PDF here - nova
Transcription
PDF here - nova
ISSN 1867-1217, Edition 8, March 2011 www.bio-based.eu Report on Bio-based Plastics and Composites nal 4th Internatio Bio-based Congress on omposites C d n a s c ti s Pla th rch 15th + 16 Cologne, Ma 5 materials r the nominated fo ward Innovation A Source: Evonik Degussa GmbH page 26 Introduction to Biotechnology Standardization & Policy The Bioplastic Design Challage Biorefinery projects The Lead Market Initiative The Latest Literature Measuring bio-based content The revised „Top 10“ bio-based building blocks Page 44 An opportunity for audacious materials innovations involving numerous industrial sectors Page 16 Lead article “Switched on to biopolymers”, Jan Ravenstijn Page 4 Page 48 Switched on to biopolymers Editorial Biowerkstoff-Report Sehr geehrte Leserin, sehr geehrter Leser, die neue, achte Ausgabe des Biowerkstoff-Reports steht im Zeichen des 4. Biowerkstoff-Kongresses, der wieder zu seinem Ursprungsort Köln zurück gekehrt ist und zukünftig dort auch bleiben wird. Mit 150 bis 200 Teilnehmern - so die Schätzung bei Drucklegung - würde der Kongress zum zweitgrößten seiner Art in Europa! Michael Carus Geschäftsführer Die Seiten 26 ff. geben Ihnen einen umfassenden Vorgeschmack auf den 4. BiowerkstoffKongress: Programm, Kurzfassungen der Vorträge, Anwärter auf den Preise „Biowerkstoff des Jahres“ sowie Vorstellung unserer Partner. Zum Biowerkstoff-Kongress erscheint die erste internationale Ausgabe des Branchenführers für innovative Biowerkstoffe: iBIB2011. Mehr hierzu erfahren Sie auf Seite 14 f. Lena Scholz Biowerkstoffe Weitere Höhepunkte der vorliegenden Ausgabe sind: Der Biokunststoff-Experte Jan Ravenstijn gibt einen aktuellen und umfassenden Überblick über die Aufnahme von bio-basierten Polymeren durch den wachsenden KonsumelektronikSektor, auf Seite 4 ff. Um Biokunststoffe auf ihrem steinigen Weg zur Marktfähigkeit zu unterstützen, hat der Cluster Biopolymere/Biowerkstoffe die „Bioplastics Design Challenge“ für die Landesgesellschaft BIOPRO Baden-Württemberg GmbH ins Leben gerufen. Dieses Vorhaben soll innerhalb der Kunststoff verarbeitenden Industrie und in den Endanwenderbranchen das Nachhaltigkeitsbewusstsein und die Innovationsdynamik stärken, um die Markteinführung von biobasierten Materialien zu begünstigen. Einen Überblick über das Projekt gibt der Sonderteil auf Seite 48 bis 55. Interessante und höchst positive Ergebnisse zeigt der Beitrag „Assessment of Life Cycle Studies on Hemp Fibre Composites“ auf S. 22 f. Bio-Verbundwerkstoffe weisen gegenüber anderen Materiallösungen erhebliche CO2-Einsparungen auf und sind damit aus Sicht des Klimaschutzes erste Wahl. Zukünftig sollen im Biowerkstoff-Report mehr Beiträge zum Thema Industrielle Biotechnologie erscheinen, der prozesstechnischen Vorstufe vieler Biowerkstoffe. Ab Seite 16 finden Sie Informationen zu Bioraffinerie-Projekten, Buchbesprechungen und die neuen „Top 10“ der biobasierten Chemie. Mit freundlichen Grüßen Michael Carus, Geschäftsführer nova-Institut Lena Scholz, im nova-Institut verantwortlich für Biowerkstoffe P.S.: Mit den letzten Ausgaben hat sich der Biowerkstoff-Report zu einer primär englisch-sprachigen Zeitschrift entwickelt. Hiermit tragen wir der zunehmenden Internationalisierung des Biowerkstoff-Marktes sowie der großen Nachfrage aus dem englisch-sprachigen Raum Rechnung. P.P.S.: Bitte beachten Sie auch unser neues „Fachportal für bio-basierte Ökonomie - das Portal für Biowerkstoffe und Industrielle Biotechnologie“, das Sie täglich auf deutsch und englisch auf dem Laufenden hält. Mehr dazu auf der Rückseite. 2 Biowerkstoff-Report, Edition 8, March 2011 Switched Edition on to 8,biopolymers March 2011 Inhalt Lead Article Switched on to biopolymers (Jan Ravenstijn) Dear reader, The new, eighth edition of Biomaterials Reports is dedicated to the 4th Biomaterials Congress, which has returned to its original location in Cologne and is there to stay in the future. With 150 to 200 participants (according to current estimates) the Congress would become the second largest of its kind in Europe! Bio-based Plastics & Composirtes Freies Fachwissen zum Thema Nachwachsende Rohstoffe 08 News 10 The pages 26 ff. give you a comprehensive preview of the 4th Biomaterials Congress: Program, abstracts of papers, candidates for the prices, “Biomaterial of the Year” and presentation of our partners. Biorefinery At the Congress on Bio-based Plastics and Composites the first international edition of the directory for innovative biomaterials: iBIB2011 will be published. For further information, refer to page 14 f. Biotechnology Other highlights of this edition will be: Bioplastic expert Jan Ravenstijn gives a recent and comprehensive overview on the uptake of bio-based polymers by the growing consumer electronics sector, see pages 4 ff. The ‘Automotive Bioplastics Design Challenge – abdc’ on behalf of BIOPRO BadenWürttemberg GmbH will evaluate and further develop design aspects of commercially available biomaterials and biomaterials under development with regard to their suitability for automotive sector applications. An overview over the project with possibilities of participation and reached milestones is given on the pages 48 to 55. 04 European Commission steps up biomass use 16 A revision of the US DoE “Top 10“ for bio-based products from carbohydrates 18 BASF and PURAC: Joint development of bio-based succinic acid 19 Book reviews 20 Bio-Composites Assessment of Life Cycle Studies on Hemp Fibre Composites 22 Targets for bio-based composites and natural fibres 24 The article “Assessment of Life Cycle Studies on Hemp Fiber Composites”, p. 22 f. shows interesting and very positive results. Bio-composites results in significant CO2 savings in comparison to other material, and are thus of first choice from the perspective of climate change. 4th International Congress on Bio-based Plastics and Composites In the future, Biomaterials report should include more articles on Industrial Biotechnology , from the technical precursor of many biomaterials. Starting at page 16 you will find information on biorefinery projects, book reviews and the new “top 10” of the bio-based chemistry. Standardization & Policy Programme, Speakers, Absteracts, Partners, Sponsors, Media partners How to Measure the bio-based content 44 The European Lead Market Initiative for 45 and Standardisation of bio-based Products Book reviews Yours sincerely, 26 46 Cluster Biopolymere/Biowerkstoffe Michael Carus, Managing nova-Institut Lena Scholz, the nova-Institut responsible for Biomaterials PS: With the recent issues, the Biomaterials report has developed into a primarily English magazine. We hereby take into account the increasing internationalization of the Biomaterials market and the high demand from English-speaking countries. PPS: Please also see our new Portal for Bio-based Economy, Biomaterials and Industrial Biotechnology, daily news in English and German. More information on the back. More news: www.bio-based.eu/news Cluster Biopolymere/Biowerkstoffe Biopolymers/Biomaterials Cluster 48 Die BioKunststoff Design Challenge 52 Bioplastics Design Challenge nova-Institut For Bio-based Economy — Green Chemistry and Bio-based Products Biowerkstoff-Report, Edition 8, March 2011 3 56 Switched on to biopolymers Switched on to biopolymers Uptake of bio-based polymers by the growing consumer electronics sector promises to help reduce energy consumption and carbon dioxide emissions C urrent investment plans among some companies for a number of bio-based thermoplastics (such as thermoplastic starch, or TPS; PLA; PHA; and polybutylene succinates, or PBS[X]) aim to quadruple their production volume, from 435 kilotonnes to 1,685 kilotonnes per year, over the next five years. Whether this all will happen, the future will tell, but these figures represent plans that have been formally announced by various companies. Then there are the many initial investments in bio-based polyamides, aliphatic polycarbonates, and new bio-based monomers. With bio-based polymers, new functionalities are being achieved. These include biodegradability, compostability, and anaerobic digestion (for some biobased products), but also new property combinations suitable for some electronic applications for instance. For most products, lower energy consumption and fewer emissions during the entire life cycle will be observed, mainly due to the fact that application of biotechnology reduces both energy requirements and CO2 emissions during production. (There can, however, be a lot of water waste, so a complete life cycle assessment is important.) New combinations of properties are now possible, as is biocompatibility for biomedical applications. And the replacement of undesired chemicals, such as styrene and bisphenol A, is also possible, which leads to new business opportunities. Potential applications include one-timeuse (personal care, home care, adhesives, packaging, medical materials, cheese coatings, and chewing gum bases) as well as durable applications, including automotive, electronics/electrical, durable biomedical 4 Biowerkstoff-Report, Edition 8, March 2011 materials, consumer goods, textiles, and coatings. Based on the status of technology from a few years prior, Kline & Company reported an addressable market for biobased plastics of 34,000 kilotonnes per annum, which is substantial. The automotive and packaging markets represent the majority of this, but electronics and electrical items are also an important part (about 15 percent); this is still quite significant. However, technology progresses very rapidly, and in 2009, Dr. Martin Patel (of Copernicus Institute of Utrecht University in The Netherlands) reported that the maximum technical substitution potential of biobased polymers replacing their fossil-based counterparts is estimated at 90 percent, including fibers. Will the market see this 90 percent realized? Certainly not overnight. But it is interesting that it is beginning to be widely recognized that there are many opportunities. If these drivers discussed herein coalesce, companies will pursue these opportunities. Economic drivers for bio-based plastics & contributions of industrial biotechnology Certainly the obvious economic driver is the increased cost of fossil resources, as well as cost fluctuations. Oil prices can vary wildly from US$140 a barrel back to $50, before rising back again to, say, $95 and up. It is variable daily, which creates instability in planning for use of feedstocks. Alternative feedstocks thus provide a mechanism to hedge the chemical companies’ exposure to oil price increases, or fluctuations. Based on studies of data from the consultancies McKinsey & Company, SRI, PEP, and CMI, it is clear that there is a cutoff point at which either the fossilfuel-based route or the bio-based route becomes more economical. Currently, the bio-route is reported to be cheaper than the fossil-route at oil prices above $50/ barrel and provided the bio-route operates at scale. So at current oil prices, the bioroute would seemingly be more cost-effective at scale. And of course, while a lot of developments are in the works, several new technologies are not yet at scale. Also, using bio-waste materials as feedstock would further decrease the cost of the bioroute. As these developments materialize, the bio-based routes will shift so that they cost far less than traditional petrochemical production, even at lower oil prices. Environmental drivers for bioplastics There has been an obvious increase in public concern about cli-mate change (with regards to CO2 and CO2-equivalents, energy use, water consumption, and pollution). There is also public concern about waste management and global warming (despite ongoing debates about the latter). Worldwide, the human population produces about 8 billion tonnes of CO2-equivalents per annum. Five billion are added each year (from the sum of human activity and regular cyclical activity in the biosphere); three billion are absorbed by land and ocean. Even if land and ocean were to absorb more (due to, for example, slight increases in ocean temperatures), these gases eventually reach the ocean surface. For us to return to pre–industrial Revolution levels, we would need to reduce greenhouse gas emissions substantially, and this is not something that can be accomplished in the Switched on to biopolymers Lignin Photosynthesis CO2 > 10 years Combustion Figure 1: Carbon Cycle immediate short-term. It might take us to the middle of this century, if not longer to be at the right CO2 emission levels and it will then take more than 100 years to get back to pre-industrial revolution levels. A new value chain As Figure 2 depicts, a new context, a new value chain, is being established. I mention this because this poses challenges for companies with focused expertise seeking to expand their activities across the entirety of that value chain. A number of companies, for instance, conduct in-house plastics manufacturing; these companies can have substantial expertise in polymer processing applications, often have fermentation skills in house, may have established competencies in metabolic engineering, et cetera. But this does not necessarily translate into a capacity to put all the components of that value chain together. For that, people with skills and competencies on the left side of the value chain (feedstocks and additives, as depicted in Figure 2) should understand the needs and competencies on the righthand side (polymers, fibers, markets), and More news: www.bio-based.eu/news Starch Cellulose Incineration ns ee Gr t > 106 years cu rt ho Natural gas Chemical industry Fossil recoures Coal Petroleum Figure 2: A new value chain is being established for biobased polymers. Vegetable oils Biorefinery Figure 1 describes how bioplastics can contribute towards carbon management. For end-of-life options, there are incineration and combustion, which occur in the short term. Industrial biotechnology adds to these options anaerobic digestion, composting, and biodegradation. The timelines for these end-of-life scenarios can be ten to twenty years or more, depending on the specific use of the material. For a car, the end-of-life “breakdown,” by industrial biotechnological means, could be 20 to 30 years. Concerning materials for single-use applications (such as packaging), the endof-life scenario becomes relevant within 1 to 2 years. Biomass biodegradation Chemicals fuels polymers Vegetable oil Biobased building blocks Polymer additives Bioplastics Biopolymers Bioplastics Biopolymers Technology platforms vice versa. Biorefineries and downstream processes are complex clusters of industrial activities, and cooperation and synergy must be designed into a process if it is to be successful for bio-based monomers and polymers. Companies are discovering this. Agri-biotech companies making forays into polymers are finding themselves on rapid learning curves. Some may be missing the expertise to see definitive success in the polymer market. And the biopolymer companies extending their reach into feedstocks and biorefining may be experiencing similar limitations. Plastic parts Markets Natural fibers be run on vegetable oil as fuel. Henry Ford long ago created flex-fuel cars capable of running on E85. His vision was that individual farmers would be able to make their own fuel. During the Second World War, in 1941, Ford also introduced an all-plastic motor-car body, with panels made of 70 percent cellulose fiber, and 30 percent phenolic resin extended with soybean meal. Historic photographs depict Ford swinging an axe at the body of this automobile and the car withstanding the impact. That technology, however, didn’t come to commercial fruition, very simply because oil was cheap and petroleum-based materials were therefore plenty. Renewable monomers A growing number of renewable monomers for thermoplastics and for thermosets are now being investigated for cost attractive manufacturing through white biotechnology routes, while several of them are on the market already. A distinction can be made between monomers that used to be produced from fossil resources (drop-in bio-based plastics) and monomers that are based on renewable resources and bring differentiation options to the polymer industry. The idea of drop-in bio-based plastics is not actually new. When Rudolf Christian Karl Diesel invented the diesel engine in 1892, he originally designed it to There are several examples of bio-based monomers that are relevant for thermosets, but are still produced in small quantities or are in the development stage. Itaconic acid, isosorbide, isoidide, long chain diols, diacids, and diamines, adipic acid, and 2,5-furandicarboxylic acid (FDCA), for example, are all examples of renewable monomers that are being developed and investigated for use in thermosets, thermoplastics, and composite materials. Recently, isosorbide has come to attention as a potential replacement for bisphenol-A, an intermediate in the production of polycarbonates (PC) and in epoxy res- Biowerkstoff-Report, Edition 8, March 2011 5 Switched on to biopolymers ins that has been linked to various adverse health impacts including infertility and birth defects. The cyclo-aliphatic structure of isosorbide is likely to give some extra rigidity to the polymer chain and better UV properties, but the question is to what extent that will suffice to replace some of the existing resins. Moisture sensitivity appears to be worse compared with the original PC. A 300 t/ year demonstration plant is under construction in Japan for Bio-PC based on isosorbide. Mitsubishi claims that the material has better optical properties than traditional PC and comparable to polymethyl methacrylate (PMMA). It has mechanical properties comparable to traditional PC, however, and has a glass transition temperature (Tg) – above which the material changes from a solid state to a melt – of about 130 °C. This combination of properties makes the material suitable for functional optical films for flat panel displays. Currently, the newly developed biobased FDCA is being investigated for use in thermosets and also for thermoplastics: polyesters, polyamides, and polyester amides. The developer of FDCA, Avantium, expects that the cost of this new monomer to the polymer industry will be $600- 800/t when produced at scale. In the meantime, a whole series of new polymers is being evaluated for potential in the near future. Bio-based polymers Initial market interest in bio-based plastics came from producers of one-time-use applications or applications that generate a lot of plastic waste. Every year, for example, we discard 365m mobile phones, 3.7bn plastic cups, 350bn plastic bottles and 3,750bn plastic bags. It’s useful to distinguish bio-based polymers and biodegradable polymers. One definition relates to the raw material, the other, to the functionality of the material. Today, there are many more durable bio-based polymers than there are biodegradable bio-based polymers. Biodegradability was considered to be the most important property, although it is a mistake to think that biobased polymers are biodegradable, since most of them are not. Several oil-based polymers are biodegradable, but don’t 6 Biowerkstoff-Report, Edition 8, March 2011 contribute to energy or to CO2 emission reductions. To call these ‘biopolymers’ is misleading. In more recent times, the focus has shifted towards thinking of bio-based polymers as a means of moving away from fossil fuel feedstocks and lowering CO2 emissions. Although the bio-based polymer business is only 1000 kt/year or 0.4% of the total polymer business in 2010, current annual growth rates are 30%. Some processing companies have reported a more than 50% growth and state that this could be further exceeded if only there were greater supply, both in terms of actual volumes and in terms of a more diverse palette of bio-based polymers. New technology developments and related product introductions could further boost these numbers during this decade. In fact, the number of new polymer introductions that are wholly or partly based on renewable feedstock is comparable to the number of new oilbased polymer introductions 60 years ago. Based on the state-of-the-art technologies, polylactic acid (PLA), polyurethane, starch, and polyethylene (PE) are expected to be the dominant contributors to the growth in biopolymers – thermoplastics and thermosets – in the next five years. However, tremendous R&D and capital investments are being made around the world to advance product and application technologies for polymer groups including bio-polypropylene, PLA, polyhydroxyalkanoates (PHA), poly(butylene succinate) (PBS), polyamides, unsaturated polyesters – composites and resins, natural fibres such as bamboo and kenaf, and polymers based on new renewable building blocks like isosorbide, itaconic acid, succinic acid, adipic acid, and furanics. Materials are biobased or partly bio-based and have significantly improved performance, compared with the earlier bio-based polymers. PLA, which is actually a family of copolymers of D-lactic acid and L-lactic acid units, can be designed by controlling the D- and L- units separately, to make PL-LA and PD-LA, and then combining these to make stereocomplex PLA. The melting point of the resultant polymer is thus increased from 160°C up to as much as 230°C or 240°C. The product’s impact strength, however, stays relatively low. The polymer might be combined with other polymers or fibers to improve strength and toughness. There are many more not yet commercially available bio-based polymers, but that may change in the next one to three years, such as PA-2,4, PA-4,2, PA-4,4, PA5,10, and PAs based on long-chain diacids and diamines C10– C18. The bio-based content varies between 20 and 100 percent, depending somewhat on the specific polymer. Interestingly, Wallace Carothers, who was the first to develop polyamides (nylons) at DuPont, in the 1930s, insisted that nylon 5,10 is better than nylon 6 or nylon 6,6, the latter two of which are the most common for textiles and plastics. Carothers had wanted to bring nylon 5,10 to commercial status, but was unable to, because he could not identify an economically effective production process. Today, BASF is investing into a group dedicated to developing a bio-based nylon 5,10. In a number of countries, including Brazil, China, Japan and the US, local authorities stimulate these developments and capital investments through large subsidies. Consumer electronics Additional drivers for consumer electronic markets are the use of renewable raw materials, in combination with measures to reduce energy consumption and CO2 emissions throughout the value chain for branding purposes. New functionalities, or the convergence of functionalities offered by bio-based polymers, are also attracting attention. In consumer electronics, bio-based polymers are used for connectors, PC housings, battery packages and chargers, electronic equipment chassis, mobile phones, personal music systems, and keyboards. Original equipment manufacturers like Dell, Fujitsu, NEC, Nokia, Philips, Siemens, and Sony have mainly focused on commercially available bio-based polymers, and have shown a growing interest in new bio-based polymer developments and in biodegradable and bio-based polymers for packaging their electronic products. Many Switched on to biopolymers Source: Fujitsu have also been making progress in-house to improve polymer functionality. So far, Dell’s focus has been predominantly on sustainable materials and certification of packaging applications for its products. To that effect, it has been looking at the first wave of bio-based and biodegradable polymers. Many of their competitors go a step further and look at durable materials. packaging and 100% recycled materials for leaflets, and is 97% free of PVC to limit the use of halogens. German company FKuR has developed Biograde C 75 CL, a cellulose acetate based compound used for the keyboard of a Fujitsu-Siemens computer (see photo). Japanese Electronics company NEC has developed a PLA/kenaf composite resin with 90% biomass, produced by Unitika, to replace glass reinforced polycarbonate composite for cellular phones, commercialised since 2006. Other developments by NEC are a flame retardant PLA for personal computer housings, a shape-memory PLA composite based on thermo-reversible crosslinking, and heatconductive PLA composites based on carbon fibre modified PLA for mobile phones and notebook PCs. The company used renewable raw materials at 10% of its total polymer needs in 2010, and aims for more beyond that. Last, but not least, it is worth mentioning the efforts of Sony to develop bio-based polymer solutions for a broad range of applications in mobile phones, camcorders, laptops PCs, portable audio applications, home video/audio and TVs/displays. Of course, requirements for flame retardancy and heat resistance still stand. Today, the company already uses bio-based PLA and polyamides for some applications, but aims to further evolve this. Nokia developed and introduced its 3110 Evolve in 2008, a mobile device with biobased covers made from more than 50% renewable material. The device is presented in a small package made of 60% recycled material and it comes with Nokia’s most energy efficient charger yet, using 94% less energy than the Energy Star Requirements for such products, as defined by the US Environmental Protection Agency. New types and improved models of electronic devices, telecommunications equipment, and electrical appliances – mobile phones, computers, DVD players, televisions, GPS finders etc – are flooding the marketplace. Given the speed at which new technology is developed, last year‘s model is frequently discarded in favour of the latest features. According to my analysis of available data, the world collectively disposes of 1 million mobile phones every day, 10 million plastic cups, 1 billion plastic bottles, and 10 billion plastic bags. This is an enormous volume, and the latter three items involve packaging alone. End-of-life options Expanding volumes, shorter life cycles, and an evergrowing waste stream are the three main reasons why environmental regulations have targeted electronics and electrical equipment. trolled composting. The nature of the waste stream determines the best option in this respect. I’ll offer a word about biodegradation. Uncontrolled biodegradation, in my mind, is a waste, because it involves throwing away resources, if you will: throwing away energy and materials. If uncontrolled, in many cases, it can lead to such things as the formation of methane and other gas emissions that are worse than CO2. Controlled biodegradation would involve composting or anaerobic digestion and would mitigate these harmful effects. So although biodegradation is a useful property for some applications, uncontrolled biodegradation is a wasteful end-of-life option. Growing demand Philips has developed a new vacuum cleaner consisting of 25% bio-based plastics and 50% recycled plastics. During the development process, the company adopted a lifecycle approach to determine the product’s overall environmental improvement and aimed to achieve an environmental impact improvement of at least 10%, compared with the most competitive product then on the market. It includes a new high energy motor to save energy, which makes it 35% more efficient than other green vacuum models on the marketplace, uses >90% recycled materials for the More news: www.bio-based.eu/news The impact on waste disposal resources, both landfills and incinerators, is a practical concern for many governments. The principle ‘reduce, reuse, recycle… and in that order’ is practiced, but not enough. When a waste stream has to be recycled, there is the choice to recycle it to polymer, to chemicals, to energy, to energy through anaerobic digestion, and to compost by con- The growing demand for plastics cannot be satisfied by oil in the longer term. Also, the need to generate no more CO2 than we consume becomes ever more important. Waste from electronic equipment has value as a material, raw material or energy source. It will take decades to convert the polymer industry from fossil fuel to renewable resources, but this also offers new business opportunities, especially in durable applications like consumer electronics. The business of renewable resource based plastics is still small, but major global efforts and investments will boost their development significantly. l Author: Jan Ravenstijn, industrial bio-material expert Derived from articles published in: • Chemistry & Industry, 27 September 2010 • Industrtial Biotechnology, October 2010 j.ravenstijn@kpnmail.nl. Biowerkstoff-Report, Edition 8, March 2011 7 Wikipedia Freies Fachwissen zum Thema Nachwachsende Rohstoffe Öffentlich gefördertes Projekt in der Wikipedia erfolgreich abgeschlossen. Am 30. April 2010 konnte das von der nova-Institut GmbH und dem gemeinnützigen Verein Wikimedia Deutschland realisierte Projekt „Nachwachsende Rohstoffe in der Wikipedia“ erfolgreich beendet werden. Begleitet und unterstützt wurde das Projekt durch die Fachagentur Nachwachsende Rohstoffe e.V. (FNR) und finanziert aus Mitteln des Bundesministeriums für Ernährung, Landwirtschaft und Verbraucherschutz (BMELV). Im Verlauf dieser Maßnahme konnte das Projektteam über 500 Stichworte ausarbeiten bzw. ganz neu hinzufügen. Ambitionierte Ziele rechte Realisierung zu gewährleisten. Medium auch zu diesem Thema belegt. Sowohl bei Schülern und Studenten, als auch bei Journalisten und Wissenschaftlern wird Wikipedia als Nachschlagewerk heute meistens als erstes und häufig als einzige Quelle genutzt. Die einzelnen Artikel erzielen insbesondere verglichen mit wissenschaftlichen Publikationen und Printmedien enorme Leserzahlen. Selbst Nischenthemen wie „Naturdämmstoff“ liegen bei monatlich über 500 Seitenaufrufen, die Zahlen für „Biokunststoff“ liegen sogar bei über 2.700 und „Bioethanol“ erhält mehr als 5.500 Aufrufe pro Monat. Sehr zentrale Begriffe wie „Mais“ mit rund 20.000 Aufrufen/Monat oder „Glycerin“ mit ca. 30.000 Aufrufen/Monat bilden den am häufigsten nachgeschlagenen Bereich ab. Von Beginn an waren die Ziele des 2007 gestarteten Projekts „Nachwachsende Rohstoffe in der Wikipedia“ hoch gesteckt – ein Qualitativ hochwertiges Nachschlagewerk sollte entstehen, welches den Gesamtbereich der Nachwachsenden Rohstoffe innerhalb der Online-Enzyklopädie abdeckt. Bis dahin war es nur schwer möglich, ertragreiche Recherchen zu diesem Themenbereich durchzuführen – wenigen einzelnen, dafür aber teilweise ausgezeichneten Artikeln standen zahlreiche unvollständige oder veraltete Beiträge gegenüber; viele Begriffe suchte man vergeblich. Während der Projektlaufzeit von drei Jahren wurden die WikipediaEinträge zu Fachartikeln aus dem Bereich Nachwachsende Rohstoffe optimiert. Damit kann nun eine breite Öffentlichkeit umfassend zu diesen Themen informiert werden. Initiiert wurde das Projekt von der nova-Institut GmbH. Als Projektpartner konnte Wikimedia Deutschland gewonnen werden, um die Wikipedia-ge- Ein kompetentes Nachschlagewerk Zusammenarbeit mit der Wikipedia-Community Das beachtliche Ergebnis des Projekts: Insgesamt 557 Stichworte sind fachlich kompetent bearbeitet worden, dabei wurden 434 Artikel teilweise komplett neu erstellt oder umfangreich „saniert“. Das Themenspektrum erstreckte sich von einzelnen Rohstoffpflanzen über zahlreiche Themen im Umfeld der Bioenergie bis hin zu den vielfältigen Optionen der stofflichen Nutzung. Der Leser findet heute komfortabel alle relevanten Informationen zu Ackerfrüchten wie Raps, Mais und Rüben oder Nischenkulturen wie Miscanthus und Hanf – aber auch zu den zentralen Stichworten aus den Bereichen Holzwirtschaft, Bioenergie, Biotechnologie, Verbundwerkstoffe, Papier oder Holzwerkstoffen muss nicht lange gesucht werden. Bis heute hohe Zugriffszahlen zeigen den erhofften Erfolg dieser Maßnahme, die die Bedeutung der Wikipedia als Recherche- Das Projekt konnte nur aufgrund der aktiven Beteiligung der zahlreichen freiwilligen Wikipedia-Autoren aus den unterschiedlichsten Themenredaktionen durchgeführt und erfolgreich abgeschlossen werden. Millionen Menschen nutzen die Wikipedia täglich und profitieren von dem ehrenamtlichen Engagement der Community, nicht nur in dem hier dargestellten Bereich. Die Projektpartner fordern Sie als Leser entsprechend ebenfalls auf, die Wikipedia zu besuchen und sich ein Bild von den Inhalten zu machen. 8 Biowerkstoff-Report, Edition 8, March 2011 Über die nova-Institut GmbH Für eine Übersicht über weitere Aktivitäten des nova-Insituts beachten Sie bitte die Seiten 48ff. Wikipedia Free expert knowledge on Renewable Resources’ A Publicly funded project in the German Wikipedia, carried out by the nova-Institute and Wikimedia Deutschland e.V. was successfully completed on the 30th of April 2010. The project was supported by the Fachagentur Nachwachsende Rohstoffe e.V. (FNR) and financed by funds of the German Federal Ministry of Nutrition, Agriculture and Consumer Protection (BMELV). During the project more than 500 articles could be improved respectively added. Über Wikimedia Deutschland – Verein zur Förderung Freien Wissens. Der gemeinnützige Verein Wikimedia Deutschland wurde 2004 in Berlin von aktiven Autoren der Wikipedia gegründet und finanziert sich durch Spenden und freiwillige Mitarbeit. Wikimedia Deutschland hat eine Geschäftstelle in Berlin und unterstützt mit seinen derzeit zehn Mitarbeitern die Wikipedia und ihre Schwesterprojekte. Der Verein versteht den Zugang zu Freiem Wissen als ein Menschenrecht und fördert durch intensive Presse- und Öffentlichkeitsarbeit, gezielte Spendengewinnung, technische Infrastruktur und zahlreiche Aktivitäten das rasante Wachstum der Wikimedia-Projekte. Mehr über den Verein und die Aktivitäten unter www.wikimedia.de l Pressemitteilung vom 14.07.2010 Achim Raschka (Projektkoordination, nova-Institut GmbH) Telefon: 02233-48 14 51 E-Mail: achim.raschka@nova-institut.de Internet: http://www.nova-institut.de/nr/ Catrin Schoneville (Wikimedia Deutschland e.V) Telefon: 030 – 219 158 260 E-Mail: catrin.schoneville@wikimedia.de Internet: http://wikimedia.de Wikipedia-Portal Nachwachsende Rohstoffe: http://de.wikipedia.org/wiki/P:NR V.i.S.d.P.: Michael Carus, GF der novaInstitut GmbH More news: www.bio-based.eu/news Biowerkstoff-Report, Edition 8, March 2011 9 News Sustainable Compounding of Biodegradable Materials Turnkey Plant for Biodegradable Plastics Compounding The first compounding plant for biodegradable plastics in Portugal underlines the expertise of Coperion GmbH, formerly Werner & Pfleiderer, in biodegradable material processing systems. The extrusion line is being operated by the Portuguese compounding company Cabopol, S. A. based in Porto de Mós and went into trial operation in January 2010. The official opening ceremony took place in spring of this year and was attended by the Portuguese President. Cabopol is now the first manufacturer of biodegradable polymers on the Iberian Peninsula. The processing system includes materials handling for all raw materials – that is storage, conveying, weighing and dosing – as well as compounding with downstream pelletizing and drying. Biodegradable compounds based on compostable polyesters with and without starch are being manufactured. The materials supply system stands out for a high flexibility, allowing the addition of several different components. The processing extruder, a ZSK MEGAcompounder PLUS, has a ZS-B twin screw side feeder and a venting unit. The die discharges into a water bath for strand cooling followed by suction drying of the strand surface prior to strand pelletizing. All the peripherals are integrated into the EpcNT plant control system. A modem allows remote software updates and monitoring of the compounding plant. Cabopol procured a ZSK 26 MEGA- compounder laboratory extruder especially for this project and during the optimisation of the screw geometry and process technology was able to make use of know-how from Coperion. It is the formulations including starch that represent a particular challenge: The melting zone in the compounding extruder has to not only melt the polymer, but also plastify the non-melting starch by adding liquid. The plant was installed in a three storey steel framework. The upper level is used for the management of pellets and powders. It houses the intermediate materials storage system with day bins, four big bag emptying stations (one of which is ATEX rated for the starch), a sack station as well as the central aspiration system. On the mezzanine level there are gravimetric dosing stations for solid material, and pumping stations for liquids are located on the ground level along with the ZSK MEGAcompounder PLUS compounding extruder. The biodegradable compounds are sold by Cabopol under the BIOMIND brand. Their most important markets are nondurable products for household, industrial and agricultural applications. Examples of these are disposable nappies and cutlery, rubbish bags, food packaging, shopping bags, drinking straws and agricultural films. For an overview of Coperion (www.coperion.com) see outline on page 36. Cabopol, S. A. (www.cabopol.com), Porto de Mós, Portugal, is part of the Grupo Meneses and belongs to the ten largest compounding companies in Europe, with a capacity of 75.000 tons per year. The current product portfolio in- 10 Biowerkstoff-Report, Edition 9, Monat 2011 cludes unplasticised and plasticised PVC, various thermoplastic elastomers, halogen free flame retardant compounds and polypropylene compounds for the automotive industry. As a result of its R&D work targeted at securing its future business Cabopol has launched its new biodegradable and compostable compounds under the BIOMIND trade name on the European market. Three storey turnkey plant for biodegradable polymer compounding: The ZSK MEGAcompounder PLUS twin screw extruder with its downstream equipment is located at the ground level Photo: Cabopol, S. A., Porto de Mós, Portugal Press Release Coperion GmbH Author: Kathrin Steimle Marketing & Communication kathrin.steimle@coperion.com www.coperion.com Biokunststoffe für den Laden- und Displaybau Als Spezialist für Kunststoffhalbzeuge beschäftigt sich das Unternehmen GEHR GmbH bereits seit 2007 mit dem Thema Biokunststoffe. Mit der Produktlinie ECOGEHR® bietet das Unternehmen schon heute eine breite Auswahl der verschiedensten Biopolymere als Vollstäbe, Platten, Profile und Rohre an. Als innovativer Familienbetrieb ist GEHR stets bestrebt diese Produktlinie weiter zu entwickeln und arbeitet seit August 2010 an der Kalandrierung verschiedener ECOGEHR-Materialien. Mit dieser Technologie lassen sich Tafeln mit einer Dicke von derzeit 1-8mm herstellen. Das Material wird bei diesem Prozess über mehrere Walzen geführt, wodurch man sehr glatte oder speziell strukturierte Oberflächen erzeugen kann. Ein Zielmarkt für solche Tafeln ist der Laden- und Displaybau. Die Designer und Produktentwickler in dieser Branche sind besonders stark an neuen und zukunftsweisenden Materialien interessiert. In diesem Marktsegment gibt es viele Endkunden (z.B. Kosmetik-, Schreibgeräteindustrie, Biomärkte, …) welche mit ihrer Firmenphilosophie auf ein verstärktes Nachhaltigkeitsmanagement und/ oder Grünes Marketing setzen. Hinzu News Bild: ECOGEHR kommt, dass es bereits einige Produkte aus Biokunststoffen gibt, welche mit den entsprechenden biobasierten Displays in einem ganzheitlichen Konzept präsentiert werden können. Auf der EUROSHOP 2011 werden diese Tafeln aus verschiedenen Materialien und in verschiedenen Farben dem Fachpublikum vorgestellt. Um die Verarbeitung der „ECO-Tafeln“ zu erleichtern, können sich Interessenten künftig in einer technischen Produktbroschüre über Richtwerte bzw. Empfehlungen informieren: • So lassen sich die Tafeln auf herkömmlichen Maschinen tiefziehen und abkanten. • Das Fügen der Tafeln ist sowohl durch Verschweißen als auch mit handelsüblichen Klebstoffen möglich, und auch die Bedruckbarkeit ist mit verschiedenen Farbsystemen gegeben. • Zurzeit wird noch das Laser- und Wasserstahlschneiden geprüft und soll die Broschüre abrunden. culture). Main advantages of these materials are their origin in renewable resources and good biodegradability. Collagen is a protein which can be processed by thermoplastic methods. Using animal (bovine, porcine) hide splits from the tanning industry, the raw material is treated in a process of partial denaturation, drying and milling, developed at FILK, resulting in a powder. This so called Thermoplastic Collagen can be melted in a conventional extruder by input of thermal-mechanical energy and using water and glycerol as plasticizer at temperatures around 90 °C. Possible products are sheets, molded parts, coatings or blown films. In order to improve the material properties (e. g. moisture sensitivity, biodegradability, mechanical stability), hydrophobic substances (fatty acids) or other biodegradable polymers (PLA, PVA etc.) can be added. At FILK biodegradable sheets of collagen in combination with synthetic polyester were manufactured being appropriate for the use as agricultural mulch films for short-term cultures (e. g. lettuce, Fig. 1). They show an additional fertilizing effect due to the release of collagen during film decomposition. Commercially available plant protein isolates contain different amounts of non protein minor components, such as carbohydrates, fat and mineral materials. Under appropriate conditions these raw materials can also be processed by thermoplastic methods, which was performed Fig. 2 Pellets of thermoplastic plant proteins (from left to right: wheat gluten, soy protein, pea protein) at FILK with wheat gluten, soy and pea protein isolates (see Fig. 2). In comparison to collagen, higher temperatures above 140 °C are needed, and glycerol is used as plasticizer. Under these conditions Maillard reactions take place between proteins and carbohydrates, which lead to changes in color and odor. Rheological measurements show that the protein melts behave like thermoplastic material. Our investigations proved that it is possible to process proteins under appropriate conditions by thermoplastic methods with subsequent treatment by rolling or film blowing. The physical-mechanical properties of purely protein based products are Author: Thomas Stintzing, ECOGEHR Stintzing@gehr.de Thermoplastic treatment of proteins using collagen and selected plant proteins As biopolymers proteins are an interesting alternative to synthetic polymers. Proteins of animal and plant origin can be used as resource for technical products. Since these raw proteins often appear as coproducts in industrial processes (e. g. wheat gluten is a by-product of starch extraction), they are available in large amounts at reasonable prices. These raw materials show high potential for the production of different technical products (sheets, coatings, molded parts) in various application areas (e. g. packaging or agriFig. 1 Collagen containing mulch film used in the cultivation of lettuce More news: www.renewable-resources.de Biowerkstoff-Report, Edition 9, Monat 2011 11 News often insufficient for competition with established polymer materials. Chemical modification or blending with other polymers provides considerable potentials for technical applications. Authors: Dr. Enno Klüver, Dr. Michael Meyer, Research Institute of Leather and Plastic Sheeting (FILK), (Meißner Ring 1-5, D-09599 Freiberg) enno.kluever@filkfreiberg.de UltraFibre Development of a radial cell hydroacoustic process and atmospheric plasma treatment for the clean, continuous, high volume production of high quality natural fibres for the SME natural fibre sector Fibre reinforced polymers find wide commercial application in the aerospace, leisure, automotive, construction and sporting industries. In recent years there has been much interest in developing natural fibre reinforced polymers for a sustainable substitution of synthetic materials, and also to develop markets for the European non-food crop industry sector. The major impediment to growth facing the European natural fibre sector is the high processing costs needed to produce the fibres themselves. While natural fibres can be used for a wide variety of applications, other fibres are considerably more cost-effective. The growth in the agromaterials / energy crop sector is causing competition for land with food production and this is driving up the costs of both food and non-food crop products. There is an urgent need in Europe for more sympathetic integration of food and non-food production; this can be partially achieved through improved process efficiency and productivity. Natural fibre crops cannot be easily separated into fibres of consistent quality. Therefore, to commercially exploit past research investment on the world market, new research must be undertaken to reduce processing costs and to improve fibre quality, consistency, and efficiency. The UltraFibre project will address these restrictions in the supply chain by delivering: A scalable, economic, continuous, clean- fluidsonics technology to deliver tonnage quantities of high quality fibre, conferring: • Reduced production costs • High quality elementary natural fibres • Higher quality commercial thermoplastic and thermosetting composites in targeted end-user applications • Integration of a Soft Plasma fibre treatment process conferring a 25% increase in mechanical properties compared with the untreated fibre. Contacts: Girolamo Dagostino, Assocomaplast g.dagostino@assocomaplast.org – Project Co-ordinator Gary Foster, Smithers Rapra GFoster@Rapra.net – Project Manager www.ultrafibre.org Evonik engagiert sich für Bambusfasern und WPC Neue Kooperation mit Reifenhäuser zur WPC-Entwicklung Evonik Industries, Essen, präsentierte Foto Evonik auf der Kunststoffmesse „K 2010“, vom 27. Oktober bis 3. November 2010 in Düsseldorf, biobasierte Polyamid-Formmassen, die mit Bambusfasern verstärkt sind. Biobasierte Polyamide, wie die „Vestamid-Terra“-Produkte von Evonik, haben exzellente mechanische und physikalische Eigenschaften und stehen anderen technischen Kunststoffen in nichts nach. Durch ihre im Vergleich zu rein erdölbasierten Polyamiden günstigere CO2-Bilanz leisten einen wichtigen Beitrag zur Schonung fossiler Rohstoffe und zur Verringerung des Treibhauseffektes. Die Rezeptur „Vestamid Terra DS“ basiert auf Rizinusöl und wird nach Herstellerangaben zu 100 % aus nachwachsenden Rohstoffen hergestellt. Sie kann mit 5 bis 50 % Bambusfasern verstärkt werden. Im Pressegespräch war zu erfahren, dass die Bambusfaser allerdings in einem chemischen Prozess modifiziert, wodurch die Rohstoffbasis austauschbar wird. Die Benennung als Naturfaser ist daher kritisch zu betrachten (vgl. HolzZentralblatt Nr. 34 vom 27.08.2010, Seite 848). Die DIN-Certco-Gesellschaft 100 % aus der Natur und hochleistungsfähig: Mit Bambus verstärktes „Vestamid-Terra“. Foto: Evonik 12 Biowerkstoff-Report, Edition 8, March 2011 News bestätigt dennoch die Konformität des Produktes mit den entsprechenden Normen als „>85% biobasiert“. Details zur Kooperation mit dem Troisdorfer Extrusions-Spezialisten Reifenhäuser hält man bei beiden Partnern zunächst noch zurück. Klar ist, dass es als Zwischenergebnis bereits verheißungsvolle Profile auf Basis von PMMA („Plexiglas“) mit Holzfasern gibt, die besonders UV-stabil sind und alle VHI-Kriterien an WPCTerrassendielen erfüllen. Der E-Modul soll deutlich über jetzigen WPC-Rezepturen liegen, wodurch zukünftig höherwertige Anwendungen auch im technischen Bereich wahrscheinlich werden. Quelle: Holz-Zentralblatt Nr. 44 vom 05.11.2010, Seite 1101 Autor: Christian Gahle CGahle@Holz-Zentralblatt.com www.Holz-Zentralblatt.com Prof. Dr.-Ing. Bohumil Kasal the new director of the Fraunhofer Institute for Wood Research Following the retirement of Professor Dr. Rainer Marutzky the Fraunhofer WKI has a new director. On 1st October 2010 Prof. Dr.-Ing. Bohumil Kasal takes over responsibility for the institute. Professor Kasal will at the same time also take up the Chair of Organic and Wood Construction Materials at the Technical University of Braunschweig, thereby creating a close personal connection to the Department of Architecture, Civil Engi- More news: www.bio-based.eu/news neering and Environmental Engineering. From 2005 to 2010 Professor Kasal occupied the Hankin Chair at Pennsylvania State University, holding professorships in architecture and in civil and environmental engineering. His work focused on the fields of residential design and construction, wood science, historic preservation, the effects of natural hazards on buildings and the application of composite materials in structures. At Penn State he also headed the Pennsylvania Housing Research Center. Before this, Kasal was from 1992 to 2005 professor in the Department of Wood and Paper Science as well as in the Department of Civil Engineering at the University of North Carolina. Professor Kasal is an honorary research fellow at the University of Bristol, a professor at the Czech Technical University in Prague and also an honorary research associate at the University of New Brunswick, Canada. Source: Press Release, Octobre 2010, WKI simone.peist@wki.fraunhofer.de www.wki.fraunhofer.de FKuR strengthens its management team Bioplastics specialist FKuR Kunststoff GmbH has announced a new member in its management team. With effect from October 1st 2010 Mrs. Carmen Michels has strengthened the team and assumed responsibility for Technology and Production. She will reinforce the current management board of Dr.-Ing. Edmund Dolfen, Managing Director, and Patrick Zimmermann, who is responsible for Marketing & Sales. Mrs. Carmen Michels, a graduate engineer, is moving from FKuR’s Research and Development partner, institute Fraunhofer for Environmental, Safety and Energy Technology UMSICHT, where she was responsible for the management of the branch office in Willich and deputy manager for the business area Renewable Resources. Following her mechanical engineering studies, which majored in plastics engineering at the RWTH Aachen, Carmen began her career as a project engineer within the Research Institute for Plastics and Recycling. “For me personally, the task of taking an active part in the strongly growing market of bioplastics from the perspective of an industrial partner represents a very interesting challenge”, stated Michels when explaining her change to FKuR. “We are pleased to welcome Carmen Michels back in our team. This personnel move will help us to benefit from the professionalism and research & development potential of one of the world’s largest Research Institute. With the excellent experience of Mrs. Michels, FKuR will continue strengthening its worldwide leading role as a developer and manufacturer of technically sophisticated bio-compounds“, said Mr. Dolfen. Bioplastics are a class of polymers, which have properties comparable to conventional polymers, but are made from renewable resources or enable the biodegradability of the products made from this material. FKuR Kunststoff GmbH produces and markets special customized biopolymers under the brand names Bio-Flex® (polylactic acid/copolyester compound), Biograde® (cellulose ester compound) and Fibrolon® (natural fibre reinforced polymers). The close cooperation of the company with the Fraunhofer Institute UMSICHT assures outstanding knowhow and quality standards. Press Release, 10th of November, FKuR Kunststoff GmbH Contact: Mrs. Denise Winkelmann Denise.Winkelmann @fkur.de www.fkur.de Biowerkstoff-Report, Edition 8 ,March 2011 13 News Panel Discussion, Lignin Conference 2010 Photo: EconCore Ontario BioAuto Council Hosts International Lignin Conference High performance composite panels from renewable, bio-based polymers On November 17th & 18th, 2010, the Ontario BioAuto Council hosted the “International Lignin Biochemicals Conference” in Toronto, Canada. This unique event was a great success with over 140 international participants and speakers from forestry, agriculture, industry and academia in attendance. The entire supply chain came together to discuss stateof-the-art sources of lignin production, lignin characterization and quality control, advanced lignin conversion and upgrading technologies, and product and market opportunities. On the second day, an expert panel focused on action items and next steps to further advance the commercialization of lignin. The conference ended with exclusive tours of the Magna-NRC Composites Centre of Excellence and Centre for Biocomposites and Biomaterials Processing at the University of Toronto. The Ontario BioAuto Council looks forward to continue working with its members and others on lignin commercialization opportunities and expects to hold future meetings and workshops geared around these efforts. Visit www. bioautocouncil.com for upcoming conference and event listings. EconCore is proud to present the first 100% bio-based composite panel. Recently EconCore has optimized the patented ThermHex production technology to produce honeycomb cores and sandwich panels made from bio-based plastics. “Today, the exploitation of the economical advantages of weight reduction have become essential for many industries.”says Francois de Bie, EconCore head of sales and marketing. “Bio-based polymer materials are still relatively expensive compared to for example PP alternatives which has limited the use of these materials in structural application. Bio-based sandwich panels can be used in for example re-usable packaging, furniture, automotive interiors or separation walls.” By combining our cost efficient production technology with renewable materials, EconCore is able to present a sandwich panel that has excellent mechanical properties, while still being cost competitive to traditional sheet materials. “The last 6 months EconCore has optimized the production technology to produce PLA based hexagonal honeycomb cores using a continuous production process. Only moments after the core is produced skin layers are added in a second step of the continuous production process.” These skins could be made from unfilled PLA material to make a mono material panel or, in case a higher performance is required, could be replaced with consolidated flax in a PLA matrix. Author: Vicki Leith, Ontario BioAuto Council vleith@bioautocouncil.com 14 Biowerkstoff-Report, Edition 8, March 2011 Poly-Lactic Acid (PLA) is a biopolymer used to make for example packaging, consumer goods and furniture and is derived from renewable resources instead of oil. A biopolymer offers more disposal options and is more environmentally friendly to manufacture than traditional petroleum-based plastics. Derived from 100% annually renewable resources such as plants, PLA generates significantly less greenhouse gas emissions over the life time when compared to traditional materials like PP. Author François de Bie. EconCore NV francois.debie@econcore.com Picture: honey comb cores and panels made from renewable resources iBIB 2011 - International Directory for Innovative Bio-based Plastics and Composites - 74 companies and institutes from 15 countries have booked For the first time worldwide - an entire overview of all suppliers of bio-based plastics and composites! On March 15th the very first international directory of major suppliers of bio-based plastics and composites is published. Use this chance to present your company, products and services to more than 20,000 potential clients from all over the world: International Business Directory for Innovative Bio-based Plastics and Composites (iBIB2011) The print version will be distributed by the publishers and partners at trade fairs, exhibitions and conferences worldwide. News The PDF-version will be distributed widely by email and websites. Online-database with detailed index to reach your supplier in a target oriented way (more than 100 specific criteria). Who can join? Suppliers of renewable raw materials (RRM), bio-based plastics and composites and green additives can join along with engineers, associations, R & D and consultants. The cost of a double page - company profile and product portfolio incl. an online database entry - is only 1,000 Euro. For research & development, consultants and associations a single page starts with only 700 Euro. You are still welcome to join the iBIB2011 and will directly be included in our online-database. You will automatically be included in the print edition iBIB2012. Worldwide connectivity for suppliers and customers The international business directory iBIB2011 enables industrial suppliers and customers to reach out with one another. New markets such as bio-based plastics, composites and green additives are mostly based on ‚insider-knowledge‘ and therefore lack transparency. This in turn harms the steady growth of the sector. In order to deal with this issue, iBIB2011 will help firms to find the best bio-based solutions available worldwide. MEET THE BIOPLASTICS INDUSTRY IN HALL 9 COME TO THE EUROPEAN BIOPLASTICS STAND 9E02 AND SEE OUR PRESENTATIONS ON THE NEWEST DEVELOPMENTS IN Online-database with index search: www.bio-based.eu/iBIB BIOPLASTICS PACKAGING! JOIN US FOR A DRINK AND MEET NEW BUSINESS CONTACTS AT DAILY SOCIAL EVENTS SPONSORED BY OUR PARTNERS. AND OUR STRONG PARTNERS IN BIOPLASTICS More news: www.bio-based.eu/news www.bio-based.eu Biowerkstoff-Report, Edition 8 ,March 2011 15 Biorefinery European Commission steps up biomass use Nearly € 80 million for biorefinery research A major research initiative of the European Commission about the sustainable use of biomass has started in march 2010. Researchers and industry are going to develop new ways to convert biological feedstock into energy and valuable material using biorefinery technology. The Commission will fund the programme with € 52 million for 4 years. 81 partners from universities, research institutes and industry in 20 countries will invest an additional € 28 million. The programme will contribute to the European Lead Market initiative on BioBased products. It aims to facilitate the translation of technological and nontechnological innovation into commercial products and services. Biorefinery research will also contribute to the implementation of the European Energy & Climate Package. The goal is that by 2020 transport in every Member State will use a minimum of 10% renewable energy – especially biofuels. Biorefinery is also an important feature of the Bio-energy European Industrial Initiative, one of the six industrial initiatives of the European Strategic Energy Technology (SET) Plan. Its objective is that by 2020 at least 14 % of the EU energy mix will be bio-energy. More than 200 000 local jobs could be created as a result. Multidisciplinary research is needed to achieve the full potential of biomass, so the Commission is bringing together the most advanced developers in Europe of biorefineries. On the energy side they are developing new methods to convert biomass into so called second generation biofuels in which feedstock doesn‘t compete with food production and which will produce heat and electricity. The other approach is to crack the components of biomass in order to produce chemicals and materials. Three large collaborative projects will address the entire value chain from the production of biomass, logistics, intermediary processing steps and its conversion into end-products withthe feasibility of the techniques shown at pilot scale. One coordination action project will provide immediate support to and coordination of ongoing biorefinery research projects with potential high impact, as well as providing a framework for collaborations and information exchange, a common vision and a roadmap for 2020. Projects overview: Designing the Next Generation Bio-Refinery: The EuroBioRef Project The EuroBioRef project (European Multilevel Integrated Biorefinery Design for Sustainable Biomass Processing) is supported by €23 million of funding from the European Commission‘s 7th Framework Program and additional €14.4 million from partners. The project is going to run for 4 years and will deal with the entire process of transformation of biomass, from fields to final commercial products. It involves 28 partners from 14 different countries and will be coordinated by Centre National de la Recherche Scientifique, France. The 4 SME partners of the proj- 16 Biowerkstoff-Report, Edition 8, March 2011 ect represent 21% of the total contribution of the European Commission. Internet:: www.eurobioref.org/ BIOCORE builds lignocellulosic biorefinery The project BIOCORE will create and demonstrate a lignocellulosic biorefinery. It will process agricultural residues such as wheat and rice straws and different sorts of woods. The products will be second generation biofuels, bulk chemicals, polymers, speciality molecules, heat and power. BIOCORE involves 24 partners from 13 different countries and will be coordinated by the Institut National de la Recherche Agronom, France. The European Commission funds the project with € 14 million out of the 7th Framework Program, the partners will invest additional € 6,3 million. There are 7 SMEs participating in this project, representing 18 % of the total European Commission contribution. www.biocore-europe.org SUPRA-BIO for sustainable products from economic processing of biomas Economic and sustainable production of fuels, chemicals and materials from biomass requires capture of the maximum energy and monetary value from sustainable feedstock. SUPRA-BIO achieves this by focussing on innovative research and development of critical unit operations. A technology toolbox for conversion and separation operations will be developed that adapts to various scenarios of product mix and feedstock. The aim is to op- European Commission steps up biomass use düsseldorf, Germany 12 – 18 May 2011 timise utilities to minimise environmental impact and maximise value from the product mix. The University of Oxford is going to coordinate the project which will get over € 12.5 million funding from the 7th Framework Programme of the European Commission. The 17 partners out of 8 countries are contributing an additional € 6.5 million. There are 9 SMEs participating in this project, representing 47% of the total EU contribution. Internet: www.suprabio.eu (online soon) Star-COLIBRI to coordinate biorefinery sector How do we know tHat you will be successful in May 2011? From experience. solutions ahead! www.interpack.com Star-COLIBRI (Strategic Targets for 2020 - Collaboration Initiative on Biorefineries) promotes coordination to overcome fragmentation in the field of biorefineries research. Five industry-driven European Technology Platforms and five research partners will work on concepts concerning the whole value-chain of the biorefinery concept. The results will be validated by the International Civil Society Organisation IUCN. The consortium is led by the European Federation of Woodworking Industries and comprises 12 partners from 6 countries. The European Commission is supporting the project with nearly € 2 million the consortium is contributing € 400,000. l Internet:: www.star-colibri.eu/ Contacts: • EC press officer: Florian Frank, florian.frank@ec.europa.eu, Tel.: +32 2 29 97934 • EC Scientific Officer: Maria Georgiadou, maria.georgiadou@ec.europa.eu, Tel: +32 2 29 59846 Source: Press Release European Commission Reasearch, 2010-03-04 Messe Düsseldorf GmbH Postfach 10 10 06 40001 Düsseldorf Germany Tel. +49 (0)2 11/45 60-01 Fax +49 (0)2 11/45 60-6 68 www.messe-duesseldorf.de More news: www.bio-based.eu/news Biowerkstoff-Report, Edition 8, March 2011 17 Biotechnology A revision of the US DoE “Top 10“ for bio-based products from carbohydrates O ne of the most interesting papers for the bio-based industry of 2010 was the revision of the US Department of Energy’s “Top 10“ of bio-based products from biorefinery carbohydrates, first screened by Werpy & Petersen 2004. It was published as a critical review in the magazine Green Chemistry in March 2010 by Joseph Bozell and Gene R. Petersen and leads to a new set of Top Value Added Chemicals from sugars. Bozell & Petersen stated in their revision that a biorefinery “that supplements it’s manufacture of low value biofuels with high value biobased chemicals can enable efforts to reduce non-renewable fuel consumption while simultaneously providing the necessary financial incentive to stimulate expansion of the biorefining industry.” The choice of these products to the biorefinery’s portfolio challenges on “the lack of broad-based” conversion technology coupled with a plethora of potential targets.” In 2004 the US Department of Energy tried to face these challenges with a screening of the “Top Value Added Chemicals from Biomass” with a first Volume concentrating on sugars and synthesis gas by Werpy and Petersen and a second Volume on Lignin by Holladay et al. in 2007. Werpy & Petersen 2004 identified the following list of chemicals from biomass as the most promising: • Succininic, fumaric and malic acids • 2,5-Furan dicarboxylic acid • 3-Hydroxypropionic acid • Aspartic acid • Glucaric acid • Glutamic acid • Itaconic acid • Levulinic acid • 3-Hydroxybutyrolactone • Glycerol • Sorbitol • Xylitol / Arabinitol The revisited Top 10 of Bozell & Petersen of 2010 was based on the first screening with the same methodology taking in account the technology development and leads to an evaluation of the older selection. Some of the new members were part of the original list but several new compounds appear and represent advances in technology development. On the other hand some products from the 2004 list do not appear because of different criteria given from the methodology of the screening. The following list shows the list of new top chemical opportunities from biorefinery carbohydrates: 18 Biowerkstoff-Report, Edition 8, March 2011 • Ethanol • Furans • Glycerol and derivatives • Biohydrocarbons • Lactic acid • Succinic acid • Hydroxypropionic acid / aldehyde • Levulinic acid • Sorbitol • Xylitol As a conclusion the authors stated, that “the methodology presented in DOE’s 2004 report and updated in this review attempts to provide a framework for using specific chemical structures to select broader biomass conversion technologies and research opportunities.” With this idea they provide a promising tool for researchers and industry to handle the Top 10 of bio-based chemicals. l Further readings: • Joseph J. Bozell, Gene R. Petersen (2010): “Technology development for the production of biobased products from biorefinery carbohydrates – the US Department of Energy’s ‘Top 10’ revisited.” Green Chemistry 12, 539-554 • T. Werpy, G. Petersen (Ed., 2004): “Top Value Added Chemicals from Biomass. Volume I – Results of Screening for Potential Candidates from Sugars and Synthetic Gas.” Published by the U.S. Department of Energy. • J.E. Holladay, J.J. Bozell, J.F. White, D. Johnson (2007): “Top Value Added Chemicals from Biomass. Volume II – Results of Screening for Potential Candidates from Biorefinery Lignin.” Published by the U.S. Department of Energy. Author: Achim Raschka, nova-Institut GmbH Achim.raschka@nova-institut.de Biotechnology BASF and PURAC: Joint development of bio-based succinic acid From the statement 2009: BASF Future Business and PURAC form a strong partnership by combining their respective strengths in the technology development and application of biobased succinic acid. BASF is a global leader in intermediates, chemical building blocks and polymers. PURAC is the world leading producer of lactic acid and lactides from renewable feedstocks. Using a fully equipped fermentation and down stream purification plant the partners will demonstrate the economical production of succinic acid on industrial scale using a highly innovative route on the basis of renewable substrate. In addition, the greenhouse gas CO2 will be used as a raw material and fixed during the highly efficient fermentation process, contributing further to sustainable development. More news: www.bio-based.eu/news Photo: www.shutterstock.com I n Septembre 2009 BASF SE and CSM nv have announced the cooperation between their respective subsidiaries BASF Future Business GmbH and PURAC for the development of the production of biobased succinic acid. Both partners have been working on the development of the industrial fermentation and down-stream processing of biobased succinic acid. Hans van der Pol, Marketing Manager at PURAC, adds: „The campaign on commercial scale fermentation of succinic acid was carried out as planned in June 2010. Critical process steps have been validated. Sample material has been evaluated by BASF in a variety of applications, and samples have been made available to selected customers and development partners.“ Biobased succinic acid will be applied as a monomeric building block in a variety of biopolymers, e.g. biodegradable polyesters. Furthermore, low cost succinic acid has high potential as a platform chemical and its downstream products. Both companies will work together in order to achieve manufacturing cost levels making biobased succinic acid competitive for a wide variety of novel applications. „We are happy to partner with PURAC, the world leader of lactic acid production and an expert in fermentation and purification of biobased chemicals“ said Dr. Thomas Weber, Managing Director of BASF Future Business GmbH. „Combining our competencies, we open the door to make biobased succinic acid a success story.“ Gerard Hoetmer, Chief Executive Officer of CSM. „This partnership has great potential because it leverages the combined strengths of two leading companies in their fields.“ l Press Release 30th September 2009, BASF SE And recent statement from Hans van der Pol, Purac www.basf.com www.purac.com „Through this biobased succinic acid collaboration we aim to add an important new monomeric building block to PURAC next to our lactide products“ says Biowerkstoff-Report, Edition 8, March 2011 19 Biotechnology Book reviews Biotechnology More and more books for experts and interested communities handle topics around Green Chemistry, Industrial Biotechnology and Biorefineries. Some of those published in 2010 should be introduced here: Birgit Kamm, Patrick R. Gruber, Michael Kamm (ed.; 2006, 2010): Biorefineris – Industrial Processes and Products. Status quo and Future Directions. Wiley-VCH, Weinheim. Reprint, 994 pages, ca. 114,- Euro. ISBN 978-3-527-32953-3. Wim Soetart, Erick J. Vandamme (ed.; 2010): Industrial Biotechnology: Sustainable Growth and Economic Success. Wiley-VCH, Weinheim. 499 pages, ca. 114,- Euro. ISBN 978-3-52731442-3. Ayhan Demirbas (2010): Biorefineries. For Biomass Upgrading Facilities. Springer, London. 240 pages, ca. 140,- Euro. ISBN 978-1-84882-720-2. Kamm et al. 2006 somehow is one of the most important references of Biorefineries over the last years. It was first published in 2006 in a two volumes hardcover version and in 2010 a softcover versions was brought to market – a very good reason to review this book here at first: This book was one of the first of his kind, bringing a holistic overview of the whole world of biorefineries. After a very helpful introduction to biorefinery concepts and the most promising feedstocks and products, the editors covered all aspects of biorefining in different sections written by international experts. The selection leads from the biomass refining global impacts through the technical and economic challenges to all the different kinds of known biorefinery concepts based on different feedstocks from sugar and lignocellulose to plant juices and biochemical as well as thermochemical technologies. In further parts it covers the biomass production and conversion technologies, the biobased product family trees (carbohydrates, lignin fats and oils) and leads to the “Economy, Commercialization and Sustainability” of the biobased industry. With their book on Industrial Biotechnology Soetart and Vandamme published a very interesting overview of all aspects of this field. They start with a very interesting overview on the history of the Industrial biotechnology which shows the very long and interesting story of this approach coming from the early history from 7000 BC, when Sumeria and Babyloniy started their first brewing receipts and the Egypts with their applications for cheese production until the newest aspects of the 21st century. In other chapters the authors show a wide variety of aspects on fermentation technologies covering aspects like the directed evolution of industrial biocatalysts, enzyme production, nanobiotechnology and downstream processing. It also handles different field of utilizations like the chemical and pharmaceuthical industry, the food and feed sector , pulp and paper and biofuels. To finish the last chapters handle with aspects of sustainability – environmental, economical and social aspects - of the Industrial Biotechnology. All chapters are written by international experts in their fields so beside the joy of reading it is an excellent source for getting experts knowledge. In his book published in the Springer series “Green Energy and Technology” the author Demirbas concentrates on energy opportunities from biorefineries. He describes the main biorefinery concepts for the production of fuels based on biomass and their technical opportunities. For this he starts with an overview to the current situation of fossil fuels and the need of biomass for fuels, introducing the different types of biofuels. In the more technical parts he shows the biomass fractionation and valorisation, the different thermochemical and biochemical processes and an overview to economical, political and environmental impacts of biorefineries. Overall this book is a good reference for biofuel production in biorefineries. 20 Biowerkstoff-Report, Edition 8, March 2011 Biotechnology Author: Achim Raschka, nova-Institut GmbH Achim.raschka@nova-institut.de Michael Wink (Hrsg..; 2010): Molekulare Biotechnologie. Konzepte, Methoden und Anwendungen. 2., aktualisierte Auflage. Wiley-VCH, Weinheim. 654 pages, 79,- Euro. ISBN 978-3-527-32655-6. William J. Thieman, Michael A Palladino (ed.; 2007): Biotechnologie. Pearson Studium, München. 445 pages, 44,95 Euro. ISBN 978-3-8273-7236-9. Some books on chemistry Biochemie für Dummies The book from Michael Link written in German is acompetent educational work for students, professionals and all who are interested in the topics of molecular biotechnology, mainly focussed on pharmaceuthical and medical applications. For this reason it starts with a description the whole area of molecular and cell biology before concentrating on standard methods and main topics of the modern molecular biotechnology. It covers the fields of genomics and functional genomics, system biology, bioinformatics, molecular diagnostics and pharmacological biotechnology, transgenetics and gene therapy as well as the plant biotechnology and methods of the biocatalysis in the industrial biotechnology. In a last part it informs about the economical aspects and the ways of industrial applications of molecular biotechnology including patents, regulations of therapeuthic goods and a guidance for start-up in this business. This book from 2007 also from his concept is an educational book for students and others who are interested in this area; for students this book is available as a “Bafög” version for a price of 29,95 Euro. It covers the whole field of biotechnology as an overview not reaching too much in all the different topics to get an overview of the biotechnology field. It starts with a geral overview on the history of biotechnology and genetic engineering, following by a description of the biotechnology of microorganisms, plants and animals and leading to the genetic fingerprint and applications for forensics, environmental remediation and medicine to end with a short part on ethics. As an educational book to get an overview on biotechnology and mainly genetic engineering it works well but for a deeper view especially into the industrial biotechnology area which is only edged in this book one will need other literature. Especially for all those people who don’t have an understanding on all the complex aspects of chemistry and biochemistry or need to refresh their knowledge on the basics, several books came to market to handle these “Dummies”. For this reason we want to advice to you the series “für Dummis”, written in German (in English a series “for Dummies” also exists). For example: More news: www.bio-based.eu/news John T. Moore (2008): Chemie für Dummies. Wiley-VCH, Weinheim. 19,95 Euro. ISBN 978-3-527-70473-6. Arthur Winter (2008): Organische Chemie für Dummies. Wiley-VCH, Weinheim. 19,95 Euro. ISBN 978-3-527-70508-5. John Moore, Richard Langley (2009): Biochemie für Dummies. Wiley-VCH, Weinheim. 19,95 Euro. ISBN 978-3-527-70292-3. Biowerkstoff-Report, Edition 8, March 2011 21 Bio-Composites Assessment of Life Cycle Studies on Hemp Fibre Composites Hemp fibres are very suitable replacements for a variety of fossil-based materials. In this study, hempbased reinforced plastics are compared to non-renewable materials like acrylonitrile butadiene styrene (ABS) and glass fibre reinforced polypropylene (PP-GF) regarding their environmental impacts on climate change and primary energy use. T tion with low density. The material, moreover, does not splinter and leaves no sharp edges (which is an important characteristic especially in the case of automobile accidents). The majority of the currently produced applications are manufactured using thermoplastics and thermoset compression moulding for which the natural fibre fleece and the polymer material are heated and pressed. A wide range of natural fibre automobile interior applications are produced in this way, including door panels and car boot trims, rear shelf and roof liner panels, dashboards, pillar trims, seat shells, under-bodies and other parts. Another, currently less common, process- *: no information available 100% hemp-based composites, accounted for carbon storage hemp-based composites, not accounted for carbon storage fossil-based composites 80% 60% 40% 20% 3 4 5 6 * Hemp fibre/PTP vs. GF/PES bus exterior panel Hemp fibre/Epoxy vs. ABS automotive door panel Hemp fibre/PP vs. PP composite * Hemp fibre/PP vs. GF composite 0% 2 Hemp/PP vs. GF/PP battery tray 1 Hemp fibre/PP vs. GF/PP mat GHG emissions in %: fossil- and hemp-based composites compared he analysed products are compared based on their functionality. The assessment encompasses the extraction of raw materials, where applicable the cultivation of crops, the processing of materials and transports. Hemp fibre reinforced plastics are materials that are composed of a polymer and hemp fibres from which the composite receives its stability. Hemp fibre reinforced plastics are mainly used in the automobile industry for interior, but also exterior, applications, and also for the production of furniture or other consumer products. The material shows favourable mechanical properties such as rigidity and strength in combina- Figure 1: GHG emissions expressed in percent for the production of fossil-based and hemp-based composites for a number of studies – where available showing the effects of biogenic carbon storage (PTP: Polymer material made of Triglycerides and Polycarbon acid anhydrides, PES: Polyester) 22 Biowerkstoff-Report, Edition 8, March 2011 ing technique is injection moulding which is expected to quickly gain market shares in the near future. Six of the LCA studies included in the analysis of hemp fibre reinforced plastics are depicted in the chart. All of the hemp fibre reinforced plastics examined show energy and greenhouse gas (GHG) savings in comparison with their fossil-based counterparts. The chart shows the considerable savings that are achieved when the functionally-equal hemp-based composites are used instead of fossil-based composites. Because internationally no agreement has yet been made on whether or not to include the storage of biogenic carbon in product-based life cycle assessment, both methods have been included in this study. Therefore without accounting for biogenic carbon storage, GHG savings range between 12 and 55%. When biogenic carbon storage is taken into account savings between 28 and 74% can be reached. Even larger savings can be reached: Because of the higher density of glass fibres for example, a weight reduction of the application can be achieved when hemp fibres are used. This can result in considerable GHG and energy savings during use. Also, hemp fibre reinforced plastics contain to a smaller or larger extent fossilbased resources. In order to decrease the use of fossil energy and mitigate GHG emissions, inputs of fossil-based materials should be reduced as much as possible or replaced by bio-based plastics. At the current time those fully bio-based composites are only used in the Japanese automotive industry. Result: Hemp fibre reinforced plastics show considerable energy and greenhouse gas (GHG) savings in comparison with their fossil-based counterparts. Bio-Composites Pictures: Werzalit, Kosche Wood Plastic Composites (WPC) are thermoplastic compound materials made from wood and plastic for the building, furniture, automotive, consumer goods, packaging industry and other applications. With a production of about 170,000 t / a, WPC are the most important and most successful new bio-based products in Europe. The Fourth German WPC-Congress (December 13th and 14th 2011, Maritim Hotel of Cologne / Germany) Already for the fourth time the nova-Institute GmbH is organizing the German WPC-Congress on December 13th and 14th 2011. Leading enterprises and research establishments present their newest developments regarding Wood Plastic Composites in the elegant ambience of the Cologne Maritim Hotel. A large exhibition, various association activities and an innovation award will be forming the framework of the biggest European WPC event. The congress is putting the focus on theSources subjects the German-speaking The full study ‘Hemp Fibres for Green of of information for the graph: WPC branch, however, the speakers, exhibitors and participants are international – all talks are translated simultaneously. In 2009 300 participants from several countries visited the An assessment of German life cycle Second WPC-Congress and made it thus the biggest branch meeting in Europe. ¢ Products Industries and – applications Pervaiz, M. and M. M. Sain. 2003. Carbon storage potential in natural ¢ Market situation and trends hemp fibre applications’ will be fiber composites. Resources, Conservation and Recycling 39:325-340. ¢ studies Processingon methods and material at properties available www.eiha.org by April 2011. l + establishments Boutin, M.-P., C.will Flamin, S. Quinton, and G. Gosse. Etude Speakers of leading enterprises and research be talking about their newest2006. material developments regarding ¢ Research and Development ¢ Innovation Awards “product” and “process” www.nova-institut.de caractéristiques environnementales duand chanvre l’analyse of de bioplastics. son injection moulding, window and facadesdes elements, pieces of furniture, design the par application Current inforcyclemarkets de vie. L‘complete Institut National de la Recherche Agronomique (INRA), mation about high-class standards and new the programme. Lille, France. Praxis-oriented for developers, producers, commerce and users. Wötzel, K., R. Wirth, and M. Flake. 1999a. Life cycle studies on hemp reinforced for automotive parts. Die Ang- / products and for proceThisThe year the was innovation regardingfibre WPC will alsocomponents be awardedand by ABS the nova-Institute: for materials Article contributed by study financed award by: Sponsor ewandte Chemie dures. Election, presentation and awarding of theMakromolekulare winners will take place272:121-127. at the Fourth German WPC-Congress. www.eiha.org Juliane Haufe Müssig, J., M. Schmehl, H. B. von Buttlar, U. Schönfeld, and K. Arndt. Further informations are available at www.wpc-kongress.de and at www.bio-based.eu www.drbronner.com and Michael Carus 2006. Exterior components based on renewable resources produced with SMC technology-Considering a bus component as example. Industrial nova-Institut, Hürth, Germany www.hempflax.com Organiser www.bafa-gmbh.de Crops and Products 24:132- 145. Magnani, 2010. Motor Company‘s Sustainable Materials. 3rd Contact: Dipl.-Geogr. Dominik Vogt, Phone: +49 (0) M. 2233 48 Ford – 1449, dominik.vogt@nova-institut.de International Congress on Bio-based Plastics and Composites, 21st of April 2010, Hannover, Germany nova-Institute GmbH | Chemiepark Knapsack | Industriestrasse 300 | 50354 Huerth | Germany | www.nova-institut.de/nr www.eiha.org/8 8th International Conference of the European Industrial Hemp Association (EIHA) 8th International Conference of the European Industrial Hemp Association (EIHA) May 18th – 19th 2011, Rheinforum, Wesseling / near Cologne (Germany) /8 www.eiha.org Focus on es bio-composit Pictures: Hempro Int., Lotus Cars, Hemp Technology Ltd, NPSP Composites Don’t miss the biggest industrial hemp event in 2011 – world wide! Exhibition You are welcome to present your latest products, technologies or developments – book a stand and a bulletin board now for only 200 EUR (plus 19% VAT). Sponsor Hempro Int. Production Sales Consulting www.hempro.com www.hempro.com The congress will focus on the latest developments concerning hemp and other natural fibres. Congress language: English The spectrum of participants will range from • cultivation consultants, • primary and further processors, • traders, mechanical engineers, • investors to enterprise to • suppliers (for example: insulation material, pulp & paper, automotive). They all share common interest in the industrial utilisation of hemp fibres and shivs. Other topics are hemp seeds and hemp oil in nutrition. Organiser In co-operation with Partner www.nova-institut.de/nr www.eiha.org www.internationalhempbuilding.org www.hemptrade.ca Contact: Dipl.-Geogr. Dominik Vogt, Phone: +49 (0) 2233 48 – 1449, dominik.vogt@nova-institut.de More news: www.bio-based.eu/news Biowerkstoff-Report, Edition 8, March 2011 23 Bio-Composites Targets for bio-based composites and natural fibres The European Hemp Association (EIHA) welcomes and supports the discussions on targets for different bio-based products, such as bio-polymers, bio-lubricants, and certain chemical building block chemicals, within the Lead Market Initiative (LMI), the Ad-hoc Advisory Group, the EU-RRM Group and the European Association for Bioindustries (EuropaBIO). H owever, EIHA wishes to point out that the field of Bio-Composites and Natural Fibres should not be forgotten, but fully integrated within these targets for bio-based products. The implementation of a specific target for Bio-Composites should also be considered: for example, from a technical point of view, more than 30% of fibre reinforcement can be achieved by natural fibres. Currently at least 315.000 t of BioComposites reinforced by natural fibres, are already being used in European Industry, mainly in the automotive and construction sectors. By 2020 this quantity could be more than doubled. In fact, automotive interior parts with natural fibres already today are between 30 and 80% bio-based and bring the added advantage of lightweight construction. Both of these factors would lead to a significant reduction in CO2 emissions in the order of 30% and more, replacing plastics and glass fibre. Using bio-based plastics as a matrix, fully bio-based composites could be achieved with even lower CO2 emissions. Natural fibre can improve the profile of bio-based plastics at low cost and with additional environmental benefits. The European Industrial Hemp Association (EIHA) will soon present a MetaLife Cycle Assessment on Hemp Fibre Bio-Composites to prove their environmental advantages. Furthermore, the EU Commission is already supporting the development of Bio-Composites by funding research and development. We should point out that currently, in the area of natural fibres, there are important projects on natural fibre modification with enzymes (biotechnology) and ultrasound or plasma treatment to achieve a better compatibility with (bio-)plastics. Bio-Composites Estimated Quantities in the EU 2010 Estimated Quantities in the EU 20203 40,000 t 120,000 t 100,000 t 50,000 t 100,000 t 150,000 t 120,000 t 360,000 t 5,000 t 100,000 t Bio-Composites in total 315,000 t 830,000 t Composites in total (glass, carbon and natural fibre-reinforced plastics)2 2.4 Mio t 3.0 Mio t Bio-based Share ca. 13% Compression moulding - with natural fibres like flax, hemp, jute, kenaf, sisal, abaca, coir (> 95% automotive, 5% cases and others)1 - with cotton fibre (automotive, mainly lorries) - with wood fibre (mainly automotive)1 Extrusion and injection moulding - Wood Plastic Composites (WPC) (construction, furniture1, automotive1, consumer goods1) - with natural fibres like flax, hemp, jute, kenaf, sisal, cork (construction, furniture1, automotive1, consumer goods1) 24 Biowerkstoff-Report, Edition 8, March 2011 ELV Directive: an opportunity to increase the use of bio-based products Finally, we wish to point out that the ELV Directive seems to offer an excellent opportunity to fulfil the bio-based product targets. The Directive states that no later than January 1st 2015, for all end-of life vehicles, the re-use and recovery target will be increased to a minimum of 95% of the average weight per vehicle and year. Within the same time limit, the re-use and recycling will be increased to a minimum of 85% of average weight per vehicle and year. Something which could easily be implemented and furthermore, would have a high impact on the use of bio-based plastics and composites, would be if the biobased share of the products could count as “re-used and re-cycled”, independent of their intended route: in other words, even if they go for energy recovery. A jus- Source: nova-Institut 2010 1: Suitable for using bio-based plastics as matrix 2: AVK 2010, Ellis, P. 2010, nova 2010 3: Estimate for the year 2020, under favourable ca. 28% political framework Bio-Composites tification for this change in classification could be that bio-based materials will only emit green carbon during incineration. l John Hobson, President of the European Industrial Hemp Association (EIHA) and Manager of HempTechnology Ltd (UK) Michael Carus, Managing Director of the European Industrial Hemp Association (EIHA) and Managing Director of nova-Institute GmbH (Germany) The European Industrial Hemp Association (EIHA) c/o nova-Institute, Chemiepark Knapsack, 50354 Hürth, Industriestr. 300 (Germany) Email: michael.carus@eiha.org, Tel.: +49-(0)2233-48-14 41 More information on industrial hemp wanted? Please download the leaflet: “European Hemp Fibre for diverse bio-based products” http://www.eiha.org/attach/8/2010_Hemp_Fibres_for_Green_Products_EIHA.pdf Huerth (Germany), 25th November 2010 Pictures: Werzalit, Kosche Wood Plastic Composites (WPC) are thermoplastic compound materials made from wood and plastic for the building, furniture, automotive, consumer goods, packaging industry and other applications. With a production of about 170,000 t / a, WPC are the most important and most successful new bio-based products in Europe. ¢ Industries and applications ¢ Market situation and trends ¢ Processing methods and material properties ¢ Research and Development ¢ Innovation Awards “product” and “process” The Fourth German WPC-Congress (December 13th and 14th 2011, Maritim Hotel of Cologne / Germany) Already for the fourth time the nova-Institute GmbH is organizing the German WPC-Congress on December 13th and 14th 2011. Leading enterprises and research establishments present their newest developments regarding Wood Plastic Composites in the elegant ambience of the Cologne Maritim Hotel. A large exhibition, various association activities and an innovation award will be forming the framework of the biggest European WPC event. The congress is putting the focus on the subjects of the German-speaking WPC branch, however, the speakers, exhibitors and participants are international – all talks are translated simultaneously. In 2009 300 participants from several countries visited the Second German WPC-Congress and made it thus the biggest branch meeting in Europe. Speakers of leading enterprises and research establishments will be talking about their newest material developments regarding injection moulding, window and facades elements, pieces of furniture, design and the application of bioplastics. Current information about high-class standards and new markets complete the programme. Praxis-oriented for developers, producers, commerce and users. Sponsor This year the innovation award regarding WPC will also be awarded by the nova-Institute: for materials / products and for procedures. Election, presentation and awarding of the winners will take place at the Fourth German WPC-Congress. Further informations are available at www.wpc-kongress.de and at www.bio-based.eu Organiser Contact: Dipl.-Geogr. Dominik Vogt, Phone: +49 (0) 2233 48 – 1449, dominik.vogt@nova-institut.de nova-Institute GmbH | Chemiepark Knapsack | Industriestrasse 300 | 50354 Huerth | Germany | www.nova-institut.de/nr More news: www.bio-based.eu/news Biowerkstoff-Report, Edition 8, March 2011 25 www.bio-based.eu Pictures: MAS, Gala, nova-Institute. rman and English. Ge s: ge ua ng la ce en er nf Co Simultaneous translation! 4th International Congress on Bio-based Plastics and Composites & Industrial Biotechnology 4. Biowerkstoff-Kongress 2011 March 15th + 16th 2011, Maternushaus, Cologne (Germany) Sponsor The year 2010 has experienced acceleration regarding the raw material shift in the chemical and plastics industry. Clear political requirements towards a bio-based economy have become a world-wide phenomenon, which includes bio-based plastics and composites along with bio-based additives andgreen chemistry. An increasing amount www.infraserv-knapsack.de of discussions have been taking place in Brussels how to support “Knowledge Based Bio-Economy (KBBE)”. In Asia and North-America they have already implemented instruments to support bio-based products, for example Japan (quota for bio-based plastics) and US (public procurement program). www.proganic.de Sponsor Innovation Award www.coperion.com market leader for twin screw extrusion systems The conference will present the newest developments, investments and product placements from the leading countries in the European Union: France, Benelux and Germany, rounded off by highlights from Asia and America. Our thanks go to: Partner www.arbeit-umwelt.de www.avk-tv.de www.bio-pro.de www.clib2021.com www.eiha.org www.europabio.org www.nachwachsenderohstoffe.de www.iar-pole.com www.kunststofflandnrw.de www.nnfcc.co.uk www.rapra.net www.sinal-exhibition.fr www.umsicht.fraunhofer.de www.vhi.de TM Organiser VERBAND DER DEUTSCHEN HOLZWERKSTOFFINDUSTRIE E.V. www.nova-institut.de nova-Institute GmbH | Chemiepark Knapsack | Industriestrasse 300 | 50354 Huerth | Germany | www.nova-institut.de/nr Programme Day one, March 15th (9:30 – 18:00 h) 09:30 h Welcome Coffee Opening 10:00 h Michael Carus, nova-Institut GmbH 10:10 h Gabriele Peterek, Fachagentur Nachwachsende Rohstoffe e.V. Bio-based materials on their way to the consumer 10:30 h France 11:00 h 11:30 h 12:00 h Jan Ravenstijn, industrial bio-material expert Bio-based polymers – a renaissance for plastics Christophe Luguel, Association Industries et Agro-Ressources, IAR Latest Investments and R&D in France concerning Industrial Biotechnology & Bio-based products and current production Christophe Lacroix, Arkema SA Sustainable Development through Performance Products Lunch Break Netherlands 13:30 h Marcel van Berkel, Royal DSM BV Focus on green materials with better performance 14:00 h Dirk den Ouden, Avantium YXY – Biobased Building Blocks for Durable Plastics 14:30 h 15:00 h Coffee Belgium 15:30 h Hans van der Pol, Purac Biochem BV Lactic Acid and Succinic acid as building blocks for bio-based plastics Steve Dejonghe, Galactic LOOPLA a Cradle-to-Cradle end of life for PLA 16:00 h 16:30 h François de Bie, EconCore Econcore – PLA Honeycomb Sandwich Structure Innovation Award “Biomaterial of the year 2011” 16:30 h Uta Kühnen und Frank Mack, Coperion GmbH Compounding of bio-based materials Presentations of the top 5: 17:00 h Mona Bielmeier, DSM Palapreg® Eco Sam Harrington, Ecovative Design EcoCradle™ Emerenz Magerl, Pfleiderer BalanceBoard Jean Bernard Leleu, Roquette Gaïalene® Richard Hurding, Zelfo Technology Zelfo® 18:00 h 19:45 h Break Awarding Ceremony and Gala Buffet Book now! ress.de www.biowerkstoff-kong Two days: 550 € + VAT www.bio-based.eu Day two, March 16th (9:00 – 16:15 h) Highlights from Asia and America 09:00 h Wolfgang Baltus, National Innovation Agency, NIA Current status and future developments of bio-based plastics in Asia 09:30 h 10:00 h Tuula Mannermaa, Ashland Finland Oy, Plastics Division The First Step to Sustainable Composites – Unsaturated Polyester Resins from Renewable Resources Alexander Shroff, Beta Analytics Measuring the bio-based content of bioplastics and Composites via ASTM D6866 10:30 h Coffee Germany 11:00 h 11:30 h 12:00 h Francesca Aulenta, BASF SE Overview over BASF’s activities in the field of bio-based materials Dr. Jürgen Herwig, Evonik Industries AG Biobased Polyamides Andreas Grundmann, Uhde Inventa-Fischer GmbH Insights on the first industrial PLA plant in Germany 12:30 h Lunch Break 13:30 h 14:00 h 14:30 h Markus Götz, BioPro Baden-Württemberg GmbH The Cluster Biopolymers/ Biomaterials: working jointly to establish a bio-based plastics industry Oliver Türk, Bio-Composites And More GmbH Thermosetting Materials based on plant oil resins Coffee 15:00 h Carmen Michels, FKUR Kunststoff GmbH New applications for bio-based plastics 15:30 h Michael Carus, nova-Institut GmbH Bio-Composites – Technologies and Applications 16:00 h Bernd Frank, BaFa GmbH Hemp fibre soft pellets for natural fibre reinforcement of (bio-)plastics More than 150 participants expected Exhibitors • H. Hiendl GmbH & Co.KG • Coperion GmbH • Innovation Award • European Industrial Hemp Association (EIHA) • Proganic GmbH & Co.KG • Fraunhofer UMSICHT • Fraunhofer-Institute for Chemical Technology ICT • Fachagentur Nachwachsende Rohstoffe e.V. • DASGIP AG • Friul Filiere SPA • Beta Analytic Ltd. • PURAC • Linotech GmbH & Co.KG nova-Institute GmbH | Chemiepark Knapsack | Industriestrasse 300 | 50354 Huerth | Germany | www.nova-institut.de/nr Innovation Award – Bio-based Plastics and Composites of the year 2011 www.bio-based.eu The neck-and-neck-race has found its end: The jury of sponsors (Coperion, Chemiepark Knapsack and Proganic) and partners (see front page) „ of the Congress on bio-based Plastics and Composites nominated five industrial bio-materials for the “Bio-material of the year 2011 out of numerous applications. On the first day of the Congress on the 15th and 16th of March in Cologne, Germany, the three winners will be elected by the audience and awarded at the evening reception. Join the Congress on bio-based Plastics and Composites! Meet more than 150 experts from Industry and Research, visit the accompanying trade exhibition and cast your vote for one of the five industrial bio-materials selected by the jury! On this page you will find short descriptions of the five nominated materials. Detailed information you can find on the Congress-website www.biowerkstoff-kongress.de. At the Congress the nominated companies will present their materials and then the audience has the choice. Don’t miss it! DSM Composite Resins AG, Netherlands/ Switzerland: Palapreg® ECO P55-01 The bio-based “high-performance”-thermoset resin Palapreg® ECO P55-01 is a patented product consisting of 55 % bio-based material, which is the highest bio-based content currently available on the market. Palapreg® ECO not only matches the performance of petrochemical based materials in the market without any compromise on its processability, it even outperforms some of the best traditional, oil-based plastic materials. Biomass: Plant oil Ecovative Design LLC, USA: EcoCradle™ ROQUETTE, France: GAÏALENE® EcoCradle™ is a low embodied-energy, compostable, protective packaging material that is literally grown into any custom shape and competes with petrochemical foams in terms of both performance and cost. The self-assembling bonds formed by mycelium (mushroom “roots”) produce this material as it grows around a substrate of regionally sourced agricultural byproducts. Biomass: Agricultural byproducts, fungus mycelium GAÏALENE® is a new “high-performance” range of bio-based plastics for packaging, which can compete in performance terms (mechanical, thermal, soft touch, etc.) with fossilbased plastics. GAÏALENE® resin is for lasting applications that usually use polyolefins, ABS and more technical polymers – with an excellent cost/efficiency profile. Biomass: Starch Pfleiderer AG, Germany: BalanceBoard Zelfo Technology, Germany: Zelfo® The BalanceBoard is a composite material solely based on natural raw materials. The wood span based medial layer is mixed with about 30 % of light biomass granules based on renewable raw materials respectively annual crops (corn, wheat). The board shows a weight reduction of 30 % compared to common particle boards while maintaining comparable mechanical properties. Biomass: Wood, wheat and corn The “Cellulose Optimization Resource Efficient (CORE)”-technology up-cycles cellulosic and ligno-cellulosic waste without the addition of any chemicals, catalysts or binders to create Zelfo®, a micro and nano-fibrillated cellulose fibre (MFC/NFC). Zelfo® can be formed into finished objects (bio-composites), or used as a bio-additive to improve plastic or paper material characteristics. Biomass: Cellulose and ligno-cellulose biomass Media partner www.bioplasticsmagazine.com www.bio-based.eu/news www.ecocomposites.net www.plasticker.de www.euwid.de www.heise.de/tr nachhaltigwirtschaften.net www.timberweb.com www.bio-based.eu www.materialsgate.de 4. Biowerkstoff-Kongress Abstracts to the congress François de Bie, EconCore NV In line production technology for bio polymer based sandwich panels. Today, the exploitation of the economical advantages of weight reduction has become essential for many industries. Today bio polymer type materials are relatively expensive compared to for example PP alternatives which has limited the use of these materials in structural application. A PLA based sandwich panels that uses a minimal amount of resources to deliver maximal performance could change the application areas where bio polymer based composites can be used. The selection and optimization of the different materials according to their demands enables to improve the weight and/or cost specific properties of the composite panel. The potential is a key factor in this equation. It is well known that a hexagonal honeycomb core delivers highest possible performance at minimal material usage. Until recently production of honeycomb cores was a costly, batch wise process. In addition, the application of the right skins to the core was a, completely separated secondary production step, which adds additional transportation, handling and trimming costs to the panel. The last 12 month EconCore has fur- ther optimized the highly efficient production of PLA based hexagonal honeycomb cores. EconCore would like to share with the industry: • Examples of PLA honeycomb cores and PLA or bio material composite skins that have exceptional cost vs performance ratio’s. Comparison vs for example PP panels. • Production technology that allows to continuously produce PLA sandwich panels. Only moments after the core is produced these skin layers are added in a continuous in-line operation. We will show real life examples of fully operational production lines using our manufacturing technology. We also show PLA based sandwich panels that outperform traditional PP panels on strength and performance characteristics, while being significantly lower in total manufacturing cost. Uta Kühnen, Coperion GmbH Compounding of bio materials Materials from renewable sources and biodegradable materials are of an increasing public interest. But so far most of the polymers and composites have a petro- 30 Biowerkstoff-Report, Edition 8, March 2011 chemical basis. The speech will show possibilities how to process bio materials with a co-rotating closely intermeshing twin screw extruder. First the main components of a twin screw extruder are explained as well as the modular design and the dimensions which are necessary for the technical characterisation of the extruder. Like nearly all novel products also bio materials require special processing features. Therefore the machine and process technology were adapted and constantly developed with the proceeding product developments. The following classification can be done for the materials and the processes: • The polymer has a renewable basis or is biodegradable - Loose fill packaging material based on starch - Thermoplastic starch - Biodegradable polymer compounds - Polylactid acid • The filling or reinforcing material is renewable - Wood polymer composites - Other composites using natural fibres for reinforcing • Both the polymer and the filler / reinforcing material are renewable The necessary compounding techniques will be explained using examples. Special requirements for the machine technology like the hot face cutting for water sensitive biodegradable materials or the special degassing technique like the twin screw side degassing (ZS-EG) for the compounding of wood polymer composites will be shown. International Congress on Bio-based Plastics and Composites Hans van der Pol, Purac Biochem BV Lactic Acid and Succinic acid as building blocks for bio-based plastics Abstract for succinic acid. These steps together will be a strong foundation for supporting growth in the Bioplastics industry. Alexander Shroff, Beta Analytic, Inc. Measuring the Biobased Content of Bioplastics and Composites via ASTM D6866 Tuula Mannermaa, Ashland Finland Oy, Plastics Division The First Step to Sustainable Composites – Unsaturated Polyester Resins from Renewable Resources As the leading company in lactic acid fermentation, processing and application development Purac has created many new innovations over the last years connected with the Bioplastics industry: • D(-) lactic acid • Shippable Lactide • Next generation processes for lactic acid fermentation and purification • Succinic acid fermentation technology • Polymerization technology • Stereo-complex technology • Innovative business models • New investments in Spain and Thailand • Innovative partnerships This presentation will provide an overview of the steps that have been taken over the past few years and outline steps to be taken in the next few years. Sustainability has been and will continue to be a major driver for innovations at Purac. This presentation provides an update on the latest Purac Lactide investment in Thailand, the latest innovations in fermentation of lactic acid and on the prospects More news: www.bio-based.eu/news Today’s environmental issues create the increasing demand to use more renewable material and having less emissions in different life-cycle phases. From market drivers like different Green building programs are creating the increasing need for biobased products. LEED Green building certification in described shortly. New Envirez polyester resins are formulated using renewable and/or recyclable raw materials and support the manufacture of more sustainable composites. The presentation will discuss the reduced environmental impact, with lower carbon dioxide emissions and a diminished dependence on crude oil. Also the chemistry behind this innovative product family will be presented together with final composite properties and final articles produced. Local sources for renewable materials worldwide will finalize the presentation. ASTM D6866 is a standard test method developed by ASTM International to quantify the biobased content of solid, liquid, and gaseous samples through radiocarbon analysis. Test results are reported as the mean fraction of the “biobased content” of a product; biobased content is a measure of the percentage of the product that comes from biomass or renewable sources. Due to its inherent flexibility to analyze many types of samples, ASTM D6866 is recognized to be a very good analytical method for different kinds of biobased materials. This ASTM standard was developed in the United States at the request of the U.S. Department of Agriculture for its BioPreferred Program, which satisfies legislation requiring federal agencies to give preferred procurement to manufacturers using the greatest amount of biomass in their products (per the Farm Security and Rural Investment Act of 2002). ASTM D6866 is used as a tool to verify biobased content claims of BioPreferred applicants. There are several eco-labeling programs that recommend and sometimes require ASTM D6866 testing. Vincotte of Bel- Biowerkstoff-Report, Edition 8, March 2011 31 4. Biowerkstoff-Kongress Abstracts to the congress gium uses ASTM D6866 testing for its OK Biobased program. Canada’s EcoLogo requires ASTM D6866 testing for its CCD-170 standard developed specifically for instant hand antiseptic products. Under Japan BioPlastics Association’s BiomassPla certification and labeling system, plastic products must contain biomassderived components that can be measured using ASTM D6866. Sustainable Biomaterials Collaborative has released a list of purchasing specifications called BioSpecs, which requires ASTM D6866 testing to verify the biobased content of compostable food service ware. The ICC Evaluation Service also published an evaluation guideline requiring ASTM D6866 testing to determine biobased material content of building materials. ASTM D6866 is a widely used method in the bioplastics industry. Braskem, a leading Brazilian petrochemical company, is one of the many bioplastics companies that use ASTM D6866 to certify a product’s biomass percentage. ASTM D6866 only quantifies the biobased content of a material. Results do not have any implication on the material’s biodegradability. Francesca Aulenta, BASF SE Overview of BASF bio-based and biodegradable polymers Climate change, a growing world population and resource constraints are some of the major challenges facing society. Solutions to these challenges are only possible through sustainable development and the sustainable use of resources. Sustainable development is a key element of BASF’s corporate strategy. In order to tackle global megatrends and propose innovative solutions, BASF has established five research clusters. The clusters “raw material change” and “white biotechnology” aim to develop technologies that will enable alternative resources to be used in existing value chains and provide innovative, sustainable bio-based products. The intention is not to support “green-washing” but to focus on the use of renewable raw materials for dedicated applications driven by performance and eco-efficiency. The presentation will provide an overview of BASF’s portfolio of bio-based and biodegradable polymers. 32 Biowerkstoff-Report, Edition 8, March 2011 Dr. Harald Häger, Thomas Große-Puppendahl Evonik Degussa GmbH Biobasierte Polyamide – Stand der Technik, zukünftige Technologien und Rohstoffquellen Vergangenheit und Gegenwart Monomere für die Polyamidherstellung stammen ursprünglich vom Acker. Als PA66 von W. H. Carothers 1934 entdeckt wurde, wurden die daraus nötigen Monomere, über mehrere chemische Prozessstufen aus Furfural, welches aus Haferspelzen gewonnen wurde, hergestellt. Die Ozonolyse von Ölsäure liefert die Azelainsäure und die Pelargonsäure. Noch wichtiger ist heutzutage die Rizinolsäure als Rohstoff für die Polyamidherstellung. Aus Ihr lassen sich über diverse chemische Prozessschritte PA11 und PA1010 herstellen. Die wesentlichen Monomere hier sind die Aminoundecansäure, Sebacinsäure und Dekandiamin. Kombiniert man die Monomere aus nachwachsenden, mit solchen petrochemischen Ursprungs, werden Polyamide wie das PA610 und das PA1012 zugänglich, die dann nur teilweise auf nachwachsenden Rohstoffen basieren. Zukunft International Congress on Bio-based Plastics and Composites Die Bedeutung der nachwachsenden Rohstoffe für die Polyamidherstellung wird weiter zunehmen, wobei man sich von der historischen Wurzeln lösen wird. Eine Möglichkeit besteht darin, die benötigten Grundstoffe, wie zum Beispiel Butadien für die PA66 oder PA12 Produktion aus nachwachsenden Rohstoffen herzustellen. Der Vorteil dieses Vorgehen liegt auf der Hand, die bestehenden Prozesse können übernommen und bestehende Zulassungen erhalten werden. Der zweite Weg ist sicherlich deutlich steiniger aber auf lange Sicht auch erfolgversprechender. Dieser liegt darin nachwachsende Rohstoffe mit hilfe neuer Prozesse wie sie die Katalyse oder die Biochemie bietet umzusetzen. Dadurch kann die Anzahl nötiger Prozessschritte zum Teil dramatisch reduziert werden. Markus Götz, BIOPRO Baden-Wuerttemberg GmbH The Cluster Biopolymers / Biomaterials: working jointly to establish a bio-based plastics industry The plastic sector’s dependence on fossil resources, the growing awareness of the human influence on climate change and the demand for innovative materials More news: www.bio-based.eu/news Abstract with new properties requires new ways of working. As part of the BMBF‘s ‘BioIndustrie 2021’ programme, the Biopolymers/Biomaterials Cluster (operated by BIOPRO Baden-Wuerttemberg GmbH, funded by the state of Baden-Wuerttemberg) supports research and development projects that focus on the development of innovative biomaterials through integrated and cross-functional cooperation of partners along the whole value creation chain. Such developments will increasingly optimise or replace traditional chemical production processes through the application of biotechnological methods. In our cluster the key focus is the development of (novel) performance bioplastics or the biotechnological processing of biomaterials like wood or natural fibre composites. For example, two cluster projects under the leadership of BASF SE have successfully demonstrated the production of high-quality succinic acid and 1,5-diaminopentane by fermentation in practical terms. Hence, the foundations are in place for the production of innovative and marketable polyesters and polyamides based on renewable materials. Further, the simultaneous involvement of end-users in the cooperative development process of bio-based plastics enables the early orientation of product specifications to the requirements of target markets such as the packaging, construction, automotive and textile industries as well as for special applications in healthcare and medical technology. Such a cooperative strategy will speed up the innovation process and will help to make market entry easier for new products. Marcel van Berkel, Royal DSM BV Focus on green materials with better performance Within DSM’s Emerging Business Area “BioBased Products and Services” we bring together DSM’s unique combination of market insights in chemicals, monomers and polymers, with extensive biotechnological and chemical synthesis competences. The aim of this unit is to identify and establish businesses addressing the unmet needs in attractive markets using biotech or biobased solutions. Partnerships, in a variety of forms, and flexible business models will form the foundation of our business. DSM believes in Open Innovation and that partnerships, both in the technical and commercial arena, are key to success in the emerging bio-based economy. Business areas span from renewable analogues of existing chemicals, to new molecules and polymers with differentiated performance. Activities include as well development of formulations and compounds, both in-house and with external parties that meet customer needs. Our scope is of course global scope and our doors are open to any sensible collaboration model along the emerging value chains of the bio-based economy. We actively seek cooperation with other parties and invite others to approach us with business plans and collaboration proposals. Biowerkstoff-Report, Edition 8, March 2011 33 4. Biowerkstoff-Kongress Sponsors InfraServ GmbH & Co. Knapsack KG The Chemical Industrial Park Knapsack – “integration of industrial biotechnology into existing value-chains” The idea of producing chemical building blocks with the help of industrial biotechnology is becoming more and more appealing to a majority of players in the chemical industry in Europe. The dynamic European market is the ideal basis for the commercialization of your bio-based chemicals. This is due to the large amount of available renewable feedstock and customers as well as a fast growing number of potential bioplastics applications. The Chemical Industrial Park Knapsack near Cologne in Germany is offering companies a scale-up platform and access to know-how for example for bioplastics production and integration into existing value-chains. Location requirements for bioplastics production • Large market – proximity of consumers with high purchasing power and green incentive. • Growing demand – increasing number of potential applications and customers. No large scale bioplastics production in Europe yet – first mover. • High quality infrastructure – easy access for bulk logistics and adequate utilities present (power, steam, waste water, security). • Ample resources – large amounts of raw materials need to be in close proximity. • Knowledge and R&D – relevant chemical, biotechnology and process technology research facilities and qualified workforce. • Synergies – with existing oil based plastics industry and engineering know-how in polymerization processes. • Good services and plots – suitable “plug&play” plots of land for chemical production with all adequate services. Europe’s leading industrial region The Chemical Industrial Park Knapsack is located in the federal state of North Rhine-Westphalia, the most important chemical and power location in Germany. Just under 30 % of all foreign investments are concentrated in this region due to it having the largest buying and selling market. The Chemical Industrial Park Knapsack is located just 10 kilometers south west of Cologne and has excellent access to the Rhineland highway network enabling the fast transfer of goods to customers in all of Europe. Well connected, Direct highway access (Knapsack), without having to deal with a cross town link, is just four kilometers away. 3 international airports are available within 20 to 60 minutes. The chemical park’s own public container terminal acts as a satellite terminal for the regional mega-terminal Cologne-Eifeltor (Köln-Eifeltor) as well as for a second major terminal located 20 km away in the Harbor Köln-Niehl. This harbor has connections to all of North See’s overseas ports. Well-established services InfraServ Knapsack as the owner and site operator offers a plug & play concept for investors. The companies choose the services that suit their business model from a wide range offered by InfraServ Knapsack. Major benefits are the site overheads are shared thus become more 34 Biowerkstoff-Report, Edition 8, March 2011 cost-effective and the benefits from integrated know-how structures. Our profile As operator of the chemical park, InfraServ Knapsack offer circa 10 international companies operating in the chemical industry (production of organic and inorganic chemicals, crop protection products, fine and special chemicals, plastics) optimum opportunities to operate their production plants. However, InfraServ Knapsack does not only serve customers in the chemical park, but they offer a full range of services from just one source to customers outside the park as well. Services include plant planning and construction as well as the maintenance and certification of industrial plants. InfraServ Knapsack can draw on their decades of practical experience in this sector. Contact: InfraServ GmbH & Co. Knapsack KG Owner and operator of the Chemical Park Mr. Pierre Kramer Industriestr. 300 D-50354 Huerth Phone: +49 (0)2233 4863 – 43 E-mail: pierre.kramer@infraserv-knapsack.de Internet: www.infraserv-knapsack.de International Congress on Bio-based Plastics and Composites Sponsors PROGANIC®: a 100 % statement What does a well-established injection molder with 62 years of history, whose business is driven by the sale of consumer goods with chic designs, do for an encore? For Germany’s Propper, the answer was to create a proprietary bioplastic, establish a subsidiary and brand around this material, and then sell it to licensees. The marketing proof will be on store shelves around the world in the next months as the company completes its multi-year development project and presents the first commercial applications. Even before it realized any revenue with the new bioplastic projects, it already had reaped a host of awards, including the 2010 Biomaterial of the Year prize at the Hannover trade fair earlier this year —the world’s largest industrial trade fair— and the Home Style Award 2010 at a recent consumer goods fair in Shanghai. The company’s intent is simple but profound: offer a 100% carbon neutral alternative for plastic consumer goods, and be profitable at it. PROGANIC®´s proprietary compounds consist of bioplastics PLA and PHA plus natural waxes and minerals. The PROGANIC® material processes on standard inject molding and extrusion machinery and molds/tooling. Heat resistance is to 110°C, and it is food safe and UV resistant. It is durable as well, with a modulus of 4300 N/ mm2, higher than that of ABS or PS, and a Charpy impact strength that falls between that of those two standard plastics. PROGANIC® already has had the material certified to DIN 14851/2 for home composting, so this is not another “biodegradable” product that needs to land in one of the few commercial composting facilities to truly degrade. Only natural fillers and colorants or other additives are used. It degrades similar to wood with full biodegration in less than 12 months at 20°C, faster than spruce at a temperature where most bioplastics do not even begin to degrade. Composting is CO2-neutral with no residue, and the material also be burned in CO2 neutral. It can be used without restriction to make food packaging and children‘s toys. Out of the lab and into the market During 2011 PROGANIC® expects 200 to 300 products to be commercially available with a global reach. All of these applications will be marketed with the PROGANIC® label developed to emphasize the unparalleled biodegradability of its material. This guarantees that all partners will deliver the same message to the consumers. These partners are many and large and include DIY supplier OBI, Bauhaus, lawn and garden products supplier Scotts, Japanese housewares supplier EntreX, Marks & Spencer and more. Toys, brushes, brooms, garden tools and accessories, flowerpots, water cans, and more all will be molded and marketed using the material. Interested companies are cordially invited to broaden this „hall of fame“. Author: Matthew Defosse Contact: PROGANIC GmbH & Co. KG Kishwar Zuberi Münchner Straße 41 D-86641 Rain am Lech zuberi@proganic.de Phone: +49 (0)9090 9698 0 Internet: www.proganic.de More news: www.bio-based.eu/news Biowerkstoff-Report, Edition 8, March 2011 35 4. Biowerkstoff-Kongress Twin screw extruder ZSK Mc18 with specific torque of 18 Nm/cm³ Sponsor Innovation Award Coperion GmbH Coperion: integrated system solutions · unique process engineering and know-how · global presence In Coperion, formerly Werner & Pfleiderer, you have a partner on hand to provide the optimum solution to every compounding task. This ranges from special applications on laboratory scale to industrial-scale production extruders. As pioneers in the development of the closely intermeshing, co-rotating twin screw extruder, we have unique expertise and experience in this field. Since the 1950s, Coperion has continued to set new standards in processing machinery and plant design for compounding technology. We plan and implement compounding systems for the plastics, chemicals and food industries which are tailored precisely to our customers’ applications. Over 10,000 compounding systems delivered all over the world are proof of our unique system and process competence. Processing of biodegradable products Typical applications for the processing of biodegradable products Processing of biodegradable products makes very high demands on the compounding process because of the variety of possible base polymers and the great differences in the formulation mixtures. Every process step in a biodegradable products processing plant must be adapted exactly to the desired mechanical properties of the end product. We have built up a comprehensive know-how for the processing of biodegradable products with numerous implemented plants. Our specialists also benefit from our years of experience in the fields of cooking extrusion and plastic compounding which we gathered under our former name Werner & Pfleiderer. Our twin screw extruders are the heart of the processing plants for biodegradable products. The modular structure of the process section enables individual adaptation to every application so that optimal product qualities are achieved. Apart from the extruder, we also provide the entire plant periphery from the raw material feeding to pelletizing and drying of the pellets. Alternatively, it is possible to produce biodegradable products by direct extrusion. • Plastics with granular starch as a biodegradable filler • Starch-based loose fill • Thermoplastic starch • Polylactide (PLA), PVOH, synthetic copolyester, PBS, PHA, PCL, CA • Compounds of various biomaterials • Compounds of plastics and biomaterials • Pelletizing of PLA, polymerization of PLA Contact Coperion GmbH Competence Center Compounding & Extrusion Theodorstraße 10 70469 Stuttgart Uta Kühnen Tel.: +49 (0) 711 897 – 3183 uta.kuehnen@coperion.com info@coperion.com www.coperion.com 3 2 Typical set-up for the production 1 of biodegradable products C 1 Starch / powder premix 6 2 Plasticizer / liquid additives 3 Polymer pellets 5 4 Twin screw side-feeder ZS-B 5 Atmospheric degassing 7 Die head 8 Water bath 9 7 6 Vacuum degassing 4 10 8 9 Airknife 10 Strand pelletizer Typical set-up for the production of biodegradable products 1 Strach / powder premix I 2 plasticizer / liquid additives I 3 polymer pellets I 4 twin screw side-feeder ZS-B I 36 Biowerkstoff-Report, 8, March 2011 5 Edition Atmospheric degassing I 6 Vacuum degassing I 7 Die head I 8 Water bath I 9 Airknife I 10 Strand pelletizer International Congress on Bio-based Plastics and Composites Partners Die AVK stellt sich vor Mitglieder Die AVK vertritt Rohstofferzeuger und -lieferanten sowie Verarbeiter von verstärkten und gefüllten Kunststoffen und technischen Duroplasten. Ferner sind Maschinenbauer, Ingenieurbüros, Prüfämter und wissenschaftliche Institute Mitglieder der AVK. Partners CIA) (www.eucia.org) und einer der vier Trägerverbände des Gesamtverbandes der Kunststoffverarbeitenden Industrie (GKV). Nutzen Sie auch die von der AVK moderierte Fachgruppe „Faserverbundwerkstoffe“ in XING. Kontakt: AVK – Industrievereinigung Verstärkte Kunststoffe e.V. Am Hauptbahnhof 10 D-60329 Frankfurt Tel.: +49 (0)69 271 077 – 0 Fax: +49 (0)69 271 077 – 10 E-Mail: info@avk-tv.de Internet: www.avk-tv.de Cluster Biopolymers/ Biomaterials Leistungsspektren • Bildung • Die AVK veranstaltet Fachseminare in • Zusammenarbeit mit Anwendern, Experten und wissenschaftlichen Instituten, sowie eine internationale Jahrestagung in Anbindung an die Messe COMPOSITES EUROPE. Im Rahmen der Jahrestagung wird auch der AVK-Innovationspreis an exzellente Neuentwicklungen (Produkte, Verfahren) vergeben. Beratung Bei Konflikten mit Lieferanten oder Kunden über Materialeigenschaften o. ä. stellt die AVK einmal jährlich kostenlos für Mitglieder einen Gutachter für ein klärendes Parteiengespräch zur Verfügung. Die AVK hat die Funktion eines Abmahnvereins. Die AVK schützt ihre Mitglieder vor unlauterem Wettbewerb Information/Kommunikation Die Arbeitskreise der AVK bieten Hilfestellung zur Lösung der zentralen Fragen der Branche. Sowohl technische als auch Marketing-Fragestellungen rund um verstärkte und gefüllte Kunststoffe werden bearbeitet. Die Marketingarbeitskreise der AVK informieren potenzielle Kunden objektiv über die Einsatzmöglichkeiten von verstärkten Kunststoffen und technischen Duroplasten. Networking/Kooperationen Die AVK hat enge Kontakte zu staatlichen Stellen auf Landes-, Bundes- und EU-Ebene. Als AVK-Mitglied arbeiten Sie stimmberechtigt in DIN und CENAusschüssen mit. Die AVK ist Mitglied in der European Composites Industry Association (Eu- More news: www.bio-based.eu/news Kontakt: CLIB2021 Manfred Kircher Völkinger Straße 4 D-40219 Düsseldorf E-Mail: manfred.kircher@evonik.com Internet: httpw.clib2021.d CLIB2021 CLIB2021, das Cluster industrielle Biotechnologie, ist ein Verein mit mehr als 70 Mitgliedern vornehmlich der Industrie und kleinen und mittelständigen Unternehmen (KMU). Letztere bilden mit 50% der Mitgliedschaft die größte Gruppe und bringen eine enorme Vielfalt an Technologien und Produkten in das Cluster. Weitere Mitglieder sind Großunternehmen wie Altana, Evonik, Bayer MS, Bayer TS, Cognis, Henkel und Lanxess, akademische Einrichtungen sowie Investoren und Infrastruktur. CLIB2021 initiiert und begleitet Forschung und Entwicklung (F&E) in den Bereichen nachwachsender Rohstoffe, Monomere & Polymere, Feinchemikalien, Pharmazeutika und Kosmetika; wenn möglich werden öffentliche Fördergelder vermittelt. Mit einem akkumulierten jährlichen Umsatzvolumen von ungefähr 65 Mrd. € bietet CLIB2021 einen attraktiven Markt für die industriellen Biotechnologie. Seit 2008 hat CLIB2021 F&E-Vorhaben von rund 50 Mio. € Gesamtvolumen initiiert. Der Cluster verfolgt zunehmend eine internationale Strategie. Regionen, die reich an nachwachsenden Rohstoffen sind und zugleich eine F&E-Infrastruktur bieten, die für die Mitglieder F&E-Partner sein kann, werden gezielt eingebunden. Um diese Entwicklung zu unterstützen wurde 2009 in Alberta/Kanada und 2010 in Moskau/Russland ein Büro eröffnet. The Cluster Biopolymers/Biomaterials supports R&D projects with partners across the entire value-added chain to develop innovative biomaterials. In this context, traditional chemical processes are being increasingly optimized or replaced by the use of biotechnological methods. The development of bio-based plastics in joint projects integrating research facilities and end users makes it possible to match the requirements of the target markets at an early date, thus facilitating the launching of new products in the market. The main focus here is on performance plastics such as polyesters and polyamides. Membership is free of charge. Contact: Markus Götz Cluster Biopolymers/Biomaterials c/o BIOPRO Baden-Württemberg GmbH Breitscheidstraße 10 70174 Stuttgart Fon +49 711 218185-14 biopolymere@bio-pro.de www.biopolymerics.de EuropaBio EuropaBio’s mission is to promote an innovative and dynamic biotechnologybased industry in Europe. EuropaBio, (the European Association for Bioindustries), was established in 1996 and has 69 corporate and 7 associate Biowerkstoff-Report, Edition 8, March 2011 37 4. Biowerkstoff-Kongress members operating worldwide, 4 Bioregions and 26 national biotechnology associations representing some 1800 small and medium sized enterprises. EuropaBio represents the interests of the industry towards the European institutions so that legislation encourages and enables biotechnology companies in Europe to innovate and provide for our society’s unmet needs. Our corporate members are involved in a wide range of activities in human and animal healthcare, diagnostics, bio-informatics, chemicals, biofuels, crop production, agriculture, food and environmental products and services. EuropaBio also welcomes associate members such as international commercial, financial, asset management and other service-providing companies, regional biotechnology development organisations and scientific institutes. The common denominator among all our members is the use of biotechnology at any stage of research, development or manufacturing. The priorities of the EuropaBio Industrial Biotech Council for 2010 include the implementation of the Lead Marked Initiative (LMI) for biobased products, funding for “pilot” biorefineries in Europe, improved access to raw materials and recommendations for the new CAP. Following a successful launch in 2008, EuropaBio is also continuing to develop the European Forum for Industrial Biotechnology (EFIB), which this year will be held between 19 and 21 October in the historic city of Edinburgh, Scotland, as the key EU conference for industrial biotechnology (www.efibforum.com) For more information about EuropaBio please visit www.europabio.org Contact: EuropaBio 6 Avenue de l’Armee BE-1040 Brussels Phone: +32 (0)2739 1184 Fax: +32 (0)2735 4960 Mobile: +32 (0)476 607 135 E-mail: j.dupont@europabio.org Internet: www.europabio.org TM European Bioplastics e.V. A world without plastics? Hardly possible to imagine. Plastics make up an integral part of many products surrounding us in everyday life. So why not combine the excellent performance of plastics with the benefits of nature and its resources – bioplastics! European Bioplastics defines bioplastics as polymers that are bio-based, biodegradable, or both. Bioplastics’ numerous advantages are the primary reason for the industry’s dynamic development and growth rate of roughly 20 percent per year. European Bioplastics is the European association that represents the interests of the industry along the complete bioplastics‘ value chain. Its members produce, refine and distribute bioplastics. With around 70 members, it is currently the largest association within the bioplastics industry. Bioplastics drive the evolution of plastics and contribute significantly to a sustainable society. European Bioplastics’ mission is to align the bioplastics value chain and work in partnership with various stakeholders towards a favourable landscape to facilitate the growth of the bioplastics market. Striving to satisfy the societal demand for sustainable products and solutions in the plastics markets, European Bioplastics European Bioplastics • supports and promotes technological innovation of bioplastics to improve the balance between environmental benefits and environmental impact. • supports the sustainable growing of biomass crops for the production of bio-based plastics. • promotes efficient recovery, re-use and recycling systems • supports standards, certifications and guidelines for transparent claims about bioplastics. • As a knowledge partner to all interested stakeholders, European Bioplastics is the platform • to represent, and gain knowledge about, the industry as a whole 38 Biowerkstoff-Report, Edition 8, March 2011 • to connect to others in the bioplastics value chain • for a dynamic and open stakeholder dialogue regarding overarching issues. European Bioplastics Marienstraße 19-20 Germany, 10117 Berlin info@european-bioplastics.org www.european-bioplastics.org Fachagentur Nachwachsende Rohstoffe e.V. (FNR) Im Auftrag des Bundesministeriums für Ernährung, Landwirtschaft und Verbraucherschutz (BMELV) koordiniert die Fachagentur Nachwachsende Rohstoffe e.V. (FNR) seit 1993 Forschungs-, Entwicklungs- und Demonstrationsprojekte im Bereich nachwachsender Rohstoffe. Als Projektträger verwaltet die FNR zur Zeit ein jährliches Fördermittelvolumen von 53 Millionen Euro, die aus dem Bundeshaushalt zur Verfügung gestellt werden. Projektförderung Wichtigstes Betätigungsfeld der FNR ist die fachliche und administrative Betreuung von Forschungsvorhaben zur Nutzung nachwachsender Rohstoffe. Das Förderprogramm „Nachwachsende Rohstoffe“ des BMELV gibt dafür die Regeln vor. Derzeit betreut die FNR über 400 Forschungsprojekte. Allen Projekten gemeinsam ist, dass Ansätze und Methoden entwickelt werden, um heimische nachwachsende Rohstoffe voranzubringen. Durch die Ausschreibung von bestimmten Themen macht die FNR immer wieder gezielte Vorgaben für die Ausrichtung der Forschungstätigkeit zu nachwachsenden Rohstoffen in Deutschland. Verbraucherinformation Ein wichtiger Arbeitsschwerpunkt der FNR sind die Beratung und Verbraucherinformation. Die FNR sammelt aktuelles Fachwissen zum Thema und stellt dieses International Congress on Bio-based Plastics and Composites über Veröffentlichungen interessierten Wissenschaftlern, Privatpersonen, Politikern, Wirtschafts- und Medienvertretern zur Verfügung. Über Messen und Ausstellungen macht die FNR auf das Potenzial nachwachsender Rohstoffe aufmerksam. Und die FNR betreibt eine gezielte Verbraucherinformation zu Produkten aus nachwachsenden Rohstoffen. International Die FNR betätigt sich auch auf europäischer Ebene. Hier koordiniert sie verschiedene EU-Projekten zum Thema Nachwachsende Rohstoffe. Aktionsplan der Bundesregierung zur stofflichen Nutzung nachwachsender Rohstoffe Wichtige Impulse erhält die Arbeit der FNR durch den im letzten Jahr ver abschiedeten Aktionsplan der Bundesregierung zur stofflichen Nutzung von nachwachsenden Rohstoffen. Gerade zur Unterstützung des Bereichs Biowerkstoffe sind im Aktionsplan mehrere Maßnahmen, vom Ausbau der Forschungsförderung bis zum Aufbau eines Biopolymernetzwerkes, festgeschrieben. Kontakt: Fachagentur Nachwachsende Rohstoffe e.V. (FNR) Hofplatz 1 D-18276 Gülzow Tel.: +49 (0)384 36 930 – 103 Internet: www.fnr.de, www.biowerkstoffe.info Partners fügbarer Biopolymere entwickelt. Produkte sind z. B. ein Spritzgießcompound auf Celluloseacetatbasis, ein Foliencompound mit Polymilchsäure, Trägerfolien für Selbstklebebänder, Kaschierfolien für bioabbaubare Windeln und ein hydrophobierter Stärkeschaum zur Ziegelporosierung. Unser fundiertes Wissen über natürliche Füll- und Verstärkungsstoffe sowie weitere Additive für leicht verarbeitbare Werkstoffe nutzen wir zur anwendungsbezogenen Optimierung. Zurzeit entwickeln wir neue Synthesen für technische Polymere aus nachwachsenden Rohstoffen. Ein aktuelles Projekt realisiert den Prozess vom nachwachsenden Rohstoff (Bernsteinsäure) bis hin zu Werkstoffen (Polyamide und Polyester). Begleitend zur Prozess- und Werkstoffentwicklung ermitteln wir mechanische und tribologische Werkstoffkennwerte und führen Analysen zur Rheologie, zum thermischen Verhalten, zur chemischen Zusammensetzung sowie zur Struktur durch. Kontakt: Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT Osterfelder Str. 3 D-46047 Oberhausen Carmen Michels Tel.: +49 (0)208 859 812 – 65 Fax: +49 (0)208 859 812 – 68, E-Mail: carmen.michels@umsicht.fraunhofer.de Internet: www.umsicht.fraunhofer.de The IAR Cluster puts its experience and know-how at the disposal of businesses and research laboratories wishing to exploit the wealth of plant-based assets and develop R&D projects in the field of non-food exploitation of agricultural resources. The IAR cluster performs various missions: • Management of R&D projects, from the idea... to the funding • Coordination and networking of interregional skills • Development of international collaborations and delegations • Provision of information and strategic intelligence • Promotional and public relations activities Since the cluster’s creation 90 R&D projects are certified (total budget 266 M€) within which 60 projects are financed. The public funding commitment (ANR and FUI) represents 35 to 40 % of the total budget. Today, the IAR Cluster counts more 119 members (the list of members is downloaded on the website) Contact: Industries and Agro-Ressources Cluster 50-52, Bvd Brossolette BP05 – F-02930 LAON Cedex Phone: +33 (0)323 232 525 Fax: +33 (0)323 232 526 E-mail: contact@iar-pole.com Internet: www.iar-pole.com IAR Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT Fraunhofer UMSICHT entwickelt funktionalisierte Kunststoffcompounds auf Basis fossiler und nachwachsender Rohstoffe. Von der Polymersynthese bis zur Anwendung betrachten wir dabei die gesamte Wertschöpfungskette. Für den verstärkten Einsatz nachwachsender Rohstoffe haben wir eine Reihe von Compounds auf Basis kommerziell ver- More news: www.bio-based.eu/news The “Industries and Agro-Resources” Cluster unites stakeholders from research, higher education, industry & agriculture in the Champagne-Ardenne and Picardy regions of France around a shared goal: the added-value non-food exploitation of plant biomass. The IAR cluster has defined 4 strategic fields of activity under the biorefinery concept: • Bioenergy • Biomaterials • Biomolecules • Green ingredients • kunststoffland NRW e.V. Im Verein kunststoffland NRW haben sich Akteure aus der gesamten Kunststoffbranche in NRW, also große Erzeuger, kleine und mittlere Verarbeitungsbetriebe, der Maschinenbau, Forschung und Wissenschaft, Aus- und Weiterbildung, branchennahe Zulieferer, Finanzdienstleister sowie Verbände und Organisationen zusammengefunden, um das gemein- Biowerkstoff-Report, Edition 8, March 2011 39 4. Biowerkstoff-Kongress same Ziel „Stärkung von Kompetenz und Exzellenz der Branche“ zu verwirklichen und davon zu profitieren! kunststoffland NRW betreibt die Vernetzung seiner Akteure und bietet dazu die Plattform für Information, Kommunikation, Vernetzung und Kooperation. Über Politikebenen hinweg setzt sich kunststoffland NRW für Rahmenbedingungen ein, die erfolgreiches Wirtschaften, Bilden und Forschen in NRW und von NRW aus fördern. Für Unternehmen stellt kunststoffland NRW Informationen, Veranstaltungs angebote und ein breites Spektrum an Vermittlungs-, Beratungs- und Dienst leistungen zur Verfügung, z.B. in den Themenfeldern Innovations- und Kooperationsmanagement, Finanzierung und Förderung, Außenwirtschaft, Unternehmensnachfolge, Recruiting und Weiterbildung. Für Industrie, Bildung und Wissenschaft übernimmt kunststoffland NRW e.V. eine Brückenfunktion: Er trägt zur Stärkung von Forschung, Aus- und Weiterbildung bei, sorgt für Transparenz in der Wissenschafts- und Bildungslandschaft des Landes und fördert den Transfer in die Wirtschaft. Durch Zusammenarbeit von kunststoffland NRW mit bestehenden regionalen Kompetenznetzen werden die Branche und ihre Akteure landesweit und regional gestärkt. Der Verein kann für Politik und Verbände erster Ansprechpartner für die gesamte Wertschöpfungskette sein. Mit professioneller Presse- und Öffentlichkeitsarbeit, u. a. auch über das Internetportal www. kunststoffland-nrw.de, stärkt kunststoffland NRW das Image und die positive Wahrnehmung der Branche nach innen und außen. Geschäftsführerin des Vereins ist Dr. Bärbel Naderernaderer@kunststofflandnrw.de Clustermanagement Kunststoff.NRW kunststoffland NRW stellt auch das Clustermanagement für das Landescluster „Kunststoff.NRW“, das zu den herausgehobenen „profilbildenden“ Clustern in Nordrhein-Westfalen gehört. Die Mitglieder des Vereins können sich somit aktiv für die Gestaltung „Ihres“ Branchenclusters einbringen. Mitglieder können darüber hinaus Dienstleistungen des Vereins kos- tenlos bzw. zu bevorzugten Bedingungen in Anspruch nehmen. Mitglied werden und Mitmachen im Verein lohnt sich! Kontakt: Antje Lienert E-Mail: lienert@kunststoffland-nrw.de kunststoffland NRW e.V. Grafenberger Allee 277 40237 Düsseldorf Telefon: (0211) 2 10 940-15 Fax. (0211) 2 10 940-20 Internet: www.kunststoffland-nrw.de • Joint development of UK Home Composting logo and test method • Facilitator for UK Renewable Packaging Group • Helped setup supply chain for bio-based packaging to London Olympics • Steering group on Defra projects on Oxodegradables and Bioplastics Contact: NNFCC, Biocentre, York Science Park, Innovation Way, Heslington, York, YO10 5DG. Phone: +44 (0)1904 43 51 82 Fax: +44 (0)1904 43 53 45 E-mail: enquiries@nnfcc.co.uk Internet: www.nnfcc.co.uk NNFCC The NNFCC is the UK‘s National Centre for Biorenewable Energy, Fuels and Materials. We are committed to the sustainable development of markets for biorenewable products. We promote the benefits of biorenewable energy, fuels and materials for enhancement of the bioeconomy, environment and society. The NNFCC has earned a unique position and reputation as the UK’s leading authority in biorenewable technologies and their applications. Our commercial services have been tailored to assist organisations in understanding the opportunities and overcoming the challenges presented by the emerging biorenewables sector. The NNFCC works at the forefront of the emerging field of bio-based energy and its intrinsic connection with chemicals and materials. We have an excellent track record in the development of the market because of our relationships with Industry, Government and Research Institutions, providing tangible benefits to everyone in the sector. We are focused on providing knowledge along supply chains and across biomass based sectors. Our core services are analysis and assessment of technology development and intellectual property, supply chain dynamics, market development and opportunities, feedstock availability and sustainability as well as end of life options. If you want to develop bioplastics in the UK, talk to us first: • European Bioplastics CEBON member 40 Biowerkstoff-Report, Edition 8, March 2011 Smithers Rapra Smithers Rapra – world leading rubber, plastic & composite consultancy provides comprehensive independent services covering, testing, analysis, processing & research for the polymer industry & industries using plastics, rubber or composites in any component, product or production process. Working for industry Smithers Rapra supports a varied selection of industries requiring polymer specialisation. End-user industries include: pharmaceutical, medical, Industrial, consumer, automotive & transport. Smithers Rapra has a unique mix of on-site expertise & facilities enabling the application of an integrated approach to problem solving. The company’s core capabilities lie in the skills & experience of its people, many of whom are recognised & accepted as leading experts in their field. Clients can commission individual services, specialist consultancy or participate in multi-client research projects. Assistance in obtaining funding from the European Community & UK government &/or industry, to progress research & development of polymer technology & applications can be provided. Testing, analysis & calibration services The physical testing, analytical & chemi- International Congress on Bio-based Plastics and Composites cal laboratories at Smithers Rapra are UKAS accredited & can provide UKAS certification. Testing is also instigated to a range of national & international standards & those tailored to an individual company’s requirement. A variety of physical tests assess material properties against abrasion, fatigue, impact & stress & their performance in products in particular conditions. Smithers Rapra’s analytical & chemical laboratories undertake a variety of tasks including material identification & characterisation using a range of advanced chromatographic, spectroscopic & thermal techniques. Consultancy services Smithers Rapra’s plastics, rubber & composite technical services can prevent, identify or solve problems & improve on or ensure continuing quality. Supported by comprehensive testing, analysis & information facilities, technologists can tackle most polymer related projects. Whilst details of specialist services are available on the web www.rapra.net the following represents Smithers Rapra’s core technical expertise: Fault & failure diagnosis, Materials selection & application support, Product design & development, Manufacturing process assessment & development, Prototyping & small scale/specialist production, Engineering & tooling, Material & Product testing & analysis. For further details on all Smithers Rapra’s consultancy services Contact: Smithers Rapra, Shawbury Shropshire SY4 4NR Phone: +44 (0)1939 252 413 E-mail: info@rapra.net Internet: www.rapra.net Stiftung Arbeit und Umwelt der Industriegewerkschaft Bergbau, Chemie, Energie (IG BCE) Die Stiftung Arbeit und Umwelt der Industriegewerkschaft Bergbau, Chemie, More news: www.bio-based.eu/news Partners Energie (IG BCE) wurde 1990 gegründet. Seitdem engagiert sich die Stiftung mit ihrem Leitmotiv „Arbeit und Umwelt“ für eine Nachhaltige Entwicklung in Wirtschaft und Gesellschaft. Unser Ziel ist, Wirtschaft, Politik und Gesellschaft für eine vernünftige Balance aus wirtschaftlicher, sozialer und ökologischer Entwicklung zu sensibilisieren und ein vom Ressourceneinsatz entkoppeltes Wirtschaftswachstum mit „Guter Arbeit“, sozialer Sicherheit sowie einer gesunden und intakten Umwelt zu verbinden. Hierzu verleiht die Stiftung einen Umweltpreis und ist vorrangig konzeptionell und operativ tätig mit eigenen Projekten, Veranstaltungen und Studien. Sie berät bei der Einführung und Verbindung von vorsorgendem Umweltschutz und energieund ressourceneffizienten Wirtschaften mit sozial verträglicher Unternehmenskultur. Mit Hilfe von Spenden und einem Förderkreis realisieren wir ökologisch wirksame, sozial gerechte und ökonomisch sinnvolle Projekte sowie innovative Umweltpreise. Unterstützen Sie uns, damit die natürlichen Lebensgrundlagen erhalten bleiben und gute Voraussetzungen für die heutigen und künftigen Generationen geschaffen werden. STIFTUNG ARBEIT und UMWELT der IG BCE Königsworther Platz 6 30167 Hannover Tel: +49-(0)511-7631-433 Fax: +49-(0)511-7631-782 Email: umweltstiftung@igbce.de Internet: www.arbeit-umwelt.de Verband der Deutschen Holzwerkstoffindustrie e. V. (VHI) genüber der Öffentlichkeit, den staatlichen Organen und anderen Wirtschaftszweigen. Die jüngste Fachgruppe unter dem Dach des VHI ist die der Holz-Polymer-Werkstoffe. Führende mitteleuropäische Hersteller dieses neuen Werkstoffes schlossen sich im November 2005 dem Verband an, um vorrangig die Normungsarbeiten zu Holz-Polymer-Werkstoffen abzustimmen, Forschungsarbeiten zu initiieren, den Markteintritt von WPC-Produkten durch Marketingmaßnahmen zu erleichtern und ein Qualitätssiegel zu schaffen. Die spezifischen Tätigkeitsfelder des Verbandes sind u. a.: • Betreuung der Unternehmerforen „Span- und Faserplatten“, „Sperrholz“, „Holz-Polymer-Werkstoffen“, „Innentüren“ sowie der Ausschüsse für „Technik“ und „Rohstoffe“ • Beratung auf wirtschaftlichem, technischem und politischem Gebiet • Initiierung von Forschungsvorhaben und Marktstudien • fachspezifische Stellungnahmen zu europäischen und nationalen Richtlinien-, Gesetzes-, oder Verordnungsentwürfen • Branchenvertretung in Ausschüssen von staatlichen Einrichtungen, Forschungsinstitutionen, nationalen und europäischen Normungsgremien, Fachverbänden und sonstigen relevanten Institutionen. • branchenbezogene Öffentlichkeitsarbeit und Marketing Kontakt: Verband der Deutschen Holzwerkstoffindustrie e.V. Vorsitzender: Hubertus Flötotto Geschäftsführer: Dr. Peter Sauerwein Ursulum 18 D-35396 Gießen Tel.: +49 (0)641 97 547 – 0 Fax: +49 (0)641 9 754 799 E-Mail: vhimail@vhi.de Internet: www.vhi.de ASSOCIATION OF THE GERMAN WOOD-BASED PANEL INDUSTRIES Der Verband der Deutschen Holzwerkstoffindustrie e.V. (VHI) vertritt die gemeinsamen Brancheninteressen der Hersteller von Span- und Faserplatten, Sperrholz, Holz-Polymer-Werkstoffen und Innentüren im In- und Ausland ge- Biowerkstoff-Report, Edition 8, March 2011 41 4. Biowerkstoff-Kongress Media partners bioplastics MAGAZINE Founded in 2006, bioplastics magazine is the only trade magazine worldwide that is exclusively dedicated to bioplastics, i.e. plastics from renewable resources and biodegradable plastics including natural fibres. bioplastics magazine covers all aspects of these biobased plastics and biodegradable plastics, many of which fulfilling both aspects. The magazine keeps its readers updated about the different bioplastic resins which are available and will come up in future, about chemistry, properties and availability. bioplastics magazine covers the processing techniques of these fascinating materials such as film blowing, extrusion, thermoforming, blow moulding, injection moulding etc. A large part in bioplastics magazine is dedicated to current and future applications. As of today, these are mainly – but not only – packaging applications. Even producers of consumer products such as covers for cellphones, laptop-computers or toys are interested in this family of materials as well as the automotive industry and many others – or they are already using bioplastics in certain products. Another quite important aspect is the political situation. bioplastics magazine reports about frame conditions, regulations, or the certification of “compostable plastics“ according for example to the European standard EN 13432? bioplastics magazine is THE new information platform for all parties involved. It is read by decision makers in all parts of this business, e.g. the raw material suppliers and compounders, machine and mould makers, converters, brand owners, the complete trade chain (wholesale and retail) as well as scientists and politicians, as bioplastics magazine is an independant and neutral source of information. With a print run of 5,000 (average, depending on large events like exhibitions or conferences) the estimated number of readers is much bigger, as many copies of bioplastics magazine are circulated or passed on to other interested readers. Since its start in 2006 bioplastics magazine saw a very positive feedback from its readers. The number of registered readers increased in the first two years by 30 % from issue to issue. In 2007 bioplastics magazine won an Innovation Award from “Initiative Mittelstand“, Germany. And finally the 1st PLA Bottle Conference (2007, Hamburg) as well as the 1st PLA World Congress (2008, Munich), both hosted by bioplastics magazine were great successes. The print magazine is published 6 times a year in English language. Subscribers get bioplastics magazine on their desk for EUR 149.00. This also includes access to the online archive with full-search functionality over all published issues. Contact: Bioplastics Magazine Dr. Michael Thielen Dammer Str. 112 D-41066 Mönchengladbach Phone: +49 (0)2161 664 864 E-Mail: mt@bioplasticsmagazine.de Internet: www.bioplasticsmagazine.de EUWID Europäischer Wirtschaftsdienst GmbH Kontakt: EUWID Europäischer Wirtschaftsdienst GmbH Sven Roth, Marketing & Vertrieb Bleichstraße 20-22 76593 Gernsbach Tel.: +49 7224 9397 – 164 Fax: +49 7224 9397 – 906 E-Mail: sroth@euwid.de Internet: www.euwid.de forum Nachhaltig Wirtschaften Best-Practice-Beispiele, die zum Nachahmen anregen. forum Nachhaltig Wirtschaften ist Themen- & Fachmagazin in einem: Im Titelthema werden aktuelle Entwicklungen 42 Biowerkstoff-Report, Edition 8, March 2011 und Trends kritisch hinterfragt. Das Kapitel „Praxis“ gibt dem CSR-Manager und Nachhaltigkeitsexperten das Werkzeug für den erfolgreichen Berufsalltag in die Hand. „Themen“ wie Energie & Klima, Ressourcen- & Umweltschutz sowie ein „Special“ und ein „Branchenreport“ bringen komplexe Sachverhalte auf den Punkt. Ein „Serviceteil“ bietet Buchtipps, Personalia sowie Veranstaltungshinweise. Auf dem Online-Portal werden crossmedial tagesaktuelle Meldungen, Fachbeiträge, Unternehmensporträts und Veranstaltungen zum Thema Corporate Social Responsibility publiziert. Kontakt: ALTOP Verlags GmbH Marketing forum Nachhaltig Wirtschaften Alistair Langer Gotzinger Str. 48, D-81371 München Tel.: +49 (0) 30 - 24 64 02 - 98 Mobil: +49 (0)160 963 956 – 14 E-Mail: a.langer@forum-csr.net Internet: www.forum-csr.net MATERIALSGATE – Competence in Materials Materialberatung, Materialrecherche und Materialbeschaffung Dr.-Ing. Christoph Konetschny Jahnstraße 38, D-64846 Groß-Zimmern Deutschland Mobil: +49 (0)179 6926 853 E-Mail: konetschny@materialsgate.de Internet: www.materialsgate.de International Congress on Bio-based Plastics and Composites MATERIALSGATE – Competence in Materials New Media Publisher GmbH Materials Consulting & Materials Investigation Contact: New Media Publisher GmbH Hinterfeld 4, D-41564 Kaarst Tel.: +49 (0)2131 766 741 Fax: +49 (0)2131 766 742 Internet: www.plasticker.de E-Mail: redaktion@plasticker.de Dr.-Ing. Christoph Konetschny Jahnstraße 38, D-64846 Groß-Zimmern Germany Mobil: +49 (0)179 6926 853 E-Mail: konetschny@materialsgate.de Internet: www.materialsgate.de Media partners Technology Review see advert (below) Contact: Technology Review NCB-MARKETING ** MARKETING-CONSULTING ** Nicole Clasani-Briskot Max-Planck-Weg 2 D-40789 Monheim am Rhein Phone: +49 (0)2173 8950 650 Fax: +49 (0)2173 8950 651 Mobil: +49 (0)163 6688 133 E-mail: info@ncb-marketing.de Internet: www.ncb-marketing.de Testen Sie 3 Monate Vorsprung! Exklus Teilneh iv für m Biower er des k kongre stoffsses! Als Publikation des renommierten M.I.T. (Massachusetts Institute of Technology) zeigen wir Perspektiven für wirtschaftliches Wachstum und geben wichtige Antworten auf die Fragen der Zukunft. Drei aktuelle Hefte im kostenlosen Vorteils-Paket werden Sie überzeugen! www.technology-review.de/BWK Die Chancen früher begreifen. Vorteils-Einladung: Testen Sie jetzt Technology ReviewBiowerkstoff-Report, 3 Monate kostenlos ohne Risiko! More news: www.bio-based.eu/news Edition 8, March 2011 43 Standardization & Policy How to Measure the bio-based content Material Composition, Weight-% PLA/PP fossil (50% PLA / 50% PP) CA* (acetic acid fossil), average1 Ecovio (45% PLA/55% Ecoflex) WPC (70 % wood / 30 % PP fossil) WPC (30 % wood / 70 % PP fossil) WPC (70 % wood / 30 % PVC fossil) WPC (30 % wood / 70 % PVC fossil) Composite Material (40% GF / 30% PLA / 30% Ecoflex) Composite Material (40% NF/60% PP fossil) I biogene C-content 36.7 % 54.5 % 39.4 % 57.6 % 19.9 % 75.2 % 35.8 % 44.3 % fossile C-content 63.3% 45.5 % 60.6 % 42.4 % 80.1 % 24.8 % 64.2 % 55.7 % 27.9 % 72.1 % n different committees in Brussels there is an ongoing discussion about how to define and measure the biobased content of bio-based materials and products. Examples were are the CEN/ BT/WG 209 M/429 working group working on a standardisation programme for bio-based products (Brussels, CEN) and the Industrial Task Force on Biobased Content of Materials and Products (Brussels, European bioplastics), ended in summer 2010. One of the proposed definitions of ‘biobased’ is ‘derived from biomass’, which is easy to comprehend. But what does it mean? The total of the plant biomass that is used? And with this not only the carbon atoms, but also the oxygen, hydrogen etc., which are bound in the bio-molecules? Or should we only consider the carbon, after all, the goal is to avoid CO2 emissions? The answers to these questions immediately depend on the applied measuring method. One possibility is to follow the US standard ASTM-D6866, which labels the percentage of the ‘renewably sourced carbon’ in the material or product, identified by the 12C/14C method. Only the biogenic carbon counts as biomass here, other constituent parts are not included. Yet carbonates of natural mineral origin get a special treatment: “They are to be excluded“, and consequently don’t raise the 12 C content. By choosing the US route, however, one often arrives at unexpected values for the biogenic part so interpreted, which are hard to comprehend at first (see table). How does a material made from 50% PLA and 50% PP become only 36.7% bio-based by measuring the ‘green carbon content’? Due to the fact that in the PLA relatively more oxygen is bound than in PP. But this biogenic oxygen also substi- Biogenic Carbon-content for different Bio-based Plastics and Composites: The following average (total) carbon contents served as a basis for the calculations: Polylactide acid (PLA): 50%, Polypropylene (PP): 86%, Polyvinylchloride (PVC): 38.4%, Ecoflex: 62.9%1 , Cellulose Acetate (CA)*: around 50%1, wood and natural fibres (NF): 50%; glass fibre, talkum, other minerals (according to ASTM-6866 also natural mineral carbonates): 0% *: Cellulose Acetate (CA): carbon content depends on substitution level from acetic acid, average here 2.51 1 : Data from Rodion Kopitzky, Fraunhofer UMSICHT tutes fossil carbon (12C). Why shouldn’t it count? Furthermore an optimum saving of CO2 emissions is not necessarily accomplished by substituting as much fossil carbon in the material or product as possible. The level of CO2 emission that would be really be saved with the use of bio-based plastics can only be determined by a technically demanding and costly LCA, which takes into account the CO2 emissions over the entire process chain. But why not simply measure and label the entire biomass content? The values would be easy to comprehend and could easily be conveyed in communication with clients. From a technical point of view the calculation of the biogenic mass fraction is not difficult. And furthermore producers would not have to disclose all of their trade secrets about additives applied in small portions. Knowing the biomass share, the content of biogenic carbon can be calculated, and based on that, the 12 C/14C ratio can be predicted – with the 12 C/14C method the concordance of the theoretically determined values with the reality in the material or product can be controlled any time. Our recommendation: Define, measure and label the entire biomass content as biobased content. Use the 12C/14C method as a quick check of the calculations. Authors: Michael Carus, CEO and Lena Scholz, staff scientist, bio-based materials, nova-Institut GmbH Lena.scholz@nova.institut.de Material Composition, Weight-% biogene This article ist published in bioplastics MAGAZINE 03-2010 44 Biowerkstoff-Report, Edition 8, March 2011 Biomass or Bio-Carbon? Both concepts have their merits and flaws. There is no single method to cover all kinds of materials and material combinations the same way that would secure an equally fair rating of the biobased content. In addition, the methods try to answer completely different questions: While the biomass approach corresponds to potential savings of fossil resources, the bio-based carbon approach targets at the GHG mitigation potential of a product. However, both of them are technical parameters that cannot be translated 1:1 into a statement on environmental preferability. The biomass content is an approch that can be applied to simple products, such a resin, where the producer has full control over the process, the composition and nature of all ingredients. It will become far more complex if, e.g., partly bio-based ingredients from third parties are used or stages further down the value chain want to apply this method. Whenever statements about the renewability of a product or material are intended to be backed up by an independent third party verification, there is –at least at the time being- no viable alternative to the bio-based carbon approach. Marko Schnarr Environmental Affairs Manager, European Bioplastics Standardization & Policy The European Lead Market Initiative for and Standardisation of bio-based Products Author: Dr. Rainer Busch, T+I Consulting, Sennior Standardization Consultant Office@rbusch.de T he Lead Market Initiative which was issued by the European Commission in December 2007 1) identified six lead markets for Europe with bio-based products being one of the six. Bio-based products in this context were meant to be non-food products derived from biomass, which may range from high-value added fine chemicals such as pharmaceuticals, cosmetics, food additives to high volume materials such as general bio-based polymers or chemical feedstocks. The Commission wanted to use this initiative to make the EU a lead market for new technologies, products and services that would create employment and growth in the EU by entering fast growing worldwide markets with a competitive advantage. In order to achieve this ambitious goal, it was proposed by the Commission to take supportive political measures in the following areas: • Legislation • Public Procurement. • Standardisation, labelling & certification. • Complementary Instruments (Business and innovation support, training and communication, financial support and incentives) In the “Standards, labelling and certification” arena, two mandates were issued in late 2009: • mandate M/429 for the elaboration of a standardisation programme for biobased products and • mandate M/430 on the development of European standards for bio-polymers and bio-lubricants. with the goal to develop clear and unambiguous European and international standards which will help to verify claims about bio-based products in the future such as bio-degradability, bio-based content, renewable carbon, recyclability, and sustainability. The work group (WG 209) operating under mandate 429, which has ended in July 2010, developed and agreed upon a definition of the term „bio-based product“, evaluated the need for a general terminology for bio-based products, examined the potential for a single bio-based product standard, identified the needs for research relevant to the development of standards for bio-based products and lastly developed a programme of European standards for bio-based products including a roadmap for its implementation. Under mandate 430, which is still active, technical specifications (TS) have been developed for bio-polymers: • CEN/TS 15932 Plastics – Recommendation for terminology and characterisation of biopolymers and bioplastics • and • prCEN/TS 16137: Determination of bio-based carbon content The European Commission accepted the recommendations of WG 209 under M/429 and is currently preparing two new mandates as a follow-up. One is intended to develop a set of horizontal standards such as a standard for a consistent terminology for bio-based products and a single standard with several parts for bio-based products. The latter one will cover horizontal aspects like sampling, bio-based content, application of and correlation towards LCA, sustainability of biomass used and a certification scheme for bio-based products. The second new mandate concerns the development of European standards for bio-surfactants and bio-solvents together with Technical Specifications and/ or Technical Reports as interim outputs. The standards specifications and reports will relate to the biodegradability (for biosolvents, only), product functionality, impact on greenhouse gas emissions, and the amount of different renewable raw materials and/or different bio-based contents used during the manufacturing of biosurfactants and bio-solvents. Ortwin Costenoble Senior standardisation specialist working for the Nederlands Normalisatie-Instituut (NEN) since 2000. The EC is strongly promoting using standards for the biobased economy. European wide standards for bioplastics, bio-lubricants and soon also biosolvents and -surfactants will be made. Back in 2010, the European Standardzation Committtee, CEN recommended to the EC the development of a single standard in parts for bio-based products covering horizontal aspects and already within one year the EC has drafted a task to activate this idea. It underlines the idea that bio-based products on one hand have the future, but most likely will be levelled on the same sustainability criteria as biofuels now under the Renewable Energy Directive. So being on the standards‘ ball becomes vital. 1: A lead market initiative for Europe, COM (2007) 860 final, 21.12.2007 More news: www.bio-based.eu/news Biowerkstoff-Report, Edition 8, March 2011 45 Standardization & Policy Book reviews Stefan Bringezu, Raimund Bleischwitz (ed.; 2009): Sustainable Resource Management – Global Trends, Visions and Policies. Greenleaf Publishing, Sheffield, UK. 338 pages, 49,99 Euro. ISBN 978-1-906-09326-6. The book „Sustainable Resource Management“ is directed towards researchers, EU and national governmental officials, businesses and NGOs with an interest in concepts, strategies and instruments to improve resource productivity and sustainable resource management from the regional and sectoral levels to the international level. Hans Langewald, Johan Sanders, Marieke Meeusen (ed; 2010): The Biobased Economy: Biofuels, Materials and Chemicals in the Post-oil Era. Earthscan Ltd., London, UK. 389 pages, 65 £. ISBN 978-1-844-07770-0. This book is the result of exhaustive research by Germany’s Wuppertal Institut and as such provides profound and comprehensive knowledge on the topic. It is therefore an essential reading for all interested in sustainable resource management. The book first provides an overview of the methods it has used to analyse the physical basis of our economies, from the product and firm level through to sectors and whole countries, considering material flows and life-cycle-wide impacts on the environment. In case studies, the book then presents a number of key findings. „Sustainable Resource Management“ also looks into the future and provides visions of sustainable resource use, including the necessary conditions for a sustainable metabolism in the EU. Finally, „Sustainable Resource Management“ provides a blueprint for how a more sustainable future may be achieved. “The Biobased Economy” provides a framework for how policy and market players could and should drive the development of a biobased economy that is effective, sustainable, fair and cost efficient. Starting with a state-of-the-art overview of major biobased technologies, including biorefinery and technologies for the production of biofuels, biogas, biomass feedstocks for chemistry and bioplastics, it discusses how different actor groups interact through policy and markets. Information from case studies is used to demonstrate how the potential of the biobased economy in different parts of the world can be realised using research, debate, policy and commercial development. The single chapters are written by the editors and other renowned scientists from different fields. The result is an essential, well structured and very readable resource for all those working in or concerned with biobased industries, their policy or research. Author: Stephan Piotrowski, nova-Institut GmbH Stephan.piotrowski@nova-institut.de 46 Biowerkstoff-Report, Edition 8, March 2011 Standardization & Policy Gerhard Pretting, Werner Boote Plastic Planet – Die dunkle Seite der Kunststoffe orange press, Freiburg 2010 ISBN: 978-3-936086-47-8, Preis: 20 € "Plastic Planet" ist fraglos ein provozierendes, einseitig argumentierendes und zu Recht kontrovers diskutiertes Buch. Ohne Kunststoffe ist das moderne Leben kaum noch vorstellbar - gerade in Bezug auf Leichtbau, Verpackungen und Hygiene. Der Fokus des Buches liegt aber auf den Schatten der Kunststoffwelt. Und diese Schatten gibt es tatsächlich, ob sie nur hellgrau sind oder tatsächlich tiefschwarz, wie in diesem Buch dargestellt. Zunächst wird der Leser in dem Kapitel "Träume" mit einer 50-seitigen Geschichte der Kunststoffe im Wandel von Technik und Image überrascht, das viele interessante und vergessene Einblicke enthält. Wer kennt heute noch die ersten - oft biobasierten - Kunststoffe wie Bakelit, Schellack, Laccain, Zelluloid oder Kunstseide? Im Kapitel "Albträume" geht es dann um die Schatten der Kunststoffwelt, die sich erstaunlich leicht auf den Punkt bringen lassen: • Der immense Eintrag petrochemischer Kunststoffe in die Weltmeere, die in winzige Plastikteilchen zerfallen und anstelle von Plankton in die Nahrungskette gelangen. • PVC - auch wenn die Gesundheitsprob- More news: www.bio-based.eu/news leme bei der Produktion heute weitgehend gelöst sind, bleiben die Probleme im Brandfall (Dioxine) und der starke Einsatz von Weichmachern. • Hormonwirksame Weichmacher wie die Gruppe der Phthalate, die in vielen Kunststoffen, vor allem PVC, zum Einsatz kommen. • Bisphenol A, dessen Einsatz in sensiblen Anwendungen wie Babyflaschen inzwischen immer mehr eingeschränkt wird. Das alles ist nicht neu, aber in dieser geballten Zusammenstellung und Darstellung der möglicherweise resultierenden Umwelt- und Gesundheitsfolgen durchaus zum Nachdenken anregend. Und dieses Nachdenken führt zu der Frage, warum die Kunststoffindustrie nicht viel offensiver daran arbeitet, diese Schatten zu überwinden - zumal es bereits umfassende und kommerziell verfügbare Lösungen in der Industrie gibt. PVC und Bisphenol A können in kritischen Anwendungen durch andere Kunststoffe ersetzt werden. Und auch als Ersatz für Phthalate gibt es bereits heute kommerziell verfügbare grüne Weichmacher, die keine Hormonwirkungen zeigen. Für den verminderten Eintrag ins Meer könnten Müllvermeidungsstrategien helfen. Biobasierte Kunststoffe könnten für den biologischen Abbau im Meer maßgeschneidert werden. In vielen Fällen stehen auch bereits bio-basierte Lösungen bereit, mit denen sich eine Vielzahl der Schatten lichten ließen. Warum klammern sich Teile der Kunststoffindustrie an diese alten Lösungen? Die Antwort auf die aufgezeigten Probleme sollte nicht Kleinreden oder Weißfärben sein, sondern ein Innovationsschub in der Kunststoffindustrie - zum Nutzen für den Verbraucher und die europäische Industrie! Und hier enttäuscht das Buch dann auch im letzten Kapitel “Aufwachen”. das sich mehr an den Endverbraucher als an die Industrie wendet. Innovative Lösungen werden kaum aufgezeigt, dafür aber eine Familie porträtiert, die konsequent versucht, ohne jegliche Kunststoffe zu leben. Sicherlich eine interessante Selbsterfahrung, aber kein übergreifender Lösungsansatz für die Zukunft, die einer Grünen Chemie und Kunststoffindustrie gehören wird! Michael Carus GF nova-Institut Biowerkstoff-Report, Edition 8, March 2011 47 Cluster Biopolymere/Biowerkstoffe Cluster Biopolymere/Biowerkstoffe D ie Kunststoffindustrie in Westeuropa beschäftigt mehr als eine Million Menschen und erwirtschaftet einen Jahresumsatz von 135 Milliarden Euro. Die steigende Nachfrage nach Kunststoffen, die Abhängigkeit der Branche von fossilen Rohstoffen, der Bedarf an innovativen Werkstoffen sowie ein steigendes Umweltbewusstsein – alle diese Faktoren erfordern dringend neue, innovative Herstellungsverfahren. Der Cluster Biopolymere/Biowerkstoffe wurde 2006 unter der Federführung der BIOPRO Baden-Württemberg GmbH im Rahmen des BioIndustrie 2021 Wettbewerbs des Bundesministeriums für Bildung und Forschung (BMBF) gegründet und wurde im Mai 2007 als einer der fünf Sieger-Cluster ausgezeichnet. Das BMBF stellt für die Umsetzungsphase (2007 - 2012) zehn Millionen Euro zur Verfügung. Bisher werden mit diesen Mitteln im Cluster drei Verbundprojekte gefördert, weitere Projekte sind in Planung. Die BIOPRO BadenWürttemberg koordiniert als Innovationsagentur des Landes Baden-Württemberg die Clusterarbeit. Ziel des Clusters Biopolymere/Biowerkstoffe ist es, den Entwicklungsprozess biotechnologisch erzeugter Ausgangsstoffe für Polymere und Werkstoffe nachhaltig zu unterstützen. In den durch das BMBF geförderten Projekten sollen neuartige Kunststoffe durch Einsatz mikrobiologischer Verfahren, Bioprozesstechnik und biotechnologischer Methoden entwickelt und optimiert werden. Weiterhin möchte Kunststoffbezogener CO2-Kreislauf Plastics-related CO2 cycle Biobasierte Kunststoffe sollen zukünftig einen nach- It is envisaged that biobased plastics will in future con- weisbaren Beitrag zur Verbesserung der CO2-Bilanz von tribute to effectively improving the CO2 balance of plas- Kunststoffprodukten leisten. Heute wird über Jahr- tics products. At present, application focuses on using millionen abgelagerte Biomasse in ihrer fossilen Form the fossil form of biomass that has been deposited over verbraucht (äußerer Kreis). In den ersten 10 Jahren der millions of years (outer circle). During the first ten years Clusteraktivität (2007 - 2017) sollen mittels biotech- of the cluster’s existence (2007 – 2017), it is planned nologischer Innovationen erste Alternativrouten der to establish initial alternative routes in the biosynthetic biosynthetischen Industrie etabliert werden. Bis zum Jahr industry using biotechnological innovations. Up until 2021 werden die Prozesse noch eine Effizienzstufe weiter 2021, the efficiency of the processes will be further gebracht, so dass bereits wesentliche Stoffströme direkt developed, thus enabling the direct use of important aus biophotosynthetischer Quelle (z.B. Algen) stammen substance flows from biophotosynthetic sources (e.g. werden. Bild: BIOPRO algae). Picture: BIOPRO 48 Biowerkstoff-Report, Edition 8, March 2011 der Cluster ein ständig wachsendes Netzwerk zum Thema Biopolymere/Biowerkstoffe aufbauen, das branchenübergreifend Unternehmen und Forschungsinstitute zusammenbringt. Daneben soll aber auch Einfluss auf die generellen Rahmenbedingungen ausgeübt werden. So setzt sich der Cluster – gemeinsam mit den anderen Gewinnerclustern aus dem „BioIndustrie 2021“-Wettbewerb – für eine Stärkung der industriellen Biotechnologie ein und versucht den Wandel zu einer Bioökonomie positiv mitzugestalten. Ein offener Austausch mit Politik und Öffentlichkeit ist unabdingbar, um diesen Wandel zu unterstützen und Innovationshindernisse zu beseitigen. Leistungen des Clusters Der Cluster Biopolymere/Biowerkstoffe ist wertschöpfungsketten- und branchenübergreifender Vernetzer für den Bereich der Biokunststoffe. Hier werden bestehende Kompetenzen in der Biotechnologie und der Verfahrenstechnik mit Methoden der chemischen Verfahrenstechnik/Polymerchemie und der Kunststofftechnik gebündelt. Durch die Vernetzung von Akteuren aller Herstellungsschritte entlang der Wertschöpfungskette, wird den Mitgliedern das passende Umfeld für Innovationen bereitgestellt. Eine Mitgliedschaft ist unverbindlich und kostenfrei. Dienstleistungen durch das Clustermanagement können ebenso kostenfrei in Anspruch genommen werden. Auf jährlich stattfindenden Netzwerktreffen können sich die Teilnehmer mit praxisnahen Vorträgen, Podiumsdiskussionen und Fachgesprächen zu aktuellen Themen der Biokunststoffszene austauschen. Das Internetportal der BIOPRO Biopolymers/Biomaterials Cluster Biopolymers/Biomaterials Cluster Bioreaktor für Versuche im Forschungslabor. Bild: BIOPRO/Bächtle Bioreactor for experiments carried out in research laboratories. Picture: BIOPRO/Bächtle T he plastics industry in Western Europe employs more than one million people and achieves annual revenues of 135 billion euros. The growing demand for plastics, the dependence of the plastics industry on fossil resources, the demand for innovative materials and growing environmental awareness – all these factors urgently require new innovative manufacturing methods to be put in place. The Biopolymers/Biomaterials cluster was established in 2006 under the general management of BIOPRO Baden-Württemberg GmbH with the objective of participating in the BioIndustrie 2021 competition run by the German Ministry of Education and Research (BMBF). In May 2007, the Biopolymers/ Biomaterials cluster was chosen as one of five winners and the BMBF set aside ten million euros for the implementation phase (between 2007 and 2012). So far, the funds have been used to support three cooperative projects; further projects are in the planning stage. The Baden-Württemberg government’s innovation agency, BIOPRO Baden-Württemberg GmbH, is coordinating the work of the cluster. The goal of the Biopolymers/Biomaterials cluster is to effectively and sustainably support the development process of biotechnologically produced source materials for polymers and materials. The BMBF- Wertschöpfungskette und Produktionsschritte. Bild: BIOPRO Value creation chain and production processes. Picture: BIOPRO funded projects are tasked with developing and optimising innovative plastics using bioprocess engineering and microbiological and biotechnological methods. The cluster is also tasked with creating a growing network of actors with an interest in biopolymers/biomaterials and with bringing together companies and research institutions working in different industrial sectors. Moreover, in common with all the other winners of the BMBF competition, the cluster also aims to have an influence on general conditions in the sector, for example by strengthening industrial biotechnology and positively shaping the transition to a bioeconomy. Open exchange with politicians and the general public is indispensable for ensuring a smooth transition and removing obstacles to innovation. Activities and services of the cluster The Biopolymers/Biomaterials cluster works across and brings together value creation chains and different industrial sectors in the field of bioplastics. Existing competences in biotechnology and process engineering will be combined with methods used in chemical process engineering/polymer chemistry and plastics technology. By bringing together actors along the value creation chain, the cluster’s members are creating an optimal environment for innovations. Cluster membership is non-binding and free of charge. In addition, services offered by the cluster management organisation are free of charge. At annual network meetings, the cluster members will be able to attend lectures on practical issues, panel discussions and expert talks on state-of-the-art topics re- More news: www.bio-pro.de Biowerkstoff-Report, Edition 8, March 2011 49 Cluster Biopolymere/Biowerkstoffe Beispiele für den Einsatz von Biokunststoffen. Examples of the application of bioplastics. Picture: BIOPRO/Bächtle, TAKATA-PETRI AG; prototypes: fischerwerke GmbH & Co.KG, ITV Denkendorf, TAKATA-PETRI AG Baden-Württemberg bietet unter www. biopolymerics.de spezifische Informationen zum Thema Biopolymere. Für Clustermitglieder können kostenlos Porträts ihrer Unternehmen und Forschungseinrichtungen erstellt und im Internetportal veröffentlicht werden. Zudem präsentiert der Cluster das Thema „Biopolymere/ Biowerkstoffe“ sowie innovative Materialien und Produkte seiner Mitglieder auf nationalen wie internationalen Tagungen und Messen. Darüber hinaus unterstützt der Cluster die Organisation von Branchenveranstaltungen wie das „International Symposium on Biopolymers (ISBP)“ in Stuttgart. Derzeitige Projekte im Cluster* Im Cluster Biopolymere/Biowerkstoffe werden bisher drei Verbundprojekte gefördert. Im Clusterprojekt „Biobasierte Polyamide durch Fermentation“ widmen sich die Projektpartner unter Federführung der BASF SE der biologischen Synthese von Diaminen. Diaminopentan ist chemisch eng verwandt mit einem Molekül, das inzwischen biotechnologisch mit mehr als 100.000 Tonnen pro Jahr hergestellt wird: Lysin. Das Institut für Bioverfahrenstechnik der TU Braunschweig untersucht, wie die biotechnologische Produktion von Diaminopentan über die Zwischenstufe Lysin wirtschaftlich realisiert werden kann und welche neuen Polyamide sich aus Diaminopentan ableiten lassen. Zwei Fachdisziplinen spielen dabei eine besonderer Rolle: Systembiologie und Metabolic Engineering. Gemeinsam mit dem Projektpartner Fischerwerke GmbH wurde bereits ein Musterdübel aus dem neuen Polyamid (Nylon-5,10) hergestellt. Weitere Projektpartner sind Endanwender wie die Robert Bosch GmbH oder die Daimler AG. Mit dem Projekt „Herstellung von Polyestern auf Basis fermentativ hergestellter Bernsteinsäure“ verfolgt der Cluster Biopolymere/Biowerkstoffe das Ziel, marktfähige Kunststoffe wirtschaftlich herzustellen und dabei die Basischemikalie Bernsteinsäure auf biotechnologischem Wege kostengünstig zu produzieren. Die BASF SE, die das Projekt leitet, verfügt über einen viel versprechenden mikrobiellen Produktionsstamm, der im Vergleich zu anderen Organismen besonders hohe Ausbeuten an Bernsteinsäure ermöglicht. Durch gentechnische Modifikationen und Anpassung der bioverfahrenstechnischen Parameter soll die Ausbeute weiter gesteigert und die erforderliche hohe Reinheit des Produkts zugleich gesichert werden. Im Projekt ARBOCAR entwickeln sieben Partner aus Industrie und Forschung einen neuen Kunststoff auf Ligninbasis. Lignin, ein Naturstoff, der vor allem in Holz vorkommt, soll durch enzymatische Verfahren so aufbereitet werden, dass daraus hochwertige Lignincompounds hergestellt werden können, welche die besonderen Anforderungen der Automobilindustrie erfüllen. Der neue Werkstoff ARBOCAR könnte den Materialeinsatz im Auto revolutionieren und Kunststoffe an vielen Stellen im Auto ersetzen. Am Projekt beteiligt sind: TECNARO GmbH, ASA Spezialenzyme GmbH, BAFA Badische Naturfaseraufbereitung GmbH, Bosch Formenbau GmbH, Fischer Automotive Systems GmbH, Takata-Petri AG, Institut für Technische Biochemie der Universität Stuttgart und die Daimler AG als assoziierter Partner. l * Stand 12/2010 Polyamidgranulat aus nachwachsenden Rohstoffen. Polyamide granules made from renewable resources. Picture: BIOPRO/Bächtle 50 Biowerkstoff-Report, Edition 8, March 2011 Biopolymers/Biomaterials Cluster Holz, Stärke, Pflanzenöle: Beispiele für nachwachsende Rohstoffe. Wood, starch, plant oils: Examples for renewable resources. Picture: BIOPRO lated to bioplastics manufacturing and application. The BIOPRO Baden-Württemberg Internet portal provides specific information on biopolymers under www. biopolymerics.com. Cluster members are entitled to publish profiles of their companies and research institutions free of charge. In addition, the cluster presents the “Biopolymers/Biomaterials” topic as well as innovative materials and products at national and international meetings and exhibitions, and supports the organisation of industry-specific meetings such as the “International Symposium on Biopolymers (ISBP)” in Stuttgart. Current cluster projects* The Biopolymers/Biomaterials cluster funds have so far been used to support three cooperative projects. The “Biobased polyamides through fermentation” project, which involves a number of project partners led by BASF SE, addresses the biological synthesis of diamines. Diaminopentane is closely related in chemical terms to a molecule of which more than 100,000 tons per year are produced using biotechnological methods. This molecule is lysine. The Institute of Bioprocess Technology at the Technical University of Braunschweig is focusing on two questions: 1) how can diaminopentane be produced in an economically feasible way with biotechnological methods and using lysine as an intermediary product, and 2) which new polyamides can be produced from diaminopentane. Two disciplines play a major role in the search for answers to these questions: systems biology and metabolic engineering. In cooperation with the Fischerwerke GmbH, the project partners have already developed a plug prototype made entirely from the new polyamide (nylon-5,10). Other project partners include end users such as Robert Bosch GmbH and Daimler AG. The objective of the Biopolymers/Biomaterials cluster in the “Production of polyesters from succinic acid produced by fermentation” cooperative project is to produce marketable plastics in an economically feasible way and make it pos- sible to inexpensively produce the basic chemical succinic acid. BASF SE, which is coordinating the project, owns a bacterial production strain with highly promising capacities, one of which is the production of succinic acid in higher quantities than those produced by other organisms. The strain will be genetically modified and the bioprocess parameters adapted to further increase the yield and ensure high product purity. Seven Biopolymers/Biomaterials cluster partners from industry and academic research are developing a new natural material based on lignin, itself a natural material found predominantly in wood. The objective of the project is to process lignin using enzymatic methods to produce high-quality lignin compounds for use in the car industry. ARBOCAR, the new material being developed by the Biopolymers/Biomaterials cluster, could revolutionise the use of materials in car production, and eventually be used to replace frequently used plastics. Project partners include TECNARO GmbH, ASA Spezialenzyme GmbH, BAFA Badische Naturfaseraufbereitung GmbH, Bosch Formenbau GmbH, Fischer Automotive Systems GmbH, Takata-Petri AG and the Institute of Technical Biochemistry at the University of Stuttgart. Daimler AG is an associate partner. l * as of December 2010 Anwendungsbereiche von biobasierten Materialien. Application areas of biobased materials. Picture: BIOPRO More news: www.bio-pro.de Biowerkstoff-Report, Edition 8, March 2011 51 Die BioKunststoff Design Challenge Die BioKunststoff Design Challenge Branchenübergreifend Werkstoffinnovationen wagen „W eg vom Erdöl - hin zu nachwachsenden Rohstoffen“; so einfach dieser Satz klingt, so schwer ist seine Umsetzung. Besonders die stoffliche Nutzung von Biomasse, die nicht in dem Ausmaß wie die energetische Nutzung durch Subventionen oder regulatorische Vorgaben (z.B. Mindestquote der Beimischung von Biotreibstoffen) begünstigt ist, steht vor großen Markteintrittsbarrieren. Dies ist insbesondere im Bereich der biobasierten Kunststoffe der Fall: Sie können nur dann die Marktfähigkeit erreichen, wenn sie in ihren Eigenschaften mindestens gleichwertig zu ihren petrochemischen Pendants sind. Die Frage, ob es nicht bereits heute möglich wäre, einen signifikanten Teil des derzeitigen Kunststoffmarktes mit sofortiger Wirkung von der erdölbasierten auf biomassebasierte Rohstoffquellen umzustellen, lässt sich in der Theorie zweifellos bejahen. Viele Kunststoffkomponenten (Monomere) werden bereits seit Jahren mithilfe biotechnologischer und chemischer Verfahren aus Biomasse hergestellt. Doch auch wenn die technische Machbarkeit schon vielfach demonstriert wurde, gibt es für Biokunststoffe zahlreiche Hürden auf dem Weg in die Produktkataloge oder Regale unserer Kaufhäuser. Zwei gravierende Probleme der heute auf dem Markt verfügbaren Biokunststoffe sind der hohe Preis - verglichen mit konventionellen Kunststoffen - und die begrenzte Verfügbarkeit. Genau hier steckt die Rohstoffwende in einer Zwickmühle: Ohne konkurrenzfähige Produktionskosten werden keine Produktionsanlagen gebaut. Günstigere Produktionskosten können aber nur durch eine Produktion in großem Maßstab erreicht werden. Hohe Investitionskosten unterbinden aber zusätzlich den Schritt, Bestehendes durch Neues zu ersetzen. Motorkühlaggregat (Lüfter und Zarge) aus Nylon-5,10. Motor engine cooling fan and housing module made from Nylon-5,10. Picture: BIOPRO/Kindervater; prototype: Robert Bosch GmbH Doch wie können Biokunststoffe bei diesen schwierigen Bedingungen konkurrenzfähig werden? Aufgrund ihrer Rohstoffquelle „Biomasse“ sind alle biobasierten Materialien nachhaltig. Doch dieser Nachhaltigkeitsaspekt allein rechtfertigt keinen höheren Preis – ein Ergebnis, zu dem viele Marktstudien kommen. Zudem haben Produktionsverfahren für Biokunststoffe nicht immer eine bessere Ökoeffizienz oder geringere CO2-Emission. Alle fossilen Rohstoffquellen sind endlich, dennoch kann zum heutigen Tage nicht prognostiziert werden, wie schnell sich die Preise und Rahmenbedingungen zu deren Nachteil verändern, so dass sich eine Preisparität zu Biokunststoffen einstellt. Kurz- und mittelfristig werden nur solche biobasierten Materialien auf dem Markt konkurrenzfähig sein, die bessere Materialeigenschaften bieten oder Nischen besetzen, die von konventionellen Materialien nicht ausgefüllt werden können. Ebenso könnten neuartige Produktionsverfahren Biokunststoffen einen Marktvorteil verschaffen. Die „Bioplastics Design Challenge“ Bereits heute sind auf dem Markt Materialien verfügbar, die die geforderten Eigenschaften aufweisen. Derzeit sind die Endanwenderbranchen bezüglich der Anwendung biobasierter Materialien jedoch noch sehr vorsichtig, denn die Umstellung 52 Biowerkstoff-Report, Edition 8, March 2011 erfordert viele und zum Teil auch kostenintensive Anpassungen. Eine Forcierung des Rohstoffwandels ist mit Blick in die Zukunft unumgänglich - nicht nur allein wegen der Limitierung fossiler Ressourcen. Doch es reicht in diesem Zusammenhang bei weitem nicht aus, die biotechnologische Umsetzung von Biomasse zu einer Kunststoffkomponente (Monomer) zu erforschen und zu demonstrieren. Um Biokunststoffe auf ihrem steinigen Weg zur Marktfähigkeit zu unterstützen, hat der Cluster Biopolymere/Biowerkstoffe die „Bioplastics Design Challenge“ für die Landesgesellschaft BIOPRO Baden-Württemberg GmbH ins Leben gerufen. Dieses Vorhaben soll innerhalb der Kunststoff verarbeitenden Industrie und in den Endanwenderbranchen das Nachhaltigkeitsbewusstsein und die Innovationsdynamik stärken, um die Markteinführung von biobasierten Materialien zu begünstigen. Gemeinsame Herausforderung zum Wandel Die „Bioplastics Design Challenge“ stellt keinen Wettbewerb im eigentlichen Sinne dar, sondern soll als gemeinsame Herausforderung angesehen werden, den Wandel hin zu biobasierten Materialien zu Bioplastics Design Challenge Bioplastics Design Challenge An opportunity for audacious materials innovations involving numerous industrial sectors Nylon-5,10 - Gaspedal. Nylon-5,10 - gas pedal. Picture: Philipp Thielen; prototype: Robert Bosch GmbH with numerous obstacles before they will be seen in product catalogues or on supermarket shelves. Two huge problems associated with the bioplastics that are currently on the market are their high price compared to conventional plastics, and their limited availability. ket. Innovative production methods might also contribute to the creation of a market advantage for bioplastics. “Bioplastics Design Challenge” Nylon-5,10 - Lüftungsdüse im Fahrzeuginterieur. Nylon-5,10 - Ventilation nozzle for car interiors. Picture: BIOPRO/Bächtle; prototype: fischer automotive systems GmbH “T urning away from petrol and towards renewable resources” – this sentence might sound simple, but its implementation is not nearly so simple. Biomass does not benefit from the same level of subsidies for material use as it does for energetic use nor is its material use backed by legal regulations (e.g., minimum ratio of biofuels to regular fuels). Biomass for material use also faces huge obstacles when it comes to entering the market. This is a particular issue in the field of biobased plastics, which only become marketable when their characteristics are at least equal to those of their petrochemical counterparts. The answer to the question as to whether it would be possible to shift a significant proportion of the current plastics market from petrol-based to biomass-based resources is ‘yes’, at least in theory. For quite some time now, many plastics components (monomers) have been produced from biomass using biotechnological and chemical methods. However, although the technical feasibility has been repeatedly demonstrated, bioplastics are still faced More news: www.bio-pro.de And it is here where the shift from fossil fuels to renewable resources gets caught in a vicious circle: The fact that production costs are not competitive makes it difficult to build biobased materials production plants. However, lower production costs can only be achieved through large-scale production. In addition, high investment costs also make it impossible to replace the old with the new. Considering these difficult conditions, how can bioplastics become competitive? As “biomass” is used in the production of biobased materials, these materials can therefore be called sustainable. However, the aspect of sustainability alone does not justify a higher price – as numerous market reports have concluded. In addition, bioplastics production methods do not always have a better ecoefficiency or lower CO2 emissions than bioplastics production using fossil fuel. All fossil resources are finite. Nevertheless, it is impossible to predict how quickly prices and general conditions will render their use disadvantageous, making them equal in price to bioplastics. In the short and medium term, it is envisaged that only those biobased materials with better material characteristics or occupying niches that cannot be filled with conventional materials will be competitive on the mar- Materials with the required properties are already available on the market. However, the end-user sectors are still very cautious as far as the application of biobased materials is concerned since the switch from fossil fuel-based production to biomass-based production requires numerous changes to be put in place. In addition, the adaptation to new processes is also associated with high costs. However, predicted future developments make it necessary to focus on the shift from fossil to biological resources – not just because of the finiteness of fossil resources. However, it is not enough just to focus on research into the biotechnological implementation of biomass into plastics components (monomers) and demonstrate its feasibility. A lot more than this is required. In order to support bioplastics on their rocky road to marketability, the Biopolymers/Biomaterials cluster has initiated the “Bioplastics Design Challenge” on behalf of BIOPRO Baden-Württemberg GmbH, a 100% subsidiary of the Baden-Württemberg government. To facilitate the market introduction of biobased materials, the “Bioplastics Design Challenge” aims to increase the plastics manufacturing industry and the end user sectors’ awareness of sustainability as well as to strengthen innovation dynamics. Biowerkstoff-Report, Edition 8, March 2011 53 Die BioKunststoff Design Challenge Auswahl biobasierter Werkstoffe. Selection of biomaterials. Picture: BIOPRO/Bächtle Networking beim ersten Partnering Workshop der „Automotive Bioplastics Design Challenge“. Networking during the first Partnering Workshop of the „Automotive Bioplastics Design Challenge“. Picture: BIOPRO/Weimer unterstützen Zielgruppen der Challenge sind Entwickler, Designer, Biokunststoffproduzenten und –verarbeiter sowie alle Interessierten. Durch eine Interaktion vieler Akteure entlang der Wertschöpfungskette können Biowerkstoffe schon frühzeitig eingehend geprüft und somit schneller technisch einsatzfähig werden. Im Rahmen der „Bioplastics Design Challenge“ sollen dem interessierten Anwender verschiedene Biomaterialien vorgestellt und anschließend getestet werden. Hierbei spielen Aspekte wie Verarbeitbarkeit, Oberflächenbeschaffenheit oder Alterungsbeständigkeit eine große Rolle – Aspekte, die häufig nicht im Fokus der initialen Forschung liegen, aber einen entscheidenden Einfluss auf die Marktfähigkeit und das Marktpotenzial haben. Im Gegenzug sollen die Biokunststoffhersteller von der Anwenderbranche wertvolle Informationen über die zu erwartende Marktakzeptanz erhalten sowie ein Feedback über unerschlossene Optimierungspotenziale der Biomaterialien. Mit jährlich stattfindenden Thementagen wird das Bewusstsein der breiten Öffentlichkeit für biobasierte Materialien gefördert und die derzeitige und die zukünftige Einsatzfähigkeit von Biowerkstoffen in den einzelnen Anwendungsbranchen verdeutlicht. Die Automobilbranche im Fokus der „Bioplastics Design Challenge“ Die im Sommer 2010 gestartete „Automotive Bioplastics Design Challenge - abdc“ stellt den ersten Anlauf der „Bioplastics Design Challenge“ dar. In der einjährigen Zusammenarbeit werden kommerziell verfügbare und in der Entwicklung befindliche Biokunststoffe unter Designgesichtspunkten für ihre Eignung im Automobilbau evaluiert und weiter- entwickelt. Aus dem breiten Portfolio der Biokunststoffe und Biomaterialien sollen Anwender anhand technischer und designbezogener Entscheidungskriterien Materialien für Bauteile auswählen. Anschließend können entsprechende Designmuster oder Prototypen hergestellt und das jeweilige Material hinsichtlich späterer Serienproduktanforderungen evaluiert werden. Bisher haben sich weit über 100 Interessierte angemeldet: vom Biokunststoffproduzenten und Automobilhersteller, deren Zulieferer, Entwicklungs- und Designbüros mit Interesse für den Automobilsektor, bis zu Studierenden aus dem Design- und Gestaltungsbereich. Eine web-basierte Partnering-Plattform sowie Partnering-Workshops unterstützen den Aufbau von Projektpartnerschaften und die Zusammenarbeit der Teilnehmer. Die Plattform bietet eine übersichtliche Zusammenstellung der Profile, Angebote und Gesuche der einzelnen Akteure und ermöglicht somit eine interaktive Gestaltung und Umsetzung von Projektideen. Die Ergebnisse der „Automotive Bioplastics Design Challenge“ werden im Rahmen des Thementages „Biokunststoffe im Automobilbau der Zukunft“ vorgestellt. Im Anschluss an die einjährige Projektphase kann die bestehende Zusammenarbeit einzelner Beteiligter weiter fortgeführt werden. Die innerhalb der „abdc“ initiierten Projektideen können auch in andere Innovationswettbewerbe, wie beispielsweise jenen des „Network of Automotive Excellence (NoAE)“, eingebracht werden. 54 Biowerkstoff-Report, Edition 8, March 2011 Thementag „Biokunststoffe im Automobilbau der Zukunft“ Der Thementag findet am 10. Juni 2011 in Form einer öffentlichen Ausstellung in Stuttgart statt. Er ist Teil des „Automobilsommer 2011“, der Rahmenveranstaltung des Landes Baden-Württemberg anlässlich des 125. Jahrestags der Erfindung des Automobils. Die Ausstellung wird den Besuchern einen Überblick über momentan in Serie verbaute biobasierte Materialien geben und einen Rückblick in die Historie biobasierter Automobilbauteile ermöglichen. Die Präsentation moderner Biokunststoffe , die nahe an der Serieneinführung stehen oder sich noch in der Entwicklung befinden, soll den Schwerpunkt bilden. Jeder, der im Besitz von solch neuartigen Biomaterialien oder Prototypen ist, bzw. Zugang zu historischen oder aktuell eingesetzten biobasierten Automobilbauteilen hat, hat die Möglichkeit, diese im Rahmen der Ausstellung am 10. Juni zu präsentieren. Dies kann unabhängig von der Teilnahme an der ‘abdc’ erfolgen. Bitte kontaktieren Sie uns bei Interesse. Die Einreichungsfrist für Beiträge ist der 15. April 2011. l Weitere Informationen zur „abdc“ erhalten Sie unter http://www.bio-pro.de/abdc/. Kontakt: Markus Götz Cluster Biopolymere/Biowerkstoffe Leitender Clustermanager BIOPRO Baden-Württemberg GmbH Breitscheidstrasse 10 70174 Stuttgart Tel: 0711 / 218185-14 Fax: 0711 / 218185-02 E-mail: biopolymere@bio-pro.de Bioplastics Design Challenge Kick-Off Meeting: Markus Götz (BIOPRO Baden-Württemberg) stellte die „Automotive Bioplastics Design Challenge“ vor. Kick-Off Meeting: Markus Götz (BIOPRO Baden-Württemberg) presented the „Automotive Bioplastics Design Challenge“. Picture: BIOPRO/Kammler Joint challenges to enable change The “Bioplastics Design Challenge” is not a competition in the traditional sense, but is conceived as a joint challenge whose goal is to facilitate the shift of plastics production from fossil fuel-based materials to biobased materials. The challenge targets developers, designers, bioplastics manufacturers and processors as well as all other interested parties. Through the interaction of many actors along the value creation chain, it will be possible to thoroughly test the materials at a very early stage and facilitate their early technical implementation. The “Bioplastics Design Challenge” will present numerous different biomaterials to interested users and subsequently test them, taking into account important aspects such as processability, surface properties and ageing resistance, aspects that are not frequently the targets of initial research, but which have a crucial influence on the products’ marketability and market potential. In return, the user sector will provide the bioplastics producers with valuable information about the products’ expected market acceptance as well as feedback about the biomaterials’ unexplored optimisation potentials. An annual “Theme Day” will be held to promote wider public awareness of biobased materials and to illustrate the future application of biomaterials in the individual application sectors. The automotive sector in the “Bioplastics Design Challenge” The “Automotive Bioplastics Design Challenge – abdc” initiated in summer 2010 represents the first of several “Bioplastics Design Challenges”. The oneyear cooperation will evaluate and further More news: www.bio-pro.de develop design aspects of commercially available biomaterials and biomaterials under development with regard to their suitability for automotive sector applications. Users will be able to select materials from a broad range of bioplastics and biomaterials for component parts on the basis of technical and design-related decision criteria. Design samples and prototypes will then be produced and the material will be evaluated in terms of subsequent requirements with regard to the production of serial products. Well over 100 individuals have already registered for the “Automotive Bioplastics Design Challenge”, including bioplastics manufacturers, automobile manufacturers, their suppliers, development and design offices with an interest in the automotive sector as well as design students. A web-based partnering platform and partnering workshops will support the establishment of project partnerships and the collaboration between the participants. The platform offers a comprehensive and clear overview of profiles, offers and requests of all the actors involved, thereby enabling the interactive development and implementation of project ideas. In addition, the participants are able to provide platform users with information on project ideas and experiences (with regard to processability, technical suitability, design aspects, etc.). The results of the “Automotive Bioplastics Design Challenge” will be presented at the upcoming “Bioplastics for automotive engineering of the future” theme day. Collaborations initiated during the oneyear project phase can be pursued further after the theme day has taken place. The project ideas initiated within “abdc” can also be submitted to other innovation competitions, such as the “Network of Automotive Excellence (NoAE)”. ‘Bioplastics for automotive engineering of the future’ theme day The theme day will be held on June 10, 2011 in Stuttgart. The public exhibition is part of “Automobile Summer 2011”, an event organised by the Baden-Württemberg government to celebrate the 125th anniversary of the car. The exhibition will give visitors an overview of bio-based materials used in the serial production of cars as well as an outline of the history of bio-based car components. The presentation of state-of-the-art bioplastics that are close to entering serial production or that are currently in development will be the highlight of the day. Everyone who owns such novel biomaterials or prototypes, or has access to historical or currently used bio-based car parts, is invited to present these at the exhibition on June 10. Providing exhibits is not connected to participation in ‘abdc’. Please contact us, if you are interested. The submission deadline for contributions will be April 15, 2011. l Further information on the “abdc“ is provided at http://www.bio-pro.de/abdc/. Contact: Markus Götz Biopolymers/Biomaterials Cluster Executive cluster manager BIOPRO Baden-Württemberg GmbH Breitscheidstrasse 10 70174 Stuttgart Tel: +49 (0)711 / 218185-14 Fax: +49 (0)711 / 218185-02 E-mail: biopolymere@bio-pro.de Biowerkstoff-Report, Edition 8, March 2011 55 nova-institute for ecology und innovation Bio-based Economy — Green Chemistry and Bio-based Products nova-institute GmbH T he nova-Institute was founded as a private and independent institute in 1994. It is located in the Chemiepark Knapsack in Huerth, which lies at the heart of the chemical industry around Cologne (Germany). For over 15 years now, the nova-Institute has been globally active in feedstock supply, techno-economic evaluation, market research, dissemination, project management and policy for a sustainable biobased economy. Key questions regarding nova activities What are the most promising concepts and applications for Industrial Biotechnology, Biorefineries and Bio-based Products? Which political and economic framework is needed for a sustainable growth of the Bio-based Economy? www.nova-institut.eu Services The nova-Institute uses and creates expert knowledge along with innovative solutions to develop and advance the use of Renewable Raw Material (RRM) in Green Chemistry, Industrial Biotechnology and Bio-based Products. In research & development, nova has comprehensive contacts within the wide industrial and scientific network. The communication services include conferences, the news portal for Bio-based Economy incl. a newsletter and the business directory iBIB (more information: www.bio-based.eu). 56 Biowerkstoff-Report, Edition 8, March 2011 Fields of activity With a scientific staff of more than ten experts, nova-Institute has a turnover of approx. 1.8 Mio. €/year which is equally distributed on three sectors: Industrial & political consultancy, research & development projects and conferences & dissemination. research projects conferences & dissemination Industrial & political consultancy nova-institute for ecology und innovation Political frameworks Project management Bio-based economy Raw material supply: Availability Prices Marketing-Support Public relations Congress & Workshops Industrial biotechnology Biorefineries • Green chemistry Bio-based plastics & composites Techno-economic evaluation Ecological assessments Market research Feasibility and potentialstudies Network management More Information You may find all information on international congresses along with information services of the nova-Institut on: www.bio-based.eu Selected references Associations and bodies Automotive industry: brose, BMW, Daimler, Faurecia, Ford, Johnsons Controls, Quadrant The nova-Institute is a member of various international associations and committees such as the Founding members of the cluster Industrial Biotechnology CLIB 2021 (Duesseldorf), member of the Steering Committee of the Federation of Reinforced Plastics (AVK), the subgroup „Naturfaserstärke Polymere” (Frankfurt) and the head location of the European Industrial Hemp Association (EIHA) (Huerth). In addition to this, it is member of various national and EU-wide working groups on industrial biotechnology and biomaterials. Chemistry, plastics and biomaterials: BASF, FKuR, Honeywell, InfraServ, KOSCHE, LEIFHEIT, Teijin Engineering: Coperion, Reifenhäuser, FERROSTAAL Consulting: Clever Consult, Ernst & Young, BLEZAT CONSULTING, meó Consulting, Pestalozzi-Consulting, The Textile Consultancy, Associations: AVK, european bioplastics, EIHA, CLIB2021, VHI Ministries & Institutions: BMELV, DEFRA, DECC, GTZ, DBU, European Commission, NR, FAO, KFW, UBA More news: www.bio-based.eu/news Biowerkstoff-Report, Edition 8, March 2011 57 nova-institute for ecology und innovation Management Dipl.-Phys. Michael Carus Managing Director Phone: +49 (0) 2233 4814 – 40 michael.carus@nova-institut.de nova-Institut GmbH Chemiepark Knapsack Industriestraße 300 50354 Hürth Deutschland Dipl.-Ing. Christin Schmidt Deputy Managing Director Phone: +49 (0) 2233 4814 – 44 christin.schmidt@nova-institut.de Phone.: +49-(0)2233-48 14 44 Fax: +49-(0)2233-48 14 50 contact@nova-institut www.nova-institut.eu Dr. Stephan Piotrowski Economics and Resources Dipl. Wirtsch.-Ing. Lena Scholz Bio-based Materials Phone: +49 (0) 2233 4814 – 53 stephan.piotrowski@nova-institut.de Phone: +49 (0) 2233 4814 – 48 lena.scholz@nova-institut.de Dipl.-Biol. Achim Raschka Biotechnology Wikipedia Dipl.-Geogr. Dominik Vogt Congress Management Phone: +49 (0) 2233 4814 – 51 achim.raschka@nova-institut.de Phone: +49 (0) 2233 4814 – 49 dominik.vogt@nova-institut.de Dipl.-Geogr. Nicklas Monte Assistant of the Management Electro-Mobility M.A. Jutta Millich Congress Management Phone: +49 (0) 2233 4814 – 42 nicklas.monte@nova-institut.de Phone: +49 (0) 2233 4814 – 42 jutta.millich@nova-institut.de Marion Kupfer Claudia Destrait Chief Editor ‚Bio-based News‘ Secretary Phone: +49 (0) 2233 978369 marion.kupfer@nova-institut.de Phone: +49 (0) 2233 4814 – 40 claudia.destrait@nova-institut.de Our Team 58 Biowerkstoff-Report, Edition 8, March 2011 Impressum Impressum Biowerkstoff-Report Report on Bio-based Plastics and Composites ISSN 1867-1209 (Print) ISSN 1867-1195 (Online, Version: 25. Mai 2011) Publisher: Michael Carus (v.i.S.d.P.) nova-Institut GmbH, Chemiepark Knapsack, Industriestraße 300, 50354 Hürth, Deutschland Tel.: +49 (0)2233 4814 - 40 Fax: +49 (0)2233 4814 - 50 E-Mail: contact@nova-institut.de Internet: www.nova-institut.de / nr Editor: Lena Scholz (nova-Institut) Tel.: +49 (0)2233 4814 - 48 E-Mail: lena.scholz@nova-institut.de Layout: Mark Speckenbach, Julia Hunold (Wirkstoffgruppe) Circulation: 2,500 (print) and 7,500 (online) Abonnement: If you would like to subscribe to the online version of the Biowerkstoff-Report - Report on bio-based Plastics and Composites, please just send us an Email and you will be included in the mailing list of the nova-Institute. Advert formats and prices: Adverts are available as 1 page, 1/2 page, 1/3 page, 1/6 page. For a non-binding offer please contact Lena Scholz (nova-Institut) Tel.: +49 (0)2233 4814 - 48 E-Mail: lena.scholz@nova-institut.de Your contribution and press releases: The editors are looking forward to receiving your contributions and press releases Next issue: middle of November 2011 Copyrighted names and trademarks have generally not been marked as such. The absence of any such marking does not mean that it is a free name in the context of the right to a name. The rights remain with the holders of the respective trademarks. The nomination of of product- or service-designations serves exclusively the purposes of identification. Biowerkstoff-Report – Report on Bio-based Plastics and Composites All Editions Edition 1, July 2008 Edition 2, August 2008 Edition 3, September 2008 Edition 4, November 2008 Edition 5, February 2009 Edition 6, October 2009 Edition 7, April 2010 Edition 8, March 2011 All editions of the Biowerkstoff-Report - Report on Bio-based Plastics and Composites can be ordered as printed version at www.nova-shop-info for 15 €. The free online version (PDF) is available at www.bio-based.eu. More news: www.bio-based.eu/news Biowerkstoff-Report, Edition 8, March 2011 59 www.bio-based.eu pictures (left to right): Teijin, polyone, staedtler, propper, Biotex, FKuR, werzalit Bio-based News The portal for bio-based economy, bio-based plastics & composites and industrial biotechnology Get a comprehensive overview about recent developments in the field of biomaterials and industrial biotechnology: fast – exclusive – solid – relevant Your unique source of expert information on bio-based plastics & composites, industrial biotechnology, biorefineries and green chemistry • online portal with daily news articles • new investments • new product placements • weekly newsletter • supplier & stakeholder directory (more than 2,000 entries) • data base with 10,000 news • market data • policy framework • Research & Development • full text and index search One year subscription for only: 1,000 € plus 19% VaT. The search engine as well as all keywords are fully available in english and German. The news articles themselves are 60% in english and 40% in German. www.bio-based.eu/news Typical news • new ClariantplansacquisitionofSüd-ChemieAG [2011-02-16] cooperation to focus on innovation and growth in emerging markets • new ClariantAGplantErwerbderSüd-ChemieAG [2011-02-16] Zusammenarbeit soll Forschung in den Zukunftsmärkten neue Materialien und Biotechnologie stärken • new NovozymessuchtzweitesStandbeinimBiobusiness [2011-02-16] Kauf der eMD-agrosparte des chemiekonzerns Merck KGaa erlaubt neue wachstumsziele • new LANXESSstepsupcommitmenttobiobasedrawmaterials[2011-02-15] 10-year exclusive supply agreement with Gevo • new Coca-Colasaysbiodegradablepackaging‚notaviableoption‘ [2011-02-15] New report from Zenith International finds not all manufacturers to agree with