Nieuwe feiten - Waarnemingen uit het dieren

Transcription

Nieuwe feiten - Waarnemingen uit het dieren
ANNE GEENE
NIEUWE FEITEN
WAARNEMINGEN
UIT HET DIEREN- EN PLANTENRIJK
EN HET HEELAL
IN HET ALGEMEEN
MET 74 AFBEELDINGEN IN KLEUR
ingeleid door
KEES MOELIKER
© 2012 Anne Geene/ Uitgeverij De Hef Publishers
ISBN: 978-90-6906-044-6
Druk- en bindwerk: Albani Drukkers, Den Haag
Fotografie en tekst: Anne Geene
Inleiding: Kees Moeliker
Annotaties: Paul Bogaers
Vormgeving: Vincent van Baar & Anne Geene
Deze publicatie is mede mogelijk gemaakt door:
BredaPhoto
geannoteerd door
PAUL BOGAERS
Speciale Dank:
BredaPhoto, Vincent van Baar, Anne Mieke Backer,
Arij de Boode, Paul Bogaers, Sanne Boogerd, Johan
de Brouwer, Erick Geene, Eva Geene, Susan Meiselas,
Kees Moeliker, Marjet Rens, Kevin Rooney,
Paul O’Sullivan, Marc Tinnemans, Verbeke Foundation
(Geert Verbeke, Carla Verbeke, Simon Delobel),
Helen Westgeest, René Zagers
en: Arjan de Nooy
Alle rechten voorbehouden.
Niets uit deze uitgave mag worden verveelvoudigd,
opgeslagen in een geautomatiseerd gegevensbestand
of openbaar gemaakt, in enige vorm of op enige wijze,
hetzij elketronisch, mechanisch, door fotokopieën,
opnamen, of enige andere manier, zonder toestemming van de maker.
uitgeverij de
HEF
publishers--
MMXII
VERANTWOORDING
W
at wij weten is een oneindig klein gedeelte van wat wij niet weten. Bijna niets
is ons volkomen bekend. Het is moeilijk te zeggen welke wetenschap het meest
voor ons gedaan heeft, maar onmiskenbaar heeft de fotografie de wetenschap
een grote stap voorwaarts geholpen in het kennen, herkennen en doorgeven van kennis.
De Franse astronoom Gérard de Vaucouleurs zei in zijn voorwoord van ‘Astronomical
Photography’ zelfs: “De fotografie alleen heeft ervoor gezorgd dat de astronomie de grootste
obstakels in haar ontwikkeling heeft overwonnen: het oneindig aantal sterren en de zwakte
van het licht dat we van hen ontvangen. Het feit dat al onze ideeën over de aard en het lot
van de sterren radicaal zijn veranderd en dat de weidsheid van het heelal honderden miljoenen keren is vergroot in één enkele eeuw is ongetwijfeld doordat de lichtgevoelige plaat,
zeker in de astronomie, heeft gefunctioneerd als het netvlies van de wetenschapper.” Ook
in andere wetenschappelijke disciplines zoals de biologie heeft fotografie een belangrijke
rol gespeeld. Waar bijvoorbeeld een tekening van een biologisch fenomeen (bijvoorbeeld
de ontdekking van een nieuwe soort) voorheen altijd onderhevig was aan de interpretatie
van de wetenschapper toont een foto de werkelijkheid zeer specifiek. Prof. dr. Paul Bogaers
(zie hieronder) geeft nog een ander argument:
Het spreekt dan ook voor zich dat ik in deze uitgave heb gekozen om gebruik te maken van
het medium fotografie om mijn bevindingen te tonen. Het laat de realiteit intact en is door
haar mechanische karakter vrij van iedere interpretatie.
Voorliggende publicatie is een presentatie van nieuwe feiten en bijzondere waarnemingen
uit de wetenschap. Hoe meer we de levende natuur onderzoeken, des te volmaakter wordt
onze kennis. Echter, onderzoeksresultaten worden steeds bevraagd, opnieuw onderzocht
en in de meeste gevallen vervangen door nieuwe inzichten. Ik ben mij ervan bewust dat
veel wetenschappelijk succes slechts van korte duur is, maar dit mag het plezier en de
noodzakelijkheid van onderzoek natuurlijk niet in de weg staan. Ik mag mij wellicht ook
verontschuldigen voor het feit dat veel wetenswaardigheden niet in dit werk te vinden zijn.
Ik kan slechts aanvoeren dat simpelweg niet alles even interessant is en dat de omvang van
het boek ook in ogenschouw moet worden genomen. Meestal zijn de getoonde bevindingen
door mijzelf onderzocht en verklaard, echter voor een aantal andere onderzoeken heb ik
met genoegen geput uit het zeer complete werk van eerder genoemde prof. dr. P. Bogaers
‘Abnormen’, door ingewijden geroemd om zijn veelzijdigheid maar slechts in kleine kringen
bekend geworden. Het werk is zo omvangrijk dat het voor de hand lag daarvan in ruime mate
gebruik te maken. Bogaers was zijn tijd ver vooruit: niet alleen behandelt hij zeer diverse
wetenschappelijke onderwerpen (baanbrekend is zijn onderzoek naar de communicatie
van planten en dieren maar ook vraagstukken uit o.a. scheikunde, wiskunde, biologie etc.
komen aan bod), daarnaast legt hij dwarsverbanden tussen deze verschillende gebieden
en plaatst het bevindingen uit verleden en heden in een nieuw perspectief:
Bogaers bevraagt ieder onderwerp opnieuw op de karakteristieke wijze van het gedurfd
associëren met en het combineren van eigen onderzoek en bestaande onderzoeken. Door
zijn ontvankelijke blik ontstaan nieuwe inzichten en worden bestaande scheidslijnen doorbroken. Kenmerkend is vooral zijn visie op het begrip ‘feit’ en ‘objectiviteit’. Waar de
traditionele wetenschap zich vooral baseert op moderne waardes en codes zoals het streven naar volledige uitschakeling van de interventie en interpretatie van de wetenschapper
teneinde een zo ‘schoon’ mogelijk resultaat te bereiken, sluit Bogaers juist niets a priori
uit. Het is dan ook niet gek dat we hier en daar zelfs wat occulte invloeden tegenkomen.
Zijn visie op de wetenschap is buitengewoon origineel en sommigen vermoeden dat zijn
relatieve onbekendheid ook kan worden vertaald als opzettelijke uitsluiting van de reguliere
wetenschap. Ik hoop dat het gebruik van zijn teksten een nieuw licht op zijn werk werpt en
dat wederom nieuwe inzichten ontstaan.
Het is mijn streven geweest om algemeen bevattelijk te schrijven, maar het is onvermijdelijk dat bij de lezer enige (zoölogische, botanische, chemische etc.) kennis moet
worden voorondersteld. Het is een bezwaar dat alle werken die voor ruimere kringen
dan de vakgeleerden bedoeld zijn, eigen is. Maar daar tegenover staat dat de talrijke
afbeeldingen dit ongemak grotendeels zullen neutraliseren (hoewel men idealiter meer
belangstelling zou moeten hebben voor het nut van een foto, dan voor haar schoonheid).
Anne Geene
P L AT E N
Schadebeeld Mineervlieg
05.2012
001
Mineervliegen zijn vooral in de ochtend
actief. De imago’s zijn klein, de lengte
meestal zo’n 2 tot 3 millimeter tot een
maximum van 6,5 millimeter.
Biofilms op ramen
2011 - 2012
Seizoensmetingen
appendix A.001
van
Gebroken tak (hop)
002
algengroei.
17.02.2012
Zie
003
Röntgenfoto (mammografie) na breuktest
voor maximale buigkracht.
Myodes glareolus
Microtus agrestis
Microtus oeconomus
Microtus arvalis
Mus musculus
Sorex minutus
Crocidura leucodon
Sorex araneus
Muizenholen
03.2012
Stippen op gevlekte rupsklaver
004
Op de foto’s is de karakteristieke vorm
van het hol per muizensoort te zien.
07.2012
005
Alle stippen van 1 exemplaar. Prof. dr.
P. Bogaers relateerde de vorm van deze
stippen aan communicatieve vaardigehden
van de plant. Zie appendix A.002
Cytoplasma van een prokaryoot
03.01.2012
006
Meestal zijn prokaryoten (organismen
zonder celkern) zeer klein. Dit exemplaar is uitzonderlijk groot: schaal
cm 1 : 4
Wolkenstudies
jan. tot aug. 2011
007
Voorstel voor het voorspellen van het
weer aan de hand van wolkenvormen. Zie
appendix A.003
Naaktslak op raam
Waterlelie hartvormig
07.07.2012
008
Psychologisch fenomeen uit het
plantenrijk. Zie appendix A.004
06.07.2012
Psychologisch fenomeen uit het
dierenrijk. Zie appendix A.005
009
Onbekende levensvormen
2012
018
Vormen insectenvraat
2012
Bloemhoofdjes van 1 kaasjeskruidplant
038
Aan de vorm van de gaten is de insectensoort
eenvoudig te herkennen. Hierboven het werk
van het schuimbeestje. Zie appendix B
19.07.2012
039
Bloemhoofdjesdichtheid ligt
lager in weides waar paarden grazen, dan
in weides waar runderen grazen: paarden
zijn beweeglijker en vertrappen meer planten.
APPENDIX A
Teksten uit ‘Abnormen’,
Prof. Dr. P. Bogaers
A.001
A.006
A.002
A.007
A.003
A.004
A.008
A.005
A.009
A.013
A.010
A.011
A.012
A.014
translated texts
FOREWORD – The mini-booted
eagle of Anne Geene – When in 1997
Michael Berry and Andre Geim succeeded
in levitating a frog in a magnetic field, they
illustrated their scientific publication on
the subject (European Journal of Physics
18: 307-313) with a series of tables and
graphs but also with a photo of the frog
in full flight. Despite it being vague and
blurry, the picture tells us much more
than the elaborate mathematical formulas
and diagrams that explain the experiment
in detail. The image—the photographic
evidence—is more convincing than the
description.
Scientists who are skilled in photography
and photographers who are active in science,
add value to their field. It is therefore
particularly gratifying that photographer
Anne Geene presents her new book ‘New
Facts’ from the animal and plant kingdom.
In the book she combines the curiosity
of a scientist with the sharp eye of a
photographer. The results are amazing.
I was fortunate to preview the content of the
book and I request your attention for two
zoological novelties disclosed therein. On
page 14 under the title ‘Mice Holes’ you
can find eight images of the holes of eight
different species of rodents and insectivores.
Pay particular attention to the lair of Sorex
minutus, the pygmy shrew: this creature
usually builds nests above the ground and
only uses the corridors of other diggers. In
conclusion: truly a new fact.
An undisputed highlight of this book
is the record on page 29, ‘Unknown life
1)
forms’. Here we clearly see fossilized
organisms of which I officially describe
the silhouette of the bird depicted in
Figure 1 (top left), as Hieraaetus pennatus
annegeenei subs. nov.1, the mini-booted
eagle of Anne Geene, most likely in its
dark phase. I describe this new subspecies
in the manner of the forgotten Japanese
palaeontologist Chonosuke Okamura,
who, in the 425 million year old limestone
formations of the Nagaiwa Mountains,
found evidence that all currently known
vertebrates originate from (miniature)
organisms that look exactly the same as
their current successors, but are not bigger
than a few millimeters in dimension. In a
series of publications entitled “Original
Report of the Okamura Fossil Laboratory”
he described for example fossilized mini
gorillas, mini camels, mini fish, mini dogs,
mini ducks, not to mention the mini-human.
Altogether more than 90 new subspecies. In
his description of the Japanese mini-human
(Homo sapiens minilorientalis) he reports:
“There have been no changes in the bodies
of humans since the Silurian period, except
for a growth in stature from 3.5 mm to 1700
mm.” The disturbing picture of “the head
of a mini-human in the digestive tract of a
dragon” shows that the dangers to which the
mini-humans were exposed are not inferior
to those of today. It will not surprise you
that Okamura illustrated his publications
with thousands of images—photographic
evidence of his discoveries.
The last “Original Report of the Okamura
Fossil Laboratory” appeared in 1987
The holotype of Hieraaetus pennatus annegeenei subs. nov. (page 29, Fig.1 [reproduced here]; type locality: Rijsbergen,
Noord-Brabant, The Netherlands) is kept in the collection of Anne Geene, The Hague, The Netherlands. Derivatio nominis:
named after Anne Geene, who discovered and photographed the type (and only) specimen.
28
and nothing was heard from Chonosuke
Okamura thereafter. With her natural
curiosity and her photographer’s eye Anne
Geene can effortlessly take over from
Okamura. – Kees Moeliker – Curator,
Natural History Museum Rotterdam
– Chief, European Bureau, Annals of
Improbable Research
PREFACE – What we know is an
infinitesimal part of what we do not know.
Almost nothing is known to us completely.
It is difficult to say which of the sciences has
done the most for us. But it is unmistakable
that photography has helped science a great
deal in the process of knowing, recognizing
and transmitting knowledge. The French
astronomer Gerard de Vaucouleurs, in his
preface to “Astronomical Photography”,
even said: “Photography alone has enabled
astronomy to overcome the major obstacles
to its progress: the sheer number of the stars,
and the faintness of the light we receive
of them. The fact that all our ideas on the
nature and destiny of the stars have been
radically altered and the depth of cosmic
soundings increased a hundred million
times in a single century is unquestionably
due to the use of the photographic plate,
in astronomy above all, as the scientist’s
retina.” In other scientific disciplines
such as biology, photography has played
an important role. Where a drawing of a
biological phenomenon has always been a
subject for the interpretation of the scientist
(e.g. the discovery of a new species), a
photograph shows reality in its specificity.
Prof. Dr. Paul Bogaers (he’ll be introduced
later on) gives another argument:
[…] (text not translated)
It goes without saying that I have chosen
to make use of the medium of photography
29
to show my findings. Photography leaves
reality intact and is, due to its mechanical
nature, free from any interpretation.
This publication is a presentation of new
scientific facts and rare observations. The
more we examine living nature, the more
perfect becomes our knowledge. However,
it is generally known that much scientific
success is short-lived. Scientific outcome is
questioned, re-examined and, in most cases,
eventually replaced by new insights. This
may not obstruct us in seeing the pleasure
and necessity of research. It may also be
excused that many phenomena were not
selected for this book. Not everything is
equally interesting and the size of the book
should be considered a constraint. For the
most part, the material was examined and
explained by myself. However, for a number
of other studies, I had the genuine pleasure
of drawing from the very complete work of
the aforementioned Prof. Dr. P. Bogaers’
‘Abnormen’, which despite being praised for
its versatility is unfortunately known to only
a handful of insiders. The work is extensive
in such a way that quoting from it becomes
almost unavoidable. It was ahead of its time:
not only in addressing diverse scientific
topics (his research on communication of
plants and animals was groundbreaking,
while he also touches on issues from
chemistry, mathematics, biology, etc.).
Further, a new interrelation of the different
topics is made via arranging research from
past and present in a new perspective:
[…] (text not translated)
Bogaers questions anew every subject in
a manner that became typical of his work:
audacious associations while combining his
own research with existing studies. Due to
his receptive attitude, he gives new insights
and breaks with existing boundaries.
Characteristic is his point of view on the
concept of ‘fact’ and ‘objectivity’. Where
traditional knowledge is mainly based
on modern values and codes (such as the
pursuit of full elimination of intervention
and interpretation of the scientist in order
to achieve results which are as ‘clean’ as
possible), Bogaers never excludes anything
a priori. It is therefore not surprising that
we can perceive some occult influences
here and there. His vision on science is
extremely original and some suspect that the
fact that he is relatively unknown can also be
translated as an intentional act on the part of
mainstream scientists. I hope that quoting
his work will shed new light on same and
leads to fresh insights once again.
My goal has been to write in a generally
comprehensible fashion, but it is inevitable
that some knowledge (zoological, botanical,
chemical, etc.) must be presupposed. It is
disadvantageous that all works are intended
for wider circles than academics share. The
numerous images should serve to largely
neutralize this inconvenience, although in
an ideal situation more attention should be
paid to usefulness of a photograph rather
than its beauty. – Anne Geene
APPENDIX B – The Scientist’s Retina
Since the very beginning photography and
science have been intimately linked. From
international cloud atlases, asymmetrical
bacteria colonies and never observed deep
sky objects; science eagerly employed
photography’s objective way of representing
scientific output while photography
appropriated the status of being science
itself. Already in the first year of the invention
of photography, Henri Fox Talbot made
photomicrographs of diatoms and Daguerre
made the first telescopic daguerreotype of
the moon. Speculations about the abilities
and the applicabilities of the new medium
were numerous: “This important discovery
will be of great interest to science”, said
Jacques Mandé Daguerre1, “Since the
invention follows the laws of geometry,
these designs (daguerreotypes) will excel the
works of the most accomplished painters, in
fidelity of detail and true reproduction of the
local atmosphere”2, said François Arago.
Through the years photography proved
indeed an important medium for scientific
representations.
The issue of (visual) representation in
science is a complex, multi-dimensional
field. Scientific output can be translated
and communicated in lots of different forms
(numbers, graphs, images, etc.) and with
different purposes (sharing among scientists
or for a broad public). Each field of research
has its own tradition of imaging and preferred
and proved methods to transform information
into analyzable data. Chemistry for example
often uses highly schematized abstractions
of molecules but when a biologist wants to
show stridulating tones caused by a Myrmica
ruginodis (a red ant), a graph can be the
most appropriate choice to transfer this
information (fig. 2). If he wants to register
the stridulating tones of more ant species or
more specimens of the same kind a tab may
be more useful (fig. 3). Complex instruments
and the sometimes even more complex data
they produce but also simple observations
have to be translated into palpable, readable
diagrams, graphs, illustrations etc. to
Jacques Mandé Daguerre in: Alan Trachtenberg, Classic Essays on Photography (New Haven: Leete’s Island Books,
1980), p. 12.
2) François Arago in: Alan Trachtenberg, Classic Essays on Photography (New Haven: Leete’s Island Books, 1980), p.17.
1)
30
communicate the outcome. These visual
representations encompass a large part of
what science actually is, some would say that
they actually create science as we know it.
Photography constitutes an interesting but
only small part of this endless source of visual
scientific output. It holds a special place in
science though, for they unmistakably share
a relation with objectivity and a history of
controversy about how to represent reality as
it appears to us.
Different techniques and strategies of
visually representing scientific outcome are
not the only variables in scientific images,
there are also different kinds of referents.
Each referent requires another visual
approach. Luc Pauwels shows this very
accurate in a scheme3 in which he places six
different kinds of referents on a scale from
material/physical to mental/conceptual.
The first, most ‘material’ referents are the
directly visually observable phenomena,
followed by ‘visual phenomena ‘invisible’
without technical aid, non-visual phenomena,
non-visual ‘data’ (based on observations/
measurements), postulated phenomena and
conceptual constructions. These differences
presume different choices when it comes
to visualizing them. According to Pauwels
there is some sort of connection between the
nature of the referent and the process of its
representation. Referents that are directly
visible and the ones that are visible only with
technical aid are for example most likely to
be photographed. Also most of the nonvisual ones allow photographic visualization
(magnetism, body heat etc.). When one
wants to show something that exists only in
the mind though, like the monster of Loch
Ness (fig. 5) or any other sprout of the mind,
representation techniques are limited.
Pauwels’s scheme reveals the place and
function that photography fulfills in science
and its intentions and possibilities. The
medium can depict existing phenomena,
singular facts, but it cannot depict
constructions. In the example of stridulating
tones of red ants photography is restricted to
the visual elements of the stridulating organ
of an ant or how the organ is used (fig. 6 & 7).
In other words, a photograph concentrates
time and place of one singular event in an
image. A graph or a tab is a collection of
data gathered from different moments and
different places, even different researchers.
The visual representations of immaterial
referents, as they are the result of multiple
intentional acts, require a another production
technique for this more intentional activity:
“The involvement of the originator of the idea
is paramount...Aspects or dimensions that
cannot in any way be visualized or verbally
described are in fact lost to science.”4 Pauwels
makes a division between automatically
generated images (algorithmic processes) and
more manually and intentionally performed
activities. Specially images drawn from the
first category, to which photography most
likely belongs, are the most straightforward
and therefore all the more sensitive to
overlooking artifacts of the instrumentation
(objects and effects generated by the
representational process).5 They therefore
need careful consideration and a critical
stand.
Photography partly shares its abilities
to represent the phenomenal world with
drawing. Of course their range of field differs;
3) Luc Pauwels, Visual Culture of Science (Lebanon: Darthmouth College Press, 2006), p. 4.
4) Idem, p. 7.
5) Idem, p. 9.
31
as demonstrated before, not everything that
can be photographed can be drawn (x-rays,
deep sky objects etc.) and not everything that
can be drawn can be photographed (concepts,
composed or idealized images). Figure 8
shows how a drawing and a photograph of
similar phenomena communicate in a whole
different way. The drawing clearly shows a
schematized, simplified image in which the
round cropping suggests the scene having
been observed through a microscope,
whereas the picture shows how the round
worm really looks like and how its size relates
to its surroundings. Most of the time, the
purposes (didactic, beauty, objectivity etc.)
of an image facilitate the choice whether to
draw or photograph an object or scene. A
drawing is able to separate essential elements
from inessential ones and a photograph would
reproduce the object with all its specificities.
Wilhelm His, a 19th century Leipzig based
embryologist lays out his choice between
drawings and photographs: “Drawing and
photograph are complementary, without
replacing one another. The advantages
and disadvantages of every drawing in
relation to a photograph lie in the subjective
elements that are at work in its making.
In every sensible drawing the essential is
consciously separated from the inessential
and the connection of the depicted forms is
shown in the correct light, according to the
view of the draftsman. The drawing is thus
more or less an interpretation of the object,
involving mental work for the draftsman and
embodying this for the spectator, whereas
the photograph reproduces the object with
all its particularities, including those that are
accidental, in a certain sense as raw material,
but which guarantees absolute fidelity.” 6
Notwithstanding this nuanced opinion there
has been some discussion regarding this
subject: “Drawing is involuntary already
prepared in line with the subjective view of the
author and the photograph could discipline
the scientist to give repeatedly an accounting
of the correctness of this observation”7, says
Robert Koch, a 19th century bacteriologist.
The influence of preconception to drawings
is shown very clearly in an interesting
example given by Peter Galison and Lorraine
Daston of the scientific findings of Arthur
Worthington.8 He examined the stages of the
impact of a liquid drop splashing on different
kinds of surfaces. To do this, Worthington
used a powerful flashlight burning a latent
image of the splashing drop in his eye, which
he would immediately sketch. He repeated
this process endlessly and concluded that
the impact of liquid drops on a surface is
‘a physical system marked by the beauty
of its perfect symmetry’. All hand-drawn
sketches of the process show indeed perfectly
symmetrical splashes. But, in 1894, he
finally succeeded to record the event
photographically. The photographs showed
much more irregularities in the splashes
than his sketches; Worthington realized
he had been guided by his own idealized
theory. All his drawings were useless; his
photographs in contrary not only proved
him wrong but they became documents of
the event itself. Worthington was now able
to examine the photographs again and again
with different questions in mind and by means
of reexamining he could reevaluate what
was shown on the picture. But also other
scientists who would see the photographs
could decide whether Worthington’s
observations were correct. Where drawings
can render out of date, superseded by new
theories, photographs function as documents
that can be consulted any time, any place, over
and over again. – Anne Geene
6) Wilhelm His, Anatomie Menschlicher Embryonen (Leipzig: Vogel, 1880), p. 6.
7) Robert Koch, in: Lorraine Daston and Peter Galison, Objectivity (New York: Zone Books 2007), p. 166.
8) Arthur Worthington was a British physicist from the 19th century.
32
33
34