constantly
developed with the proceeding product
developments.
The following classification can be done
for the materials and the processes:
• The polymer has a renewable basis or is
biodegradable
- Loose fill packaging material based on
starch
- Thermoplastic starch
- Biodegradable polymer compounds
- Polylactid acid
• The filling or reinforcing material is renewable
- Wood polymer composites
- Other composites using natural fibres
for reinforcing
• Both the polymer and the filler / reinforcing material are renewable
The necessary compounding techniques
will be explained using examples. Special
requirements for the machine technology
like the hot face cutting for water sensitive
biodegradable materials or the special degassing technique like the twin screw side
degassing (ZS-EG) for the compounding of wood polymer composites will be
shown.
International Congress on Bio-based Plastics and Composites
Hans van der Pol,
Purac Biochem BV
Lactic Acid and Succinic
acid as building blocks
for bio-based plastics
Abstract
for succinic acid.
These steps together will be a strong
foundation for supporting growth in the
Bioplastics industry.
Alexander Shroff,
Beta Analytic, Inc.
Measuring the Biobased
Content of Bioplastics and
Composites via ASTM D6866
Tuula Mannermaa, Ashland Finland
Oy, Plastics Division
The First Step to Sustainable
Composites – Unsaturated
Polyester Resins from Renewable
Resources
As the leading company in lactic acid
fermentation, processing and application
development Purac has
created many new innovations over the
last years connected with the Bioplastics
industry:
• D(-) lactic acid
• Shippable Lactide
• Next generation processes for lactic
acid fermentation and purification
• Succinic acid fermentation technology
• Polymerization technology
• Stereo-complex technology
• Innovative business models
• New investments in Spain and Thailand
• Innovative partnerships
This presentation will provide an overview of the steps that have been taken
over the past few years and outline steps
to be taken in the next few years. Sustainability has been and will continue to be a
major driver for innovations at Purac. This
presentation provides an update on the
latest Purac Lactide investment in Thailand, the latest innovations in fermentation of lactic acid and on the prospects
More news: www.bio-based.eu/news
Today’s environmental issues create the
increasing demand to use more renewable material and having less emissions
in different life-cycle phases. From market
drivers like different Green building programs are creating the increasing need for
biobased products. LEED Green building
certification in described shortly. New Envirez polyester resins are formulated using
renewable and/or recyclable raw materials
and support the manufacture of more sustainable composites. The presentation will
discuss the reduced environmental impact,
with lower carbon dioxide emissions and
a diminished dependence on crude oil.
Also the chemistry behind this innovative
product family will be presented together
with final composite properties and final
articles produced. Local sources for renewable materials worldwide will finalize
the presentation.
ASTM D6866 is a standard test method developed by ASTM International to
quantify the biobased content of solid,
liquid, and gaseous samples through radiocarbon analysis. Test results are reported as the mean fraction of the “biobased
content” of a product; biobased content
is a measure of the percentage of the
product that comes from biomass or renewable sources. Due to its inherent flexibility to analyze many types of samples,
ASTM D6866 is recognized to be a very
good analytical method for different kinds
of biobased materials.
This ASTM standard was developed in
the United States at the request of the U.S.
Department of Agriculture for its BioPreferred Program, which satisfies legislation
requiring federal agencies to give preferred
procurement to manufacturers using the
greatest amount of biomass in their products (per the Farm Security and Rural Investment Act of 2002). ASTM D6866 is
used as a tool to verify biobased content
claims of BioPreferred applicants.
There are several eco-labeling programs
that recommend and sometimes require
ASTM D6866 testing. Vincotte of Bel-
Biowerkstoff-Report, Edition 8, March 2011 31
4. Biowerkstoff-Kongress
Abstracts to the congress
gium uses ASTM D6866 testing for its
OK Biobased program. Canada’s EcoLogo requires ASTM D6866 testing for its
CCD-170 standard developed specifically
for instant hand antiseptic products. Under Japan BioPlastics Association’s BiomassPla certification and labeling system,
plastic products must contain biomassderived components that can be measured using ASTM D6866. Sustainable
Biomaterials Collaborative has released
a list of purchasing specifications called
BioSpecs, which requires ASTM D6866
testing to verify the biobased content of
compostable food service ware. The ICC
Evaluation Service also published an evaluation guideline requiring ASTM D6866
testing to determine biobased material
content of building materials.
ASTM D6866 is a widely used method
in the bioplastics industry. Braskem, a
leading Brazilian petrochemical company,
is one of the many bioplastics companies
that use ASTM D6866 to certify a product’s biomass percentage.
ASTM D6866 only quantifies the
biobased content of a material. Results do
not have any implication on the material’s
biodegradability.
Francesca Aulenta,
BASF SE
Overview of BASF bio-based
and biodegradable polymers
Climate change, a growing world population and resource constraints are some
of the major challenges facing society.
Solutions to these challenges are only
possible through sustainable development and the sustainable use of resources.
Sustainable development is a key element
of BASF’s corporate strategy. In order to
tackle global megatrends and propose innovative solutions, BASF has established
five research clusters. The clusters “raw
material change” and “white biotechnology” aim to develop technologies that will
enable alternative resources to be used in
existing value chains and provide innovative, sustainable bio-based products. The
intention is not to support “green-washing” but to focus on the use of renewable
raw materials for dedicated applications
driven by performance and eco-efficiency.
The presentation will provide an overview
of BASF’s portfolio of bio-based and biodegradable polymers.
32 Biowerkstoff-Report, Edition 8, March 2011
Dr. Harald Häger,
Thomas Große-Puppendahl
Evonik Degussa GmbH
Biobasierte Polyamide – Stand
der Technik, zukünftige Technologien und Rohstoffquellen
Vergangenheit und Gegenwart
Monomere für die Polyamidherstellung
stammen ursprünglich vom Acker. Als
PA66 von W. H. Carothers 1934 entdeckt
wurde, wurden die daraus nötigen Monomere, über mehrere chemische Prozessstufen aus Furfural, welches aus Haferspelzen gewonnen wurde, hergestellt.
Die Ozonolyse von Ölsäure liefert die
Azelainsäure und die Pelargonsäure. Noch
wichtiger ist heutzutage die Rizinolsäure
als Rohstoff für die Polyamidherstellung.
Aus Ihr lassen sich über diverse chemische Prozessschritte PA11 und PA1010
herstellen. Die wesentlichen Monomere
hier sind die Aminoundecansäure, Sebacinsäure und Dekandiamin. Kombiniert
man die Monomere aus nachwachsenden,
mit solchen petrochemischen Ursprungs,
werden Polyamide wie das PA610 und
das PA1012 zugänglich, die dann nur teilweise auf nachwachsenden Rohstoffen
basieren.
Zukunft
International Congress on Bio-based Plastics and Composites
Die Bedeutung der nachwachsenden
Rohstoffe für die Polyamidherstellung
wird weiter zunehmen, wobei man sich von
der historischen Wurzeln lösen wird. Eine
Möglichkeit besteht darin, die benötigten
Grundstoffe, wie zum Beispiel Butadien
für die PA66 oder PA12 Produktion aus
nachwachsenden Rohstoffen herzustellen.
Der Vorteil dieses Vorgehen liegt auf der
Hand, die bestehenden Prozesse können
übernommen und bestehende Zulassungen erhalten werden. Der zweite Weg ist
sicherlich deutlich steiniger aber auf lange
Sicht auch erfolgversprechender. Dieser
liegt darin nachwachsende Rohstoffe mit
hilfe neuer Prozesse wie sie die Katalyse
oder die Biochemie bietet umzusetzen.
Dadurch kann die Anzahl nötiger Prozessschritte zum Teil dramatisch reduziert
werden.
Markus Götz,
BIOPRO
Baden-Wuerttemberg GmbH
The Cluster Biopolymers /
Biomaterials: working jointly
to establish a bio-based
plastics industry
The plastic sector’s dependence on fossil resources, the growing awareness of
the human influence on climate change
and the demand for innovative materials
More news: www.bio-based.eu/news
Abstract
with new properties requires new ways of
working. As part of the BMBF‘s ‘BioIndustrie 2021’ programme, the Biopolymers/Biomaterials Cluster (operated by
BIOPRO Baden-Wuerttemberg GmbH,
funded by the state of Baden-Wuerttemberg) supports research and development
projects that focus on the development of
innovative biomaterials through integrated
and cross-functional cooperation of partners along the whole value creation chain.
Such developments will increasingly optimise or replace traditional chemical production processes through the application
of biotechnological methods.
In our cluster the key focus is the development of (novel) performance bioplastics or the biotechnological processing of biomaterials like wood or natural
fibre composites. For example, two cluster
projects under the leadership of BASF
SE have successfully demonstrated the
production of high-quality succinic acid
and 1,5-diaminopentane by fermentation
in practical terms. Hence, the foundations
are in place for the production of innovative and marketable polyesters and polyamides based on renewable materials.
Further, the simultaneous involvement
of end-users in the cooperative development process of bio-based plastics enables
the early orientation of product specifications to the requirements of target markets such as the packaging, construction,
automotive and textile industries as well as
for special applications in healthcare and
medical technology. Such a cooperative
strategy will speed up the innovation process and will help to make market entry
easier for new products.
Marcel van Berkel,
Royal DSM BV
Focus on green materials
with better performance
Within DSM’s Emerging Business Area
“BioBased Products and Services” we
bring together DSM’s unique combination
of market insights in chemicals, monomers
and polymers, with extensive biotechnological and chemical synthesis competences. The aim of this unit is to identify
and establish businesses addressing the
unmet needs in attractive markets using
biotech or biobased solutions. Partnerships, in a variety of forms, and flexible
business models will form the foundation
of our business. DSM believes in Open
Innovation and that partnerships, both in
the technical and commercial arena, are
key to success in the emerging bio-based
economy. Business areas span from renewable analogues of existing chemicals,
to new molecules and polymers with differentiated performance. Activities include
as well development of formulations and
compounds, both in-house and with external parties that meet customer needs.
Our scope is of course global scope and
our doors are open to any sensible collaboration model along the emerging value
chains of the bio-based economy. We actively seek cooperation with other parties
and invite others to approach us with business plans and collaboration proposals.
Biowerkstoff-Report, Edition 8, March 2011 33
4. Biowerkstoff-Kongress
Sponsors
InfraServ GmbH & Co.
Knapsack KG
The Chemical Industrial Park
Knapsack – “integration of
industrial biotechnology into
existing value-chains”
The idea of producing chemical building blocks with the help of industrial biotechnology is becoming more and more
appealing to a majority of players in the
chemical industry in Europe. The dynamic European market is the ideal basis for
the commercialization of your bio-based
chemicals. This is due to the large amount
of available renewable feedstock and customers as well as a fast growing number
of potential bioplastics applications. The
Chemical Industrial Park Knapsack near
Cologne in Germany is offering companies a scale-up platform and access to
know-how for example for bioplastics
production and integration into existing
value-chains.
Location requirements for
bioplastics production
• Large market – proximity of consumers
with high purchasing power and green
incentive.
• Growing demand – increasing number
of potential applications and customers.
No large scale bioplastics production in
Europe yet – first mover.
• High quality infrastructure – easy access
for bulk logistics and adequate utilities
present (power, steam, waste water, security).
• Ample resources – large amounts of
raw materials need to be in close proximity.
• Knowledge and R&D – relevant chemical, biotechnology and process technology research facilities and qualified
workforce.
• Synergies – with existing oil based plastics industry and engineering know-how
in polymerization processes.
• Good services and plots – suitable
“plug&play” plots of land for chemical
production with all adequate services.
Europe’s leading industrial region
The Chemical Industrial Park Knapsack
is located in the federal state of North
Rhine-Westphalia, the most important
chemical and power location in Germany.
Just under 30 % of all foreign investments
are concentrated in this region due to it
having the largest buying and selling market. The Chemical Industrial Park Knapsack is located just 10 kilometers south
west of Cologne and has excellent access
to the Rhineland highway network enabling the fast transfer of goods to customers in all of Europe.
Well connected,
Direct highway access (Knapsack),
without having to deal with a cross town
link, is just four kilometers away. 3 international airports are available within 20
to 60 minutes. The chemical park’s own
public container terminal acts as a satellite
terminal for the regional mega-terminal
Cologne-Eifeltor (Köln-Eifeltor) as well
as for a second major terminal located 20
km away in the Harbor Köln-Niehl. This
harbor has connections to all of North
See’s overseas ports.
Well-established services
InfraServ Knapsack as the owner and
site operator offers a plug & play concept
for investors. The companies choose the
services that suit their business model
from a wide range offered by InfraServ
Knapsack. Major benefits are the site
overheads are shared thus become more
34 Biowerkstoff-Report, Edition 8, March 2011
cost-effective and the benefits from integrated know-how structures.
Our profile
As operator of the chemical park, InfraServ Knapsack offer circa 10 international companies operating in the chemical
industry (production of organic and inorganic chemicals, crop protection products,
fine and special chemicals, plastics) optimum opportunities to operate their production plants. However, InfraServ Knapsack does not only serve customers in the
chemical park, but they offer a full range
of services from just one source to customers outside the park as well. Services
include plant planning and construction as
well as the maintenance and certification
of industrial plants. InfraServ Knapsack
can draw on their decades of practical experience in this sector.
Contact:
InfraServ GmbH & Co. Knapsack KG Owner and
operator of the Chemical Park
Mr. Pierre Kramer
Industriestr. 300
D-50354 Huerth
Phone: +49 (0)2233 4863 – 43
E-mail: pierre.kramer@infraserv-knapsack.de Internet:
www.infraserv-knapsack.de
International Congress on Bio-based Plastics and Composites
Sponsors
PROGANIC®:
a 100 % statement
What does a well-established injection
molder with 62 years of history, whose
business is driven by the sale of consumer
goods with chic designs, do for an encore?
For Germany’s Propper, the answer was to
create a proprietary bioplastic, establish a
subsidiary and brand around this material,
and then sell it to licensees. The marketing
proof will be on store shelves around the
world in the next months as the company completes its multi-year development
project and presents the first commercial
applications. Even before it realized any
revenue with the new bioplastic projects,
it already had reaped a host of awards, including the 2010 Biomaterial of the Year
prize at the Hannover trade fair earlier this
year —the world’s largest industrial trade
fair— and the Home Style Award 2010 at
a recent consumer goods fair in Shanghai.
The company’s intent is simple but
profound: offer a 100% carbon neutral
alternative for plastic consumer goods,
and be profitable at it. PROGANIC®´s
proprietary compounds consist of bioplastics PLA and PHA plus natural waxes
and minerals. The PROGANIC® material
processes on standard inject molding and
extrusion machinery and molds/tooling.
Heat resistance is to 110°C, and it is food
safe and UV resistant. It is durable as well,
with a modulus of 4300 N/
mm2, higher than that of
ABS or PS, and a Charpy
impact strength that falls between that of those two standard plastics. PROGANIC®
already has had the material
certified to DIN 14851/2 for
home composting, so this is
not another “biodegradable”
product that needs to land in
one of the few commercial
composting facilities to truly
degrade. Only natural fillers
and colorants or other additives are used. It degrades
similar to wood with full biodegration in less than 12 months at 20°C,
faster than spruce at a temperature where
most bioplastics do not even begin to degrade. Composting is CO2-neutral with no
residue, and the material also be burned
in CO2 neutral. It can be used without restriction to make food packaging and children‘s toys.
Out of the lab and into the market
During 2011 PROGANIC® expects
200 to 300 products to be commercially
available with a global reach. All of these
applications will be marketed with the
PROGANIC® label developed to emphasize the unparalleled biodegradability of its material. This guarantees that
all partners will deliver the same message to the consumers. These partners
are many and large and include DIY
supplier OBI, Bauhaus, lawn and garden products supplier Scotts, Japanese
housewares supplier EntreX, Marks
& Spencer and more. Toys, brushes,
brooms, garden tools and accessories,
flowerpots, water cans, and more all
will be molded and marketed using the
material. Interested companies are cordially invited to broaden this „hall of
fame“.
Author: Matthew Defosse
Contact:
PROGANIC GmbH & Co. KG
Kishwar Zuberi
Münchner Straße 41
D-86641 Rain am Lech
zuberi@proganic.de
Phone: +49 (0)9090 9698 0
Internet: www.proganic.de
More news: www.bio-based.eu/news
Biowerkstoff-Report, Edition 8, March 2011 35
4. Biowerkstoff-Kongress
Twin screw extruder ZSK Mc18 with specific torque of 18 Nm/cm³
Sponsor
Innovation Award
Coperion GmbH
Coperion: integrated system solutions · unique process engineering
and know-how · global presence
In Coperion, formerly Werner &
Pfleiderer, you have a partner on hand
to provide the optimum solution to every compounding task. This ranges from
special applications on laboratory scale to
industrial-scale production extruders. As
pioneers in the development of the closely intermeshing, co-rotating twin screw
extruder, we have unique expertise and
experience in this field. Since the 1950s,
Coperion has continued to set new standards in processing machinery and plant
design for compounding technology. We
plan and implement compounding systems for the plastics, chemicals and food
industries which are tailored precisely to
our customers’ applications. Over 10,000
compounding systems delivered all over
the world are proof of our unique system
and process competence.
Processing of biodegradable
products
Typical applications for the processing of biodegradable products
Processing of biodegradable products
makes very high demands on the compounding process because of the variety
of possible base polymers and the great
differences in the formulation mixtures.
Every process step in a biodegradable
products processing plant must be adapted exactly to the desired mechanical properties of the end product.
We have built up a comprehensive
know-how for the processing of biodegradable products with numerous implemented plants. Our specialists also benefit
from our years of experience in the fields
of cooking extrusion and plastic compounding which we gathered under our
former name Werner & Pfleiderer.
Our twin screw extruders are the heart
of the processing plants for biodegradable products. The modular structure of
the process section enables individual adaptation to every application so that optimal product qualities are achieved. Apart
from the extruder, we also provide the
entire plant periphery from the raw material feeding to pelletizing and drying of
the pellets. Alternatively, it is possible to
produce biodegradable products by direct
extrusion.
• Plastics with granular starch as a biodegradable filler
• Starch-based loose fill
• Thermoplastic starch
• Polylactide (PLA), PVOH, synthetic copolyester, PBS, PHA, PCL, CA
• Compounds of various biomaterials
• Compounds of plastics and biomaterials
• Pelletizing of PLA, polymerization of
PLA
Contact
Coperion GmbH
Competence Center
Compounding & Extrusion
Theodorstraße 10
70469 Stuttgart
Uta Kühnen
Tel.: +49 (0) 711 897 – 3183
uta.kuehnen@coperion.com
info@coperion.com
www.coperion.com
3
2
Typical set-up for the production
1
of biodegradable products
C
1 Starch / powder premix
6
2 Plasticizer / liquid additives
3 Polymer pellets
5
4 Twin screw side-feeder ZS-B
5 Atmospheric degassing
7 Die head
8 Water bath
9
7
6 Vacuum degassing
4
10
8
9 Airknife
10 Strand pelletizer
Typical set-up for the production of biodegradable products
1 Strach / powder premix I 2 plasticizer / liquid additives I 3 polymer pellets I 4 twin screw side-feeder ZS-B I
36 Biowerkstoff-Report,
8, March
2011
5 Edition
Atmospheric
degassing
I 6 Vacuum degassing I 7 Die head I 8 Water bath I 9 Airknife I 10 Strand pelletizer
International Congress on Bio-based Plastics and Composites
Partners
Die AVK stellt sich vor
Mitglieder
Die AVK vertritt Rohstofferzeuger
und -lieferanten sowie Verarbeiter von
verstärkten und gefüllten Kunststoffen
und technischen Duroplasten. Ferner
sind Maschinenbauer, Ingenieurbüros,
Prüfämter und wissenschaftliche Institute
Mitglieder der AVK.
Partners
CIA) (www.eucia.org) und einer der vier
Trägerverbände des Gesamtverbandes
der Kunststoffverarbeitenden Industrie (GKV). Nut­zen Sie auch die von der
AVK moderierte Fachgruppe „Faserverbundwerkstoffe“ in XING.
Kontakt:
AVK –
Industrievereinigung Verstärkte Kunststoffe e.V.
Am Hauptbahnhof 10
D-60329 Frankfurt
Tel.: +49 (0)69 271 077 – 0
Fax: +49 (0)69 271 077 – 10
E-Mail: info@avk-tv.de
Internet: www.avk-tv.de
Cluster Biopolymers/
Biomaterials
Leistungsspektren
• Bildung
• Die AVK veranstaltet Fachseminare in
• Zusammenarbeit mit Anwendern, Experten und wissenschaftlichen Instituten,
sowie eine internationale Jahrestagung in
Anbindung an die Messe COMPOSITES
EUROPE. Im Rahmen der Jahrestagung
wird auch der AVK-Innovationspreis an
exzellente Neuentwicklungen (Produkte,
Verfahren) vergeben.
Beratung
Bei Konflikten mit Lieferanten oder
Kunden über Materialeigenschaften o. ä.
stellt die AVK einmal jährlich kostenlos für
Mitglieder einen Gutachter für ein klärendes Parteiengespräch zur Verfügung. Die
AVK hat die Funktion eines Abmahnvereins. Die AVK schützt ihre Mitglieder vor
unlauterem Wettbewerb
Information/Kommunikation
Die Arbeitskreise der AVK bieten Hilfestellung zur Lösung der zentralen Fragen der Branche. Sowohl technische als
auch Marketing-Fragestellungen rund um
verstärkte und gefüllte Kunststoffe werden
bearbeitet. Die Marketingarbeitskreise der
AVK informieren potenzielle Kunden objektiv über die Einsatzmöglichkeiten von
verstärkten Kunststoffen und technischen
Duroplasten.
Networking/Kooperationen
Die AVK hat enge Kontakte zu staatlichen Stellen auf Landes-, Bundes- und
EU-Ebene. Als AVK-Mitglied arbeiten
Sie stimmberechtigt in DIN und CENAusschüssen mit.
Die AVK ist Mitglied in der European
Composites Industry Association (Eu-
More news: www.bio-based.eu/news
Kontakt:
CLIB2021
Manfred Kircher
Völkinger Straße 4
D-40219 Düsseldorf
E-Mail: manfred.kircher@evonik.com
Internet: httpw.clib2021.d
CLIB2021
CLIB2021, das Cluster industrielle
Biotechnologie, ist ein Verein mit mehr
als 70 Mitgliedern vornehmlich der Industrie und kleinen und mittelständigen
Unternehmen (KMU). Letztere bilden mit
50% der Mitgliedschaft die größte Gruppe
und bringen eine enorme Vielfalt an Technologien und Produkten in das Cluster.
Weitere Mitglieder sind Großunternehmen wie Altana, Evonik, Bayer MS, Bayer
TS, Cognis, Henkel und Lanxess, akademische Einrichtungen sowie Investoren
und Infrastruktur. CLIB2021 initiiert und
begleitet Forschung und Entwicklung
(F&E) in den Bereichen nachwachsender Rohstoffe, Monomere & Polymere,
Feinchemikalien, Pharmazeutika und Kosmetika; wenn möglich werden öffentliche
Fördergelder vermittelt. Mit einem akkumulierten jährlichen Umsatzvolumen von
ungefähr 65 Mrd. € bietet CLIB2021 einen
attraktiven Markt für die industriellen
Biotechnologie. Seit 2008 hat CLIB2021
F&E-Vorhaben von rund 50 Mio. € Gesamtvolumen initiiert.
Der Cluster verfolgt zunehmend eine
internationale Strategie. Regionen, die reich an nachwachsenden Rohstoffen sind
und zugleich eine F&E-Infrastruktur bieten, die für die Mitglieder F&E-Partner
sein kann, werden gezielt eingebunden.
Um diese Entwicklung zu unterstützen
wurde 2009 in Alberta/Kanada und 2010
in Moskau/Russland ein Büro eröffnet.
The Cluster Biopolymers/Biomaterials supports R&D projects with partners
across the entire value-added chain to develop innovative biomaterials. In this context, traditional chemical processes are being increasingly optimized or replaced by
the use of biotechnological methods. The
development of bio-based plastics in joint
projects integrating research facilities and
end users makes it possible to match the
requirements of the target markets at an
early date, thus facilitating the launching
of new products in the market. The main
focus here is on performance plastics such
as polyesters and polyamides.
Membership is free of charge.
Contact:
Markus Götz
Cluster Biopolymers/Biomaterials
c/o BIOPRO Baden-Württemberg GmbH
Breitscheidstraße 10
70174 Stuttgart
Fon +49 711 218185-14
biopolymere@bio-pro.de
www.biopolymerics.de
EuropaBio
EuropaBio’s mission is to promote an
innovative and dynamic biotechnologybased industry in Europe.
EuropaBio, (the European Association for Bioindustries), was established in
1996 and has 69 corporate and 7 associate
Biowerkstoff-Report, Edition 8, March 2011 37
4. Biowerkstoff-Kongress
members operating worldwide, 4 Bioregions and 26 national biotechnology associations representing some 1800 small and
medium sized enterprises.
EuropaBio represents the interests of
the industry towards the European institutions so that legislation encourages and
enables biotechnology companies in Europe to innovate and provide for our society’s unmet needs.
Our corporate members are involved in
a wide range of activities in human and
animal healthcare, diagnostics, bio-informatics, chemicals, biofuels, crop production, agriculture, food and environmental
products and services. EuropaBio also
welcomes associate members such as
inter­national commercial, financial, asset
management and other service-providing
companies, regional biotechnology development organisations and scientific institutes. The common denominator among
all our members is the use of biotechnology at any stage of research, development
or manufacturing.
The priorities of the EuropaBio Industrial Biotech Council for 2010 include
the implementation of the Lead Marked
Initiative (LMI) for biobased products,
funding for “pilot” biorefineries in Europe, improved access to raw materials
and recommendations for the new CAP.
Following a successful launch in 2008,
EuropaBio is also continuing to develop
the European Forum for Industrial Biotechnology (EFIB), which this year will
be held between 19 and 21 October in the
historic city of Edinburgh, Scotland, as
the key EU conference for industrial biotechnology (www.efibforum.com)
For more information about EuropaBio
please visit www.europabio.org
Contact:
EuropaBio
6 Avenue de l’Armee
BE-1040 Brussels
Phone: +32 (0)2739 1184
Fax: +32 (0)2735 4960
Mobile: +32 (0)476 607 135
E-mail: j.dupont@europabio.org
Internet: www.europabio.org
TM
European Bioplastics e.V.
A world without plastics? Hardly possible to imagine. Plastics make up an integral part of many products surrounding
us in everyday life. So why not combine
the excellent performance of plastics with
the benefits of nature and its resources –
bioplastics! European Bioplastics defines
bioplastics as polymers that are bio-based,
biodegradable, or both. Bioplastics’ numerous advantages are the primary reason
for the industry’s dynamic development
and growth rate of roughly 20 percent per
year.
European Bioplastics is the European
association that represents the interests of
the industry along the complete bioplastics‘ value chain. Its members produce,
refine and distribute bioplastics. With
around 70 members, it is currently the
largest association within the bioplastics
industry.
Bioplastics drive the evolution of plastics and contribute significantly to a sustainable society. European Bioplastics’
mission is to align the bioplastics value
chain and work in partnership with various stakeholders towards a favourable
landscape to facilitate the growth of the
bioplastics market. Striving to satisfy the
societal demand for sustainable products
and solutions in the plastics markets, European Bioplastics European Bioplastics
• supports and promotes technological
innovation of bioplastics to improve the
balance between environmental benefits
and environmental impact.
• supports the sustainable growing of
biomass crops for the production of
bio-based plastics.
• promotes efficient recovery, re-use and
recycling systems
• supports standards, certifications and
guidelines for transparent claims about
bioplastics.
• As a knowledge partner to all interested
stakeholders, European Bioplastics is
the platform
• to represent, and gain knowledge about,
the industry as a whole
38 Biowerkstoff-Report, Edition 8, March 2011
• to connect to others in the bioplastics
value chain
• for a dynamic and open stakeholder dialogue regarding overarching issues.
European Bioplastics
Marienstraße 19-20
Germany, 10117 Berlin
info@european-bioplastics.org
www.european-bioplastics.org
Fachagentur
Nachwachsende
Rohstoffe e.V. (FNR)
Im Auftrag des Bundesministeriums
für Ernährung, Landwirtschaft und Verbraucherschutz (BMELV) koordiniert die
Fachagentur Nachwachsende Rohstoffe
e.V. (FNR) seit 1993 Forschungs-, Entwicklungs- und Demonstrationsprojekte
im Bereich nachwachsender Rohstoffe.
Als Projektträger verwaltet die FNR
zur Zeit ein jährliches Fördermittelvolumen von 53 Millionen Euro, die aus dem
Bundeshaushalt zur Verfügung gestellt
werden.
Projektförderung
Wichtigstes Betätigungsfeld der FNR ist
die fachliche und administrative Betreuung
von Forschungsvorhaben zur Nutzung
nachwachsender Rohstoffe. Das Förderprogramm „Nachwachsende Rohstoffe“
des BMELV gibt dafür die Regeln vor.
Derzeit betreut die FNR über 400 Forschungsprojekte. Allen Projekten gemeinsam ist, dass Ansätze und Methoden
entwickelt werden, um heimische nachwachsende Rohstoffe voranzubringen.
Durch die Ausschreibung von bestimmten
Themen macht die FNR immer wieder
gezielte Vorgaben für die Ausrichtung der
Forschungstätigkeit zu nachwachsenden
Rohstoffen in Deutschland.
Verbraucherinformation
Ein wichtiger Arbeitsschwerpunkt der
FNR sind die Beratung und Verbraucherinformation. Die FNR sammelt aktuelles
Fachwissen zum Thema und stellt dieses
International Congress on Bio-based Plastics and Composites
über Veröffentlichungen interessierten
Wissenschaftlern, Privatpersonen, Politikern, Wirtschafts- und Medienvertretern
zur Verfügung. Über Messen und Ausstellungen macht die FNR auf das Potenzial
nachwachsender Rohstoffe aufmerksam.
Und die FNR betreibt eine gezielte Verbraucherinformation zu Produkten aus
nachwachsenden Rohstoffen.
International
Die FNR betätigt sich auch auf europäischer Ebene. Hier koordiniert sie
verschiedene EU-Projekten zum Thema
Nach­wachsende Rohstoffe.
Aktionsplan der Bundesregierung
zur stofflichen Nutzung
nachwachsender Rohstoffe
Wichtige Impulse erhält die Arbeit
der FNR durch den im letzten Jahr ver­
abschiedeten Aktionsplan der Bundesregierung zur stofflichen Nutzung von
nachwachsenden Rohstoffen.
Gerade zur Unterstützung des Bereichs
Biowerkstoffe sind im Aktionsplan mehrere Maßnahmen, vom Ausbau der Forschungsförderung bis zum Aufbau eines
Biopolymernetzwerkes, festgeschrieben.
Kontakt:
Fachagentur Nachwachsende Rohstoffe e.V. (FNR)
Hofplatz 1
D-18276 Gülzow
Tel.: +49 (0)384 36 930 – 103
Internet: www.fnr.de, www.biowerkstoffe.info
Partners
fügbarer Biopolymere entwickelt. Produkte sind z. B. ein Spritzgießcompound
auf Celluloseacetatbasis, ein Foliencompound mit Polymilchsäure, Trägerfolien
für Selbstklebebänder, Kaschierfolien für
bioabbaubare Windeln und ein hydrophobierter Stärkeschaum zur Ziegelporosierung.
Unser fundiertes Wissen über natürliche Füll- und Verstärkungsstoffe sowie
weitere Additive für leicht verarbeitbare
Werkstoffe nutzen wir zur anwendungsbezogenen Optimierung.
Zurzeit entwickeln wir neue Synthesen
für technische Polymere aus nachwachsenden Rohstoffen. Ein aktuelles Projekt
realisiert den Prozess vom nachwachsenden Rohstoff (Bernsteinsäure) bis hin zu
Werkstoffen (Polyamide und Polyester).
Begleitend zur Prozess- und Werkstoffentwicklung ermitteln wir mechanische
und tribologische Werkstoffkennwerte
und führen Analysen zur Rheologie, zum
thermischen Verhalten, zur chemischen
Zusammensetzung sowie zur Struktur
durch.
Kontakt:
Fraunhofer-Institut für Umwelt-,
Sicherheits- und Energietechnik UMSICHT
Osterfelder Str. 3
D-46047 Oberhausen
Carmen Michels
Tel.: +49 (0)208 859 812 – 65
Fax: +49 (0)208 859 812 – 68,
E-Mail: carmen.michels@umsicht.fraunhofer.de
Internet: www.umsicht.fraunhofer.de
The IAR Cluster puts its experience
and know-how at the disposal of businesses and research laboratories wishing
to exploit the wealth of plant-based assets
and develop R&D projects in the field of
non-food exploitation of agricultural resources. The IAR cluster performs various
missions:
• Management of R&D projects, from
the idea... to the funding
• Coordination and networking of interregional skills
• Development of international collaborations and delegations
• Provision of information and strategic
intelligence
• Promotional and public relations activities
Since the cluster’s creation 90 R&D
projects are certified (total budget 266 M€)
within which 60 projects are financed. The
public funding commitment (ANR and
FUI) represents 35 to 40 % of the total
budget.
Today, the IAR Cluster counts more 119
members (the list of members is downloaded on the website)
Contact:
Industries and Agro-Ressources Cluster
50-52, Bvd Brossolette
BP05 – F-02930 LAON Cedex
Phone: +33 (0)323 232 525
Fax: +33 (0)323 232 526
E-mail: contact@iar-pole.com
Internet: www.iar-pole.com
IAR
Fraunhofer-Institut für
Umwelt-, Sicherheits- und
Energietechnik UMSICHT
Fraunhofer UMSICHT entwickelt
funktionalisierte Kunststoffcompounds
auf Basis fossiler und nachwachsender
Rohstoffe. Von der Polymersynthese bis
zur Anwendung betrachten wir dabei die
gesamte Wertschöpfungskette.
Für den verstärkten Einsatz nachwachsender Rohstoffe haben wir eine Reihe von
Compounds auf Basis kommerziell ver-
More news: www.bio-based.eu/news
The “Industries and Agro-Resources”
Cluster unites stakeholders from research,
higher education, industry & agriculture
in the Champagne-Ardenne and Picardy
regions of France around a shared goal:
the added-value non-food exploitation of
plant biomass.
The IAR cluster has defined 4 strategic fields of activity under the biorefinery
concept:
• Bioenergy
• Biomaterials
• Biomolecules
• Green ingredients
•
kunststoffland
NRW e.V.
Im Verein kunststoffland NRW haben
sich Akteure aus der gesamten Kunststoffbranche in NRW, also große Erzeuger,
kleine und mittlere Verarbeitungsbetriebe, der Maschinenbau, Forschung und
Wissenschaft, Aus- und Weiterbildung,
branchennahe Zulieferer, Finanzdienstleister sowie Verbände und Organisationen zusammengefunden, um das gemein-
Biowerkstoff-Report, Edition 8, March 2011 39
4. Biowerkstoff-Kongress
same Ziel „Stärkung von Kompetenz und
Exzellenz der Branche“ zu verwirklichen
und davon zu profitieren!
kunststoffland NRW betreibt die Vernetzung seiner Akteure und bietet dazu die
Plattform für Information, Kommunikation, Vernetzung und Koope­ration. Über
Politikebenen hinweg setzt sich kunststoffland NRW für Rahmenbe­dingungen
ein, die erfolgreiches Wirtschaften, Bilden
und Forschen in NRW und von NRW aus
fördern.
Für Unternehmen stellt kunststoffland
NRW Informationen, Veranstaltungs­
angebote und ein breites Spektrum an
Vermittlungs-, Beratungs- und Dienst­
leistungen zur Verfügung, z.B. in den
Themenfeldern Innovations- und Kooperationsmanagement, Finanzierung und
Förderung, Außenwirtschaft, Unternehmensnachfolge, Recruiting und Weiterbildung.
Für Industrie, Bildung und Wissenschaft
übernimmt kunststoffland NRW e.V. eine
Brückenfunktion: Er trägt zur Stärkung
von Forschung, Aus- und Weiterbildung
bei, sorgt für Transparenz in der Wissenschafts- und Bildungslandschaft des
Landes und fördert den Transfer in die
Wirtschaft. Durch Zusammenarbeit von
kunststoffland NRW mit bestehenden
regiona­len Kompetenznetzen werden die
Branche und ihre Akteure landesweit und
regional gestärkt.
Der Verein kann für Politik und Verbände erster Ansprechpartner für die gesamte
Wertschöpfungskette sein. Mit professioneller Presse- und Öffentlichkeitsarbeit,
u. a. auch über das Internetportal www.
kunststoffland-nrw.de, stärkt kunststoffland NRW das Image und die positive
Wahrnehmung der Branche nach innen
und außen.
Geschäftsführerin des Vereins ist Dr.
Bärbel Naderernaderer@kunststofflandnrw.de
Clustermanagement Kunststoff.NRW
kunststoffland NRW stellt auch das
Clustermanagement für das Landescluster
„Kunststoff.NRW“, das zu den herausgehobenen „profilbildenden“ Clustern in
Nordrhein-Westfalen gehört. Die Mitglieder des Vereins können sich somit aktiv für
die Gestaltung „Ihres“ Branchenclusters
einbringen. Mitglieder können darüber
hinaus Dienstleistungen des Vereins kos-
tenlos bzw. zu bevorzugten Bedingungen
in Anspruch nehmen. Mitglied werden
und Mitmachen im Verein lohnt sich!
Kontakt:
Antje Lienert
E-Mail: lienert@kunststoffland-nrw.de
kunststoffland NRW e.V.
Grafenberger Allee 277
40237 Düsseldorf
Telefon: (0211) 2 10 940-15
Fax. (0211) 2 10 940-20
Internet: www.kunststoffland-nrw.de
• Joint development of UK Home Composting logo and test method
• Facilitator for UK Renewable Packaging
Group
• Helped setup supply chain for bio-based
packaging to London Olympics
• Steering group on Defra projects on
Oxodegradables and Bioplastics
Contact:
NNFCC, Biocentre, York Science Park,
Innovation Way, Heslington, York, YO10 5DG.
Phone: +44 (0)1904 43 51 82
Fax: +44 (0)1904 43 53 45
E-mail: enquiries@nnfcc.co.uk
Internet: www.nnfcc.co.uk
NNFCC
The NNFCC is the UK‘s National
Centre for Biorenewable Energy, Fuels
and Materials. We are committed to the
sustainable development of markets for
biorenewable products. We promote the
benefits of biorenewable energy, fuels and
materials for enhancement of the bioeconomy, environment and society.
The NNFCC has earned a unique position and reputation as the UK’s leading authority in biorenewable technologies and
their applications. Our commercial services have been tailored to assist organisations in understanding the opportunities
and overcoming the challenges presented
by the emerging biorenewables sector.
The NNFCC works at the forefront of
the emerging field of bio-based energy
and its intrinsic connection with chemicals and materials. We have an excellent
track record in the development of the
market because of our relationships with
Industry, Government and Research Institutions, providing tangible benefits to
everyone in the sector.
We are focused on providing knowledge along supply chains and across biomass based sectors. Our core services are
analysis and assessment of technology development and intellectual property, supply chain dynamics, market development
and opportunities, feedstock availability
and sustainability as well as end of life options.
If you want to develop bioplastics in the
UK, talk to us first:
• European Bioplastics CEBON member
40 Biowerkstoff-Report, Edition 8, March 2011
Smithers Rapra
Smithers Rapra – world leading rubber,
plastic & composite consultancy provides
comprehensive independent services covering, testing, analysis, processing & research for the polymer industry & industries using plastics, rubber or composites
in any component, product or production
process.
Working for industry Smithers Rapra
supports a varied selection of industries
requiring polymer specialisation. End-user
industries include: pharmaceutical, medical, Industrial, consumer, automotive &
transport. Smithers Rapra has a unique
mix of on-site expertise & facilities enabling the
application of an integrated approach
to problem solving. The company’s core
capabilities lie in the skills & experience
of its people, many of whom are recognised & accepted as leading experts in their
field. Clients can commission individual
services, specialist consultancy or participate in multi-client research projects.
Assistance in obtaining funding from the
European Community & UK government
&/or industry, to progress research & development of polymer technology & applications can be provided.
Testing, analysis & calibration services
The physical testing, analytical & chemi-
International Congress on Bio-based Plastics and Composites
cal laboratories at Smithers Rapra are
UKAS accredited & can provide UKAS
certification. Testing is also instigated
to a range of national & international
standards & those tailored to an individual company’s requirement. A variety of
physical tests assess material properties
against abrasion, fatigue, impact & stress
& their performance in products in particular conditions. Smithers Rapra’s analytical & chemical laboratories undertake a
variety of tasks including material identification & characterisation using a range of
advanced chromatographic, spectroscopic
& thermal techniques.
Consultancy services Smithers Rapra’s
plastics, rubber & composite technical services can prevent, identify or solve problems & improve on or ensure continuing
quality. Supported by comprehensive testing, analysis & information facilities, technologists can tackle most polymer related
projects. Whilst details of specialist services are available on the web www.rapra.net
the following represents Smithers Rapra’s
core technical expertise:
Fault & failure diagnosis, Materials selection & application support, Product
design & development, Manufacturing
process assessment & development, Prototyping & small scale/specialist production, Engineering & tooling, Material &
Product testing & analysis. For further
details on all Smithers Rapra’s consultancy
services
Contact:
Smithers Rapra, Shawbury
Shropshire SY4 4NR
Phone: +44 (0)1939 252 413
E-mail: info@rapra.net
Internet: www.rapra.net
Stiftung Arbeit und
Umwelt der Industriegewerkschaft
Bergbau, Chemie, Energie (IG BCE)
Die Stiftung Arbeit und Umwelt der
Industriegewerkschaft Bergbau, Chemie,
More news: www.bio-based.eu/news
Partners
Energie (IG BCE) wurde 1990 gegründet. Seitdem engagiert sich die Stiftung
mit ihrem Leitmotiv „Arbeit und Umwelt“ für eine Nachhaltige Entwicklung in
Wirtschaft und Gesellschaft.
Unser Ziel ist, Wirtschaft, Politik und
Gesellschaft für eine vernünftige Balance
aus wirtschaftlicher, sozialer und ökologischer Entwicklung zu sensibilisieren und
ein vom Ressourceneinsatz entkoppeltes
Wirtschaftswachstum mit „Guter Arbeit“,
sozialer Sicherheit sowie einer gesunden
und intakten Umwelt zu verbinden.
Hierzu verleiht die Stiftung einen Umweltpreis und ist vorrangig konzeptionell
und operativ tätig mit eigenen Projekten,
Veranstaltungen und Studien. Sie berät bei
der Einführung und Verbindung von vorsorgendem Umweltschutz und energieund ressourceneffizienten Wirtschaften
mit sozial verträglicher Unternehmenskultur.
Mit Hilfe von Spenden und einem
Förderkreis realisieren wir ökologisch
wirksame, sozial gerechte und ökonomisch sinnvolle Projekte sowie innovative
Umweltpreise.
Unterstützen Sie uns, damit die natürlichen Lebensgrundlagen erhalten bleiben
und gute Voraussetzungen für die heutigen und künftigen Generationen geschaffen werden.
STIFTUNG ARBEIT und
UMWELT der IG BCE
Königsworther Platz 6
30167 Hannover
Tel: +49-(0)511-7631-433
Fax: +49-(0)511-7631-782
Email: umweltstiftung@igbce.de
Internet: www.arbeit-umwelt.de
Verband der Deutschen
Holzwerkstoffindustrie
e. V. (VHI)
genüber der Öffentlichkeit, den staatlichen Organen und anderen Wirtschaftszweigen.
Die jüngste Fachgruppe unter dem Dach
des VHI ist die der Holz-Polymer-Werkstoffe. Führende mitteleuropäische Hersteller dieses neuen Werkstoffes schlossen
sich im November 2005 dem Verband
an, um vorrangig die Normungsarbeiten
zu Holz-Polymer-Werkstoffen abzustimmen, Forschungsarbeiten zu initiieren, den
Markteintritt von WPC-Produkten durch
Marketingmaßnahmen zu erleichtern und
ein Qualitätssiegel zu schaffen.
Die spezifischen Tätigkeitsfelder des
Verbandes sind u. a.:
• Betreuung der Unternehmerforen
„Span- und Faserplatten“, „Sperrholz“,
„Holz-Polymer-Werkstoffen“, „Innentüren“ sowie der Ausschüsse für „Technik“ und „Rohstoffe“
• Beratung auf wirtschaftlichem, technischem und politischem Gebiet
• Initiierung von Forschungsvorhaben
und Marktstudien
• fachspezifische Stellungnahmen zu europäischen und nationalen Richtlinien-,
Gesetzes-, oder Verordnungsentwürfen
• Branchenvertretung
in
Ausschüssen von staatlichen Einrichtungen,
Forschungsinstitutionen,
nationalen
und europäischen Normungsgremien,
Fachver­­bän­den und sonstigen relevanten Institutionen.
• branchenbezogene Öffentlichkeitsarbeit
und Marketing
Kontakt:
Verband der Deutschen
Holzwerkstoffindustrie e.V.
Vorsitzender: Hubertus Flötotto
Geschäftsführer: Dr. Peter Sauerwein
Ursulum 18
D-35396 Gießen
Tel.: +49 (0)641 97 547 – 0
Fax: +49 (0)641 9 754 799
E-Mail: vhimail@vhi.de
Internet: www.vhi.de
ASSOCIATION OF THE GERMAN
WOOD-BASED PANEL INDUSTRIES
Der Verband der Deutschen Holzwerkstoffindustrie e.V. (VHI) vertritt die gemeinsamen Brancheninteressen der
Hersteller von Span- und Faserplatten,
Sperrholz,
Holz-Polymer-Werkstoffen
und Innentüren im In- und Ausland ge-
Biowerkstoff-Report, Edition 8, March 2011 41
4. Biowerkstoff-Kongress
Media partners
bioplastics MAGAZINE
Founded in 2006, bioplastics magazine
is the only trade magazine worldwide that
is exclusively dedicated to bioplastics, i.e.
plastics from renewable resources and
biodegradable plastics including natural
fibres.
bioplastics magazine covers all aspects
of these biobased plastics and biodegradable plastics, many of which fulfilling both
aspects.
The magazine keeps its readers updated
about the different bioplastic resins which
are available and will come up in future,
about chemistry, properties and availability. bioplastics magazine covers the processing techniques of these fascinating
materials such as film blowing, extrusion,
thermoforming, blow moulding, injection
moulding etc. A large part in bioplastics
magazine is dedicated to current and future applications. As of today, these are
mainly – but not only – packaging applications. Even producers of consumer
products such as covers for cellphones,
laptop-computers or toys are interested
in this family of materials as well as the
automotive industry and many others – or
they are already using bioplastics in certain products. Another quite important
aspect is the political situation. bioplastics
magazine reports about frame conditions,
regulations, or the certification of “compostable plastics“ according for example
to the European standard EN 13432?
bioplastics magazine is THE new information platform for all parties involved.
It is read by decision makers in all parts
of this business, e.g. the raw material suppliers and compounders, machine and
mould makers, converters, brand owners,
the complete trade chain (wholesale and
retail) as well as scientists and politicians,
as bioplastics magazine is an independant
and neutral source of information.
With a print run of 5,000 (average, depending on large events like exhibitions
or conferences) the estimated number of
readers is much bigger, as many copies
of bioplastics magazine are circulated or
passed on to other interested readers.
Since its start in 2006 bioplastics magazine saw a very positive feedback from its
readers. The number of registered readers increased in the first two years by 30
% from issue to issue. In 2007 bioplastics
magazine won an Innovation Award from
“Initiative Mittelstand“, Germany. And
finally the 1st PLA Bottle Conference
(2007, Hamburg) as well as the 1st PLA
World Congress (2008, Munich), both
hosted by bioplastics magazine were great
successes.
The print magazine is published 6 times
a year in English language. Subscribers
get bioplastics magazine on their desk for
EUR 149.00. This also includes access to
the online archive with full-search functionality over all published issues.
Contact:
Bioplastics Magazine
Dr. Michael Thielen
Dammer Str. 112
D-41066 Mönchengladbach
Phone: +49 (0)2161 664 864
E-Mail: mt@bioplasticsmagazine.de
Internet: www.bioplasticsmagazine.de
EUWID Europäischer
Wirtschaftsdienst GmbH
Kontakt:
EUWID Europäischer Wirtschaftsdienst GmbH
Sven Roth, Marketing & Vertrieb
Bleichstraße 20-22
76593 Gernsbach
Tel.: +49 7224 9397 – 164
Fax: +49 7224 9397 – 906
E-Mail: sroth@euwid.de
Internet: www.euwid.de
forum
Nachhaltig Wirtschaften
Best-Practice-Beispiele, die zum
Nachahmen anregen.
forum Nachhaltig Wirtschaften ist
Themen- & Fachmagazin in einem: Im
Titelthema werden aktuelle Entwicklungen
42 Biowerkstoff-Report, Edition 8, March 2011
und Trends kritisch hinterfragt. Das Kapitel „Praxis“ gibt dem CSR-Manager und
Nachhaltigkeitsexperten das Werkzeug
für den erfolgreichen Berufsalltag in die
Hand. „Themen“ wie Energie & Klima,
Ressourcen- & Umweltschutz sowie ein
„Special“ und ein „Branchenreport“
bringen komplexe Sachverhalte auf den
Punkt. Ein „Serviceteil“ bietet Buchtipps,
Personalia sowie Veranstaltungshinweise.
Auf dem Online-Portal werden crossmedial tagesaktuelle Meldungen, Fachbeiträge, Unternehmensporträts und Veranstaltungen zum Thema Corporate
Social Responsibility publiziert.
Kontakt:
ALTOP Verlags GmbH
Marketing forum Nachhaltig Wirtschaften
Alistair Langer
Gotzinger Str. 48, D-81371 München
Tel.: +49 (0) 30 - 24 64 02 - 98
Mobil: +49 (0)160 963 956 – 14
E-Mail: a.langer@forum-csr.net
Internet: www.forum-csr.net
MATERIALSGATE –
Competence in Materials
Materialberatung, Materialrecherche
und Materialbeschaffung
Dr.-Ing. Christoph Konetschny
Jahnstraße 38, D-64846 Groß-Zimmern
Deutschland
Mobil: +49 (0)179 6926 853
E-Mail: konetschny@materialsgate.de
Internet: www.materialsgate.de
International Congress on Bio-based Plastics and Composites
MATERIALSGATE –
Competence in Materials
New Media
Publisher GmbH
Materials Consulting & Materials
Investigation
Contact:
New Media Publisher GmbH
Hinterfeld 4, D-41564 Kaarst
Tel.: +49 (0)2131 766 741
Fax: +49 (0)2131 766 742
Internet: www.plasticker.de
E-Mail: redaktion@plasticker.de
Dr.-Ing. Christoph Konetschny
Jahnstraße 38, D-64846 Groß-Zimmern
Germany
Mobil: +49 (0)179 6926 853
E-Mail: konetschny@materialsgate.de
Internet: www.materialsgate.de
Media partners
Technology Review
see advert (below)
Contact:
Technology Review
NCB-MARKETING **
MARKETING-CONSULTING **
Nicole Clasani-Briskot
Max-Planck-Weg 2
D-40789 Monheim am Rhein
Phone: +49 (0)2173 8950 650
Fax: +49 (0)2173 8950 651
Mobil: +49 (0)163 6688 133
E-mail: info@ncb-marketing.de
Internet: www.ncb-marketing.de
Testen Sie 3 Monate Vorsprung!
Exklus
Teilneh iv für
m
Biower er des
k
kongre stoffsses!
Als Publikation des renommierten
M.I.T. (Massachusetts Institute of
Technology) zeigen wir Perspektiven
für wirtschaftliches Wachstum und
geben wichtige Antworten auf die
Fragen der Zukunft.
Drei aktuelle Hefte im kostenlosen Vorteils-Paket werden
Sie überzeugen!
www.technology-review.de/BWK
Die Chancen früher begreifen.
Vorteils-Einladung:
Testen Sie jetzt Technology ReviewBiowerkstoff-Report,
3 Monate kostenlos
ohne
Risiko!
More news: www.bio-based.eu/news
Edition 8, March
2011 43
Standardization & Policy
How to Measure the bio-based content
Material Composition, Weight-%
PLA/PP fossil (50% PLA / 50% PP)
CA* (acetic acid fossil), average1
Ecovio (45% PLA/55% Ecoflex)
WPC (70 % wood / 30 % PP fossil)
WPC (30 % wood / 70 % PP fossil)
WPC (70 % wood / 30 % PVC fossil)
WPC (30 % wood / 70 % PVC fossil)
Composite Material
(40% GF / 30% PLA / 30% Ecoflex)
Composite Material
(40% NF/60% PP fossil)
I
biogene C-content
36.7 %
54.5 %
39.4 %
57.6 %
19.9 %
75.2 %
35.8 %
44.3 %
fossile C-content
63.3%
45.5 %
60.6 %
42.4 %
80.1 %
24.8 %
64.2 %
55.7 %
27.9 %
72.1 %
n different committees in Brussels
there is an ongoing discussion about
how to define and measure the biobased content of bio-based materials and
products. Examples were are the CEN/
BT/WG 209 M/429 working group working on a standardisation programme
for bio-based products (Brussels, CEN)
and the Industrial Task Force on Biobased Content of Materials and Products
(Brussels, European bioplastics), ended in
summer 2010.
One of the proposed definitions of ‘biobased’ is ‘derived from biomass’, which
is easy to comprehend. But what does it
mean? The total of the plant biomass that
is used? And with this not only the carbon
atoms, but also the oxygen, hydrogen etc.,
which are bound in the bio-molecules? Or
should we only consider the carbon, after
all, the goal is to avoid CO2 emissions?
The answers to these questions immediately depend on the applied measuring
method. One possibility is to follow the
US standard ASTM-D6866, which labels
the percentage of the ‘renewably sourced
carbon’ in the material or product, identified by the 12C/14C method. Only the
biogenic carbon counts as biomass here,
other constituent parts are not included.
Yet carbonates of natural mineral origin
get a special treatment: “They are to be excluded“, and consequently don’t raise the
12
C content.
By choosing the US route, however, one
often arrives at unexpected values for the
biogenic part so interpreted, which are
hard to comprehend at first (see table).
How does a material made from 50%
PLA and 50% PP become only 36.7%
bio-based by measuring the ‘green carbon
content’? Due to the fact that in the PLA
relatively more oxygen is bound than in
PP. But this biogenic oxygen also substi-
Biogenic Carbon-content for different Bio-based
Plastics and Composites:
The following average (total) carbon contents served as a basis for the
calculations:
Polylactide acid (PLA): 50%, Polypropylene (PP): 86%, Polyvinylchloride
(PVC): 38.4%, Ecoflex: 62.9%1 , Cellulose Acetate (CA)*: around 50%1, wood
and natural fibres (NF): 50%; glass fibre, talkum, other minerals (according to
ASTM-6866 also natural mineral carbonates): 0%
*: Cellulose Acetate (CA): carbon content depends on
substitution level from acetic acid, average here 2.51
1
: Data from Rodion Kopitzky, Fraunhofer UMSICHT
tutes fossil carbon (12C). Why shouldn’t it
count?
Furthermore an optimum saving of
CO2 emissions is not necessarily accomplished by substituting as much fossil carbon in the material or product as possible.
The level of CO2 emission that would be
really be saved with the use of bio-based
plastics can only be determined by a technically demanding and costly LCA, which
takes into account the CO2 emissions over
the entire process chain.
But why not simply measure and label
the entire biomass content? The values
would be easy to comprehend and could
easily be conveyed in communication with
clients.
From a technical point of view the calculation of the biogenic mass fraction is
not difficult. And furthermore producers would not have to disclose all of their
trade secrets about additives applied in
small portions. Knowing the biomass
share, the content of biogenic carbon
can be calculated, and based on that, the
12
C/14C ratio can be predicted – with the
12
C/14C method the concordance of the
theoretically determined values with the
reality in the material or product can be
controlled any time.
Our recommendation:
Define, measure and label the entire
biomass content as biobased content. Use
the 12C/14C method as a quick check of
the calculations.
Authors:
Michael Carus, CEO and Lena Scholz, staff
scientist, bio-based materials, nova-Institut
GmbH Lena.scholz@nova.institut.de
Material Composition, Weight-% biogene
This article ist published in
bioplastics MAGAZINE 03-2010
44 Biowerkstoff-Report, Edition 8, March 2011
Biomass or
Bio-Carbon?
Both concepts have their merits and
flaws. There is no single method to
cover all kinds of materials and material
combinations the same way that would
secure an equally fair rating of the biobased content.
In addition, the methods try to answer completely different questions:
While the biomass approach corresponds to potential savings of fossil resources, the bio-based carbon approach
targets at the GHG mitigation potential
of a product. However, both of them
are technical parameters that cannot be
translated 1:1 into a statement on environmental preferability.
The biomass content is an approch
that can be applied to simple products,
such a resin, where the producer has
full control over the process, the composition and nature of all ingredients.
It will become far more complex if,
e.g., partly bio-based ingredients from
third parties are used or stages further
down the value chain want to apply this
method.
Whenever statements about the renewability of a product or material are
intended to be backed up by an independent third party verification, there
is –at least at the time being- no viable
alternative to the bio-based carbon approach.
Marko Schnarr
Environmental Affairs Manager,
European Bioplastics
Standardization & Policy
The European Lead Market Initiative for and
Standardisation of bio-based Products
Author:
Dr. Rainer Busch, T+I Consulting,
Sennior Standardization Consultant
Office@rbusch.de
T
he Lead Market Initiative which
was issued by the European Commission in December 2007 1)
identified six lead markets for Europe
with bio-based products being one of
the six. Bio-based products in this context were meant to be non-food products
derived from biomass, which may range
from high-value added fine chemicals
such as pharmaceuticals, cosmetics, food
additives to high volume materials such as
general bio-based polymers or chemical
feedstocks.
The Commission wanted to use this
initiative to make the EU a lead market
for new technologies, products and services that would create employment and
growth in the EU by entering fast growing worldwide markets with a competitive
advantage.
In order to achieve this ambitious goal,
it was proposed by the Commission to
take supportive political measures in the
following areas:
• Legislation
• Public Procurement.
• Standardisation, labelling & certification.
• Complementary Instruments (Business
and innovation support, training and
communication, financial support and
incentives)
In the “Standards, labelling and certification” arena, two mandates were issued
in late 2009:
• mandate M/429 for the elaboration of
a standardisation programme for biobased products and
• mandate M/430 on the development of
European standards for bio-polymers
and bio-lubricants.
with the goal to develop clear and unambiguous European and international
standards which will help to verify claims
about bio-based products in the future
such as bio-degradability, bio-based content, renewable carbon, recyclability, and
sustainability.
The work group (WG 209) operating
under mandate 429, which has ended in
July 2010, developed and agreed upon a
definition of the term „bio-based product“, evaluated the need for a general terminology for bio-based products, examined the potential for a single bio-based
product standard, identified the needs for
research relevant to the development of
standards for bio-based products and lastly developed a programme of European
standards for bio-based products including
a roadmap for its implementation.
Under mandate 430, which is still active,
technical specifications (TS) have been developed for bio-polymers:
• CEN/TS 15932 Plastics – Recommendation for terminology and characterisation of biopolymers and bioplastics
• and
• prCEN/TS 16137: Determination of
bio-based carbon content
The European Commission accepted
the recommendations of WG 209 under
M/429 and is currently preparing two new
mandates as a follow-up.
One is intended to develop a set of
horizontal standards such as a standard
for a consistent terminology for bio-based
products and a single standard with several parts for bio-based products. The latter one will cover horizontal aspects like
sampling, bio-based content, application
of and correlation towards LCA, sustainability of biomass used and a certification
scheme for bio-based products.
The second new mandate concerns
the development of European standards
for bio-surfactants and bio-solvents together with Technical Specifications and/
or Technical Reports as interim outputs.
The standards specifications and reports
will relate to the biodegradability (for biosolvents, only), product functionality, impact on greenhouse gas emissions, and the
amount of different renewable raw materials and/or different bio-based contents
used during the manufacturing of biosurfactants and bio-solvents.
Ortwin Costenoble
Senior standardisation specialist working for
the Nederlands Normalisatie-Instituut
(NEN) since 2000.
The EC is strongly promoting using
standards for the biobased economy.
European wide standards for bioplastics, bio-lubricants and soon also biosolvents and -surfactants will be made.
Back in 2010, the European Standardzation Committtee, CEN recommended to the EC the development of
a single standard in parts for bio-based
products covering horizontal aspects
and already within one year the EC
has drafted a task to activate this idea.
It underlines the idea that bio-based
products on one hand have the future,
but most likely will be levelled on the
same sustainability criteria as biofuels
now under the Renewable Energy Directive. So being on the standards‘ ball
becomes vital.
1: A lead market initiative for Europe, COM (2007) 860 final, 21.12.2007
More news: www.bio-based.eu/news
Biowerkstoff-Report, Edition 8, March 2011 45
Standardization & Policy
Book reviews
Stefan Bringezu,
Raimund Bleischwitz (ed.; 2009):
Sustainable Resource
Management – Global Trends,
Visions and Policies.
Greenleaf Publishing, Sheffield, UK.
338 pages, 49,99 Euro.
ISBN 978-1-906-09326-6.
The book „Sustainable Resource Management“ is directed towards researchers,
EU and national governmental officials,
businesses and NGOs with an interest
in concepts, strategies and instruments
to improve resource productivity and
sustainable resource management from
the regional and sectoral levels to the
international level.
Hans Langewald, Johan Sanders,
Marieke Meeusen (ed; 2010):
The Biobased Economy: Biofuels,
Materials and Chemicals in the
Post-oil Era.
Earthscan Ltd., London, UK.
389 pages, 65 £.
ISBN 978-1-844-07770-0.
This book is the result of exhaustive
research by Germany’s Wuppertal Institut and as such provides profound and
comprehensive knowledge on the topic.
It is therefore an essential reading for all
interested in sustainable resource management.
The book first provides an overview
of the methods it has used to analyse the
physical basis of our economies, from the
product and firm level through to sectors
and whole countries, considering material
flows and life-cycle-wide impacts on the
environment. In case studies, the book
then presents a number of key findings.
„Sustainable Resource Management“ also
looks into the future and provides visions
of sustainable resource use, including the
necessary conditions for a sustainable metabolism in the EU. Finally, „Sustainable
Resource Management“ provides a blueprint for how a more sustainable future
may be achieved.
“The Biobased Economy” provides a
framework for how policy and market
players could and should drive the
development of a biobased economy
that is effective, sustainable, fair and cost
efficient. Starting with a state-of-the-art
overview of major biobased technologies,
including biorefinery and technologies
for the production of biofuels, biogas,
biomass feedstocks for chemistry and
bioplastics, it discusses how different
actor groups interact through policy and
markets. Information from case studies
is used to demonstrate how the potential
of the biobased economy in different
parts of the world can be realised using
research, debate, policy and commercial
development.
The single chapters are written by the
editors and other renowned scientists
from different fields. The result is an
essential, well structured and very
readable resource for all those working
in or concerned with biobased industries,
their policy or research.
Author: Stephan Piotrowski,
nova-Institut GmbH
Stephan.piotrowski@nova-institut.de
46 Biowerkstoff-Report, Edition 8, March 2011
Standardization & Policy
Gerhard Pretting, Werner Boote
Plastic Planet – Die dunkle Seite der Kunststoffe
orange press, Freiburg 2010
ISBN: 978-3-936086-47-8,
Preis: 20 €
"Plastic Planet" ist fraglos ein provozierendes, einseitig argumentierendes und zu
Recht kontrovers diskutiertes Buch. Ohne
Kunststoffe ist das moderne Leben kaum
noch vorstellbar - gerade in Bezug auf
Leichtbau, Verpackungen und Hygiene.
Der Fokus des Buches liegt aber auf den
Schatten der Kunststoffwelt. Und diese
Schatten gibt es tatsächlich, ob sie nur
hellgrau sind oder tatsächlich tiefschwarz,
wie in diesem Buch dargestellt.
Zunächst wird der Leser in dem Kapitel
"Träume" mit einer 50-seitigen Geschichte der Kunststoffe im Wandel von Technik und Image überrascht, das viele interessante und vergessene Einblicke enthält.
Wer kennt heute noch die ersten - oft biobasierten - Kunststoffe wie Bakelit, Schellack, Laccain, Zelluloid oder Kunstseide?
Im Kapitel "Albträume" geht es dann
um die Schatten der Kunststoffwelt, die
sich erstaunlich leicht auf den Punkt bringen lassen:
• Der immense Eintrag petrochemischer
Kunststoffe in die Weltmeere, die in
winzige Plastikteilchen zerfallen und
anstelle von Plankton in die Nahrungskette gelangen.
• PVC - auch wenn die Gesundheitsprob-
More news: www.bio-based.eu/news
leme bei der Produktion heute weitgehend gelöst sind, bleiben die Probleme
im Brandfall (Dioxine) und der starke
Einsatz von Weichmachern.
• Hormonwirksame Weichmacher wie
die Gruppe der Phthalate, die in vielen
Kunststoffen, vor allem PVC, zum Einsatz kommen.
• Bisphenol A, dessen Einsatz in sensiblen Anwendungen wie Babyflaschen
inzwischen immer mehr eingeschränkt
wird.
Das alles ist nicht neu, aber in dieser
geballten Zusammenstellung und Darstellung der möglicherweise resultierenden
Umwelt- und Gesundheitsfolgen durchaus
zum Nachdenken anregend.
Und dieses Nachdenken führt zu der
Frage, warum die Kunststoffindustrie
nicht viel offensiver daran arbeitet, diese
Schatten zu überwinden - zumal es bereits
umfassende und kommerziell verfügbare
Lösungen in der Industrie gibt. PVC und
Bisphenol A können in kritischen Anwendungen durch andere Kunststoffe
ersetzt werden. Und auch als Ersatz für
Phthalate gibt es bereits heute kommerziell verfügbare grüne Weichmacher, die
keine Hormonwirkungen zeigen. Für den
verminderten Eintrag ins Meer könnten
Müllvermeidungsstrategien helfen. Biobasierte Kunststoffe könnten für den biologischen Abbau im Meer maßgeschneidert werden. In vielen Fällen stehen auch
bereits bio-basierte Lösungen bereit, mit
denen sich eine Vielzahl der Schatten
lichten ließen.
Warum klammern sich Teile der Kunststoffindustrie an diese alten Lösungen?
Die Antwort auf die aufgezeigten Probleme sollte nicht Kleinreden oder Weißfärben sein, sondern ein Innovationsschub
in der Kunststoffindustrie - zum Nutzen
für den Verbraucher und die europäische
Industrie!
Und hier enttäuscht das Buch dann
auch im letzten Kapitel “Aufwachen”.
das sich mehr an den Endverbraucher
als an die Industrie wendet. Innovative
Lösungen werden kaum aufgezeigt, dafür
aber eine Familie porträtiert, die konsequent versucht, ohne jegliche Kunststoffe zu leben. Sicherlich eine interessante
Selbsterfahrung, aber kein übergreifender
Lösungsansatz für die Zukunft, die einer
Grünen Chemie und Kunststoffindustrie
gehören wird!
Michael Carus
GF nova-Institut
Biowerkstoff-Report, Edition 8, March 2011 47
Cluster Biopolymere/Biowerkstoffe
Cluster Biopolymere/Biowerkstoffe
D
ie Kunststoffindustrie in Westeuropa beschäftigt mehr als
eine Million Menschen und erwirtschaftet einen Jahresumsatz von 135
Milliarden Euro. Die steigende Nachfrage
nach Kunststoffen, die Abhängigkeit der
Branche von fossilen Rohstoffen, der Bedarf an innovativen Werkstoffen sowie ein
steigendes Umweltbewusstsein – alle diese
Faktoren erfordern dringend neue, innovative Herstellungsverfahren. Der Cluster
Biopolymere/Biowerkstoffe wurde 2006
unter der Federführung der BIOPRO
Baden-Württemberg GmbH im Rahmen
des BioIndustrie 2021 Wettbewerbs des
Bundesministeriums für Bildung und Forschung (BMBF) gegründet und wurde im
Mai 2007 als einer der fünf Sieger-Cluster
ausgezeichnet. Das BMBF stellt für die
Umsetzungsphase (2007 - 2012) zehn Millionen Euro zur Verfügung. Bisher werden
mit diesen Mitteln im Cluster drei Verbundprojekte gefördert, weitere Projekte
sind in Planung. Die BIOPRO BadenWürttemberg koordiniert als Innovationsagentur des Landes Baden-Württemberg
die Clusterarbeit.
Ziel des Clusters Biopolymere/Biowerkstoffe ist es, den Entwicklungsprozess
biotechnologisch erzeugter Ausgangsstoffe für Polymere und Werkstoffe nachhaltig
zu unterstützen. In den durch das BMBF
geförderten Projekten sollen neuartige
Kunststoffe durch Einsatz mikrobiologischer Verfahren, Bioprozesstechnik und
biotechnologischer Methoden entwickelt
und optimiert werden. Weiterhin möchte
Kunststoffbezogener CO2-Kreislauf
Plastics-related CO2 cycle
Biobasierte Kunststoffe sollen zukünftig einen nach-
It is envisaged that biobased plastics will in future con-
weisbaren Beitrag zur Verbesserung der CO2-Bilanz von
tribute to effectively improving the CO2 balance of plas-
Kunststoffprodukten leisten. Heute wird über Jahr-
tics products. At present, application focuses on using
millionen abgelagerte Biomasse in ihrer fossilen Form
the fossil form of biomass that has been deposited over
verbraucht (äußerer Kreis). In den ersten 10 Jahren der
millions of years (outer circle). During the first ten years
Clusteraktivität (2007 - 2017) sollen mittels biotech-
of the cluster’s existence (2007 – 2017), it is planned
nologischer Innovationen erste Alternativrouten der
to establish initial alternative routes in the biosynthetic
biosynthetischen Industrie etabliert werden. Bis zum Jahr
industry using biotechnological innovations. Up until
2021 werden die Prozesse noch eine Effizienzstufe weiter
2021, the efficiency of the processes will be further
gebracht, so dass bereits wesentliche Stoffströme direkt
developed, thus enabling the direct use of important
aus biophotosynthetischer Quelle (z.B. Algen) stammen
substance flows from biophotosynthetic sources (e.g.
werden. Bild: BIOPRO
algae). Picture: BIOPRO
48 Biowerkstoff-Report, Edition 8, March 2011
der Cluster ein ständig wachsendes Netzwerk zum Thema Biopolymere/Biowerkstoffe aufbauen, das branchenübergreifend
Unternehmen und Forschungsinstitute
zusammenbringt. Daneben soll aber auch
Einfluss auf die generellen Rahmenbedingungen ausgeübt werden. So setzt sich
der Cluster – gemeinsam mit den anderen
Gewinnerclustern aus dem „BioIndustrie
2021“-Wettbewerb – für eine Stärkung
der industriellen Biotechnologie ein und
versucht den Wandel zu einer Bioökonomie positiv mitzugestalten. Ein offener
Austausch mit Politik und Öffentlichkeit
ist unabdingbar, um diesen Wandel zu unterstützen und Innovationshindernisse zu
beseitigen.
Leistungen des Clusters
Der Cluster Biopolymere/Biowerkstoffe ist wertschöpfungsketten- und
branchenübergreifender Vernetzer für
den Bereich der Biokunststoffe. Hier
werden bestehende Kompetenzen in der
Biotechnologie und der Verfahrenstechnik mit Methoden der chemischen Verfahrenstechnik/Polymerchemie und der
Kunststofftechnik gebündelt. Durch die
Vernetzung von Akteuren aller Herstellungsschritte entlang der Wertschöpfungskette, wird den Mitgliedern das passende
Umfeld für Innovationen bereitgestellt.
Eine Mitgliedschaft ist unverbindlich und
kostenfrei. Dienstleistungen durch das
Clustermanagement können ebenso kostenfrei in Anspruch genommen werden.
Auf jährlich stattfindenden Netzwerktreffen können sich die Teilnehmer mit
praxisnahen Vorträgen, Podiumsdiskussionen und Fachgesprächen zu aktuellen
Themen der Biokunststoffszene austauschen. Das Internetportal der BIOPRO
Biopolymers/Biomaterials Cluster
Biopolymers/Biomaterials Cluster
Bioreaktor für Versuche im Forschungslabor.
Bild: BIOPRO/Bächtle
Bioreactor for experiments carried out in research laboratories. Picture: BIOPRO/Bächtle
T
he plastics industry in Western
Europe employs more than one
million people and achieves annual revenues of 135 billion euros. The
growing demand for plastics, the dependence of the plastics industry on fossil
resources, the demand for innovative materials and growing environmental awareness – all these factors urgently require
new innovative manufacturing methods
to be put in place. The Biopolymers/Biomaterials cluster was established in 2006
under the general management of BIOPRO Baden-Württemberg GmbH with
the objective of participating in the BioIndustrie 2021 competition run by the German Ministry of Education and Research
(BMBF). In May 2007, the Biopolymers/
Biomaterials cluster was chosen as one
of five winners and the BMBF set aside
ten million euros for the implementation
phase (between 2007 and 2012). So far,
the funds have been used to support three
cooperative projects; further projects are
in the planning stage. The Baden-Württemberg government’s innovation agency,
BIOPRO Baden-Württemberg GmbH, is
coordinating the work of the cluster.
The goal of the Biopolymers/Biomaterials cluster is to effectively and sustainably
support the development process of biotechnologically produced source materials
for polymers and materials. The BMBF-
Wertschöpfungskette und Produktionsschritte. Bild: BIOPRO
Value creation chain and production processes. Picture: BIOPRO
funded projects are tasked with developing and optimising innovative plastics
using bioprocess engineering and microbiological and biotechnological methods.
The cluster is also tasked with creating a
growing network of actors with an interest in biopolymers/biomaterials and with
bringing together companies and research
institutions working in different industrial
sectors. Moreover, in common with all the
other winners of the BMBF competition,
the cluster also aims to have an influence
on general conditions in the sector, for example by strengthening industrial biotechnology and positively shaping the transition to a bioeconomy. Open exchange
with politicians and the general public is
indispensable for ensuring a smooth transition and removing obstacles to innovation.
Activities and services of
the cluster
The Biopolymers/Biomaterials cluster
works across and brings together value
creation chains and different industrial
sectors in the field of bioplastics. Existing
competences in biotechnology and process engineering will be combined with
methods used in chemical process engineering/polymer chemistry and plastics
technology. By bringing together actors
along the value creation chain, the cluster’s
members are creating an optimal environment for innovations. Cluster membership
is non-binding and free of charge. In addition, services offered by the cluster management organisation are free of charge.
At annual network meetings, the cluster
members will be able to attend lectures
on practical issues, panel discussions and
expert talks on state-of-the-art topics re-
More news: www.bio-pro.de
Biowerkstoff-Report, Edition 8, March 2011 49
Cluster Biopolymere/Biowerkstoffe
Beispiele für den Einsatz
von Biokunststoffen.
Examples of the application
of bioplastics.
Picture: BIOPRO/Bächtle,
TAKATA-PETRI AG; prototypes:
fischerwerke GmbH & Co.KG, ITV
Denkendorf, TAKATA-PETRI AG
Baden-Württemberg bietet unter www.
biopolymerics.de spezifische Informationen zum Thema Biopolymere. Für Clustermitglieder können kostenlos Porträts
ihrer Unternehmen und Forschungseinrichtungen erstellt und im Internetportal
veröffentlicht werden. Zudem präsentiert
der Cluster das Thema „Biopolymere/
Biowerkstoffe“ sowie innovative Materialien und Produkte seiner Mitglieder auf
nationalen wie internationalen Tagungen
und Messen. Darüber hinaus unterstützt
der Cluster die Organisation von Branchenveranstaltungen wie das „International Symposium on Biopolymers (ISBP)“
in Stuttgart.
Derzeitige Projekte im Cluster*
Im Cluster Biopolymere/Biowerkstoffe
werden bisher drei Verbundprojekte gefördert. Im Clusterprojekt „Biobasierte
Polyamide durch Fermentation“ widmen
sich die Projektpartner unter Federführung der BASF SE der biologischen Synthese von Diaminen. Diaminopentan ist
chemisch eng verwandt mit einem Molekül, das inzwischen biotechnologisch mit
mehr als 100.000 Tonnen pro Jahr hergestellt wird: Lysin. Das Institut für Bioverfahrenstechnik der TU Braunschweig
untersucht, wie die biotechnologische
Produktion von Diaminopentan über die
Zwischenstufe Lysin wirtschaftlich realisiert werden kann und welche neuen Polyamide sich aus Diaminopentan ableiten
lassen. Zwei Fachdisziplinen spielen dabei
eine besonderer Rolle: Systembiologie und
Metabolic Engineering. Gemeinsam mit
dem Projektpartner Fischerwerke GmbH
wurde bereits ein Musterdübel aus dem
neuen Polyamid (Nylon-5,10) hergestellt.
Weitere Projektpartner sind Endanwender wie die Robert Bosch GmbH oder die
Daimler AG.
Mit dem Projekt „Herstellung von Polyestern auf Basis fermentativ hergestellter Bernsteinsäure“ verfolgt der Cluster
Biopolymere/Biowerkstoffe das Ziel,
marktfähige Kunststoffe wirtschaftlich
herzustellen und dabei die Basischemikalie
Bernsteinsäure auf biotechnologischem
Wege kostengünstig zu produzieren. Die
BASF SE, die das Projekt leitet, verfügt
über einen viel versprechenden mikrobiellen Produktionsstamm, der im Vergleich
zu anderen Organismen besonders hohe
Ausbeuten an Bernsteinsäure ermöglicht.
Durch gentechnische Modifikationen und
Anpassung der bioverfahrenstechnischen
Parameter soll die Ausbeute weiter gesteigert und die erforderliche hohe Reinheit
des Produkts zugleich gesichert werden.
Im Projekt ARBOCAR entwickeln sieben Partner aus Industrie und Forschung
einen neuen Kunststoff auf Ligninbasis.
Lignin, ein Naturstoff, der vor allem in
Holz vorkommt, soll durch enzymatische
Verfahren so aufbereitet werden, dass
daraus hochwertige Lignincompounds
hergestellt werden können, welche die
besonderen Anforderungen der Automobilindustrie erfüllen. Der neue Werkstoff
ARBOCAR könnte den Materialeinsatz
im Auto revolutionieren und Kunststoffe
an vielen Stellen im Auto ersetzen. Am
Projekt beteiligt sind: TECNARO GmbH,
ASA Spezialenzyme GmbH, BAFA Badische Naturfaseraufbereitung GmbH,
Bosch Formenbau GmbH, Fischer Automotive Systems GmbH, Takata-Petri AG,
Institut für Technische Biochemie der
Universität Stuttgart und die Daimler AG
als assoziierter Partner. l
* Stand 12/2010
Polyamidgranulat aus nachwachsenden Rohstoffen.
Polyamide granules made from renewable resources.
Picture: BIOPRO/Bächtle
50 Biowerkstoff-Report, Edition 8, March 2011
Biopolymers/Biomaterials Cluster
Holz, Stärke, Pflanzenöle: Beispiele
für nachwachsende Rohstoffe.
Wood, starch, plant oils: Examples
for renewable resources.
Picture: BIOPRO
lated to bioplastics manufacturing and
application. The BIOPRO Baden-Württemberg Internet portal provides specific
information on biopolymers under www.
biopolymerics.com. Cluster members are
entitled to publish profiles of their companies and research institutions free of
charge. In addition, the cluster presents
the “Biopolymers/Biomaterials” topic as
well as innovative materials and products
at national and international meetings and
exhibitions, and supports the organisation
of industry-specific meetings such as the
“International Symposium on Biopolymers (ISBP)” in Stuttgart.
Current cluster projects*
The Biopolymers/Biomaterials cluster
funds have so far been used to support
three cooperative projects. The “Biobased
polyamides through fermentation” project, which involves a number of project
partners led by BASF SE, addresses the
biological synthesis of diamines. Diaminopentane is closely related in chemical
terms to a molecule of which more than
100,000 tons per year are produced using
biotechnological methods. This molecule
is lysine. The Institute of Bioprocess
Technology at the Technical University
of Braunschweig is focusing on two questions: 1) how can diaminopentane be produced in an economically feasible way with
biotechnological methods and using lysine
as an intermediary product, and 2) which
new polyamides can be produced from diaminopentane. Two disciplines play a major role in the search for answers to these
questions: systems biology and metabolic
engineering. In cooperation with the Fischerwerke GmbH, the project partners
have already developed a plug prototype
made entirely from the new polyamide
(nylon-5,10). Other project partners include end users such as Robert Bosch
GmbH and Daimler AG.
The objective of the Biopolymers/Biomaterials cluster in the “Production of
polyesters from succinic acid produced
by fermentation” cooperative project is
to produce marketable plastics in an economically feasible way and make it pos-
sible to inexpensively produce the basic
chemical succinic acid. BASF SE, which is
coordinating the project, owns a bacterial
production strain with highly promising
capacities, one of which is the production
of succinic acid in higher quantities than
those produced by other organisms. The
strain will be genetically modified and the
bioprocess parameters adapted to further
increase the yield and ensure high product
purity.
Seven Biopolymers/Biomaterials cluster partners from industry and academic
research are developing a new natural
material based on lignin, itself a natural
material found predominantly in wood.
The objective of the project is to process lignin using enzymatic methods to
produce high-quality lignin compounds
for use in the car industry. ARBOCAR,
the new material being developed by the
Biopolymers/Biomaterials cluster, could
revolutionise the use of materials in car
production, and eventually be used to replace frequently used plastics. Project partners include TECNARO GmbH, ASA
Spezialenzyme GmbH, BAFA Badische
Naturfaseraufbereitung GmbH, Bosch
Formenbau GmbH, Fischer Automotive
Systems GmbH, Takata-Petri AG and the
Institute of Technical Biochemistry at the
University of Stuttgart. Daimler AG is an
associate partner. l
* as of December 2010
Anwendungsbereiche von biobasierten Materialien.
Application areas of biobased materials.
Picture: BIOPRO
More news: www.bio-pro.de
Biowerkstoff-Report, Edition 8, March 2011 51
Die BioKunststoff Design Challenge
Die BioKunststoff Design Challenge
Branchenübergreifend
Werkstoffinnovationen wagen
„W
eg vom Erdöl - hin zu
nachwachsenden
Rohstoffen“; so einfach dieser
Satz klingt, so schwer ist seine Umsetzung. Besonders die stoffliche Nutzung
von Biomasse, die nicht in dem Ausmaß
wie die energetische Nutzung durch Subventionen oder regulatorische Vorgaben
(z.B. Mindestquote der Beimischung von
Biotreibstoffen) begünstigt ist, steht vor
großen Markteintrittsbarrieren. Dies ist
insbesondere im Bereich der biobasierten Kunststoffe der Fall: Sie können nur
dann die Marktfähigkeit erreichen, wenn
sie in ihren Eigenschaften mindestens
gleichwertig zu ihren petrochemischen
Pendants sind.
Die Frage, ob es nicht bereits heute
möglich wäre, einen signifikanten Teil des
derzeitigen Kunststoffmarktes mit sofortiger Wirkung von der erdölbasierten auf
biomassebasierte Rohstoffquellen umzustellen, lässt sich in der Theorie zweifellos
bejahen. Viele Kunststoffkomponenten
(Monomere) werden bereits seit Jahren
mithilfe biotechnologischer und chemischer Verfahren aus Biomasse hergestellt.
Doch auch wenn die technische Machbarkeit schon vielfach demonstriert wurde,
gibt es für Biokunststoffe zahlreiche Hürden auf dem Weg in die Produktkataloge
oder Regale unserer Kaufhäuser. Zwei
gravierende Probleme der heute auf dem
Markt verfügbaren Biokunststoffe sind
der hohe Preis - verglichen mit konventionellen Kunststoffen - und die begrenzte
Verfügbarkeit.
Genau hier steckt die Rohstoffwende in
einer Zwickmühle: Ohne konkurrenzfähige Produktionskosten werden keine Produktionsanlagen gebaut. Günstigere Produktionskosten können aber nur durch
eine Produktion in großem Maßstab erreicht werden. Hohe Investitionskosten
unterbinden aber zusätzlich den Schritt,
Bestehendes durch Neues zu ersetzen.
Motorkühlaggregat (Lüfter und Zarge) aus Nylon-5,10.
Motor engine cooling fan and housing module
made from Nylon-5,10.
Picture: BIOPRO/Kindervater;
prototype: Robert Bosch GmbH
Doch wie können Biokunststoffe bei
diesen schwierigen Bedingungen konkurrenzfähig werden? Aufgrund ihrer Rohstoffquelle „Biomasse“ sind alle biobasierten Materialien nachhaltig. Doch dieser
Nachhaltigkeitsaspekt allein rechtfertigt
keinen höheren Preis – ein Ergebnis, zu
dem viele Marktstudien kommen. Zudem
haben Produktionsverfahren für Biokunststoffe nicht immer eine bessere Ökoeffizienz oder geringere CO2-Emission.
Alle fossilen Rohstoffquellen sind endlich, dennoch kann zum heutigen Tage
nicht prognostiziert werden, wie schnell
sich die Preise und Rahmenbedingungen
zu deren Nachteil verändern, so dass sich
eine Preisparität zu Biokunststoffen einstellt. Kurz- und mittelfristig werden nur
solche biobasierten Materialien auf dem
Markt konkurrenzfähig sein, die bessere
Materialeigenschaften bieten oder Nischen besetzen, die von konventionellen
Materialien nicht ausgefüllt werden können. Ebenso könnten neuartige Produktionsverfahren Biokunststoffen einen
Marktvorteil verschaffen.
Die „Bioplastics Design Challenge“
Bereits heute sind auf dem Markt Materialien verfügbar, die die geforderten
Eigenschaften aufweisen. Derzeit sind die
Endanwenderbranchen bezüglich der Anwendung biobasierter Materialien jedoch
noch sehr vorsichtig, denn die Umstellung
52 Biowerkstoff-Report, Edition 8, March 2011
erfordert viele und zum Teil auch kostenintensive Anpassungen.
Eine Forcierung des Rohstoffwandels
ist mit Blick in die Zukunft unumgänglich
- nicht nur allein wegen der Limitierung
fossiler Ressourcen. Doch es reicht in diesem Zusammenhang bei weitem nicht aus,
die biotechnologische Umsetzung von
Biomasse zu einer Kunststoffkomponente (Monomer) zu erforschen und zu demonstrieren.
Um Biokunststoffe auf ihrem steinigen
Weg zur Marktfähigkeit zu unterstützen,
hat der Cluster Biopolymere/Biowerkstoffe die „Bioplastics Design Challenge“ für die Landesgesellschaft BIOPRO
Baden-Württemberg GmbH ins Leben
gerufen. Dieses Vorhaben soll innerhalb
der Kunststoff verarbeitenden Industrie
und in den Endanwenderbranchen das
Nachhaltigkeitsbewusstsein und die Innovationsdynamik stärken, um die Markteinführung von biobasierten Materialien zu
begünstigen.
Gemeinsame Herausforderung
zum Wandel
Die „Bioplastics Design Challenge“
stellt keinen Wettbewerb im eigentlichen
Sinne dar, sondern soll als gemeinsame
Herausforderung angesehen werden, den
Wandel hin zu biobasierten Materialien zu
Bioplastics Design Challenge
Bioplastics Design Challenge
An opportunity for audacious materials innovations
involving numerous industrial sectors
Nylon-5,10 - Gaspedal.
Nylon-5,10 - gas pedal.
Picture: Philipp Thielen;
prototype: Robert Bosch GmbH
with numerous obstacles
before they will be seen in
product catalogues or on
supermarket shelves. Two
huge problems associated
with the bioplastics that are currently on
the market are their high price compared
to conventional plastics, and their limited
availability.
ket. Innovative production methods might
also contribute to the creation of a market
advantage for bioplastics.
“Bioplastics Design Challenge”
Nylon-5,10 - Lüftungsdüse im Fahrzeuginterieur.
Nylon-5,10 - Ventilation nozzle for car interiors.
Picture: BIOPRO/Bächtle; prototype: fischer automotive systems GmbH
“T
urning away from petrol and
towards renewable resources” – this sentence might
sound simple, but its implementation is
not nearly so simple. Biomass does not
benefit from the same level of subsidies
for material use as it does for energetic use
nor is its material use backed by legal regulations (e.g., minimum ratio of biofuels to
regular fuels). Biomass for material use
also faces huge obstacles when it comes
to entering the market. This is a particular issue in the field of biobased plastics,
which only become marketable when their
characteristics are at least equal to those
of their petrochemical counterparts.
The answer to the question as to whether it would be possible to shift a significant
proportion of the current plastics market from petrol-based to biomass-based
resources is ‘yes’, at least in theory. For
quite some time now, many plastics components (monomers) have been produced
from biomass using biotechnological and
chemical methods. However, although the
technical feasibility has been repeatedly
demonstrated, bioplastics are still faced
More news: www.bio-pro.de
And it is here where the shift from fossil
fuels to renewable resources gets caught in
a vicious circle: The fact that production
costs are not competitive makes it difficult
to build biobased materials production
plants. However, lower production costs
can only be achieved through large-scale
production. In addition, high investment
costs also make it impossible to replace
the old with the new.
Considering these difficult conditions,
how can bioplastics become competitive?
As “biomass” is used in the production
of biobased materials, these materials can
therefore be called sustainable. However,
the aspect of sustainability alone does not
justify a higher price – as numerous market reports have concluded. In addition,
bioplastics production methods do not
always have a better ecoefficiency or lower
CO2 emissions than bioplastics production using fossil fuel.
All fossil resources are finite. Nevertheless, it is impossible to predict how quickly
prices and general conditions will render
their use disadvantageous, making them
equal in price to bioplastics. In the short
and medium term, it is envisaged that only
those biobased materials with better material characteristics or occupying niches
that cannot be filled with conventional
materials will be competitive on the mar-
Materials with the required properties
are already available on the market. However, the end-user sectors are still very cautious as far as the application of biobased
materials is concerned since the switch
from fossil fuel-based production to biomass-based production requires numerous
changes to be put in place. In addition, the
adaptation to new processes is also associated with high costs. However, predicted
future developments make it necessary to
focus on the shift from fossil to biological resources – not just because of the finiteness of fossil resources. However, it is
not enough just to focus on research into
the biotechnological implementation of
biomass into plastics components (monomers) and demonstrate its feasibility. A lot
more than this is required.
In order to support bioplastics on their
rocky road to marketability, the Biopolymers/Biomaterials cluster has initiated the
“Bioplastics Design Challenge” on behalf
of BIOPRO Baden-Württemberg GmbH,
a 100% subsidiary of the Baden-Württemberg government. To facilitate the market
introduction of biobased materials, the
“Bioplastics Design Challenge” aims to
increase the plastics manufacturing industry and the end user sectors’ awareness of
sustainability as well as to strengthen innovation dynamics.
Biowerkstoff-Report, Edition 8, March 2011 53
Die BioKunststoff Design Challenge
Auswahl biobasierter Werkstoffe.
Selection of biomaterials.
Picture: BIOPRO/Bächtle
Networking beim ersten Partnering
Workshop der „Automotive Bioplastics
Design Challenge“.
Networking during the first Partnering
Workshop of the „Automotive Bioplastics Design Challenge“.
Picture: BIOPRO/Weimer
unterstützen Zielgruppen der Challenge
sind Entwickler, Designer, Biokunststoffproduzenten und –verarbeiter sowie alle
Interessierten. Durch eine Interaktion
vieler Akteure entlang der Wertschöpfungskette können Biowerkstoffe schon
frühzeitig eingehend geprüft und somit
schneller technisch einsatzfähig werden.
Im Rahmen der „Bioplastics Design Challenge“ sollen dem interessierten Anwender verschiedene Biomaterialien vorgestellt und anschließend getestet werden.
Hierbei spielen Aspekte wie Verarbeitbarkeit, Oberflächenbeschaffenheit oder
Alterungsbeständigkeit eine große Rolle – Aspekte, die häufig nicht im Fokus
der initialen Forschung liegen, aber einen
entscheidenden Einfluss auf die Marktfähigkeit und das Marktpotenzial haben. Im
Gegenzug sollen die Biokunststoffhersteller von der Anwenderbranche wertvolle
Informationen über die zu erwartende
Marktakzeptanz erhalten sowie ein Feedback über unerschlossene Optimierungspotenziale der Biomaterialien. Mit jährlich
stattfindenden Thementagen wird das
Bewusstsein der breiten Öffentlichkeit für
biobasierte Materialien gefördert und die
derzeitige und die zukünftige Einsatzfähigkeit von Biowerkstoffen in den einzelnen Anwendungsbranchen verdeutlicht.
Die Automobilbranche im Fokus
der „Bioplastics Design Challenge“
Die im Sommer 2010 gestartete „Automotive Bioplastics Design Challenge - abdc“ stellt den ersten Anlauf der
„Bioplastics Design Challenge“ dar. In
der einjährigen Zusammenarbeit werden
kommerziell verfügbare und in der Entwicklung befindliche Biokunststoffe unter
Designgesichtspunkten für ihre Eignung
im Automobilbau evaluiert und weiter-
entwickelt. Aus dem breiten Portfolio der
Biokunststoffe und Biomaterialien sollen
Anwender anhand technischer und designbezogener Entscheidungskriterien Materialien für Bauteile auswählen. Anschließend
können entsprechende Designmuster oder
Prototypen hergestellt und das jeweilige
Material hinsichtlich späterer Serienproduktanforderungen evaluiert werden.
Bisher haben sich weit über 100 Interessierte angemeldet: vom Biokunststoffproduzenten und Automobilhersteller,
deren Zulieferer, Entwicklungs- und Designbüros mit Interesse für den Automobilsektor, bis zu Studierenden aus dem
Design- und Gestaltungsbereich. Eine
web-basierte Partnering-Plattform sowie
Partnering-Workshops unterstützen den
Aufbau von Projektpartnerschaften und
die Zusammenarbeit der Teilnehmer. Die
Plattform bietet eine übersichtliche Zusammenstellung der Profile, Angebote
und Gesuche der einzelnen Akteure und
ermöglicht somit eine interaktive Gestaltung und Umsetzung von Projektideen.
Die Ergebnisse der „Automotive Bioplastics Design Challenge“ werden im
Rahmen des Thementages „Biokunststoffe im Automobilbau der Zukunft“
vorgestellt. Im Anschluss an die einjährige
Projektphase kann die bestehende Zusammenarbeit einzelner Beteiligter weiter
fortgeführt werden. Die innerhalb der
„abdc“ initiierten Projektideen können
auch in andere Innovationswettbewerbe,
wie beispielsweise jenen des „Network of
Automotive Excellence (NoAE)“, eingebracht werden.
54 Biowerkstoff-Report, Edition 8, March 2011
Thementag „Biokunststoffe im
Automobilbau der Zukunft“
Der Thementag findet am 10. Juni 2011
in Form einer öffentlichen Ausstellung in
Stuttgart statt. Er ist Teil des „Automobilsommer 2011“, der Rahmenveranstaltung
des Landes Baden-Württemberg anlässlich des 125. Jahrestags der Erfindung des
Automobils. Die Ausstellung wird den
Besuchern einen Überblick über momentan in Serie verbaute biobasierte Materialien geben und einen Rückblick in die
Historie biobasierter Automobilbauteile
ermöglichen. Die Präsentation moderner
Biokunststoffe , die nahe an der Serieneinführung stehen oder sich noch in der Entwicklung befinden, soll den Schwerpunkt
bilden.
Jeder, der im Besitz von solch neuartigen Biomaterialien oder Prototypen ist,
bzw. Zugang zu historischen oder aktuell
eingesetzten biobasierten Automobilbauteilen hat, hat die Möglichkeit, diese im
Rahmen der Ausstellung am 10. Juni zu
präsentieren. Dies kann unabhängig von
der Teilnahme an der ‘abdc’ erfolgen. Bitte kontaktieren Sie uns bei Interesse. Die
Einreichungsfrist für Beiträge ist der 15.
April 2011. l
Weitere Informationen zur „abdc“ erhalten Sie
unter http://www.bio-pro.de/abdc/.
Kontakt:
Markus Götz
Cluster Biopolymere/Biowerkstoffe
Leitender Clustermanager
BIOPRO Baden-Württemberg GmbH
Breitscheidstrasse 10
70174 Stuttgart
Tel: 0711 / 218185-14
Fax: 0711 / 218185-02
E-mail: biopolymere@bio-pro.de
Bioplastics Design Challenge
Kick-Off Meeting: Markus Götz (BIOPRO
Baden-Württemberg) stellte die „Automotive
Bioplastics Design Challenge“ vor.
Kick-Off Meeting: Markus Götz (BIOPRO
Baden-Württemberg) presented the „Automotive Bioplastics Design Challenge“.
Picture: BIOPRO/Kammler
Joint challenges to enable change
The “Bioplastics Design Challenge” is
not a competition in the traditional sense,
but is conceived as a joint challenge whose
goal is to facilitate the shift of plastics
production from fossil fuel-based materials to biobased materials. The challenge
targets developers, designers, bioplastics
manufacturers and processors as well
as all other interested parties. Through
the interaction of many actors along the
value creation chain, it will be possible
to thoroughly test the materials at a very
early stage and facilitate their early technical implementation. The “Bioplastics
Design Challenge” will present numerous
different biomaterials to interested users
and subsequently test them, taking into
account important aspects such as processability, surface properties and ageing
resistance, aspects that are not frequently
the targets of initial research, but which
have a crucial influence on the products’
marketability and market potential. In return, the user sector will provide the bioplastics producers with valuable information about the products’ expected market
acceptance as well as feedback about the
biomaterials’ unexplored optimisation potentials. An annual “Theme Day” will be
held to promote wider public awareness
of biobased materials and to illustrate the
future application of biomaterials in the
individual application sectors.
The automotive sector in the
“Bioplastics Design Challenge”
The “Automotive Bioplastics Design
Challenge – abdc” initiated in summer
2010 represents the first of several “Bioplastics Design Challenges”. The oneyear cooperation will evaluate and further
More news: www.bio-pro.de
develop design aspects of commercially
available biomaterials and biomaterials under development with regard to their suitability for automotive sector applications.
Users will be able to select materials from
a broad range of bioplastics and biomaterials for component parts on the basis of
technical and design-related decision criteria. Design samples and prototypes will
then be produced and the material will be
evaluated in terms of subsequent requirements with regard to the production of
serial products.
Well over 100 individuals have already
registered for the “Automotive Bioplastics
Design Challenge”, including bioplastics
manufacturers, automobile manufacturers,
their suppliers, development and design
offices with an interest in the automotive sector as well as design students. A
web-based partnering platform and partnering workshops will support the establishment of project partnerships and the
collaboration between the participants.
The platform offers a comprehensive and
clear overview of profiles, offers and requests of all the actors involved, thereby
enabling the interactive development and
implementation of project ideas. In addition, the participants are able to provide
platform users with information on project ideas and experiences (with regard to
processability, technical suitability, design
aspects, etc.).
The results of the “Automotive Bioplastics Design Challenge” will be presented
at the upcoming “Bioplastics for automotive engineering of the future” theme day.
Collaborations initiated during the oneyear project phase can be pursued further
after the theme day has taken place. The
project ideas initiated within “abdc” can
also be submitted to other innovation
competitions, such as the “Network of
Automotive Excellence (NoAE)”.
‘Bioplastics for automotive engineering of the future’ theme day
The theme day will be held on June 10,
2011 in Stuttgart. The public exhibition is
part of “Automobile Summer 2011”, an
event organised by the Baden-Württemberg government to celebrate the 125th
anniversary of the car. The exhibition will
give visitors an overview of bio-based
materials used in the serial production of
cars as well as an outline of the history of
bio-based car components. The presentation of state-of-the-art bioplastics that are
close to entering serial production or that
are currently in development will be the
highlight of the day.
Everyone who owns such novel biomaterials or prototypes, or has access to
historical or currently used bio-based car
parts, is invited to present these at the exhibition on June 10. Providing exhibits is
not connected to participation in ‘abdc’.
Please contact us, if you are interested.
The submission deadline for contributions will be April 15, 2011. l
Further information on the “abdc“ is provided at
http://www.bio-pro.de/abdc/.
Contact:
Markus Götz
Biopolymers/Biomaterials Cluster
Executive cluster manager
BIOPRO Baden-Württemberg GmbH
Breitscheidstrasse 10
70174 Stuttgart
Tel: +49 (0)711 / 218185-14
Fax: +49 (0)711 / 218185-02
E-mail: biopolymere@bio-pro.de
Biowerkstoff-Report, Edition 8, March 2011 55
nova-institute for ecology und innovation
Bio-based Economy —
Green Chemistry and Bio-based Products
nova-institute GmbH
T
he nova-Institute was founded
as a private and independent institute in 1994. It is located in
the Chemiepark Knapsack in Huerth,
which lies at the heart of the chemical
industry around Cologne (Germany).
For over 15 years now, the nova-Institute
has been globally active in feedstock supply, techno-economic evaluation, market
research, dissemination, project management and policy for a sustainable biobased economy.
Key questions regarding nova
activities
What are the most promising concepts and
applications for Industrial Biotechnology,
Biorefineries and Bio-based Products?
Which political and economic framework
is needed for a sustainable growth of the
Bio-based Economy?
www.nova-institut.eu
Services
The nova-Institute uses and creates expert knowledge along with innovative solutions to develop and advance the use of
Renewable Raw Material (RRM) in Green
Chemistry, Industrial Biotechnology and
Bio-based Products. In research & development, nova has comprehensive contacts within the wide industrial and scientific network. The communication services
include conferences, the news portal for
Bio-based Economy incl. a newsletter and
the business directory iBIB (more information: www.bio-based.eu).
56 Biowerkstoff-Report, Edition 8, March 2011
Fields of activity
With a scientific staff of more than ten experts, nova-Institute has
a turnover of approx. 1.8 Mio. €/year which is equally distributed
on three sectors: Industrial & political consultancy, research & development projects and conferences & dissemination.
research
projects
conferences &
dissemination
Industrial &
political consultancy
nova-institute for ecology und innovation
Political frameworks
Project management
Bio-based economy
Raw material supply:
Availability
Prices
Marketing-Support
Public relations
Congress & Workshops
Industrial biotechnology
Biorefineries • Green chemistry
Bio-based plastics & composites
Techno-economic
evaluation
Ecological assessments
Market research
Feasibility and
potentialstudies
Network management
More Information
You may find all information on international congresses along with
information services of the nova-Institut on: www.bio-based.eu
Selected references
Associations and bodies
Automotive industry: brose, BMW, Daimler, Faurecia, Ford, Johnsons
Controls, Quadrant
The nova-Institute is a member of various international associations and committees such as
the Founding members of the cluster Industrial
Biotechnology CLIB 2021 (Duesseldorf), member of the Steering Committee of the Federation of Reinforced Plastics (AVK), the subgroup
„Naturfaserstärke Polymere” (Frankfurt) and the
head location of the European Industrial Hemp
Association (EIHA) (Huerth). In addition to this,
it is member of various national and EU-wide
working groups on industrial biotechnology and
biomaterials.
Chemistry, plastics and biomaterials: BASF, FKuR, Honeywell, InfraServ, KOSCHE, LEIFHEIT, Teijin
Engineering: Coperion, Reifenhäuser, FERROSTAAL
Consulting: Clever Consult, Ernst & Young, BLEZAT CONSULTING,
meó Consulting, Pestalozzi-Consulting, The Textile Consultancy,
Associations: AVK, european bioplastics, EIHA, CLIB2021, VHI
Ministries & Institutions: BMELV, DEFRA, DECC, GTZ, DBU, European Commission, NR, FAO, KFW, UBA
More news: www.bio-based.eu/news
Biowerkstoff-Report, Edition 8, March 2011 57
nova-institute for ecology und innovation
Management
Dipl.-Phys. Michael Carus
Managing Director
Phone: +49 (0) 2233 4814 – 40
michael.carus@nova-institut.de
nova-Institut GmbH
Chemiepark Knapsack
Industriestraße 300
50354 Hürth
Deutschland
Dipl.-Ing. Christin Schmidt
Deputy Managing Director
Phone: +49 (0) 2233 4814 – 44
christin.schmidt@nova-institut.de
Phone.: +49-(0)2233-48 14 44
Fax: +49-(0)2233-48 14 50
contact@nova-institut
www.nova-institut.eu
Dr. Stephan Piotrowski
Economics and Resources
Dipl. Wirtsch.-Ing. Lena Scholz
Bio-based Materials
Phone: +49 (0) 2233 4814 – 53
stephan.piotrowski@nova-institut.de
Phone: +49 (0) 2233 4814 – 48
lena.scholz@nova-institut.de
Dipl.-Biol. Achim Raschka
Biotechnology
Wikipedia
Dipl.-Geogr. Dominik Vogt
Congress Management
Phone: +49 (0) 2233 4814 – 51
achim.raschka@nova-institut.de
Phone: +49 (0) 2233 4814 – 49
dominik.vogt@nova-institut.de
Dipl.-Geogr. Nicklas Monte
Assistant of the Management
Electro-Mobility
M.A. Jutta Millich
Congress Management
Phone: +49 (0) 2233 4814 – 42
nicklas.monte@nova-institut.de
Phone: +49 (0) 2233 4814 – 42
jutta.millich@nova-institut.de
Marion Kupfer
Claudia Destrait
Chief Editor ‚Bio-based News‘
Secretary
Phone: +49 (0) 2233 978369
marion.kupfer@nova-institut.de
Phone: +49 (0) 2233 4814 – 40
claudia.destrait@nova-institut.de
Our Team
58 Biowerkstoff-Report, Edition 8, March 2011
Impressum
Impressum
Biowerkstoff-Report
Report on Bio-based Plastics and Composites
ISSN 1867-1209 (Print)
ISSN 1867-1195 (Online, Version: 25. Mai 2011)
Publisher: Michael Carus (v.i.S.d.P.)
nova-Institut GmbH, Chemiepark Knapsack,
Industriestraße 300, 50354 Hürth, Deutschland
Tel.: +49 (0)2233 4814 - 40
Fax: +49 (0)2233 4814 - 50
E-Mail: contact@nova-institut.de
Internet: www.nova-institut.de / nr
Editor: Lena Scholz (nova-Institut)
Tel.: +49 (0)2233 4814 - 48
E-Mail: lena.scholz@nova-institut.de
Layout: Mark Speckenbach, Julia Hunold (Wirkstoffgruppe)
Circulation: 2,500 (print) and 7,500 (online)
Abonnement:
If you would like to subscribe to the online version
of the Biowerkstoff-Report - Report on bio-based
Plastics and Composites, please just send us an Email
and you will be included in the mailing list of the
nova-Institute.
Advert formats and prices:
Adverts are available as 1 page, 1/2 page, 1/3 page, 1/6
page. For a non-binding offer please contact
Lena Scholz (nova-Institut)
Tel.: +49 (0)2233 4814 - 48
E-Mail: lena.scholz@nova-institut.de
Your contribution and press releases:
The editors are looking forward to receiving your contributions and press releases
Next issue: middle of November 2011
Copyrighted names and trademarks have generally not been marked as such. The absence of any such marking does not
mean that it is a free name in the context of the right to a name. The rights remain with the holders of the respective trademarks. The nomination of of product- or service-designations serves exclusively the purposes of identification.
­­Biowerkstoff-Report – Report on Bio-based Plastics and Composites
All Editions
Edition 1, July 2008
Edition 2, August 2008
Edition 3, September 2008
Edition 4, November 2008
Edition 5, February 2009
Edition 6, October 2009
Edition 7, April 2010
Edition 8, March 2011
All editions of the Biowerkstoff-Report - Report on Bio-based Plastics and Composites can be ordered as printed version at
www.nova-shop-info for 15 €. The free online version (PDF) is available at www.bio-based.eu.
More news: www.bio-based.eu/news
Biowerkstoff-Report, Edition 8, March 2011 59
www.bio-based.eu
pictures (left to right): Teijin, polyone, staedtler, propper, Biotex, FKuR, werzalit
Bio-based News
The portal for bio-based economy,
bio-based plastics & composites and industrial biotechnology
Get a comprehensive overview about recent
developments in the field of biomaterials and industrial
biotechnology: fast – exclusive – solid – relevant
Your unique source of expert information on bio-based
plastics & composites, industrial biotechnology,
biorefineries and green chemistry
• online portal with daily news articles
• new investments
• new product placements
• weekly newsletter
• supplier & stakeholder directory (more than 2,000 entries)
• data base with 10,000 news
• market data
• policy framework
• Research & Development
• full text and index search
One year subscription for only: 1,000 € plus 19% VaT. The search engine as well as all keywords are fully available in english
and German. The news articles themselves are 60% in english and 40% in German.
www.bio-based.eu/news
Typical news
•
new ClariantplansacquisitionofSüd-ChemieAG [2011-02-16]
cooperation to focus on innovation and growth in emerging markets
•
new ClariantAGplantErwerbderSüd-ChemieAG [2011-02-16]
Zusammenarbeit soll Forschung in den Zukunftsmärkten neue Materialien und
Biotechnologie stärken
•
new NovozymessuchtzweitesStandbeinimBiobusiness [2011-02-16]
Kauf der eMD-agrosparte des chemiekonzerns Merck KGaa erlaubt neue
wachstumsziele
•
new LANXESSstepsupcommitmenttobiobasedrawmaterials[2011-02-15]
10-year exclusive supply agreement with Gevo
•
new Coca-Colasaysbiodegradablepackaging‚notaviableoption‘ [2011-02-15]
New report from Zenith International finds not all manufacturers to agree with