Vol. 14, No 4

Transcription

Vol. 14, No 4
Polish Academy of Sciences
University of Engineering and Economics in Rzeszów
University of Life Sciences in Lublin
Faculty of Production Engineering
TEK A
COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE
AN INTERNATIONAL QUARTERLY JOURNAL
ON MOTORIZATION, VEHICLE OPERATION,
ENERGY EFFICIENCY AND MECHANICAL ENGINEERING
Vol. 14, No 4
LUBLIN–RZESZÓW 2014
Editor-in-Chief: Eugeniusz Krasowski
Assistant Editor: Andrzej Kusz
Associate Editors
1. Motorization and vehicle operation: Kazimierz Lejda, Rzeszów, Valentin Mohyła, Lugansk
2. Mechanical engineering: Paweł Nosko, Lugańsk, Adam Dużyński, Częstochowa
3. Energy efficiency: Witold Niemiec, Rzeszów, Stepan Kovalyshyn, Lviv
4. Mathematical statistics: Andrzej Kornacki, Lublin
Editorial Board
Dariusz Andrejko, Lublin, Poland
Andrzej Baliński, Kraków, Poland
Volodymyr Bulgakow, Kiev, Ukraine
Karol Cupiał, Częstochowa, Poland
Aleksandr Dashchenko, Odessa, Ukraine
Kazimierz Dreszer, Lublin, Poland
Valeriy Dubrowin, Kiev, Ukraine
Valeriy Dyadychev, Lugansk, Ukraine
Dariusz Dziki, Lublin, Poland
Sergiey Fedorkin, Simferopol, Ukraine
Jan Gliński, Lublin, Poland
Bohdan Hevko, Ternopil, Ukraine
Jerzy Grudziński, Lublin, Poland
Aleksandr Hołubenko, Lugansk, Ukraine
L.P.B.M. Jonssen, Groningen, Holland
Józef Kowalczuk, Lublin, Poland
Volodymyr Kravchuk, Kiev, Ukraine
Elżbieta Kusińska, Lublin, Poland
Janusz Laskowski, Lublin, Poland
Nikołaj Lubomirski, Simferopol, Ukraine
Andrzej Marczuk, Lublin, Poland
Jerzy Merkisz, Poznań, Poland
Ryszard Michalski, Olsztyn, Poland
Aleksandr Morozov, Simferopol, Ukraine
Leszek Mościcki, Lublin, Poland
Janusz Mysłowski, Szczecin, Poland
Ilia Nikolenko, Simferopol, Ukraine
Paweł Nosko, Lugansk, Ukraine
Gennadij Oborski, Odessa, Ukraine
Yurij Osenin, Lugansk, Ukraine
Marian Panasiewicz, Lublin, Poland
Sergiey Pastushenko, Mykolayiv, Ukraine
Iwan Rohowski, Kiev, Ukraine
Marek Rozmus, Lublin, Poland
Povilas A. Sirvydas, Kaunas, Lithuania
Wołodymyr Snitynskiy, Lviv, Ukraine
Stanisław Sosnowski, Rzeszów, Poland
Ludvikas Spokas, Kaunas, Lithuania
Jarosław Stryczek, Wrocław, Poland
Michaił Sukach, Kiev, Ukraine
Aleksandr Sydorchuk, Kiev, Ukraine
Wojciech Tanaś, Lublin, Poland
Viktor Tarasenko, Simferopol, Ukraine
Giorgiy F. Tayanowski, Minsk, Bielarus
Andrey Tevyashev, Kharkiv, Ukraine
Henryk Tylicki, Bydgoszcz, Poland
Denis Viesturs, Ulbrok, Latvia
Dmytro Voytiuk, Kiev, Ukraine
Janusz Wojdalski, Warszawa, Poland
Anatoliy Yakovenko, Odessa, Ukraine
Tadeusz Złoto, Częstochowa, Poland
All the articles are available on the webpage: http://www.pan-ol.lublin.pl/wydawnictwa/Teka-Motrol.html
All the scientific articles received positive evaluations by independent reviewers
Linguistic consultant: Małgorzata Wojcieszuk
Typeset: Adam Niezbecki
Cover design: Hanna Krasowska-Kołodziej
© Copyright by Polish Academy of Sciences 2014
© Copyright by University of Engineering and Economics in Rzeszów 2014
© Copyright by University of Life Sciences in Lublin 2014
In co-operation with Volodymyr Dahl East-Ukrainian National University of Lugansk 2014
Editorial Office address
Polish Academy of Sciences Branch in Lublin
Pałac Czartoryskich, Plac Litewski 2, 20-080 Lublin, Poland
e-mail: eugeniusz.krasowski@up.lublin.pl
Printing
elpil
Artyleryjska Str. 11, 08-110 Siedlce, Poland
e-mail: info@elpil.com.pl
ISSN 1641-7739
Edition 60+16 vol.
TEKA. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE – 2014, Vol. 14, No. 4, 3–6
Drying Faba Bean Seeds in a Silo with a Vertical Air Circulation System
Janusz Bowszys*, Teresa Bowszys**
* Department of Agricultural Process Engineering, University of Warmia and Mazury in Olsztyn,
Katedra Inżynierii Systemów, Uniwersytet Warmińsko-Mazurski w Olsztynie
ul. Heweliusza 14,10-718 Olsztyn, e-mail: j.bowszys@uwm.edu.pl
** Department of Agricultural Chemistry and Environmental Protection,
University of Warmia and Mazury in Olsztyn, Katedra Chemii Rolnej i Ochrony Środowiska,
Uniwersytet Warmińsko-Mazurski w Olsztynie, e-mail: bowter@uwm.edu.pl
Received December 03.2014; accepted December 17.2014
Summary. Legume seeds harvested by combine harvesters in
the fall are characterized by a high moisture content. In this
study, faba bean seeds were dried at low temperatures in a silo
with a vertical air circulation system. Low temperature and long
drying time of 90 hours minimized thermal stress in seeds. The
objective of the study was to describe the drying process of faba
EHDQVHHGVLQDVLORZLWKYHUWLFDODLUÀRZVOLJKWO\KHDWHGE\D
kW electric heater. The results of the study have indicated that
WKHDPRXQWRIDLUSXPSHGLQWRWKHVLORE\D:3IDQUDQJHV
IURPP3·Mg-1·h-1WRP3·Mg-1·h-1, subject to the degree of
VLOR¿OOLQJZLWKIDEDEHDQVHHGV$YHUWLFDODLUFLUFXODWLRQV\VWHP
with a ventilation cone facilitates the process of drying faba bean
seeds. Faba bean seeds are dried most rapidly along the silo’s
axis of symmetry, whereas the drying rate is lowest along the
silo’s outer walls. Seeds are dried faster in the lower part of the
silo, therefore, a two-phase drying process is recommended in
SODQHV::DQG:6HHGVGULHGLQWKHORZHUSDUWRIWKHVLOR
should be removed upon the achievement of the optimal moisture
content for storage. The remaining seeds should be dried in the
second stage of the process.
Key words: silos, drying, storage, faba beans.
attempts have been made to dry faba bean seeds at low
WHPSHUDWXUHVLQVLORVZLWKUDGLDORUYHUWLFDODLUÀRZ>
@/RZWHPSHUDWXUHDQGORQJGU\LQJWLPHRIKRXUV
PLQLPL]HGWKHUPDOVWUHVVLQVHHGV>@7KHSRVLWLYH
results of experiments where cereal seeds were dried in
silos [2] prompted the current attempt to dry faba bean
seeds in a silo with a vertical air circulation system. The
objective of this study was to describe the drying process
RIIDEDEHDQVHHGVLQDVLORZLWKYHUWLFDODLUÀRZVOLJKWO\
KHDWHGE\DN:HOHFWULFKHDWHU7KHVLOR¶VYHQWLODWLRQ
HI¿FLHQF\DQGWKHDPRXQWRIDLUVXSSOLHGWRWKHVLORVXEject to the height of the seed layer inside the silo, were
determined to evaluate the drying process.
0$7(5,$/6$1'0(7+2'6
$ GU\LQJ VLOR ZLWK D YHUWLFDO DLU FLUFXODWLRQ V\VWHP
was designed at the former Department of Process DeYLFHVSUHVHQWO\WKH'HSDUWPHQWRI$JULFXOWXUDO3URFHVV
(QJLQHHULQJRIWKH8QLYHUVLW\RI:DUPLDDQG0D]XU\LQ
2OV]W\Q$SDWHQWDSSOLFDWLRQZDVVXEPLWWHGWRWKH3ROLVK
INTRODUCTION
3DWHQW2I¿FHZKLFKLVVXHGFRS\ULJKW1RIRUWKH
VLOR>@7KHGHYLFHZDVGHVLJQHGIRUGU\LQJDQGVWRULQJ
New low-tannin faba bean varieties with a determi- FHUHDOJUDLQ$GLDJUDPRIWKHVLORXVHGLQWKLVH[SHULPHQW
nate growth habit, containing a minimal amount of tannins LVSUHVHQWHGLQ)LJXUH
PJSHUJ'0FRXOGFRQWULEXWHWRWKHSRSXODULW\
The silo is a steel structure. The cylindrical section
of faba beans grown for fodder, in particular, if imports of ZLWKDGLDPHWHURIPLVPDGHRIJDOYDQL]HGVWHHOFRDWHG
JHQHWLFDOO\PRGL¿HGVR\EHDQPHDOVDUHOLPLWHG7KHIDED ZLWKSODVWLFRQERWKVLGHV$LULVSXPSHGLQWRWKHVLORE\
EHDQLVDOHJXPHSODQWRIJUHDWHQYLURQPHQWDOVLJQL¿FDQFH DIDQ7KHYHQWLODWLRQFRQHZLWKDEDVHGLDPHWHURI
that plays an important role in crop rotation schemes with PLVPDGHRISHUIRUDWHGVWHHOZLWKYHQWRSHQLQJV7KH
a predominance of cereals. Legume seeds harvested by slant height of the cone is parallel to the slant height of the
combine harvesters in the fall are characterized by a high discharge tube. The cone is separated from the discharge
moisture content. Intensive drying of faba bean seeds in tube by a distance of 0.7 m. Research results indicate that
roof dryers leads to thermal stress, which damages the the designed ventilation system permits air movement
embryo and causes seeds to develop microcracks [8, 9]. throughout the entire bulk [2]. For the needs of this exRoof dryers are not suitable for drying crop seeds. Several SHULPHQWLQVSHFWLRQRSHQLQJVPDUNHG:::DQG
-$186=%2:6=<67(5(6$%2:6=<6
Fig. 1. $GLDJUDPRIWKHH[SHULPHQWDOVLORZLWKDYHUWLFDODLUFLUFXODWLRQV\VWHPDQGDYHQWLODWLRQFRQH±VLOR±PLFURSUHVVXUH
JDXJHIRUPHDVXULQJSUHVVXUHLQVLGHWKHVXFWLRQSLSHOLQH±SUHVVXUHJDXJH±WRSVXUIDFHRIWKHVHHGOD\HU±YHQWLODWLRQFRQH
±VXFWLRQSLSHOLQH±IDQ±HOHFWULFKHDWHU:W2, W W±VDPSOLQJSODQHV±WKHVLOR¶VD[LVRIV\PPHWU\±DWPLGUDGLXV
±E\WKHZDOO:, W, W±VDPSOLQJSRLQWVZKHUHVHHGWHPSHUDWXUHZDVPHDVXUHGFRQWLQXRXVO\
:ZHUHGULOOHGDORQJWKHVLOR¶VIRXUORQJLWXGLQDOSODQHV
DWWKHGLVWDQFHVJLYHQLQ)LJXUH7KHVLORZDVHTXLSSHG
ZLWKDN:KHDWHU:3IDQDQGPLFURJDXJHV
IRUPHDVXULQJWKHWRWDOSUHVVXUHDQGVWDWLFSUHVVXUHRI
pumped air. Pressure was measured to the nearest Pa. Inspection openings were used to collect samples from various locations in the bulk. Total airstream pressure and static
SUHVVXUHZHUHPHDVXUHGWRFDOFXODWHIDQHI¿FLHQF\DQGWKH
DPRXQWRIDLUSXPSHGLQWRWKHVLOR7KH¿UVWPHDVXUHPHQW
ZDVSHUIRUPHGIRUDQHPSW\VLOR+ DQGVXFFHVVLYH
measurements were performed when seeds were added in
OD\HUVRIPXQWLOWKHKHLJKWRIWKHVHHGEHGLQVLGHWKH
VLORUHDFKHGP7KHWKLFNQHVVRIWKHVHHGOD\HUVKRXOG
QRWH[FHHGPGXHWRWKHULVNRIVHHGGDPDJHXQGHUWKH
H[HUWHGORDG>@7KHPHDVXUHPHQWVZHUHXVHGWRFDOFXODWH
YHQWLODWLRQHI¿FLHQF\DQGWKHDPRXQWRIDLUVXSSOLHGWRWKH
VLORLQOLQHZLWKWKHSUHVHQWHGPHWKRG>@)DEDEHDQ
VHHGVZHUHKDUYHVWHGIURPWKHVDPH¿HOGLQ¿YHEDWFKHV
6HHGSXULW\UDQJHGIURPWRZLWKWR
FRQWHQWRIXVDEOHLPSXULWLHVDQGWR
content of non-usable impurities. Total seed weight was deWHUPLQHGDW0J6DPSOHVIRUWKHGHWHUPLQDWLRQRIVHHG
moisture content were collected at various points along
IRXUVDPSOLQJSODQHVWKHVLOR¶VD[LVRIV\PPHWU\:
::DWWKHGLVWDQFHRIPIURPWKHD[LVRI
V\PPHWU\::::DQGDORQJWKHVLORZDOO
::::7KHPRLVWXUHFRQWHQWRIVHHGV
was determined by the drying method with the accuracy of
6HHGVZHUHGULHGIRUKRXUVE\FLUFXODWLQJKHDWHG
air throughout the silo. The parameters of circulating air
DUHJLYHQLQ)LJXUH6DPSOHVIRUHYDOXDWLQJVHHGPRLVWXUH
content were collected eight times, approximately every
KRXUV7KHWHPSHUDWXUHDQGPRLVWXUHFRQWHQWRIGU\LQJ
air were determined upon sample collection.
5(68/76
The results of calculations revealed that the total area
of vents in the ventilation cone is larger that cross-sectional
area of the pipeline connecting the fan with the silo. ThereIRUHDLUÀRZZDVQRWWKURWWOHGLQVLGHWKHVLOR&KDQJHVLQ
YHQWLODWLRQHI¿FLHQF\DVDIXQFWLRQRIWKHKHLJKWRIWKHVHHG
OD\HUDUHSUHVHQWHGLQ)LJXUH,QLWLDOO\DW+ DLUZDV
SXPSHGE\WKHIDQLQWRWKHVLORDWDUDWHRIP3·h-1.
9HQWLODWLRQHI¿FLHQF\ZDVUHGXFHGWRP3·h-1 when the
WKLFNQHVVRIWKHVHHGOD\HUUHDFKHGP)DEDEHDQVHHGV
ZHUHDGGHGLQVXFFHVVLYHOD\HUVRIPXQWLOWKHKHLJKW
RIWKHVHHGEHGLQVLGHWKHVLORUHDFKHGP7KHIDQZDV
active and pressure was measured every time a new batch
of seeds was added to the silo. The results of ventilation
HI¿FLHQF\FDOFXODWLRQVDUHSUHVHQWHGLQ)LJXUH7KHFXUYH
'5<,1*)$%$%($16(('6,1$6,/2:,7+$9(57,&$/$,5&,5&8/$7,216<67(0
LQGLFDWHVWKDWIDQHI¿FLHQF\UHDFKHGP3·h-1 when the
silo was full. This is a constant value at which faba been
seeds were dried for 90 hours. The correlation between
YHQWLODWLRQHI¿FLHQF\DQGWKHKHLJKWRIWKHVHHGOD\HUZDV
GHVFULEHGE\DUHJUHVVLRQHTXDWLRQ)LJ&KDQJHVLQ
the amount of air pumped into the silo as the height of
WKHVHHGOD\HULQFUHDVHGIURPWRPDUHSUHVHQWHGLQ
)LJXUH7KHVHHGOD\HUZLWKWKHKHLJKWRIPZDVDLUHG
DWP3·Mg-1·h-1. When the height of the seed layer inFUHDVHGWRPWKHDPRXQWRIDLUSXPSHGLQWRWKHVLOR Fig. 5. $FWXDOGU\LQJSURFHVVLQWKHVLORLQVDPSOLQJSODQH:
ZDVUHGXFHGWRP3·Mg-1·h-1, and the drying process was
FRQGXFWHGDWWKLVDLUÀRZUDWHIRUKRXUV&KDQJHVLQWKH
amount of air supplied to the silo as the thickness of the
VHHGOD\HULQFUHDVHGIURPWRPZHUHGHVFULEHGZLWK
DUHJUHVVLRQHTXDWLRQ)LJ5HJUHVVLRQHTXDWLRQVFDQEH
XVHGWRFDOFXODWHYHQWLODWLRQHI¿FLHQF\DQGWKHDPRXQWRI
air supplied at any thickness of the seed layer (Figs. 2 and
6HHGGU\LQJLQVLGHDVLORLVGHWHUPLQHGE\YHQWLODWLRQ
HI¿FLHQF\DLUWHPSHUDWXUHDQGUHODWLYHPRLVWXUHFRQWHQW>
Fig. 6. $FWXDOGU\LQJSURFHVVLQWKHVLORLQVDPSOLQJSODQH:
Fig. 2. &KDQJHVLQYHQWLODWLRQHI¿FLHQF\VXEMHFWWRWKHKHLJKWRI
the seed layer in the silo.
Fig. 7. $FWXDOGU\LQJSURFHVVLQWKHVLORLQVDPSOLQJSODQH:
Fig. 8. $FWXDOGU\LQJSURFHVVLQWKHVLORLQVDPSOLQJSODQH:
Fig. 3. Changes in the amount of air supplied to faba bean seeds
in the silo.
Fig. 4. Temperature and relative moisture content of air as a function of drying time.
@,QWKLVVWXG\GU\LQJDLUKDGVWDEOHSDUDPHWHUVZLWK
WHPSHUDWXUHRIWRƒDQGUHODWLYHPRLVWXUHFRQWHQWRI
WR&KDQJHVLQDLUSDUDPHWHUVDVDIXQFWLRQRIWLPH
DUHSUHVHQWHGLQ)LJXUH
,QSODQH:VDPSOHVZHUHFROOHFWHGDWWZRSRLQWV:
DQG:EHWZHHQWKHGLVFKDUJHWXEHDQGWKHYHQWLODWLRQ
FRQH)LJ9HQWLODWLRQHI¿FLHQF\FXUYHVLQGLFDWHWKDWGU\LQJLQSODQH:SURFHHGHGDWWKHKLJKHVWUDWHDIWHUKRXUV
DQGUHODWLYHPRLVWXUHFRQWHQWZDVGHWHUPLQHGDWDQG
UHVSHFWLYHO\7KHGU\LQJUDWHDWSRLQWV:DQG:
was very high because seeds were dried by air with the
lowest moisture content.
The initial moisture content of seeds in plane W2 was
)LJ$WWKHHQGRIGU\LQJWKHKLJKHVWGURSLQPRLV-
-$186=%2:6=<67(5(6$%2:6=<6
WXUHFRQWHQWWRZDVQRWHGDORQJWKHD[LVRIV\PPHWU\
ZKHUHDVWKHORZHVWGURSWRZDVREVHUYHGE\WKHVLOR
ZDOO7KHDERYHUHVXOWVFDQEHDWWULEXWHGWRLQFUHDVHGDLUÀRZ
resistance due to seed segregation along the silo wall [2, 7].
7KHGU\LQJSURFHVVZDVPRVWVWDEOHLQSODQH:DQG
changes in air moisture content were similar at all points.
7KHGU\LQJSURFHVVZDVVORZHVWLQSODQH:)LJ$IWHU
90 hours of drying, moisture content was determined at
LQSRLQW:LQ:DQGLQ:$LU
passing through the thickest seed layer is more moist than at
WKHEHJLQQLQJRIWKHSURFHVVSODQHV:DQG:9HQWLODtion curves indicate that seeds were dried most rapidly along
the silo’s axis of symmetry. The seed bulk was characterized
by the highest porosity along the axis of symmetry, which
PLQLPL]HGDLUÀRZUHVLVWDQFHLQVLGHWKHVLOR>@
]SURPLHQLRZ\PXNáDGHPZLHWU]HQLDF],02752/
0RWRU\]DFMDL(QHUJHW\ND5ROQLFWZDYRO1R
%RZV]\V-&\G]LN56LORV]ERĪRZ\GRGRVXV]DQLD
]LDUQDQUSDWHQWX
Bowszys J., Grabowski J., Tomczykowski J. 2004.
Temperatures in seed mass stored in a metallic immeGLDWHO\WDIWHUKDUYHVW7HFKQ6F
7. Bowszys J., Tomczykowski J. 2007. Self-segregation of
maize kernels during gravitational discharge from a silo.
7(.$.RP0RW3RZHU,QG$JULFXOW9,,
8. Figiel A. Konieczna M. 2001. Fizyczne i biologiczne
ZVNDĨQLNLSRGDWQRĞFLQDVLRQERELNXQDXV]NRG]HQLD
ZSURFHVLHVXV]HQLDLQDZLOĪDQLD$FWD$JURSK\VLFD
9. Grzesiuk S., Górecki R. 1994. Fizjologia plonów. WproZDG]HQLHGRSU]HFKRZDOQLFWZD:\G$572OV]W\Q
.XVLĔVND($QLQÀXHQFHRIRXWHUHQHUJ\RQPRCONCLUSIONS
isture content distribution in grains stoned in a model
VLOR7(.$.RP0RW3RZHU,QG$JULFXOW9,
7KHDPRXQWRIDLUVXSSOLHGWRWKHVLORE\WKH:3IDQ 1DGXOVNL5.XVLĔVND(*X]7.REXV=
UDQJHVIURPP3·Mg-1·h-1WRP3·Mg-1·h-1, subject
:Sá\ZZLOJRWQRĞFL]LDUQLDNyZLQDFLVNXSLRQRZHJRQD
WRWKHGHJUHHRIVLOR¿OOLQJZLWKIDEDEHDQVHHGV
LFKHQHUJLĊL]GROQRĞüNLHáNRZDQLD,QĪ\QLHULD5ROQLF]D
$YHUWLFDODLUFLUFXODWLRQV\VWHPZLWKDYHQWLODWLRQFRQH
facilitates the process of drying faba bean seeds.
6]ZHG*.XVLĔVND(=PLDQDFHFKJHRPHWU\F] )DEDEHDQVHHGVDUHGULHGPRVWUDSLGO\DORQJWKHD[LV
nych ziarniaków pszenicy w wyniku niekorzystnych
of symmetry, whereas the drying rate is lowest by the
warunków przechowywania. MOTROL Motoryzacja
silo’s outer wall.
L(QHUJHW\ND5ROQLFWZD
)DEDEHDQVDUHGULHGIDVWHULQWKHORZHUSDUWRIWKHVLOR
therefore, a two-phase drying process is recommended
352&(66686=(1,$1$6,21%2%,.8:6,/26,(
=3,212:<035=(3à<:(032:,(75=$
LQSODQHV::DQG:6HHGVGULHGLQWKHORZHU
part of the silo should be removed upon the achievement of the optimal moisture content for storage. The Streszczenie. 1DVLRQDURĞOLQVWUąF]NRZ\FK]HEULQHSU]\XĪ\remaining seeds should be dried in the second stage FLXNRPEDMQXMHVLHQLąFKDUDNWHU\]XMąVLĊZ\VRNą]DZDUWRĞFLą
wilgoci. W tym badaniu, nasiona bobiku suszono w niskich
of the process.
5()(5(1&(6
Bowszys J. 2003. 5R]NáDGWHPSHUDWXUZPDVLH]LDUna pszenicy przechowywanej w metalowych silosach
]ERĪRZ\FK3URFHHGLQJVRIWKH1DWLRQDO$JULFXOWXUDO
8QLYHUVLW\RI8NUDLQH³0HFKDQL]DWLRQRI$JULFXOWXUDO
3URGXFWLRQ´.\LY
2. Bowszys J. 2006. Doskonalenie technologii suszenia
LSU]HFKRZ\ZDQLDZF\OLQGU\F]Q\FKVLORVDFK]ERĪRZ\FK=HV]\W:\G]LDá,QĪ\QLHULL3URGXNFML$5
Lublin.
Bowszys J. 2013. :Sá\ZJUXERĞFLZDUVWZ\QDVLRQVNáDGRZDQ\FKZVLORVDFK]SLRQRZ\PXNáDGHPZLHWU]HQLD
QDSDUDPHWU\SU]HSá\ZXSRZLHWU]D02752/0RWRU\]DFMDL(QHUJHW\ND5ROQLFWZDYRO1R
Bowszys J., Bowszys T. 2013. Przebieg procesu suV]HQLD RUD] ]PLDQ\ MDNRĞFL QDVLRQ ERELNX Z VLORVLH
WHPSHUDWXUDFKZVLORVLH]SLRQRZ\PSU]HSá\ZHPSRZLHWU]D
1LVNDWHPSHUDWXUDLGáXJLF]DVVXV]HQLDZ\QRV]ąF\JRG]LQ
]PLQLPDOL]RZDá\VWUHVFLHSOQ\ZQDVLRQDFK&HOHPEDGDQLD
E\áRRSLVDQLHSURFHVXVXV]HQLDQDVLRQERELNXZVLORVLH]SLRQRZ\PSU]HSá\ZHPSRZLHWU]DOHNNRRJU]HZDQ\PSU]H]
N:JU]HMQLNHOHNWU\F]Q\:\QLNLWHJREDGDQLDZVND]XMąĪH
LORĞüSRZLHWU]DSRPSRZDQHJRGRVLORVXSU]H]ZHQW\ODWRU:3
Z\QRVLRGP3·Mg-1·h-1GRP3·Mg-1·h-1]DOHĪQLHRG
VWRSQLDZ\SHáQLHQLDVLORVXQDVLRQDPLERELNX3LRQRZ\RELHJ
SRZLHWU]D]HVWRĪNLHPZHQW\ODF\MQ\PXáDWZLDSURFHVVXV]HQLD
QDVLRQERELNX%RELNVXV]\VLĊQDMV]\EFLHMZ]GáXĪRVLV\PHWULLVLORVXQDWRPLDVWV]\ENRĞüVXV]HQLDMHVWQDMQLĪV]DZ]GáXĪ
]HZQĊWU]Q\FKĞFLDQVLORVX1DVLRQDVXV]ąVLHV]\EFLHMZGROQHMF]ĊĞFLVLORVX]DWHP]DOHFDVLĊGZXID]RZ\SURFHVVXV]HQLD
ZSáDV]F]\]QDFK::L:
1DVLRQDVXV]RQHZGROQHMF]ĊĞFLVLORVXQDOHĪ\XVXZDüSR
RVLąJQLĊFLXRSW\PDOQHM]DZDUWRĞFLZLOJRFLZFHOXSU]HFKRZ\ZDQLD3R]RVWDáHQDVLRQDSRZLQQ\E\üVXV]RQHZGUXJLPHWDSLH
procesu.
6áRZDNOXF]RZHsilosy, suszenie, przechowywanie, bobik.
TEKA. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE – 2014, Vol. 14, No. 4, 7–14
Application of Generalized Method of Lines for Solving the Problems
of Thick Plates Thermoelasticity
Part 1. Construction of resolving equations
Valery Chybiryakov, Anatoly Stankevich, Dmitry Levkivskiy, Vladimir Melnychuk
Kyiv National University of Construction and Architecture
Povitroflotskyy Prosp., 31, Kyiv, Ukraine, 03680, e-mail: dmitriylev88@gmail.com
Received December 07.2014; accepted December 17.2014
Summary. The authors proposed a new version of lowering
dimensionality in the application of the method of lines. The
EDVLFLGHDLVORZHULQJWKHGLPHQVLRQDOLW\RILQSXWHTXDWLRQV
per the spatial coordinate by projection method, including the
%XEQRY*DOHUNLQPHWKRG
Key words: PHWRGRIOLQHV%XEQRY*DOHUNLQ3HWURYWKHUPRHlasticity method, thick plates, structural mechanics.
INTRODUCTION
The authors proposed a new version of lowering dimensionality in the application of the method of lines. It is
greatly expanding the capabilities of method of lines. The
proposed generalized method of lines may be used for calculating the plates of variable thickness, and also problems
of dynamics. The basic idea of generalized method of lines
LVORZHULQJWKHGLPHQVLRQDOLW\RILQSXWHTXDWLRQVSHUWKH
spatial coordinate by projection method. The projection
PHWKRGLQFOXGHVWKH%XEQRY*DOHUNLQPHWKRGJHQHUDOL]HG
E\3HWURY>@
385326(2):25.
One of the most effective methods of solving multidimensional problems of structural mechanics is the combination approach. In this approach a problem is solved in
two stages:
GHFUHDVLQJWKHGLPHQVLRQRIWKHLQSXWHTXDWLRQVE\RQH
or two coordinates;
WKHUHGXFHGSUREOHPLVVROYHGDQDO\WLFDOO\RUQXPHULcally.
Traditionally in structural mechanics, lowering dimenVLRQDOLW\RILQSXWHTXDWLRQVLVEDVHGRQFHUWDLQK\SRWKHVHV
$FFRUGLQJO\WKH¿UVWVWDJHRIWKHPHWKRGZDVH[FOXGHG
in a separate research: theory of rods, plates and, shells.
$SSOLHGK\SRWKHVHVZHUHVWURQJHQRXJKEXWOHVVDFFXUDWH
It lead to creation of various theories of plates and shells.
Currently, lowering dimensionality is performed using
mathematical methods (for example, the theory of shells
,19HNXD>@:LWKWKHQH[WVROXWLRQRIUHGXFHGHTXDtions, lowering the dimension creates a combined method
for solving problems of mathematical physics. Such methods include Vlasov-Kantorovich’s method. These combined
methods are alternative, compared to the general numerical
PHWKRGVVXFKDV¿QLWHHOHPHQWPHWKRG¿QLWHGLIIHUHQFHDQG
variation-difference method.
Mathematical methods of lowering dimensionality are
associated with the geometrical characteristics of the considered objects. It greatly restricts the geometry of the problems, for which it is possible to use the combined methods.
+RZHYHUOLPLWLQJWKHFRPSOH[LW\RIWKHJHRPHWU\DOORZVWKH
DSSOLFDWLRQRIYHU\HI¿FLHQWQXPHULFDOPHWKRGV,WLQFUHDVHV
the accuracy and stability of numerical calculation. It also
VLJQL¿FDQWO\UHGXFHVFRPSXWHUWLPHXVLQJ
One of the known methods of lowering dimensionality
LQSXWHTXDWLRQVLVWKH³PHWKRGRIOLQHV´,QWKLVPHWKRGWKH
¿QLWHGLIIHUHQFHPHWKRGLVXVHGIRURQHRIWKHWZRFRRUGLQDWHV7KLVPHWKRGZLOOEHHIIHFWLYHLIWKHLQSXWHTXDWLRQV
DUHV\VWHPVRIRUGLQDU\GLIIHUHQWLDOHTXDWLRQV,QWKHFDVH
RIFRQVWDQWFRHI¿FLHQWVLQWKHVHHTXDWLRQVLWLVSRVVLEOHWR
XVHDQDO\WLFDOVROXWLRQRIV\VWHPRIHTXDWLRQV9LQRNXURY
>@6KNHORY/7>@,QWKLVUHJDUGWKHPHWKRGRIOLQHVLV
used for the solution of static problems for plates and shells
of constant thickness.
The authors proposed a new version of lowering dimensionality in the application of the method of lines. It is
greatly expanding the capabilities of method of lines. The
proposed generalized method of lines may be used for calculating the plates of variable thickness, and also problems
of dynamics. The basic idea of generalized method of lines
LVORZHULQJWKHGLPHQVLRQDOLW\RILQSXWHTXDWLRQVSHUWKH
spatial coordinate by projection method. The projection
8
9&+<%,5<$.29$67$1.(9,&+'/(9.,96.,<90(/1<&+8.
PHWKRGLQFOXGHVWKH%XEQRY*DOHUNLQPHWKRGJHQHUDOL]HG
E\3HWURY>@
In the case of thick plates with constant thickness for
HTXDWLRQVRISODWHGHIRUPDWLRQVSHUWKLFNQHVVORFDOO\EDVLF
UHVWULFWHGGLVFUHWHOLQHDUIXQFWLRQVDUHFKRVHQ)LJ
QHQWVLVSHUIRUPHGGLIIHUHQWO\+HUHZLWKZHJHWWZREDVLF
PDWULFHV± G and B , which are recorded in an index form
as: gij Mi M j , bij
of two functions:
Mi Mi M j dM j
dy
. This is the scalar product
³ M y ˜ M y ˜ dy h
i
j
0
Conversion of components with derivative y of the
function n -type displacement and stresses-type functions
is formed in different ways. This is the use of lowering
dimension of a plane problem using the theory of elasWLFLW\
The peculiarity of this functional basis is that this basis
is not orthogonal, and thus there exist two types of index
values, f i and fi . These magnitudes are different by rules
)LJ%DVLVIXQFWLRQV
of conversion at transition on another basis. Contravariant
magnitudes denoted by upper index and covariant mag$VLQWKHWUDGLWLRQDOYHUVLRQRIWKHPHWKRGRIOLQHV QLWXGHV±ORZHULQGH[$FFRUGLQJO\ ^ gij ` ±WZRLQGH[HV
DFURVVVHFWLRQRIWKHSODWHLVGLYLGHGLQWRLQÀLFWn lines magnitude is twice covariant metric tensor and the inverse
LQFOXGLQJWZRERXQGDU\OLQHVZLWKDQHTXDOUDQJHǻ+RZ- matrix ^ gij `
^g ij ` is twice contravariant metric tensor.
ever, in order to reduce dimensionality, we do not use method Metric tensor provides a transition from covariant to conRI¿QLWHGLIIHUHQFHVEXWWKHJHQHUDOL]HGPHWKRGRI%XE- travariant components and vice versa:
QRY*DOHUNLQ3HWURY%\FRRUGLQDWHy the unknown functions f x y is approximated in this manner:
fi gij ˜ f j , f i g ij ˜ f j f x y | f i x ˜ Mi y The constructed algorithm of lowering dimensionality
formally resembles algebraic transformations of tensor calculus. In this connection, the generalized method of lines
essentially tensor symbols and relevant rules are used. For
example, by repeated indexes is assumed summation. ReVROYLQJHTXDWLRQVDFFRUGLQJWR%XEQRY*DOHUNLQPHWKRG
DIWHUVXEVWLWXWLQJDSSUR[LPDWHUDWLRVRIWKHIRUPDUH
VFDODUPXOWLSOLHGLQ+LOEHUWVSDFHIRUEDVLFIXQFWLRQVMi y .
,WVKRXOGEHQRWHGWKDWLQ%XEQRY*DOHUNLQPHWKRGWKH
basis functions must satisfy the homogeneous boundary
conditions per coordinate y . These basis functions do not
VDWLVI\VXFKFRQGLWLRQV+RZHYHUDFFRUGLQJWRWKHJHQHUDOL]DWLRQRI3HWURY>@LWLVHQRXJKWKDWWKHVHIXQFWLRQVVDWLVI\
natural boundary conditions. It should be noted that in the
FRQVWUXFWLRQRIUHGXFHGHTXDWLRQVIRULQWHQVLYHXQNQRZQV
GLVSODFHPHQWLQWKHWKHRU\RIHODVWLFLW\DQGH[WHQVLYHXQNQRZQVVWUHVVHVWUDQVIRUPDWLRQRIFRUUHVSRQGLQJFRPSR-
wu x y Mi y wy
The scalar product in this case is the integral of multiplication functional factors. Therefore in mathematics
covariant and contravariant function magnitudes have an
LGHQWL¿HGQDPH%HFDXVHWKHFRYDULDQWPDJQLWXGHVDSSHDU
LQWKHGHFRPSRVLWLRQE\EDVLV¿JWKH\DUHFDOOHGFRHI¿FLHQWV&RYDULDQWPDJQLWXGHVDSSHDUDVDVFDODUSURGXFW
of the basis elements:
f x y f x y Mi y ³ f x y ˜ M ydy ,
h
i
0
WKH\DUHFDOOHG±PRPHQWV
7KHUHIRUH UHGXFHG HTXDWLRQV FDQ EH ZULWWHQ LQ IRXU
ways:
± ,QPRPHQWVLIGLVSODFHPHQWDQGVWUHVVHVLQWKHPRPHQWV
± ,QFRHI¿FLHQWVLIDOOXQNQRZQVDUHZULWWHQLQFRHI¿FLHQWV
± 7ZRYHUVLRQVRIFRPELQHGUHFRUGGLVSODFHPHQWLQWKH
PRPHQWVVWUHVVHVLQWKHFRHI¿FLHQWVRUGLVSODFHPHQWLQ
FRHI¿FLHQWVWUHVVHVLQWKHPRPHQWV
wu x y ³0 wy ˜ Mi ydy
h
u x ³ Mi y M cj y dy bij u x ,
³
h
0
w u j xM j y wy
˜ Mi y dy
h
j
j
0
wV x x y Mi y wy
h
wV x x y ˜ Mi y dy V x x y Mi y _ ³ V x x y ˜ Mic y dy
wy
0
0
0
³
h
h
V x x h ˜ M n h V x x ˜ M ³ V x j x ˜ M j y ˜ Mic y dy
h
V x x h ˜ Mn h V x x ˜ M b jiV x j x
0
wV wW
wW
w w
w
w
w
w
wW
wV
wW
w
W
wW
wV
w w
w
w
w
w
wW
wW
wV
P 9w
w Vw
w
O P
w
P
w
when x 0 :
$IWHUIRUPXODWLQJWKHFRQVWUXFWLQJHTXDWLRQVZHQHHGWR
O O w P V w
when x 0 :
IRUPXODWHWKHUHGXFHGERXQGDU\YDOXHDQGLQLWLDO±ERXQGDU\
O P w
0
0
0
w
O
q x (0, y, z , t D xT (TxC Tx q xC (0, y, z , t value problem in index form.
w w
W
w
O
P
7KHGHVFULEHGWHFKQLTXHFDQEHDSSOLHGWRVROYHWKH
when x l :
w
w
problem of thermal stresses in a rod of rectangular cross-secwhen: x l ,: DD
w
w
( , y, z , t W w
w
when x l :
WLRQ)LJZKLFKRFFXSLHVDWKUHHGLPHQVLRQDOUHJLRQ
w
w
W
l
w
q x (l , y, z , t D xT
(Txl TxCl q xC (l , y, z , t w
[0 d x d l ] u [0 d y d hy ] u [0 d z d hz ] .
w 7KH HTXDWLRQV
w
W The temperatures and heat flows of exterw
w
z
7KHWHPSHUDWXUHVDQGKHDWÀRZVRIH[WHUQDOHQYLURQPHQW
c
7KH
HTXDWLRQV
from the side of relevant part of boundary surface of beam
hz
are marked asc “ cǁŚĞŶ
”:
ǁŚĞŶ
ǁŚĞŶ
when: y ǁŚĞŶ
0 :,
ǁŚĞŶ
D
0
coordinates. The corresponding problem in ǁŚĞŶ
D
q y ( x,0, zǁŚĞŶ
, t D yT (Ty(Dx,0, z, t D
determining of the
component
of thermalRI QRQ
ǁŚĞŶ
VFULEHG
E\ WKH HTXDWLRQV
D z, t
TyC ( x,0,
q yC ,
0
D
VFULEHG
E\
WKH
HTXDWLRQV
RI
QRQ
VFULEHG
E\
WKH
HTXDWLRQV
RI
QRQ
(
x
,0,
z
,
t
QRQ
VFULEHGVFULEHG
E\ WKH E\
HTXDWLRQV
RI QRQ RI QRQ ǁŚĞŶ
D
;ϴͿ ;ϴͿ
WKH HTXDWLRQV
;ϴͿ
y Components
VFULEHG
E\WLPH
WKH h
HTXDWLRQV
RI
QRQ
stationary
thermal
conductivity.
;ϴͿ
GHSHQG
RQ WKH
FRRUGLQDWH
$V
D V\VWHP
ǁŚĞŶ
h : when:
;ϴͿ
VFULEHG
E\$V
WKH
HTXDWLRQV
RI
yV\VWHP
hy :QRQyǁŚĞŶ
ǁŚĞŶ
;ϴͿ
l
ǁŚĞŶ
GHSHQG
RQ
WKH
WLPH
FRRUGLQDWH
$V
D
GHSHQG
RQ
WKH
WLPH
FRRUGLQDWH
D
V\VWHP
VFULEHG E\
WKH
HTXDWLRQVǁŚĞŶ
RI QRQ
D
õ
HTXDWLRQVLQSDUWLDOGHULY
GHSHQGGHSHQG
RQ WKH WLPH
FRRUGLQDWH
D V\VWHP
;ϴͿ
h RQ WKH
WLPH FRRUGLQDWH
$V
D V\VWHP
y$V
D yTy (Ty (Dx, hy , z, t q y ( x, hy , zǁŚĞŶ
, t D
;ϴͿ
HTXDWLRQVLQSDUWLDOGHULY
HTXDWLRQVLQSDUWLDOGHULY
tives
GHSHQG RQ WKH
WLPH FRRUGLQDWH
$V D V\VWHP
HTXDWLRQVLQSDUWLDOGHULY
ǁŚĞŶ
D
GHSHQG
RQ
WKH
WLPH
FRRUGLQDWH
$V D V\VWHP D
HTXDWLRQVLQSDUWLDOGHULY
the first
order
in
the
spatial
and
time
coorHTXDWLRQVLQSDUWLDOGHULY
GHSHQG
RQ
WKH
WLPH
FRRUGLQDWH
$V
D
V\VWHP
GLQDWHV WKHVH HTXDWLRQV
DUH ZULWWHQ LQ WKH
( x,hy , z , t
q yC (x,hy D
, z , t HTXDWLRQVLQSDUWLDOGHULY
Fig. 2. %HDPRIUHFWDQJXODUFURVVVHFWLRQ
TyC ǁŚĞŶ
D WKHVH HTXDWLRQV
DUH ZULWWHQ
GLQDWHVGLQDWHV
WKHVH HTXDWLRQV
HTXDWLRQV
DUH
ZULWWHQ
LQ WKH
WKH LQ WKH
HTXDWLRQVLQSDUWLDOGHULY
GLQDWHV
WKHVH
DUH
ZULWWHQ
LQ
GLQDWHV
WKHVH HTXDWLRQV
DUH ZULWWHQ
LQ
WKH
ǁŚĞŶ
ǁŚĞŶ
z
0
:
0 ,: z 0 : GLQDWHV WKHVH HTXDWLRQV DUH ZULWWHQwhen:
LQ WKHz ǁŚĞŶ
D ǁŚĞŶ GLQDWHV
WKHVH HTXDWLRQV
DUH ZULWWHQǁŚĞŶ
LQ WKH
The problem of thermal stresses
is
considered
within
D 0 (T ( D
,0, tt GLQDWHV
HTXDWLRQV
w
q z (WKH
x, y,0,
t D
x,, y,0,
­ w WKHVH
w
w DUH ZULWWHQ LQ
zT z ǁŚĞŶ
D
ǁŚĞŶ
w U w theory
limits of an important partition
of °­the
of elasticity
w
w
D
­
w
w
w
w
w
­ U c w ­Uw w w w ww Qww ;ϵͿ
D
T
(
x
,
y
,0,
t
q
(
x
,
y
,0,
t
zC D
zCǁŚĞŶ
;ϵͿ Q
±WKHUPRHODVWLFLW\>@,QWKLVSUREOHPZHFRQVLGHUWZR
;ϵͿ
°°­U c w °° U w­w www w w
w
w
;ϵͿ
z
h
:
ǁŚĞŶ
ǁŚĞŶ
w
w
w
w
w
w
w
°
°
U
;ϵͿ
hz : D hz : z ǁŚĞŶ
SK\VLFDO¿HOGV±WKHUPDODQGPHFKDQLFDO
°° w ° w°­wU www wOww w w w when
w z ǁŚĞŶ
;ϵͿ
°
ǁŚĞŶ
w
w
°
;ϵͿ
U
°
w
°
D
D hz (T (D
°°° °° Oww w wwO w ww
,, y,, hh ,,tt ǁŚĞŶ
7KHUPDO¿HOGLQVROLGVLVGHVFULEHGE\WKHWKHUPDOFRQ;ϵͿ
q
(
x
,
y
,
h
,
t
x
°
w
z
z
zT
z
z
O
D
ǁŚĞŶ
®°° °
w
°°°°
O
w
w
D
° O w
w
GXFWLYLW\HTXDWLRQ,QWKHPRVWJHQHUDOIRUPWKHUPDO¿HOG
w
°
®
®
w
°
D
°
T
(
x
,
y
,
h
,
t
q
(
x
,
y
,
h
,
t
°
®°
w
O zC
zC Dz
z
wO
depends not only on three spatial
coordinates
Oon
°® °°° O wwwbutOalso
°°®
In the nextnumerical calculations,
such ° ®° O ww O ww ww
°
°
time coordinates. The corresponding
problem
in wdeterminingw
In the next numerical
such
form of boundcalculations,
°°
boundary
®
O
°
w
°
w
form
of
conditions
allows
to
take
° °
O w ary conditions allows to take into account the relevant
°°°
w
O
RIWKHFRPSRQHQWRIWKHUPDO¿HOGLVGHVFULEHGE\WKHHTXDpart
w
w
°
O
°¯ °° O w O °°° conductivity.
w ww RIVXUIDFHERXQGDU\FRQGLWLRQVRI¿UVWRUGHU D o f Dando f
°
O
tions of non-stationary thermal
Components
°
°
°
w
D
f
D
o
f
¯ ° O ww O w w
°¯¯°
DT o fD o
D o
of
wO w second order D T o 0 .
¯° °
GHSHQGRQWKHWLPHFRRUGLQDWH$VDV\VWHPRIGLIIHUHQWLDO
°¯
D
o
f
w O
D o
o 00D o
D of
w
¯°°
D o
Changing temperature ofDDsolid
HTXDWLRQVLQSDUWLDOGHULYDWLYHVRIWKH¿UVWRUGHULQWKHVSDWLDO
TT TT °¯xx yy zz w
o body in time practicallyD o f
D
o
DQGWLPHFRRUGLQDWHVWKHVHHTXDWLRQVDUHZULWWHQLQWKHIRUP
GRHVQRWFDXVHG\QDPLFHIIHFWV7KHUHIRUHPHFKDQLFDO¿HOGV
D o
qq qq qq U GLVSODFHPHQWVWUHVVDQGVWUDLQ¿HOGVDUHVWDWLRQDU\DQG
q
x
y
z
U
U
SODFHPHQW
VWUHVV
DQG
VWUDLQ ILHOGV DUH VW
­ wT wqx q wxq yy zwqzU UO
DUHGHVFULEHGE\VWDWLFHTXDWLRQV
SODFHPHQW
VWUHVV
DQGILHOGV
VWUDLQILHOGV
SODFHPHQW
VWUHVV DQG
DQG
VWUDLQ
ILHOGV
DUH VW
VW DUH VW
U
c
Q
U
VFULEHGE\VWDWLFHTXDWLRQV
O
O
c
SODFHPHQW
VWUHVV
VWUDLQ
DUH
°
SODFHPHQWVFULEHGE\VWDWLFHTXDWLRQV
VWUHVVVFULEHGE\VWDWLFHTXDWLRQV
DQG VWUDLQILHOGV
DUH VW
U
c wx wy wz O WKHTXDQWLW\RIKHDW
7KHVHHTXDWLRQVDUHZULWWHQDVHTXDWLRQVLQSDUWLDOGHt
w
O
SODFHPHQW
VWUHVV
DQG
VWUDLQ
ILHOGV
DUH
VWHTXDWLRQV
U
7KHVH
HTXDWLRQV
DUH
ZULWWHQ
DV
°
VFULEHGE\VWDWLFHTXDWLRQV
O WKHTXDQWLW\RIKHDW
Q WKHTXDQWLW\RIKHDW
WKHTXDQWLW\RIKHDW
SODFHPHQW
VWUHVV
DQG
VWUDLQ
ILHOGV
DUH VW
VFULEHGE\VWDWLFHTXDWLRQV
O
Q
ULYDWLYHVRI¿UVWRUGHU
7KHVH
HTXDWLRQV
DUH
ZULWWHQ
DV
HTXDWLRQV
7KHVH
HTXDWLRQV
DUHVWUHVV
ZULWWHQ
DVVWUDLQ
HTXDWLRQV
VFULEHGE\VWDWLFHTXDWLRQV
SODFHPHQW
DQG
ILHOGV
DUH VW
°
WKHTXDQWLW\RIKHDW
wT
in HTXDWLRQV
partial
ofVFULEHGE\VWDWLFHTXDWLRQV
first
order:
7KHVH
DUH
ZULWWHQ
DV
HTXDWLRQV
O
7KHVHderivatives
HTXDWLRQV
DUH
ZULWWHQ
DV HTXDWLRQV
qx OT To ensureWKHTXDQWLW\RIKHDW
unity of solution
of
the
system
°°
7KHVH
HTXDWLRQV
DUH
ZULWWHQ
DV
HTXDWLRQV
WKHTXDQWLW\RIKHDW
VFULEHGE\VWDWLFHTXDWLRQV
wW xy HTXDWLRQV
wx
wV x 7KHVH
wW xz
DUH ZULWWHQ DV HTXDWLRQV
WKHTXDQWLW\RIKHDW
ZHQHHGWRVSHFLI\WKHLQLWLDODQGERXQGa®
ZULWWHQ DV
HTXDWLRQV
wwwVWW 7KHVH
wW X ,DUH
V
wV
wwWWW HTXDWLRQV
w
w
T
w
ZHQHHGWRVSHFLI\WKHLQLWLDODQGERXQG
ZHQHHGWRVSHFLI\WKHLQLWLDODQGERXQG
w
W
x
y
z
w
w
w
X
V
W
w
w
°
conditions.
The
initial
conditions
are
in
the
ZHQHHGWRVSHFLI\WKHLQLWLDODQGERXQG
X
q y Ory
w
W
V
W
w
w
ZHQHHGWRVSHFLI\WKHLQLWLDODQGERXQG
T
x
y
z
w
w
w
w
w
w
ry wconditions.
The initial conditions are in wthe °
ZHQHHGWRVSHFLI\WKHLQLWLDODQGERXQG
wwwV y wwWW wwW yzwW
y
wwWwxy wwV
ZHQHHGWRVSHFLI\WKHLQLWLDODQGERXQG
wW Y ,
w
wxyV VwwwWV
°
w
w
W
W
w
w
W
ZHQHHGWRVSHFLI\WKHLQLWLDODQGERXQG
y
yz
w
w
w
W
V
W
wT ɯ \ ] 7 ɯ \ ] wwW ww
wwV w
Yw,,wW ww Y , °
w
Y
qz O
w
w
w
W
V
W
here
ɯ
\
]
7
ɯ
\
]
T ɯɯ
\
]
7
ɯ
\
]
x
y
w
z
w
w
w
w
w
\ \] ]ɯ7\ ɯ] \ 7] ɯ \ ] w
wz ɯ
¯°
wz wwWW wWww wwWW wwWw wwV
wV
ɯ \ ]] 7 ɯ temperature
\ ] w
distribution
wZ , wWWw w wwVwW wVwV
w
W
w
W
ɯ
\
]
7
ɯ
\
]
ɯɯ \\ ]]ɯɯ \\ w
wW
] ɯ \temperature
wZ
Zw,,wV z wZ ,
wwVwW yz
wwW xz w
] 7 ɯ \ ]distribution
ɯ
\
]
w
W
W
w
w
V
q
Z
,
where T T x y z ±WHPSHUDWXUHIXQFWLRQ
,
,
q
w
w
w
w
w
q
w
ɯthe
\ volume
] x
z
y of the
w
throughout
body at the inir
wwwx wwWW wPwy wwWW wz wwV
w O
]
±FRPSRQHQWVRIWKHKHDWÀX[ q x y z ɯ, U\ ±GHQVLW\RI
w
wP VO w
VwvO***
P
w
w
*
w
w
w
w * wwuP OVPP VO Ow
vO* P ww the material, c ±VSHFL¿FKHDW OTThe
±FRHI¿FLHQWRIWKHUPDO
w
w
w
V
P P O PO VO P Owv P w u
boundary conditions of the problem
O
w
w
Ow wP OVxwPOP POOwP P
w The boundary conditions of the problem w
O conductivity. Q ±WKHTXDQWLW\RIKHDWJHQHUDWHGE\LQWHUQDO
V wy DO w
P wO (P
wx O (O w2wO
OP2OP
ww will
be
set
as
conditions
of
convective
heat
O
P
V
O
P
w
O
P
x
0
:
heat sources.
O OwwO *P wwOO P
w D PPO D P
OOD
P
x
0
:
x
0
:
wO*2PPO P D
O O PPOwwww PO(OO
x 0 : x 0D:
(0, y, z , t O
7RHQVXUHXQLW\RIVROXWLRQRIWKHV\VWHPZHQHHG
wP O DT(OP
P0 T
T
w
w
u
w
O
P
x 0D
:
y, z , t(
0, y, z , t D D The
((0,
0,
** O(wOu
* ,w
O P D
2P to specify the initial and boundary conditions.
x l :D initial
y, z , t(0, y, z , tww (O W2wwP wwwuuWWz*O, D
*
(O P 2wwP
D
(0, y, z , t u ,wz
*, O P conditions are in the form:
zv,*t W w wuW*O
xx ll :: xx llD:: D ( , y, z(0,
wP * ,wwu *
, t yw,w
w
v
W
,
D
w
w
w
w
u
x
l
:
D
(
,
y
,
z
,
t
D
(
,
y
,
z
,
t
t T(x, y, z) T0(x, y, z), D
w * W * w , xD l : ( , y, z , t ( ,
y, z , t www
w wwwwuuxW** Wwxyu* . wy
D
( , y, z , t w wW*.. wwu . wy
W
where:
w
W
D
( , y, zww, t w wuW w . *
EH VHSDUDWHO\
D
( , y, zw, t w *HTXDWLRQV
W w 7KH
. w wuFDQ
FRQVL
T0(x, y, z)±WHPSHUDWXUHGLVWULEXWLRQWKURXJKRXWWKHYROXPH
*
WFDQ
. EH VHSDUDWHO\
www HTXDWLRQV
wuFDQ
7KH
HTXDWLRQV
FDQEH
EH
VHSDUDWHO\
FRQVL FRQVL The temperatures and heat flows of 7KH
exter-HTXDWLRQV
VHSDUDWHO\
FRQVL
W
.
of the body at the initial time. c The temperatures and heat flows ofw7KH
exter- 7KH
w HTXDWLRQV
w FDQ EH VHSDUDWHO\
FRQVL xz
7KH HTXDWLRQV
EH
FRQVL
wx7KH FDQ
wz VHSDUDWHO\
c
c
nal
environment
from
the
side
of
relevant
The boundary conditions
of
the
problem
will
be
set
as
HTXDWLRQV
FDQ
EH
VHSDUDWHO\
FRQVL
c
c
7KH HTXDWLRQV FDQ EH VHSDUDWHO\ FRQVL
c transfer.
part of boundary surface of beam
are marked
conditions of convective heat
7KHHTXDWLRQVFDQEHVHSDUDWHO\FRQVLGHUHG
c
ered:
c
ZHQHHGWRVSHFLI\WKHLQLWLDODQGERXQG
ɯ \ ] 7 ɯ \ ] ɯ \ ] ɯ \ ] 7 ɯ \ ] ɯ \ ] $33/,&$7,212)*(1(5$/,=('0(7+2'2)/,1(6
9&+<%,5<$.29$67$1.(9,&+'/(9.,96.,<90(/1<&+8.
O wu * (O 2P wv*
P wx
P
wy
Vy
O ww* (O 2P D T (T T0 P wz
P
O wu * O wv*
Vz
P wx P wy
(O 2P ww* O 2P DT (T T0 P
P
wz
7
§ ww* wv* ·
¸,
¨¨
8
wz ¸¹
© wy
where: f * P ˜ f .
%RXQGDU\ FRQGLWLRQV RI VWUHVV-strain state
in general are written by the analogy of work
[7] (-(
For construction of the boundary condiWLRQV 9-( ZH ZULWH WKH VXP RI SURMHctions of all power factors that act on the
boundary contour, on corresponding axis. In
)LJ . RQ WKH SODQH x0 y , the magnitudes
which act on area x 0 are shown.
The first index —signifies the number of
the axis which is perpendicular to the area.
The second index shows the direction of displacement or stress.
W yz
when: x 0 ,
V x0 (k 0 2
xx
(k 0
xy
(k 0
xz
when: x
W0 2 xy
W xz0 2
l,
where: f 0
(k l 2
xx
(k l 2
xy
(k l
xz
V l
x
W l
xy
Wl 2 xz
f (0, y, z fl
u0 k xx0
(k 0 2
xx
v0 k xy0
(k 0 2
xy
k xz0
(k 0 2
xz
w0 k xxl
(k l 2
xx
k xyl
(k l 2
xy
k xzl
(k l 2
xz
u l
v l
wl f (l , y, z .
Fig. 3. Modeling of the boundary conditions
uc , vc — displacement of points of the external environment,
u, v — horizontal and vertical displacement
of points of object,
q xx , q xy — external load on object,
V x , W xy — QRUPDO DQG WDQJHQWLDO VKHDU
stresses along the contour inside the object,
k xx , k xy — spring stiffness.
(k 0 2
xx
q xx0 (k 0 2
xy
(k 0 2
xz
(k l 2
xx
(k l 2
xy
(k l 2
xz
qxy0 q xz0 q l
xx
q l
xy
q xzl k xx0
(k 0 2
xx
uc0
0, 9
vc0
0, (20
wc0
0, (
ucl
0, (22
vcl
0, (
wcl
0. (
k xy0
(k 0 2
xy
k xz0
(k 0 2
xz
k xxl
(k l 2
xx
k xyl
(k l 2
xy
k xzl
(k l 2
xz
$33/,&$7,212)*(1(5$/,=('0(7+2'2)/,1(6
%\ FKDQJLQJVWLIIQHVV ZHFDQVSHFLI\ DQ\
7KH ILUVW HTXDWLRQ RI V\VWHP LV PXOWistandard conditions of interaction of the ob- plied as a scalar by {Mi Mi ( y` where
ject with the external environment.
i n , and than integrated by coordi)RU HTXDWLRQV -( WKH SURFHGXUH RI
nate y :
lowering dimension is performed by coordinates y, z . $WILUVW— reduction by y %DVLF (( wq x wq y wq z Uc wT Q( x, y, z, t 0, M ( y i
wt
wx wy wz
{Mi Mi ( y` ,
functions
are
applied
(2
i n , where the following rules are tak- wq xi G ˜ni ˜ ˜ q y i ( x, z, t G ˜i˜ ˜ q y i ( x, z, t w
x
en into account:
wq
wT
f ( x, y, z , t f i ( x, z , t ˜ Mi ( y ,
b ji g jD q yD ( x, z, t zi Uc i Qi ( x, z, t 0;.
³ f ( x, y, z, t ˜ M ( ydy
( f ( x, y, z , t Mi ( y hy
i
0
f i ( x, z, t ³
·
§ wf ( x, y, z, t , Mi ( y ¨
x
w
¹̧
©
wf ( x, y, z, t Mi ( ydy
wx
hy
0
w
w
f ( x, y, z, t ˜ Mi ( ydy
f i ( x, z, t ³
wx
wx 0
Where f is a factor of stress, then
hy
³
§ wf ( x, y, z, t ·
¨¨
, Mi ( y ¸
wy
©
¹̧
f ( x, y, z , t Mi ( y _
hy
0
y hy
y 0
wf ( x, y, z, t Mi ( ydy
wy
³ f ( x, y, z , t Mic( y dy
wz
wt
In the next step we perform the reduction
by z RIHTXDWLRQ
wq
i
i
( xi G ˜ni ˜ ˜ q y ( x, z , t G ˜i˜ ˜ q y ( x, z , t wx
wq
wT
b ji g jD q yD ( x, z , t zi U c i wz
wt
Qi ( x, z , t 0, M k ( z >
>
b pk g ps q zis ( x, t Uc
wTik
Qik ( x, t 0,
wt
hy
f ( x, hy , z, t Mi (hy f ( x,0, z , t Mi 0
³ f j ( x, z, t M j ( y Mic( y dy
+HUH ª¬G ˜ni ˜ ˜ q y ˜i k˜ G ˜i˜ ˜ q y ˜i k˜ º¼
hy
f ( x, hy , z, t G f ( x,0, z , t G 0
˜n
i˜
i
˜
i˜
i
b ji g jD fD ( x, z, t When: f is a factor of temperature and
displacement ( T , u , v, w then:
·
§ wf ( x, y, z, t ¨¨
, Mi ( y ¸
wy
¹̧
©
³
hy
i
0
³
hy
wf ( x, y, z, t Mi ( ydy
wy
w( f j ( x, z, t M j ( y Mi ( ydy
wy
³M ( yM c ( y f
0
hy
j
j
@
wq xik
i˜
i˜
G ˜ni ˜ ˜ q y ˜ k ( x, t G ˜i˜ ˜ q y ˜ k ( x, t wx
˜k
˜k
b ji g jD q yDk ( x, t G ˜mk ˜ ˜ q z i ˜ ( x, t G ˜k˜ ˜ q z i ˜ ( x, t (2
0
( x, z, t dy
bij g jD fD ( x, z, t ª¬G ˜mk ˜ ˜ qzi˜ k˜ G ˜k˜ ˜ qzi˜ k˜ º¼
@
ª q y˜ k˜ º
«
»
« 0 »
»,
«
«
»
« 0 »
« q n˜ »
¬ y˜ k ¼
ª qzi˜ ˜ º
«
»
« 0 »
«
»,
»
«
« 0 »
« q ˜m »
¬ zi ˜ ¼
n – number of lines along the axis y , m number of lines along the axis z .
Indexes i, j , D , E , J - are related to reduction by coordinate y ; indexes k , p, s, I , H reduction by coordinate z .
Taking into account the boundary condiWLRQV-
9&+<%,5<$.29$67$1.(9,&+'/(9.,96.,<90(/1<&+8.
ª¬G ˜ni ˜ ˜ q y ˜i k˜ G ˜i˜ ˜ q y ˜i k˜ º¼
ª¬G i˜˜m ˜ qzi˜ k˜ G i˜˜ ˜ qzi˜ k˜ º¼
The substitution:
ªD yT
ªD yT
˜ Ty˜ k˜ º
«
»
«
« 0 »
«
«
» T D i ˜ ͕ «
y˜ k
«
»
«
0
«
»
«
« hy
« hy
n˜ »
¬D yT ˜ Ty ˜ k ¼
¬D yT
ªD yT
˜ Ty˜ k˜ º ªD yT
˜ TyC˜ k˜ º ª q yC˜ k˜ º
«
» «
» «
»
0
« 0 » «
» « 0 »
»«
«
»«
»
» «
«
» «
»
0
« 0 » «
» « 0 »
« hy
« hy
n˜ »
n˜ »
« q n ˜ »
¬D yT ˜ Ty ˜ k ¼ ¬D yT ˜ TyC ˜ k ¼ ¬ yC ˜ k ¼
ª D zT
˜ Tzi˜ ˜ º ª D yT
˜ TzCi˜ ˜ º ª qzCi˜ ˜ º
«
» «
» «
»
0
« 0
» «
» « 0 »
»«
«
»«
»
«
» «
» «
»
0
« 0
» «
» « 0 »
«D hz ˜ T ˜ m » «D hz ˜ T ˜ m » « q ˜ m »
¬ yT zi ˜ ¼ ¬ yT zCi ˜ ¼ ¬ zCi ˜ ¼
˜ TyC˜ k˜ º
ª q yC˜ k˜ º
»
«
»
0
»
« 0 »
» TC i ˜ ͕ «
»
y˜ k
»
»
«
0
»
« 0 »
»
« q n ˜ »
˜ TyC ˜nk˜ ¼
¬ yC ˜ k ¼
D zT ˜ TzC i ˜
ª D zT
˜ Tzi˜ ˜ º
«
»
«
»
0
0
«
»
«
»
˜
k
»
» T D zi ˜ ͕ «
«
«
»
»
«
0
« 0 »
«
»
«D hz ˜ T ˜ m »
h
m
˜
z
«D ˜ T »
¬ zT zi ˜ ¼
ª
¬
zT
˜
zC i ˜
ª qzC ˜i˜ º
«
»
« 0 »
»
T
TC zi˜ k˜ ͕ «
»
«
« 0 »
« q ˜ m »
¬ zC i ˜ ¼
¼
Similarly, the reduction of remaining
HTXDWLRQVRIV\VWHPLVGRQH
wTik
,
wx
OT bij g jD TDk ( x, t ,
qxik
q yik
qzik
OT
OT bkp g psTis ( x, t .
(27
º
Taking into account the boundary conditions (27-(28LQHTXDWLRQ0
wq
( xik ª¬ g iD ˜ T D yD k g kH TC y iH g iD ˜ q yCD k º¼ wx
b ji g jD q yD k ª¬ g kH ˜ T D ziH giD TCzD k g kH ˜ q yCiH º¼ wT
bpk g ps qzis U c ik Qik wt
q yC ˜i k˜ ͕
(
(
(
Substituting (-( LQ 9 HTXation
(LVIRUPHG
qzC ˜i k˜ ͘
(28
w 2Tik
ª g iD ˜ T D yD k g kH TC y iH g iD ˜ q yCD k º¼ wx 2 ¬
OT b ji g jD bDE g EJ TJ k OT
ª¬ g kH ˜ T D ziH g iD TC zD k g kH ˜ q yCiH º¼ wT
OT bpk g ps bsI g IH TiH U c ik Qik wt
The reduced initial conditions will look
like Tik ( x T0ik ( x
7KHQH[WVWHSLVWKHUHGXFWLRQRIHTXDWLRQV
of system (-( ,Q WKLV V\VWHP WKH SUocess of reduction expressions are substituted
for V y , V z , W yz -8 XVLQJ WKH DERYH
mentioned operations:
$33/,&$7,212)*(1(5$/,=('0(7+2'2)/,1(6
P
du *ik
dx
(O 2P dV xik
dx
dW xyik
V xik O
(O 2P bij g jD v*Dk O
(O 2P bkp g ps w*is dv*ik
W xyik bij g jD u *Dk ,
dx
dw*ik
W xzik bkp g psu *is ,
dx
>
O 2P DT (Tik T0ik ,
(O 2 P O
@>
>
@>
>
˜k
˜k
( O P b ji g jD bDE g EJ v* xJk O 2P
2(O 2 P w*Ds b ji g jD D T (TDk T0Dk O 2P
b ji g jD V xDk O 2P
dx
2O
b g jD ˜ bkp g ps
O 2 P ji
i˜
@
@>
@
>
>
@>
(
(
@
(
b ji g jDW xyDk b pk g psW xzis G ˜ni ˜W xy ˜ k G ˜i˜W xy ˜ k G ˜mk ˜W xy i ˜ G ˜k˜W xy i ˜ X ik ,
i˜
@>
(
8
@
b pk g psbsI g IH v*iH b pk g ps ˜ bij g jD w*Ds G ˜ni ˜ V y ˜ k G ˜i˜ V y ˜ k G ˜mk ˜ W xz i ˜ G ˜k˜ W xz i ˜ Yik ,
i˜
i˜
˜k
>
˜k
@>
@
dW xzik
O
(O P 2O
b pk g psV xis bpk g psbsI g IH w* xiH b pk g ps ˜ bij g jD v*Ds dx
O 2P
O 2P
OP
2(O 2P D T bpk g ps (Tis T0is b ji g jD ˜ bkp g ps v*DH b ji g jD bDE g EJ w*Jk O 2P
>
@>
@
@
G ˜ni ˜W yz ˜ k G ˜i˜W yz ˜ k G ˜mk ˜V z i ˜ G ˜k˜V z i ˜ Z ik
i˜
i˜
P
˜k
˜k
P
k xx0
k xx0
*0
*0
0
ucik
u
q
ik
xxik
0 2
0 2
*0 2
(k xx (k xx (k xx (9
The reduced boundary conditions of stress-strain state will look like:
(k xx0 P
0
V xik
2
(k P
0 2
xy
(k xz0 2
P
W
0
xyik
W
0
xzik
(k xxl P
(k 0 2
xy
l 2
xy
(k xzl 2
v *0
ik
P
(k 0 2
xy
q
0
xyik
k xy0
(k 0 2
xy
*0
vcik
P
k xz0
k xz0
*0
*0
0
wcik
wik qxzik 0 2
0 2
0 2
(k xz (k xz (k xz l
V xik
2
(k P
k xy0
W
l
xyik
W
l
xzik
P
k xxl
k xxl
*l
*l
l
ucik
u
q
xxik
ik
l 2
l 2
l 2
(k xx (k xx (k xx k xyl
(k l 2
xy
v *l
ik
P
(k l 2
xy
q
l
xyik
k xyl
(k l 2
xy
*l
vcik
P
k xzl
k xzl
*l
*l
l
wcik
wik qxzik l 2
l 2
l 2
(k xz (k xz (k xz 0,
0,
0,
0,
(
0,
0.
The next step — the problem numerically on the geometryCONCLUSIONS
and initial-boundary condi7KHQH[WVWHS±WKHSUREOHPQXPHULFDOO\LVVLPXODWHG
XVLQJWKHPHWKRGRIGLVFUHWHRUWKRJRQDOL]DWLRQE\6.+RGXQRY>@'LIIHUHQWLDOHTXDWLRQVLQSDUWLDOGHULYDWLYHVDUH
7KHVXJJHVWHGPRGL¿FDWLRQRIWKHPHWKRGRIOLQHVVLJWKRJRQDOL]DWLRQE\6.+RGXQRY>@'LIIH
solved
using
the method of
This probHQWLDO
HTXDWLRQV
LQRunge-Kutta-Merson.
SDUWLDO GHULYDWLYHV
DUH QL¿FDQWO\LQFUHDVHVWKHDFFXUDF\RIFDOFXODWLRQ7KHSUREOHP
lem is programmed by the Fortran programming language. of setting boundary function is solved and this allows the
Depending on the geometry and initial-boundary conditions; solution of problem of dynamics and thermoelasticity.
temperature, displacement and stress are determined at certain points of the construction.
9&+<%,5<$.29$67$1.(9,&+'/(9.,96.,<90(/1<&+8.
LWHRUɿ\DVSRUXG´±3UHYLHZ,VVXHʋ±S±
LQ8NUDLQLDQ
Vekua I.N., 1982. Some common methods of con- 8. Godunov S.K., 1961. On the numerical solution of
structing different versions of the theory of shells. M
boundary value problems for systems of linear ordinary
6FLHQFH+RPH(GLWRULDOSK\VLFDODQGPDWKHPDWLFDO
GLIIHUHQWLDOHTXDWLRQV$GYDQFHV0DWKHPDWLFDO6FLHQFOLWHUDWXUHSLQ5XVVLDQ
HV±Y±1R±3±LQ5XVVLDQ
Vinokurov L.P., 1956. Direct methods for solving spatial and contact problems for arrays and foundations. ɉɊɂɆȿɇȿɇɂȿɈȻɈȻɓȿɇɇɈȽɈɆȿɌɈȾȺɉɊəɆɕɏ
ɄɁȺȾȺɑȺɆɌȿɊɆɈɍɉɊɍȽɈɋɌɂɌɈɅɋɌɕɏɉɅɂɌ
.KDUNLY3XEO.KDUNRY8QLYSLQ5XVVLDQ
ɋɈɈȻɓȿɇɂȿɉɈɋɌɊɈȿɇɂȿɊȺɁɊȿɒȺɘɓɂɏ
6KNHOɺY L.T., Stankevich A.N., Poshivach D.V., 2004.
ɍɊȺȼɇȿɇɂɃ
$SSOLFDWLRQRIWKHPHWKRGRIOLQHVIRUWKHGHWHUPLQDWLRQ
of the stress and strain states of the spatial and plate
VWUXFWXUDOHOHPHQWV0RQRJUDSK±..18&$ ȺɧɧɨɬɚɰɢɹȺɜɬɨɪɚɦɢɞɚɧɧɨɣɪɚɛɨɬɵɩɪɟɞɥɨɠɟɧɧɨɜɵɣ
ɜɚɪɢɚɧɬɩɨɧɢɠɟɧɢɹɪɚɡɦɟɪɧɨɫɬɢɦɟɬɨɞɨɦɩɪɹɦɵɯɱɬɨɫɭSLQ5XVVLDQ
ɳɟɫɬɜɟɧɧɨɪɚɫɲɢɪɢɥɨɟɝɨɜɨɡɦɨɠɧɨɫɬɢɈɛɨɛɳɟɧɧɵɣɦɟɬɨɞ
Mikhlin S.M., 1957. Variational methods in matheɩɪɹɦɵɯɩɪɢɦɟɧɢɦɞɥɹɩɥɢɬɩɟɪɟɦɟɧɧɨɣɬɨɥɳɢɧɵɚɬɚɤɠɟ
matical physics // State-ing because of technical and
ɜɡɚɞɚɱɚɯɞɢɧɚɦɢɤɢɈɫɧɨɜɧɚɹɢɞɟɹɫɨɫɬɨɢɬɜɩɨɧɢɠɟɧɢɢ
WKHRUHWLFDOOU\0±SLQ5XVVLDQ
ɪɚɡɦɟɪɧɨɫɬɢɩɨɩɪɨɫɬɪɚɧɫɬɜɟɧɧɨɣɤɨɨɪɞɢɧɚɬɟɫɩɨɦɨɳɶɸ
Kovalenko A.D., 1970. Fundamentals of thermoelastic- ɩɪɨɟɤɰɢɨɧɧɨɝɨɦɟɬɨɞɚɤɩɪɨɟɤɰɢɨɧɧɨɦɭɦɟɬɨɞɭɨɬɧɨɫɢɬɫɹ
LW\1DXNRYD'XPND±LQ5XVVLDQ
ɦɟɬɨɞȻɭɛɧɨɜɚ±ȽɚɥɟɪɤɢɧɚɨɛɨɛɳɟɧɧɵɣȽɂɉɟɬɪɨɜɵɦ
Kovalenko A.D.,1975. Thermoelasticity. Textbook. To >@ȼɪɚɛɨɬɟɦɟɬɨɞɢɤɚɩɨɧɢɠɟɧɢɹɪɚɡɦɟɪɧɨɫɬɢɢɫɩɨɥɶɡɭ9LVKFKD6FKRRO±SLQ5XVVLDQ
ɟɬɫɹɞɥɹɪɟɞɭɤɰɢɢɭɪɚɜɧɟɧɢɣɬɟɪɦɨɭɩɪɭɝɨɫɬɢ
6WDQNHYLFK$0&KLEɿU\DNRY9.6NHOH/7 ɄɥɸɱɟɜɵɟɫɥɨɜɚɦɟɬɨɞɩɪɹɦɵɯɦɟɬɨɞȻɭɛɧɨɜɚȽɚɥɺɪɤɢ7KHPHWKRGRIOLQHVLQSURVWRURYɿ\]DGDFKɿWHRUɿʀSUX- ɧɚɉɟɬɪɨɜɚɬɟɪɦɨɭɩɪɭɝɨɫɬɶɬɨɥɫɬɵɟɩɥɚɫɬɢɧɵɫɬɪɨɢɬɟɥɶ]KQRVWɿ1DXNRYDWHKQɿFKQ\]EɿUQLN³2SɿUPDWHUɿDOɿY ɧɚɹɦɟɯɚɧɢɤɚ
5()(5(1&(6
2.
7.
TEKA. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE – 2014, Vol. 14, No. 4, 15–18
Assessment of The Mechanical Properties of Fresh Soil-grown
Cucumber Fruits
Józef Gorzelany, Natalia Matłok, Dagmara Migut
Department of Food and Agriculture Production Engineering of the University of Rzeszów
Received December 01.2014; accepted December 17.2014
Summary. The handling, storage, and transportation of fresh
FXFXPEHUVDIIHFWWKHZDWHUFRQWHQWLQWKHIUXLWDQGFRQVHTXHQWO\
LWV¿UPQHVVDQGWKHTXDOLW\RI¿QDOSURGXFWV7KLVFRQFHUQV
the raw material intended for both direct consumption and
processing. The water losses resulting from too long storage
VXEVWDQWLDOO\DIIHFWWKH¿QDOSDUDPHWHUVRIWKHSURGXFW7KHDLP
of this study was the determination of water content impact on
the selected mechanical properties of fresh cucumbers, analysis
RIFXFXPEHUVHFWLRQLPDJHDQGDVVHVVPHQWRISHHODQGÀHVK
resistance in fresh fruits of the tested cucumber varieties to
mechanical damages caused at the process of their puncturing
ZLWKDPPGLDPHWHUSXQFK
Key words: soil-grown cucumbers, mechanical properties, puncture force of peel and tissue, water content.
INTRODUCTION
&XFXPEHU&XFXPLVVDWLYXV/EHORQJVWRDQQXDOSODQWV
RIKLJKWHPSHUDWXUHDQGVRLOUHTXLUHPHQWV,WUHSUHVHQWV
pumpkin vegetables of Cucurbitales order. Their distinguished varieties are those for sowing in soil and those for
FXOWLYDWLRQXQGHUFRYHUV>@
The production of soil-grown cucumbers regularly
increases due to their high popularity and a wide range
RI FXFXPEHU IUXLW XVH ,Q WKH FURS ZDV WRQV DQG LW ZDV FORVH WR WKDW RI ,Q FRPSDULVRQ
ZLWKWKHDYHUDJHSURGXFWLRQLQWKHSHULRGWKH
SURGXFWLRQRIVRLOJURZQYHJHWDEOHVLQZDVORZHU
E\>@
$SDUWIURPWKHPDVVFRQVXPSWLRQRIFXFXPEHUVLQWKH
form of fresh fruit, a great part of the total crop is used as
a popular processing product used for the production of
pickled and conserved cucumbers, gherkins, and pickles.
Cucumber fruit intended for processing should have small
seed chamber, appropriate chemical composition, sugar
FRQWHQWDERYHUHVLVWDQFHWRWKHIRUPLQJDQGSUHVHQFH
of voids, high yield in the production at industrial scale,
DQGKLJKUHVLVWDQFHWRSHVWV%HVLGHVLWLVLPSRUWDQWWKDW
cucumber fruit is of uniform shape and appropriate, regular
DQGHTXDOFRORXU>@
%LRORJLFDOPDWHULDOVLQJHQHUDODUHVXEMHFWHGWRYDUious both static and dynamic loads which are connected
with the harvest, handling, trans-ship, transport, sorting
DQGVWRUDJH$VWKHUHVXOWRIWKHVHWHFKQRORJLFDOSURFHVVHV
cucumber fruit undergoes mechanical damages manifesting
themselves with both external and internal disturbances of
WKHLUWLVVXHFHOOVWUXFWXUH>@0HFKDQLFDOGDPDJHVPDNH
the commercial value of the raw material lower so they
UHGXFHLWVSURFHVVLQJYDOXH%HVLGHVWKH\FRQWULEXWHWRWKH
softening of the cucumber by damaging its peel, which is
DVSHFL¿FSURWHFWLRQEDUULHUVXSSRUWLQJWKHFRKHVLYHQHVV
of the raw material. The process of cucumber softening
favours the formation of next damages and the developPHQWRISXWUHIDFWLYHEDFWHULD>@7KHZD\LQZKLFKIUHVK
cucumbers are handled, stored, and transported affect the
FRQWHQWRIZDWHULQWKHIUXLWDVZHOODVLWV¿UPQHVVDQGWKH
TXDOLW\RIWKH¿QDOSURGXFWV7KLVFRQFHUQVWKHUDZPDWHULDO
intended for direct consumption as well as for processing.
7KHORVVHVRIZDWHUFRQWHQWVLJQL¿FDQWO\DIIHFWWKH¿QDO
parameters of the product and the mechanical properties
of the raw material.
The investigation of mechanical properties is the basic
measurement instrument of the texture and elasticity of
the tested biological material [8]. It includes a series of
mechanical tests where compressive, shearing, and tensile
IRUFHVDUHXVHG>@7KHGHIRUPDWLRQUDWHGHSHQGVRQWKH
value of the used force, rate of the tested material forming,
shape and size of the investigated sample as well as such
factors as the plant variety, maturity/ripeness degree, raw
¿EUHFRQWHQWZDWHUFRQWHQWDQGWKHPDWHULDO¶VVSHFL¿F
density [2, 7, 9].
-Ï=()*25=(/$1<1$7$/,$0$7à2.'$*0$5$0,*87
0(7+2'6$1'0($685,1*$33$5$786
7ZRVL]HIUDFWLRQVWKHVWRQHWRFPDQGWKH
QGRQH±FPRI¿YHYDULHWLHVRIVRLOJURZQFXFXPEHU
were investigated: Polan FĝUHPVNL)ĝUHPLDQLQ) and
WZRFXFXPEHUJHQRW\SHVDVUHIHUHQFHVWDQGDUGVPDWHULDO
The samples of the soil-grown cucumber were taken from
three farms engaged in the production of vegetables in the
YLOODJHRI&LV]\FDĝZLĊWRNU]\VNLH3URYLQFHDQGWKHVWDWLRQRI.UDNRZVND+RGRZODL1DVLHQQLFWZR2JURGQLF]H
³32/$1´(Cracow Plant Breeding and Seed Production
“POLAN”) with their seat in Kraków (Raciborowice testing
JURXQGV
The water content measurement in fresh cucumbers was
FRQGXFWHGLQWKH¿UVWVWDJHRIGU\LQJDWWKHWHPSHUDWXUHRI
700&IRUKUVE\PHDQVRIODERUDWRU\LQFXEDWRUDQGWKHQ
in the second stage of the drying up of the samples in the
WHPSHUDWXUHRI0 C with the use of scale incubator. The
tests for the content of water were performed on the samples cut out in three places i.e. at the leaf stalk base, in the
middle and in the bottom part of the cucumber fruit for two
selected fruit fractions.
The investigation of the mechanical properties in the
SURFHVVRIWKHSXQFWXULQJRIWKHSHHODQGÀHVKRIIUHVKDQG
SLFNOHGFXFXPEHUVZHUHSHUIRUPHGE\PHDQVRI=ZLFN
Roell machine for strength testing with the use of the punch
RIWKHGLDPHWHURI‘PP7KHPHDVXUHPHQWZDVSHUIRUPHG
in three places, i.e. at the leaf stalk base, in the middle and
in the bottom part of the cucumber fruit.
The tests were conducted on the whole fruits of soilJURZQFXFXPEHUZLWKUHSHWLWLRQVIRUHDFKRIWKHWKUHH
measurement places. The measurement was conducted sepaUDWHO\IRUHDFKVL]HIUDFWLRQ$IWHUHYHU\PHDVXUHPHQWVHULHV
WKHDYHUDJHIRUFHUHTXLUHGWRSXQFWXUHFXFXPEHUSHHODQG
ÀHVKWKHLUGHIRUPDWLRQDQGWKHHQHUJ\RISXQFWXUHZDV
measured.
5(68/762)7+(,19(67,*$7,21
Ta b l e 1 . The average water content of the analyzed varieties
of fresh cucumbers
Variety and fraction
3RODQVWIUDFWLRQ
Polan, 2nd fraction
Average
ĝUHPLDQLQVWIUDFWLRQ
ĝUHPLDQLQQGIUDFWLRQ
Average
ĝUHPVNLVWIUDFWLRQ
ĝUHPVNLQGIUDFWLRQ
Average
JHQRW\SHVWIUDFWLRQ
JHQRW\SHQGIUDFWLRQ
Average
JHQRW\SHVWIUDFWLRQ
JHQRW\SHQGIUDFWLRQ
$9(5$*(727$/
Fruit
stalk
95.3
95.1
95.1
94.5
94.9
Water content [%]
Fruit
Fruit $YHUcentre
end
age
95.4
95.3
95.3
95.0
95.0
95.0
94.8
94.8
94.9
94.6
94.3
94.4
94.8
94.8
94.8
$1$/<6,62)7+(6(&7,21,0$*(
2)7+()5(6+)58,762)6(/(&7('
&8&80%(59$5,(7,(6
The average sizes of the seed chamber surface areas and
WKHDUHDRIWKHÀHVKLQWKHPLGGOHSDUWRIWKHLQYHVWLJDWHG
varieties of fresh cucumber fruits for two size fractions are
presented in Table 2. On the basis of the obtained results it
ZDVH[SOLFLWO\IRXQGRXWWKDWWKHVWIUDFWLRQRIWKHĝUHPLDQLQ
variety was characterized by the highest percentage share of
WKHVHHG]RQH7KHORZHVWSHUFHQWDJHVKDUHRIWKHVHHG
zone was found out for the 2nd fraction of the Polan variety,
DQGLWDPRXQWHGWR)RUWKHVWIUDFWLRQRIWKHJHQRW\SHWKHVHFWLRQVXUIDFHDUHDZDVZLWKLQWKHUDQJHRI
mm2ZKHUHDVIRUWKHJHQRW\SHLWZDVXSWRPP2,
DQGIRUWKHQGIUDFWLRQRIWKHJHQRW\SHWKHVHFWLRQVXUIDFH
DUHDZDVIURPPP2 WR mm2 for the Polan variety.
The average content of water in the fresh cucumber
fruits of the investigated varieties was within the range of Ta b l e 2 . 6XUIDFHDUHDVRIWKHVHHGFKDPEHUVDQGÀHVKLQWKH
XSWR7KHKLJKHVWZDWHUFRQWHQWZDVIRXQG middle part of the investigated varieties of cucumber fresh fruits
in the fruit of the Polan variety, the 2nd fraction size, and for the two size fractions.
LWDPRXQWHGWRUHJDUGOHVVIURPZKLFKSODFHWKH
Cucumber Seed chamber Flesh surface
Fracsection
surface area
area
VDPSOHZDVWDNHQ7KHJHQRW\SHRIWKHVWVL]HIUDFWLRQ
Variety
tion surface area
was featured by the lowest water content in the fruit. The
2
[mm ] [%] [mm2] [%]
[mm2]
lowest value was found at the fruit stalk base of the variety
VW
222.8 UHIHUUHGWRDERYHDQGLWDPRXQWHGWR)URPDPRQJ Polan
Polan
2nd
the tested varieties the highest content of water was found
ĝUHPLDQLQ
VW
LQWKH3RODQYDULHW\IRUERWKWKHVL]HIUDFWLRQV$QDO\]LQJ
ĝUHPLDQLQ
2nd
the investigation place, the differences in the average water
ĝUHPVNL
VW
FRQWHQWZHUHLQVLJQL¿FDQW7KHKLJKHVWDYHUDJHZDWHUFRQĝUHPVNL
2nd
WHQWZDVREVHUYHGDWWKHIUXLWVWDONDQGLWDPRXQWHGWR
7KHDYHUDJHZDWHUFRQWHQWLQWKHIUHVKIUXLWRIVRLOJURZQ Genotype 44 VW
Genotype 44 2nd
FXFXPEHUZDV
The average water content levels in the fresh fruits of Genotype 54 VW
the investigated varieties of soil-grown cucumbers are pre- Genotype 54 2nd
VHQWHGLQ7DEOH
$66(660(172)7+(0(&+$1,&$/3523(57,(6
$66(660(172)7+()25&(5(48,5('
72381&785(7+(3((/$1')/(6+2))5(6+
&8&80%(56
7KHIRUFH)>1@UHTXLUHGWRSXQFWXUHWKHSHHODQGÀHVKRI
fresh cucumbers and their deformation L [mm] depends on
the fruit size, variety, the place of puncturing and the water
FRQWHQWLQWKHLQYHVWLJDWHGPDWHULDO,Q)LJWKHDYHUDJH
IRUFHUHTXLUHGWRSXQFWXUHWKHSHHODQGÀHVKRIWKHIUHVK
fruits of the investigated cucumber varieties in three places,
i.e. at the leaf stalk base, in both the middle and the bottom
part of the cucumber fruit is presented.
Fruit leaf stalk base
Fig. 1 $YHUDJHIRUFHUHTXLUHGWRSXQFWXUHWKHSHHODQGÀHVKRI
the fresh fruits of the selected varieties of cucumbers with the
SXQFKRIWKHGLDPHWHURIPPLQWKUHHSXQFWXUHSODFHV
)RUWKHDQDO\]HGYDULHWLHVWKHKLJKHVWIRUFHUHTXLUHG
to puncture the peel and flesh of cucumber was observed
at the base of the leaf stalk, and the lowest one at the
ERWWRPSDUWRIWKHIUXLW7KHKLJKHVWIRUFHV)>1@UHTXLUHG
to puncture the peel and flesh were found out for the
FXFXPEHUV RI WKH ĝUHPVNL YDULHW\ ZKHUHDV WKH ORZHVW
UHVLVWDQFHWRSXQFWXUHZDVREVHUYHGIRUWKHJHQRW\SH
The obtained results of the resistance to puncture justify
the fact that this genotype has been marked out by Polan
company as the standard of the worst technology properties for pickling.
In Fig. 2 the lines of the puncture force trend for the
SHHODQGÀHVKRIWKHVHOHFWHGYDULHWLHVRIIUHVKFXFXPEHU
fruits versus their deformation for three measuring places
are presented. The differentiated average values of the
IRUFHVUHTXLUHGWRSXQFWXUHWKHSHHODQGÀHVKRIIUHVKFXcumbers versus their deformation for the analyzed varieties
were observed. The curve of the relation of the peel and
ÀHVKSXQFWXUHIRUFHLQWKHIXQFWLRQRIWKHLUGHIRUPDWLRQ
LVGHVFULEHGE\WKHTXDGUDWLFIXQFWLRQRIVHFRQGGHJUHH
\ D[2 + bx + c.
On the basis of the obtained and presented results
)LJDYHU\VWURQJUHODWLRQEHWZHHQWKHIRUFHRIWKH
SXQFWXUHRISHHODQGÀHVKDQGWKHGHIRUPDWLRQRFFXUULQJ
in the process of the puncturing with a punch at the base
of the leaf stalk was found out. The determination coef¿FLHQWVZHUH52 DQG52 IRUWKHVWIUDFWLRQ
VPDOOFXFXPEHUVDQGQGIUDFWLRQELJFXFXPEHUVUHspectively. For the middle and the end part of the fresh
fruits of selected cucumber varieties the observed relations
EHWZHHQWKHSHHODQGÀHVKSXQFWXUHIRUFHDQGWKHGHIRUmation were smaller and differentiated. The determination
FRHI¿FLHQWVZHUH
Middle part of the fruit
End part of the fruit
Fig. 2. /LQHVRIWKHWUHQGRIWKHDYHUDJHIRUFH)>1@UHTXLUHGWR
SXQFWXUHWKHSHHODQGÀHVKRIWKHIUHVKFXFXPEHUVRIVHOHFWHG
YDULHWLHVZLWKWKHSXQFKRIWKHGLDPHWHURIPPYHUVXVWKHLU
deformation L [mm] in three puncture places.
7KHPLGGOHSDUWRIFXFXPEHUIUXLWVWIUDFWLRQ±52 QGIUDFWLRQ±52 7KHHQGSDUWRIFXFXPEHUIUXLW
VWIUDFWLRQ±52 QGIUDFWLRQ±52 The average deformation L [mm] values until the fresh
cucumber fruits were punctured had been within the range
IURPPPXSWRPP7KHELJJHVWGHIRUPDWLRQZDV
REVHUYHGIRUWKH3RODQYDULHW\WKHVWVL]HIUDFWLRQDQGLW
DPRXQWHGWRPPZKHUHDVWKHVPDOOHVWRQH±LQWKH
JHQRW\SHDOVRIRUWKHVWVL]HIUDFWLRQDQGLWZDVPP
7KHDYHUDJHSXQFWXUHHQHUJ\UDWHIRUSHHODQGÀHVKDV
ZHOODVWKHSHHODQGÀHVKEUHDNLQJVWUHVVIRUWKHDQDO\]HG
fresh cucumber varieties versus their size fraction is preVHQWHGLQ7DEOH
-Ï=()*25=(/$1<1$7$/,$0$7à2.'$*0$5$0,*87
Ta b l e 3 . $YHUDJHUDWHRIWKHSXQFWXUHHQHUJ\IRUWKHFXFXPEHU
SHHODQGÀHVKDQGWKHEUHDNLQJVWUHVVHV
Variety and fraction (QHUJ\:>-@ Breaking stress [MPa]
3RODQVWIUDFWLRQ
Polan, 2nd fraction
ĝUHPLDQLQVWIUDFWLRQ
ĝUHPLDQLQQGIUDFWLRQ
ĝUHPVNLVWIUDFWLRQ
ĝUHPVNLQGIUDFWLRQ
89,8
*HQRW\SVWIUDFWLRQ
*HQRW\SQGIUDFWLRQ
*HQRW\SVWIUDFWLRQ
*HQRW\SQGIUDFWLRQ
Average – 1st fraction
66,1
1,45
Average – 2nd fraction
79,5
1,61
%DVHGRQWKHREWDLQHGUHVXOWVLWZDVIRXQGRXWWKDWWKH
DYHUDJHEUHDNLQJVWUHVVYDOXHVZHUH03DDQG03D
IRUWKHVWDQGQGVL]HIUDFWLRQUHVSHFWLYHO\7KHDYHUDJH
YDOXHVRIWKHHQHUJ\QHHGHGWRSXQFWXUHWKHSHHODQGÀHVK
IRUWKHDQDO\VHGVWDQGQGIUDFWLRQVZHUH-DQG-
respectively. The highest energy needed to puncture the peel
DQGÀHVKRIWKHDQDO\VHGIUHVKFXFXPEHUIUXLWVZDVREVHUYHG
IRUWKHĝUHPLDQLQYDULHW\WKHQGIUDFWLRQDQGWKHVPDOOHVW
RQHIRUWKHJHQRW\SH±WKHVWVL]HIUDFWLRQ7KRVHYDOXHV
ZHUH-DQG-UHVSHFWLYHO\7KHORZHVWEUHDNLQJ
VWUHVVZDVREVHUYHGIRUWKHJHQRW\SHWKHVWIUDFWLRQ±LW
DPRXQWHGWR03DZKHUHDVWKHKLJKHVWRQHV±IRUWKH
ĝUHPLDQLQYDULHW\WKHQGVL]HIUDFWLRQDQGWKHĝUHPVNL
YDULHW\WKHVWIUDFWLRQ±ZHQWXSWR03D
CONCLUSIONS
7KHDYHUDJHFRQWHQWRIZDWHUIRUWKHDQDO\]HGFXFXPEHU
varieties was slightly differentiated and it was in the
UDQJHIURPIRUWKHJHQRW\SHWKHVWIUDFWLRQ
WRIRUWKH3RODQYDULHW\WKHQGIUDFWLRQ
2. In the middle part of the cucumber fresh fruits of the
tested varieties the highest percentage share of the seed
]RQHZDVREVHUYHGIRUWKHĝUHPLDQLQYDULHW\WKHVWVL]H
fraction, and the lowest one for the Polan variety, the
QGIUDFWLRQDQGWKH\DPRXQWHGWRDQG
respectively.
7KHDYHUDJHIRUFH)>1@QHHGHGWRSXQFWXUHWKHSHHODQG
ÀHVKRIWKHDQDO\]HGYDULHWLHVRIIUHVKFXFXPEHUIUXLWV
ZDVZLWKLQWKHUDQJHRI±1DQGWKHKLJKHVW
UHVLVWDQFHWRSXQFWXULQJZDVVKRZQE\WKHĝUHPLDQLQ
YDULHW\ZKHUHDVWKHJHQRW\SHVKRZHGWKHORZHVWRQH
7KHDYHUDJHUDWHVRIGHIRUPDWLRQ/>PP@WRWKHPRPHQW
ZKHQWKHSHHODQGÀHVKZHUHSXQFWXUHGKDGEHHQZLWKLQ
WKHUDQJHRIXSWRPP
7KHDYHUDJHHQHUJ\:>-@UHTXLUHGWRSXQFWXUHWKHSHHO
DQGÀHVKRIWKHIUHVKFXFXPEHUVRIWKHWHVWHGYDULHWLHV
DQGWKHEUHDNLQJVWUHVVı>03D@ZHUHWKHVWDQGWKH
QGVL]HIUDFWLRQ±-DQG-UHVSHFWLYHO\DQG
WKHVWDQGWKHQGVL]HIUDFWLRQ±03DDQG
MPa, respectively.
5()(5(1&(6
Bargel H., Neinhuis C., 2005: Tomato fruit growth and
ripening as related to the biomechanical properties of
IUXLWVNLQDQGLVRODWHGFXWLFOH-RXUQDORI([SHULPHQWDO
%RWDQ\
2. Bohdziewicz J., Czachor G., 2010: :Sá\ZREFLąĪHQLD
QDSU]HELHJRGNV]WDáFHQLDZDU]\ZRNV]WDáFLHNXOLVW\P
,QĪ\QLHULD5ROQLF]D
&LXSDN$*áDG\V]HZVND%:áDĞFLZRĞFLPHFKDQLF]QHVNyUNLRZRFyZSRPLGRUDZUyĪQ\FKWHPSHUDWXUDFKSU]HFKRZ\ZDQLD$FWD$JURSK\VLFD
*áyZQ\8U]ąG6WDW\VW\F]Q\:\QLNRZ\V]DFXQHNSURGXNFMLJáyZQ\FK]LHPLRSáRGyZUROQ\FKLRJURGQLF]\FK
ZURNX,QIRUPDFMDV\JQDOQD
'\QDPLF]QHPHWRG\SRPLDUXZáDVQRĞFLPHFKDQLF]Q\FK
RZRFyZLZDU]\Z$FWD$JURSK\VLFD
Brickell, C. D.; Alexander, C.; David, J. C.; Hetterscheid, W. L. A.; Leslie, A. C.; Malecot, V.; XiaoBai
Jin; Cubey, J. J., 2009: ,QWHUQDWLRQDO6RFLHW\IRU+RUticultural Science. International code of nomenclature
for cultivated plants.
7. -DNXEF]\N(/HZLFNL33:áDĞFLZRĞFLPHFKDQLF]QHWNDQNLMDEáNDZRGQLHVLHQLXGRMHMVWUXNWXU\
$FWD$JURSK\VLFD
8. -DNXEF]\N(8]LDN'Charakterystyka instruPHQWDOQ\FKPHWRGEDGDQLDZáDĞFLZRĞFLPHFKDQLF]Q\FK
Z\EUDQ\FKRZRFyZLZDU]\Z,QĪ\QLHULD5ROQLF]D
9. Marzec A., Pasik S., 2008: :Sá\ZPHWRG\VXV]HQLDQD
ZáDĞFLZRĞFLPHFKDQLF]QHLDNXVW\F]QHVXV]\PDUFKZLRZ\FK,QĪ\QLHULD5ROQLF]D
6]F]ĊĞQLDN$6Texture is a sensory property.
)RRG4XDOLW\DQG3UHIHUHQFH
Wrzodak A., Korzeniowski M., 2012:-DNRĞüVHQVRryczna ogórków kwaszonych z owoców traktowanych
IXQJLF\GDPLZXSUDZLHSRORZHM1RZRĞFL:DU]\ZQLF]H
2&(1$:<%5$1<&+:à$ĝ&,:2ĝ&,
0(&+$1,&=1<&+ĝ:,(ĩ<&+2:2&Ï:
2*Ï5.$*58172:(*2
Streszczenie. 6SRVyESRVWĊSRZDQLDSU]HFKRZ\ZDQLDLWUDQVSRUWXĞZLHĪ\FKRJyUNyZPDZSá\ZQD]DZDUWRĞüZRG\ZRZRFX
ZNRQVHNZHQFMLQDMHJRMĊGUQRĞüLMDNRĞüSURGXNWyZ¿QDOQ\FK
'RW\F]\WRVXURZFDSU]H]QDF]RQHJREH]SRĞUHGQLRGRVSRĪ\FLD
MDNUyZQLHĪGRSU]HWZyUVWZD8E\WNLZRG\Z\QLNDMąFH]H]E\W
GáXJLHJRSU]HFKRZ\ZDQLDPDMąLVWRWQ\ZSá\ZQDSDUDPHWU\
NRĔFRZHSURGXNWX&HOHPSUDF\E\áR RNUHĞOHQLHZSá\ZX]DZDUWRĞFLZRG\QDZ\EUDQHFHFK\PHFKDQLF]QHĞZLHĪ\FKRJyUNyZ
DQDOL]DREUD]XSU]HNURMXRUD]RFHQDRGSRUQRĞFLVNyUNLLPLąĪV]X
ĞZLHĪ\FKRZRFyZEDGDQ\FKRGPLDQRJyUNyZQDXV]NRG]HQLD
PHFKDQLF]QHSRZVWDáHZSURFHVLHSU]HELFLDVWHPSOHPRĞUHGQLF\PP
6áRZDNOXF]RZHRJyUNLJUXQWRZHZáDĞFLZRĞFLPHFKDQLF]QH
VLáDSU]HELFLDVNyUNLLWNDQNL]DZDUWRĞüZRG\
TEKA. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE – 2014, Vol. 14, No. 4, 19–22
Quality of Dill Pickled Cucumbers Depending on The Variety
And Chemical Composition of Pickle Brine
Józef Gorzelany1, Natalia Matłok1, Dagmara Migut1, Tomasz Cebulak2
Department of Food and Agriculture Production Engineering of the University of Rzeszów
2
Department of Technology and Assessment of Plant Products
1
Received December 11.2014; accepted December 19.2014
Summary. Dill pickled cucumbers is the product obtained
from fresh cucumbers with the addition of taste-aromatic
seasonings poured with a water solution of table salt and
subjected to lactic acid fermentation. There are many kinds
of pickling technology, and many types of pickle brines.
7KLVLVWKHUHDVRQRXUZRUNZDVDLPHGDWWKHTXDOLWDWLYHDVsessment of dill pickled cucumbers depending on the pickle
brine chemical composition. On the basis of organoleptic
DVVHVVPHQWDGLYHUVL¿HGVHQVRU\TXDOLW\DVVHVVPHQWRIWKH
tested dill pickled cucumbers was carried out depending on
pickle brine chemical composition.
Key words: dill pickled cucumbers, pickle brines, organoleptic
assessment
INTRODUCTION
Dill pickled cucumbers are very popular in our country
and they win over larger and larger group of connoisseurs and
FXVWRPHUVIURPDEURDG$SDUWIURPWKHFKDUDFWHULVWLFWDVWH
they have many pro-health properties, and that is why they
are often recommended by dieticians as an item of a well-balDQFHGGLHW>@7KHODFWLFDFLGIRUPHGE\WKHIHUPHQWDWLRQSURFHVVDQGFRQWDLQHGLQVLODJHVORZHUVWKHS+YDOXHVLQLQWHVWLQHV
DQGE\WKLVLWIDYRXUVWKHSUROLIHUDWLRQRIWKHLQWHVWLQDOÀRUD
The endogenic strains of lactic acid bacteria, when present in
a ready product, contribute to the formation of the characteristic taste of ensilaged products [7]. Dill pickled cucumbers
FRQWDLQDOVRYLWDPLQ&DQGWKH%JURXSYLWDPLQV
7KHTXDOLW\RIWKH¿QDOSURGXFWLVVLJQL¿FDQWO\DIIHFWHG
by both the cucumber variety and the components of the
SLFNOHEULQHXVHG$QDSSURSULDWHVHOHFWLRQRIUDZPDWHULDOV
and their share in the ready pickle brine allow obtaining an
optimum taste-smell effect. The important aspect is the use
RIZDWHURIDSSURSULDWHTXDOLW\FRQIRUPLQJWRWKHUHTXLUH-
ments for drinking water and its hardness, which may be
increased by adding calcium carbonate. The pickle brine is
a water based solution of table salt enriched with natural
taste-aromatic additives, the most common of which are dill
and horseradish. They create a characteristic, strong aroma
of dill pickled cucumbers [2].
Sodium chloride added to the brine enables an initial
selection of microorganisms and faster growth of lactic acid
mesophilic bacteria such as L. paracasei, L. casei, L. plantarum, L. rhamnosus>@
$GGLWLRQRISURELRWLFVWDUWHUFXOWXUHVWRWKHSLFNOHEULQH
DOORZVWRREWDLQDKLJKTXDOLW\SURGXFWGXHWRWKHLUDQWDJRnistic reactions to detrimental moulds or yeasts, The essential hazard arising during spontaneous fermentation process
is the risk of infection by Geotrichum candidum or Picha
manshurica \HDVWVZKLFKE\UDLVLQJWKHHQYLURQPHQWDOS+
due to the oxidation of organic acids enable the development
RISXWUHIDFWLYHEDFWHULD>@
Salt, as a component of pickle brine reduces the osmotic pressure and by this the brine gets enriched in nutritional
components and becomes an appropriate environment for
WKHGHYHORSPHQWRIWKHIHUPHQWDWLRQPLFURÀRUD'LIIXVLRQ
processes proceed slowly, and that it is why the fermentation in the anaerobic environment is a lengthy process
[8]. Sensory assessment carried out by predisposed tasters,
i.e. those without changes in the felt taste and disorders
such as the so called taste daltonism manifesting itself
as a lack of sense of taste and feeling no differences between the four basic tastes, in appropriate concentration
is an important element while introducing the product to
the market as well as during laboratory tests aimed at the
improvement of technological processes. Changes in taste
perception may be caused by too low content of zinc in the
human organism, which can be often observed in people
RQYHJHWDULDQGLHWV>@
-Ï=()*25=(/$1<1$7$/,$0$7à2.'$*0$5$0,*87720$6=&(%8/$.
20
Sensory assessment, apart from physical-chemical
one, is a supplementary method of the assessment of
SURGXFWTXDOLW\6XFKDVVHVVPHQWVSURYLGHLQIRUPDWLRQ
on the reaction of the senses to the consumption of
a product [9].
0$7(5,$/$1'0(7+2'2/2*<
The tested material were the fruits of three varieties of
soil-grown cucumbers (Polan FĝUHPVNL)DQGĝUHPLDQLQ
FDQGWKHJHQRW\SHVXEMHFWHGWRWKHSLFNOLQJSURFHVV
The cucumbers of the selected varieties were pickled in
large glass jars with the pickle brines of three different
FKHPLFDOFRPSRVLWLRQV7KHJHQRW\SHVLQJOHGRXWE\
WKH.UDNRZVND6WDFMD+RGRZOLL1DVLHQQLFWZDÄ3RODQ´
(Cracow Plant Breeding and Seed Production “POLAN”)
as a standard of the variety non-predisposed to pickling
was subjected to this process in one type of pickle brine
LQRUGHUWRFRQ¿UPLWVZRUWKOHVVQHVVWRWKHWHFKQRORJLFDO
SURFHVVLQTXHVWLRQ8QWLODQLQWHQVLYHIHUPHQWDWLRQVWDUWHG
the jars were stored in the room temperature, and after that
WKH\ZHUHWUDQVIHUUHGWRDURRPZLWKWKHWHPSHUDWXUHRI0
C. The chemical composition of pickle brines is presented
LQ7DEOH
The tests included the organoleptic assessment of the
TXDOLW\IHDWXUHVVXFKDVJHQHUDODSSHDUDQFHFRORXUFRQsistency, taste, and smell. The organoleptic assessment
ZDVFDUULHGRXWE\WKHVFRUHPHWKRGSRLQWPHWKRG
FRQVLVWLQJLQWKHGHWHUPLQDWLRQRIWKHTXDOLW\OHYHOVRI
LQGLYLGXDOTXDOLW\IHDWXUHVGHWHUPLQDQWVE\PHDQVRI
QXPHULFDOYDOXHVDQGH[SUHVVLQJWKHWRWDOTXDOLW\RIWKH
Ta b l e 1 . Chemical composition of the pickle brines used for the pickling of the tested varieties of soil-grown cucumbers.
Component
3,&./(%5,1(&+(0,&$/&20326,7,21
A
B
Addition for 100 kg of
Addition for 100 kg
Component
Component
cucumbers (%)
of cucumbers (%)
C
Addition for 100 kg
of cucumbers (%)
Water solution of
NaCl
Water solution of
NaCl
Water solution of
NaCl
Fresh dill
+RUVHUDGLVKURRW
Mustard
*DUOLF
0.2
Fresh dill
+RUVHUDGLVKURRW
*DUOLF
Mustard
0.2
Fresh dill
+RUVHUDGLVKURRW
*DUOLF
Mustard
0.2
Currant leaves
%D\OHDYHV
Oak tree leaves
%D\OHDYHV
%D\OHDYHV
%D\OHDYHV
*UHHQPDUMRUDP
0.02
%D\OHDYHV
Whole grain dark
pepper
3URELRWLF(0
Ta b l e 2 . Card of the assessment by score method for tested dill pickled cucumbers
48$/,7<)($785(62)',//3,&./('&8&80%(56
Scale of score points
Quality de- Weightiness
terminant FRHI¿FLHQWV
5 points
4 points
3 points
2 points
very hard, crispy,
medium hard, no soft, with small
VRIWVLJQL¿FDQW
Consistency
no void cavities
void cavities inside void cavities inside void cavities inside
inside
very salty, very
too salty and sour,
medium salty and
sour, typical for
Taste
too little-salty and
salty, sour
sour
dill pickled cutoo little
cumbers
intense, aromatic,
slightly perceptible
medium perceptitypical for dill
hardly perceptible
with no perceptible
pickled cucumbers ble with medium
Smell
with faint aroma of
0.2
aroma of additives
aroma of additives
with perceptible
additives and herbs
and herbs
smell of herbs and and herbs
other additives
good, close to typiwith well visible
very good, fullcal for dill pickled with not numerous
large brown, dark
dark green colourColour
cucumbers, lighter discolouration
brown or white
ing, typical for dill
spots at the ends
spots along the
spots at the ends
pickled cucumbers
whole length
medium, minimal- minimal indicavery good, typical good, close to typiGeneral
ly differing from tions of rooting
0.2
for dill pickled
cal for dill pickled
appearance
typical for dill
and getting
cucumbers
cucumbers
pickled cucumbers mouldy
1 point
very soft, large
void cavities inside
oversalted, too
sour, no perceptible taste of salt
non-sour
not perceptible,
musty
brown, dark brown
or white indicating
rooting
mouldy, spoiled
48$/,7<2)',//3,&./('&8&80%(56
product being assessed on the basis on those values. The
score assessment was based on the comparison of the
TXDOLW\RIVXEVHTXHQWSURGXFWIHDWXUHVZLWKWKHTXDOLW\
GH¿QLWLRQVVSHFL¿HGLQWKHVFRUHDVVHVVPHQWFDUG7DEOH
DQGZULWLQJWKHREWDLQHGGDWDGRZQLQWRDVSHFLDOUHSRUW
form. The obtained data were multiplied by appropriate
ZHLJKWLQHVVFRHI¿FLHQWVRITXDOLW\GHWHUPLQDQWVRIWKH
¿QDOSURGXFW7KHSDUWLFLSDQWVLQWKHSURFHGXUHRIGLOO
SLFNOHG FXFXPEHUV DVVHVVPHQW ZHUH HPSOR\HHV RI
the University of Rzeszów, having appropriate sensory
sensitivity. The organoleptic assessment of dill pickled
cucumbers was carried out in the Laboratory of OrganoOHSWLF$VVHVVPHQWRI3URGXFWVRIWKH)DFXOW\RI%LRORJ\
DQG$JULFXOWXUHDWWKH8QLYHUVLW\RI5]HV]yZ
To determine the possible usefulness for the processing
of the analyzed varieties of cucumbers some photographs
of the cross-sections of soil-grown cucumbers were taken
during the pickling process. The pictures were taken in three
places: at the leaf stalk base, in the central and in the end
part of the cucumber fruit. The pictures were taken for two
size fractions: I-fraction, i.e. small fruits, II-fraction. i.e.
large fruits. The views of the surfaces of the cross-sections
were obtained by the view scanning method by scanning
slices cut off from the eatable part of the fruits of the analysed varieties.
tic assessment of the dill pickled cucumbers versus the
variety and the chemical composition of pickle brine are
SUHVHQWHGLQ)LJ
The lowest score, irrespectively of the pickle brine
FKHPLFDOFRPSRVLWLRQZDVREWDLQHGE\WKHĝUHPVNL)vaULHW\SRLQWVZKHUHDVWKHORZHVWRQHSRLQWVZDV
given to the Polan F variety. On the basis of the results of
the organoleptic assessment of dill pickled soil-grown cucumber it can be stated that from among the tested varieties
WKHPRVWXVHIXOIRUGLOOSLFNOLQJYDULHW\LVWKHĝUHPVNL),
while the least useful one is the Polan F. The results of the
usefulness of the tested cucumber varieties for dill pickling
are presented in Fig. 2.
5(68/762)7(676$1'',6&866,21
Fig. 1. $VVHVVPHQWRIWKHWHVWHGTXDOLW\IHDWXUHVRIGLOOSLFNOHG
cucumbers as the function of variety and chemical composition
of pickle brine.
)LJSUHVHQWVWKHUHVXOWVRIWKHDVVHVVPHQWRILQGLYLGXDO TXDOLW\ IXWXUHV JHQHUDO DSSHDUDQFH FRQVLVWHQF\
WDVWHFRORXUDQGVPHOORIWKHIUXLWVRIWKHWHVWHGYDULHties of soil-grown cucumbers dill pickled in three pickle
brines of different chemical composition. Irrespective of
the cucumber variety and the brine chemical composition,
the assigned tasters assessed the general appearance of dill
pickled cucumbers as the highest (appraisal arithmetic mean
ZDVDQGWKHWDVWHDVWKHORZHVWDULWKPHWLFPHDQ
The arithmetic mean values for the consistency, smell, and
FRORXURIWKHWHVWHGGLOOSLFNOHGFXFXPEHUVZHUH
DQG±UHVSHFWLYHO\7KHKLJKHVWVFRUHDPRXQWLQJWR
was given by the assessing persons to the general appearance
RIWKHFXFXPEHUVRIWKHĝUHPLDQLQ) variety pickled in the
SLFNOHEULQH$ZKHUHDVWKHORZHVWVFRUHZDVREWDLQHGE\
WKHFRQVLVWHQF\RIWKHFXFXPEHUVRIWKHĝUHPVNL) variety
SLFNOHGLQWKHEULQH%
The organoleptic assessment of dill pickled cucumbers
was conditioned by both the cucumber variety and the
pickle brine chemical composition. The highest score, in
WKHVFDOHRIWRZDVJLYHQWRWKHIUXLWVRIVRLOJURZQ
FXFXPEHURIWKHĝUHPVNL) variety pickled in the brine
%7KHORZHVWRQHRQO\SRLQWVZDVREWDLQHGE\WKH
cucumbers of the Polan F variety pickled in the brine
% 'XULQJ WKH RUJDQROHSWLF DVVHVVPHQW RI WKH FXFXPEHUIUXLWVVLQJOHGRXWE\WKH.UDNRZVND6WDFMD+RGRZOL
L1DVLHQQLFWZDÄ3RODQ´LHWKHJHQRW\SHDVWKHYDULHW\
useless for the dill pickling process, this variety obtained
DYHUDJHVFRUHSRLQWV7KHUHVXOWVRIWKHRUJDQROHS-
Fig. 2. 0HDQVFRUHVRIWKHWHVWHGTXDOLW\IHDWXUHVRIGLOOSLFNOHG
soil-grown cucumbers with regard to their usefulness for dill
pickling.
Regardless of the variety of soil-grown cucumbers, the
best score was given to the cucumbers subjected to pickling
in the pickle brine C. The mean value for all the tested
YDULHWLHVLQWKLVEULQHZDVSRLQWV7KHORZHVWVFRUH
SRLQWVREWDLQHGWKHFXFXPEHUVSLFNOHGLQWKHEULQH%DQG
WKHFXFXPEHUVSLFNOHGLQWKHEULQH$ZHUHJLYHQSRLQWV
On the basis of the obtained results it was found out that,
regarding chemical composition, the C brine is the most
VXLWDEOHIRUSLFNOLQJFXFXPEHUVZKHUHDVWKH%EULQH±WKH
least suitable. The results of the assessment of pickle brines
of three different chemical compositions with regard to
WKHLUXVHIXOQHVVIRUSLFNOLQJDUHSUHVHQWHGLQ)LJEHORZ
22
-Ï=()*25=(/$1<1$7$/,$0$7à2.'$*0$5$0,*87720$6=&(%8/$.
5()(5(1&(6
&DSOLFH()LW]JHUDOG* Food fermentation:
role of microorganisms in food production and preserYDWLRQ,QW-)RRG0LFURELRO±
2. &KDEáRZVND%3LDVHFND-yĨZLDN.5R]PLHUVND
-6]NXG]LĔVND5]HV]RZLDN(Initiated lactic
acid fermentation of cucumbers from organic farm by
application of selected starter cultures of lactic acid bacWHULD-5HV$SSO$JULF(QJ±
Franco W., Perez-Diaz I., Johanningsmeier S., McFeeters R., 2012: Characteristic of spoilage-associated
Fig. 3. Mean values of the assessment of brines of different
HFRQGDU\FXFXPEHUIHUPHQWDWLRQ$SSO(QYLURQ0LFURchemical composition with regard to their usefulness for pickling
ELRO
cucumbers.
*DMHZVND-%áDV]F]\N0Probiotyczne bakWHULH IHUPHQWDFML POHNRZHM /$% 3RVW 0LFURELRO
±
*DOLĔVNL**DZĊFNL-$QLRáD-(IIHFWRI
VHQVRULO\YDULHGIRRGVWXIIVRQVHQVRU\VSHFL¿FVDWLHW\
LQ\RXQJDGXOWVGHSHQGLQJRQWKHLUVH[±DVKRUWUHSRUW
3RO-)RRG1XWU6FL±
*DOLĔVNL*:DONRZLDN-:yMFLDN5:*DZĊFNL
-.UHMSFLRO=Stan wysycenia organizmu cynNLHPDZUDĪOLZRĞüVPDNRZDLZ\VWĊSRZDQLH]MDZLVND
V\WRĞFLVHQVRU\F]QLHVSHF\¿F]QHMXPáRG\FKZHJHWDULDQ
%URPDW&KHP7RNV\NRO;/,9±
7. +DQVHQ( Commercial bacterial starter cultures
for femented foods of the future. Int. J. Food Microbiol.
±
Fig. 4. Cross-sections of the tested varieties of dill pickled soil
±JURZQFXFXPEHU
8. 3LDVHFND-yĨZLDN.&KDEáRZVND%5R]PLHVND-
2013:=DVWRVRZDQLHEDNWHULLIHUPHQWDFMLPOHNRZHMMDNR
The examples of the views of the cross-sections of cuNXOWXUVWDUWHURZ\FKZNLV]HQLXZDU]\Z3U]HP\VáIHUFXPEHUVRIWKHWHVWHGYDULHWLHVRQWKHWKGD\RISLFNOLQJ
PHQWDF\MQ\LRZRFRZRZDU]\ZQ\±
SURFHVVDUHVKRZQLQ)LJ:KHQDQDO\VLQJWKHYLHZRIWKH 9. Wrzodak A., Korzeniowski M., 2012:-DNRĞüVHQVRcross-sections of the tested pickled cucumber fruits, the largryczna ogórków kwaszonych traktowanych fungicydami
est air spaces were found for the Polan Fvariety, which conZXSUDZLHSRORZHM1RZ:DU]±
VHTXHQWO\DIIHFWHGWKHJHQHUDOVHQVRU\DVVHVVPHQWRIWKH¿QDO =DUĊED'=LDUQR0$OWHUQDW\ZQHSURELRSURGXFWUHVXOWVRIWKHFDUULHGRXWRUJDQROHSWLFDVVHVVPHQW
W\F]QHQDSRMHZDU]\ZQHLRZRFRZH%URPDW&KHP
7RNV\NRO;/,9±
CONCLUSIONS
7KHTXDOLW\RIWKH¿QDOSURGXFWREWDLQHGWKURXJKWKHSURcess of dill pickling of soil-grown cucumbers is conditioned by both the variety and the chemical composition
of the pickle brine.
2. From among the varieties of soil-grown cucumbers being
WHVWHGWKHĝUHPVNL)YDULHW\SURYHGWREHWKHPRVWXVHIXO
for pickling, and the least useful was the Polan F. Regardless of the chemical composition of the brine used in the
pickling process, the cucumbers of the varieties referred
to above obtained the following organoleptic assessment
VFRUHVĝUHPVNL)±SRLQWV3RODQ)SRLQWV
%DVHGRQWKHRUJDQROHSWLFDVVHVVPHQWLWZDVIRXQGRXW
that the pickle brines of the chemical composition C and
$DUHWKHPRVWXVHIXOIRUGLOOSLFNOLQJRIWKHDQDO\]HG
varieties of soil-grown cucumber fruits.
-$.2ĝû2*Ï5.Ï:.:$6=21<&+
:=$/(ĩ12ĝ&,2'2'0,$1<
,6.à$'8&+(0,&=1(*2=$/(:<
Streszczenie. 2JyUNLNZDV]RQHWRSURGXNWRWU]\PDQ\]HĞZLHĪ\FKRJyUNyZ]GRGDWNLHPSU]\SUDZVPDNRZRDURPDW\F]nych, zalanych roztworem soli kuchennej i poddanych procesowi
IHUPHQWDFMLPOHNRZHM,VWQLHMHEDUG]RGXĪDOLF]EDWHFKQRORJLL
NZDV]HQLDDWDNĪHURG]DMyZ]DOHZ'ODWHJRWHĪFHOHPSUDF\
E\áDRFHQDMDNRĞFLRZDRJyUNyZNZDV]RQ\FKZ]DOHĪQRĞFLRG
VNáDGXFKHPLF]QHJR]DOHZ\1DSRGVWDZLHSU]HSURZDG]RQHM
RFHQ\RUJDQROHSW\F]QHMVWZLHUG]RQR]UyĪQLFRZDQąMDNRĞüVHQVRU\F]QąEDGDQ\FKRGPLDQRJyUNyZNZDV]RQ\FKZ]DOHĪQRĞFL
RGRGPLDQ\LVNáDGX]DOHZ\
6áRZDNOXF]RZHogórki kwaszone, zalewy, ocena organoleptyczna.
TEKA. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE – 2014, Vol. 14, No. 4, 23–30
Research on the Frost Resistance of Concretes Modified with Fly Ash
Jacek Halbiniak, Bogdan Langier
Department of Technology of Building Processes and Materials
Czestochowa University of Technology, Faculty of Civil Engineering
Akademicka 3, 42-200 Częstochowa, halbiniak@wp.pl;langier@op.pl
Received December 04.2014; accepted December 17.2014
Summary. 7KHSDSHUSUHVHQWVWKHLQÀXHQFHRIDGGLQJÀ\DVKHV
and air-entraining admixture on the frost resistance of concrete
tested by the direct method and on the characteristics of air pores.
7KHIURVWUHVLVWDQFHWHVWZDVGRQHIRUIUHH]HWKDZF\FOHV7KH
porosity structure of concrete composites was tested by means
of a device for automatic image analysis that uses the computer
program Lucia Concrete. The analysis involved control concrete
DQGFRQFUHWHZLWKWKHDGGLWLRQRIÀ\DVK±KDOIWKHPD[LPXP
SHUPLVVLEOHTXDQWLW\±WKDWZDVDLUHQWUDLQHGZLWKYDULRXVGRVHV
of air-entraining admixture.
Key words: FRQFUHWHÀ\DVKHVDLUSRUHVFKDUDFWHULVWLFVIURVW
resistance.
INTRODUCION
Concrete durability is a set of designed properties that the
material retains for the longest possible usage period of the
engineering construction. The basic factor that determines
the usefulness of concrete for a construction is its compresVLYHVWUHQJWK+RZHYHUWKHUHDUHRWKHUIDFWRUVWKDWLQÀXHQFH
concrete durability in a construction besides its strength, like
for example proper selection of ingredients and their approSULDWHTXDOLW\SURSHUPRXOGLQJFXULQJDQGSURFHVVLQJWKH
LQÀXHQFHRIFRUURVLYHHQYLURQPHQWVDVZHOODVFHPHQWVOXUU\
microstructure and the structure of the aggregate-cement
VOXUU\WUDQVLWRU\OD\HU>@
Concrete is a composite whose features can be shaped
E\DGGLWLYHVPLFUR¿OOHUVDQGDGPL[WXUHV7KH\PDNHLW
possible to obtain concretes with special properties, but to
REWDLQKLJKIURVWUHVLVWDQFHRIFRQFUHWHVZLWKDODUJHTXDQWLW\
RIDGGLWLYHVDSURSHUDLUHQWUDLQPHQWLVQHFHVVDU\>@
7KHQRUP31(1LQWURGXFHVFRQFUHWHH[SRVXUH
FODVVHVIURP;)WR;)GHSHQGHQWRQWKHLQÀXHQFHRIIURVW
RQFRQFUHWH7KH;)FODVVLQFOXGHVFRQFUHWHVYHUWLFDOHOHPHQWVWKDWDUHPRGHUDWHO\VDWXUDWHGZLWKZDWHUZLWKRXWDQti-icing agents. Vertical concrete elements exposed to weather
conditions and anti-icing agents should be made with the
;)FODVVFRQFUHWH+RUL]RQWDOFRQFUHWHHOHPHQWVKLJKO\
saturated with water without anti-icing agents, exposed to
IURVWVKRXOGEHPDGHZLWKWKH;)FODVVFRQFUHWH&RQFUHWH
surfaces of roads and bridges, exposed to high saturation
with water and anti-icing with chemical agents should be
PDGHZLWKWKH;)FODVVFRQFUHWH7KH;);)DQG;)
FRQFUHWHVUHTXLUHDLUHQWUDLQPHQWRIWKHFRQFUHWHPL[&RQcretes that belong to the above-mentioned exposure classes
VKRXOGPHHWWKHIROORZLQJUHTXLUHPHQWVSUHVHQWHGLQ7DEOH
The content of air in road surface concretes presented in
the Polish catalogue [8] depends on the maximal diameter of
aggregate grains. The values are shown in Table 2.
$FFRUGLQJWR*HUPDQUHTXLUHPHQWVWKHPLQLPDOFRQWHQW
RIDLULQURDGVXUIDFHFRQFUHWHVVKRXOGEHIRUFRQFUHWHV
ZLWKRXWSODVWLFL]HUVDQGIRUFRQFUHWHVZLWKSODVWLFL]HUV
according to [20].
$FFRUGLQJWR)UHQFKUHTXLUHPHQWVWKHPLQLPDODPRXQW
RIDLULQVXUIDFHFRQFUHWHVVKRXOGEHDQGWKHPD[LPDO
±DFFRUGLQJWR>@
$LUHQWUDLQLQJDGPL[WXUHVDUHXVHGWRIRUPPLFURVFRSLF
DLUEXEEOHVZLWKDGLDPHWHURIDSSUR[LPDWHO\—P7KHDLU
bubbles are distributed in the cement slurry and they break
the continuity of capillaries, which leads to higher resistance
of concrete to freeze-thaw cycles. When water in saturated
FRQFUHWHWXUQVIURPDOLTXLGVWDWHWRDVROLGVWDWHLWVYROXPHLQFUHDVHVDQGWKHLFHVTXHH]HVLQWRHPSW\DLUEXEEOHV
$LUHQWUDLQLQJPDNHVFRQFUHWHPRUHIURVWUHVLVWDQWDQGWKH
concrete mixture becomes more workable.
$LUHQWUDLQLQJDGPL[WXUHVFKDQJHWKHVWUXFWXUHRIWKH
FHPHQWVOXUU\IURPPLFURFDSLOODU\WRPLFURSRURXV)LJ
The admixture has a foaming effect and forms enclosed air
EXEEOHVZLWKWKHGLDPHWHURIDSSUR[LPDWHO\—PZKLFK
DUHHYHQO\GLVWULEXWHG$VWKHFRQFUHWHKDUGHQVWKHVXUIDFH
of the air bubbles undergoes mineralization and becomes
the phase of the hardened concrete. They break the capillary
QHWZRUNDQGUHGXFHWKHULVHRIZDWHU>@
-$&(.+$/%,1,$.%2*'$1/$1*,(5
Ta b l e 1 . &RQFUHWHPL[FRPSRVLWLRQUHTXLUHPHQWVDFFRUGLQJWR31(1
+D]DUGW\SH
([SRVXUHFODVV
$JJUHVVLRQFDXVHGE\
freezing and thawing
;)
;)
;)
;)
0LQLPDOTXDQWLW\RI
cement [kg/m3]
Maximal W/C ratio
Minimal strength class
of concrete
&
&
&
&
Ta b l e 2 . 5HTXLUHGFRQWHQWRIDLULQWKHFRQFUHWHPL[DFFRUGLQJWR>@
&RQWHQWRIDLULQWKHFRQFUHWHPL[>@
Without a plasticizing admixture
With a plasticizing admixture
$YHUDJH
Minimal
$YHUDJH
Minimal
Maximal diameter of
aggregate grains [mm]
Up to 8
8SWR
8SWR
Fig. 1. 7KHGLVWULEXWLRQRIDLUEXEEOHVLQFRQFUHWH±FDSLOODULHV
±PLFURSRUHV
$GGLQJDLUHQWUDLQLQJDGPL[WXUHVWRWKHFRQFUHWHPL[
can also have unwanted effects. It leads to higher porosity
RIFRQFUHWHDQGORZHUVWUHQJWK>@
-DPURĪ\>@FODLPVWKDWWKHFRPSUHVVLRQVWUHQJWKRI
concrete can be raised after air-entraining if the cement
FRQWHQWLVEHORZNJP3. If the [cement content is over
NJP3, FRQFUHWHVWUHQJWKLVORZHUHGE\DERXWIRU
HYHU\DGGLWLRQDORIDLU$FFRUGLQJWR5XVLQ>@IRU
FRQFUHWHVZLWKWKH:&UDWLRRI·WKHDYHUDJHGURS
RIVWUHQJWKFDQEHHYHQIRURIDGGLWLRQDODLULQWKH
mix after air-entraining.
$LUHQWUDLQLQJWKHFRQFUHWHPL[GRHVQRWJXDUDQWHHIXOO
frost-thaw resistance of the concrete. What is important in
air-entraining the concrete mix is the distribution of air pores
LQKDUGHQHGFRQFUHWHDQGWKHGLVWDQFHEHWZHHQWKHP$ODUJH
distance between the spots where ice is formed and the nearest void leads to higher hydraulic pressure. Small distances
between pores are the effect of excessive air-entraining of
the concrete mix, which leads to a large drop of compression
strength. What determines the proper air-entraining of the
concrete mix is the spacing factor L of pores in concrete.
The factor determines the average largest distance from a
UDQGRPVSRWLQWKHFHPHQWVOXUU\LQWKHFRQFUHWHWRWKH
nearest air pore.
7KHQRUPV31(1DQG31(1GRQRW
determine the porosity structure of hardened concrete. It is
universally assumed that in order to obtain frost resistant
FRQFUHWHWKHSURSHUVSDFLQJIDFWRUVKRXOGEH/”PP
and the content of micropores with the diameter smaller
WKDQ—PFODVV$!&RQFUHWHVZLWK/”
PPDQG$!DUHFRQVLGHUHGWRJXDUDQWHHDYHU\KLJK
OHYHORIIURVWUHVLVWDQFH+RZHYHUVRPHDXWKRUVFODLPWKDW
WKHHYDOXDWLRQRIIURVWUHVLVWDQFHRIÀ\DVKFRQFUHWHVEDVHG
RQWKHYDOXHV/DQG$ are of little use because of air pores
LQWKHJUDLQVRIDVK>@
Concrete durability is also determined by proper moulding,
maintenance and processing of the concrete composite [7, 9].
7+(5(6($5&+21&21&5(7(6
The research program aimed at determining the inÀXHQFHRIÀ\DVKHVDQGDQDLUHQWUDLQLQJDGPL[WXUHRQ
WKHTXDQWLW\DQGTXDOLW\SDUDPHWHUVRIFRQFUHWHDQGWKH
characteristics of the concrete mix. The base concrete
PDUNHGDV³´ZDVPDGHIURPQDWXUDODJJUHJDWHZLWK
JUDLQVL]HXSWRPPDQGWKHVDQGSRLQW±FHPHQW
&(0,5DQGSODVWLFL]LQJDGPL[WXUHEDVHGRQSROLcarboxylates.
Ta b l e 3 . Composition of the tested series of concretes
Ingredient [kg/m3]
Cement
Water
$JJUHJDWH
Plasticizer
Fly ash
$LUHQWUDLQLQJ
admixture
0-0
-
0-2
-
-
-
0.772
Series of tested concretes
0-8
-
0.772
5(6($5&+217+()52675(6,67$1&(2)&21&5(7(602',),(':,7+)/<$6+
7KHPRGL¿FDWLRQVRIWKHEDVHYHUVLRQFRQVLVWHGLQDGGLQJDQDLUHQWUDLQLQJDGPL[WXUHLQWKHDPRXQWRI
VHULHVVHULHVDQGVHULHVLQUHODWLRQ
to the mass of cement.
1H[WWKHEDVHVHULHVZDVPRGL¿HGE\DGGLQJKDOIWKH
PD[LPXPSHUPLVVLEOHTXDQWLW\RIÀ\DVKVHULHV7KHQ
DQDLUHQWUDLQLQJDGPL[WXUHZDVDGGHGWRÀ\DVKFRQFUHWHLQ
the amounts corresponding to the control series.
7KLVUHVXOWHGLQFRQFUHWHVHULHVPDUNHGDV
7DEOHSUHVHQWVWKHFRPSRVLWLRQRIDOOWHVWHGVHULHVRI
concrete mixes and concretes.
$OOFRQFUHWHVZHUHWHVWHGIRUDLUFRQWHQWLQWKHFRQFUHWH
mix, consistency by the concrete slump method, compressive strength after 28 days of curing, saturation, depth of
ZDWHUSHQHWUDWLRQDQGUHVLVWDQFHWRIUHH]HWKDZF\FOHV
The porosity structure of selected concrete series was tested
by determining: the total amount of air in hardened concrete
$WKHVSDFLQJIDFWRU)WKHPLFURSRUHVFRQWHQW$, and the
distribution of air pores. The tests were done with cubical
VDPSOHVZLWKDQHGJHRIPPWKDWZHUHGHPRXOGHG
hours after they had been made, and then they were kept for
GD\VLQZDWHUDWWKHWHPSHUDWXUHRIƒ&
7+(5(68/762)7(676)25&216,67(1&<
$1'$,5&217(17
The tested concrete mixes were mixed in a paddle
concrete mixer for 70 seconds and then the following was
determined: consistency by the concrete slump method in
DFFRUGDQFHZLWK31(1DQGDLUFRQWHQWE\WKH
SUHVVXUHPHWKRGDFFRUGLQJWR31(1
7KHUHVXOWVDUHSUHVHQWHGLQ7DEOH
The result of the slump test for the control series conFUHWHPL[ZDVPP6FRQVLVWHQF\FODVVDQGDLU
FRQWHQWWHVWVKRZHGWKHDPRXQWRI$VWKHDPRXQW
RIWKHDLUHQWUDLQLQJDGPL[WXUHZDVUDLVHGWKHOLTXLGLW\RI
concrete mixes also grew together the air content. Concrete
PL[HVZLWKRXWÀ\DVKDQGZLWKPD[LPDOTXDQWLW\RIWKH
DLUHQWUDLQLQJDGPL[WXUHRIWKHFHPHQWPDVVKDG
WKHDLUFRQWHQWRI$WWKHVDPHWLPHWKLVFRQFUHWHPL[
KDVWKHKLJKHVWOHYHORIOLTXLGLW\DQGLWVFRQVLVWHQF\FODVV
ZDVPDUNHGDV6
7KHSUHVHQFHRIÀ\DVKVHULHVLQÀXHQFHGFRQVLVWHQF\
WKHOLTXLGLW\ZDVFRQVLGHUDEO\KLJKHU7KHPHDVXUHGDPRXQW
RIDLULQÀ\DVKPL[HVZDVDOVRKLJKHUZLWKWKHVDPHDPRXQW
of the air-entraining admixture.
$GGLQJÀ\DVKWRFRQFUHWHLQVWHDGRIFHPHQWUDLVHGWKH
DLUFRQWHQWE\:LWKWKHDGGLWLRQRIWKHDLUHQWUDLQLQJ
DGPL[WXUHLQWKHDPRXQWRIDQGWKHREVHUYHGLQFUHDVHRIWKHWHVWHGFKDUDFWHULVWLFVZDVE\DERXWLQÀ\
ash mixes. The greatest difference in air content was noticed
IRUWKHDLUHQWUDLQLQJDGPL[WXUHLQWKHDPRXQWRI7KH
DLUFRQWHQWLQWKHÀ\DVKPL[ZDVKLJKHUE\
7+(5(68/762)7(676)25&2035(66,9(
675(1*7+$1'7+(3(1(75$7,21'(37+
2)35(6685,=(':$7(5
The compressive strength test was done after 28 days of
curing the samples in laboratory conditions. The saturation
WHVWZDVGRQHRQWKHEDVLVRIWKH31%QRUP7KH
UHVXOWVDUHSUHVHQWHGLQ7DEOH
The series 0-0 control concrete had the average compressive strength fcm 03D7KHWHVWUHVXOWVFODVVL¿HG
WKHFRQWUROVHULHVWRWKH&VWUHQJWKFODVV8VLQJÀ\DVK
as a cement substitute resulted in the drop of compressive
VWUHQJWKE\7KLVFKDQJHGWKHFRQFUHWHVWUHQJWKFODVV
WR&
7KH PRGL¿FDWLRQ RI WKH WHVWHG FRQFUHWHV E\ XVLQJ DQ
air-entraining admixture lowered the average values of compressive strength. The greatest drop was noted in the series
ZKHUHWKHDPRXQWRIDGGHGDLUHQWUDLQLQJDGPL[WXUHZDV
RIWKHFHPHQWPDVVDQGVHULHV7KLVUHVXOWHGLQFODVVLI\LQJERWKWKHVHULHVWRDVWLOOORZHUVWUHQJWKFODVV&
Figure 2 presents the comparison of average compresVLYHVWUHQJWKRIFRQFUHWHVZLWKDQGZLWKRXWÀ\DVK
The average compressive strength of the concrete conWDLQLQJKDOIWKHPD[LPDOSHUPLVVLEOHDPRXQWRIÀ\DVKZDV
lower in every tested sample. The largest strength drop
FDXVHGE\WKHXVHRIÀ\DVKZDVQRWLFHGLQWKHVHULHVZLWKRXWDQDLUHQWUDLQLQJDGPL[WXUHDQGZLWKWKHODUJHVW
DPRXQWRIWKHDLUHQWUDLQLQJDGPL[WXUH
)LJXUHSUHVHQWVFRPSUHVVLYHVWUHQJWKGURSWRJHWKHU
with the increasing amount of the air-entraining admixture.
Ta b l e 4 . Concrete mix test results
Characteristics of
concrete mixes
Slump test [mm]
Consistency class
$LUFRQWHQW
0-0
S2
0-2
80
S2
2.8
0-5
90
S2
Series of tested concretes
0-8
1-0
6
6
1-2
6
1-5
6
1-8
200
6
Ta b l e 5 . $YHUDJHYDOXHVRIFRPSUHVVLYHVWUHQJWKDQGWKHSHQHWUDWLRQGHSWKRISUHVVXUL]HGZDWHURIFRQFUHWHGPRGL¿HGZLWK
À\DVKDQGDLUHQWUDLQLQJDGPL[WXUH
Characteristics of concretes
Compressive strength fcm [MPa]
Strength class
Depth of water penetration
[mm]
0-0
&
0-2
&
0-5
&
70
82
Series of tested concretes
0-8
1-0
1-2
&
&
&
98
90
90
1-5
&
1-8
&
80
VWUHQJWKFODVVWR&
ZDVRIWKHFHPHQWPDVV DQG VHULHV
WKHVHULHVWRDVWLOOORZHUVWUHQJWKFODVV&
-$&(.+$/%,1,$.%2*'$1/$1*,(5
Average compressive strength fcm [MPa]
56
54
52
50
concretes
without fly ash
48
46
44
42
fly shs
concretes
7KHXVHRIÀ\DVKDVDFHPHQWVXEVWLWXWHFDXVHGDQLQcrease in the depth of water penetration in concretes both
with and without the air-entraining admixture. Similarly, the
amount of the air-entraining admixture increased together
with the depth of water penetration.
7+(5(68/762)7+()52675(6,67$1&(7(67
&<&/(6
7KHQRUP31(1GRHVQRWPHQWLRQDQ\PHWKod
for
determining the frost-thaw resistance of concretes.
0
0,2
0,5
0,8
Amount of air entraining admixture [%]
+RZHYHUWKHFRQFUHWHVWKDWEHORQJWRWKH;)DQG;)
Fig. 2. 7KHLQÀXHQFHRIDQDLUHQWUDLQLQJDGPL[WXUHRQFRP- exposure classes must contain an air-entraining admixture.
pressive strength
$WSUHVHQWDOOFRQFUHWHVH[SRVHGWRIURVWWKDZF\FOHVDUH
tested for frost resistance according to the
100
31%QRUP
Air entraining
DQGZLWK
The tested series of concrete underwent
95
admixture content
IUHH]HWKDZF\FOHV7KHUHVXOWVDUHSUH0%
)LJXUHSUHVHQWV FRPSUHVVLYHVWUHQJWK
GURSWRJHWKHUZLWK WKHLQFUHDVLQJDPRXQWRI
90
VHQWHGLQ7DEOH
0,20%
85
None of the tested series had any
0,50%
PDVVORVVDIWHUF\FOHV7KHFRPSUHV80
0,80%
sive strength drop for the control concrete
75
ZDV $FFRUGLQJ WR WKH 31
concretes without fly ash
fly ash concretes
%QRUPPD[LPDOVWUHQJWKGURS
Fig. 3. 7KHLQÀXHQFHRIWKHDPRXQWRIWKHDLUHQWUDLQLQJDGPL[- FDQQRWH[FHHG7KHFRQFUHWHVHULHVZLWKRXWÀ\DVK
)LJ7KHLQIOXHQFHRIWKH
ture on the compressive strength percentage of concretes with the control one 0-0 and the one with minimal amount of the
DQGZLWKRXWÀ\DVK
air-entraining admixture 0-2 didn’t have frost resistance after
$GGLQJ
IUHH]HWKDZF\FOHV)O\DVKFRQFUHWHVDQGWKHRQHV
HTXDOWRRIWKHFHPHQWPDVVUHVXOWHGLQORZHULQJ
ZLWKPLQLPDODPRXQWRIWKHDLUHQWUDLQLQJDGPL[WXUH
$GGLQJDQDLUHQWUDLQLQJDGPL[WXUHUHVXOWHGLQORZWKHDYHUDJHFRPSUHVVLYHVWUHQJWKWR03D7DEOH7KHLQFUHDVHLQWKHDPRXQWRI
er strength of the
tested
concretes.
The
amount
of
the
GLGQ¶WKDYHIURVWUHVLVWDQFHDIWHUIUHH]HWKDZF\FOHVHLWKHU
FDXVHV ORZHULQJWKHFRPSUHVVLYHVWUHQJWK ZKLFKGURSSHGWR
ZLWK
DLUHQWUDLQLQJDGPL[WXUHHTXDOWRRIWKHFHPHQWPDVV
The remaining series of tested concretes with the amount
RIWKHDGPL[WXUH$VLPLODUUHVXOWZDVREVHUYHGLQIO\DVKFRQFUHWH7KH
FRPSUHVVLYHVWUHQJWKGURSSHGIURP03DLQWKHVHULHVZLWKRXWWKHDGPL[WXUHWR03D
resulted in lowering the average compressive strength RIWKHDLUHQWUDLQLQJDGPL[WXUHRIDQGKDGWKH
WR03D7DEOH7KHLQFUHDVHLQWKHDPRXQWRIWKH IURVWUHVLVWDQFH)
)LJ7KHLQIOXHQFHRIWKH
(1
air-entraining admixture causes lowering the compressive
DUHSUHVHQWHGLQILJXUH
VWUHQJWKZKLFKGURSSHGWRZLWKWKHPD[LPDODPRXQW
7+(5(68/762)7(676&21&(51,1*
$GGLQJ
RIWKHDGPL[WXUH$VLPLODUUHVXOWZDVREVHUYHGLQÀ\
7+(&+$5$&7(5,67,&62)$,5325(6
HTXDOWRRIWKHFHPHQWPDVVUHVXOWHGLQORZHULQJ
ash concrete. The compressive
strength dropped from
,1+$5'(1('&21&5(7(
WKHDYHUDJHFRPSUHVVLYHVWUHQJWKWR03D7DEOH7KHLQFUHDVHLQWKHDPRXQWRI
03DLQWKHVHULHVZLWKRXWWKHDGPL[WXUHWR03D
FDXVHV ORZHULQJWKHFRPSUHVVLYHVWUHQJWK ZKLFKGURSSHGWR ZLWK
in the series
with the maximal amount of the air-entraining
The air pores characteristics tests were done in acRIWKHDGPL[WXUH$VLPLODUUHVXOWZDVREVHUYHGLQIO\DVKFRQFUHWH7KH
admixture.
cordance
with the research procedure described in the
FRPSUHVVLYHVWUHQJWKGURSSHGIURP03DLQWKHVHULHVZLWKRXWWKHDGPL[WXUHWR03D
The water penetration test was done in accordance with 31(1QRUP7KHWHVWZDVGRQHZLWKWKHXVHRIDQ
WKH31(1QRUP7KHUHVXOWVDUHSUHVHQWHGLQ¿Jautomatic system for analysing the image of air pores in
(1
XUH
FRQFUHWH)LJDQGWKHFRPSXWHUSURJUDP/XFLD&RQFUHWH
DUHSUHVHQWHGLQILJXUH
For all tested concrete series, the following parameters deter100
mining concrete structure were obtained: the total amount of
90
DLULQFRQFUHWH$WKHVSDFLQJIDFWRU)WKHPLFURSRUHFRQWHQW
80
$FODVVWKHGLVWULEXWLRQRIFKRUGVLQSDUWLFXODUVL]H
concretes
70
)LJ7KHLQIOXHQFHRIWKHDPRXQWRI
without fly
classes of pores.
60
ash
The obtained results are presented in Table 7.
50
fly ash
$OOWKHVHULHVKDGWKHVSDFLQJIDFWRU/PPZKLFK
40
concretes
is recommended to obtain frost resistance of concrete.
30
)LJXUHSUHVHQWVWKHFXPXODWHGDLUFRQWHQWLQSDUWLFXODU
20
SRUHFODVVHVIRUFRQFUHWHVZLWKRXWÀ\DVKGHSHQGHQWRQWKH
10
0
amount of the air-entraining admixture.
(1 GRHVQRWPHQWLRQDQ\PHWKRGIRUGHWHUPLQLQJWKHIURVW
00,2
0,5
0,8 WKDW EHORQJ WR WKH ;) DQG Figure
UHVLVWDQFH RI FRQFUHWHV
+RZHYHU
WKH FRQFUHWHV
;) H[SRVXUH
7 presents cumulated air content in particular pore
Amount of air entraining admixture [%]
FODVVHGIRUÀ\DVKFRQFUHWHVGHSHQGHQWRQWKHDPRXQWRI
Fig. 4. 7KHLQÀXHQFHRIWKHDPRXQWRIWKHDLUHQWUDLQLQJDGPL[- the air-entraining admixture.
ture on the penetration depth by pressurized water in concretes
Fly ash concretes had considerably higher cumulated
)LJ7KHLQIOXHQFHRIWKHDPRXQWRI
ZLWKDQGZLWKRXWÀ\DVK
DLUFRQWHQWWKDQFRQFUHWHVZLWKRXWÀ\DVK7KHREWDLQHG
Depth of water penetration [mm]
Percent of compressive strength
in relation to control concretes
[%]
40
5(6($5&+217+()52675(6,67$1&(2)&21&5(7(602',),(':,7+)/<$6+
27
Ta b l e 6 . &RPSUHVVLYHVWUHQJWKGURSDQGPDVVORVVDIWHUIUHH]HWKDZF\FOHV
Characteristics of concretes
Compressive strength drop afWHUIUHH]HWKDZF\FOHV>@
0DVVORVV>@
)URVWUHVLVWDQFH)
Series of tested concretes
0-8
1-0
0-0
0-2
0-5
0
NO
0
NO
0
<(6
0
<(6
1-2
1-5
1-8
8.0
0
NO
0
NO
0
<(6
0
<(6
1-5
1-8
20.8
Ta b l e 7 . The results of tests concerning the characteristics of air pores
Characteristics of air pores
7RWDODLUFRQWHQWLQFRQFUHWH$>@
Spacing factor L [mm]
0LFURSRUHFRQWHQW$>@
0-0
0-2
Series of tested concretes
0-8
1-0
1-2
7.9
0-5
8.9
)LJ$ZRUNVWDWLRQIRUWHVWLQJWKHSRUHVWUXFWXUHLQKDUGHQHGFRQFUHWH
$>@
$ >@
7KH REWDLQHG YDOXHV RI WKH WRWDO SRUH FRQWHQW LQ KDUGHQHG FRQFUHWH $ DUH
TXLWH FOHDUO\ KLJKHU WKDQ WKH DLU FRQWHQW REWDLQHG LQ WKH SUHVVXUH PHWKRG WHVWV RI FRQFUHWH
$OO WKH VHULHV KDG WKH VSDFLQJ IDFWRU / PP ZKLFK LV UHFRPPHQGHG WR REWDLQ IURVW
RSLQLRQVH[SUHVVHGLQ>@WKDWIO\DVKFDQLQFUHDVHWKH$S
)LJXUHSUHVHQWVWKHFXPXODWHG
Cumulated air content [%]
10
8
Tested
series
6
0-0
0-2
4
0-5
2
0-8
0
1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728
Percentage amount of chords in a class [%]
Fig. 5. $ZRUNVWDWLRQIRUWHVWLQJWKHSRUHVWUXFWXUHLQKDUGHQHGFRQFUHWH
25
20
Tested
series
15
0-0
10
0-2
0-5
5
0-8
0
1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728
Pore classes
Pore classes
Cumulated air content [%]
21
18
Tested
series
15
12
1-0
9
1-2
6
1-5
1-8
3
0
1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728
Pore classes
Percentage amount of chords in a class [%]
Fig. 6. 7KHLQÀXHQFHRIDQDLUHQWUDLQLQJDGPL[WXUHRQFXPX- Fig. 8. $KLVWRJUDPRIDLUSRUHVGLVWULEXWLRQLQFRQFUHWHVZLWKRXW )LJ7KHLQIOXHQFHRI
)LJ$KLVWRJUDPRIDLUSRUHVGLVWULEXWLRQLQFRQFUHWHVZLWKRXWIO\DVK
À\DVK
ODWHGDLUFRQWHQWLQFRQFUHWHVZLWKRXWÀ\DVKGHSHQGHQWRQWKH
pore class
25
20
Tested
series
15
1-0
1-2
10
1-5
5
1-8
0
1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728
Pore classes
Fig. 7. 7KHLQÀXHQFHRIDQDLUHQWUDLQLQJDGPL[WXUHRQFXPXODW- Fig. 9. $KLVWRJUDPRIDLUSRUHVGLVWULEXWLRQLQÀ\DVKFRQFUHWHV
HGDLUFRQWHQWLQÀ\DVKFRQFUHWHVGHSHQGHQWRQWKHSRUHFODVV)LJ$KLVWRJUDPRIDLUSRUHVGLVWULEXWLRQLQIO\DVKFRQFUHWHV
SRUHV$ REWDLQHGLQWKHWHVWUDQJHGIURPLQWKHVHULHV
WRLQWKHVHULHV 7DEOH$OOWKHWHVWHGVHULHVKDGWKHIDFWRU$ UHTXLUHG
ZLWKWKHYDOXHDERYHWKHPLQLPDO
7KH REWDLQHG YDOXHV RI WKH WRWDO SRUH FRQWHQW LQ KDUGHQHG FRQFUHWH $ DUH
TXLWH FOHDUO\ KLJKHU WKDQ WKH DLU FRQWHQW REWDLQHG LQ WKH SUHVVXUH PHWKRG WHVWV RI FRQFUHWH
VSDFLQJ IDFWRU VKRXOG EH / ” PP DQG WKH FRQWHQW RI PLFUR
VPDOOHUWKDQ —PFODVV$!&RQFUHWHVZLWK /”PPDQG$!DUH
RSLQLRQVH[SUHVVHGLQ>@WKDWIO\DVKFDQLQFUHDVHWKH$S
WKH)IURVWUHVLVWDQFHFODVV
28
-$&(.+$/%,1,$.%2*'$1/$1*,(5
YDOXHVRIWKHWRWDOSRUHFRQWHQWLQKDUGHQHGFRQFUHWH$
DUHTXLWHFOHDUO\KLJKHUWKDQWKHDLUFRQWHQWREWDLQHGLQWKH
pressure method tests of concrete mixes. Particularly large
GLIIHUHQFHVZHUHQRWLFHGLQÀ\DVKFRQFUHWHV7KLVFRQ¿UPV
WKHRSLQLRQVH[SUHVVHGLQ>@WKDWÀ\DVKFDQ
LQFUHDVHWKH$SDUDPHWHU
Figures 8 and 9 present histograms of the percentage
distribution of air pores in all size classes.
7KHFRQWHQWRIPLFURSRUHV$ obtained in the test
UDQJHGIURPLQWKHVHULHVDQGWRLQWKH
VHULHV7DEOH$OOWKHWHVWHGVHULHVKDGWKHIDFWRU$,
UHTXLUHGIRUFRQFUHWHIURVWUHVLVWDQFHZLWKWKHYDOXHDERYH
WKHPLQLPDO
It is commonly assumed that in order to obtain frost
UHVLVWDQWFRQFUHWHWKHSURSHUVSDFLQJIDFWRUVKRXOGEH/”
0.20mm and the content of micro-pores with the diameter
VPDOOHUWKDQ—PFODVV$!&RQFUHWHVZLWK
/”PPDQG$!DUHFRQVLGHUHGWRJXDUDQWHHD
very high level of frost resistance.
In a direct frost resistance test, despite having obtained
proper parameters in the porosity structure test, in the series
WKHUHZHUHQRFRQFUHWHVWKDWFRXOGEH
LQFOXGHGLQWKH)IURVWUHVLVWDQFHFODVV
CONCLUSIONS
The paper presents the results of research on the characteristics of air pores, compressive strength, the depth of
penetration by pressurized water, and frost resistance after
F\FOHVLQFRQFUHWHVPRGL¿HGE\À\DVKDQGDQDLUHQtraining admixture.
The research that was carried out has led to the following
conclusions:
± À\DVKUDLVHVWKHHIIHFWLYHQHVVRIDLUHQWUDLQLQJWKHFRQcrete mix and it helps to increase air content,
± DQDLUHQWUDLQLQJDGPL[WXUHLPSURYHVIURVWUHVLVWDQFHRI
FRQFUHWHLQFUHDVHVWKHOLTXLGLW\RIWKHFRQFUHWHPL[DQG
improves its workability,
± DLUHQWUDLQLQJDGPL[WXUHVUHVXOWLQDFRQVLGHUDEOHGURS
RIFRPSUHVVLYHVWUHQJWKXSWRLQFRPSDULVRQZLWK
concrete without the admixture. It can lead to lowering
the strength class of concrete by even 2 degrees,
± DGGLWLRQDODLULQWKHFRQFUHWHPL[FDQDOVROHDGWRLQcreasing the depth of water penetration, which is rarely
mentioned by the admixture manufacturers. Therefore,
the composition of concrete must be corrected at the
designing stage,
± WKHFKDUDFWHULVWLFVRIDLUSRUHVGLVWULEXWLRQLVDQHIIHFWLYH
tool to estimate the frost resistance of concrete composites.
5()(5(1&(6
Chaussées en béton, 2000:*XLGHWHFKQLTXH/&3&
6(75$
2. Czarnecki L., 2003:'RPLHV]NLGREHWRQX±PRĪOLZRĞFL
LRJUDQLF]HQLD3ROVNL&HPHQW±%XGRZQLFWZR7HFKQRORJLH$UFKLWHNWXUDQXPHUVSHFMDOQ\
Halbiniak J., 2010: Optymalizacja stosunku cementowo-wodnego w napowietrzanych mieszankach beWRQRZ\FK:=ZLĊNV]HQLHHIHNW\ZQRĞFLSURFHVyZ
EXGRZODQ\FKLSU]HP\VáRZ\FK3RGUHG0DUOHQ\5DMF]\N5R]G]LDáZPRQRJUD¿L:\G3RO&]ĊVWRFKRZskiej.
Halbiniak J., Pietrzak A., 2007:%HWRQQDSRZLHWU]DQ\
'URJRZQLFWZR0LHVLĊF]QLN1DXNRZR±7HFKQLF]Q\
6WRZDU]\V]HQLD,QĪ\QLHUyZLWHFKQLNyZ.RPXQLNDFML
Halbiniak J., 2004::DUVWZDSU]HMĞFLRZDNUXV]\ZR
± ]DF]\Q FHPHQWRZ\ Z NRPSR]\WDFK EHWRQRZ\FK
=ZLĊNV]HQLHHIHNW\ZQRĞFLSURFHVyZSU]HP\VáRZ\FK
LEXGRZODQ\FK:\G3RO&]ĊVWRFKRZVNLHM&]ĊVWRchowa.
-DPURĪ\=%HWRQLMHJRWHFKQRORJLH:\GDZnictwo Naukowe PWN, Warszawa.
7. .DOLVW\00DáDV]NLHZLF]'Metody badania
PUR]RRGSRUQRĞFLEHWRQyZ2FHQDPUR]RRGSRUQRĞFLEHWRQX]FHPHQWHPKXWQLF]\P%XGRZQLFWZRL,QĪ\QLHULD
ĝURGRZLVND
8. Katalog typowych konstrukcji nawierzchni sztywnych,
:*''3:DUV]DZD
9. .XUGRZVNL:6]HOąJ+%RFKHQHN$ CzynQLNLZSá\ZDMąFHQDRGSRUQRĞüEHWRQXQDG]LDáDQLHPUR]X;;9,.RQIHUHQFMD1DXNRZR7HFKQLF]QD$ZDULH
EXGRZODQH
àDĨQLHZVND3LHNDUF]\N%7KHLQÀXHQFHRI
selected new generation admixtures on the workability,
air-voids parameters and Frost-resistance of self-comSDFWLQJFRQFUHWH&RQVWUXFWLRQDQG%XLOGLQJ0DWHULDOV
0DáROHSV]\-., 2000::\EUDQH]DJDGQLHQLD]WUZDáRĞFL
EHWRQyZ%HWRQQDSURJXQRZHJRPLOHQLXP.UDNyZ
Neville A.M., :áDĞFLZRĞFLEHWRQX3ROVNL&Hment, Kraków.
Nowak – Michta A., 2008:,GHQW\¿NDFMDSRURZDWRĞFL
QDSRZLHWU]RQ\FKEHWRQyZ]GRGDWNLHPSRSLRáXORWQHJR
Dni betonu.
Powers T.C., 1945:$ZRUNLQJK\SRWKHVLVIRUIXUWKHU
VWXGLHVRIIURVWUHVLVWDQFH-RXUQDORIWKH$PHULFDQ&RQFUHWH,QVWLWXWH
Rajczyk J., Halbiniak J., 2012:,QÀXHQFHRI0LFURVLOLFVVDQG$LU(QWUDLQLQJ$GGLWLYHVRQ3DUWLFXODU)HDWXUHVRI&RQFUHWH&RPSRVLWH:3URFHHGLQJVRIWK
International Conference on Contemporary Problems
LQ$UFKLWHFWXUHDQG&RQVWUXFWLRQ6XVWDLQDEOH%XLOGLQJ
,QGXVWU\RIWKH)XWXUH6HSWHPEHU:\G
3RO&]ĊVWRFKRZVNLHM
Rajczyk J., Halbiniak J., Langier B., 2012: Technologia kompozytów betonowych w laboratorium i w prakW\FH:\G3RO&]ĊVWRFKRZVNLHM&]ĊVWRFKRZD
5XVLQ=., 2002: Technologia betonów mrozoodpornych,
Polski Cement, Kraków.
:DZU]HĔF]\N-0ROHQGRZVND$., 2011: Struktura
SRUyZDPUR]RRGSRUQRĞüEHWRQyZQDSRZLHWU]RQ\FK
]DSRPRFąPLNURVIHU&HPHQW:DSQR%HWRQQU
:DZU]HĔF]\N-0ROHQGRZVND$, 2014: MrozoodSRUQRĞüEHWRQyZQDSRZLHWU]RQ\FK]DSRPRFąPLNURVIHU
SROLPHURZ\FK'QL%HWRQX
5(6($5&+217+()52675(6,67$1&(2)&21&5(7(602',),(':,7+)/<$6+
29
UyZSRZLHWU]Q\FK%DGDQLHPUR]RRGSRUQRĞFLSU]HSURZDG]RQR
20. =79%HWRQ±6W%=XVlW]OLFKH7HFKQLVFKH
GODF\NOL]DPURĪHĔLUR]PURĪHĔ'ODEHWRQyZZ\NRQDQR
9HUWDJVEHGLQJXQJHQXQG5LFKWOLQLHQIĦUGHQ%DXYRQ EDGDQLHVWUXNWXU\SRURZDWRĞFLNRPSR]\WyZEHWRQRZ\FKNWy)DKUEDKQGHFNHQDXG%HWRQ
UHSU]HSURZDG]RQRSU]\XĪ\FLXXU]ąG]HQLDGRDXWRPDW\F]QHM
%$'$1,$75:$à2ĝ&,052=2:(-%(721Ï:
02'<),.2:$1<&+'2'$7.,(0323,2à8
/271(*2
Streszczenie. :SUDF\SU]HGVWDZLRQRZSá\ZGRGDWNXSRSLRáyZORWQ\FKLGRPLHV]NLQDSRZLHWU]DMąFHMQDPUR]RRGSRUQRĞü
EHWRQXEDGDQąPHWRGąEH]SRĞUHGQLąRUD]FKDUDNWHU\VW\NĊSR-
analizy obrazu z wykorzystaniem programu komputerowego
/XFLD&RQFUHWH$QDOL]LHSRGGDQREHWRQNRQWUROQ\RUD]EHWRQ
]GRGDWNLHPSRSLRáXORWQHJRZLORĞFLSRáRZ\PDNV\PDOQHMGRSXV]F]DOQHMQRUPRZRLORĞFLQDSRZLHWU]DQHUyĪQ\PLGDZNDPL
GRPLHV]NLQDSRZLHWU]DMąFHM
6áRZDNOXF]RZHEHWRQSRSLRá\ORWQHFKDUDNWHU\VW\NDSRUyZ
SRZLHWU]Q\FKPUR]RRGSRUQRĞü
TEKA. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE – 2014, Vol. 14, No. 4, 31–36
Assessment of Monthly Mean Total Ozone Distribution Changes
With Regard to Atlantic Ocean Surface Temperatures Variations
Alexander Holoptsev1, Alexander Bolshikh1, Valeriya Bekirova2, Mariya Nikiforova2
Sevastopol Maritime Academy
Rybakov Str., 5A, Sevastopol, Crimea, 299014; e-mail: kholoptsev@mail.ru
2
Sevastopol National Technical University
Universitetskaya Str., 33, Sevastopol, Crimea, 299053; e-mail: maha.ukraine@gmail.com
1
Received December 03.2014; accepted December 17.2014
Summary: Taking into account monthly average surface temSHUDWXUHVFKDQJHVRI$WODQWLFZDWHUDUHDVZKLFKKDYHDVWURQJ
LQÀXHQFHRQPRQWKO\PHDQWRWDOR]RQHGLVWULEXWLRQDERYH3RODQG
allows to imply their effective modeling and forecasting for several years. Prediction errors are at the maximum in June and rise
as the forecast period increases. Nevertheless, when forecast is
PDGHIRU±\HDUVWKHLUOHYHOVPRGXORGRQRWH[FHHGDEVRlute error of total ozone measurements instrumentally based on
WKHPRVWH[DFWRIH[LVWLQJGHYLFHV±'REVRQVSHFWURSKRWRPHWHU
Key words: variability of total ozone distribution over Poland,
VXUIDFHWHPSHUDWXUHVVLJQL¿FDQWRFHDQDUHDVPRGHOLQJIRUHcasting, statistical relationship, interaction of the troposphere
and stratosphere.
INTRODUCTION
9DULDELOLW\RIWRWDOR]RQHFRQWHQW72&GLVWULEXWLRQLQ
WKHDWPRVSKHUHLQÀXHQFHVFKDQJHVRI89VRODUUDGLDWLRQ
ÀX[HVZKLFKWDNHSDUWLQFUHDWLQJWURSRVSKHULFDQGVXUIDFH
ozone, growth of all land plants, animals and microorganisms, and affect human health as well. Therefore, improvePHQWRIWKHWHFKQLTXHVRILWVPRQLWRULQJLVDWRSLFDOSUREOHP
of physical geography, meteorology and ecology.
1RZDGD\VVLQFH-DQXDU\YDULDELOLW\DQGGLVWULbution of daily mean and monthly mean TOC have been
researched by the means of global monitoring system. TOC
values for different regions of the Planet which are not in
the area of a pole night are measured by spectrophotometers
7206WLOODQG20,±SUHVHQWGD\6XFKGDWD
JRWRWKH:RUOGR]RQHDQGXOWUDYLROHWGDWDFHQWUH7RURQWR
and are presented in the Internet for free access. Possibilities
of these tools and data processing procedures provide resoluWLRQRI'REVRQXQLWV'8ZLWKVSDWLDOJULGƒɯƒ>@
*URXQGEDVHG72&PHDVXULQJVWDWLRQVDUHORFDWHGLQGLIferent cities; the most accurate device in use here is Dobson
VSHFWURSKRWRPHWHUZLWKPHDVXUHPHQWHUURUDURXQG'8
This allows to study the process peculiarities in more detail.
1HYHUWKHOHVVGHYHORSLQJDOWHUQDWLYHPRQLWRULQJWHFKQLTXHV
of TOC variability is of a great interest.
It has been established that changes of ozone depleting
VXEVWDQFHVÀX[HVHQWHULQJGLIIHUHQWDWPRVSKHUHVHJPHQWV
is one of the essential factors, causing TOC distribution
changes in terrestrial atmosphere [2]. Such species of technogenic and natural origin are formed on ground surface
and can be delivered by air streams to stratosphere, where
mainly ozone is located. Within troposphere their transport
is carried out by streams, which arise at various convectionDODQGV\QRSWLFSURFHVVHV>@7KHPHFKDQLVPVWKDWDOORZ
such substances to enter stratosphere are not yet known
ZLWKDVVXUDQFH$FFRUGLQJWR+33RJRV\DQ>@WKHPDLQ
role here is played by advection of tropospheric air through
tropopause breakdowns, which are located above subtropical
jet streams. Nevertheless, this mechanism does not explain
how exactly such substances, which have gotten to the lower
VWUDWRVSKHUHDUHGLVWULEXWHGLQVWHDGLO\VWUDWL¿HGXSSHUOD\ers, where ozone destruction occurs.
($=KDGLQ>@VXJJHVWHGWKDWWKHHVVHQWLDOUROHLQWKLV
process is carried out by planetary and gravity waves, which
arise as a result of various interactions of atmosphere and the
(DUWK¶VVXUIDFH7KH\DOVRFDQEHJHQHUDWHGE\PRYHPHQW
of cyclones and anticyclones, interaction of jet streams and
RURJUDSKLFRUSUHVVXUHLUUHJXODULWLHV>@%HLQJQRQOLQHDU
and large-scale, such waves break at some distance from
WKHVRXUFHDVWKHLUZDYHSUR¿OHWUDQVIRUPVZKLOHVSUHDGLQJ
[8]. This results in turbulent rising air currents, which can
transfer air to any heights in stratosphere.
$QLPSRUWDQWUROHLQJHQHUDWLQJSUHVVXUHLUUHJXODULWLHVLV
played by exposure of the atmosphere to heat and water vaSRUÀX[HVZKLFKDULVHIURPWKH:RUOGRFHDQVXUIDFH+HQFH
a relation between surface temperature changes of some
water areas and TOC over many world regions can exist.
7KHDGHTXDF\RIVXFKDVVXPSWLRQVKDVEHHQFRQ¿UPHG
by many researchers [9]. This suggests a possibility of using
$+2/2376(9$%2/6+,.+9%(.,529$01,.,)2529$
surface temperature measurement results of some World
ocean areas in the monitoring of TOC variations over the
majority of the planet regions.
7KH$WODQWLF2FHDQLVWKHELJJHVWDQGZDUPHVWSDUWRI
the world oceans. This suggests a possibility of existence of
such regions within it, whose surface temperature changes
LQÀXHQFHWKHR]RQRVSKHUHVWDWHRYHU3RODQG
7KHRFFXUUHQFHZDVHVWDEOLVKHGRIVLJQL¿FDQWVWDWLVtic relationships on coinciding time periods between TOC
changes in the majority of atmosphere and surface temperDWXUHYDULDWLRQVRIPDQ\$WODQWLFZDWHUDUHDV2QDYHUDJH
connections between these processes are weaker when the
WHPSRUDU\VKLIWEHWZHHQWKHPJURZV>@
Observations of surface temperature changes for the
PDMRULW\RI$WODQWLF2FHDQDUHDVKDYHEHHQPDGHIRURYHU
\HDUV7KHLUUHVXOWVLQWLPHVHULHVIRUPDUHSUHVHQWHGLQ
the Internet. The data present the values of monthly mean
anomalies calculated as an average of a segment, limited by
SDUDOOHOVDQGPHULGLDQVGLIIHULQJRQƒ>@
7KHGLVSRVLWLRQRIZDWHUDUHDVLQÀXHQFLQJ72&GLVWULbution variations over one or other world region the most,
ZKLFK ZH ZLOO IXUWKHU FDOO µVLJQL¿FDQW¶ LV QRW FOHDUO\
understood. It does not allow to use connections between
the mentioned processes in modeling and forecasting TOC
changes over such regions.
On this basis, the object of the research was monthly
mean TOC distribution changes over Poland and monthly
PHDQVXUIDFHWHPSHUDWXUHVRIYDULRXV$WODQWLF2FHDQDUHDV
The subject of the research was elaboration of monthly
mean TOC distribution changes monitoring with regard
WRVXUIDFHWHPSHUDWXUHVYDULDWLRQVRIWKH$WODQWLF2FHDQ
VLJQL¿FDQWDUHDVRQWKHH[DPSOHRI3RODQG
7KHSXUSRVHRIWKHZRUNZDVWRLGHQWLI\WKH$WODQWLF
2FHDQVLJQL¿FDQWDUHDVPRGHOLQJDFFXUDF\DVVHVVPHQWDQG
TOC distribution variations forecasting over Poland.
To attain these ends the following tasks were solved:
,GHQWL¿FDWLRQRI$WODQWLF2FHDQDUHDVZKRVHPRQWKO\
PHDQVXUIDFHWHPSHUDWXUHLQWHUDQQXDOFKDQJHVVLJQL¿FDQWO\LQÀXHQFHLQFRLQFLGLQJWLPHSHULRGVPRQWKO\PHDQ
TOC variations over the majority of Poland’s regions.
,GHQWL¿FDWLRQRILQWHUDQQXDO72&FKDQJHVSUHGLFWLYH
models over the Poland’s territory.
'HYHORSLQJ72&GLVWULEXWLRQFKDQJHVIRUHFDVWVRYHUWKH
3RODQG¶VWHUULWRU\DQGWKHLUDGHTXDF\DVVHVVPHQW
does not guarantee its practicality in the forecasting tasks.
%XWWKHSRVVLELOLW\LVWKHKLJKHUWKHVWURQJHUWKHVWDWLVWLFDO
FRQQHFWLRQVFRQVLGHUHGLQPRGHOLQJDUH+HQFHWKHDSSOLFDWLRQRIWKLVPHWKRGLQGHYHORSLQJIRUHFDVWLQJWHFKQLTXHV
of studied process was accepted as admissible.
7KHPHQWLRQHGWHFKQLTXHLQFOXGHGWZRVWDJHV
$WWKH¿UVWVWDJHWKH¿UVWWDVNZDVVROYHGZLWKWKHXVH
RIFRUUHODWLRQDQDO\VLV$PRQJDOOWKH$WODQWLF2FHDQDUHDV
[ƒWKHRQHVZHUHLGHQWL¿HGZKRVHVXUIDFHWHPSHUDWXUH
LQWHUDQQXDOFKDQJHVZHUHVLJQL¿FDQWO\FRUUHODWHGZLWK72&
LQRQHRURWKHUDWPRVSKHUHVHJPHQW[ƒRYHU3RODQG¶V
WHUULWRU\$VDTXDQWLW\PHDVXUHRIFRQQHFWLRQEHWZHHQWKH
VWXGLHGSURFHVVHVDSDLUFRUUHODWLRQFRHI¿FLHQWZDVXVHG7KH
latter, with due regard to freedom degrees of correspondLQJWLPHVHULHVZDVDFFHSWHGVLJQL¿FDQWZKHQH[FHHGLQJ
E\6WXGHQW¶VWWHVW)XUWKHUDPRQJVXFKZDWHUDUHDV
WKHVLJQL¿FDQWRQHVZHUHHVWDEOLVKHG7KHLUWHPSHUDWXUH
FKDQJHVZHUHVLJQL¿FDQWO\FRQQHFWHGZLWK72&YDULDWLRQVDW
FRLQFLGLQJWLPHSHULRGVLQQRWOHVVWKDQRIDWPRVSKHUH
segments over the studied territory.
$WWKHVHFRQGVWDJHWKHPRGHOV¶PRQWKO\PHDQ72&
inter-annual changes , corresponding to each atmosphere
VHJPHQWRYHU3RODQGZHUHLGHQWL¿HG
Linear multiple regression was used as a predictive
model:
8 t c0 c x t c 2 x 2 t ... c N x N t here: ci±FRQVWDQWVZKLFKZHUHFKRVHQVRWKDWWKHVXPRI
GHYLDWLRQVTXDUHV z t Y t y t for all the time
periods t was minimal;
y t ±WLPHVHULHVIRUHDFKSUHGLFWDEOHSURFHVVGXULQJWKH
±SHULRG
Y t ±LWVPRGHO
xi t ±VWDWHLQDWLPHPRPHQW t of some process, which is
VLJQL¿FDQWO\VWDWLVWLFDOO\FRQQHFWHGZLWK y t .
$VPRGHODUJXPHQWVWKHWLPHVHULHVRIPRQWKO\PHDQ
VXUIDFHWHPSHUDWXUHVRIVLJQL¿FDQWZRUOGRFHDQVDUHDVZHUH
XVHG7KH\FRUUHVSRQGWRWKH±SHULRGLQVRPH
time moments t coinciding with the studied processes.
)RUHFDVWLQJZDVPDGHIRUDQGVLQFHWKHUH
are results of satellite TOC monitoring for these years over
Poland so their comparison can be made.
It was suggested that the number of model arguments
ZDVHTXDOWRWKHQXPEHURIVLJQL¿FDQWDUHDV± N . Time
series for each of them contained M members ( M 2 N 0(7+2'2/2*<$1''$7$
7KHQPRGHOFRHI¿FLHQWVZHUHFDOFXODWHGDVFRPSRQHQWV
of ( N YHFWRU Ñ , which is a solution to vector-matrix
One of the most universal mathematical modeling meth- HTXDWLRQ
ods of stochastic processes is a multiple regression method
B A C >@,WLVDOVRDSSOLHGIRUWKHLUSUHGLFWLRQLIWKHIDFWRUV where:
considered as arguments, are connected with the studied Ñ N -vector
process. Proving existence of stochastic connections be½
­ M
° ¦ yi °
tween such natural process as TOC changes over Poland
°
° Mi and other natural processes is really hard, in many cases
°
°
° ¦ y i xi , °
B ®i
±LPSRVVLEOH,WLVPXFKHDVLHUWRHVWDEOLVKDQH[LVWHQFHRI
¾,
° ... °
statistical connection between them.
°
°M
The application of factors, connected statistically with
°¦ y i xi , N °
°
°
¿
¯i the studied process, as factors in multiple regression model,
$66(660(172)0217+/<0($1727$/2=21(',675,%87,21&+$1*(6
A ±PDWUL[ N u N A
­
° M
°M
° x
i ,
°¦
° iM
®
° ¦ xi , 2
°i ° M ...
° x
i,N
°¯¦
i ¦x
M
¦x
i i ,
M
¦x
i M
i ¦x
M
i ¦x
M
¦x
i i,2
...
M
x
i , i ,
x
i , i , 2
...
¦x
i M
i ¦x
M
x
i , i , N
i i,2
xi ,
...
i,2
xi , 2
...
...
i,2
¦x
½
°
i °
M
xi , N xi , °
¦
°
i °
M
¾
x
x
¦
i,N i,2 °
i °
...
°
M
°
x
x
¦
i,N i,N
°¿
i M
...
xi , N
...
i,N
Ta b l e 1 . &RRUGLQDWHVRIWKHUHJLRQV¶FHQWHUVRI$WODQWLF2FHDQ
ZKLFKZHUHVLJQL¿FDQWLQPRGHOLQJ72&FKDQJHVDERYH3RODQG
in June
#
ʋ
2
latitude
ƒ
1
1
1
1
1
longitude
ƒ
:
:
:
:
:
#
ʋ
7
8
9
latitude
ƒ
1
1
1
1
1
longitude
ƒ
:
:
:
:
:
#
ʋ
latitude
(ɨ
1
1
1
1
1
longitude
(ɨ
(
:
:
(
:
The mentioned solution would look like:
C
A B here: A is an inverse matrix to A . Vector C was
identified for each considered Poland’s region. The foreFDVWLQJ ZDV PDGH E\ VXEVWLWXWLRQ LQ HTXDWLRQ WLPH
VHULHV RI DUJXPHQWV FRUUHVSRQGLQJ WR DQG yy. TOC values were calculated for each month and each
Poland’s region. For each of them prediction accuracy
was estimated.
$VGDWDWLPHVHULHVRIPRQWKO\PHDQVXUIDFHWHPSHUDWXUHVDQRPDOLHVRIDOOWKH$WODQWLF2FHDQDUHDV[ƒZHUH
XVHG7KH\ZHUHREWDLQHGIURP>@,QGRLQJVRRQO\WLPH
VHULHVZLWKQRJDSVGXULQJ±ZHUHXVHG$VR]RQH
variability data, time series were taken of monthly mean
72&YDOXHVRYHUHDFK(DUWKVXUIDFHVTXDUHƒɯƒOLPLWHG
E\SDUDOOHOVƒ1DQGƒ1DQGPHULGLDQVƒȿDQGƒȿ
UHFHLYHGIURP>@6XFKDWPRVSKHUHVHJPHQWFRPSOHWHO\
covers the whole Poland’s territory and some regions of
*HUPDQ\8NUDLQHDQG%HODUXV
5(68/76$1'',6&866,21
:LWKWKHXVHRIWKHPHQWLRQHGWHFKQLTXHVLJQL¿FDQW
DUHDVRI$WODQWLF2FHDQIRUDOOWKHPRQWKVZHUHLGHQWL¿HG
7KHVPDOOHVWDPRXQWRIVXFKUHJLRQVRFFXUUHGLQ-XQH
&RRUGLQDWHVRIWKHHVWDEOLVKHGVLJQL¿FDQWDUHDVRI$WODQWLF
2FHDQDUHWDEXODWHGLQ7DEOH
/RFDWLRQVRIVXFKUHJLRQVDUHSUHVHQWHGLQ)LJXUH
$VLVVHHQIURP7DEOHDQG)LJXUHWKHPHQWLRQHG
regions are located in the area where a strong interaction
RI*XOI6WUHDPDQG/DEUDGRU&XUUHQWLVIRXQG6RKHUH
the most contrastive pressure gradients are observed. Their
interplay with jet streams makes the last ones vertically
oscillate. This arises planetary and gravitation waves, tropopause breakdown and allows ozone depleting species enter
the stratosphere.
When solving the second task for each month, the TOC
FKDQJHVPRGHOVZHUHLGHQWL¿HGIRUDOOWKHFRQVLGHUHG
atmosphere segments.
With the use of these models, TOC values were preGLFWHGIRUYDULRXVSDUWVRI3RODQGLQ-XQHDQG
These forecasts, as well as the fact values of TOC over
various regions of Poland in June 2009 are tabulated in
Table 2.
Fig. 1. /RFDWLRQRIWKHUHJLRQV¶FHQWHUVRI$WODQWLF2FHDQZKRVH
VXUIDFHWHPSHUDWXUHFKDQJHVZHUHVLJQL¿FDQWLQPRGHOLQJ72&
changes above Poland in June
Ta b l e 2 . Fact and forecasted TOC values over the Poland
regions in June 2009
Fact
oN
oN
oN
oN
o(
oN
oN
oN
oN
oN
oN
oN
oN
2.7
o(
o(
20 o(
Outlook
Forecast error
2.9
0.2
-2.0
22 o(
o(
8.9
-0.9
-2.0
$+2/2376(9$%2/6+,.+9%(.,529$01,.,)2529$
$VLVVHHQIURP7DEOHWKHPD[LPXPIRUHFDVWHUURUV WHUULWRU\IRUDRQH\HDUIRUHFDVWPHDVXUHV'8ZKLFK
'8FRUUHVSRQGWR3RODQGUHJLRQZLWKFHQWHUFRRUGL- is less than TOC measurement error, obtained on Dobson
QDWHVƒ1ƒ($YHUDJHHUURUYDOXHRYHUWKHZKROH3RODQG spectrophotometer.
5HODWHGFRPSDULVRQVIRUKDYHVKRZQWKDWSUHGLFWLRQPHDQHUURUPDGHIRU\HDUVPHDVXUHV'8,IWKH
A)
IRUHFDVWIRULVPDGHZLWKWKHXVHRIPRGHOIDFWRU
FKDQJHVLQ±SHULRGLHWKHIRUHFDVWIRURQH\HDU
PHDQHUURUYDOXHPHDVXUHV'8,QRWKHUPRQWKVWKH
DPRXQWRIVLJQL¿FDQW$WODQWLF2FHDQDUHDVLVJUHDWHUDQG
the TOC forecasts mistakes over Poland are fewer.
CONCLUSIONS
B)
7KHUHDUH$WODQWLF2FHDQDUHDVZKRVHVXUIDFHWHPSHUDWXUHLQWHUDQQXDOFKDQJHVVLJQL¿FDQWO\LQÀXHQFHWKH
TOC variations over Poland in coinciding time periods.
,WVXSSRUWVWKHDGHTXDF\RIK\SRWKHVLVDERXWZDYHQDture of the distribution mechanism in the stratosphere
of ozone depleting substances.
2. Prediction errors of TOC distribution changes over Poland are maximal in June and increase when forecast is
made on greater time shifts. Nevertheless, when forecast
LVPDGHIRU±\HDUVWKHLUOHYHOVPRGXORGRQRW
exceed absolute error of total ozone measurements instrumentally based on the most exact of existing devices
±'REVRQVSHFWURSKRWRPHWHU7KLVUHLQIRUFHVDSSOLFDWLRQ
HI¿FLHQF\RISUHGLFWLQJWHFKQLTXHLQWKHVWXGLHGIRUHFDVWing process.
5()(5(1&(6
:RUOGR]RQHDQGXOWUDYLROHWGDWDFHQWHUKWWSZZZ
woudc.org
2. $OH[DQGURY(/<$,]UDHO,/.DURO$++UJLDQ
1992.2]RQLFVKLHOGRIWKH(DUWKDQGLWVFKDQJHV63HWHUVEXUJ*LGURPHWHRL]GDW
&KNROQ\(3Physics of the atmosphere. Odessa,
Poghosyan H. P., 1972.*HQHUDOFLUFXODWLRQRIWKHDWC)
mosphere. Leningrad.
-DGLQ($,QÀXHQFHRILQWHUDQQXDOWHPSHUDWXUH
variations of the surface of the ocean circulation of the
atmosphere and the ozone layer. The dissertation for
VFLHQWL¿FGHJUHHRIWKHGRFWRURISK\VLFDODQGPDWKematical Sciences. Dolgoprudny, Moscow Institute of
SK\VLFV
+ROWRQ-53++D\QHVDQG0(0F,QW\UH
6WUDWRVSKHUH WURSRVSKHUH H[FKDQJH 5HY *HRSK\V
7. Salby M.L., 1996. )XQGDPHQWDOVRI$WPRVSKHULF3K\VLFV1HZ<RUN$FDGHPLF3UHVV
8. Lighthill, M.J., 1970. Nonlinear theory of wave propDJDWLRQ0RVFRZ³:RUOG´
9. Mohanakumar, K., 2011. Interaction of the stratoVSKHUH DQG WURSRVSKHUH 7UDQVODWLRQ IURP (QJOLVK
Ɋ8 /XN\DQRYD HGLWHG E\ *9$OH[HHY 0RVFRZ
Pic. 2. 'LVWULEXWLRQRYHU3RODQGWHUULWRU\RIIRUHFDVWHG$DQG
IDFW%72&YDOXHVLQ-XQHDQGSUHGLFWLRQHUURUV&
),=0$7/,7
$66(660(172)0217+/<0($1727$/2=21(',675,%87,21&+$1*(6
Holoptsev, A.V., 2013. The geographic position of the
ZDWHUVRIWKH3DFL¿FRFHDQDVDIDFWRURIVLJQL¿FDQWLQÀXence of changes of surface temperature on the state of the
ozone layer. The Karazin Kharkiv national University,
“Man and environment. The problem of neo-ecology
WUHQG´ʋ
2YHUYLHZRIFXUUHQWRFHDQUHDQDO\VHVUHDQDO\VHVRUJ
ocean.
Draper, N., H, Smith, 2007. $SSOLHGUHJUHVVLRQDQDO\VLV0XOWLSOHUHJUHVVLRQ0RVFRZ³'LDOHFWLF´
2&(1$=0,$10,(6,ĉ&=1(-ĝ5('1,(-
&$à.2:,7(-'<675<%8&-,2=212:(-
:$63(.&,(:$+$ē7(03(5$785<:Ï'
32:,(5=&+1,2:<&+2&($18$7/$17<&.,(*2
Streszczenie: %LRUąFSRGXZDJĊĞUHGQLHPLHVLĊF]QH]PLDQ\
WHPSHUDWXU\SRZLHU]FKQLZZRGDFK$WODQW\NXNWyUHPDMąVLOQ\
ZSá\ZQDPLHVLĊF]QąĞUHGQLąFDáNRZLWHMG\VWU\EXFMLR]RQRZHM
QDG3ROVNąPRĪQDVXJHURZDüLFKVNXWHF]QHPRGHORZDQLHLSURJQR]RZDQLHSU]H]NLONDODW%áĊG\SU]HZLG\ZDQLDVąQDMZ\ĪV]H
ZF]HUZFXLURVQąZUD]]HZ]URVWHPRNUHVXSURJQR]RZDQLD
1LHPQLHMMHGQDNJG\SURJQR]DMHVWURELRQDQD±ODWDLFKSR]LRPPRGXORQLHSU]HNUDF]DEáĊGXDEVROXWQHJRVXP\SRPLDUyZ
R]RQXZRSDUFLXRQDMEDUG]LHMGRNáDGQH]LVWQLHMąF\FKXU]ąG]HĔ
±VSHNWURIRWRPHWU'REVRQD
6áRZDNOXF]RZH]PLHQQRĞüFDáNRZLWHJRUR]NáDGXR]RQXQDG
3ROVNąWHPSHUDWXU\SRZLHU]FKQLRZH]QDF]ąFHREV]DU\RFHDQLF]QHPRGHORZDQLHSURJQR]RZDQLHVWDW\VW\F]Q\]ZLą]HN
interakcja troposfery i stratosfery.
TEKA. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE – 2014, Vol. 14, No. 4, 37–40
Dynamic Viscosity of Water and Milk Suspensions
of Extruded Corn Porridge
Magdalena Klimek, Leszek Mościcki, Agnieszka Wójtowicz, Tomasz Oniszczuk,
Maciej Combrzyński, Marcin Mitrus
Department of Food Process Engineering, Lublin University of Life Sciences
Doświadczalna 44, 20-236 Lublin, Poland
Received December 01.2014; accepted December 17.2014
Abstract: The purpose of this study was to determine the effect of temperature and the content of extruded corn porridge
RQWKHG\QDPLFYLVFRVLW\RIZDWHUDQGPLONVXVSHQVLRQV([trusion-cooking process was carried out using a single extruVLRQFRRNHU76'XULQJWKHPHDVXUHPHQWVLWZDVQRWHGWKDW
the viscosity of the suspensions was affected by the kind of
OLTXLGXVHGWKHWHPSHUDWXUHRIWKHVXVSHQVLRQDQGWKHFRQWHQW
of porridge in the mixture. The highest viscosity was found in
DPLON\VXVSHQVLRQWHVWHGDWž&
Key words: extruded, extrusion-cooking, corn porridge, suspensions, viscosity, food
in appropriate conditions allows to obtain a new type of
products different in relevant properties, texture, appearance
DQGTXDOLW\RIKHDOWK>@4XDOLWDWLYHO\EHWWHUSURGucts are derived from harder maize, which is caused by the
KLJKHUDP\ORVHFRQWHQWLQFRPSRVLWLRQ>@&RUQSURGXFWV
and dishes are hypoallergenic and gluten-free. Due to the
different composition of protein compared to other cereals,
corn products are recommended for people suffering from
FHOLDFGLVHDVH>@
0$7(5,$/6$1'0(7+2'6
INTRODUCTION
Current trends show an increase in consumption of conYHQLHQFHIRRGZKLFKGRHVQRWUHTXLUHDORQJWLPHWRSUHSDUH
Nowadays the consumers attach more and more importance
to healthy eating, which is a challenge for manufacturers of
functional foods for direct consumption. Innovations used
in food processing, i.e. extrusion-cooking, micronization,
expanding and combining plant additives call for the replacement of popular snacks with a new type of healthy
SURGXFWV>@
([WUXVLRQFRRNLQJLVSURFHVVLQJRIYHJHWDEOHUDZPDWHrials under high pressure and high temperature, which causes
VLJQL¿FDQWFKDQJHVLQWKHLUSK\VLFDODQGFKHPLFDOSURSHUWLHV
During processing the material is mixed, compacted, comSUHVVHGPHOWHGDQGSODVWLFL]HGLQWKH¿QDOH[WUXGHU]RQH
%DURWKHUPDOWUHDWPHQWFDQEHSHUIRUPHGLQFRQGLWLRQVRI
XSWRž&DQGSUHVVXUHVXSWR03D([WUXVLRQFRRNLQJ
technology is used in the food industry for the production of
various types of food products such as snacks, instant cereal
baby food, breakfast cereals, texturized vegetable protein,
FULVSEUHDGHWF>@
Corn grits is one of the most popular material used in the
SURGXFWLRQRIH[WUXVLRQFRRNHGIRRG>@3URFHVVLQJ
The main raw material used in our experimental study
ZDVFRPPHUFLDOFRUQJULWV9HJHWXV/XEDUWyZ3RODQG
ZLWK D PRLVWXUH FRQWHQW RI GP ([WUXVLRQ ZDV
FDUULHG RXW LQ D VLQJOH VFUHZ H[WUXVLRQFRRNHU76
=0&K0HWDOFKHP*OLZLFH3RODQGXVLQJDVLQJOHGLH
RIPPGLDPHWHU7KHUPDOWUHDWPHQWZDVDWƒ&
DWWKHFRQVWDQWVFUHZURWDWLRQ±USP7KHREWDLQHG
corn extrudates were grounded in a laboratory mill type
/017HVW&KHP5DGOLQWRWKHSDUWLFOHVL]HRIPP
>@
Moisture was determined by a drying chamber method,
LQDFFRUGDQFHWRVWDQGDUG±31$>@
:DWHUDQGPLONVXVSHQVLRQVRIDQGVKDUHRI
extrudates were studied.
6DPSOHVZHUHPL[HGIRUPLQXWHVWRREWDLQDXQLIRUP
consistency. The values of dynamic viscosity were measured
DWWZRWHPSHUDWXUHVž&DQGž&0HDVXUHPHQWVZHUH
registered six-times.
Samples with hot distilled water and milk were prepared
as follows: a weighed sample of the extrudate was mixed
ZDWHURUPLONDWDWHPSHUDWXUHRIƒ&(YHU\VLQJOHVDPSOHZDVPL[HGIRUPLQWKHQFRROHGWRƒ&DWZKLFK
measurement was taken. The measurements carried out at
ƒ&GLGQRWUHTXLUHDGGLWLRQDOKHDWLQJ
0./,0(./02ĝ&,&.,$:Ï-72:,&=721,6=&=8.0&20%5=<ē6.,00,7586
Fig. 2. (IIHFWRIFRUQJULWVDQGWHPSHUDWXUHRQWKHYLVFRVLW\RI
DTXHRXVVROXWLRQVRIFRUQJULWV
)LJVKRZVWKHYLVFRVLW\RIPLONVXVSHQVLRQDWž&DQG
ž&UHVSHFWLYHO\'XULQJWKHPHDVXUHPHQWVLWZDVIRXQG
out that milky suspension was characterized by higher levels
of dynamic viscosity compared to the water solutions. For
example the viscosity of the milk suspension containing
H[WUXGHGFRUQZDVDOPRVWWZLFHDVKLJKDVWKDWRIWKH
ZDWHUVXVSHQVLRQDQGDPRXQWHGXSWR3DāVDW0C.
$OVRLQWKDWFDVHZHFDQVD\WKDWWKHWHPSHUDWXUHRIWKH
VXVSHQVLRQVSOD\HGDQLPSRUWDQWUROH+LJKHUWHPSHUDWXUH
decreased the viscosity value. The highest viscosity valFig. 1. 7HVWLQJ0DFKLQH=ZLFNW\SHRI%'2)%7+ZLWK XH3DāVZDVREWDLQHGIRUPLONVXVSHQVLRQDW
mounted “back-extrusion” snap
ƒ&)RUWKHVDPHVXVSHQVLRQDWž&WKHG\QDPLFYLVFRVLW\
ZDV3DāV
Changes in viscosity of suspensions were measured using
DXQLYHUVDOWHVWLQJPDFKLQH=ZLFN5RHOO%'2)%7+
=ZLFN*PE+&R*HUPDQ\)LJHTXLSSHGZLWK
a back extrusion snap. During measurements were used:
DFKDPEHURIPPKHLJKWDQGLQWHUQDOGLDPHWHURIPP
DQGDSOXQJHURIPPGLDPHWHUDQGDKHLJKWRIPP
Resistance force was recorded during movement of the
piston through the slurry in two measuring cycles: down and
XSZKLFKZDVFRQYHUWHGWRWKHYDOXHRIWKHFRHI¿FLHQWRI
YLVFRVLW\3UR¿OHVRIWKHG\QDPLFYLVFRVLW\DYHUDJHGHFUHDVH
in shear strength, and the standard distance were recorded.
7KHWHVW;SHUWYZDVXVHGIRUWKHSURSHUPHDVXUHPHQWV Fig. 3. 9LVFRVLW\RIFRUQJULWV±PLONVXVSHQVLRQ
SURFHGXUH>@
5(68/76$1'',6&866,21
CONCLUSIONS
7KH VWXG\ FRQ¿UPHG WKH SRVVLELOLW\ RI XVLQJ H[WUXsion-cooking technology in the production of safe inThe moisture content of the extruded corn porridge has
a great importance during storage, for maintaining the senstant corn porridge. The average moisture content of the
VRU\TXDOLWLHVDVZHOODVWKHPLFURELRORJLFDOVDIHW\>@
H[WUXGHGSURGXFWVZDV
Taking all these aspects into account we can say that our 2. Increased temperature decreased the dynamic viscosity
of the suspensions. The highest dynamic viscosity was
products were very safe, their moisture content was less
PHDVXUHGIRUWKHPLON\VXVSHQVLRQDWƒ&
WKDQDWDYHUDJH
Dynamic viscosity of water suspensions made from the ,QFUHDVLQJDPRXQWRIWKHH[WUXGHGFRUQSRUULGJHLQWKH
mixture resulted in the increasing of the dynamic visH[WUXGHGFRUQSRUULGJHVLJQL¿FDQWO\FKDQJHGZLWKLQFUHDVLQJ
cosity of the suspension.
its percentage share. The increase of the extrudate in the
suspension resulted in higher values. Viscosity of water
VXVSHQVLRQDWƒ&UHDFKHG3DāVDWWKHFRQFHQWUDWLRQ
5()(5(1&(6
RI$WWKHGRXEOHFRQFHQWUDWLRQ±WKHREWDLQHG
YDOXHZDV3DāV+HDWLQJRIWKHVXVSHQVLRQXSWRƒ&
resulted in the lowering of viscosity index, which varied $6$(6WDQGDUG$6$(6 Wafers, pellet
IURP3DāVDWFRQFHQWUDWLRQIRUFRUQSRUULGJHWR
DQGFUXPEOHV±GH¿QLWLRQVDQGPHWKRGVIRUGHWHUPLQLQJ
3DāVDWFRQFHQWUDWLRQIRUFRUQJULWVVHH)LJ
density, durability and moisture content.
'<1$0,&9,6&26,7<2):$7(5$1'0,/.6863(16,216
2. Bhattacharya S., Sudha M.L., Rahim A., 1999: Pasting characteristics of an extruded blend of potato and
ZKHDWÀRXUV-RXUQDORI)RRG(QJLQHHULQJ
Chaunier L., Valle G.D., Lourdin D., 2007: Relationships between texture, mechanical properties and
VWUXFWXUHRIFRUQÀDNHV)RRG5HVHDUFK,QWHUQDWLRQDO
&]HUZLĔVND'3U]HWZRU\]NXNXU\G]\±URG]DMH
FKDUDNWHU\VW\NDZ\NRU]\VWDQLH3U]HJOąG=ERĪRZR±
0á\QDUVNL
*RQGHN(-DNXEF]\N(:LHF]RUHN%:áDĞFLZRĞFL¿]\F]QHEH]JOXWHQRZHJRSLHF]\ZDFKUXSNLHJR
=HV]\W\3UREOHPRZH3RVWĊSyZ1DXN5ROQLF]\FK
Gujral H.S., Sodhi N.S., 2002:%DFNH[WUXVLRQSURSHUWLHVRIZKHDWSRUULGJH'DOLD-RXUQDORI)RRG(QJLQHHULQJ
7. Guy R.([WUXVLRQ&RRNLQJ7HFKQRORJLHVDQG
$SSOLFDWLRQV&5&3UHVV,QF%RFD5DWRQ)/86$
8. Harper J.M., 1981:([WUXVLRQRI)RRGVYRO,L,,&5&
3UHVV,QF)ORU\GD86$
9. Jurga R. 3U]HWZRU\ ] NXNXU\G]\ X]\VNDQH
PHWRGąHNVWUX]ML3U]HJOąG=ERĪRZR0á\QDUVNL
Jurga R., 2012:3U]HWZyUVWZRNXNXU\G]\±PRĪOLZRĞFL
Z\NRU]\VWDQLD3U]HJOąG=ERĪRZR0á\QDUVNL
Kunachowicz H., Przygoda B., 2008::]ERJDFDüĪ\ZQRĞüF]\QLHZ]ERJDFDü"3U]HP\Vá6SRĪ\ZF]\
/HH6</XQD*X]PDQ,&KDQJ6%DUUHWW'0
Guinard J-X., 1999: Relating descriptive analysis and
instrumental texture data of processed diced tomatoes.
)RRG4XDOLW\DQG3UHIHUHQFH
Mercier C., Linko P., Harper J.M., 1998:([WUXVLRQ
FRRNLQJ 6W 3DXO $PHULFDQ $VVRFLDWLRQ RI &HUHDO
Chemists, Inc
0LWUXV02QLV]F]XN70RĞFLFNL0 Changes
RIVSHFL¿FPHFKDQLFDOHQHUJ\GXULQJH[WUXVLRQFRRNLQJ
RISRWDWRVWDUFK7(.$.RP0RW,(QHUJ5ROQ±2/
3$1F
Mitrus M., Wójtowicz A., 2011:([WUXVLRQFRRNLQJ
RIZKHDWVWDUFK7(.$.RP0RW,(QHUJ5ROQ±2/
3$1F
Mouquet C., Salvignol B., Hoan N.V., Monvois J.,
Treche S., 2003:$ELWLW\RID³YHU\ORZFRVWH[WUXGHU´WR
SURGXFHLQVWDQWLQIDQWÀRXUVDWDVPDOOVFDOHLQ9LHWQDP
)RRG&KHPLVWU\
0RĞFLFNL/0LWUXV0:yMWRZLF]$ Technika
HNVWUX]MLZSU]HP\ĞOHUROQRVSRĪ\ZF]\P:DUV]DZD
PWRiL
0RĞFLFNL / (NVWUX]MD Z SU]HWZyUVWZLH UROQRVSRĪ\ZF]\P&],,6XURZFHVWRVRZDQHZSURGXNFML
Z\UREyZHNVWUXGRZDQ\FK3U]HJOąG=ERĪRZR±0á\QDUVNL
0RĞFLFNL/0LWUXV0:yMWRZLF]$2QLV]F]XN
T., Rejak A., Janssen L., 2012:$SSOLFDWLRQRIH[WUXsion-cooking for processing of thermoplastic starch
736)RRG5HVHDUFK,QWHUQDWLRQDO9ROSS
299.
20. Naz S., Siddigi R., Sheikh H., Sayeed S.A., 2005: Deterioration of olive, corn and soybean oils due to air,
OLJKWKHDWDQGGHHSIU\LQJ)RRG5HV,QWHUQDW
2QLV]F]XN7:yMWRZLF]$0LWUXV00RĞFLFNL/
&RPEU]\ĔVNL05HMDN$*áDG\V]HZVND%
%LRGHJUDGDWLRQRI736PRXOGLQJVHQULFKHGZLWKQDWXUDO
¿OOHUV7HND&RPPLVLRQRI0RWRUL]DWLRQDQG(QHUJHWLFV
LQ$JULFXOWXUH3ROLVK$FDGHP\RI6FLHQFHV%UDQFKLQ
/XEOLQYRO1RSS
22. PN-A-888034: 1998&KUXSNL0HWRG\EDGDĔ
5DPLUH]-LPHQ] $ *XHUUD+HUQDQGH] ( *DUcia-Villanowa B., 2003:(YROXWLRQRIQRQHQ]\PDWic browning during storage of infant rice cereal. Food
&KHPLVWU\
5]HG]LFNL = =DU]\FNL 3 :Sá\Z HNVWUX]ML
QDVNáDGIUDNFMLEáRQQLNDSRNDUPRZHJRHNVWUXGDWyZ
]XG]LDáHPRZVDQDJRQDVLHQQHJR%LXOHW\Q,QVW\VXWX
+RGRZOLL$NOLPDW\]DFML5RĞOLQ
6FLDULQL/65LERWWD3'/HRQ$(3HUH]*7
2010:,QÀXHQFHRI*OXWHQIUHH)ORXUVDQGWKHLU0L[WXUHV
RQ%DWWHU3URSHUWLHVDQG%UHDG4XDOLW\)RRG%LRSURFHVV
7HFKQRO
Singh S., Gamlath S., Wakeling L., 2007: Nutritional
aspects of food extrusion: a review, International Journal
RI)RRG6FLHQFH7HFKQRORJ\
27. :DV]NLHZLF]±5REDN%ĝZLGHUVNL)NutraFHXW\NLGRGDWNLSUR]GURZRWQHLELRDNW\ZQHVNáDGQLNL
Ī\ZQRĞFL3U]HP\Vá6SRĪ\ZF]\
28. Wójtowicz A., 2007:2FHQDZ\EUDQ\FKFHFKMDNRĞFLRZ\FK HNVWUXGRZDQ\FK ]ERĪRZ\FK NDV]HN Eá\VNDZLF]Q\FKĩ\ZQRĞü1DXND7HFKQRORJLD-DNRĞü
29. Wójtowicz A.,QÀXHQIHRIOHJXPHVDGGLWLRQRQ
proceeding of extrusion-cooking proces of precooded
SDVWD7(.$.RP0RW(QHUJ5ROQ±2/3$1D
Wójtowicz A. 3DVWHUQLDN ( -XĞNR 6 +RGDUD .
.R]áRZLF] . :\EUDQH FHFK\ MDNRĞFLRZH
FKUXSHNNXNXU\G]LDQ\FK]GRGDWNLHPRGWáXV]F]RQ\FK
QDVLRQOQX$FWD6FL3RO7HFKQLFD$JUDULD
Wójtowicz A.,QÀXHQFHRI([WUXVLRQ&RRNLQJ
Process Parameters on Selected Mechanical Properties
RI3UHFRRNHG0DL]H3DVWD3URGXFWV7(.$.RP0RW
,(QHUJ5ROQ±2/3$1
Wójtowicz A.,QÀXHQFHRI([WUXVLRQ&RRNLQJ
Process Parameters on Selected Physical and Textural
3URSHUWLHVRI3UHFRRNHG0DL]H3DVWD3URGXFWV7(.$
.RP0RW,(QHUJ5ROQ±2/3$1
Wójtowicz A. 3DVWHUQLDN ( -XĞNR 6 +RGDUD .
.R]áRZLF].:\EUDQHFHFK\MDNRĞFLRZHFKUXSHNNXNXU\G]LDQ\FK]GRGDWNLHPRGWáXV]F]RQ\FKQDVLRQOQ\X$FWD6FL3RO7HFKQLFD$JUDULD
=DU]\FNL35]HFNL=:Sá\ZGRGDWNXNRPSRQHQWyZZ\VRNRELDáNRZ\FKQDZáDĞFLZRĞFL¿]\F]QH
HNVWUXGDWyZNXNXU\G]LDQRRZVLDQ\FK$FWD$JURSK\V
0./,0(./02ĝ&,&.,$:Ï-72:,&=721,6=&=8.0&20%5=<ē6.,00,7586
:<=1$&=$1,(/(3.2ĝ&,=$:,(6,1=8'=,$à(0
(.6758'2:$1(-.$6=.,.8.85<'=,$1(Streszczenie: &HOHPEDGDQLDE\áRRNUHĞOHQLHZSá\ZXWHPSHUDWXU\ RUD] XG]LDáX HNVWUXGRZDQHM NDV]NL NXNXU\G]LDQHM
QD ]PLDQ\ MHM ZRGQ\FK L POHF]Q\FK UR]WZRUyZ (NVWUX]MĊ
SURZDG]RQRXĪ\ZDMąFMHGQRĞOLPDNRZHJRHNVWUXGHUD76
: F]DVLH SRPLDUyZ RGQRWRZDQR ĪH OHSNRĞü ]DZLHVLQ ]DOHĪDáD RG REUyENL WHUPLF]QHM URG]DMX FLHF]\ RUD] XG]LDáX
SURFHQWRZHJR NDV]NL 1DMZ\ĪV]H ZDUWRĞFL OHSNRĞFL PLDáD
POHF]QD ]DZLHVLQD NDV]NL R XG]LDOH SU]HWU]\P\ZDQD
ZWHPSHUDWXU]Hž&
6áRZDNOXF]RZHekstruzja, ekstrudowana kaszka kukurydziana,
]DZLHVLQDOHSNRĞüG\QDPLF]QD
TEKA. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE – 2014, Vol. 14, No. 4, 41–44
The Note on Application of Logistic Model in Agriculture Research
Andrzej Kornacki
Department of Applied Mathematics and Computer Science University of Life Sciences in Lublin
Akademicka 12, 20-950 Lublin, e-mail: Andrzej.Kornacki@up.lublin.pl
Received December 10.2014; accepted December 19.2014
Summary. In the study an example was presented when the
DSSOLFDWLRQRIWKHFRHI¿FLHQWRIGHWHUPLQDWLRQ52, a commonly
XVHGJRRGQHVVRI¿WPHDVXUHRIWKHPRGHOWRWKHHPSLULFDOUHVXOWV
leads to wrong conclusions. It is an example of a logistic model.
Theoretical considerations were applied to the model describing
the germination of seeds which underwent laser biostimulation
prior to sowing. Moreover, the origin of problems that appears
in the described situation was explained.
Key words: ORJLVWLFPRGHOFRHI¿FLHQWRIGHWHUPLQDWLRQ52, laser
biostimulation prior to sowing.
RIWKHPRGHORUUHJUHVVLRQIXQFWLRQWRH[SHULPHQWDOGDWD
ZKHUHDVWKRVHFORVHWRLQGLFDWHSRRU¿W0RUHRYHUYDOXH
R2 determines which part of variability of the experimental
UHVXOWVLVH[SODLQHGE\WKHPRGHORUUHJUHVVLRQIXQFWLRQ
+RZHYHULQFDVHRIVRPHQRQOLQHDUPRGHOVYDOXH52
can be negative. In such a case the application of this coef¿FLHQWLVLQFRUUHFW
7+(2%-(&7,9($1'6&23(2)678'<
The objective of the study was to demonstrate that the
FRHI¿FLHQWRIGHWHUPLQDWLRQ52 for some nonlinear models
can take on negative values. This study describes such a case
Describing processes by mathematical models is a prob- regarding a logistic model. Theoretical considerations were
lem of interest to a number of researchers in various areas of applied to the model describing the germination process of
VFLHQFH+RZHYHUWKHPRGHOVKDSHDOVRUHTXLUHVWKHYHUL¿FD- seeds that underwent laser biostimulation prior to sowing.
tion of its correctness based on empirical data. The measure 0RUHRYHULWZDVH[SODLQHGZK\WKHXVHRIDFRHI¿FLHQWRI
RIWKHJRRGQHVVRI¿WRIWKHPRGHOWRHPSLULFDOGDWDWKDWLV determination is incorrect in this situation.
RIWHQXVHGLVWKHFRHI¿FLHQWRIGHWHUPLQDWLRQ52>@
7KLVFRHI¿FLHQWIRUFKDUDFWHULVWLFyLVGH¿QHGDV>@
0$7(5,$/$1'0(7+2'6
SSE
R2
SST
$WWKH'HSDUWPHQWRI3K\VLFVRIWKH8QLYHUVLW\RI/LIH
Sciences in Lublin the research was conducted aiming at the
where: n
SST ¦ ( yi y 2 LVWRWDOVXPRIVTXDUHIRUJLYHQIHDWXUH determination of the germination process of tomato seeds
i and the impact of the laser biostimulation of the sowable
n
PDWHULDORQWKLVSURFHVV>@,QWKHUHVHDUFKWKHVHHGVRI
SSE ¦ ( yi f i 2 LVHUURUVXPRIVTXDUH
i Promyk variety were used. In laser biostimulation the adjustable doses of energy method were used assuming the dose
and
HTXDOWRP-)RUFRPSDUDWLYHUHDVRQVDFRQWUROVDPSOH
yi±GHQRWHVHPSLULFDOGDWD
fi±GHQRWHVWKHYDOXHVRIDIXQFWLRQGHVFULELQJWKHPRGHO RIVHHGVQRQELRVWLPXODWHGZDVWDNHQ7KHWHVWJURXSZDV
&RHI¿FLHQW52 works perfectly in case of linear mod- represented by 700 seeds sown on Petri plates with tissue
els and some nonlinear ones which are brought to linear SDSHUOLQLQJLQVDPSOHVVHHGVSHUVDPSOH7KHSODWHV
models using the relevant transformations (i.e. nonlinear were placed in an electrostatic furnace, ensuring temperature
LQWHUQDOOLQHDUPRGHOV>@,WWDNHVRQWKHYDOXHVIURPWKH stabilisation with the accuracy to 0C. The seeds germinatUDQJH!9DOXHVFORVHWRSURYHWKHJRRGQHVVRI¿W HGZLWKRXWDFFHVVRIOLJKW(YHU\IHZKRXUVWKHJHUPLQDWLQJ
INTRODUCTION
$1'5=(-.251$&.,
$WWKH'HSDUWPHQWRI3K\VLFVRIWKH8QLYHUVLW\RI/LIH6FLHQFHVLQ/XEOLQWKHUHVHDUFK
LPSDFWRIWKHODVHUELRVWLPXODWLRQRIWKHVRZDEOHPDWHULDORQWKLVSURFHVV>@,QWKHUHVHDUFK
seeds were counted.
The seed was considered germinated Ta b l e 2 . 7KHYDOXHVRIVXPVRIVTXDUHVDQGWKHFRHI¿FLHQW
if it formed a germ which was at least 2 mm long. During of determination R2 for germinated seeds of Promyk variety
HUH XVHG DVVXPLQJ WKH GRVH HTXDO WR P- )RU FRPSDUDWLYH UHDVRQV D FRQWURO
the experiment the constant moisture content of the tissue WRPDWRHVVWLPXODWHGZLWKWKHGRVHRIP-DWWHPSHUDWXUH0C.
ELRVWLPXODWHGZDVWDNHQ7KHWHVWJURXSZDVUHSUHVHQWHGE\VHHGV
paper was maintained by dosing distilled water.
SST
LQVDPSOHVVHHGVSHUVDPSOH7KH
66(
R
&7KHVHHGVJHUPLQDWHGZLWKRXWDFFHVVRIOLJKW(YHU\IHZKRXUVWKHJHUPLQDWLQJVHHGV
0$7+(0$7,&$/02'(/
2)7+(*(50,1$7,21352&(66
Ta b l e 3 . 7KHYDOXHVRIVXPVRIVTXDUHVDQGWKHFRHI¿FLHQWRI
determination R2 for nonstimulated germinated seeds of Promyk
2)720$726(('6
2
YDULHW\WRPDWRHVDWWHPSHUDWXUH&
The germination process of tomato seeds undergoing laSST
ELRVWLPXODWLRQ ZLWK WKH GRVH RI P- DW WHPSHU
ser biostimulation before sowing can be described by means
ELRVWLPXODWHG VHHGV DW66(
WHPSHUDWXUH of a mathematical model which is expressed by means WHPSHUDWXUH
of
&DUHSUHVHQWHGLQ7DEOHVDQGDVZHOODV7DEOH
R2
WKHORJLVWLFIXQFWLRQ>@LQWKHIRUPRI
IXQFWLRQ>@LQWKHIRUPRI
Ta b l e 4 . 7KHYDOXHVRIVXPVRIVTXDUHVDQGWKHFRHI¿FLHQW
nk
n(t of determination R2 for germinated seeds of Promyk variety
7DEOH
D p nk ( t t0 (nk e
D
WRPDWRHVVWLPXODWHGZLWKWKHGRVHRIP-DWWHPSHUDWXUH&
7DEOH
where:
SST
$V7DEOHV VKRZLQWKHFRQVLGHUHGFDV
nk±¿QDOQXPEHURIJHUPLQDWHGVHHGV
66(
QHJDWLYHYDOXHV,QVXFKDVLWXDWLRQLWGRHVQRWKDYHDQ\LQWHUSUHWDWLRQDWDOODQGFRQVHTXHQWO\
QW±QXPEHURIVHHGVJHUPLQDWHGDIWHUJLYHQWLPHW
QW
R2
D p ±FRHI¿FLHQWRIJHUPLQDWLRQVSHHG>K@
D
VSHHG>K@
@ WKDW LQ WKH OLQHDU UHJUHVVLRQ PRGHO VRPH EDVLF LGHQWLW\ WDNHV
t0±WLPHJHUPLQDWLRQRIWKH¿UVWVHHGVVRZQ>K@
,WLVGHPRQVWUDWHG>@WKDWLQWKHOLQHDUUHJUHVVLRQPRGValues D p and t0 are determined on an experimental el some basic identity takes place.
basis.
n
n
n
( y i yÖ 2 ¦ ( y i f i 2 ¦ ( f i y 2 so SST SSE SSR In a general case the
D logistic curve can be described by ¦
i i i a formula with three parameters
n three parameters
In a general case the logistic curve can be described by a formula with
SSR 2¦ ( f i y 2 where
A
¦ ( y i f (t Be Ct
GHQRWHVUHJUHVVLRQVXPRIVTXDUH
GHQRWHVUHJUHVVLRQVXPRIVTXDUH
7KHSURRIRIWKHLGHQWLW\LVEDVHGRQWKHOLQHDULW\RI
LV EDVHGRQWKHOLQHDULW\RIWKHUHJUHVVLRQPRGHO DQGWKH
Results and discussion
WKHUHJUHVVLRQPRGHODQGWKHHYDOXDWLRQRILWVFRHI¿FLHQWV
HYDOXDWLRQRILWVFRHIILFLHQWVXVLQJWKHOHDVWVTXDUHPHWKRG&RQVHTXHQWO\LGHQWLW\LVWUXH
8VLQJ IRUPXOD WKH QXPEHU RIIRU
JHUPLQDWHG
VHHGV
ZDV FDOFXODWHG
WKH VTXDUH PHWKRG 7KH UDQJH RI
5(68/76$1'',6&866,21
XVLQJWKHOHDVWVTXDUHPHWKRG&RQVHTXHQWO\LGHQWLW\
OLQHDU
PRGHOV
ZLWKQW
FRHIILFLHQWV
HYDOXDWHG DQG
XVLQJWKHQ
WKH OHDVW
VXPVRIVTXDUHV667DQG66(DQGILQDOO\IURPIRUPXODWKHYDOXHRIWKHFRHIILFLHQWRI
!UHVXOWVLQDQREYLRXVZD\IURPLGHQWLW\
LVWUXHIRUOLQHDUPRGHOVZLWKFRHI¿FLHQWVHYDOXDWHGXVLQJ
IRUZKLFKLGHQWLW\GRHVQRWRFFXU,WLVSURYHGE\WKH
8VLQJIRUPXODWKHQXPEHURIJHUPLQDWHGVHHGVQW WKHOHDVWVTXDUHPHWKRG7KHUDQJHRIYDOXHRIFRHI¿FLHQW
VXPVRIVTXDUHVLQ7DEOHV
,WLVWKLVSDUWLFXODUIDFWWKDWLVWKHVRX
XQGHUZHQWODVHUELRVWLPXODWLRQZLWKP-GRVHDWWHPSHUDWXUH
&DUHSUHVHQWHGLQ7DEOH
2
ZDVFDOFXODWHGDQGWKHQWKHVXPVRIVTXDUHV667DQG66( R !UHVXOWVLQDQREYLRXVZD\IURPLGHQWLW\7KH
7DEOH
DQG¿QDOO\IURPIRUPXODWKHYDOXHRIWKHFRHI¿FLHQWRI
logistic model is an example of a non-linear model for
determination R2. The results for germinated seeds of Promyk ZKLFKLGHQWLW\GRHVQRWRFFXU,WLVSURYHGE\WKHVXPV
RIVTXDUHVLQ7DEOHV,WLVWKLVSDUWLFXODUIDFWWKDWLVWKH
variety tomatoes
which underwent laser biostimulation with Ϯ
P-GRVHDWWHPSHUDWXUH0&DUHSUHVHQWHGLQ7DEOH
VRXUFHRIQHJDWLYHYDOXHVRIWKHFRHI¿FLHQWRIGHWHUPLQDWLRQ
Ta b l e 1 . 7KHYDOXHVRIVXPVRIVTXDUHVDQGWKHFRHI¿FLHQW
of determination R2 for germinated seeds of Promyk variety
WRPDWRHVVWLPXODWHGZLWKWKHGRVHRIP-DWWHPSHUDWXUH0C.
-0,90
CONCLUSIONS
To sum up the considerations contained in the study, the
following conclusions can be formulated:
>@'RERV]0&RPSXWHUDLGHGVWDWL
$NDGHPLFND2ILF\QD
&RHI¿FLHQWRIGHWHUPLQDWLRQ52 is a very good measure
:\GDZQLF]D([LW:DUV]DZD>LQ3ROLVK@
RIJRRGQHVVRI¿WRIlinear models and some nonlinear
>@%LDáREU]HVNL,0\KDQ5&\G]LN5(IIHFWLYHZDWHUGLIIXVLRQFRHIILFLHQWLQ)DED
EHDQVHHGVGXULQJGU\LQJ3DUW,,$QDO\VLVRIHVWLPDWLRQHUURUV(OHFWURQLF-RXU
but internal linear ones to empirical data.
Similar results for germinated seeds of Promyk vari$JULFXOWXUDO8QLYHUVLWLHV9RO,VVXH
ety tomatoes which underwent laser biostimulation with
,WLVQRWUHFRPPHQGHGWKDWWKHFRHI¿FLHQWRIGHWHUPLQDWLRQ
WKHGRVHRIP-DWWHPSHUDWXUH0C, the control sample
R2EHXVHGDVDJRRGQHVVRI¿WFULWHULRQIRUDORJLVWLFPRGHO
0
ϯ
QRQELRVWLPXODWHGVHHGVDWWHPSHUDWXUH C and the sam0
SOHVRIELRVWLPXODWHGVHHGVDWWHPSHUDWXUH C are presentHGLQ7DEOHVDQGDVZHOODV7DEOH
5()(5(1&(6
$V7DEOHVVKRZLQWKHFRQVLGHUHGFDVHVWKHFRHI¿FLHQWRIGHWHUPLQDWLRQWDNHVRQQHJDWLYHYDOXHV,QVXFK Dobosz M., 2001: Computer aided statistical analysis
RIWHVWUHVXOWV$NDGHPLFND2¿F\QD:\GDZQLF]D([LW
a situation it does not have any interpretation at all and
Warszawa.[in Polish],
FRQVHTXHQWO\LWFDQQRWEHXVHGDVDPHDVXUHRIJRRGQHVV
RI¿WRIWKHPRGHOWRHPSLULFDOGDWD/HWXVGHPRQVWUDWHWKH 2. %LDáREU]HVNL,0\KDQ5&\G]LN5(IIHFWLYH
source of the existing situation.
ZDWHUGLIIXVLRQFRHI¿FLHQWLQ)DEDEHDQVHHGVGXULQJ
SST
66(
R2
7+(127(21$33/,&$7,212)/2*,67,&02'(/,1$*5,&8/785(5(6($5&+
GU\LQJ3DUW,,$QDO\VLVRIHVWLPDWLRQHUURUV(OHFWURQLF
-RXUQDORI3ROLVK$JULFXOWXUDO8QLYHUVLWLHV9RO,Vsue 2, http://www.ejpau.media.pl//volume8/issue2/art29.html,
*áDG\V]HZVND%(YDOXDWLRQRIWKHLPSDFWRI
pre-laser bio-stimulation of seeds of tomatoes on the
process of germination. The doctoral dissertation. Uniwersytet Przyrodniczy w Lublinie.[In Polish],
Molenda M. Lukaszuk J., Horabik J., 2005: $LUÀRZ
resistance of wheat as affected by grain density and
PRLVWXUHFRQWHQW(OHFWURQLF-RXUQDORI3ROLVK$JULFXOWXUDO8QLYHUVLWLHV9RO,VVXHKWWSZZZHMSDXPHGLD
SOYROXPHLVVXHDUWKWPO
Królczyk J., Matuszek D., Tukiendorf M., 2010: ModHOOLQJRITXDQWLW\FKDQJHVLQDPXOWLFRPSRQHQWJUDQXODU
PL[WXUHGXULQJPL[LQJ(OHFWURQLF-RXUQDORI3ROLVK$JULFXOWXUDO8QLYHUVLWLHV9RO,VVXHKWWSZZZHMSDX
PHGLDSODUWLFOHVYROXPHLVVXHDUWSGI
2QLV]F]XN70RĞFLFNL/(IHFWRI¿OOHUVDGGLWLRQRQ60(RIH[WUXVLRQFRRNLQJRIWKHUPRSODVWLF
ZKHDWVWDUFK7HND.RP0RW(QHUJ5ROQ2/3$1
7. 2QLV]F]XN70RĞFLFNL/ Production of biodegradable packaging materials by extrusion-cooking
7HND.RP0RW(QHUJ5ROQ2/3$1
8. Ryan T.P. 1997: Modern regression methods. John
:LOH\6RQV1HZ<RUN
9. Seber G.A.F., 1977: Linear regression analysis. John
:LOH\6RQV1HZ<RUN
Seber G.A.F., Wild C.J. 1989: Nonlinear regression,
-RKQ:LOH\6RQV1HZ<RUN
127$2=$67262:$1,802'(/8
/2*,67<&=1(*2:%$'$1,$&+52/1,&=<&+
Streszczenie. :SUDF\RSLVDQRSU]\NáDGNLHG\XĪ\FLHZVSyáczynnika determinacji R2, powszechnie stosowanej miary dobroci dopasowania modelu do wyników eksperymentu prowadzi do
QLHZáDĞFLZ\FKZQLRVNyZ-HVWWRSU]\SDGHNPRGHOXORJLVW\F]QHJR5R]ZDĪDQLDWHRUHW\F]QH]DVWRVRZDQRGRPRGHOXRSLVXMąFHJR
SURFHVNLHáNRZDQLDQDVLRQSRGGDQ\FKSU]HGVLHZQHMODVHURZHM
ELRVW\PXODFML3RQDGWRZ\MDĞQLRQRFRMHVWĨUyGáHPSUREOHPyZ
SRMDZLDMąF\FKVLĊZRSLVDQHMV\WXDFML
6áRZDNOXF]RZHPRGHOORJLVW\F]Q\ZVSyáF]\QQLNGHWHUminacji R2, przedsiewna biostymulacja nasion.
TEKA. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE – 2014, Vol. 14, No. 4, 45–52
An Analysis of Pressure Distribution in Water and Water Emulsion
In a Front Gap of a Hydrostatic Bearing
Konrad Kowalski, Tadeusz Zloto
Institute of Mechanical Technologies, Czestochowa University of Technology
Al. Armii Krajowej 21, 42-201 Czestochowa, konrad@itm.pcz.czest.pl, zlotot@o2.pl
Received December 05.2014; accepted December 18.2014
&]Ċ
Summary. The paper presents pressure distributions for water and
water emulsion in a variable-height gap of a hydrostatic thrust bearing
with a rotating upper wall. On the basis of the Navier-Stokes
equations and the continuity equation a formula is established for
obtaining pressure in the gap. The paper also analyses the influence of
geometrical parameters and exploitation conditions on the distribution
of circumferential pressure around the smallest height of the gap.
Key words: pressure distribution, variable-height gap, hydrostatic
thrust bearing, water, water emulsion.
INTRODUCTION
The problem of gap flow concerns a number of
hydraulic devices and machines in which contact parts are
separated by liquid-filled gaps of very small height. For
gap flow of working liquids the Reynolds number is small
and the flow is laminar [13, 26].
There are gaps of various shapes and dimensions.
Since each gap in a hydraulic system is a source of loss
[5, 6, 13, 21], it is important to examine phenomena that
occur in them [14]. Losses are essentially dependent on
the gap height: the greater the gap height the smaller the
mechanical losses and the greater the volumetric losses
[22].
Hydrostatic bearings are applied in popular
hydrostatic drive systems [3, 4, 10, 16, 18, 19, 20]. In the
case of axial pumps with a flat swash plate, a front gap can
be found between slipper and swash plate and between
cylinder block and valve. The smallest gap height between
the slipper and swash plate is much greater than that
between the cylinder block and valve plate [2]. The
working liquid used in a hydraulic system is of crucial
the slipper and swash plate is much greater than that
between the cylinder block and valve plate [2]. The
working liquid used in a hydraulic system is of crucial
importance, too. The liquid is responsible for transferring
large forces and torques of the system’s elements.
Selecting a working liquid has therefore economic and
often environmental consequences.
Over the centuries, the discipline of fluid mechanics,
including broadly conceived hydraulics, was developed by
a number of prominent scientists, such as Thales of
Miletus, Aristotle, Ktesibios, Archimedes, Da Vinci,
Stevin, Torricelli, Pascal, Boyle, Newton, Bernoulli, Euler,
Armstrong or Bramah [27]. In 1795, Bramah designed,
patented and constructed the first hydraulic water press
[11]. It was however observed that water as working liquid
caused corrosion of metal elements and at the beginning of
the 20th century American scientists Harvey Williams and
Reynolds Janney came up with the idea of using mineral
oil instead of water. They were the first to construct a
hydrostatic piston axial gear with a swing swash plate
[14]. This invention marks the beginning of the rapid
development of oil hydraulics, which continues until
today.
In hydraulic systems various liquids are used as
working agents (Fig. 1). At present the one most
frequently used is mineral oil [7, 23]. In places under the
risk of fire, such as mines, non-flammable liquids are
used.
The liquids applied are not perfect. With the multitude
of industrial applications, it is necessary to search for
liquids meeting the requirements as closely as possible.
Because of that, studies are conducted on the application
of plant oils in hydraulic systems. New opportunities seem
Fig. 1. Working liquids used in hydraulic drives
The liquids applied are not perfect. With the multitude
.215$'.2:$/6.,7$'(86==/272
liquids meeting the requirements as closely as possible.
Because of that, studies are conducted on the application
of plant oils in hydraulic systems. New opportunities seem
to be offered by what is known as intelligent fluids,
including electro-rheological and magneto-rheological
fluids.
Besides, in the recent years there has been a revival of
interest in water. Its applicability as a working agent in
hydraulic systems is expected to rise due to the fact that it
is environment-friendly and much cheaper than the other
liquids currently used [11, 12, 17]. Following intensive
research on water hydraulics [12], many producers and
suppliers offer parts for modern water systems.
OBJECTIVES OF THE STUDY
The present study aims to examine the influence of
exploitation parameters and dimensions on pressure
distributions in the area surrounding the smallest height of
the front gap in a hydrostatic thrust bearing with water and
with a water emulsion. The study assumes an analytic
model of pressure distribution in a front gap of the
hydrostatic thrust bearing with a rotating upper
wall.
GU UGij
G]
A MODEL BASED ON THE NAVIER-STOKES
EQUATIONS AND THE CONTINUITY EQUATION OF
LIQUID PRESSURE DISTRIBUTION
IN A FRONT GAP OF A HYDROSTATIC BEARING
Pressure distribution in the front gap of a hydrostatic
thrust bearing (Fig. 2) can be best described analytically
by means of a system of equations consisting of the
Navier-Stokes equation and the continuity equation
represented in a cylindrical system of coordinates U, ij, ]
[8, 15, 25]. A fluid element ABCDEFGH of
dimensions GU UGij, G] is presented in Fig 3.
To solve the system of equations (1- 4) analytically, it
is necessary to adopt the following simplifying
assumptions:
The gap is of micrometre high and is completely filled
with incompressible liquid of constant viscosity;
Surfaces are rigid;
Liquid flow is laminar, uniform, steady and
isothermal;
Tangent stress is Newtonian;
U ij ]
Liquid particles directly adjacent to the rotating wall
surface have the same velocity as the rotating wall;
Inertia is negligible.
Fig. 2. Front gap of a hydrostatic thrust bearing [25]
The base system of equations is [8, 15, 25]:
The base system of equations is [8, 15, 25]:
U ]
(1)
,
(5)
(2)
,
,
.
(3)
(4)
(9)
To solve the system of equations (1- 4) analytically, it is necessary to adopt the
„
„
]
FRQGLWLRQV
$1$1$/<6,62)35(6685(',675,%87,21,1:$7(5$1':$7(5(08/6,21
Inertia is negligible.
,
(12)
and after substituting (11) and (12) into equation (10):
.
(13)
After integrating equation (6) twice with respect to the
variable ], the velocity vijwas obtained:
.
(14)
The boundary conditions used for computing the
integration constants & and & are presented in Table 2.
Table 2. Boundary conditions for computing the integration constants
& and &
Fig. 3. A fluid element in a cylindrical coordinate system [1]
Besides, if vr = vr(U, ]) and vz = 0, equations (1 - 4)
become:
,
(5)
%RXQGDU\
FRQGLWLRQV
1R
9DULDEOH]
9HORFLW\vij
z=0
vij = 0
z=h
vij = Ȧr
Hence:
,
,
(6)
,
(7)
(15)
,
(16)
and after substituting (15) and (16) into equation (14):
.
.
(17)
(8)
When (14) and (17) are substituted into (8):
Equation (5) can be transformed and represented as:
. (18)
.
(9)
To obtain the velocity vr, it is necessary to integrate
equation (9) twice with respect to the variable ]. Then, the
result is:
.
(10)
The integration constants & and & were obtained for the
boundary conditions presented in Table 1.
Integrating equation (18) with respect to the variable ] in
the interval from 0 to K and performing some
transformations yields:
.
To obtain a formula describing the pressure S in a front
gap, it is necessary to integrate equation (19) twice with
respect to the variable U. This leads to :
.
Table 1. Boundary conditions for computing the integration constants
& and &
%RXQGDU\
FRQGLWLRQV
1R
9DULDEOH]
9HORFLW\vr
z=0
vr = 0
z=h
vr = 0
(20)
The integration constants & and & were computed for the
boundary conditions specified in Table 3.
Table 3. Boundary conditions for computing integration constants &
and &
Then, it follows:
,
(19)
(11)
(12)
%RXQGDU\
FRQGLWLRQV
Hence:
1R
5DGLXVU
3UHVVXUH p
r = r1
p = p1
r = r2
p=0
&
&
&
&
ZDWHU
ZDWHUHPXOVLRQ
1R
5DGLXVU
3UHVVXUH
5DGLXVU
3UHVVXUH
%RXQGDU\
.215$'.2:$/6.,7$'(86==/272
FRQGLWLRQV
1R
%RXQGDU\
FRQGLWLRQV
Hence:
.
İ
Substituting integration constants (21, 22) into equation
(20) ultimately leads to
S(21)
K
.
Ȧ
(22)
UU
. (23)
ij
RESULTS OF SIMULATIONS OF PRESSURE
DISTRIBUTION IN THE FRONT GAP OF A
HYDROSTATIC BEARING – AN ANALYSIS
Pressure was calculated in the front gap of a hydrostatic
thrust bearing with water and with water emulsion
AQUACENT LT 68. The basic physical parameters of these
working liquids are presented in Table 4.
Table 4. Parameters of the working liquids
Parameter
Unit
Liquid
ZDWHU
ZDWHUHPXOVLRQ
density
kg/m
3
988,1
930
kinematic
viscosity
mm2/s
0,548
68
water contents
%
100
41
The following input data were assumed in the
computational model:
Compression pressure S = 20 Mpa,
The smallest front gap height hmin = 0.6·10-6 m in the
hydrostatic thrust bearing,
Inclination angle of the upper wall with respect to the
lower one İ = 0.02º,
Angular velocity of the upper wall Ȧ = 150 rad/s,
Ratio of the external radius to the internal radius of
the hydrostatic bearing UU = 3.
The height K of the front gap was obtained from the
following formula [24]:
where:
r
ij
į
į
angle measured with respect to the horizontal axis,
–for this angle the height of the front gap is the
smallest (in the xy plane).
In variable-height gaps there are two zones near the
point of the smallest height: the confusor zone and the
diffuser zone. In the confusor zone the gap height
decreases along the gap and overpressure occurs. In the
diffuser zone, on the other hand, the gap height increases
along the gap and negative pressure occurs, which is partly
limited by the cavitation phenomenon [9]. An example of
pressure distribution for water and the radius r = 0.011 [m]
near the smallest height point in a hydrostatic bearing is
presented in Fig. 4.
Fig. 4. Circumferential pressure distribution of water near the
smallest-height point at the radius r = 0.011 m
A key parameter affecting the pressure of working
liquids in a front gap is the kinematic viscosity factor. This
can be seen very clearly in Fig. 5, where the values of the
, (24) circumferential pressure in the hydrostatic bearing front
gap are presented for water Ȟ mm2/s,
ȡ kg/m3) and for water emulsion AQUACENT LT
Ȟ mm2/s, ȡ kg/m3), i.e. for working liquids
any radius within the plane of the point under
which differ significantly with respect to kinematic
–
consideration,
viscosity. It can be observed that the values of the
circumferential pressure increase as the viscosity of the
–current rotation angle,
working liquid increases.
angle measured with respect to the horizontal axis,
–for this angle the height of the front gap is the
ȡ ȡ Ȟ Ȟ ȡ ȡ $1$1$/<6,62)35(6685(',675,%87,21,1:$7(5$1':$7(5(08/6,21
Fig. 5. Circumferential pressure distribution of water and water
emulsion near the smallest-height point at the radius r = 0.011 m
In the interest of readability, in the graphs presented
In the interest of readability, in the graphs presented
below different scales are used on the vertical axis for
water and for water emulsion.
Fig. 6 presents circumferential pressure of water
(Fig. 6a) and of water emulsion (Fig. 6b) in a confusor-
water and for water emulsion.
Fig. 6 presents circumferential pressure of water
(Fig. 6a) and of water emulsion (Fig. 6b) in a confusorshaped gap of the hydrostatic bearing for various minimal
gap heights. The Koverpressure
peaks occurring in the gap
PLQ
are the greater, the smaller the gap is.
Fig. 7 presents circumferential pressure of water
(Fig. 7a) and water emulsion (Fig. 7b) in a front gap of the
hydrostatic thrust bearing depending on the angle İof the
upper wall inclination. İThe pressure drops in the gap with
increase in the angle İ.
Fig. 8 presents circumferential pressure of water
(Fig. 8a) in a front gap of the hydrostatic thrust bearing
and of water emulsion (Fig. 8b) depending on the angular
velocity of the bearing upper wall. Here the pressure
increases with increase in the angular velocity of the upper
wall.
KPLQ
İ
İ
Fig. 6. Circumferential pressure distributions at the radius
İ for various values of the smallest gap
r = 0.011 m in a front gap
height KPLQ for a) water, b) water emulsion
Fig. 7 presents circumferential pressure of water
İ
İ
Fig. 7. Circumferential pressure distributions at the radius
r = 0.011 m in a front gap for various values of the upper wall
inclination angle İfor a) water, b) water emulsion
Fig. 8 presents circumferential pressure of water
İ
Fig. 8. Circumferential pressure distributions at the radius
r = 0.011 m in a front gap for various values of the angular velocity
Ȧ of the upper wall for a) water, b) water emulsion
In the case of hydrostatic bearing with water as
.215$'.2:$/6.,7$'(86==/272
Ȧ
Fig. 9. Circumferential pressure distributions at the radius
r = 0.011 m in a front gap for various values of the feeding
pressure S1of the hydrostatic bearing for a) water, b) water
emulsion
The value of the circumferential pressure depends
U
U
UU
U U
Fig. 10. Circumferential pressure distributions at the radius r = 0.011 m in a front gap for various dimensions of the hydrostatic
bearing for: a) water, b) water emulsion
Ȧ
In the case of hydrostatic bearing with water as
working liquid, the circumferential pressure in a front gap
is significantly affected by the feeding pressure of the
bearing. As the feeding pressure grows, the
circumferential
S pressure grows,
too (Fig. 9 a). For water
emulsion, however, the influence of the feeding pressure is
negligible (Fig. 9 b).
The value of the circumferential pressure depends
also to a large extent on the dimensions
of the hydrostatic
bearing. Fig. 10 presents the circumferential pressure of
water (Fig. 10a) and of water emulsion (Fig. 10b) in a
front gap depending on the ratio of the external radius to
the internal radius of the bearing.
More specifically, in this
study the external radius U was assumed to be constant
and only the internal radius U
varied to alter the size of
the feeding chamber. For water, as the radius of the
feeding chamber increases (so that the ratio UU
decreases), the pressure grows in the gap. For water
emulsion the opposite occurs: the greater the ratio UU,
the greater the value of the pressure in the gap.
suitable for determining liquid pressure distribution in
a front gap of a hydrostatic bearing with a rotating
upper wall.
In the confusor zone near the smallest-height point the
circumferential pressure increases. Its value depends
on the dimensions and exploitation parameters of the
bearing.
The pressure is higher for water emulsion than for
water due to higher viscosity of the former.
In the confusor zone of the front gap there is an
additional relief of the bearing caused by pressure
increase.
REFERENCES
Hydraulika
i
&]HWZHUW\ĔVNL
(
hydromechanika. PWN, Warszawa.
2. ([QHU+L LQ.HPSI+RSUDFRZDQLHLUHGDNFMD
0HFQHU : WáXPDF]HQLH Hydraulika.
3RGVWDZ\ HOHPHQW\ NRQVWUXNF\MQH L SRG]HVSRá\
Vademecum hydrauliki, Tom 1, Wydanie 3
poprawione. Bosch Rexroth Sp. z o.o., Polska.
&]HWZHUW\ĔVNL
(
*UHF]DQLN 7 6WU\F]HN - The concept of the
S
bus fluid power system of the mining machine. Polska
CONCLUSIONS
([QHU+L LQ.HPSI+RSUDFRZDQLHLUHGDNFMD
Akademia
Nauk, Teka Komisji Motoryzacji
0HFQHU : WáXPDF]HQLH i Energetyki
Rolnictwa, Tom V, 72-79, Lublin.
The analyses presented above3RGVWDZ\
lead to theHOHPHQW\
followingNRQVWUXNF\MQH
L SRG]HVSRá\
+DPD7.XULVX.0DWVXVKLPD.)XMLPRWR+
conclusions:
7DNXGD + Outflow Characteristics of a
The computational model adopted in the study is
Pressure Medium during Sheet Hydroforming, ISIJ
suitable for determining liquid
pressure distribution
in - *UHF]DQLN
7 6WU\F]HN
International, Vol. 49, Nr. 2, 239-246.
a front gap of a hydrostatic bearing with a rotating
,YDQW\V\Q - ,YDQW\V\QRYD 0 Hydrostatic
upper wall.
U
U
+DPD7.XULVX.0DWVXVKLPD.)XMLPRWR+
7DNXGD + UU
*UHF]DQLN 7 6WU\F]HN - +DPD7.XULVX.0DWVXVKLPD.)XMLPRWR+
7DNXGD
+ $1$1$/<6,62)35(6685(',675,%87,21,1:$7(5$1':$7(5(08/6,21
7.
8.
9.
20.
International, Vol. 49, Nr. 2, 239-246.
,YDQW\V\Q - ,YDQW\V\QRYD 0 Hydrostatic
Pumps and Motors. Academia Books International,
New Delhi.
Ivantysynova M. 2008: Innovations in pump design
– What are future directions? Symposium on Fluid
Power, JFPS, 59-64, Toyama.
Klarecki
K.
2012:
(NVSORDWDFMD XNáDGyZ
hydraulicznych – oleje hydrauliczne. Utrzymanie
Ruchu, Wydawnictwo Elamed, Nr 3, 6-8, Katowice.
Kondakow L. A. 1975: 8V]F]HOQLHQLD XNáDGyZ
hydraulicznych. WNT, Warszawa.
Kunze T., Brunner H. 1996: Vibroakustische und
optische
Untersuchung
der
Kavitation
bei
Axialkolbenmaschinen. Ölhydraulik und Pneumatik,
Nr 8, 542-546.
Lasaar R. 2000: The Influence of the Microscopic
and Macroscopic Gap Geometry on the Energy
Dissipation in the Lubricating Gaps of Displacement
Machines. Proc. Of 1-st FPNI-PhD Symposium,
Hamburg.
Lim G.H., Chua P.S.K, He Y.B. 2003: Modern water
hydraulics – the new energy-transmission technology
in fluid power. Applied Energy, Vol. 76, 239-246.
0DMGLþ ) 3H]GLUQLN - .DOLQ 0 Experimental validation of the lifetime performance
of a proportional 4/3 hydraulic valve operating in
water. Tribology International, Vol. 44, 2013-2021.
Nikitin G.A. 1982: 6]F]LHOHZ\MH L áDELU\QWQ\MH
Maszinostrojenie,
XSáRWQLHQLD
JLGURDJUHJDWRZ
Moskwa.
Osiecki A. 2004: +\GURVWDW\F]Q\ QDSĊG PDV]\Q
WNT, Warszawa.
Osipow A. ) Objemnyje gidrowliczieskie
masziny. Maszinostrojenie, Moskwa.
Osman T.A., Dorid M., Safar Z.S., Mokhtar
M.O.A. 1996: Experimental assessment of
hydrostatic thrust bearing performance. Tribology
International, Vol. 29, Nr 3, 233-239.
Rokala M., Calonius O., Koskinen Kari T., Pietola
M. 2008: Study of lubrication conditions in slipperswashplate contact in water hydraulic axial piston
pump test rig. Proceedings of the 7th JFPS
International Symposium on Fluid Power, TOYAMA
2008, 91-94.
Ryzhakov A., Nikolenko I., Dreszer K. 2009:
Selection of discretely adjustable pump parameters for
hydraulic
drives
of
mobile
equipment.
Polska Akademia Nauk, Teka Komisji Motoryzacji i
Energetyki Rolnictwa, Tom IX, 267-276, Lublin.
Sasaki T., Mori H., Hirai A. 1959: Theoretical Study
of Hydrostatic Thrust Bearings. Bulletin of JSME,
Vol. 2, Nr 5, 75-79.
6KDUPD 6DWLVK & -DLQ 6& %KDUXND '. 6ODQLQD)6SDáHN- $QDOL]DZSá\ZXURG]DMX
FLHF]\
URERF]HM
SUDFXMąFHM
Z
XNáDG]LH
K\GUDXOLF]Q\FP QD WHPSHUDWXUĊ L VWUDW\ PRF\
Vol. 2, Nr 5, 75-79.
20. 6KDUPD 6DWLVK & -DLQ 6& %KDUXND '. Influence of recess shape on the performance of a
capillary compensated circular thrust pad hydrostatic
bearing. Tribology International, Vol. 35, 347-356.
6ODQLQD)6SDáHN- $QDOL]DZSá\ZXURG]DMX
FLHF]\
URERF]HM
SUDFXMąFHM
Z
XNáDG]LH
K\GUDXOLF]Q\FP QD WHPSHUDWXUĊ L VWUDW\ PRF\
SzyENRELHĪQH 3RMD]G\ *ąVLHQQLFRZH 9RO 22 1U 1
99-104
22. Stryczek S. 1984:1DSĊGK\GURVWDW\F]Q\(OHPHQW\L
XNáDG\:17:DUV]DZD
Watton J. 2009: )XQGDPHQWDOV RI )OXLG 3RZHU
&RQWURO&DPEULGJH8QLYHUVLW\3UHVV1HZ<RUN
Zloto T. 2009:0RGHOOLQJWKHSUHVVXUHGLVWULEXWLRQLQ
RLO ILOP LQ WKH YDULDEOH KHLJKW JDS EHWZHHQ WKH YDOYH
SODWH DQG F\OLQGHU EORFN LQ WKH $ULDO SLVWRQ SXPS
3ROVND$NDGHPLD 1DXN 7HND .RPLVML 0RWRU\]DFML L
(QHUJHW\NL5ROQLFWZD9RO 91U 11418-/XEOLQ
Zloto T., Kowalski K. 2012:3UHVVXUHGLVWULEXWLRQVLQ
RLO ILOP LQ WKH IURQW JDS RI D K\GURVWDWLF WKUXVW
EHDULQJ 3ROLVK $FDGHP\ RI 6FLHQFHV %UDQFK LQ
/XEOLQ 7HND &RPPLVVLRQ RI 0RWRUL]DWLRQ DQG
(QHUJHWLFV LQ $JULFXOWXUH 9RO 12 1U 2 257-
/XEOLQ
Zloto T., Kowalski K. 2013: 2LO OHDNV LQWHQVLW\ LQ
YDULDEOH-KHLJKW JDSV 3ROLVK $FDGHP\ RI 6FLHQFHV
%UDQFK LQ /XEOLQ7HND &RPPLVVLRQ RI 0RWRUL]DWLRQ
DQG(QHUJHWLFVLQ$JULFXOWXUH9RO 131U 2113-
/XEOLQ
27. ZZZWLHIHQEDFKZDWHUK\GUDXOLFVFRPZDWHUK\GUDXOLFVKLVWRU\RIZDWHUK
\GUDXOLFVKWPO>GRVWĊS@
$1$/,=$52=.à$'Ï:&,ĝ1,(1,$:2'<,
(08/6-,:2'1(-: 6=&=(/,1,(&=2à2:(-
à2ĩ<6.$+<'5267$7<&=1(*2
Streszczenie:RSUDFRZDQLXSU]HGVWDZLRQRUR]NáDG\FLĞQLHQLDZRG\
L Z\EUDQHM HPXOVML ZRGQHM Z V]F]HOLQLH NOLQRZHM áRĪ\VND
K\GURVWDW\F]QHJRZ]GáXĪQHJR]ZLUXMąFąJyUQąĞFLDQNą:RSDUFLXR
UyZQDQLD 1DYLHUD-6WRNHVD L UyZQDQLH FLąJáRĞFL RNUHĞORQR ]DOHĪQRĞü
QD ZDUWRĞFL FLĞQLHQLD Z\VWĊSXMąFHJR Z V]F]HOLQLH : SUDF\
DQDOL]RZDQR ZSá\Z SDUDPHWUyZ JHRPHWU\F]QR-HNVSORDWDF\MQ\FK
áRĪ\VND K\GURVWDW\F]QHJR Z]GáXĪQHJR QD UR]NáDG\ FLĞQLHQLD
REZRGRZHJRZRWRF]HQLXQDMPQLHMV]HMZ\VRNRĞFLV]F]HOLQ\
6áRZD NOXF]RZH UR]NáDG\ FLĞQLHQLD V]F]HOLQD NOLQRZD áRĪ\VNR
K\GURVWDW\F]QHZ]GáXĪQHZRGDHPXOVMDZRGQD
TEKA. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE – 2014, Vol. 14, No. 4, 53–58
Exploitation and Repair of Hydraulic Cylinders Used in Mobile Machinery
Konrad Kowalski, Tadeusz Zloto
Institute of Mechanical Technologies, Czestochowa University of Technology
Al. Armii Krajowej 21, 42-201 Czestochowa, konrad@itm.pcz.czest.pl, zlotot@o2.pl
Received December 05.2014; accepted December 18.2014
Summary. +\GUDXOLFF\OLQGHUVDUHFRPPRQO\DSSOLHGLQPRbile machinery. They are prone to mechanical damage and
wear due to atmospheric conditions. The paper presents selected issues related to the exploitation and repair of hydraulic
cylinders. On the basis of practical experience, it offers an
algorithm of actions to be undertaken in case of damage of
a hydraulic cylinder.
Key words: hydraulic cylinder, exploitation, repair, seals, mobile
hydraulics machinery.
INTRODUCTION
5HOLDEOHDQGÀDZOHVVRSHUDWLRQRIPDFKLQHVDQGGHvices depends on many factors, such as their technological advancement, conditions and type of operation, age,
DVZHOODVIUHTXHQF\RIRYHUKDXOVDQGPDLQWHQDQFH>@
$QXPEHURIK\GUDXOLFV\VWHPVLQFOXGHK\GUDXOLFF\OLQders, whose function is to transform the energy of presVXUHLQWRPHFKDQLFDOHQHUJ\$W\SLFDOK\GUDXOLFF\OLQGHU
performs a back-and-forth linear movement of a limited
VWURNH>@+\GUDXOLFF\OLQGHUVKDYHQXPHURXVDSSOLFDWLRQVLQLQGXVWU\>@DQGLQPRELOHPDFKLQHV>@
such as excavators, loaders, backhoe loaders, dump cars,
extension arms, cranes, tractors, refuse collection trucks,
KDUYHVWHUVDQGRWKHUV)LJ+\GUDXOLFF\OLQGHUVDUH
KRZHYHUSURQHWREUHDNGRZQV>@HVSHFLDOO\WKRVHXVHG
in harsh and changeable working conditions.
2%-(&7,9(62)7+(678'<
The aim of this paper is to offer some practical remarks
concerning the exploitation of hydraulic cylinders with pistons and to present an algorithm of actions related to the
repair of hydraulic cylinders used in mobile machinery.
7<3(6$1'&$86(62)%5($.'2:16
2)+<'5$8/,&&</,1'(56
2QHRIWKHPRVWIUHTXHQWO\HQFRXQWHUHGSUREOHPVLQ
the exploitation of hydraulic cylinders is the loss of tightQHVVFDXVLQJOHDNVRXWVLGHDQGLQVLGHWKHF\OLQGHU>@7KH
worn or damaged seals do not protect the interior of the
cylinder from being contaminated by dirt, which increases
the risk of a breakdown. It is thus of crucial importance
to use appropriate wiper seals, with a wiper ring being in
direct contact with the piston rod in order to collect all
dirt accumulating on it as well as to collect dirt from the
DLU%HFDXVHRIWKDWLWLVQHFHVVDU\WRWDNHLQWRDFFRXQWWKH
UHTXLUHGFRQWDFWEHWZHHQWKHZLSHUVHDODQGWKHSLVWRQURG
In order to ensure that the cylinder is leakage-tight inside,
it is necessary to apply appropriate piston and piston rod
seals, depending on the cylinder type (unidirectional or
ELGLUHFWLRQDO
+\GUDXOLFF\OLQGHUVDUHRSHUDWHGLQYDULRXVH[WHUQDOFRQditions. The part which is especially prone to breakdowns
is the piston rod, which is directly exposed to atmospheric
factors, such as water, snow, changing temperature and to
GLUWSDUWLFOHVDQGVRRW>@DVZHOODVWRPHFKDQLFDOIDFWRUV
When a long break in the cylinder operation is planned, the
piston rod should be protected from the above mentioned
IDFWRUV>@$GGLWLRQDOO\LWKDVWREHNHSWLQPLQGWKDW
hydraulic cylinders are not suitable for transferring lateral
ORDGV>@
+\GUDXOLFF\OLQGHUVDYDLODEOHRQWKHPDUNHWKDYHWKHLU
strength parameters calculated with a certain safety margin.
In some cases, however, it is advisable to check the piston
rod against buckling, especially in the case of hydraulic
cylinders with long strokes. The critical load level above
which the piston rod undergoes buckling is obtained from
(XOHU¶VIRUPXOD>@
(
(
-V
V
.215$'.2:$/6.,7$'(86==/272
Fig. 1. +\GUDXOLFF\OLQGHUVLQPRELOHPDFKLQHU\
గమ ா௃
‫ܨ‬௞௥ ൌ గమమா௃ ‫ܨ‬௞௥ ൌ ௟మೞ
௟ೞ
where:
E ±<RXQJ PRGXOH RI WKH SLVWRQ URG PDWHULDO IRU VWHHO
( ā5 N/mm2
J±PRPHQWRILQHUWLDIRUWKHSLVWRQURGFURVVVHFWLRQ
Q
)
ls±IUHHEXFNOLQJOHQJWK
Q
)
$VVXPLQJWKHVDIHW\FRHI¿FLHQWDVn
>@WKHPD[imal force F that can be transferred by the piston rod is:
ி
ೖೝ
‫ ܨ‬ൌ ிೖೝ
௡
‫ܨ‬ൌ
௡
Typicalofbreakdowns
of hydraulic
cylinders are
presented
Typical breakdowns
hydraulic cylinders
are presented
in Fig.
2
in Fig. 2.
Damaged parts of hydraulic cylinders are those that have
cracks, cavities, deformations, seizures, and may be corroded to various extent.
Fig. 2. Possible types of breakdowns of hydraulic cylinders
(;3/2,7$7,21$1'5(3$,52)+<'5$8/,&&</,1'(5686(',102%,/(0$&+,1(5< 6($/6,1+<'5$8/,&&</,1'(56
sides, seals can contain components made of other materials
to enhance their performance and applicability conditions
$QXPEHURIW\SHVRIVHDOVDUHDSSOLHGLQK\GUDXOLFF\O- HJ3203(8+0:37)(EURQ]H
$SDUWIURPWKDWZHDUEDQGVDUHXVHGLQK\GUDXOLFF\Oinders. They include wiper seals, piston seals, piston rod
VHDOVJODQGVHDOVDQGVWDWLFVHDOV([DPSOHVRIW\SLFDOVHDOV inders to keep the piston and piston rod precisely along the
LQK\GUDXOLFF\OLQGHUVDUHSUHVHQWHGLQ)LJ
cylinder axis and to prevent contact between the metallic
The main purpose of using seals is to ensure leak tight- VXUIDFHVRIWKHSLVWRQDQGF\OLQGHU>@:HDUEDQGV
ness inside the cylinder and to protect it from external dirt DUHPDGHRISRO\R[\PHWK\OHQHSODVWRPHUHV320FKDUDFZLSHUV%HVLGHVVHOHFWLQJWKHVKDSHPDWHULDODQGWLJKW- WHUL]HGE\YHU\ORZJULQGLQJDELOLW\DQGVHOIOXEULFDWLRQ>@
ness of seals affects the magnitude of friction loss between
the piston and the cylinder barrel and between the piston
rod and the gland. If the seals are inappropriately chosen or
5(3$,5$1'5(129$7,212)+<'5$8/,&
&</,1'(56
PRXQWHGWKHHQHUJ\ORVVFDQEHVLJQL¿FDQWXSWR>@
:KHQWKHORVVLVNHSWDWWKHPLQLPXPOHYHOWKHWRWDOHI¿FLHQ)LJSUHVHQWVDEORFNGLDJUDPRIUHSDLUVRIK\GUDXOLF
F\RIDK\GUDXOLFF\OLQGHUFDQEHDWWKHOHYHORI·>@
The most popular static seals are O-rings, with V-rings cylinders. The user of the cylinder, referred to as “customer”,
DQG;ULQJVIROORZLQJFORVHO\$PRQJG\QDPLFVHDOVIRU notices a breakdown and commissions the repair to a speSLVWRQVDQGSLVWRQURGVWKHPRVWSRSXODUDUHSDFNVHDOV cialised service. The servicing company accepts the com(chevron rings, including highly wear-resistant rubber-fabric mission and undertakes repair as agreed with the customer.
VHDOVVHDOVZLWKDQWLH[WUXVLRQULQJVDVZHOODVVHDOVZLWK $IWHUWKHK\GUDXOLFF\OLQGHULVWUDQVSRUWHGWRWKHVHUYLFHLWLV
wear rings and support rings.
UHJLVWHUHGDQGSUHSDUHGIRUUHSDLU$WWKLVVWDJHWKHFXVWRPHU
When selecting the right seals, one has to take into ac- VKRXOGEHQRWL¿HGDERXWWKHSUHGLFWHGGXUDWLRQRIUHSDLU
FRXQWWKHNLQGRIZRUNLQJOLTXLGPLQHUDORLOQRQÀDPPDEOH
OLTXLGVVRWKDWLWLVQHXWUDOWRZDUGVWKHVHDOPDWHULDO%H0($685(0(176$1'',$*126,6
sides, the seal has to be suitable for the operating pressure
2)7+(7(&+1,&$/&21',7,21
DQGWHPSHUDWXUH>@
Seals come in different cross-section and can be made of
When the hydraulic cylinder is disassembled, its parts
GLIIHUHQWPDWHULDOV>@VXFKDVSRO\XUHWKDQH and seals have to be diagnosed. It is recommended that all
738+38*38638ÀXRULQHUXEEHU)30VLOLFRQH measurements and tests should be performed twice, by two
094PHWK\OYLQ\OVLOLFRQHUXEEHUDQGHWK\OHQHSURS\OHQH different service workers. On the basis of the test results, the
GLHQHUXEEHU(3'00RVWRIWHQKRZHYHUWKHPDWHULDOLV technical condition of the hydraulic cylinder can be assessed
QLWULOHUXEEHU±1%5DFU\ORQLWULOHEXWDGLHQHUXEEHU%H- on the basis of the following criteria:
Fig. 3. 6HDOVDSSOLHGLQK\GUDXOLFF\OLQGHUVDVWDWLFVHDOVEZLSHUVHDOVFSLVWRQURGVHDOVGSLVWRQVHDOV
.215$'.2:$/6.,7$'(86==/272
± :KHWKHULWLVIHDVLEOHWRUHSDLUWKHK\GUDXOLFF\OLQGHU
depends on economic and technological considerations.
± &RPSRQHQWVPDGHRIFDVWLURQRUVWHHOFDVWLQJPD\KDYH
FUDFNVZKLFKPDNHVWKHPXQVXLWDEOHIRUUHSDLU>@
± +\GUDXOLFF\OLQGHUVGLVSOD\LQJKLJKGHJUHHRIZHDURU
damage, with such symptoms as seizing, deep corrosion,
deep cracks, deformations, cavities, etc. are considered
QRWVXLWDEOHIRUUHSDLU$QH[FHSWLRQFDQEHPDGHIRU
untypical designs, in which case the repair cost will be
lower than the cost of producing a replacement cylinder.
For instance, in the case of cast hydraulic cylinders with
extensive damages, a solution preferred to producing
a new cylinder on economic and technological grounds
ZLOOEHEXVKLQJ>@
± 5HSDLULVWKHRSWLPXPVROXWLRQIRUK\GUDXOLFF\OLQGHUV
with low degree of damage (scratches, small traces of
FRUURVLRQ
± +LJKO\GDPDJHGSLVWRQURGVDUHW\SLFDOO\UHSODFHGE\
new ones.
± 7KH¿QDOGHFLVLRQRQZKHWKHUDK\GUDXOLFF\OLQGHULV
VXLWDEOHIRUUHSDLURUQRWLVWDNHQE\TXDOL¿HGSHUVRQQHO
on the basis of technical and economic considerations.
,IDFXVWRPHUUHTXHVWVWREHFRQVXOWHGDIWHUWKHK\GUDXlic cylinder is diagnosed, they should be informed about
the technical condition and recommendations concerning
the repair. With the customer’s acceptance, the servicing
company can undertake work.
5(3$,52)$+<'5$8/,&&</,1'(5
7KH¿UVWVWHSLVWRUHPRYHGLUWIURPDOOVXUIDFHV7KH
hydraulic cylinder is rinsed with a cleaning agent at a special stand, with a container to collect the used agent. The
cleaning agent is petroleum ether, which is sprayed with an
airbrush. Then, the hydraulic cylinder is wiped with a soft,
white cotton cloth. It is essential that the cloth must not leave
DQ\¿EUHVRQWKHF\OLQGHU$IWHUWKDWWKHSDUWVVKRXOGEH
moved to the place allocated for the repair. Then, depending
on the diagnosis, the piston and/or piston rod can undergo
grinding, chromium plating, and polishing. Similarly, the
cylinder surface can be subject to chromium plating and
honing. The next stage is making grooves for wear bands
DQGSURFHVVLQJWKHFROODULIQHFHVVDU\$IWHUWKDWDSSURSULDWH
seals and wear bands have to be selected.
$66(0%/<
$IWHUWKHUHSDLULVFRPSOHWHDQGWKHVHDOVDQGZHDUEDQGV
are chosen, the hydraulic cylinder is to be reassembled from
its parts. It is essential that no dirt or other contaminants get
into the cylinder. The piston, piston rod, and cylinder have
WREHOXEULFDWHGZLWKDWKLQ¿OPRIK\GUDXOLFRLO6HDOVDUH
PRXQWHGE\PHDQVRIVSHFLDOSOLHUV)LJZLWKVPRRWK
surfaces. Still, special care has to be taken not to damage the
VHDOVRUVFUDWFKWKHVHDOHGVXUIDFHV$OD\HURIPHWDOERQG-
Fig. 4. $OJRULWKPIRUUHSDLURIDK\GUDXOLFF\OLQGHUE\DVSHFLDOLVHGFRPSDQ\
(;3/2,7$7,21$1'5(3$,52)+<'5$8/,&&</,1'(5686(',102%,/(0$&+,1(5< LQJJOXHHJ/RFWLWHLVWKHQDSSOLHGRQWKHSLVWRQ
rod-piston screw joint. Depending on the construction,
DOD\HURIUHWDLQHUHJ/RFWLWHVKRXOGEHDSSOLHGRQ
co-axial joints. The piton has to be screwed on the piston
rod and the joint is to be protected with a lock-nut. Then,
WKHSLVWRQSLWRQURGFRXSOHLVLQVHUWHGLQWKHF\OLQGHU$IWHU
the assembly, a pressure test should be performed with great
care. Optionally, the external surface can be coated with
paint to improve its appearance.
used within a limited period of time, typically up to two
years. otherwise rubber hardens and loses its sealing properties.
With appropriate machines and practical experience at
one’s disposal, it is possible to repair hydraulic cylinders
without hiring a professional help. This is feasible, however,
when the repair involves a minor issue, such as replacing
seals. In the case of major overhauls and repairs, it is much
more advisable to hire a specialised company.
5()(5(1&(6
Cundiff J.S. 2002: Fluid Power Circuits and Controls.
)XQGDPHQWDOV DQG$SSOLFDWLRQV &5& 3UHVV %RFD
Raton.
2. Greczanik T., Stryczek J. 2005: The concept of the
EXVÀXLGSRZHUV\VWHPRIWKHPLQLQJPDFKLQH3ROVND
$NDGHPLD1DXN7HND.RPLVML0RWRU\]DFMLL(QHUJHW\NL
Rolnictwa; V, 7279, Lublin.
Kotnis G. 2008:%XGRZDLHNVSORDWDFMDXNáDGyZK\GUDXOLF]Q\FKZPDV]\QDFK:\GDZQLFWZR.D%H.URVQR
.UyO5=LPUR]56WRODUF]\Nà$QDOL]DDZDU\MQRĞFLXNáDGyZK\GUDXOLF]Q\FKVDPRMH]GQ\FKPDV]\Q
URERF]\FKVWRVRZDQ\FKZ.*+03ROVND0LHGĨ6$
Fig. 5. Pliers for mounting seals
3UDFH1DXNRZH,QVW\WXWX*yUQLFWZD3ROLWHFKQLNL:URFáDZVNLHM6WXGLDLPDWHULDá\
75$163257,1*7+(5(3$,5('&</,1'(5
Lipski J. 1981:1DSĊG\LVWHURZDQLDK\GUDXOLF]QH:\GDZQLFWZD.RPXQLNDFMLLàąF]QRĞFL:DUV]DZD
If the hydraulic cylinder passes the pressure test, the 2NXODUF]\N:5HJHQHUDFMDVLáRZQLNyZSQHXPDW\F]Q\FK+\GUDXOLNDL3QHXPDW\ND
RUL¿FHVKDYHWREHSURWHFWHGE\SOXJVDQGWKHK\GUDXOLFF\Oinder can be prepared for transport. It is necessary to provide 7. 2VLHFNL$+\GURVWDW\F]Q\QDSĊGPDV]\Q:\dawnictwa Naukowo-Techniczne, Warszawa.
a packaging that protects it from damage during transport.
Together with a repaired hydraulic cylinder, the customer 8. Rabie M.G. 2009:)OXLG3RZHU(QJLQHHULQJ0F*UDZshould also be provided with instructions for storing the
+LOO1HZ<RUN
hydraulic cylinder.
9. Rusin A., Wojaczek A. 2007: Selection of Maintenance
When the customer does not intend to use the repaired
5DQJHIRU3RZHU0DFKLQHVDQG(TXLSPHQWLQ&RQVLGhydraulic cylinder within a short period of time, it is advisHUDWLRQRI5LVN(NVSORDWDFMDL1LH]DZRGQRVF±0DLQWHQDQFHDQG5HOLDELOLW\
DEOHWRSURWHFWLWIURPFRUURVLRQE\¿OOLQJLWZLWKK\GUDXOLF
oil and by covering the piston rod with a thick grease.
Ryzhakov$Nikolenko I., Dreszer K. 2009: Selection
of discretely adjustable pump parameters for hydraulic
GULYHVRIPRELOHHTXLSPHQW3ROVND$NDGHPLD1DXN
CONCLUSIONS
7HND.RPLVML0RWRU\]DFMLL(QHUJHW\NL5ROQLFWZD7RP
,;/XEOLQ
The algorithms of actions to be undertaken in case of ĩDELFNL''REyULHNVSORDWDFMDVLáRZQLNyZK\hydraulic cylinder breakdowns and repairs is universal and
GUDXOLF]Q\FK8WU]\PDQLHUXFKX
can be applied for any hydraulic cylinder, including those ĩDELFNL'8V]F]HOQLHQLD,QĪ\QLHULDL8WU]\DSSOLHGLQLQGXVWU\HJLQK\GUDXOLFSUHVVHV
PDQLH5XFKX=DNáDGyZ3U]HP\VáRZ\FKKWWSZZZ
If the operating temperature of the hydraulic cylinder is
utrzymanieruchu.pl/menu-gorne/artykul/article/uszczelKLJKWKHHIIHFWRIWHPSHUDWXUHRQWKHZRUNLQJOLTXLGDQG
QLHQLD>DFFHVV@
on other parts, especially rubber seals, has to be taken into KWWSZZZKHQQOLFKSOXSORDGV.DWDORJB8V]F]HOQLHaccount.
QLDBSGI>DFFHVV@
The parts that are worn or damaged should be repaired, KWWSZZZK\GURFRPSOUHVGRFBEB
if possible. If not, such parts must be replaced by new ones.
.DWDORJBXV]F]HOQLHBBBBSGI>DFFHVV@
Whenever a hydraulic cylinder undergoes repair, all seals KWWSZZZVNIFRPELQDU\B(1
must be replaced by new ones.
+\GUDXOLFVHDOVSGI>DFFHVV@
Rubber seals mounted in a hydraulic cylinder can work
for years, whereas seals stored in inventories have to be
.215$'.2:$/6.,7$'(86==/272
(.63/2$7$&-$,5(*(1(5$&-$6,à2:1,.Ï:
+<'5$8/,&=1<&+:02%,/1<&+0$6=<1$&+
52%2&=<&+
Streszczenie. 6LáRZQLNLK\GUDXOLF]QHVąSRZV]HFKQLHVWRVRZDQHZPDV]\QDFKK\GUDXOLNLPRELOQHM=HZ]JOĊGXQDSUDFĊ
Z]PLHQQ\FKZDUXQNDFKQDUDĪRQHVąRQHQDXV]NRG]HQLDPH-
FKDQLF]QHRUD]G]LDáDQLHF]\QQLNyZDWPRVIHU\F]Q\FK:SUDF\SU]HGVWDZLRQRDVSHNW\]ZLą]DQH]LFKXĪ\WNRZDQLHPRUD]
UHJHQHUDFMą:RSDUFLXRSUDNW\F]QHGRĞZLDGF]HQLDSU]HGVWDZLRQRDOJRU\WPSRVWĊSRZDQLD]XV]NRG]RQ\PLVLáRZQLNDPL
hydraulicznymi.
6áRZDNOXF]RZHVLáRZQLNK\GUDXOLF]Q\HNVSORDWDFMDUHJHneracja, uszczelnienia, hydraulika mobilna, maszyna robocza.
TEKA. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE – 2014, Vol. 14, No. 4, 59–64
Application of the Computation Procedure in Bayesian Network
in Estimation of Total Cost of Natural Stone Elements Production
Andrzej Kusz, Jacek Skwarcz, Mateusz Gryczan
Department of Technology Fundamentals, University of Life Sciences,
ul. Doświadczalna 50A, 20-280 Lublin, Poland, e-mail: andrzej.kusz@up.lublin.pl
Received December 01.2014; accepted December 17.2014
Summary. In the course of data collection and processing, an
essential role is played by computation processes which can be
performed automatically. Moreover, these processes should naturally allow for uncertainties. The article presents such a process
UHDOL]HGZLWKWKHDLGRI%D\HVQHWZRUNWHFKQLTXH7KHPRGHO
enables the user to monitor the total production cost of elements
which are made of natural granite stone. Inference mechanisms
built into the system make it possible to retrieve the information
necessary for a rational production management. The basis for
estimation is an approach based on a probability distribution
GH¿QHGRYHUDVHWRIYDOXHVRIGHFLVLRQYDULDEOHVUHSUHVHQWLQJ
parameters of the production process. It has been shown how to
carry out a simulation research in a range of situations where
inference mechanisms are applied.
Key words: production process, natural stone, granite, compuWDWLRQSURFHVVHVSURGXFWLRQFRVWV%D\HVLDQQHWZRUNV
INTRODUCTION
*UDQLWHPDFKLQLQJSURFHVVFRQVLVWVRIPDQ\RSHUDWLRQV
affecting the overall course of the process as well as the
¿QDOHIIHFW(DFKRSHUDWLRQLVDQLQWHJUDOSDUWRIWKHHQWLUH
process, having an impact on the other stages of the process,
or it is determined by them. It is not possible to determine
causal links without the knowledge of proper complete
FRXUVHRIWKHSURFHVV>@6WUXFWXUDOQRQKRPRJHQHLW\
high variability of process parameters burdened with randomness, justify treating the process components as random
variables and a probabilistic model as a natural way of
representing them.
The necessity of taking uncertainty present in the proFHVVLQWRFRQVLGHUDWLRQPDNHV%D\HVLDQQHWZRUNDXVHIXO
system of knowledge representation, when it is needed to
clearly encode an uncertainty factor and understanding issue
in terms of nondeterministic cause-effect relations. These
network capabilities can be employed in creating production
process predictability.
The possibility of automation of data collection process,
DVZHOODVRIGDWDSURFHVVLQJLVDQHVVHQWLDODVSHFW>
9] whereas the computation processes are performed automatically basing on advanced cognitive modelling systems.
The process stages and the states of objects used in specific processes are known within the accuracy of probability
GLVWULEXWLRQ&RJQLWLYHPRGHOOLQJFDQEHEDVHGRQ%D\HVLDQ
QHWZRUNWHFKQLTXH
$QLPSRUWDQWFRPSXWDWLRQSURFHVVLQWHFKQLFDOV\VWHPV
engineering, which needs to be embedded in the system, is
the possibility of monitoring production costs. It is a multidimensional process, which refers to entire systems, their
FRPSRQHQWVVXEV\VWHPVDQG¿QDOO\VSHFL¿FJURXSVDQG
machine types. Production cost optimization forms the
JURXQGZRUNIRUHIIHFWLYHWHFKQLFDOV\VWHPVXWLOL]DWLRQ(Qtire production cost estimation, based on the information
obtained from database, allows comparing the technology of
a particular production process to other production technologies. Computational procedures are based on a deterministic
DSSURDFKLQFOXGLQJ¿QDQFLDOUDWLRPHWKRGV
$QDOWHUQDWLYHDSSURDFKLVWKHDSSURDFKEDVHGRQ%D\HVLDQQHWZRUN6XFKDQDSSURDFKLVMXVWL¿HGE\WKHXQFHUWDLQW\
factor which is integrally related to production process. The
essence of the offered approach is that each cost component
and the factors which determine its size are represented by
random variables.
%D\HVLDQQHWZRUNKDVPDQ\DSSOLFDWLRQVZKHUHLWLV
QHHGHGWRH[SOLFLWO\HQFRGHXQFHUWDLQW\FRHI¿FLHQWDQGUHDVRQLQJLQWHUPVRIQRQGHWHUPLQLVWLFFDXVDOOLQNUHODWLRQV>
@7KH\DUHWKHUHIRUHDXVHIXOWRROWRPRGHOXQFHUWDLQWLHVLQSURGXFWLRQSURFHVVHV>@SUHGLFWDELOLW\RIWHFKQLFDOREMHFWVEHKDYLRU>@FRPSXWHUDLGHG
GHFLVLRQPDNLQJSURFHVVHV>@DQGWRH[SUHVVUHOLDELOLW\
NQRZOHGJHERWKLQWHUPVRISUDFWLFDODSSURDFK>@DV
ZHOODVIRUWKHRUHWLFDODQDO\VHVSXUSRVHV>@
$QRWKHU¿HOGRIDSSOLFDWLRQRIWKH%D\HVLDQQHWZRUNLV
WKHSUREOHPRIFRPSOH[ÀRZFKDUWPDQDJHPHQW>@
$1'5=(-.86=-$&(.6.:$5&=0$7(86=*5<&=$1
The aim of this study is to present a conceptualization method of computation process realizing a problem
LQ%D\HVLDQQHWZRUNODQJXDJHE\LOOXVWUDWLQJLWZLWKDQ
example of estimation of the total cost of natural stone
JUDQLWH HOHPHQWV PDFKLQLQJ SURFHVV$Q DVVXPSWLRQ
has been made during designing the model, according to
which the process components are represented as random
YDULDEOHV%D\HVLDODESURJUDPZDVXVHGLQEXLOGLQJWKH
model. This environment has built-in inference mechanisms allowing the model to operate as a prognostic and
explanatory system.
02'(/&21&(37,21$1'6758&785(
Natural stone machining process modelling is based on
the analysis of the granite features which are important in
terms of modelling, and the machining process elements
ZKLFKLQÀXHQFHGLIIHUHQWFRVWVDVZHOODVRSHUDWLQJVXSHUYLVLQJWLPH)DFWRUVZKLFKLQÀXHQFHWKHFRVWDQGRSerating-supervising time have been presented as variables
DQGWKHLUYDOXHVLPSOHPHQWHGLQ%D\HVLDODEHQYLURQPHQW
>@7KHYDULDEOHVDUHUHSUHVHQWHGE\QRGHVDQGWKHLUODbels correspond to the process component represented by
DVSHFL¿FQRGH,WKDVEHHQDVVXPHGWKDWYDULDEOHVYDOXHV
can be continuous within a given range or they can be of
a discrete type. Cause-effect relations are represented by
DUFV7KH\UHÀHFWUHODWLRQVZKLFKWDNHSODFHLQWKHPRGHOOHG
SURFHVV6XEVHTXHQWO\DSULRULSUREDELOLW\GLVWULEXWLRQVKDYH
EHHQDVVLJQHGRYHUWKHUDQJHRIYDULDEOHYDOXHVGH¿QLQJ
distribution type and its values.
Nodes can be divided into certain groups representing
GLIIHUHQWDVSHFWVRIWKHPRGHOOHGSURFHVV$OOPRGHOHOHments have values and probability distributions assigned
to them and basing on those, values of other variables are
determined by arithmetic operations or logical operators.
$OD\HUGHVFULELQJWKHIHDWXUHVRIWKHZRUNSLHFHLVGLVtinguished in the network. Variables representing density,
WKLFNQHVVDQGOHQJWKRIPDFKLQHGPDWHULDOJUDQLWHDVZHOO
DVPDFKLQLQJTXDOLW\EHORQJWRWKLVOD\HU7KHPDFKLQHG
material density is an essential variable in natural stone
machining process. It depends on the percentage of each
mineral which the natural stone is composed of. The main
minerals which granite consists of are: orthoclase, plagiRFODVHTXDUW]ELRWLWHDQGDZKROHVHULHVRIRWKHUPLQHUDOV
LQWUDFHDPRXQWV*UDQLWHGHQVLW\KDVDQLPSDFWRQXQLWDU\
cutting tool consumption cost and feed rate. In the model,
density is represented by a discrete random variable, which
can have three values: low, average and high. Low density
LVZLWKLQWKHLQWHUYDOIURPNJP3XSWRPD[NJ
m3HJ.DVKPLU:KLWHJUDQLWHZKRVHGHQVLW\LVNJ
m37KHDYHUDJHGHQVLW\EHJLQVIURPDERYHNJP3 up to
2800 kg/m3. This interval contains most granite, including:
,PSDODNJP36WU]HJRPNJP39DQJDNJ
m3. The high density category ranges from 2800 kg/m3 up
WRNJP3. This density group consists of the following
JUDQLWHV$]XO3ODWLQRNJP3, New Impal Red 2820 kg/
m36WDU*DOD[\NJP3. These intervals include almost
all granite densities.
Thickness of the machined granite workpiece is another
continuous variable which was considered in the model. The
workpiece thickness is based on a client’s own taste, as well
as on assembly and design capabilities. It was assumed that
WKLVYDULDEOHUDQJHVIURPPPWRPP
The variable length of the workpiece represents the
sum of its side lengths. This variable is used to estimate
the cycle time of machining the workpiece surface. It is
DFRQWLQXRXVYDULDEOHDQGLWFDQKDYHYDOXHVIURPPP
WRPP
7KHTXDOLW\RIWKHPDFKLQLQJSURFHVVLVDYDULDEOHZKLFK
UHSUHVHQWVDFOLHQW¶VH[SHFWDWLRQVFRQFHUQLQJWKH¿QDOSURGXFWTXDOLW\0DFKLQLQJSDUDPHWUHVDQGUHTXLUHGQXPEHU
RIF\FOHVDUHGHWHUPLQHGE\GH¿QLQJDTXDOLW\FODVV,WLV
DVVXPHGLQWKHPRGHOWKDWWKHYDULDEOHUHSUHVHQWLQJTXDOLW\
is a discrete variable and it can take three different values:
high, average and economic. The cutting disc feed rate is
FKRVHQDFFRUGLQJWRWKHUHTXLUHGTXDOLW\6ORZFXWWLQJGLVF
feed decreases labour consumption during the process of
polishing.
The workpiece surface is a continuous-type variable and
its values are found as the product of length and thickness
variables. This variable can take values from the interval
from 0,2 m2PLQLPDOYDOXHWRP2PD[LPDOYDOXH
The value of this variable impacts on intensity of cutting tool
consumption. The machined surface, after polishing, must
XQGHUJRSUHVHUYDWLRQDQGJORVV¿QLVKWUHDWPHQW
)HHGUDWHLVGHWHUPLQHGE\WKHTXDOLW\UHTXLUHGDVZHOO
as by density of the workpiece. Its precise value is found
using a logical formula. It was assumed that the values of
the variable have normal distributions, an expected value
of distribution corresponds to a particular rate and standard
GHYLDWLRQLV)HHGUDWHLVDYDULDEOHZKLFKGHWHUPLQHV
cycle time.
$QRWKHUSURFHVVSDUDPHWHULVWKHQXPEHURIF\FOHV,W
GHSHQGVRQWKHGHFODUHGTXDOLW\DQGLWLVF\FOHVIRUHFRQRPLFTXDOLW\IRUDYHUDJHTXDOLW\DQGLQFDVHRIKLJK
TXDOLW\
Water consumption in machining process is evaluated
in the model as the product of unitary water consumption
per minute related to the machining time. It was assumed
that the variable of unitary water consumption per minute
LVDFRQWLQXRXVYDULDEOHDQGLWUDQJHVIURPOPLQ
Other variables enable estimation of operation time
and their costs. They are continuous variables which represent: unitary machining cycle time, workpiece machining time, cutting tool exchange time and worker’s work
WLPH8QLWDU\PDFKLQLQJF\FOHWLPHHTXDOVDFRPSOHWH
F\FOHWLPHRISROLVKLQJPDFKLQHRSHUDWLRQ$ZRUNSLHFH
machining time is estimated on the basis of information
represented by nodes: workpiece length, cutting disc feed
rate. In this manner, we obtain probability distributions
over a set of estimated possible machining time values.
([WHQGLQJPDFKLQLQJWLPHKDVDVLJQL¿FDQWLPSDFWRQ
WKH¿QDOFRVWVLQFHZRUNORDGZDWHUDQGHOHFWULFLW\FRQsumption increase.
Cutting tool exchange time is a variable whose values depend on the worker’s experience, abilities, manual
and motor coordination skills. In the model, this time
$33/,&$7,212)7+(&20387$7,21352&('85(,1%$<(6,$11(7:25.
LVUHSUHVHQWHGE\DFRQWLQXRXVYDULDEOHRIPLQ
$ZRUNHU¶VZRUNWLPHLVDYDULDEOHHYDOXDWHGE\WKHVXP
RIDZRUNSLHFHPDFKLQLQJWLPHDQGWKHWLPHUHTXLUHGIRU
FXWWLQJWRROVH[FKDQJH7KLVYDULDEOHFDQUDQJHIURP
WRPLQXWHV
The last group of variables considered in the model,
are the variables which represent costs. Costs represent
TXDQWLWDWLYHH[SHQGLWXUHFRUUHVSRQGLQJWRWKHUHDOL]DWLRQ
RIDVSHFL¿FYHUVLRQRIVWRQHPDFKLQLQJSURFHVV7KH\LQclude: unitary cutting tool consumption cost, preservation
DQGJORVV¿QLVKFRVWDVZHOODVHYDOXDWHGFRQVXPSWLRQFRVWV
RIFXWWLQJWRROV¿QLVKLQJHOHPHQWVZDWHUHQHUJ\XWLOLWLHV
and labour. The range of each variable was either assigned
or evaluated, according to possible versions of the process
and current prices.
7KH¿QDOYDULDEOHLQWKHPRGHOLVDFRQWLQXRXVYDULDEOH
representing the total cost of machining a single workpiece.
The total cost is evaluated as the sum of values of three
QRGHV¿QLVKLQJHOHPHQWVFRVWXWLOLWLHVFRVWDQGODERXUFRVW
The node shows probability distribution over a set of cost
values which can be reached during the machining process
of natural stone.
$JUDSKLFDOIRUPRIWKHFRQFHSWXDOL]DWLRQSUHVHQWHG
above, and at the same time, the structure of a network allowing for the estimation of a single workpiece machining
FRVWLQ%D\HVLDQQHWZRUNWHFKQLTXHKDVEHHQVKRZQLQ
WKH)LJ7KHYDULDEOHVXVHGLQFRPSXWDWLRQVUHSUHVHQWing machined pieces features, machining parameters, times
DQGDOOFRQVWLWXHQWFRVWVDUHUHSUHVHQWHGE\HTXDOO\QDPHG
variables in the network. Probability distributions over sets
of the variables considered in the model are illustrated in
a graphical form in the Fig. 2.
(67,0$7,212)727$/*5$1,7((/(0(176
PRODUCTION COST
)RUWKHSXUSRVHRIYHUL¿FDWLRQRIWKHPRGHODFRPSXWDtion concerning machining process of natural granite stone
elements has been carried out. Inference mechanisms, typLFDOLQ%D\HVLDQQHWZRUNVZHUHDSSOLHGLQWKHYHUL¿FDWLRQ
The standard mechanism of the network working (preGLFWLRQRIWKHFRQVHTXHQFHVRIGHFLVLRQVSURYLGHVWKHSURFHVVWRWDOFRVWDFFRUGLQJWRWKHZRUNSLHFHIHDWXUHVTXDOLW\
UHTXLUHPHQWVDQGRSHUDWRU¶VFRPSHWHQFH
In the analyzed problem, it has been assumed that the
YDULDEOHVWKHZRUNSLHFHOHQJWK±RIPPDFKLQLQJ
TXDOLW\±DYHUDJHFXWWLQJWRROH[FKDQJHWLPHRIPLQ
ZDJHUDWHDFFRUGLQJWRFDWHJRU\HTXDOV]áSHUPLQXWH
the number of cycles is 27, and unitary water consumption
KDVEHHQ¿[HGDWOLWUHVSHUPLQ7KHWRWDOFRVWKDVEHHQ
HYDOXDWHGIRUWKHZRUNSLHFHWKLFNQHVVRIPDQGYDULRXV
GHQVLW\YDOXHVORZ$DYHUDJH%KLJK&&RPSXWDWLRQ
results as probability distribution over a set of total cost
YDOXHVKDYHEHHQSUHVHQWHGLQWKH)LJ
The above calculations were repeated, assuming the
ZRUNSLHFHWKLFNQHVVWRHTXDOP&DOFXODWLRQVUHVXOWV
DUHSUHVHQWHGLQWKH)LJ,QWKH¿UVWFDVHWKLFNQHVVRI
PWKHORZHVWWRWDOFRVWZDVREWDLQHGIRUWKH
low density of the workpiece, and the highest for the high
GHQVLW\DQGDPRXQWVWR]á,WVKRXOGEHQRWHGWKDW
LQFDVHRIORZGHQVLW\ZLWKSUREDELOLW\RIDSRVVLEOH
RXWFRPHRIFRVWVFDQUDQJHIURPWR]á:KHUHDV
in case of high density, the total cost can take values from
LQWHUYDOV]áSUDFWLFDOO\ZLWKHTXDOSUREDELOLW\UHVSHFWLYHO\
)RUDYHUDJHZRUNSLHFHGHQVLW\WKHWRWDOFRVWLV]á
Fig. 1. Network structure used for estimation of natural stone machining process cost
$1'5=(-.86=-$&(.6.:$5&=0$7(86=*5<&=$1
Fig. 2. Probability distributions over random variable values
$
%
&
$
%
&
Fig. 3. 7RWDOFRVWWKLFNQHVVGHSHQGLQJRQWKHGHQVLW\RIWKHPDFKLQHGVWRQH
Fig. 4. 7RWDOFRVWWKLFNQHVVGHSHQGLQJRQWKHGHQVLW\RIPDFKLQHGVWRQH
$33/,&$7,212)7+(&20387$7,21352&('85(,1%$<(6,$11(7:25.
For the variable ‘workpiece thickness’ at the value of
WKHWRWDOFRVWREWDLQHGZDVIRUORZGHQVLW\
IRUWKHDYHUDJHDQGIRUWKHKLJK,QWKLVFDVH
the knowledge of probability distribution allows for estimating the chance of getting a desired value of the total cost.
The diagnostic inference mechanism available in the
network is useful in a situation when we want to determine
FRQGLWLRQVWKDWPXVWEHVDWLV¿HGLQRUGHUWRDFKLHYHWKH
DVVXPHGOHYHORIWKHWRWDOFRVW)LJVKRZVSRLQWVZKLFK
FRUUHVSRQGWRFRQVWDQWWRWDOFRVWV.B DQG.B GHSHQGLQJRQWKLFNQHVVDQGOHQJWKRIWKHZRUNSLHFH
Fig. 5. Points corresponding to constant total costs of machining
process depending on thickness and length of the workpiece
The working scheme of the model shown above can be
applied to estimation of other cost components. Information
possible to obtain by simulation experiments is of a great
practical importance and can be used in the natural stone
element production management.
CONCLUSIONS
The procedure of estimating the total cost of natural
VWRQHPDFKLQLQJZKLFKLVLPSOHPHQWHGLQ%D\HVLDQQHWwork, is an example of a computation process which can be
entirely automated by virtue of embedded inference mechanisms. The convenience of input data which can be formed
arbitrarily basing on available resources and predicted proGXFWLRQFRQGLWLRQVDFFRXQWIRULWVVLJQL¿FDQWLPSRUWDQFH
at the stage of design, planning, monitoring and analysis of
production process with reference to natural stone elements
LQVSHFL¿FFRQGLWLRQRIUHDOL]DWLRQ
Prognostic inference allows for analysing all possible
YHUVLRQVGHSHQGLQJRQPRGHOLQSXWYDULDEOHV$VHWRIDFceptable solutions can be determined, accurate to probability
distribution. For expected values of the terminal variable (in
WKLVFDVHIRUWRWDOSURGXFWLRQFRVWK\SRWKHWLFRGHGXFWLYH
LQIHUHQFHWHPSRUDOEDFNZDUGSURMHFWLRQIDFLOLWDWHVZLWK
an accuracy of probability distribution, determination of
UHTXLUHPHQWVUHJDUGLQJYDULDEOHVUHSUHVHQWLQJHDFKFRVW
component and variables describing features of the workpiece, as well as machining process parameters.
Machine learning mechanisms which are available in
WKHV\VWHP>@IDFLOLWDWHDGDSWDELOLW\RIWKHPRGHOERWK
LQWHUPVRIWRSRORJ\DGMXVWLQJWKHPRGHOWRREMHFWW\SHV
as well as in determination of a priori probability distributions.
5()(5(1&(6
%DUORZ5(8VLQJLQÀXHQFHGLDJUDPV,Q&ODURWWL
&$/LQGOH\'9HGLWRUV$FFHOHUDWHGOLIHWHVWLQJDQG
H[SHUWV¶RSLQLRQVLQUHOLDELOLW\
2. Bartnik G., Kalbarczyk G. and Marciniak A. W.2011.
$SSOLFDWLRQRIWKHRSHUDWLRQDOUHOLDELOLW\PRGHOWRWKH
risk analysis in medical device production. Teka, Vol.
;,&
Bartnik G., Kusz A. and Marciniak A. 2006. Dynamiczne sieci bayesowskie w modelowaniu procesu
HNVSORDWDFMLRELHNWyZWHFKQLF]Q\FK,QĪ\QLHULD:LHG]\
L6\VWHP\(NVSHUWRZH2¿F\QD:\GDZQLF]D3ROLWHFKQLNL:URFáDZVNLHMW,,
Bartnik G. and Marciniak A. W. 2011. Operational
UHOLDELOLW\PRGHORIWKHSURGXFWLRQOLQH7HND9RO;,&
Berners-Lee T., Karger D.R., Stein L.A., Swick R.R.,
Weitzner D.J. Proposal: Semantic Web Development
5HWULHYHGIURP:&
%HUQHUV/HH+HQGOHU-/DVVLOD2The SemanWLF:HE6FLHQWL¿F$PHULFDQ
7. Chmielecki A. 2004. Konceptualne podstawy kogniW\ZLVW\NL±NU\W\NDLSURSR]\FMHZáDVQH6]F]HFLQ9,,
=MD]G)LOR]R¿F]Q\
8. &KXQ6X<HTXQ)X5HOLDELOLW\$VVHVVPHQWIRU
:LQG7XUELQHV&RQVLGHULQJWKH,QÀXHQFHRI:LQG6SHHG
8VLQJ%D\HVLDQ1HWZRUN(NVSORDWDFMDL1LH]DZRGQRVF
±0DLQWHQDQFHDQG5HOLDELOLW\±
9. Cost S., Finin T., Joshi A. 2002$&DVH6WXG\LQWKH
6HPDQWLF:HEDQG'$0/2,/,(((,QWHOOLJHQW6\Vtems.
'RNXPHQWDFMDSURJUDPX%D\HVLD/DEKWWSZZZED\HVLDFRP
'RJXF2DQG5DPLUH]0DUTXH]-($JHQHULF
PHWKRGIRUHVWLPDWLQJV\VWHPUHOLDELOLW\XVLQJ%D\HVLDQ
QHWZRUNV5HOLDELOLW\(QJLQHHULQJDQG6\VWHP6DIHW\
+DOSHUQ-< Reasoning about uncertainty. The
MIT Press Cambridge, Massachusetts, London.
+RáDM+.XV]$0DNV\P30DUFLQLDN$:
Modelowanie problemów decyzyjnych w integrowaQ\PV\VWHPLHSURGXNFMLUROQLF]HM,QĪ\QLHULD5ROQLF]D
.RFLUD6.XERĔ0The operating costs machines and general type of farming. Roczniki Naukowe
6WRZDU]\V]HQLD(NRQRPLVWyZ5ROQLFWZDL$JUREL]QHVX
6(5L$7RP;,,,=HV]\W
Kusz A., Maksym P., Marciniak A. W. 2011.%D\HVLDQ
networks as knowledge representation system in domain
RIUHOLDELOLW\HQJLQHHULQJ7HND9RO;,&
.XV]$0DNV\P36NZDUF]-*UXG]LĔVNL-
The representation of actions in probabilistic networks.
7HND9RO;,,
$1'5=(-.86=-$&(.6.:$5&=0$7(86=*5<&=$1
Kusz A., Marciniak A.W. 2010. Modelowanie niezaZRGQRĞFL]áRĪRQ\FKV\VWHPyZELRDJURWHFKQLF]Q\FK
,QĪ\QLHULD5ROQLF]D
Maksym P. 2011. Podstawowe zasady modelowania
SURFHVXSURGXNFMLUROQLF]HM,QĪ\QLHULDUROQLF]D,
Maksym P., Marciniak A. W., Kostecki R. 2006. =DVWRsowanie sieci bayesowskich do modelowania rolniczego
SURFHVXSURGXNF\MQHJR,QĪ\QLHULD5ROQLF]D
20. Maksym P., Marciniak A. W., Kusz A. 2011. ModeloZDQLHV\QWH]\G]LDáDĔRFKURQQ\FKZUROQLF]\PSURFHVLH
SURGXNF\MQ\P,QĪ\QLHULD5ROQLF]D
Marciniak A. 2005. Projektowanie systemu reprezentacji wiedzy o rolniczym procesie produkcyjnym. RozpraZ\QDXNRZH$NDGHPLL5ROQLF]HMZ/XEOLQLH:\G]LDá
,QĪ\QLHULL3URGXNFML]HV]\W
22. 2QLĞNR$0DUHN-'UX]G]HO0-:DV\OXN+
/HDUQLQJ%D\HVLDQQHWZRUNSDUDPHWHUVIURPVPDOOGDWD
VHWV$SSOLFDWLRQRIQRLV\RUJDWHV,QWHUQDWLRQDO-RXUQDO
RI$SSUR[LPDWH5HDVRQLQJ
Pearl J. 1986. Fusion, Propagation, and Structuring in
%HOLHI1HWZRUNV$UWL¿FLDO,QWHOOLJHQFH
Pearl J. 1988. Probabilistic Reasoning in Intelligent Systems: Network of Plausible Inference. Morgan Kaufmann.
Tchangani A.P. 2001. 5HOLDELOLW\DQDO\VLVXVLQJ%D\HVLDQQHWZRUNV6WXG,QIRUP&RQWURO
=$67262:$1,(352&('85<2%/,&=1,:(-
:6,(&,%$<(62:6.,(-'2:<=1$&=$1,$
.26=7Ï:&$à.2:,7<&+352'8.&-,
(/(0(17Ï:=.$0,(1,$1$785$/1(*2
Streszczenie: W Proces gromadzenie danych oraz ich przeWZDU]DQLDLVWRWQDUROĊRGJU\ZDMąSURFHV\REOLF]HQLRZHNWyUH
PRJąE\üUHDOL]RZDQHDXWRPDW\F]QLHDSRQDGWRZQDWXUDOQ\VSRVyESRZLQQ\XPRĪOLZLDüXZ]JOĊGQLHQLHQLHSHZQRĞFL
:DUW\NXOHSU]HGVWDZLRQRSU]\NáDGWDNLHJRSURFHVXUHDOL]RZDQHJRZWHFKQRORJLLVLHFLED\HVRZVNLFK0RGHOXPRĪOLZLD
PRQLWRURZDQLHNRV]WyZFDáNRZLW\FKSURGXNFMLHOHPHQWyZ
wykonanych z kamienia naturalnego granitu. Wbudowane
ZV\VWHPPHFKDQL]P\ZQLRVNRZDQLDSR]ZDODMąZ\GRE\ZDü
LQIRUPDFMHQLH]EĊGQHGRUDFMRQDOQHJR]DU]ąG]DQLDSURGXNFMą
3RGVWDZąRFHQ\MHVWSRGHMĞFLHRSDUWHRUR]NáDGSUDZGRSRGRELHĔVWZDRNUHĞORQ\QDG]ELRUHPZDUWRĞFL]PLHQQ\FKGHF\]\MQ\FKUHSUH]HQWXMąF\FKSDUDPHWU\SURFHVXSURGXNF\MQHJR
3RND]DQRZMDNLVSRVyEZ\NRU]\VWXMąFPHFKDQL]P\ZQLRVNRZDQLD PRĪQD SURZDG]Lü V\PXODF\MQH EDGDQLD UyĪQ\FK
wariantów sytuacyjnych.
6áRZDNOXF]RZHSURFHVSURGXNFMLNDPLHĔQDWXUDOQ\JUDQLW
procesy obliczeniowe, koszty produkcji, sieci bayerowskie.
H
K
˜
TEKA. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE – 2014, Vol. 14, No. 4, 65–70

S
 The Analysis of Oil Balance in Crank Bearing
Khachatur Kyureghyan1, Wiesław Piekarski2
1

S
Department of Applied Mathematics and Computer Science, University of Life Sciences
20-950 Lublin, Akademicka 13,
e-mail: chaczik@wp.pl
RSWLPDORSHUDWLRQDIWHUPWK
2
Department of Energy and Transportation, University of Life Sciences
20-959 Lublin, Poniatowskiego 1, e-mail: wieslaw.piekarski@up.lublin.pl
Received December 09.2014; accepted December 19.2014
'>
@
¦f
K
Summary. The paper presents an analytical calculation of the balance of
oil flowing through the dynamically loaded main and crank bearing.
7KHRUHWLFDO FRQVLGHUDWLRQV DUH EDVHG RQ VROYLQJ WKH 5H\QROGV HTXDWLRQ
(analytical distribution of oil pressure in the FURVV VOLGH EHDULQJ ZLWK
boundary conditions that characterize the working conditions in the
bearings used in motors s- DJULFXOWXUDO WUDFWRUV7KH
TXDQWLWDWLYHDQGYROXPHWULFHYDOXDWLRQVRIOXEULFDQWIOXLGIORZLQJWKURXJK
the bearing are presenWHG DGHTXDWHO\ WR WKH FRQVWUXFWLRQ RI D GLDJQRVWLF
signal, which allows for a dynamic comparative analysis carried out for
the model bearings, the new ones as well as the ones with a particular
classification of wear.
Key words: hydrodynamic lubrication, cross slide bearing, Reynolds
HTXDWLRQGLDJQRVWLFDQDO\VLVGLDJQRVWLFVLJQDOSDUDPHWHUV
Physical values:
- thickness of the wedge [mm],
H - relative bearing eccentricity [-],
c
- bearing clearance [mm],
K - coefficient of dynamic oil viscosity [ Pa ˜ s ],
V - peripheral speed of crankshaft [m/s],
e
- eccentricity [mm],
P(x,z) oil pressure inside bearing [Pa],
L L
[mm],
x,z – coordinat variables, x  0,2SR , z  ,
2 2
L
– the width of the pan [mm],
p w , p0 supply pressure ambient pressure [Pa],
h
p z - supply pressure [Pa],
a
- cord diameter [mm],
Q - oil intensity passing through the crank bearing
[dm3/min],
Q1 ,Q2 - partial intensity[dm3/min],
S0,Sgr values for Q1 ,Q2from experiment[dm3/min],
h0 min hx - the minimum thickness of oil wedge [mm],
x 0, 2SR
cdot c0 clearance after getting proper association (at
RSWLPDORSHUDWLRQDIWHUPWK [mm],
c gr - critical value of clearance [mm],
Dp - coefficent of dynamic passing [-],
dp - experimenthal value of Dp determined as a parametr
of the diagnostic signal
Mathematical solutions
b
'> f @a f (a f (b - RSHUDWRUUyĪQLFRZ\
>f @
¦f
- suming operator, k, K  N,
F]ĊĞüFDáNRZLWDZ\UDĪHQLD
5H\QROGV HTXDWLRQ FRQVWDQWV GHWHUPLQHG E\
fK
RSHUDWRUUyĪQLFRZ\
- suming operator, k, K  N,
> f @ - F]ĊĞüFDáNRZLWDZ\UDĪHQLDf,
- 5H\QROGV HTXDWLRQ FRQVWDQWV GHWHUPLQHG E\
C1,C11,C1K
boundary conditions
k k
INTRODUCTION
The parameters of diagnostic signals defining the course
of change in the tightness of slide bearings are a very
important factor in assessing the technical state of engines
examined in this study on the example of farm tractors. It
should be noted that in the lubrication subsystem the main
slide bearings and the crank ones of the crankshaft determine
the technical condition of the engine, and its ability to
perform useful functions. Increased clearances in the bearings
make the lubricant oil flow freely through the gaps between
the pivots and the cups, which in turn is manifested by an
increase in oil flow and pressure drop in the engine
lubrication system.
In diagnostic considerations, the evaluation of work
behavior of a dynamically loaded slide bearing is based on the
simplified model of a standard cross slide bearing and is
based mostly on the minimum thickness of oil gap and the
value of the maximum pressure and maximum temperature of
the oil film.
+RZHYHU DV QRWHG E\ VHYHUDO DXWKRUV >@ LQ
diagnostic tests, particularly in predicting the technical state
of emergency crank system operation, application of a singleparameter diagnostic signal based solely on the measurement
of relative drop in oil pressure at selected points of the
bearing, is not sufficient to assess the degree of bearing wear.
>@ SUHVHQWHG D PXOWLYDULDWH VWDWLVWLFDO DQDO\VLV
(curvilinear regression model for the associated random
vDULDEOHVRIWKHGLDJQRVWLFVLJQDObased on measurements of
four parameters, where the measurement of the relative
pressure drop and loss of lubricant in the bearings were
considered as associated variables. The purpose of this study
is to analyze the theoretical value of the diagnostic signal
parameter described by an analytical balance of oil in the
cross slide bearing.
In diagnostic studies of changes in oil flow through the
crankshaft bearing and at the constant supply pressure in
RLOJDS$QGDFFRUGLQJWRWKHUHODWLRQ
H cosT DULDEOHVRIWKHGLDJQRVWLFVLJQDO
.+$&+$785.<85(*+<$1:,(6à$:3,(.$56.,
cross slide bearing.
In diagnostic studies of changes in oil flow through the
crankshaft bearing and at the constant supply pressure in
static conditions, the oil flow rate depends mainly on the size
of RLOJDS$QGDFFRUGLQJWRWKHUHODWLRQ:
h
Lt H cosT ,
p 0 for z
P
p w x for z
§ wPx, z ·
¨
© wz ¹̧W
r
the gap value depends on oil bearing clearance (L tDQG
FRQVLGHUDWLRQV
relative bearing eccentricity (İ LQ IXUWKHU
ZH
use a simplified designation:
S § w ·
¨ Lt c .
¹̧
© w
K H
r
P
L
,
2
0,
Sa p z pw c KL H cos x
R
,
for z 0
where:
ambient pressure [Pa],
p0 - the pz - supply pressure [Pa],
Determination of this value in the experimental way is pw - oil pressure at the inlet to the placenta [Pa],
OXEULFDWLRQ VXEV\VWHP EHDULQJ VHD
based on measurements of diagnostic parameters, the a - cord diameter [mm],
commonest of which are oil pressure or relative drop of oil L - the width of the pan [mm].
$FFRUGLQJ WR >@
>@, the
analytical
EDVHG
RQ WKHdistribution
HTXDWLRQV inRIthe
K\GURG\QDPLF
pressure in the OXEULFDWLRQ VXEV\VWHP
2
EHDULQJ
VHDOVXEV\VWHP
%\ ZD\ EHDULQJ VHDO %\ ZD\
OXEULFDWLRQ
of contrast, the theoretical determination of the oil gap is EHDULQJ RLO SUHVVXUH DV WKH VROXWLRQ RI HTXDWLRQ FDQ EH
written as follows:
EDVHG RQ WKH HTXDWLRQVEDVHG
RI K\GURG\QDPLFs
for aRIviscous
K\GURG\QDPLF
RQ WKH HTXDWLRQV
K\GURG\QDPLF
substance.
e
0$7+(0$7,&$/02'(/2)%($5
ª H cos x º H
L
§
·
$FFRUGLQJ WR >@
R » $1'
«
˜ $668037,216
Px, z p0 C ¨ z EHDULQJ RLO SUHVVXUH DV
WKH VROXWLRQ RI HTXDWLRQ FDQ EH
0$7+(0$7,&$/02'(/2)%($5,1*
2 ¹̧ « H
»
©
0$7+(0$7,&$/02'(/2)%($5,1*
¬
¼
$VVHVVPHQWRIZRUN
$1' $668037,216 $1' $668037,216
f
Kz
K L z 2
) RK x R <RKV x R ,
˜ ¦ CK e e
$VVHVVPHQWRIZRUNof
loaded crank bearing K $VVHVVPHQWRIZRUN dynamically
$VVHVVPHQWRIZRUN
H
ª H
º
is one of the most important tasks of§ the crank
· « subsystem
In this paper,» ˜
engines.
¨ diagnostics in internal combustion
» where
©
¹̧ « H
¬
¼
theoretical considerations and the resulting mathematical
R 2 K 2 2 x
§ cos x · W\SH RI LQWHUQDO FRPEXVWL
f
sin
calculations are shown on
the basis of a cross slide bearing
R¨
R¸
,
parameters
)
) RK x
model, characterizing ˜ ¦
the operating
of <crank
¸
R
¨
2
¹
©
bearing in S-
FRPEXVWLRQ
W\SH RI LQWHUQDO
W\SHHQJLQHV
RI LQWHUQDO FRPEXVWLRQ HQJLQHV
In the process of exploitation, the growing bearing clearance
2 2 2 ª
x ·
§ cos x ·
§
2
2
§ 2SRK · >R K @ «§ R K V · ¨ cos R ¸
R¸ values cause an increase in the impact of oil flowing fromthe
x
¨¨
¸¸
ln ¨
<
RKV R ¨
¦
¸
¨
¸
¨
«
x
·
nV
i
i
2
bearing, causing a decrease in tightness of the§bearings.
¹̧
©
cos
i ©
¹ ©
¸
¨
R¹
¹
©
¬«
)
a dynamically
The balance of oil flowing
through
loaded
¸
¨
HTXDWLRQ
using
crank bearings can be determined analytically
¹ a
©
e
º
i
pressure distribution which is the solution
of
the
Reynolds
ª
H
x
x
x
§
·
·
§
·
§
>
@
cos
H
V
cos
cos
·¨
HTXDWLRQ:
·
§ S
HTXDWLRQ
«§¨
w § w ·
w
HTXDWLRQ
R ¸ ln ¨
R ¸ ¨
R ¸ » , w § w · ¸
<
¨
»
¨
¸
¦
¨
¸ ¨
¸
¨
¸
¨
¸
«
¨
¸
¨¨ K w ¸¸ w
2
S e V
¹̧ ©
©
cos x
w
w
w
K
¹
©
¹
©
¹
R¹ ©
¹
©
©
¹ »»
w § h wP · w § h wP ·w «¬§ wwh · w § w ·
¼
¨¨
¸¸ ¨¨
¸¸ ¨V
. ¸ ¨ ¸ w
wx © K wx ¹ wz © K wz ¹w ¨© K wwx ¸¹ w ¨© K w ¸¹
$IWHUFRQVLGHULQJWKHFRQVWDQWFRHIILFLHQWRIG
w
e
º
'L
H
DV ZHOO
§ H
·
DV
pz p0 K,
C
cos
¸ »
L
$IWHUFRQVLGHULQJWKHFRQVWDQWFRHIILFLHQWRIG\QDPLFoil
¨
$IWHUFRQVLGHULQJWKHFRQVWDQWFRHIILFLHQWRIG\QDPLF
$IWHUFRQVLGHULQJWKHFRQVWDQWFRHIILFLHQWRIG\QDPLF
»
'L
¨ S ¸
viscosity ( K const DV ZHOO DV© the
» DV
2
>@
DV¹simplified
ZHOO
K following
»
expressions for the functions describing the thickness ¼of the
wedge and the bearing wear >@
>@
H
'
p
h h( x c H cosx ,'
H
R
w w
H
e sin x
wh( x
R ,w h( x wx
Rc H cos x w
H
HTXDWLRQFDQEHZULWWHQDV
R
> > @
HTXDWLRQFDQEHZULWWHQDV:
HTXDWLRQFDQEHZULWWHQDV
HTXDWLRQFDQEHZULWWHQDV
@
H
Kexsin x
Ke sin x
e sin
R
R
P' ' xx x, z P' ' zz x,z V 0
P' x x, z H
cos
Rc H H xR
Rc H cos x
R
with the boundary conditions:
, with the boundary conditions:
K
r
S
K
^ `­
®
¯
«
¬
7+($1$/<6,62)2,/%$/$1&(,1&5$1.%($5,1*
H H
V H
H
H
H H »
H H
¼
½
¾
¿
RPLWWHG HOHPHQWV RI WKH
H ' L *L p z p0 ' * ,
,
e
ª
º 'H
º
ª
e
º
ª
H
H
H
H
§
§
·
·
2 S »
< S »
H
H»20H «¨
) ) S< <
) S « H ) < §¨ HH ·H «) S )
¨2
<0S<
2
»
«
© H» ¹̧ '
» « © H ¹̧
« H
© H ¹̧ ¬ H
¼ 2
¼
¼ ¬
¬
§
·
e
¨ Sa ¸
K
K Sa ' L ¸
Sa L ª H º H
¨
'
'
'L
,
C
C
p
C
, K K ¦ k ¦ ¨ 0K 2 «¬ H »¼
2c KL
§ KL · ¸
k k ¨
SC ¨ ¸
¹̧ ¹
©
©
H
H
H 2
L
' e *
' * e *L
' L e .
H where:
H
H
' *C ª§ R · 2 º
$1$/<7,&$/%$/$1&(2)2,/
$1$/<7,&$/%$/$1&(2)2,/
K ,2,..., Ǭ
».
$1$/<7,&$/%$/$1&(2)2,/
¬«© e ¹̧
¼»
$QDO\WLFDO
$QDO\WLFDO GHWHUPLQDWLRQ of the amount
of GHWHUPLQDWLRQ
oil flowing$QDO\WLFDO GHWHUPLQDWLRQ
LV EDVHG
RQ WKH VROXWLRQ
EDVHG
HTXDWLRQ
WKH
VROXWLRQ
Lstreams
RI 4
HTXDWLRQ
L
DueLV
toRI
-RQ
,
oil
through bearing LV EDVHG RQ WKH VROXWLRQ RI HTXDWLRQ
L.e.
42 can be written as
]GHVFULELQJWKHGLVWULEXWLRQRIS
]GHVFULELQJWKHGLVWULEXWLRQRIS
function P (x, ]GHVFULELQJWKHGLVWULEXWLRQRISressure
in the follows:
@
DOXHRIWKHLQWHQVLW\RI4SDVVLQ
@
DOXHRIWKHLQWHQVLW\RI4SDVVLQ
crank bearing [9,@The vDOXHRIWKHLQWHQVLW\RI4SDVVLQg
e
through the crank bearing can be represented as two partial
º
ª
H
c CK exp^KL` «
44flow caused by 44
§ H · »
§ H ·
streams 442, where Q1 is part of the stream
¨
Q
( H ¨
, 4
«4
KRK
the rotation of the crankshaft, while 42 is part of a stream of
© H ¹̧
© 2 ¹̧ »
¼
¬
4
%\
YLUWXH
RI
WKH
4
DERYH
%\
YLUWXH
RI
WKH
DERYH
pressurized forced power 42. %\ YLUWXH RI WKH DERYH
considerations, the dependencies representing the partial
e
C e H KS exp ^KL` ª
streams of flowing oil can be written as follows:
H H º» . Q2
2C K
«
e 2H
K
¼
¬
S
S
RS
L
2
w
w
ª
ª
º
º
ª wP º
' « » dzS
' « » dz
Q Q, x 0 Q, x RS
h' « » dz S K ³ )LQDOO\E\HTXDWLRQWKHEDODQFHRIRLOIORZLQJ
K ³
¬w ¼
¬w ¼
K ³L 2
¬ wx ¼ 0
through the crank bearing can be written as the following
L
L
relationship:
ªw º º
ªw º
ª w
ªw º
2 ª wP º
2 ª wP º
,
h
dz
h
dz
³
³³ «¬ w«¬ w »¼ »¼ S dz K
³ «¬ w »¼ S dz «
»
³
³
»
«
»
«
K
K
K
w
¬
¼
K L 2 ¬ wx ¼ x 0
K L 2 ¬ wx ¼ x RS
c exp^KL` ª
·º
§ :
Q Q Q2
.
«2C CK ¨ RK KS: 2 » , K
¹̧¼
©
¬
L
r
r
S
S
r
2S
2
ªw º
ªw º
ª wP º
'
'
Q2 Q2, z 0 Q
h ' « » dx
«¬ w »¼
«¬ w »¼
L
r
r
where:
K³
K ³
2, z r
K ³0
¬ wz ¼ 0
2
e
S
S
S
S
2S
2S
ª w ªºw º
§ ªHw· Hº § H · ªw º
ª wP º
ª wP º
dx
dx
dx³ , « w dx h
h
, K ³K ³«¬ w «¬»¼w:r»¼ ( HK ¨³ «¬Hw »¼ r ¨ 2
¬ »¼
K ³ «¬ wz »¼ z 0
K ³ «¬ wz »¼ z rLK
©
¹̧
©
¹̧
0
0
2
c CK exp ^KL`
H §¨ H ·
KRK
© H ¹̧
where:
Q, x
0
e
H
,K
^
3(5)250$1&($1$/<6,62)',$*1267,&6,*1$/
^ ` H ^ ` H K In Sthe crank
Q, x RS
bearings
of the engine type S-
K
(agricultural tractors C- , the maximum value of
bearing clearance is characterized by accelerated wear of
crank mechanism (the boundary condition of the bearing
e
CK e H c KS exp^KL` ª
º
Q2, z 0
can be derived from the average
«2C e 2H H H » , crank is 0.2 mm, which
K
¬
¼
dependence given by KozáRZLHFNL DQG 3U]XVWND >@ DV ZHOO
as 7KXP> @
e
CK e H c KS exp ^KL` ­
½
H H ¾ . Q
®2C L
2
2, z r
e 2H
K
¿
¯
C dot
2
C gr
,
h0
The relationshipV - RPLWWHG HOHPHQWV RI WKH
order o( H and used the following indications:
using the classical formula Vogelpohl:
c CK exp ^KL`
HS ,
KRK
C
¦
§
¨
¦ ¨¨
¨
©
'L
p z p0 ,
L
'L
2
ª H º
«
¬ H »¼
ª§
·
2
H
º
·
¸
'
¸
·¸
§
S ¨ ¸
¹̧ ¹
©
e
e H
H H . e
: 2 e
` H § H ·^H `e
2H H § H · H ¨
¨
H ¹̧
©K
© H ¹̧
Cdot
0.92 ˜ V ,
where:
C dot - clearance after getting proper association (at optimal
operation aIWHUPWK
h0 - the minimum thickness of oil wedge,
EHDULQJ¶V RSHUDWLRQ
˜ .+$&+$785.<85(*+<$1:,(6à$:3,(.$56.,
operation aIWHUPWK
h0 - the minimum thickness of oil wedge,
V - the peripheral speed of crankshaft.
CONCLUSIONS
In the boundary conditions of dynamically loaded crank
EHDULQJ¶V RSHUDWLRQ, the diagnostic signal parameters
describing the relative decline in the oil pressure inside the
bearing and its flow through the bearing score significantly
higher values than when working under optimal conditions,
ZKLFKSRLQWVWRDFFHOHUDWHGZHDURIWKHFUDQN3LHNDUVNL>@
applied the model to assess the value of diagnostic signal
parameters based on measurements of the relative pressure
drop and oil flow d\QDPLFVDWWKHPHDVXUHPHQWQDUURZLQJ$s
an indicator of the dynamics, the following value describing
oil flow through the bearing was accepted:
dp
S gr S 0
S0
,
$nalytical interpretation of the above relation, using the
average value of clearance limit (at the speed of the shaft
min C gr
2, ˜ V
, ˜ C0
FDQEHREWDLQHGE\HTXDWLRQDVIROORZV
7
Dp
§ c gr
¨
¨c
© 0
·
¸
¸
¹
·
§ :gr
2C CK ¨¨
KS: 2 gr ¸¸
RK
¹ ©
˜
§ :
·
2C CK ¨
KS: 20
© RK
¹̧
) gr
2, ˜
,
)0
5()(5(1&(6
c gr , i=1;2,
)0
) gr
§:
·
2C0 CK ¨ KS: 20 ,
© RK
¹̧
·
§ :gr
2C gr CK ¨¨
KS: 2 gr ¸¸ ,
RK
¹
©
K
­ for c c0
°
2
 c0 , c gr
for
c
®
°̄
for c c gr .
%DáXFLĔVNL-6WĊSLĔVNL- Wykorzystanie metod
oceny stanu technicznego silników przy kwalifikowaniu
LFKGRQDSUDZ\7HFKQ0RWR-
2. %ĊGNRZVNL / Elementy ogólnej teorii
GLDJQRVW\NLWHFKQLF]QHM%LXO:$7
Cislikowski B., Pedryc N., 2009: Koncepcja nadzoru
QDG PDV]\QDPL SU]H] FRPSXWHU SRNáDGRZ\ FLąJQLND Z
czasie rzeczywistym z wykorzystaniem magistrali
LQIRUPDW\F]QHM/,1,QĪ\QLHULD5ROQLF]D-
Das S., Guha S.K., Chattopadhyay A.K., 2005: Linear
stability analisis od hydrodynamic journal bearings under
micropolar lubricatioQ7U\ERORJ\,QWHUQDWLRQDO-
Hebda M., Wachal A., 1980: Trybologia, WNT,
Warszawa.
-XĞFLĔVNL 6 3LHNDUVNL : =DU]ąG]DQLH
ORJLVW\F]QH DXWRU\]RZDQ\P VHUZLVHP FLąJQLNyZ L
masz\Q UROQLF]\FK (NVSORDWDFMD L 1LH]DZRGQRĞü –
0DLQWHQDQFHDQG5HOLDELOLW\-
7. Mienann G., 1980: Mashinenelemente. Springer Verlag,
%HUOLQ
8. Niewczas
A.,
1991:
Zastosowanie
pomiarów
SU]HGPXFKyZ VSDOLQ GR SURJQR]RZDQLD WUZDáRĞFL
silników spalinowych. Krajowa Konf. Naukowo –
7HFKQLF]QD.LHNU]-
9. .R]áRZLHFNL + àRĪ\VND WáRNRZ\FK VLOQLNyZ
spalinowych. WKiL, Warszawa.
.R]áRZLHFNL + 3U]XVWHN - :VSyáF]HVQH
PHWRG\REOLF]DQLDSDUDPHWUyZSUDF\áRĪ\VNPHFKDQL]PX
korbowego silników spalinowych. Silniki Spalinowe, 2,
-
Krasowski P., 2006: =PLDQD FLĞQLHQLD Z SRSU]HF]Q\P
áRĪ\VNX ĞOL]JRZ\P SU]\ ODPLQDUQ\P QLHVWDFMRQDUQ\P
where:
:i 0 - TXDQWLW\FDOFXODWHGIURPVROXWLRQV, IRU c c0 ,
i=1;2,
: igr - TXDQWLW\ FDOFXODWHG IURP VROXWLRQV IRU
c
Knowledge of the dynamics of steam friction (pivot FXS LQ D FUDQN system, expressed by escalation of clearance
between its elements, allows to determine the probability of
reliable operation of the considered friction SDLU $ SURSHU
technical maintenance of the engine operation is necessary,
provided the information is available on its properties.
This information can be known only by the changes of
bearing clearance and course changes in the dynamics of the
diagnostic signal.
The terms of co-operation of the functional subsystem
crank pivot - cup decide on the reliable operation of the
8
engine. The worsening conditions
for cooperation of these
subsystems as a result of processes of consumption lead to
premature engine wear, and even more to significant increase
in fuel and oil consumption and increased difficulty in
starting.
5HTXLUHPHQWV IRU RSHUDWLRQDO SURJUHVV DUH EHFRming
PRUHIUHTXHQWO\UHFRJQL]HGDQGIRUPXODWHG,W has been noted
that the effectiveness of the management of technical objects
in many cases reduces the high operating expenses, which
may even get higher than expenses associated with designing
and manufacturing. The high operating expenses can be
UHGXFHGE\LPSURYLQJWKHTXDOLW\RIWHFKQLFDOREMHFWVDVZHOO
as conditions of their use and handling. For this purpose, the
pursuit is necessary of rational, science-based exploitation of
technical objects.
In diagnostic tests, the dynamic of determined signal
changes should be as high as possible. It is assumed that the
determined change induced by an increase in consumption
occurring in the crank subsystem is the relative increase in oil
pressure drop, which is treated as a diagnostic signal.
CONCLUSIONS
9
FXS LQ D FUDQN
SDLU $ SURSHU
3URJQR]RZDQLH WUZDáRĞFL SDU
WUąF\FKVLĊQDSU]\NáDG]LHáRĪ\VNZDáXNRUERZHJRVLOQLND
&=HV]\W\1DXNRZH$56]F]HFLQ JQRVW\ND SRMD]GyZ
UROQLF]\FK:\G$5/XEOLQ
hEHU GHQ 9HUODXI GHV 6FKPLHUILOPGUXFNHV
LQ
7+($1$/<6,62)2,/%$/$1&(,1&5$1.%($5,1*
G\QDPLVFK EHDQVSUXFKWHQ *OHLWODJHUQ :LVV = 7HFKQ
+RFKVFK0DJGHEXUJ
VPDURZDQLX =HV]\W\ 1DXNRZH $NDGHPLL 0RUVNLHM Z Thum H., 1985: =XU %HVWLPPXQJ GHU 9HUVFKOHLVV6]F]HFLQLH-298.
EHGLQJXQJHQ /HEHQVGDXHU YRQ :llzlagern bei verschieKurowski W., 1978: 6\VWHP\ GLDJQRVW\F]QH XU]ąG]HĔ
GHQHQ hEHUOHEHQZDKUVFKHLQOLFKNHLWHQ 6FKLPUXQJVmechanicznych. DUM, Ossolineum.
WHFKQLN-
Kyureghyan Kh., 2002: Theoretical calculation of size
20. Vogelpohl G., 1969: hEHU GLH 8UVDFKHQ GHU 8Q]Xon an oil slit in a transverse sliping bering, Mathematical
UHLFKHQGHQ %HZHUWXQJ YRQ 6FKHPLHUXQJVIUDJHQ LP
0HWKRGVLQ$JULFXOWXUH-
9RULJHQIDKUXQGHUW6FKPLHUWHFKQLN
Kyureghyan Kh., Kornacki A., Piekarski W., 2006:
$QDOLW\F]QD ]DOHĪQRĞü GR Z\]QDF]DQLD FLĞQLHQLD Z
$1$/,=$%,/$1682/(-8:à2ĩ<6.8.25%2:<0
K\GURVWDW\F]Q\P áRĪ\VNX SRSU]HF]Q\P ĞOL]JRZ\P
,QĪ\QLHULD5ROQLF]D
Kyureghyan Kh., Piekarski W., 2008: $QDOLVLV RI Streszczenie 3UDFD SU]HGVWDZLD DQDOLW\F]Qą NDONXODFMĊ ELODQVX ROHMX
SU]HSá\ZDMąFHJRSU]H]G\QDPLF]QLHREFLąĪRQHáRĪ\VNRJáyZQHLNRUERZH
detetermining pressure distribution in crank bearing,
7HRUHW\F]QH UR]ZDĪDQLD ED]XMą QD UR]ZLą]DQLX UyZQDQLD 5H\QROGVD
(NVSORDWDFMD L 1LH]DZRGQRĞü – Maintenance and
DQDOLW\F]Q\ UR]NáDG FLĞQLHQLD ROHMX Z áRĪ\VNX SRSU]HF]Q\P ĞOL]JRZ\P
5HOLDELOLW\-
o ZDUXQNDFK EU]HJRZ\FK FKDUDNWHU\]XMąF\FK ZDUXQNL SUDF\ ZZ áRĪ\VN
Piekarski W., 1993: 3URJQR]RZDQLH WUZDáRĞFL SDU zastosowanych w silnikach S- FLąJQLNL UROQLF]H ,ORĞFLRZRWUąF\FKVLĊQDSU]\NáDG]LHáRĪ\VNZDáXNRUERZHJRVLOQLND REMĊWRĞFLRZą RFHQĊ FLHF]\ VPDUXMąFHM SU]HSá\ZDMąFHM SU]H] áRĪ\VNR
przedstawiono adekwatnie do WHRUHW\F]QHM ZDUWRĞFL V\JQDáX
S – &=HV]\W\1DXNRZH$56]F]HFLQ-
GLDJQRVW\F]QHJR FR SR]ZDOD QD G\QDPLF]Qą DQDOL]Ċ SRUyZQDZF]ą
Piekarski W. i inni., 1988: DiaJQRVW\ND SRMD]GyZ SU]HSURZDG]RQą GOD Z]RUFRZ\FK QRZ\FK MDN UyZQLHĪ GOD áRĪ\VN
UROQLF]\FK:\G$5/XEOLQ
o XVWDORQHMNODV\ILNDFMLVWRSQLD]XĪ\FLD
Thum H.: hEHU GHQ 9HUODXI GHV 6FKPLHUILOPGUXFNHV LQ 6áRZD NOXF]RZH VPDURZDQLH K\GURG\QDPLF]QH áRĪ\VNR SRSU]HF]ne
G\QDPLVFK EHDQVSUXFKWHQ *OHLWODJHUQ :LVV = 7HFKQ ĞOL]JRZHUyZQDQLH5H\QROGVDDQDOL]DGLDJQRVW\F]QDSDUDPHWU\V\JQDáX
diagnostycznego.
+RFKVFK0DJGHEXUJ
Thum H., 1985: =XU %HVWLPPXQJ GHU 9HUVFKOHLVVEHGLQJXQJHQ /HEHQVGDXHU YRQ :llzlagern bei verschieGHQHQ hEHUOHEHQZDKUVFKHLQOLFKNHLWHQ 6FKLPUXQJV
WHFKQLN hEHU GLH 8UVDFKHQ GHU 8Q]X
UHLFKHQGHQ %HZHUWXQJ YRQ 6FKHPLHUXQJVIUDJHQ LP
9RULJHQIDKUXQGHUW6FKPLHUWHFKQLN
$1$/,=$%,/$1682/(-8:à2ĩ<6.8.25%2:<0
3UDFD SU]HGVWDZLD DQDOLW\F]Qą NDONXODFMĊ ELODQVX ROHMX
SU]HSá\ZDMąFHJRSU]H]G\QDPLF]QLHREFLąĪRQHáRĪ\VNRJáyZQHLNRUERZH
7HRUHW\F]QH UR]ZDĪDQLD ED]XMą QD UR]ZLą]DQLX UyZQDQLD 5H\QROGVD
DQDOLW\F]Q\ UR]NáDG FLĞQLHQLD ROHMX Z áRĪ\VNX SRSU]HF]Q\P ĞOL]JRZ\P
ZDUXQNDFK EU]HJRZ\FK FKDUDNWHU\]XMąF\FK ZDUXQNL SUDF\ ZZ áRĪ\VN
FLąJQLNL UROQLF]H ,ORĞFLRZR
REMĊWRĞFLRZą RFHQĊ FLHF]\ VPDUXMąFHM SU]HSá\ZDMąFHM SU]H] áRĪ\VNR
WHRUHW\F]QHM ZDUWRĞFL V\JQDáX
GLDJQRVW\F]QHJR FR SR]ZDOD QD G\QDPLF]Qą DQDOL]Ċ SRUyZQDZF]ą
SU]HSURZDG]RQą GOD Z]RUFRZ\FK QRZ\FK MDN UyZQLHĪ GOD áRĪ\VN
XVWDORQHMNODV\ILNDFMLVWRSQLD]XĪ\FLD
6áRZD NOXF]RZH VPDURZDQLH K\GURG\QDPLF]QH áRĪ\VNR SRSU]HF]
ĞOL]JRZHUyZQDQLH5H\QROGVDDQDOL]DGLDJQRVW\F]QDSDUDPHWU\V\JQDáX
TEKA. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE – 2014, Vol. 14, No. 4, 71–80
The Development of New Technologies for Processing and Disposal
of the Oil Containing Wastes Enterprises of Railway Infrastructure
Anna Leshchyns’ka, Yuliya Zelen’ko, Marina Bezovs’ka, Michael Sandowski
Dnipropetrovsk National University of Railway Transport Named after Academician V. Lazaryan
Academician Lazaryan st., 2, Dniepropetrovsk, Ukraine, 49010
e-mail: anna.leshchynskaya@gmail.com, j.zelenko@mail.ru
Received December 11.2014; accepted December 19.2014
activity; railway facilities in Ukraine occupy approximately
KHFWDUHVZLWKGUDZQIURPDJULFXOWXUDOVHFWRU>@
/DUJHSDUWRIHPLVVLRQVDERXWLVSURGXFHGE\IXHO
combustion during operation of diesel mainline and shunting
rolling stock, refrigerated trains.
7KHTXDOLW\RIZDVWHZDWHURIWKHUDLOZD\XQGHUWDNLQJV
varies widely. Water pollution by industrial wastewaters
creates a potential threat to public health, restricts the use
of water reservoirs for household, drinking, cultural and
GRPHVWLFSXUSRVHVFDXVHVJUHDWGDPDJHWR¿VKHULHVDQG
DJULFXOWXUH>@
The sources of wastes in railway transport are all its
INTRODUCTION
subdivisions. Major transport companies, which include, in
particular, locomotive, railcar depots, railway stations, rail7KHFUHDWLRQDQGGHYHORSPHQWRIKLJKHI¿FLHQWWHFKQROR- way machinery repair plants and bases supporting them, tend
gies subject to demands on resource and energy conservation to form and accumulate processing wastes, oil-contaminated
DVZHOODVHQYLURQPHQWDOVDIHW\DUHSUHUHTXLVLWHVIRUWKH RQHVEHLQJWKHPRVWFRPPRQRIWKHP7DEOH
production development at the present stage.
The railway infrastructure is one of the largest con- Ta b l e 1 . Processing wastes of railway undertakings
sumers of valuable material resources such as petroleum,
Waste
Technological process that
because the environmental safety of the railways is one of Type of waste
volume per
forms wastes
annum
WKHSULRULWLHV>@
Summary. In article traditional methods of utilization and reQHZDORIWKHIXO¿OOHGFRROLQJOXEULFDQWVDQGZDVWHFRPSUHVVRU
oils of separate brands are considered. In developing the scheme
RIUHFRYHU\RIRSHUDWLQJTXDOLW\RIWKHRLOFRQWDLQLQJZDVWHVIRU
WKHSXUSRVHRIIRUPLQJDQGFDOFXODWLQJWKHSURFHVVÀRZGLDJUDP
suggested, the process optimization, namely temperature, reagent
amount, and time of its contact with oil was conducted. The new
technologies with use of surface-active substances are offered.
Key words: ZDVWHFRPSUHVVRURLOVFRROLQJOXEULFDQWVFRRODQWV
surface-active substances, environmental safety, utilization.
Oil sludge
0$7(5,$/6$1'0(7+2'6
To reduce the negative impact of railway transport in all
parts of the biosphere during regular operation, the degree
of its impact should be constantly monitored and regulated.
$QDO\VLVRIWKHDQQXDODFWLYLWLHVRIWKHUDLOZD\XQGHUWDNLQJV
VXJJHVWVWKDWPRUHWKDQRIZDWHUFRQVXPHGLVGLVFKDUJHG
into surface water reservoirs in the form of wastewater contaminated with oil products, salts of heavy metals, synthetic
VXUIDFHDFWLYHVXEVWDQFHVHWFRYHUWRQVRIKDUPIXOVXEstances are emitted into the atmosphere from stationary sourcHVRQO\DERXWRIWKHPDUHUHFDSWXUHGDQGGHWR[L¿HG
PRUHWKDQWRQVRIZDVWHDUHIRUPHGDVDUHVXOWRILQGXVWULDO
Washing
machinery
sludge
3XUL¿FDWLRQRIZDVWHZDWHUV
up to 200
thous. t
Washing of bearings, bearing boxes, four-wheel trucks and carriage
up to 2000 m3
bodies of rolling stock, various
details before repair works
3XUL¿FDWLRQRIZDVKLQJZDWHUV
up to 20 t
of galvanic sections
*DOYDQLF
sludge
Dry-cleaning
machinery
Work wear cleaning
subsidence
Cleaning of bearing boxes beScavenge oils
fore repair, scavenge oil change
Scavenge diesel oils change
Scavenge
during rolling stock maintediesel oils
nance and repair
P3
WKRXV7
2YHU
thous. T
72
$11$/(6+&+<16¶.$<8/,<$=(/(1¶.20$5,1$%(=296¶.$0,&+$(/6$1'2:6.,
Type of waste
Technological process that
forms wastes
Cleaning of industrial sites,
Contaminated midpoint pump station, sleeper
impregnation plant, railside
soil
territories of depots, plants etc.
Replacement of used
Cross-sleepers cross-sleepers during repair
works
Replacement of defective lamps
Fluorescent
in administrative premises and
lamps
workshops of the undertakings
MechaniReplacement of brake shoes
cal-rubber
during repair works, of battery
wastes
jars and other rubber pieces
Waste
volume per
annum
XSWRPOQ
T
POQ
pcs.
XSWR
thous. pcs.
W
$PRXQWRIPDQDJHGZDVWHRIDOOJUDGHVLVQHJOLJLEOH
due to the general economic trend of decline in production,
which in turn is a condition for reducing the volume of
¿QDQFLQJHQYLURQPHQWDOPHDVXUHVDLPHGDWLQFUHDVLQJWKH
level of waste utilization not only in railway transport, but
also in all industries in Ukraine.
Storage and disposal of waste in railway transport, as in
RWKHULQGXVWULHVGRQRWRIWHQPHHWVDQLWDU\UHTXLUHPHQWV
leading to contamination of groundwater, soil and atmosphere.
The most effective approach to minimizing the negative
environmental impact is to develop eco-protection technologies based on the monitoring data, which allows for taking
into account the peculiarities of the objects.
$WWKHUDLOZD\XQGHUWDNLQJVRLOFRQWDPLQDWHGDQGRLO\
waste (waste oils, cooling lubricants, contaminated soils,
JUHDVHWHFKQRORJ\VOXGJHSHWUROHXPVOLPHHWFFRQVWLWXWHDVLJQL¿FDQWSDUWRIWKHWRWDOYROXPHRIDOOZDVWHV7KLV
follows, for example, from the analysis of the dynamics of
the formation of different types of waste that were formed
at the undertakings of different railway departments.
In particular, the major contributors to the formation of
such waste are the undertakings of locomotive department,
VR)LJSUHVHQWVWKHGDWDRQWKHIRUPDWLRQRIDOOW\SHVRI
waste at the undertakings of that department of the PrydniSURYVNDUDLOZD\LQ>@
)LJFOHDUO\VKRZVWKDWLQJHQHUDOIRUWKHXQGHUWDNLQJV
of the railway locomotive department it is scavenge oils that
constitute the main group of waste; process sludge comes
third after accumulator batteries.
$FFRUGLQJWRWKHSXEOLFPDQDJHPHQWSROLF\LQWKH¿HOG
of waste treatment, all processing waste for which the methods for recycling and rational use in the national economy
are developed, are to be used as secondary raw material and
VKRXOGQRWEHWUDQVSRUWHGWRODQG¿OOV
Disposal of exhausted petroleum and oil-containing
ZDVWHVLVDQLPSRUWDQWVFLHQWL¿FDQGWHFKQLFDOFKDOOHQJH
EHFDXVHWKH\DUHFODVVL¿HGDVKD]DUGRXVZDVWHZKLFKDGYHUVHO\DIIHFWDOOREMHFWVRIWKHHQYLURQPHQW±DLUVRLODQG
water. For instance, water pollution by petroleum products
LVRIWKHWRWDOPDQPDGHFRQWDPLQDWLRQ>@
In most developed countries the relevant laws, environmental standards and economic conditions regulate the
collection and disposal of exhausted oils. Increased attention to meeting these laws is stipulated by large amounts of
waste oils, high environmental risk they lead to and also the
valuable properties of oils as hydrocarbon-containing raw
>@$ZHOODGMXVWHGPHFKDQLVPRIUHF\FOLQJZDVWHRLOVSURvides the return them to production or consumption sector
as secondary products or intermediates, which provides real
VDYLQJWKHUHVRXUFHVLQRLOLPSRUWLQJFRXQWULHV>@
)RUH[DPSOHLQ*HUPDQ\PRUHWKDQPLOOLRQWRQVRI
WKHH[KDXVWHGRLOVLVFROOHFWHGDQQXDOO\ZKLOHLQWKH86$±
FDPLOOLRQWRQV'HVSLWHWKHVWDELOL]DWLRQRISURGXFWLRQ
DQGXVHRIOXEULFDQWVDWWKHOHYHORIPLOOLRQWRQVSHU
year, in the coming years, according to experts’ forecasts,
the steady amount growth in the collection of waste oils is
expected. This is due to the improvement of the legal and
economic mechanisms of managing the turnover of commodity and waste oils, the development of technologies for
collecting and recycling the latter, strengthening the state
and public control over the handling of hazardous wastes
and other factors [7].
([SHUWVHVWLPDWHWKDWWRGD\WKHJOREDOSURGXFWLRQYROXPHRIOXEULFDWLQJRLOVRIGLIIHUHQWEUDQGVLVDERXW
POQWRQVSHU\HDU$QLQVLJQL¿FDQWSDUWWKHUHRI
is irrevocably lost in the course of use due to evaporation,
VSLOOVEXUQRXWDQGOHDNRIIV7KHLUELJJHUSDUWLV
gradually contaminated by various metal, mineral and organic impurities, is thermally decomposed through interaction
Fig. 1. )RUPDWLRQRIZDVWHDWWKHXQGHUWDNLQJVRIORFRPRWLYHGHSDUWPHQWRIWKH3U\GQLSURYVNDUDLOZD\LQW\HDU
7+('(9(/230(172)1(:7(&+12/2*,(6)25352&(66,1*$1'',6326$/
ZLWKKRWSDUWVRIWKHHTXLSPHQWR[LGL]HGE\DWPRVSKHULF
oxygen, exposed to such environmental factors as pressure,
HOHFWULF¿HOGDQGQDWXUDOOLJKWLQJ$VDUHVXOWVFDYHQJHRLO
completely changes its properties and turns into very thick,
ooze-like black or dark-brown substance, thick mixture of
YDULRXVNLQGVRIOLTXLGVZLWKDGGLWLRQRIVROLGV±PHWDOR[ides, wear debris.
Regeneration of waste oils for railway companies is virtually non-existent, except for certain physical methods (settling
DQGFHQWULIXJDWLRQZKLFKGRQRWHQVXUHWKHIXOOHIIHFW>@
$WSUHVHQWZDVWHRLOVDUHRIWHQXVHGZLWKRXWUHJHQHUDtion as heating and boiler fuel directly at railway enterprises
or transferred for further use or regeneration to other busiQHVVHVWKDWOHDGVWRVLJQL¿FDQWUHSHDWHGHFRQRPLFH[SHQVHV
>@(JWKHUHJHQHUDWLRQRIZDVWHRLOVLVRIWHQFRQGXFWHG
LQSHWUROHXPUH¿QHULHVE\DIXOOWHFKQRORJLFDOVFKHPH,WLV
a well-known fact that with proper organization of process
WKHFRVWRIUHFRYHUHGRLOVLVOHVVE\WKDQWKHFRVWRI
WKHIUHVKRLODWDOPRVWWKHVDPHTXDOLW\>@
In the operation, physical and chemical properties of
oils vary but experiments have shown that in the main the
JURXSFKHPLFDOFRPSRVLWLRQRIWKHRLOYDULHVVOLJKWO\>@
Fig. 2. Diagram of scavenge oil disposal/recycling technologies
Products of physicochemical transformations of oils as well
as harmful impurities, which get from outside and make the
RLOXQ¿WIRUIXUWKHUZRUNDUHRQO\DVPDOOSDUWRIWKHLUWRWDO
mass and by means of using special processing methods
WKH\FDQEHUHPRYHG$IWHUUHPRYDORIFRQWDPLQDQWVWKH
original properties of oils are recovered therefore they can
EHUHXVHGLQDPL[WXUHZLWKIUHVKRLOV>@
$MRLQWSURFHVVLQJLQDPL[WXUHZLWKSHWUROHXPDWRLOUH¿QHULHVDQGWKHLUWDUJHWSURFHVVLQJZLWKREWDLQLQJWKHJUHDVH
FRPSRQHQWVUHJHQHUDWLRQDUHWKHPDLQDUHDVRISURFHVVLQJ
the exhausted oils.
*HQHUDOO\UHJHQHUDWLRQPHWKRGVDUHGLYLGHGLQWRSK\Vical, chemical, physical and chemical, biological and comSOH[+HUHLVDVFKHPDWLFGLDJUDPRIDFRPSDUDWLYHDQDO\VLV
RIVFDYHQJHRLOGLVSRVDOUHF\FOLQJWHFKQRORJLHV)LJ>@
To physical belong such methods that provide for removal of only mechanical impurities, i.e, dust, sand, metal
particles, water, tarry, asphaltum-like substances and carbon
blacks, as well as fuel, without affecting the chemical base
RIRLOVWREHUH¿QHG7KHVHLQFOXGHVHGLPHQWDWLRQ¿OWUDWLRQ
VHSDUDWLRQÀXVKLQJZLWKZDWHUDOVRLIQHFHVVDU\OLJKWIUDFtions recovery is carried out.
$11$/(6+&+<16¶.$<8/,<$=(/(1¶.20$5,1$%(=296¶.$0,&+$(/6$1'2:6.,
6HGLPHQWDWLRQLVWKH¿UVWDQGPDQGDWRU\RSHUDWLRQRI
the regeneration process. Mechanical impurities and water,
VXVSHQGHGLQWKHRLOVHGLPHQWDWWKHRLOVWLOOVWDQGE\IRU
hours depending on the heating temperature and the height
RIWKHOLTXLGFROXPQ6HGLPHQWDWLRQLVEDVHGRQWKHSULQFLSOH
of particle settling by gravity. The greater the particles’ sedLPHQWDWLRQUDWHIURP6WRNHVHTXDWLRQWKHELJJHUWKHLUVL]H
DQGVSHFL¿FJUDYLW\DQGWKHORZHUWKHÀXLGYLVFRVLW\>@
6HSDUDWLRQDOORZVIRUGHHSHUSXUL¿FDWLRQRIVFDYHQJHG
oil. This is a centrifugation process when products, affected
by centrifugal effort, are separated according to their density:
the heaviest contaminating impurities are pushed to the walls
of the container, forming an annular layer of sediments; the
next annular layer is made up of water that is released, and
WKHWKLUGRQHORFDWHGQHDUWKHD[LVRIURWDWLRQLVUH¿QHGRLO
Filtration is a process of separation of heterogeneous
systems through porous walls that block some phases of
these systems and let through others. These processes inFOXGHVHSDUDWLRQRIVXVSHQVLRQVLQWRSXUHOLTXLGDQGZHW
sediment, such as separation of mechanical impurities or
EOHDFKLQJFOD\IURPRLO)LOWHULQJLVRQHRIWKHPRVWHI¿FLHQW
methods of regeneration, because it can be used directly in
the operation, when the lubrication systems of engines and
WRROVLQFOXGHWDLORUPDGH¿OWHUV
7KHGLVDGYDQWDJHRIWKLVPHWKRGLVORZFOHDQLQJHI¿FLHQcy due to the fact that contaminant particulates as small as
PLFURQSDVVWKURXJKWKHSRUHVRIWKH¿OWHUV$GGLWLRQDOO\
¿OWUDWLRQRQO\UHPRYHVPHFKDQLFDOLPSXULWLHVDQGKDVQR
effect on the processes that lead to changes in the physical
DQGFKHPLFDOSURSHUWLHVRIWKHRLODQGWKHUHIRUHUHTXLUHV
IXUWKHUSURFHVVLQJZLWKFKHPLFDOUHDJHQWV>@
In addition to the above-mentioned methods, which
refer to the list of physical ones, one should also note thermal methods that allow for getting the heat, but constitute
additional challenges due to the installation of expensive
HTXLSPHQWDQGDX[LOLDU\PDFKLQHU\IRUFOHDQLQJWKHFRPbustion products [8].
Physical and chemical methods include coagulation and
adsorption. During the coagulation the particles of colloidal
system coalesce and grow to form loose aggregates, thereby
H[DFHUEDWLQJVHGLPHQWDWLRQRIFRQWDPLQDQWV$GVRUEHQWVWDNH
LQDQGUHWDLQRQLWVVXUIDFHDVLJQL¿FDQWDPRXQWRIDVSKDOW
pitch, acidic compounds, ethers and other products of aging.
)RUUHFRYHU\RIRLOVWKDWDUHQRW¿OWHUHGGLIIHUHQWGHWHUJHQWVDQGVXUIDFWDQWVDUHXVHGDVFRDJXODQWV>@
7KHGLVDGYDQWDJHVRIWKHPHWKRGDUHWKHGLI¿FXOWLHVLQ
¿QGLQJFRDJXODQWVDQGFRQGLWLRQVXQGHUZKLFKWKHFRDJulation process is successful (temperature, necessity and
LQWHQVLW\RIPL[LQJ
$QLPSRUWDQWFRQGLWLRQIRUDGVRUSWLRQSXUL¿FDWLRQLV
the intensity and time of contact of oil with an adsorbent
ZKLFKLVXVXDOO\DFKLHYHGE\WZRPHWKRGV,QWKH¿UVWPHWKod an adsorbent is fed into the oil with vigorous stirring of
USPZKLFKODVWVIRUDWOHDVWKDOIDQKRXUWKHQ
the used adsorbent is separated by sedimentation. The second
PHWKRGLVD¿OWUDWLRQWKURXJKDOD\HURIFRDUVHDGVRUEHQW>@
$FRPPRQGLVDGYDQWDJHRIWKHDGVRUSWLRQPHWKRGLV
the need for removal of waste adsorbents and sludge, which
will no longer be recycled, but simply thrown away, which
leads to contamination of the environment. In addition, some
DGVRUEHQWVGXHWRLQVXI¿FLHQWO\KLJKPHFKDQLFDOSURSHUWLHV
VWUHQJWKUHVLVWDQFHWRDEUDVLRQGHJUDGH¿OWHUSHUIRUPDQFH
generally complicating the cleaning process.
4XLWHRIWHQFKHPLFDOPHWKRGVRIUHJHQHUDWLRQDUHXVHG
Sulfuric acid, alkaline sodium silicate solutions are used
more often than others, but there is a more effective method
of chemical treatment , which provides for the use of different selective solvents and their mixtures (phenol, propane,
PL[WXUHVRISKHQROZLWKSURSDQHXVHGIRUWUHDWPHQWRIUHsidual oil that belonged to irreversibly lost ones.
The disadvantage of the use of sulfuric acid is the presence of residual acid and sulpha compounds that adversely
affect the physical and chemical properties of oil and inFUHDVHLWVFRUURVLRQDFWLYLW\$OVRIRUPHGLVDFLGLFVOXGJH
ZKLFKLVGLI¿FXOWWRGLVSRVH5HPRYDORIDFLGLFFRPSRXQGV
UHTXLUHVDVLJQL¿FDQWLQYHVWPHQWRIWLPHDQGPRQH\DQG
LVDFFRPSDQLHGE\DORVVRIXSWRRIRLO$OVRWRJHW
a neutral reaction, alkaline agents should be added to the oil.
,QVXI¿FLHQWGHJUHHRIVFDYHQJHRLOSXUL¿FDWLRQE\DOkaline treatment method is associated with the presence in
PDQ\RLOVRIGLIIHUHQWW\SHVRIDGGLWLYHVWKDWVLJQL¿FDQWO\
LPSDLUFRDJXODWLRQDQGÀRFFXODWLRQIXQFWLRQVRIDONDOLQH
agents. Therefore, for successful regeneration one should
FKRRVHVSHFL¿FFRQGLWLRQVIRUHDFKW\SHRIRLO>@
In practice, for better effect the combined methods best
VXLWHGWRSURYLGHKLJKTXDOLW\FOHDQLQJDQGUHFRYHU\RI
waste oils are applied.
5(68/76',6&866,21
$WWKHUDLOZD\EXVLQHVVHVWKHSHUVRQQHODSSOLHVFRPSUHVVRURLORIPDUN&6DVDOOVHDVRQDOOXEULFDQWIRUIULFWLRQ
XQLWVRIFRPSUHVVRUVRIGLHVHOVDQGGLHVHOWUDLQV>@
In the operation, chemical engineering laboratories at
each depot investigate oil on suitability for further use, comSDULQJWKHUHVXOWVRIDQDO\]HVZLWKVFUDSLQGLFHV>@QXPHULFYDOXHVRITXDOLW\SDUDPHWHUVZKHQWKHOXEULFDQWVORVH
WKHLUIXQFWLRQDOSURSHUWLHV:KHQVDPSOLQJIRUUHMHFWLRQRQ
the results of laboratory analysis, the full replacement of oils
in compressors is conducted.
The analysis of current technologies and schemes of
regeneration of waste oils led to drawing the conclusion that
the physical-and-chemical methods are the most promising
>@LQSDUWLFXODUWKHXVHRIGLIIHUHQWW\SHVRIDGYDQFHG
VXUIDFHDFWLYHVXEVWDQFHVVXUIDFWDQWV
In the operation, chemical engineering laboratories at
each depot investigate oil on suitability for further use, comparing the results of analyzes with scrap indices (numeric
YDOXHVRITXDOLW\SDUDPHWHUVZKHQWKHOXEULFDQWVORVHWKHLU
IXQFWLRQDOSURSHUWLHV:KHQVDPSOLQJIRUUHMHFWLRQRQWKH
results of laboratory analysis, the full replacement of oils
in compressors is conducted.
The analysis of current technologies and schemes of
regeneration of waste oils led to drawing the conclusion
that the physical-and-chemical methods are the most promising, in particular the use of different types of advanced
VXUIDFHDFWLYHVXEVWDQFHVVXUIDFWDQWV
7+('(9(/230(172)1(:7(&+12/2*,(6)25352&(66,1*$1'',6326$/
$VWKHDERYHWDEOHVKRZVWKHPDLQRSHUDWLQJLQGLFHVRI
SXUL¿HGRLOH[FHHGHGWKHUHMHFWLRQLQGLFHVLHLWLVSRVVLEOH
to draw the conclusion that the use of this technology gives
a positive result.
<LHOGRISXUL¿HGSURGXFWZLWKXVLQJWKLVVFKHPHLVDERXW
ZKLOHIRUWUHDWPHQWLWZDV
7KHDQDO\VLVRIWKHG\QDPLFVRIIRUPDWLRQ7DEOH
of the oil-contaminated waste at the Prydneprovska railZD\VKRZVWKDW±WRQVRIWKHSURFHVVVOXGJHDUHDQQXDOO\
formed at the undertakings of various departments. If you
ORRNDWSHUFHQWDJHV\RXFDQVHHWKDWWKH\WDNHXSDVLJQL¿FDQWVKDUHDERXWRIWKHWRWDOYROXPHRIWKHSDVVHQJHU
GHSDUWPHQWZDVWH>@
In appearance processing waste represented by process
sludge are brown mass, having crumby structure. Often
process sludge refers to the third class of hazard and are
moderately hazardous.
Oil sludge of the operating units of the railways are acTa b l e 2 . &RPSDULVRQRINH\SDUDPHWHUVRIWKHIXO¿OOHGDQG cumulated in wastewater of the undertakings after washing
cleared oil with rejection indicators
of cars, locomotives and their parts, that is why most of
them are formed in the railcar and passenger car de-pots of
Parameter
Physico-chemical
Rejection Rejected
the railways, as it is here where washing of the rolling stock
valueafter
properties
index
oil
cleaning
during repair works is made.
–1
DFWLYHVXEVWDQFHVVXUIDFWDQWV
&RQWDPLQDWLRQIJFP
One of the most common ways of disposing oil sludge
Flash point in open
LVDWKHUPDOPHWKRGVXFKDVLQFLQHUDWLRQ+RZHYHUSURFHVV
%HORZ
FUXFLEOHƒɋ
sludges are limited combustible substances, for this reason
9LVFRVLW\DWƒɋ
their incineration can be performed only by using additional
%HORZ
mm2/s
TXDQWLWLHVRIIXHO)RUH[DPSOHIRUUDLOZD\XQGHUWDNLQJVLWLV
TXDOLW\ SDUDPHWHUV ZKHQ WKH OXEULFDQWV ORVH WKHLU
$ONDOLQHQXPEHU
IXQFWLRQDOSURSHUWLHV:KHQVDPSOLQJIRUUHMHFWLRQ
offered to incinerate them when mixed with solid fuel in the
”
0.72
PJɄɈɇJ
furnaces of stationary steam engines located in the territory
Traces
Traces
:DWHUSHUFHQWDJH
•
of the depot. The ash that remains after burning is recom
PHQGHGWRFKHFNIRUWKHSUHVHQFHRIKHDY\PHWDOV>@
We conducted the laboratory studies to recover the
properties of waste compressor oils with a wide range of
VXUIDFHDFWLYHVXEVWDQFHVVXUIDFWDQWV6SHFL¿FDOO\VRPH
TXDQWLW\RIVXUIDFWDQWVWHVWHGDPRQJZKLFKHWK\OR[LGH
VRGLXPODXU\OVXOIDWH(PDOGJDYHWKHEHVWUHVXOW
,QGHYHORSLQJWKHVFKHPHRIUHFRYHU\RIRSHUDWLQJTXDOity of waste compressor oils for the purpose of forming and
FDOFXODWLQJWKHSURFHVVÀRZGLDJUDPVXJJHVWHGWKHSURFHVV
optimization, namely temperature, reagent amount, and time
of its contact with oil was conducted.
,Q)LJWKHUHVXOWLVSUHVHQWHGDVWKHTXDOLW\UHFRYHU\
VFKHPHIRUDZDVWHFRPSUHVVRURLO&6GHYHORSHGDQG
proposed for railway usage.
7KHREWDLQHGUHVXOWVRIYHUL¿FDWLRQRINH\RSHUDWLRQDO
indices of waste compressor oil and comparison
of them
WRWKHLQGLFHVRIUH¿QHGRLODQGUHMHFWLRQSDUDPHWHUVDUH
RITXDOLW\SDUDPHWHUVZKHQWKHOXEULFDQWVORVHWKHLU
given in Table
2.
IXQFWLRQDOSURSHUWLHV:KHQVDPSOLQJIRUUHMHFWLRQ
Ta b l e 3 . $QDO\VLVRIWKHIRUPDWLRQRIRLOFRQWDPLQDWHGZDVWHDWWKH3U\GQLSURYVNDUDLOZD\W\HDU
Department or division
HOHFWUL¿FDWLRQ
water supply
passenger
Total
-
0,08
0,90
-
-
-
-
-
-
-
No.
Type of waste
VXUIDFWDQWV 6SHFLILFDOO\ VRPH TXDQWLW\ RI
VRGLXP ODXU\O VXOIDWH (PDO G J
8VHGRLO¿OWHUV
0,08
2 TXDOLW\
Scavenge
engine oils RSHUDWLQJ
RI ZDVWHFRPSUHVVRU
RLOVIRU
WKH
Oil sludge
Oily rags
Wastewater residual
oils
Oil-contaminated soil TXDOLW\UHFRYHU\VFKHPHIRUDZDVWHFRPSUHVVRURLO
freight
commercial
Railway tracks
public facilities
-
car service
locomotive
DFWLYHVXEVWDQFHVVXUIDFWDQWV
GHYHORSHGDQGSURSRVHGIRUUDLOZD\XVDJH
Collecting and
making waste
compressor oil
homogeneous
+HDWLQJ
exhausted
oil
Sedimentation
Centrifugation
Fig. 3. Recovery scheme for waste compressor oil
Fig. 3. Recovery scheme for waste compressor oil
$GGLtion
of reagent
(mal 270d
Mixing
Collecting recovered
compressor oil
$11$/(6+&+<16¶.$<8/,<$=(/(1¶.20$5,1$%(=296¶.$0,&+$(/6$1'2:6.,
+RZHYHUWKHVHWHFKQRORJLHVDUHORZSURGXFWLRQHQHUJ\
DQG¿QDQFLDOO\FRVWO\EHFDXVHRIWKHKLJKSULFHRIERLOHUV
EHVLGHVRQHKDVWRLQVWDOODGGLWLRQDOH[SHQVLYHHTXLSPHQW
to purify atmospheric emissions; they do not allow the complete recycling and disposal of oil sludge and do not ensure
the environmental safety.
When choosing a technology of process sludge disposal,
RQHVKRXOGWDNHLQWRDFFRXQWWKHIUHTXHQF\RIIRUPDWLRQRI
WKHVHZDVWHVWKHLUOLPLWHGDPRXQWVLJQL¿FDQWFRQVXPSWLRQRI
additional fuel to support the combustion process. Therefore,
to account for these characteristics of the railway sludge,
we offer to apply much cheaper mechanical methods. For
example, to install in the depots decanters of different design
depending on the overall composition of the sludge and composition of each of its major components: hydrocarbon-bearLQJSDUWLFOHVZDWHUDQGPHFKDQLFDOLPSXULWLHV>@
Decanters provide for oil product incineration in standard containers, the possibility of waste disposal directly at
the place of their formation at a special site of any depot.
6LQJOHGRXWVKRXOGEHDEHWWHUTXDOLW\RILQFLQHUDWLRQFRPpared to open burning, high explosive hazard rate as a result
of combustion chamber blow-down.
$VUDLOZD\RLOVOXGJHVDUHVXI¿FLHQWO\ZDWHUHGEHLQJ
the wastes of rolling stock washing, they do not need to
be further diluted with water to reduce the percentage of
mechanical impurities. It is recommended to use decanters
with a screw that is covered with special protection, such
as ceramics or tungsten carbide.
Such measures are caused by the presence in process
sludges of so-called “hard” mechanical impurities (sand,
IRUJHVODJPHWDOFKLSVDQGVRRQZKLFKFDQFDXVHSUHPDWXUHZHDURIWKHZRUNLQJSDUWVRIWKHHTXLSPHQW$GGLWLRQally, to prevent ingress of large mechanical impurities into
decanter, it is advisable to in-stall strainer screens of various
¿QHQHVVRIWUHDWPHQWRUYLEUDWRU\VHSDUDWRUV
The effectiveness of the decanter depends on the parameters of raw materials, such as their homogeneity and
WHPSHUDWXUH7KH¿UVWSDUDPHWHUZLOODOORZWKHGHFDQWHUWR
run in continuous operation and eliminate the constant human
control over the parameters of its operation; indeed, it takes
PLQLPXPPLQXWHVIRUWKHHPSOR\HHZKRVHUYLFHVWKH
GHFDQWHUWRVHWLWIRUWKHQHFHVVDU\SDUDPHWHUV$QRWKHUSDrameter provides the necessary viscosity of the material and is
XVXDOO\ž&KLJKHUWHPSHUDWXUHVFDQOHDGWRRYHUKHDWLQJ
of the device. Typically, this heating is carried out directly
in the repository for the oil sludge (by heating intermediate
FRQWDLQHUVRU³RQWKHJR´ZLWKVSHFLDOKHDWH[FKDQJHUVZKHQ
oil sludge is heated while passing through them.
%HORZLQ)LJVKRZQLVWKHJHQHUDOVFKHPHRIVOXGJH
processing using a centrifuge-decanter and heat exchanger.
Practical research shows that for optimum separation of
WKUHHSKDVHVRISURFHVVVOXGJHVUHTXLUHGDUHGLIIHUHQWW\SHV
RIÀRFFXODQWVIRUHDFKFDVH'HSHQGLQJRQWKHW\SHRIWKH
HTXLSPHQWXVHGIRUWKHWUHDWPHQWRIRLOVOXGJHFHQWULIXJHV
¿OWHUSUHVVHVYDFXXP¿OWHUVVHOHFWHGLVWKHPRVWDSSURSULDWH
type of reagent to be used in further processing.
)URPWKHH[SHULHQFHRIXVLQJFDWLRQLFÀRFFXODQWVPRVW
HIIHFWLYHO\WKH\LQÀXHQFHRUJDQLFFRPSRXQGVZKLOHDQLRQLF
ones are more suitable for inorganic substances. Due to the
diversity of the structure and properties of sludges, the seOHFWLRQRIHIIHFWLYHÀRFFXODQWVLQHDFKFDVHVKRXOGEHPDGH
with prior laboratory and industrial tests.
)RUH[DPSOHZLGHO\NQRZQDUHVXFKÀRFFXODQWVDV)7
37=HWDJÀRFFXODQWVLQGXVWULDOSRO\DFU\ODPLGH
3$$DQGRWKHUV7KXVZDWHUEDVHGFDWLRQLFÀRFFXODQW
=HWDJPDQXIDFWXUHGE\6ZLVVFRPSDQ\&LED6SHFLDOW\
&KHPLFDOVLVXVHGLQWKHRLOUH¿QHU\LQGXVWU\LQWKHSURFHVV
of oil sludge dehydration at the consumption rate of 2 kg
per ton of dry residue.
Known are the results of studies into the opportunity of
VOXGJHWUHDWPHQWLQWKHSUHVHQFHRI=HWDJDQG3UDHVWRO
ÀRFFXODQWVDQGSRO\DFU\ODPLGHDWWKHFRQVXPSWLRQUDWH
RIJUDPVSHURQHWRQRIVOXGJH7KHUHVXOWVVKRZHGWKDWDW
ORZFRQVXPSWLRQRIWKHÀRFFXODQWRQHFDQFOHDUO\VHSDUDWH
mechanical impurities from oil products. The content of oil
SURGXFWVLQWKHORZHUOD\HUVHGLPHQWZKHQXVLQJ=HWDJ
DQG3UDHVWROÀRFFXODQWVZDVDQGLQWKHVHGLPHQW
ZLWKRXWÀRFFXODQWV±>@
Fig. 4. 6FKHPDWLFGLDJUDPRIWKHUHDJHQWVOXGJHSURFHVVLQJXVLQJDGHFDQWHUDQGDKHDWH[FKDQJHU±WKHRLOVOXGJHVWRUDJHWDQN
±WKHSXPSV±WKHFRDUVH¿OWHU±WKHKHDWH[FKDQJHU±WKHGHFDQWHUFHQWULIXJH±WKHFRQWDLQHUIRUFROOHFWLQJZDWHU±
WKHFRQWDLQHUIRUFROOHFWLQJFHQWUDWHK\GURFDUERQV±WKHFRQWDLQHUIRUFROOHFWLQJVHGLPHQW±WKHFRQWDLQHUIRUSUHSDUDWLRQRI
UHDJHQWV±WKHGRVLQJSXPSIRUIHHGLQJUHDJHQWV
7+('(9(/230(172)1(:7(&+12/2*,(6)25352&(66,1*$1'',6326$/
To get rid of wasted mechanical impurities, several
RSWLRQVDUHXVXDOO\RIIHUHGWKHLUGLVSRVDODWWKHODQG¿OO
burning; gradual decomposition using biologically active
sorbents at the specially prepared sites.
Under the conditions of the depot it would be reasonable
to make gradual accumulation and exportation of wastes to
WKHODQG¿OOIRUGLVSRVDO
The water that remains after oil sludge treatment is fed
IRUWKHSRVWWUHDWPHQWDQGVXEVHTXHQWO\FDQEHXVHGDV
already mentioned above, for preparing solution of reagents
and included in the production cycle of the enterprise as
technical water or the discharged into water bodies.
$VUHDJHQWVUHFRPPHQGHGIRUXVHDVÀRFFXODQWVDUH
VXUIDFWDQWV6\QWKDQRODQG1HRQRO
6LJQL¿FDQWFRQWULEXWLRQWRWKHKXPDQSUHVVXUHRQWKH
environment make metalworking shop of numerous companies, such as machine-building and rail companies (wagon,
ORFRPRWLYHGHSRWVHWF>@
,QWHQVL¿FDWLRQRISURFHVVHVRIPHWDOPHFKDQLFDOWUHDWTXDQWLW\RIGLVFKDUJHVRIH[KDXVWHGSURFHVVOLTXLGV
PHQWLPSOHPHQWLQJKLJKSHUIRUPDQFHHTXLSPHQWDXWRPDWed processes, extensive use of structural materials lead to
the fact that metal cutting becomes impossible without the
XVHRIHI¿FLHQWFRROLQJOXEULFDQWVFRRODQWV
Coolants are a water emulsion of mineral oil stabilized
by surfactants and various organic additives aimed at preDTXDWLFHQYLURQPHQW5HSHDWHGXVHRIZDVWHZDWHU
venting
the premature emulsion aging. In the process of use,
GRHV QRW UHTXLUH WKHLU GHHS SXULILFDWLRQ LW LV HYHQ
the coolant loses its technological properties and needs to
EHUHSODFHGZLWKIUHVKRQH$QH[KDXVWHGFRROLQJOXEULFDQW
KDYH D QHJDWLYH LPSDFW RQ WKH TXDOLW\ RI SURGXFWV
FRRODQWUHIHUVWRKD]DUGFODVV>@
During the use of coolants,
they are prone to contamination with:
± VPDOOHVWPHFKDQLFDOSDUWLFOHVLPSXULWLHVHPLWWHGIURP
theFRROLQJOXEULFDQWVLQFOXGLQJ(PXOVRO69.XVLQJ
oxidized metal layer, sludge after pickling and products of metal wear during pickling and cold rolling;
VXUIDFWDQWV (J VXUIDFWDQWV VXFK DV D
± IUHHQRQHPXOVL¿HGRLOVH[WUDFWHGIURPWKHHPXOVLRQ
as a result of separation;
PRQRDON\OSKHQ\OLF DFLG QHRQRO $) ± RLOVIDOOLQJLQWRDQHPXOVLRQV\VWHPDVDUHVXOWRIOHDNHWKR[\ODWHG
VRGLXP ODXU\O
VXOIDWH components
(PDO G
age
from the mechanical
and hydraulic
and
FRFDPLGRSURS\ODPLQR[LGH6$2<HYURNVLG652
RWKHUPHWDOWUHDWPHQWHTXLSPHQWDQGVRRQ>@
VWHDUR[ 6\QWDQRO $/0 VXOSKRQRO SDVWD RI
7KHZDVWHFRRODQWHPXOVLRQLVDVSHFLDOW\SHRIVHZDJH
PDUNWHFKQLFDOZHUHILUVWWHV
water that is very dangerous for the environment, since it
FRQWDLQVDODUJHQXPEHURIVWDEOHHPXOVL¿HGSHWUROHXPSURGucts and
heavy metals. In this regard, a complex of measures
$%6$ZDVLQYHVWLJDWHG$VDUHVHDUFKUHVXOWWKH
IRUQHXWUDOL]DWLRQRIZDVWHFRRODQWLVQHFHVVDU\>@
FRPELQDWLRQ RI QHRQRO $) DQG $%6$OHGWR
The spent coolant is subject to obligatory rendering safe
IURPWKHPRVWWR[LFFRPSRQHQWV([LVWLQJPHWKRGVRIQHX
tralizing the emulsions of the kind of coolant-containing
sewage water can be divided into three main groups:
Collecting and making
the waste coolant
homogeneous
Settling
± WKHUPDO
± SK\VLFRFKHPLFDO
± ELRORJLFDO
+RZHYHUQRQHRIWKHVHJURXSVDORQHFDQPHHWWKHPRGHUQUHTXLUHPHQWVFRQFHUQLQJWKHTXDOLW\RIZDWHUDIWHULWV
SXUL¿FDWLRQDQGWKHDPRXQWRIZDVWHPDWHULDOVJHQHUDWHG
The use of common chemical and physicochemical methods
leads to secondary contamination due to the formation of
various wastes. Most methods of neutralization of coolDQWFRQWDLQLQJZDVWHZDWHUDUHHLWKHUHFRQRPLFDOO\LQHI¿FLHQWRUHQYLURQPHQWDOO\XQDFFHSWDEOH>@7KHUHIRUHWKH
problem of neutralization of coolants remains urgent.
Local cleaning the wastewater of various compositions,
HOLPLQDWLQJRUUHGXFLQJWKHWRWDOTXDQWLW\RIGLVFKDUJHVRI
H[KDXVWHGSURFHVVOLTXLGVGXHWRWKHLUUHJHQHUDWLRQDQG
UHXVHRISXUL¿HGVHZDJHZDWHUVLQFORVHGV\VWHPVRIZDWHU
turnover and technical water supply in companies can be
considered as the most appropriate ways to reduce the harmful effects of contaminated sewage waters of metalworking
VKRSVRIYDULRXVLQGXVWULHVRQWKHDTXDWLFHQYLURQPHQW5HSHDWHGXVHRIZDVWHZDWHUGRHVQRWUHTXLUHWKHLUGHHSSXUL¿FDWLRQLWLVHYHQHQRXJKWRUHPRYHRQO\WKRVHVXEVWDQFHV
ZKLFKKDYHDQHJDWLYHLPSDFWRQWKHTXDOLW\RISURGXFWVWR
be manufactured, and to set their MPC values in the water
XQGHUXVDJH>@
:HFRQGXFWHGUHVHDUFKLQWKH¿HOGRIUHQGHULQJVDIH
and neutralization of exhausted cooling lubricants, includLQJ³(PXOVRO69.´XVLQJGLIIHUHQWW\SHVRIVXUIDFHDFWLYH
VXEVWDQFHVVXUIDFWDQWV(JVXUIDFWDQWVVXFKDVDVSDUDO
F, cocamidopropylbetain, oxyethylated monoalkylphenylic
DFLGQHRQRO$)HWKR[\ODWHGVRGLXPODXU\OVXOIDWH
(PDOGFRFDPLGRSURS\ODPLQR[LGH6$2<HYURNVLG
652VWHDUR[6\QWDQRO$/0VXOSKRQROSDVWDRIPDUN
³WHFKQLFDO´ZHUH¿UVWWHVWHG7RLQWHQVLI\WKHSURFHVVRI
sediment loss, the possibility of using an acidic agent such
DVDON\OEHQ]HQHVXOIXULFDFLGV$%6$ZDVLQYHVWLJDWHG
$VDUHVHDUFKUHVXOWWKHFRPELQDWLRQRIQHRQRO$)DQG
$%6$OHGWRWKHEHVWUHVXOW
,Q)LJWKHUHVXOWLVSUHVHQWHGDVVFKHPHIRUQHXWUDOLzation of waste cooling lubricants developed and proposed
for railway usage.
The use of the technology suggested provides the folORZLQJLQGLFHVWKHGHJUHHRISXUL¿FDWLRQLVWKH\LHOG
RISXUL¿HGZDWHULVWKH\LHOGRIRLODQGSHWUROHXP
SURGXFWVLV
The oil and petroleum products obtained can be offered
DVFRPPRGLWLHVWRYDULRXVSHWUROHXPUH¿QHULHVDQGFRPpanies producing concrete constructions, asphalt.
+HDWLQJ
the waste
coolant
Percolating through
an adsorbent layer
Fig. 5.Fig.
1HXWUDOL]DWLRQVFKHPHIRUZDVWHFRROLQJOXEULFDQWFRRODQW
5. Neutralization scheme for waste cooling lubricant
FRRODQW
77
$GGing a
mixture of
reagents
Mixing
Collecting
the purified water
78
$11$/(6+&+<16¶.$<8/,<$=(/(1¶.20$5,1$%(=296¶.$0,&+$(/6$1'2:6.,
7KHZDWHUSXUL¿HGFDQEHXVHGLQLQGXVWULDOWXUQRYHUIRU
internal consumption or for the preparation of new cooling
OXEULFDQWRUZKLOHPDLQWDLQLQJWKHVDQLWDU\UHTXLUHPHQWVLW
can be dropped into urban sewer network and even into the
water basins.
The water after regeneration of the adsorbent can be
used for washing a railway rolling stock.
The given technology can be applied in metalworking
shops of railway enterprises, machine-building, metallurgical and other industries, where coolant-containing drainage
is a part of wastewater complex generated. One of the most
promising examples of using this technology for recycling
DZDVWHFRRODQWLVLWVLQWURGXFWLRQDWORFDOSXUL¿FDWLRQVWDtions of locomotive and wagon depots, as well as railway
stations of complex neutralization.
CONCLUTIONS
7KHVFKHPHIRUDZDVWHFRPSUHVVRURLO&6GHYHORSHGDQGSURSRVHGIRUUDLOZD\XVDJH<LHOGRISXUL¿HG
SURGXFWZLWKXVLQJWKLVVFKHPHLVDERXWZKLOH
IRUWUHDWPHQWLWZDV
2. The proposed scheme sludge processing using centrifuge-decanter and heat exchanger.
7KHVFKHPHIRUQHXWUDOL]DWLRQRIZDVWHFRROLQJOXEULcants that proposed for introduction at local treatment
plants and locomotive depots, as well as comprehensive
utilization railway stations.
7KHWHFKQRORJ\IRUQHXWUDOL]DWLRQRIZDVWHFRROLQJOXEULcants ensures a double effect: the environmental effect
(owing to minimizing the amount of waste belonging
to the IIIrd class of danger, and rational use of water
UHVRXUFHVDQGWKHHFRQRPLFLPSDFWGXHWRUHXVLQJWKH
water in the circulating system of water supply as well
DVRLODQGSHWUROHXPSURGXFWV
5()(5(1&(6
$QVHURY<X0'XUQHY9'(QJLQHHULQJDQG
environmental protection, Leningrad, Mashinostroenie,
2. Bannov P.G., 2005: Principles of analysis and standard
PHWKRGVIRUTXDOLW\FRQWURORIRLOSURGXFWV0RVFRZ
7V1,,7(QHIWHKLP
%H]RYVND06=HOHQNR<X9 New eco-model himmotolohichni treatment of waste oils railways,
1DWLRQDOVFLHQWL¿FDQGWHFKQLFDOMRXUQDO©4XHVWLRQVRI
chemistry and chemical technology», Dnepropetrovsk
©1HZLGHRORJ\ªʋ
%H]RYVND06=HOHQNR<X9<DULVKN,QD/2
:DVWHRLOVIRUPDWLRQVWRUDJHUHJHQHUDWLRQ6FLHQWL¿F
MRXUQDO©5DLOZD\7UDQVSRUWRI8NUDLQHª.LHY9LGYR
'1'7V8=ʋ
%H]RYVND 06 =HOHQNR <X9 <DULVKN,QD /2
%DEHQNR2% Utilization of oil sludge and oil
JHQHUDWHGLQWKHVWUXFWXUDOXQLWVRIUDLOZD\V6FLHQWL¿F
MRXUQDO©5DLOZD\7UDQVSRUWRI8NUDLQHª.LHY9LGYR
'1'7V8=ʋ
%H]RYVND 06 =HOHQNR <X9 <DULVKN,QD /2
Shevchenko L.V., 2011: Development of a common
scheme of regeneration of waste oils railways, Vestnik
+178ʋ
7. Boychenko S.V., Ivanov S.V., Burlaka V.G., 2005: MoWRUIXHOVDQGRLOVIRUDPRGHUQWHFKQLTXH0RQRJUDSK
.LHY1$8
&KD\ND2+3UHYHQWLRQRI(QYLURQPHQWDO3ROOXWLRQVSHQWPRWRURLO$EVWUDFWIRUWKHGHJUHHRIFDQGLGDWH6F6FLHQFHV6XP\6XP'8
(YGRNLPRY$<X)XNV,*6KDEDOLQD71%DJdasarov L.N., 2000: Lubricating materials and problems
RIHFRORJ\0RVFRZ*83,]GYR1HIWLJD]5*8QHIWL
LJD]DLP,0*XENLQD
10. Koganovskiy A.M. and others, 1989:3XUL¿FDWLRQRI
ZDVWHZDWHUDQGLQGXVWULDO0RVFRZ+LPL\D
11. Kostyuk V.I., Karnauh G.S., 1990: Waste water treatPHQWHQJLQHHULQJFRPSDQLHV.LHY7HKQLND
/HVKFK\QVND\D$/ =HOHQ¶NR<9 %H]RYVND\D
M.S., 2012:7HFKQRORJ\RIUHVWRUDWLRQRIWKHIXO¿OOHG
FRPSUHVVRURLOVRIWKHUDLOZD\HQWHUSULVHV=ELUQLNQDXNRYLKSUDWV'RQ,=7ʋ
/HVKFK\QVND\D $/ =HOHQ¶NR <9 %H]RYVND\D
M.S., 2013: The use of surfactants to recover waste
RLOV1DWLRQDOVFLHQWL¿FDQGWHFKQLFDOMRXUQDO³4XHVWLRQV
of chemistry and chemical technology”, Dnepropetrovsk
³1HZLGHRORJ\´ʋ
/HVKFK\QVND\D$/=HOHQ¶NR<X96DQGRZVNL0
2013: Development of resource-saving technologies of
XWLOL]DWLRQRIWKHIXO¿OOHGOXEULFDQWFRROLQJÀXLGV6FLHQWL¿FMRXUQDO©5DLOZD\7UDQVSRUWRI8NUDLQHª.LHY
9LGYR'1'7V8=ʋ
1LNXOLQ)(Recycling and treatment of indusWULDOZDVWH/HQLQJUDG6XGRVWURHQLH
3ODKRWQLN91<DU\LVKNLQD/$6LUDNRY9,DQG
others, 2001: (QYLURQPHQWDODFWLYLWLHVDWWKHUDLOZD\
transport of Ukraine: problems and solutions, Kiev,
7UDQVSRUW8NUDLQ\L
17. Proskuryakov V.A., Shmidt L.I., 1997: Wastewater
WUHDWPHQWLQWKHFKHPLFDOLQGXVWU\0RVFRZ+LPL\D
6KDVKNLQ<,%UD\,9 The regeneration of
ZDVWHRLOVɛ0RVFRZ+LPL\D
19. Shkolnikov V.M., 1999: Fuels, lubricating materials,
WHFKQLFDOOLTXLGV$VVRUWPHQWDQGDSSOLFDWLRQ5HIHUHQFH
ERRN0RVFRZ7HKLQIRUP
20. Smetanin V.I., 2003: Protecting the environment from
waste production and consumption: a training manual,
0RVFRZ.RORVV
6PLUQRY'1*HQNLQ9(&OHDQLQJRIHIÀXents is in the processes of treatment of metals, Moscow,
0HWDOOXUJL\D
22. Sultan Ramazanov, Anna Voronova, 2014:(FRQRPic-mathematical modeling of rational water use and
minimization engineering enterprise’s negative impact
RQ WKH HQYLURQPHQW7(.$ &RPPLVVLRQ RI 0RWRU
7+('(9(/230(172)1(:7(&+12/2*,(6)25352&(66,1*$1'',6326$/
DQG(QHUJLQDJULFXOWXUH±/XEOLQ±/XJDQVN±
9RO
23. TsT–0060: Instructions for use of lubricants for tracWLRQUROOLQJVWRFNRIUDLOZD\VRI8NUDLQH, Kiev,
6WDQGDUW
=HOHQNR<X96FLHQWL¿FEDVHVRIHFRORJLFDOVDIHty of technology of transporting and use of oil products
on a railway transport: Monograph, Dn-vsk, Vid-vo MaNRYHWVNL\
=HUNDORY'9(FRQRP\RIRLOSURGXFWV.LHY
729Ä0,]KQDUI,QDJHQWV,\D´
=HUNDORY'9(FRORJL]DWLRQRIHQHUJ\FRQVXPSWLRQ.LHY729Ä0L]KQDU¿QDJHQWVL\D´
79
ɊȺɁɊȺȻɈɌɄȺɇɈȼȿɃɒɂɏɌȿɏɇɈɅɈȽɂɃ
ɉȿɊȿɊȺȻɈɌɄɂɂɍɌɂɅɂɁȺɐɂɂ
ɇȿɎɌȿɋɈȾȿɊɀȺɓɂɏɈɌɏɈȾɈȼɉɊȿȾɉɊɂəɌɂɃ
ɀȿɅȿɁɇɈȾɈɊɈɀɇɈɃɂɇɎɊȺɋɌɊɍɄɌɍɊɕ
Ⱥɧɧɨɬɚɰɢɹȼɫɬɚɬɶɟɪɚɫɫɦɨɬɪɟɧɵɬɪɚɞɢɰɢɨɧɧɵɟɦɟɬɨɞɵ
ɭɬɢɥɢɡɚɰɢɢɢɪɟɝɟɧɟɪɚɰɢɢɨɬɪɚɛɨɬɚɧɧɵɯɫɦɚɡɨɱɧɨɨɯɥɚɠɞɚɸɳɢɯɠɢɞɤɨɫɬɟɣɢɤɨɦɩɪɟɫɫɨɪɧɵɯɦɚɫɟɥɉɪɢɪɚɡɪɚɛɨɬɤɟɫɯɟɦɪɟɝɟɧɟɪɚɰɢɢɧɟɮɬɟɫɨɞɟɪɠɚɳɢɯɨɬɯɨɞɨɜɫɰɟɥɶɸ
ɮɨɪɦɢɪɨɜɚɧɢɹɢɪɚɫɱɟɬɚɩɪɟɞɥɨɠɟɧɧɵɯɬɟɯɧɨɥɨɝɢɱɟɫɤɢɯ
ɫɯɟɦɛɵɥɚɩɪɨɜɟɞɟɧɚɨɩɬɢɦɢɡɚɰɢɹɬɟɯɧɨɥɨɝɢɱɟɫɤɨɝɨɩɪɨɰɟɫɫɚɚɢɦɟɧɧɨɬɟɦɩɟɪɚɬɭɪɵɤɨɥɢɱɟɫɬɜɚɪɟɚɝɟɧɬɚɢɜɪɟɦɟɧɢ
ɤɨɧɬɚɤɬɚɉɪɟɞɥɨɠɟɧɵɧɨɜɵɟɬɟɯɧɨɥɨɝɢɢɫɢɫɩɨɥɶɡɨɜɚɧɢɟɦ
ɩɨɜɟɪɯɧɨɫɬɧɨɚɤɬɢɜɧɵɯɜɟɳɟɫɬɜ
Ʉɥɸɱɟɜɵɟ ɫɥɨɜɚ ɨɬɪɚɛɨɬɚɧɧɵɟ ɤɨɦɩɪɟɫɫɨɪɧɵɟ ɦɚɫɥɚ
ɫɦɚɡɨɱɧɨɨɯɥɚɠɞɚɸɳɢɟɠɢɞɤɨɫɬɢɩɨɜɟɪɯɧɨɫɬɧɨɚɤɬɢɜɧɵɟ
ɜɟɳɟɫɬɜɚɷɤɨɥɨɝɢɱɟɫɤɚɹɛɟɡɨɩɚɫɧɨɫɬɶɭɬɢɥɢɡɚɰɢɹ
TEKA. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE – 2014, Vol. 14, No. 4, 81–86
Strength Properties of Horse Bean Seeds (Vicia faba L. var. minor)
Rafał Nadulski1, Jacek Skwarcz2, Grzegorz Łysiak3, Ryszard Kulig3
Department of Food Engineering and Machines,
Department of Equipment Operation and Maintenance in the Food Industry University of Life Sciences,
Doświadczalna 44, 20-280 Lublin, Poland, e-mail: rafal.nadulski@up.lublin.pl
2
Department of Technology Fundamentals, University of Life Sciences,
ul. Doświadczalna 50A, 20-280 Lublin, Poland
1
3
Received December 02.2014; accepted December 17.2014
Summary. The research results of the seed strength properties
concerning three horse bean varieties are presented here. The
LQYHVWLJDWLRQZDVFDUULHGRXWXQGHUTXDVLVWDWLFFRQGLWLRQVE\
PHDQVRIWKHDSSDUDWXV,QVWURQ,QGLYLGXDOKRUVHEHDQVHHGV
were placed with their cotyledons parallel to the apparatus base
and loaded with plate, slat or penetrator. The maximum force
values and corresponding to them deformation values capable
of transporting a seed to the destruction moment have been read
off from the obtained force-deformation characteristics. In the
course of investigations, it was found out that the hardness features depended to a great extent on a given variety. It has been
stated additionally that the increase of seeds moisture content
causes a considerable decrease of their hardness.
Key words: horse bean, variety, strength properties.
INTRODUCTION
(Vicia faba L. var. minorKDUGQHVV7KHLQYHVWLJDWLRQVRQ
this subject have been carried out only by few researches
>@2QO\IHZSDSHUVGHDOZLWKLQYHVWLJDWLRQV
of mechanical properties of (Vicia faba L. var. major>
8]. Taking into consideration the fact that the knowledge
of horse bean seeds hardness is indispensable in working
out technological processes and preservation of machines
necessary in their processing and allows to characterize the
TXDOLW\RIPDWHULDODQGWKHUHIRUHLWLVZHOOPRWLYDWHGWR
carry out the research work whose results aim at establishing
the characteristics of horse bean seeds (Vicia faba L. var.
minor,QPHDVXULQJVHHGUHVLVWDQFHORDGLQJE\PHDQVRI
penetrators with different endings /in the shape of cylinder,
cone, or semicircle/ has been used. Taking into account fact
that in processing seed material into feed there is a wide use
of a beater in which a working element differs in its shape
from loading elements used in resistance measurements,
it has been decided to carry out such investigations using
DORDGLQJVODWZLWKEOXQWHGJH±DQHOHPHQWVLPLODULQLWV
shape to beater. The seed of loading plays an important role
in all investigations concerning seed resistance that aim at
UHÀHFWLQJWKHFRQGLWLRQVDSSUR[LPDWLQJWKHVHLQUHDOOLIH
while to carry out any investigations under such conditions
LVYHU\GLI¿FXOWWKHUHIRUHPHDVXUHPHQWVSUHVHQWHGKHUHKDYH
EHHQFDUULHGRXWXQGHUTXDVLVWDWLFORDGLQJFRQGLWLRQV
The goal of this research work has been to determine
hardness features of horse bean seeds having different moisWXUHFRQWHQWXQGHUTXDVLVWDWLFORDGLQJRIVHHGVZLWKSODWH
VODWDQGSHQHWUDWRU$GGLWLRQDOO\WKHUHVXOWVREWDLQHGHQDEOHG
to comparison of the values of seed resistance measured by
three different methods.
,Q3RODQGZKHUHDQLPDOIHHGLQJLV,QEDVHGRQ
LPSRUWHGVR\DJULWVWKHFUXFLDOSUREOHPLV¿QGLQJWKHDOWHUQDWLQJVRXUFHRISURWHLQLQDQLPDOIHHGLQJ>@2LOLQGXVWU\
SURGXFWVUDSHVHHGRLOFDNHDQGSUHVVFDNHDVZHOODVVHHGV
RIOHJXPLQRXVSODQWVHJOXSLQHKRUVHEHDQDQGSHDDUH
the domestic products which can replace soya bean having
FRPSDUDEOHSURWHLQFRQWHQW>@+RUVHEHDQVHHGVFRQWDLQLQJ
IURPWRRIWKHSURWHLQFRQVWLWXWHDJRRGFRPSRQHQW
IRUWKHSURGXFWLRQRIWKHIHHGPL[WXUH>@7KHSURWHLQIURP
horse bean seeds is characterized by the high biological
value and the wide usefulness for feeding. The interest in
horse bean (Vicia faba SPP. minorFXOWLYDWLRQDVDYDOXDEOH
feeding has developed in Poland and other countries with
VLPLODUFOLPDWHFRQGLWLRQV>@
The physical properties of seeds are to be known for
0$7(5,$/$1'0(7+2'6
design and improve of relevant machines and facilities for
KDUYHVWLQJVWRULQJKDQGOLQJDQGSURFHVVLQJ>
The research work has been carried out on horse bean
@$ZLGHVXUYH\RIOLWHUDWXUHVKRZVVPDOOQXPEHURISXElications in the research work concerning horse bean seeds VHHGVRI'ĊEHN1DGZLĞODĔVNLDQG-DVQ\YDULHWLHV,QRUGHUWR
ĊEHN
DGZLĞODĔVNL
ĊEHN
DGZLĞODĔVNL
82
5$)$à1$'8/6.,-$&(.6.:$5&=*5=(*25=à<6,$.5<6=$5'.8/,*
DGZLĞODĔVNL
&͕E &͕E
&͕E &͕E
HVWDEOLVKWKHLQÀXHQFHRIVHHGVPRLVWXUHFRQWHQWDQGVL]HRQ E\SHQHWUDWRU,QWKLVFDVHPD[LPXPIRUFHVDUHQHDUO\
the investigated hardness features, the input material was hu- times higher than the minimum ones. Much smaller differ- DGZLĞODĔVNL
PLGL¿HGLQWRHLJKWPRLVWXUHFRQWHQWOHYHOVLQWKHUDQJHIURP ences between the maximum and minimum forces were
% WR% every ca 2 %, and then it was divided according observed in case of seeds loaded with a plate.
to thickness. The seeds moisture contents were determined
The changes of the values of deformation forces dependusing the oven-drying method. Selected fractionVKRZQLQ)LJDQG
of seeds with LQJRQVHHGPRLVWXUHFRQWHQWZHUHVKRZQLQ)LJDQG
thickness from 7.0 to 8.0 mm was used for the compression The increase of seed moisture content causes a considerable
VKRZQLQ)LJDQG
ϳϬϬ of their hardness.
H[SHULPHQWV)RUHDFKPRLVWXUHUHSHWLWLRQVZHUHGRQH
decrease
their hardness.
&Ŷсϭϭϱϯ͕ϯĞͲϬ͕ϬϴǁZϸсϬ͕ϵϰϴ
The measurements of hardness features have been carried
ϲϬϬ
ϳϬϬ
&ĐсͲϭϬ͕ϴϭǁнϯϭϴ͕ϭϴZϸсϬ͕ϵϲϯ
RXWE\PHDQVRI,QVWURQDSSDUDWXVHTXLSSHGZLWKKHDG
&Ŷсϭϭϱϯ͕ϯĞͲϬ͕ϬϴǁZϸсϬ͕ϵϰϴ
ϱϬϬ
ϲϬϬ
ZLWKDORDGLQJUDQJHN1,QGLYLGXDOVHHGVKDYHEHHQ
&ƉсϭϮϴϬ͕ϰĞͲϬ͕ϭϳϮǁZϸсϬ͕ϵϴϵ
&ĐсͲϭϬ͕ϴϭǁнϯϭϴ͕ϭϴZϸсϬ͕ϵϲϯ
ϰϬϬ
placed with their cotyledons parallel to the lower stationary
ϱϬϬ
&Ŷ
&ƉсϭϮϴϬ͕ϰĞͲϬ͕ϭϳϮǁZϸсϬ͕ϵϴϵ
plate, and then, they were loaded by means of a disc, cutting
ϯϬϬ
ϰϬϬ
&Đ
VODWPPWKLFNRUDSHQHWUDWRUZLWKDF\OLQGHUHQGZLWKGL&Ŷ
ϮϬϬ
&Ɖ
ϯϬϬ
DPHWHUPPWKLFN/RDGLQJHOHPHQWVKDYHEHHQPRYLQJ
&Đ
-1
ϭϬϬ
LQDOOFDVHVZLWKDFRQVWDQWVSHHGY PPÂPLQ according
ϮϬϬ
&Ɖ
WRWKHVWDQGDUGSURSRVLWLRQSUHVHQWHGE\)UąF]HNHWDO>@
Ϭ
ϭϬϬ
The loading force operated along the seed thickness. The
ϭϬ
ϭϱ
ϮϬ
Ϯϱ
Ϭ
ǁ͕й
measurements have been carried out to the seed destruction
ϭϬ
ϭϱ
ϮϬ
Ϯϱ
moment i. e. splitting, cutting, or puncturing of seed coat.
ǁ͕й
$IWHUWKDWWKH\HQGHG7KHIRUFHFXUYHDVGHIRUPDWLRQIXQF)LJ7KHLQIOXHQFHRIPRLVWXUHFRQWHQW
tions were recorded. Then, the values of deformation forces Fig. 1. 7KHLQÀXHQFHRIPRLVWXUHFRQWHQWRQGHIRUPDWLRQ
SHQHWUDWRU DQGVODW ĊEHN
)LJ7KHLQIOXHQFHRIPRLVWXUHFRQWHQW
for the seeds loaded with plate Fn, slat Fc or penetrator
Fp IRUFHIRUKRUVHEHDQVHHGYDULHW\'ĊEHNORDGHGE\SODWHF
n
(FpDQGVODWFc
were read from the obtained graphs together with the relative penetrator
ĊEHN
SHQHWUDWRU DQGVODW deformation values (en, ec, epFRUUHVSRQGLQJWR these forces.
ϳϬϬ
The deformation work for seeds loaded with plate (WnVODW
&Ŷсϭϰϱϱ͕ϰĞͲϬ͕ϭϬdžZϸсϬ͕ϵϴϲ
ϲϬϬ
(WcDQGSHQHWUDWRUWpZDVGHWHUPLQHGDVWKHDUHDEHORZ
ϳϬϬ
&ĐсͲϭϲ͕ϭϴϭǁнϰϯϴ͕ϳϰZϸсϬ͕ϵϵϮ
WKHFXUYHLQWKHIRUFH±GHIRUPDWLRQUHODWLRQ>@
&Ŷсϭϰϱϱ͕ϰĞͲϬ͕ϭϬdžZϸсϬ͕ϵϴϲ
ϱϬϬ
ϲϬϬ
&ƉсϮϱϱϯ͕ϵĞͲϬ͕ϮϬǁZϸсϬ͕ϵϵϮ
Statistical analysis of the data was performed with Sta&ĐсͲϭϲ͕ϭϴϭǁнϰϯϴ͕ϳϰZϸсϬ͕ϵϵϮ
ϰϬϬ
ϱϬϬ
WLVWLFDVRIWZDUH6WDWLVWLFD6WDW6RIW,QF7XOVD2.
&Ŷ
&ƉсϮϱϱϯ͕ϵĞͲϬ͕ϮϬǁZϸсϬ͕ϵϵϮ
ϯϬϬ
86$XVLQJDQDO\VLVRIYDULDQFHIRUIDFWRULDOGHVLJQV7KH
ϰϬϬ
&Đ
&Ŷ
VLJQL¿FDQFHRIGLIIHUHQFHVEHWZHHQPHDQYDOXHVZDVGHϮϬϬ
&Ɖ
ϯϬϬ
&Đ
WHUPLQHGXVLQJ)LVKHU¶VH[DFWWHVWDWDOHYHORIS
ϭϬϬ
ϮϬϬ
The investigation parameters have been made to depend
&Ɖ
Ϭ
on moisture content and the obtained relations have been
ϭϬϬ
ϭϬ
ϭϱ
ϮϬ
Ϯϱ
GHVFULEHGE\PHDQVRIUHJUHVVLRQHTXDWLRQ
Ϭ
ϭϬ
,Q7DEOHWKHPLQLPDODQGPD[LPXPIRUFHYDOXHVREtained by means of different methods of horse bean seed
loading has been presented. The highest hardness value of
seeds loaded by plate, slat and penetrator is characteristic of
dry horse bean seed of Jasny variety. The lowest hardness
value of seeds loaded by plate, slat and penetrator is charDFWHULVWLFRIGU\KRUVHEHDQVHHGRI'ąEHNYDULHW\
ǁ͕й
ϮϬ
Ϯϱ
Fig. 2. 7KHLQÀXHQFHRIPRLVWXUHFRQWHQWRQGHIRUPDWLRQ
ǁ͕й
RQGHIRUPDWLRQI
IRUFHIRUKRUVHEHDQVHHGYDULHW\1DGZLĞODĔVNLORDGHGE\SODWH
(FnSHQHWUDWRUFpDQGVODWFc SHQHWUDWRU DQGVODW 1DGZLĞODĔVNL
RQGHIRUPDWLRQI
ϳϬϬ
&Ŷсϭϳϱϳ͕ϴĞͲϬ͕ϭϭǁZϸсϬ͕ϵϲϲϭ
ϲϬϬ
&ĐсͲϭϰ͕ϰϰǁнϰϯϳ͕ϳϱZϸсϬ͕ϵϵϴ
ϱϬϬ
&͕E
5(68/7$1'',6&866,21
ϭϱ
&ƉсϮϵϲϴ͕ϰĞͲϬ͕ϭϵǁZϸсϬ͕ϵϴϭ
ϰϬϬ
&Ŷ
ϯϬϬ
&Đ
ϮϬϬ
Ta b l e 1 . Deformation force F values for horse bean seeds
loaded by plate, slat and penetrator
Moisture
Variety
content,
'ĊEHN
1DGZLĞODĔVNL Jasny
([WUHPHYDOXHRIIRUFHV)1
penetrator
plate loading slat loading
loading
)LJ7KH
&Ɖ
ϭϬϬ
Ϭ
ϭϬ
ϭϱ
ϮϬ
Ϯϱ
ǁ͕й
Fig. 3. 7KHLQÀXHQFHRIPRLVWXUHFRQWHQWRQGHIRUPDWLRQ
force for horse bean seed
variety Jasny loaded by plate (Fn
penetrator (FpDQGVODWFc SHQHWUDWRU DQGVODW The greatest difference of force values occur in the case
In Table 2 the relative deformation values corresponding
RIKRUVHEHDQVHHGVRI1DGZLĞODĔVNLL-DVQ\YDULHW\ORDGHG to the deformation force values obtained by seed loaded with
FDVHVKDYHEHHQREWDLQHGIRUKRUVHEHDQVHHGVZLWKDERXW
675(1*7+3523(57,(62)+256(%($16(('6
ϯϬ
ϮϬ
ĞŶ
ϭϱ
ĞĐ
ϭϬ
Ta b l e 2 . Relative deformation e values for horse bean seeds
loaded by plate, slat and penetrator
Min-max value
of relative deformation e
Variety
penetrator
plate
slat loading
loading
loading
'ĊEHN
1DGZLĞODĔVNL Jasny
ĞŶсͲϬ͕ϬϵdžϮнϰ͕ϰϳǁͲϯϬ͕ϵϳϯZϸсϬ͕ϵϵϲ
Ϯϱ
Ğ͕й
plate, slat and penetrator have been presented. It has been
stated that deformation values depend moisture content and
horse bean variety. The highest deformation values in all
loading cases have been obtained for horse bean seeds with
DERXW% moisture content of Jasny variety.
ĞĐсϭ͕ϯϱǁͲϲ͕ϱϮZϸсϬ͕ϵϴϴ
ϱ
Moisture
content,
ĞƉ
ĞƉсϬ͕ϳϰǁͲϬ͕ϲϭZϸсϬ͕ϵϵϭ
Ϭ
ϭϬ
ϭϱ
ϮϬ
Ϯϱ
ǁ͕й
Fig. 6. 7KHLQÀXHQFHRIPRLVWXUHFRQWHQWRQUHODWLYHGHIRUmation e for horse bean seed variety Jasny loaded by plate (en
slat (ecDQGSHQHWUDWRUep VODW DQGSHQHWUDWRU For all the varieties, the increase of seed moisture
content
,Q7DEOHWKHZRUNRIGHIRUPDWLRQYDOXHVREWDLQHG
,Q7DEOHWKHZRUNRIGHIRUPDWLRQYDOXHVREWDLQHGE\VHHGORDGHGZLWKSODWH
causes the increase of deformation values and the maxi- by seed loaded with plate, slat and penetrator have been
PDOYDOXHVDUHWLPHVKLJKHUWKDQPLQLPDO7KHORZHVW presented. It has been stated that the work of deformation
values of the relative deformation were obtained for seeds values depend on moisture content of seeds and horse bean
loaded with the penetrator. The changes of the values of variety. The biggest differences between the minimum and
relative deformation depending on seed moisture
content maximum values of the deformation work were observed
7DEOH
ZHUHVKRZQLQ)LJDQG,QHDFKFDVHWKHLQFUHDVHLQ in case of the penetrometric test.
value of work of deformation
moisture content of seeds causes the increase in the relative
Moisture
deformation values.
Ta b l e 3 . Work of deformation W values for horse bean seeds penetrator
loading
slat loading
loadedFRQWHQW
by plate, slat and penetrator
ϯϬ
ϯϬ
Ϯϱ
Ϯϱ
Ğ сͲϬ͕ϭϭǁϮнϱ͕ϭϰǁͲϯϲ͕ϲϯZϸсϬ͕ϵϵϰ
ĞŶŶсͲϬ͕ϭϭǁϮнϱ͕ϭϰǁͲϯϲ͕ϲϯZϸсϬ͕ϵϵϰ
ĊEHN
Ğ͕й
Ğ͕й
ϮϬ
ϮϬ
ϭϱ
ϭϱ
ϭϬ
ϭϬ
Ğ сϭ͕ϮϳǁͲϳ͕ϭϭZϸсϬ͕ϵϴϯ
ĞĐĐсϭ͕ϮϳǁͲϳ͕ϭϭZϸсϬ͕ϵϴϯ
ϱ
ϱ
ĞŶ
ĞĐ
ĞĐ
ĞƉ
ĞƉ
Ğ сϬ͕ϲϵǁͲϭ͕ϵϰZϸсϬ͕ϵϳϯ
ĞƉƉсϬ͕ϲϵǁͲϭ͕ϵϰZϸсϬ͕ϵϳϯ
The changes of the values of relative deformation depending on the seed moisture content were shown in Fig. 7,
8 and 9. In case of seeds loaded with plate and slat the value
ǁ͕й
ǁ͕й
of deformation work gradually increases with the increase
Fig. 4. 7KHLQÀXHQFHRIPRLVWXUHFRQWHQWRQUHODWLYHGHIRU- in moisture content of seeds and after reaching the maxi
mation ĊEHN
eIRUKRUVHEHDQVHHGYDULHW\'ĊEHNORDGHGE\SODWHe
VODW DQGSHQHWUDWRU n mum it slightly decreases. In case of the penetrometric test
ĊEHN
slat (ecDQGSHQHWUDWRUep VODW DQGSHQHWUDWRU the increase in seed moisture causes the constant gradual
decrease in work deformation value.
Ϭ
Ϭ
Min-max value
-
-
0.007 of work of deformation
W, J
penetrator plate
-0.292
-
slat loading
loading
loading
- -
0.022 1DGZLĞODĔVNL Jasny
Moisture
-
Variety
content,
DGZLĞODĔVNL
- ĞŶ
'ĊEHN-
ϭϬ
ϭϬ
ϯϬ
ϯϬ
ϭϱ
ϭϱ
ϮϬ
ϮϬ
Ϯϱ
Ϯϱ
ĞŶсͲϬ͕ϭϭǁϮϮнϱ͕ϯϬǁͲϯϳ͕ϲϮZϸсϬ͕ϵϵϱ
ĞŶсͲϬ͕ϭϭǁ нϱ͕ϯϬǁͲϯϳ͕ϲϮZϸсϬ͕ϵϵϱ
Ϯϱ
Ϯϱ
ϯϬ
Ϯϱ
ϭϬ
ϭϬ
ĞĐсϭ͕ϮϵǁͲϲ͕ϮϲZϸсϬ͕ϵϴϵ
ĞĐсϭ͕ϮϵǁͲϲ͕ϮϲZϸсϬ͕ϵϴϵ
ϱ
ϱ
Ϭ
Ϭ
ϮϬ
Ğ͕й
ĞŶ
ĞŶ
ĞĐ
ĞĐ
ĞƉ
ĞƉ
ϭϱ
ϭϱ
ĞƉсϬ͕ϲϲǁͲϬ͕ϵϵZϸсϬ͕ϵϳϮ
ĞƉсϬ͕ϲϲǁͲϬ͕ϵϵZϸсϬ͕ϵϳϮ
ϭϬ
ϭϬ
ϭϱ
ϭϱ
ǁ͕й
ǁ͕й
ϮϬ
ϮϬ
ĞĐ
ĞĐсϭ͕ϮϳǁͲϳ͕ϭϭZϸсϬ͕ϵϴϯ
ϱ
Ϯϱ
Ϯϱ
Fig. 5. 7KHLQÀXHQFHRIPRLVWXUHFRQWHQWRQUHODWLYHGHIRU)LJ7KHLQIOXHQFHRIPRLVWXUHFRQWHQW
mation eIRUKRUVHEHDQVHHGYDULHW\1DGZLĞODĔVNLORDGHGE\
)LJ7KHLQIOXHQFHRIPRLVWXUHFRQWHQW
1DGZLĞODĔVNL
VODW
DQGSHQHWUDWRU
1DGZLĞODĔVNL
VODW
DQGSHQHWUDWRU
plate
(enVODWecDQGSHQHWUDWRUe
p
ĞŶ
ϭϱ
ϭϬ
ĞƉ
ĞƉсϬ͕ϲϵǁͲϭ͕ϵϰZϸсϬ͕ϵϳϯ
Ϭ
ϭϬ
ϭϱ
ϮϬ
Ϯϱ
ǁ͕й
Fig. 7. 7KHLQÀXHQFHRIPRLVWXUHFRQWHQWRQWKHZRUNRI
GHIRUPDWLRQIRUKRUVHEHDQVHHGYDULHW\'ĊEHNORDGHGE\SODWH
ĊEHN
VODW
DQGSHQHWUDWRU (WnSHQHWUDWRUWpDQGVODWW
c
ϯϬ
Ϯϱ
ĞŶсͲϬ͕ϭϭǁϮнϱ͕ϯϬǁͲϯϳ͕ϲϮZϸсϬ͕ϵϵϱ
ϮϬ
Ğ͕й
Ğ͕й
Ğ͕й
ϮϬ
ϮϬ
ĞŶсͲϬ͕ϭϭǁϮнϱ͕ϭϰǁͲϯϲ͕ϲϯZϸсϬ͕ϵϵϰ
ϭϱ
ĞŶ
ϭϬ
ϭϱ
ϮϬ
Ϯϱ
ǁ͕й
ĊEHN
ϯϬ
VODW DQGSHQHWUDWRU 5$)$à1$'8/6.,-$&(.6.:$5&=*5=(*25=à<6,$.5<6=$5'.8/,*
between the relative deformation and seed moisture was
GHVFULEHGZLWKWKHOLQHDUHTXDWLRQLQFDVHRIVHHGVORDGHG
ZLWKWKHVODWDQGSHQHWUDWRUDQGZLWKTXDGUDWLFHTXDWLRQV
ϮϬ
in case of loading the seeds with the slat.
,QFDVHRIVHHGORDGHGZLWKWKHSODWHDQGVODWHWKHLQĞŶ
ϭϱ
crease in seed moisture causes the gradual increase in
ĞĐ
ϭϬ
deformation work and after reaching the maximum the
ĞƉ
ĞĐсϭ͕ϮϵǁͲϲ͕ϮϲZϸсϬ͕ϵϴϵ
decrease in its value. In case of the penetrometric test
ϱ
ĞƉсϬ͕ϲϲǁͲϬ͕ϵϵZϸсϬ͕ϵϳϮ
increase of seeds moisture content causes a considerable
Ϭ
decrease of deformation force. The dependence between
ϭϬ
ϭϱ
ϮϬ
Ϯϱ
the deformation work and seed moisture was described
ǁ͕й
E\TXDGUDWLFHTXDWLRQVLQFDVHRIVHHGORDGHGZLWKWKH
SODWHDQGVODWDQGE\H[SRQHQWLDOHTXDWLRQVLQFDVHRI
Fig. 8. 7KHLQÀXHQFHRIPRLVWXUHFRQWHQWRQWKHZRUNRI
)LJ7KHLQIOXHQFHRIPRLVWXUHFRQWHQW
GHIRUPDWLRQIRUKRUVHEHDQVHHGYDULHW\1DGZLĞODĔVNLORDGHG
penetrometric test.
1DGZLĞODĔVNL
VODW DQGSHQHWUDWRU by plate (WnSHQHWUDWRUWpDQGVODWWc
7KHFKRLFHRIVWUHQJWKWHVWLQÀXHQFHVWKHVFRSHDQG
dynamics of changes of seed resistance for mechanical
ϯϬ
loading. Thus, to describe fully the changes of seed reϮ
ĞŶсͲϬ͕Ϭϵdž нϰ͕ϰϳǁͲϯϬ͕ϵϳϯZϸсϬ͕ϵϵϲ
sistance for mechanical loading it is advisable to use the
Ϯϱ
results obtained in different strength tests.
ĞŶсͲϬ͕ϭϭǁϮнϱ͕ϯϬǁͲϯϳ͕ϲϮZϸсϬ͕ϵϵϱ
Ğ͕й
Ϯϱ
Ğ͕й
ϮϬ
ĞŶ
ϭϱ
ϭϬ
ĞĐ
ĞĐсϭ͕ϯϱǁͲϲ͕ϱϮZϸсϬ͕ϵϴϴ
ĞƉ
5()(5(1&(6
$OWXQWD(<ÕOGÕ]0(IIHFWRIPRLVWXUHFRQWHQW
on some physical and mechanical properties of faba bean
Ϭ
(Vicia faba LJUDLQV-RXUQDORI)RRG(QJLQHHULQJ
ϭϬ
ϭϱ
ϮϬ
Ϯϱ
±
ǁ͕й
2. ']LNL ' &DFDN3LHWU]DN * %LHUQDFND % -RĔ
F]\N . 5yĪ\áR 5 *áDG\V]HZVND % The
Fig. 9. 7KHLQÀXHQFHRIPRLVWXUHFRQWHQWRQWKHZRUNRI
seed variety Jasny loaded by plate
deformation for horse bean
grinding energy as an indicator of wheat milling value.
VODW
(WnSHQHWUDWRUWpDQGVODWW
DQGSHQHWUDWRU 7(.$&RPPLVVLRQRI0RWRUL]DWLRQDQG(QHUJHWLFVLQ
c
$JULFXOWXUH9RO
,Q7DEOHWKHZRUNRIGHIRUPDWLRQYDOXHVREWDLQHGE\VHHGORDGHGZLWKSODWH
The carried out analysis shows that using only one test in )UąF]HN-.DF]RURZVNL-ĝOLSHN=+RUDELN-
seed strength tests may not be enough. It is essential especially
Molenda M. 2003. Standarization of methods for the
in case of the measurement of deformation work of loaded
measurement of the physico-chemical properties of plant
seeds. Different relationship between deformation work and
JUDQXODUPDWHULDOVLQ3ROLVK$FWD$JURSK\VLFD
seed moisture is observed depending on the test. In case of Gorzelany, J., Puchalski, C. 1994. The effect of load7DEOH
deformation strength and relative deformation, however, difing-force direction and magnitude on mechanical damferent scope and dynamics of the change
with
the
increase
in
value of work of deformation DJHWRKRUVHEHDQVHHGV=HPƟGƟOVND7HFKQLND
seed moisture
depending
on
the
used
strength
test was noticed.
Moisture
penetrator
Grochowicz J., Andrejko D. 2006.(IIHFWRIWKHPRLVFRQWHQW
loading
slat loading
ture content on energy consumption at grinding of lupine
CONCLUSIONS
VHHGV7(.$&RPPLVVLRQRI0RWRUL]DWLRQDQG(QHUJHW-
-
0.007 ĊEHN
-
LFVLQ$JULFXOWXUH9RO
-0.292
-
DGZLĞODĔVNL
Grochowicz
J., Nadulski R. 1984. 7KH,QÀXHQFH+XThe-
carried out investigations
concerning
hardness allow to formulate
the
following
conclusions:
PLGLW\DQG+RUVH%HDQ6L]HRQ7KHLU6WUHQJWK&KDU-
-
0.022 -
'HIRUPDWLRQIRUFHUHODWLYHGHIRUPDWLRQDQGZRUNRI
DFWHULVWLFV&RQIHUHQFHPDWHULDOV9,,*ROORąXLXP*DWH
±3$1$JULFXOWXUDO8QLYHUVLW\*RGROOR+XQJDU\
deformation depend on horse bean variety.
2. In the case of the all used tests the increase of seeds 7. Grochowicz J., Nadulski R. 1985. The Mechanical
moisture content causes a considerable change of their
Properties of Some Leguminous Plant Seeds. Conferstrength properties.
HQFH PDWHULDOV UG ,QWHUQDWLRQDO &RQIHUHQFH &,*5
7KHLQFUHDVHLQVHHGPRLVWXUHFDXVHVWKHVLJQL¿FDQW
³3K\VLFDO3URSHUWLHVRI$JULFXOWXUDO0DWHULDOV´3UDJD
Czechoslovakia, 289-292.
decrease in the value of deformation strength. The dependence between the deformation strength and seed 8. +DFÕVHIHURJXOODUÕ + *H]HU , %DKWL\DUFD <
PRLVWXUHZDVGHVFULEHGE\H[SRQHQWLDOHTXDWLRQVLQFDVH
0HQJH+2Determination of some chemical and
of loading the seeds with the plate and penetrator and by
SK\VLFDOSURSHUWLHVRI6DNÕ]IDEDEHDQVicia faba L. Var.
OLQHDUHTXDWLRQVLQFDVHRIVHHGVORDGHGZLWKWKHVODW
major-RXUQDORI)RRG(QJLQHHULQJ±
7KHLQFUHDVHLQVHHGPRLVWXUHFDXVHVWKHVLJQL¿FDQWLQ- 9. +DQF]DQRZVND(.VLĊĪDN-.UDMRZHĨUyGáD
crease in relative deformation value. The dependence
ELDáNRZ\FKSDV]URĞOLQQ\FKMDNR]DPLHQQLNLĞUXW\VRMRϱ
ĞƉсϬ͕ϳϰǁͲϬ͕ϲϭZϸсϬ͕ϵϵϭ
675(1*7+3523(57,(62)+256(%($16(('6
ZHM*02ZĪ\ZLHQLXĞZLĔLQ3ROLVK5RF]QLNL1DXN
=RRWHFKQLNL±
-HU]DN 0$ &]HUZLĔVND.D\]HU ' )ORUHN -
ĝPLJODN.UDMHZVND0 Determinanty produkcji
URĞOLQVWUąF]NRZ\FKMDNRDOWHUQDW\ZQHJRĨUyGáDELDáND±
w ramach nowego obszaru polityki rolnej w Polsce (in
3ROLVK5RF]QLNL1DXN5ROQLF]\FK6HULD*W]
Kulig B., Pisulewska P., Sajdak A. 2007.:Sá\ZLORĞFLZ\VLHZXQDSORQRZDQLHRUD]ZLHONRĞüSRZLHU]FKQL
DV\PLODF\MQHMZ\EUDQ\FKRGPLDQERELNXLQ3ROLVK
=HV]\W\3UREOHPRZH3RVWĊSyZ1DXN5ROQLF]\FK]
.XĨQLDU3-DUHFNL:%REUHFND-DPUR'
:áDĞFLZRĞFL PHFKDQLF]QH QDVLRQ Z\EUDQ\FK URĞOLQ
VWUąF]NRZ\FKDLFKPDVDLJUXERĞü,QĪ\QLHULD5ROQLF]D
Laskowski J., Skonecki S. 2006. :Sá\ZZLHONRĞFL
NRPRU\LPDV\PDWHULDáXQD]DJĊV]F]DQLHQDVLRQERELNX
,QĪ\QLHULD5ROQLF]D
à\VLDN*/DVNRZVNL- Investigation of mechanical properties of faba bean for grinding behavior
SUHGLFWLRQ$FWD$JURSK\VLFD
Mohsenin N. N. 1986. Physical Properties of Plant and
$QLPDO0DWHULDOV6WUXFWXUH3K\VLFDO&KDUDFWHULVWLFV
DQG0HFKDQLFDOQG(GQ*RUGRQDQG%UHDFK1HZ
<RUN86$
1DGXOVNL5.XVLĔVND(.REXV=*X]7(Ifect of selected factors on grain mass creep test under
VLPXODWHGORDGFRQGLWLRQV7(.$&RPPLVVLRQRI0RWRUL]DWLRQDQG(QHUJHWLFVLQ$JULFXOWXUH9RO
3UXVLĔVNL-3RVWĊSELRORJLF]Q\ZKRGRZOLLXSUDZLHJURFKXVLHZQHJRLERELNX)UDJPHQWD$JURQRPLFD
8. Sosnowski, S. 1991.'HWHUPLQLQJRIWKHLQÀXHQFHRI
the direction of loading forces on mechanical damage
RIEHDQVHHGV=HV]\W\3UREOHPRZH3RVWĊSyZ1DXN
5ROQLF]\FK
:à$ĝ&,:2ĝ&,:<75=<0$à2ĝ&,2:(1$6,21
%2%,.8VICIA FABA L. VAR. MINOR
Streszczenie. :SUDF\SU]HGVWDZLRQRZ\QLNLGRW\F]ąFHEDGDĔZáDĞFLZRĞFLZ\WU]\PDáRĞFLRZ\FKQDVLRQWU]HFKRGPLDQ
ERELNX%DGDQLDSU]HSURZDG]RQRZZDUXQNDFKREFLąĪHĔTXDVLVWDW\F]Q\FKSU]\XĪ\FLXPDV]\Q\Z\WU]\PDáRĞFLRZHM,QWURQ
1DVLRQDXPLHV]F]DQROLĞFLHQLDPLUyZQROHJOHGRSRGVWDZ\XU]ąG]HQLDDQDVWĊSQLHREFLąĪDQRSU]\SRPRF\Sá\W\
QRĪDLSHQHWUDWRUD=Z\NUHVXVLáDSU]HPLHV]F]HQLHZ\]QDF]RQR
PDNV\PDOQąVLáĊSURZDG]ąFąGR]QLV]F]HQLDQDVLRQDRGSRZLDGDMąFąMHMSU]HPLHV]F]HQLHLSUDFĊGHIRUPDFML:\ND]DQRĪH
Z\WU]\PDáRĞüQDVLRQLVWRWQLH]DOHĪ\RGRGPLDQ\6WZLHUG]RQR
ĪHZ]URVWZLOJRWQRĞFLQDVLRQSRZRGXMHZ\UDĨQ\VSDGHNLFK
Z\WU]\PDáRĞFLPHFKDQLF]QHM
6áRZDNOXF]RZHERELNRGPLDQDZáDĞFLZRĞFLZ\WU]\PDáRĞFLRZH
TEKA. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE – 2014, Vol. 14, No. 4, 87–92
Comparative Analysis of The Variability of Daily Electric Power Loads
Krzysztof Nęcka, Małgorzata Trojanowska
Department of Power Engineering and Agricultural Processes Automation, Agricultural University of Cracow
Balicka Str. 116B, 30-149 Cracow, Poland
e-mail: krzysztof.necka@ur.krakow.pl; malgorzata.trojanowska@ur.krakow.pl
Received December 02.2014; accepted December 17.2014
Summary. This publication analyses the variability of loads
in rural medium and low voltage distribution networks compared to the variability of energy demand in the national power
grid. Values of standard indicators used to characterise power
demand, such as load factors and balancing factors, have been
LGHQWL¿HGDQGFRPSDUHG7KLVDQDO\VLVZDVFDUULHGRXWEDVHG
RQGDWDUHFRUGHGDWPDLQVXSSO\VWDWLRQVDQGN9
transformer stations.
Key words: power grid, distribution networks, load variability.
INTRODUCTION
One of the important problems of power system engineering is to optimise the time curves of electrical loads,
which practically boils down to balancing them and reducing peak power. This is why it is so important to correctly
analyse power demand curves. In order to characterise their
YDULDELOLW\YDULRXVPHDVXUHVIXQFWLRQVDQGFRHI¿FLHQWV
are used, whose examples can be found in the literature of
WKHVXEMHFW>@7KHPDMRULW\RI
these measures come from classical methods of analysing
SRZHUV\VWHPORDGV>@7KHVHPDNHLWSRVVLEOHWR
FKDUDFWHULVHORDGVGXULQJKRXUVDZHHNDPRQWKDQGD
year, at various supply voltages, caused by individual consumers, groups of consumers or all consumers in total. The
total of loads of all consumers constitutes the load on the
QDWLRQDOSRZHUJULG³QDWLRQDOJULG´,QSUDFWLFHLWLVQRW
only analyses of the curves themselves that are important,
but also their comparisons.
This publication presents the results of a comparative
DQDO\VLVRIWKHYDULDELOLW\RIORDGVLQUXUDOPHGLXP09
DQGORZYROWDJH/9GLVWULEXWLRQQHWZRUNVFRPSDUHGWR
the variability of energy demand in the national power grid.
6LQFHLWLVRQO\WKHYDULDELOLW\RIORDGRYHUKRXUVWKDWLV
VLJQL¿FDQWIRUSRZHUV\VWHPPDQDJHPHQWWKLVSXEOLFDWLRQ
LVOLPLWHGWRDQDO\VLQJWKHKYDULDELOLW\RISRZHUGHPDQG
which has been described using standard indicators characterising electrical power loads.
0$7(5,$/6$1'0(7+2'6
This analysis is based on the results of power measurements taken at the main supply stations on the medium
voltage side and in MV/LV transformer-distribution stations
RQWKHORZYROWDJHVLGH,QWRWDOUHVHDUFKZRUNFRYHUHG
PDLQVXSSO\VWDWLRQVRYHUDWOHDVW\HDUDQG09/9
stations. Figures on national grid loads were taken from
Monthly reports on the operation of the National Power
Grid and the Balancing Mechanism.
5(68/76
For the purpose of this comparative analysis, reduced
load graphs were drawn, with mainly relative indicators used
to characterise load curves. The reference value was either
peak load Ps and indicators thus calculated are referred to
as load factors m, or the average load Psr, with balancing
factors lEHLQJFDOFXODWHG'HWDLOHGGH¿QLWLRQVRIORDGDQG
balancing factors can be found, inter alia, in the collective
SXEOLFDWLRQ>@DQGLQ*yUD¶VSXEOLFDWLRQ>@
7KHKYDULDELOLW\RIORDGVLVPRVWIUHTXHQWO\SUHVHQWHG
graphically, usually as a calendar graph. The comparison
of individual power values to the peak power produces the
reduced graph of loads. These were the graphs plotted for
WKHDQDO\VHGV\VWHPV,QWHUQDODQDO\VHVFRQ¿UPHGRWKHU
DXWKRUV¶REVHUYDWLRQVWKDWWKHKFXUYHRISRZHUFRQVXPStion is mainly driven by the rhythm and intensity of human
DFWLYLWLHVDQGWKHVHDVRQRIWKH\HDU)LJ&RQVHTXHQWO\
when presenting the variability of power demand, averaged
SUR¿OHVRIORDGVFRQWUDVWHGZLWKWKHDQQXDOSHDNSRZHUPsr
were presented separately for different seasons, split into
.5=<6=72)1ĉ&.$0$à*25=$7$752-$12:6.$
7R FKDUDFWHULVH ORDGV RYHU KRXUV PHDQ YDOXHV
7R FKDUDFWHULVH ORDGV RYHU KRXUV PHDQ YDOXHV
EXVLQHVVGD\VDQGKROLGD\V)LJ)LJXUHVDDQGD ±DYHUDJHORDGIDFWRU 7R
FKDUDFWHULVH
ORDGV RYHU KRXUV PHDQ YDOXHV
- average
load factor
present graphs of national grid loads in the form of averaged
P
m = sr ORDGFXUYHVIRU\HDUVWKXVVLJQL¿FDQWO\UHGXFLQJWKHUDQ
Ps
GRPIDFWRU7KHUHPDLQLQJLOOXVWUDWLRQVDUHKVFKHGXOHVRI
- base load factor
ORDGVRQV\VWHPVVXSSO\LQJUXUDOFRQVXPHUV$FKDUDFWHULVWLF ±EDVHORDGIDFWRU
- base load
P factor
feature of these curves is the smooth, low load during the
Po
mo
PRUQLQJSHDNVWDUWLQJDURXQGDPUHJDUGOHVVRIWKHVHDVRQ
Ps
and type of day, and a general lack of an afternoon trough.
- balancing
factor of the base load
P
Changes in the shape of load curves are mainly caused by ±EDODQFLQJIDFWRURIWKHEDVHORDG
= Po
- balancing
factor of the base load
o
WKHFKDQJLQJOHQJWKRIWKHGD\LQÀXHQFLQJWKHWLPHDWZKLFK
= P
lo = o the evening peak load materialises. In winter, the evening
UHSUHVHQWWKHEDVHORZHVWP
Psr
UHSUHVHQWWKHEDVHORZHVWP
SHDNVWDUWVDURXQGSPEXWLQVXPPHUDVODWHDVDWSP
where: Po, P
UHSUHVHQWWKHEDVHORZHVWP
DQGODVWVDOPRVWWLOOSP7KHVHDVRQDOVRLQÀXHQFHVWKH where: Po, Psr, PsUHSUHVHQWWKHEDVHORZHVWPHDQDQGSHDN
LQ 7DEOH ZKLOH WKHLU YDOXHV IRU D VHOHFWHG Z
level of power demand, which is much greater in winter power, respectively.
LQ 7DEOH ZKLOH WKHLU YDOXHV IRU D VHOHFWHG
Z
DWLRQDOJUL
than in summer.
LQ 7DEOH ZKLOH WKHLU YDOXHV IRU D VHOHFWHG
Z
DWLRQDOJUL
Mean values of these indicators for business days and
D
DWLRQDOJUL
KROLGD\VVSOLWE\VHDVRQDUHSUHVHQWHGLQ7DEOHZKLOHWKHLU
D
values for a selected winter and summer week for exemplary
D
transformer-distribution stations and the nationalD grid are
VKRZQLQ)LJXUH
D
88
E
E
E
E
E
F
)LJ$YHUDJHGORDGSURILOHVGXULQJDEXVLQHVVK
)LJ$YHUDJHGORDGSURILOHVGXULQJDEXVLQHVVK
)LJ$YHUDJHGORDGSURILOHVGXULQJDEXVLQHVVK
F
Fig. 1. ([DPSOHFXUYHVRIWKHSRZHUGHPDQGYDULDELOLW\LQVHOHFWHGSHULRGVRIWKH\HDUDQDWLRQDOJULGE09F/9
7RFKDUDFWHULVHORDGVRYHUKRXUVPHDQYDOXHVRI
daily load and balancing factors were determined for the
analysed systems. In particular, the following were calcu- Fig. 2. $YHUDJHGORDGSUR¿OHVGXULQJDEXVLQHVVKSHULRG
DQDWLRQDOJULGE09F/9
ODWHG>@
&203$5$7,9($1$/<6,62)7+(9$5,$%,/,7<2)'$,/<(/(&75,&32:(5/2$'6
89
D
D
E
E
F
F
Fig. 3. $YHUDJHGORDGSUR¿OHVIRUDKKROLGD\SHULRGDQDWLRQDOJULGE09F/9
Fig. 4. Daily load and balancing factor values in a selected winter
and summer week for the national power grid and for exemplary
WUDQVIRUPHUGLVWULEXWLRQVWDWLRQVDQDWLRQDOJULGE09F/9
Ta b l e 1 . Mean values of daily load and balancing factors
1DWLRQDO*ULG
m mo lo
spring 0,88 0,70 0,80
summer 0,87 0,78
autumn 0,77
winter 0,78
+ROLGD\
%XVLQHVV
day
Period
spring
m
0,70
MV
mo
lo
0,72
m
LV
mo
0,29
lo
0,72 0,20 summer 0,89 autumn 0,72 winter average
0,87 0,72 0,82 FRHI¿FLHQWRI
YDULDWLRQ>@
The lowest values of the analysed indicators, and their
greatest variabilities, characterise the curves of power demand recorded on the low voltage of a MV/LV transformer
VWDWLRQDQGFRQ¿UPDVLJQL¿FDQWLQHTXDOLW\RISRZHUGH-
mand. The mo indicator is best suited for assessing the load
LQHTXDOLW\,WVORZHVWYDOXHVIRUKORDGVFDXVHGE\FRQsumers supplied at low voltage are observed in the spring, on
0RQGD\V6DWXUGD\VDQG6XQGD\V/RDGLQHTXDOLW\DVVHVVHG
by the value of mo on medium voltage is, on average, one
third lower than on the low voltage, and approx. one third
greater than in the national grid.
7KHLQGLFDWRUPRVWIUHTXHQWO\XVHGIRUDQDO\VLQJWKH
variability of loads in Poland and abroad is the average
load factor m>@,WLVDOVRXVHGWRFODVVLI\FRQVXPHUORDG
schedules and predict the electrical capacity and energy
GHPDQG)LJXUHVDQGVKRZWKHYDOXHVRIWKLVLQGLFDWRU
for individual days of the week and individual months of
the year.
$VJUDSKVIRUWKHHQWLUHSRZHUJULGDQGPHGLXPYROWDJH
grids show, neither the season of the year nor the type of
GD\LQÀXHQFHVWKHDYHUDJHYDOXHVRIWKHm indicator. The
impact of the season is observable only for the low voltage
grid, in which the mean value of m changed in the studied
SHULRGIURPLQ1RYHPEHUWRLQ-XO\
.5=<6=72)1ĉ&.$0$à*25=$7$752-$12:6.$
90
D
0,92
0,90
m
0,88
0,86
0,84
0,82
0,80
Monday
Wednesday
Friday
Sunday
Tuesday
Thursday
Saturday
Day of the week
E
F
0,95
Average
Average ±Standard deviation
Average ±2*Standard deviation
Coming off
Extreme
1,0
0,9
0,85
0,8
0,80
0,7
0,75
0,6
m
m
0,90
0,70
0,5
0,65
0,4
0,60
0,3
0,55
0,2
0,1
0,50
Monday
Wednesday
Friday
Sunday
Tuesday
Thursday
Saturday
Monday
Wednesday
Friday
Sunday
Tuesday
Thursday
Saturday
Day of the week
Day of the week
Fig. 5. Weekly variability of the mLQGLFDWRUDQDWLRQDOJULGE09F/9
7KHJUHDWHVWLQHTXDOLW\LVQRWHGLQORDGVRIFRQVXPHUV
UHFRUGHGRQORZYROWDJH7KHLUYDULDELOLW\LVVLJQL¿FDQWUHgardless of the type of day and the season. The variability
of rural consumer loads recorded at main supply stations is
ORZHURQDYHUDJH
Characterising the variability of electrical power loads
using indicators such as load and balancing factors makes
the comparative analysis easier and can be used by distriEXWLRQFRPSDQLHVZKHQGH¿QLQJW\SLFDOORDGVFKHGXOHVRI
consumers and modelling the demand for electrical power
and energy.
Fig. 6. Monthly variability of the m indicator
5()(5(1&(6
CONCLUSIONS
Daily schedules of rural consumer loads recorded on the
low and medium voltage are characterised by a low load
during the morning peak, which is good for the national grid,
but the evening peak load in rural areas coincides with the
peak load on the entire power grid.
$QDOL]DLSURJQR]DREFLąĪHĔHOHNWURHQHUJHW\F]Q\FK
3UDFD]ELRURZD:17:DUV]DZD
2. %LHOLĔVNL:7\SRZHZ\NUHV\REFLąĪHĔHOHNWURHQHUJHW\F]Q\FKZ\EUDQ\FKRGELRUFyZ0DWHULDá\9
.RQIHUHQFML1DXNRZR±7HFKQLF]QHMÄ5\QHNHQHUJLL
HOHNWU\F]QHM5((¶´1DáĊF]yZ±
&203$5$7,9($1$/<6,62)7+(9$5,$%,/,7<2)'$,/<(/(&75,&32:(5/2$'6
&KRMQDFNL$à$QDOL]DGRERZHMW\JRGQLRZHM
LURF]QHM]PLHQQRĞFLREFLąĪHĔHOHNWURHQHUJHW\F]Q\FK
ZVLHFLDFKZLHMVNLFKRUD]PLHMVNLFK3U]HJOąG(OHNWURWHFKQLF]Q\±
Dudek G. 2004. Wybrane metody analizy szeregów
F]DVRZ\FKREFLąĪHĔHOHNWURHQHUJHW\F]Q\FK0DWHULDá\
VII Konferencji Naukowej Prognozowanie w elektroenergetyce&]ĊVWRFKRZD±
Ferreira A.M.S., Cavalcante C.A., FontesC.H., Marambio J. 1012.$1HZSURSRVDORIW\SL¿FDWLRQRIORDG
SUR¿OHVWRVXSSRUWWKHGHFLVLRQPDNLQJLQWKHVHFWRURI
electric energy distribution. Internacional Industrial ConIHUHQFHRQ(QJLQHHULQJDQG2SHUDWLRQV0DQDJHPHQW
±-XO\*XLPDUmHV3RUWXJDOLD,'±,'
Góra S. 1975.*RVSRGDUNDHOHNWURHQHUJHW\F]QDZSU]HP\ĞOH3:1:DUV]DZD
7. 'HUHFND0%LHOLĔVNL: Nowe charakterystyki
]PLHQQRĞFLPRF\SRELHUDQHMSU]H]RGELRUFyZ0DWHULDá\
VI Konferencji Naukowej Prognozowanie w elektroenergetyce PE’2002&]ĊVWRFKRZD±
8. .DĨPLHUF]DN$&KRMQDFNL$à$QDOL]DGRERZHMLW\JRGQLRZHM]PLHQQRĞFLREFLąĪHĔPRFąF]\QQą
LELHUQąHOHNWURHQHUJHW\F]Q\FKVLHFLG\VWU\EXF\MQ\FK
61PLHMVNLFKRUD]WHUHQRZ\FK(QHUJHW\ND±
9. 1ĊFND.$QDOL]DV]HUHJyZF]DVRZ\FKREFLąĪHĔ
HOHNWURHQHUJHW\F]Q\FKQDREV]DUDFKZLHMVNLFK,QĪ\QLHULD5ROQLF]D±
3URJQR]RZDQLHZHOHNWURHQHUJHW\FH=DJDGQLHQLDZ\EUDQHUHG,'REU]DĔVND:\GDZQLFWZR3ROLWHFKQLNL&]ĊVWRFKRZVNLHM&]ĊVWRFKRZD
Trojanowska M. 2003. :\]QDF]HQLHREFLąĪHĔZLHMVNLFKVLHFLQLVNLHJRQDSLĊFLD,QĪ\QLHULD5ROQLF]D
±
Trojanowska M. 2010. $QDOL]D]DSRWU]HERZDQLDQD
PRFLHQHUJLĊHOHNWU\F]QąZ]DNáDG]LHPOHF]DUVNLP
-RXUQDORI5HVHDUFKDQG$SSOLFDWLRQVLQ$JULFXOWXUDO
(QJLQHHULQJ±
7URMDQRZVND01ĊFND. Determination of
W\SLFDOHOHFWULFSRZHUORDGVIRUUXUDOHQGXVHUV7(.$
.RPLVML0RWRU\]DFMLL(QHUJHW\NL5ROQLFWZD9RO,;
±
=DOHZVNL:6WDW\VW\F]QDDQDOL]D]PLHQQRĞFL
REFLąĪHĔZVLHFLDFKUR]G]LHOF]\FK(FRQRP\DQG0DQDJHPHQW±
$1$/,=$325Ï:1$:&=$=0,(112ĝ&,
'2%2:<&+2%&,Ąĩ(ē
(/(.752(1(5*(7<&=1<&+
Streszczenie. 3U]HGVWDZLRQR DQDOL]Ċ ]PLHQQRĞFL REFLąĪHĔ
Z ZLHMVNLFK VLHFLDFK G\VWU\EXF\MQ\FK ĞUHGQLHJR L QLVNLHJRQDSLĊFLDQDWOH]PLHQQRĞFL]DSRWU]HERZDQLDQDHQHUJLĊ
w krajowym systemie elektroenergetycznym. Wyznaczono
LSRUyZQDQRZDUWRĞFLVWDQGDUGRZ\FKZVNDĨQLNyZZ\NRU]\stywanych do charakteryzowania zapotrzebowania na moc,
WDNLFKMDNVWRSQLHREFLąĪHQLDLVWRSQLHZ\UyZQDQLD$QDOL]D
]RVWDáDSU]HSURZDG]RQDZRSDUFLXRGDQH]DUHMHVWURZDQHZ
JáyZQ\FKSXQNWDFK]DVLODMąF\FKLZVWDFMDFKWUDQVIRUPDWRURZ\FKN9
6áRZDNOXF]RZHsystem elektroenergetyczny, sieci dystrybuF\MQH]PLHQQRĞüREFLąĪHĔ
TEKA. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE – 2014, Vol. 14, No. 4, 93–98
Short-Term Forecasting of Natural Gas Demand by Rural Consumers
Using Regression Models
Krzysztof Nęcka, Małgorzata Trojanowska
Department of Power Engineering and Agricultural Processes Automation, Agricultural University of Cracow
Balicka Str. 116B, 30-149 Kraków, Poland
e-mail: krzysztof.necka@ur.krakow.pl; malgorzata.trojanowska@ur.krakow.pl
Received December 02.2014; accepted December 17.2014
Under the progressing liberalization of the natural gas
market, short-term forecasts are becoming increasingly
important. In recent years, an increasing number of studies
KDYHHPHUJHGDLPHGDWLPSURYLQJWKHTXDOLW\RIWKLVW\SH
of forecast. The short-term prediction of demand for natural gas uses both traditional methods and methods based
RQDUWL¿FLDOLQWHOOLJHQFHDVZHOODVFRPELQHGPHWKRGV
>@
Traditional forecasting methods can be divided into
WKRVHZKLFKXVHOLQHDU>@DQGQRQOLQHDUPRGHOVORJLVWLFPRGHOH[SRQHQWLDOPRGHO*RPSHUW]
PRGHODQGWKHOLNH>@RUPRGHOVRIDXWRUHJUHVVLRQ
and means (ARIMAX, SARIMAX, recursive autoregression
models RARX>@,QUHFHQW\HDUVWKHUHKDV
INTRODUCTION
been an increase in the number of published studies which
For natural gas companies, like for other enterprises XVHQHXUDOQHWZRUNV>@UHFXUVLYH
in the energy sector, the forecasting of demand for energy QHXUDOQHWZRUNV>@IX]]\QHXUDOQHWZRUNV>@DQGQHXFDUULHUVLVRQHRIWKHEDVLFDFWLYLWLHVUHTXLUHGE\WKHPDQ- UDOQHWZRUNVRSWLPL]HGE\XVLQJJHQHWLFDOJRULWKP>@WR
DJHPHQWRIWKHVHEXVLQHVVHVDQGWKHTXDOLW\RIIRUHFDVWV forecast the daily consumption of natural gas.
directly affects the energy security of consumers as well as
$PRQJ3ROLVKSXEOLFDWLRQVLQWKLV¿HOGPRVWVWXGLHV
WKHSUR¿WVRIWKHVHHQWHUSULVHV,QQDWXUDOJDVFRPSDQLHV deal with long-term forecasts of the demand for gas. Pubforecasts of demand for natural gas are prepared for various OLFDWLRQVGHDOLQJZLWKVKRUWWHUPIRUHFDVWVDUHIHZ>@
The objective of this study was to use various types of
time horizons.
The short-term forecast of demand for gas includes regression models to predict the daily demand for natural
hourly and daily forecasts for a maximum of seven days gas by rural consumers, and to carry out comparisons in
in advance. These activities facilitate the operational man- this area.
agement of an enterprise, and, in particular, serve to plan
daily purchases of gas.
0$7(5,$/6$1'0(7+2'6
Medium-term forecasts are daily and monthly with
a time horizon of between one week and a year. These are
used for planning purchases of gas in longer periods, and
The consumer demand for natural gas depends on a numfor planning gas transmission operations.
ber of factors. For this reason, multiple regression models
Long-term forecasts are annual predictions with the are very suitable for such forecasts. The regression function
SHUVSHFWLYHRIDIRUHFDVWRIEHWZHHQWR\HDUV7KHVH can be given not only in the form of a mathematical formula,
are used by gas companies in the long-term planning of but also as an algorithm. In the study, the construction of
gas purchases, and for planning the development of gas forecasting models was performed using standard linear
infrastructure.
regression models, but also using algorithms in the form of
Summary. The study used various kinds of multiple regression
PRGHOVVWDQGDUGDQGQRQSDUDPHWULFWRSUHGLFWWKHGDLO\GHmand for natural gas by rural consumers. The construction of
forecasting models was performed in the workspace of STATISTICA Data MinerXVLQJWKHGDWDPLQLQJWHFKQLTXH7KHDQDO\VLV
of forecast errors showed that all models applied in the study i.e.
standard regression models, neural networks, regression trees,
models based on the MARS, SVM and k-Nearest Neighbours
PHWKRGVJHQHUDWHJRRGTXDOLW\IRUHFDVWVZKLOHDUWL¿FLDOQHXUDO
networks turned out to be the most effective method.
Key words: short-term forecasts, multiple regression, data mining.
.5=<6=72)1ĉ&.$0$à*25=$7$752-$12:6.$
neural networks, regression trees, as well as applying MARS,
SVM and k-Nearest Neighbours methods.
The construction of the models was carried out in the
workspace of STATISTICA Data Miner, using data mining
methodologies. Developing models was preceded by a corUHODWLRQDQDO\VLVDLPHGDW¿QGLQJWKHIDFWRUVRIJUHDWHVW
effect on the daily usage of natural gas by rural consumers.
The calculations and analyses were carried out on the
basis of hourly measurements of gas usage by consumers
from rural areas of southwestern Poland, who are supplied
by a low-pressure network via a selected gas pressure reduction station. Data from the 2008–SHULRGZDVXVHG
'DWDIURPZDVXVHGDVDWUDLQLQJVHWZKHUHDV
GDWDIURPZDVXVHGDVDWHVWLQJVHW7KHTXDOLW\RI
the models was evaluated on the basis of values for ex-post
forecast errors, using the following formula:
Gt Gtp
Z
Z2
Z
Gt
˜ p
n Gt Gt
˜¦
˜ n t
Gt
¦G
n
t t
Gtp
Gc
˜ where:
Gt±DFWXDOGDLO\FRQVXPSWLRQRIJDV
Gtp ±IRUHFDVWRIGDLO\JDVFRQVXPSWLRQ,
Gc±DFWXDOFRQVXPSWLRQRIJDVGXULQJn days of observation.
5(68/76
$PRQJRWKHUIRUHFDVWVQDWXUDOJDVHQWHUSULVHVLQ3RODQG
are obliged to make forecasts of daily gas consumption one
GD\LQDGYDQFH$GD\RIFRQVXPSWLRQLVGH¿QHGDVKUV
IURP$0WR$0WKHQH[WGD\
The course of hourly and daily natural gas consumption
by rural consumers within the study period is presented in
)LJVDQG
Meteorological and time factors were considered among
the factors affecting gas consumption. The meteorological factors taken into account included: temperature (daily
–PHDQPD[LPXPPLQLPXPKXPLGLW\GDLO\– mean,
PD[LPXPPLQLPXPZLQGYHORFLW\GDLO\–PHDQZLQG
direction (daily –PHDQSUHVVXUHGDLO\–PHDQZLWKWKHVH
values taken with delay to the day of analyzed gas consumption.
Time factors include the correlation between the values
for daily gas consumption with the values of the variable
GHOD\HGZLWKWKHWLPHDQGWKHGD\RIWKHZHHN$WRWDORI
YDULDEOHVZHUHFRQVLGHUHGLQWKHFRUUHODWLRQDQDO\VLV
It was found that the greatest effect on the value of daily
gas consumption by rural consumers was exerted by this val-
ue delayed by one day, the mean temperature of the previous
day, and the day of the week. In further statistical analyses,
these values were adopted as the variables explaining the
daily demand for natural gas.
,QRUGHUWRGHYHORSSUHGLFWLRQPRGHOVZKLFKSHUPLW¿QGing the daily demand for natural gas, a project was created
in the graphic environment of Statistica 10 Data Miner (Fig.
. $PRQJRWKHUHOHPHQWVWKHQRGHVZHUHSODFHGWKHUHWR
permit drawing forecasts based on: Neural Networks (NN
&ODVVL¿FDWLRQDQG5HJUHVVLRQ7UHHV&$57Multivariate Adaptive Regression Splines (MARS), Support Vector
Machine (SVMk Nearest Neighbours (k-NNDVZHOODV
standard Multiple Regression (MR
6WDQGDUGPXOWLSOHUHJUHVVLRQUHTXLUHVPHHWLQJPDQ\
assumptions pertaining to sample size, explained and explaining variables, residuals of the model, although in data
mining these assumptions are tested less restrictively than
in traditional statistics. The other procedures used in this
VWXG\DUHQRQSDUDPHWULFSURFHGXUHVZKLFKGRQRWUHTXLUH
meeting any initial assumptions.
$PRQJWKHODWWHUSURFHGXUHVWKHROGHVWDQGEHVWGHVFULEHGLVWKHPHWKRGRIDUWL¿FLDOQHXUDOQHWZRUNV,WKDV
been dynamically developing for several decades and it is
QRZUHJDUGHGDVDYHU\UH¿QHGPRGHOOLQJWHFKQLTXHFDSDEOH
of mapping very complex relationships.
&ODVVL¿FDWLRQDQG5HJUHVVLRQ7UHHVare other advanced
prediction tools of Data Mining. The tree is a graphical
model created as a result of the recurrent division of a set
of observations into n of disjoint subsets. In most general
terms, the objective of the analysis with the applied CART
DOJRULWKPLVWR¿QGWKHVHWRIORJLFDOFRQGLWLRQVIRUGLYLVLRQ
of the if-so, OHDGLQJWRWKHXQDPELJXRXVFODVVL¿FDWLRQRI
objects.
The MARS method can be regarded as an extension of
regression trees and multiple regression. The Multivariate
Adaptive Regression Splines algorithm utilises the method
of the recurrent division of trait space in the nodes of basic
functions to construct the regression model in the form of
spline curves. The relationship between variables is modHOOHGZLWKWKHXVHRIDVHWRIEDVLFFRHI¿FLHQWVDQGIXQFWLRQV
generated on the basis of data. The SVM method is the next
one implemented in the Statistica software, which serves to
VROYHUHJUHVVLRQDQGFODVVL¿FDWLRQSUREOHPV,WFRQVLVWVRI
constructing non-linear decision borders, separating areas
in the space of predictors, corresponding to different values
of the dependent variable.
K Nearest Neighbours is a method where instead of
matching the model, similar objects are sought. The basis
of the method is an intuitive conviction that similar objects
will fall into the same class. The predictions of the k-NN
method are determined on the basis of k objects from the
training set which are most similar to the object for which
the value of the dependent variable is determined.
Mean errors were calculated for the training set (Table
DQGWHVWLQJVHW7DEOHIRUIRUHFDVWVIRXQGZLWKWKHXVH
of particular methods. The most accurate method turned out
to be the neural networks, whereas the standard regression
was the least accurate.
VWXG\SHULRGLVSUHVHQWHGLQ)LJVDQG
6+2577(50)25(&$67,1*2)1$785$/*$6'(0$1'%<585$/&21680(56
ϲϬ
ϱϬ
ϰϬ
ϯϬ
ϮϬ
ϭϬ
Ϭ
ϭ
Ϯ
ϯ
ϰ
ϱ
ϲ
ϳ
ϴ
ϵ
ϭϬ
ϭϭ
ϭϮ
ϭ
Ϯ
ϯ
ϰ
ϱ
ϲ
ϳ
ϴ
ϵ
ϭϬ
ϭϭ
ϭϮ
ϭ
Ϯ
ϯ
ϰ
ϱ
ϲ
ϳ
ϴ
ϵ
ϭϬ
ϭϭ
ϭϮ
ϭ
Ϯ
ϯ
ϰ
ϱ
ϲ
ϳ
ϴ
ϵ
ϭϬ
ϭϭ
ϭϮ
,ŽƵƌůLJŐĂƐĐŽŶƐƵŵƉƚŝŽŶ΀ŵϯ ΁
ϳϬ
ϮϬϬϴ
ϮϬϬϵ
ϮϬϭϬ
ϮϬϭϭ
͘
zĞĂƌ
Fig. 1. +RXUO\QDWXUDOJDVFRQVXPSWLRQ
ϭϬϬϬ
ϴϬϬ
ϲϬϬ
ϰϬϬ
ϮϬϬ
Ϭ
ϭ
Ϯ
ϯ
ϰ
ϱ
ϲ
ϳ
ϴ
ϵ
ϭϬ
ϭϭ
ϭϮ
ϭ
Ϯ
ϯ
ϰ
ϱ
ϲ
ϳ
ϴ
ϵ
ϭϬ
ϭϭ
ϭϮ
ϭ
Ϯ
ϯ
ϰ
ϱ
ϲ
ϳ
ϴ
ϵ
ϭϬ
ϭϭ
ϭϮ
ϭ
Ϯ
ϯ
ϰ
ϱ
ϲ
ϳ
ϴ
ϵ
ϭϬ
ϭϭ
ϭϮ
ĂŝůLJ ŐĂƐ ĐŽŶƐƵŵƉƚŝŽŶ΀ŵϯ ΁
)LJ+RXUO\QDWXUDOJDVFR
ϭϮϬϬ
ϮϬϬϴ
ϮϬϬϵ
ϮϬϭϬ
HTXLUH PHHWLQJ DQ\ LQLWLDO
ϮϬϭϭ
͘
zĞĂƌ
Fig. 2. Daily natural gas consumption
PHDQ PD[LPXP PLQLPXP
PHDQ PD[LPXP PLQLPXP
DEOH GHOD\HG ZLWK WKH WLPH DQG WKH GD\ RI WKH ZHHN $ WRWDO RI Fig. 3. View of models
constructed in the workspace of Data Miner
)LJ9LHZRIPRGHOVFRQVWUXFWHGLQWKHZRUNVSDFHRI
Data Miner
$PRQJ WKH ODWWHU SURFHGXUHV WKH ROGHVW DQG EHVW GHVFULEHG LV WKH PHWKRG RI DUWLILFLDO
)LJ .5=<6=72)1ĉ&.$0$à*25=$7$752-$12:6.$
Ta b l e 1 . Forecast errors found for training set
Model
(UURU
Z2 >@
Z>@
NN
CART
MARS
SVM
k±NN
MR
Ta b l e 2 . Forecast errors found for testing set
Model
(UURU
Z2 >@
Z>@
NN
CART
MARS
SVM
k±NN
MR
For the purpose of analyzing daily gas consumption
forecasts, the distribution functions of relative errors w
were determined and their courses for the testing set are
SUHVHQWHGLQ)LJ$VVKRZQLQWKH¿JXUHLUUHVSHFWLYHRI
the method used, the proportion of smallest errors is similar
*UHDWHUGLIIHUHQFHVEHWZHHQWKHw IUHTXHQFLHV
of occurrence for the studied models were seen when this
proportion increased. In the k–NN model, the proportion of
HUURUVDPRXQWLQJWROHVVWKDQZDVRIREVHUYDWLRQV
whereas for the NNPRGHOLWZDV7KHDGYDQWDJHRI
the NN model over the other models is also visible in the
proportion of highest observed errors. They did not exceed
LQDVPDQ\DVRIWKHREVHUYDWLRQV
)LJ(PSLULFDOGLVWULEXWLRQIXQFWLRQVRIZ forecast errors
Fig. 4. (PSLULFDOGLVWULEXWLRQIXQFWLRQVRIZ
forecast errors
CONCLUSIONS
The greatest effect on the value of daily gas consumption by rural consumers was exerted by this value delayed
YLHZday,
RI WKH
UHTXLUHPHQWV
RI WKH TXDOLW\
by,Qone
mean
temperature
of RI
theVKRUW
previous day, and the
day of the week.
,QYLHZRIWKHUHTXLUHPHQWVRIWKHTXDOLW\RIVKRUWWHUP
”Z ” DQGDFFXUDWH”Z ” forecasts posed by gas enterprises, the forecasts determined
on the basis of multiple regression models, both standard
and non-parametric i.e. NN, CART, MARS, SVM, and k–NN
FDQEHFRQVLGHUHGDGPLVVLEOH”Z2 ”DQG
DFFXUDWH”Z2 ”
The analysis of forecast errors proved that the most
effective methods are the neural networks, whereas the
greatest errors in forecasts are generated in standard regression.
5()(5(1&(6
Azadeh A., Asadzadeh S.M., Ghanbari A. 2010:$Q
adaptive network-based fuzzy inference system for shortterm natural gas demand estimation: Uncertain and comSOH[HQYLURQPHQWV(QHUJ\3ROLF\
2. Azari A.; Shariaty-Niassar M., Alborzi M. 2012:
Short-term and medium-term gas demand load forecasting by neural networks. Iranian Journal of Chemistry
DQG&KHPLFDO(QJLQHHULQJ
%UDEHF0.RQDU23HOLNDQ(0DO\0
$QRQOLQHDUPL[HGHIIHFWVPRGHOIRUWKHSUHGLFWLRQRI
natural gas consumption by individual customers. InterQDWLRQDO-RXUQDORI)RUHFDVWLQJ
%UDEHF0.RQDU20DO\03HOLNDQ(9RQdracek J. 2008:$ VWDWLVWLFDO PRGHO IRU QDWXUDO JDV
VWDQGDUGL]HGORDGSUR¿OHV-5R\6WDWLVW6RF6HULHV&
$SSOLHG6WDWLVWLFV
&KHQ46KH<;X; Combination model for
VKRUWWHUPORDGIRUHFDVWLQJ7KH2SHQ$XWRPDWLRQDQG
&RQWURO6\VWHPV-RXUQDO
'LWWPDQ36]DEHOD3DVLHUELĔVND( Short-term
sales forecasts in management of natural gas distributing
ZRUNV0DQDJHPHQW
7. Kelner J.M. 2003: Prognozowanie krótkoterminowe
SRERUyZJD]X]VLHFLSU]HV\áRZ\FKPHWRGąV]WXF]Q\FK
VLHFLQHXURQRZ\FK*D]:RGDL7HFKQLND6DQLWDUQD
8. Kizilaslan R., Karlik B.2008: Comparison neural networks models for short term forecasting of natural gas
FRQVXPSWLRQLQ,VWDQEXO,Q$SSOLFDWLRQVRIGLJLWDOLQIRUPDWLRQDQGZHEWHFKQRORJLHV,&$',:7
$XJXVW
9. 3RWRFQLN 3 *RYHNDU ( Practical results of
forecasting for the natural gas market. http://www.
intechopen.com/books/natural-gas/practical-results-of-forecasting-for-the natural-gas market.
3RWRFQLN3*RYHNDU(*UDEHF,Short-term
natural gas consumption forecasting. In: Proceedings of
WKHWK,$67(',QWHUQDWLRQDO&RQIHUHQFHRQ$SSOLHG
6LPXODWLRQDQG0RGHOOLQJ±$60
Potocnik P., Soldo B., Simunovic G., Saric T., JeURPHQ$*RYHNDU( Comparison of static and
adaptive models for short-term residential natural gas
IRUHFDVWLQJLQ&URDWLD$SSOLHG(QHUJ\
6DER.6FLWRYVNL59D]OHU,=HNLF6XVDF0
0DWKHPDWLFDOPRGHOVRIQDWXUDOJDVFRQVXPSWLRQ(QHUJ\&RQYHUVLRQDQG0DQDJHPHQW
6LPXQHN03HOLNDQ( Temperatures data preprocessing for short-term gas consumption forecast. In:
,(((,QWHUQDWLRQDO6\PSRVLXPRQ,QGXVWULDO(OHFWURQLFV
Smith P., Husejn S. 1996: Forecasting short term reJLRQDOJDVGHPDQGXVLQJDQH[SHUWV\VWHP([SHUW6\VWHPVZLWK$SSOLFDWLRQV
6+2577(50)25(&$67,1*2)1$785$/*$6'(0$1'%<585$/&21680(56
Soldo B. 2012: Forecasting natural gas consumption.
$SSOLHG(QHUJ\
Soldo B., Potocnik P., Simunovic G., Saric T., GoveNDU( Improving the residential natural gas consumption forecasting models by using solar radiation.
(QHUJ\DQG%XLOGLQJV
Suganthi L., Anand A. Samuelb A.A. 2012:(QHUJ\
PRGHOVIRUGHPDQGIRUHFDVWLQJ$UHYLHZ5HQHZDEOH
DQG6XVWDLQDEOH(QHUJ\5HYLHZV
7DVSÕQDU)&HOHEL17XWNXQ1 Forecasting
of daily natural gas consumption on regional basis in
7XUNH\XVLQJYDULRXVFRPSXWDWLRQDOPHWKRGV(QHUJ\
DQG%XLOGLQJV
<X);X;$VKRUWWHUPORDGIRUHFDVWLQJPRGHO
of natural gas based on optimized genetic algorithm and
LPSURYHG%3QHXUDOQHWZRUN$SSOLHG(QHUJ\
20. =KRX+6X*/L* Forecasting daily gas load
ZLWK2,+)(OPDQ1HXUDO1HWZRUN3URFHGLD&RPSXWHU
6FLHQFH
97
352*12=2:$1,(.5Ï7.22.5(62:(
=$3275=(%2:$1,$2'%,25&Ï::,(-6.,&+
1$*$==,(01<=:<.25=<67$1,(002'(/,
5(*5(6<-1<&+
Streszczenie. :SUDF\Z\NRU]\VWDQRUyĪQHJRURG]DMXPRGHOH
UHJUHVMLZLHORUDNLHMVWDQGDUGRZHLQLHSDUDPHWU\F]QHGRSUHdykcji dobowego zapotrzebowania odbiorców wiejskich na gaz
]LHPQ\%XGRZĊPRGHOLSUHG\NF\MQ\FKSU]HSURZDG]RQRZSU]Hstrzeni roboczej STATISTICA Data MinerSU]\XĪ\FLXPHWRG
data mining$QDOL]DEáĊGyZSURJQR]Z\ND]DáDĪHZV]\VWNLH
zastosowane w pracy modele tj. standardowej regresji, sieci
neuronowych, drzew regresyjnych, oparte na metodzie MARS,
ZHNWRUyZQRĞQ\FKRUD]N–QDMEOLĪV]\FKVąVLDGyZJHQHUXMąSURJQR]\GREUHMMDNRĞFLSU]\F]\PPHWRGąQDMEDUG]LHMHIHNW\ZQą
RND]Dá\VLĊV]WXF]QHVLHFLQHXURQRZH
6áRZDNOXF]RZHprognozy krótkookresowe, regresja wieloraka,
data mining.
TEKA. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE – 2014, Vol. 14, No. 4, 99–104
Evaluation of Physical Properties in Briquettes
Made from Selected Plant Materials
Ignacy Niedziółka1, Wojciech Tanaś1, Mariusz Szymanek1, Beata Zaklika1, Józef Kowalczuk2,
Jarosław Tatarczak2, Janusz Zarajczyk2
Department of Agricultural Machines,
Department of Horticultural and Forestry Machines,
University of Life Sciences, 28 Głęboka Street, 20-612 Lublin
1
2
Received December 12.2014; accepted December 19.2014
potential of this material which has not found any rational
use. Its use as an energy source has become the solution to
WKLVVLWXDWLRQ>'UHV]HUHWDO)LV]HU.RáRG]LHM
DQG0DW\ND1LHG]LyáNDDQG6]\PDQHN=DUDMF]\N@
To enhance plant biomass use for energy production,
efforts have been made to improve its physical properWLHV>:XHWDO@/RZHULQJWKHPRLVWXUHDOORZVIRU
long-term storage, while increasing the concentration of
mass and energy per unit volume makes the transport,
storage and dispensing easier. These favourable characteristics can be achieved by concentration of biomass in
WKHIRUPRIEULTXHWWHVWKXVJDLQLQJDIXHOZKLFKLVFRPpetitive with conventional ones [Komorowicz et al. 2009,
/HZDQGRZVNLDQG5\PV1LHG]LyáND6]\PDQHN
DQG.DFKHO-DNXERZVND@
INTRODUCTION
%LRPDVVEULTXHWWLQJPHDQVWKHLQFUHDVLQJRIHQHUJ\GHQsity and improving the milling properties of the raw material.
(QHUJ\IURPIRVVLOIXHOUHVRXUFHVKDVEHHQJHWWLQJPRUH 7KHPRVWFRPPRQO\XVHGEULTXHWWLQJSUHVVHVDUHWKHSLVWRQ
and more expensive due to their depleting reserves. More screw and cylindrical ones. They can be used as separate
and more attention has been paid to the problems of environ- devices or within an in-line process for the manufacture of
mental protection. These phenomena have been encouraging compact fuel. Construction of the line is dependent on the
research into alternative energy sources, among others, bi- volume of production, properties of the raw material used
omass. The greatest hopes are connected with the biomass DQGVSHFL¿FUHTXLUHPHQWVIRUWKHREWDLQHGSURGXFW>+HMIW
of plant origin and this group includes the straw of cereals )UąF]HN.DOO\DQDQG0RUH\@7KHUHIRUH
DQGRWKHUFURSV>%RUNRZVND'HQLVLXN*U]\EHN the production process may be more or less complicated,
depending on the initial parameters of the processed mate1LHG]LyáNDHWDO6WRODUVNL@
Virtually any type of straw from cereal, oilseed rape ULDOVDVZHOODVWKHLU¿QDOGHVWLQDWLRQ
and buckwheat can be used for energy purposes. Due to
The aim of this study was to evaluate the physical proptheir properties, the most often used straw is that of rye, HUWLHVRIEULTXHWWHVPDGHRIVHOHFWHGSODQWUDZPDWHULDOV
wheat, rape and buckwheat. It is assumed that “straw” is
ripe or dried plant stalks, having a high dry matter content
0$7(5,$/6$1'0(7+2'6
RIXSWRDQGWKHFDSDFLW\RIZDWHUDQGJDVDEVRUSWLRQ
$VDZDVWHSURGXFWLWKDVDZLGHUDQJHRIDSSOLFDWLRQVLQ
crop production, horticulture, construction and energy.
Wheat straw, maize stover and Sida stalks were used for
Despite the different applications of straw in agriculture WKHSURGXFWLRQRIEULTXHWWHV7KHUHODWLYHPRLVWXUHRIUDZ
it should be noted that there still remains a considerable materials was determined by the weight-drier method acSummary. The purpose of this study was to evaluate the physical
SURSHUWLHVRIEULTXHWWHVPDGHIURPVHOHFWHGSODQWUDZPDWHULDOV
The research was carried out on three kinds of raw materials, i.e.
wheat straw, maize stover and Sida stalks. It was found out that
WKHSODQWPDWHULDOVXVHGIRUWKHSURGXFWLRQRIEULTXHWWHVZHUH
FKDUDFWHUL]HGE\ORZPRLVWXUHDQGKLJKFDORUL¿FYDOXHDQGWKH\
FRXOGZHOOXQGHUJRDSURFHVVRIFRPSDFWLRQ$OVRWKHSURGXFHG
EULTXHWWHVZHUHFKDUDFWHUL]HGE\IDYRXUDEOHSURSHUWLHVFRQFHUQing the studied parameters, i.e. length, mass, proper density and
bulk density. The best results for the studied properties were
REWDLQHGIRUWKHEULTXHWWHVPDGHIURPPDL]HVWRYHUDQGVOLJKWO\
ZRUVHIRUWKHEULTXHWWHVPDGHIURPZKHDWVWUDZDQG6LGDVWDONV
Key words: SODQWELRPDVVEULTXHWWLQJSK\VLFDOSURSHUWLHVRI
EULTXHWWHV
,1,('=,Ïà.$:7$1$ĝ06=<0$1(.%=$./,.$-.2:$/&=8.-7$7$5&=$.
FRUGLQJWRWKH31(1VWDQGDUG0HDVXUHPHQW
3KRWRVKRZVWKHK\GUDXOLFSLVWRQEULTXHWWLQJPDFKLQH
of moisture content in the raw materials was performed in -81,25XVHGWRSURGXFHEULTXHWWHV
WULSOLFDWHDQGGHWHUPLQHGE\WKHIRUPXOD
W
mo m
˜ mo
where:
W±KXPLGLW\RIWKHWHVWHGPDWHULDO
mo±PDVVRIWKHVDPSOHEHIRUHGU\LQJJ
m±PDVVRIWKHVDPSOHDIWHUGU\LQJJ
7KHQHWFDORUL¿FYDOXHZDVFDOFXODWHGEDVHGRQWKHJURVV
FDORUL¿FYDOXHGHWHUPLQHGXVLQJDFDORULPHWHU./0QLQ
DFFRUGDQFHZLWK31(17KHEULTXHWWLQJSODQW
materials were pulverized using a chopper drum substation
and universal hammer mill, powered by electric motors with
WKHFDSDFLW\RIUHVSHFWLYHO\DQGN:7KHGHYLFH
used for the compaction process of the shredded plant maWHULDOVZDVWKHK\GUDXOLFSLVWRQEULTXHWWLQJPDFKLQH-XQLRU
RIWKH325'(7$FRPSDQ\3RODQG
$IWHUWKHSURGXFWLRQRIEULTXHWWHVWKHLUJHRPHWULFDO
characteristics were determined: diameter and length usLQJFDOLSHUVZLWKDFFXUDF\RI“PPDQGPDVVXVLQJ
DODERUDWRU\VFDOH:37ZLWKDFFXUDF\RI“J
%XONGHQVLW\RIWKHSHOOHWVZDVGHWHUPLQHGE\IUHHO\GURSping them into the measuring cylinder with the volume of
GP3LQDFFRUGDQFHZLWK31(1$IWHU
¿OOLQJWKHF\OLQGHUDQGUHPRYLQJWKHH[FHVVVWULSDOOWKH
EULTXHWWHVZHUHZHLJKHGRQWKHVFDOHV:3(ZLWKDFFXUDF\RI“J%XONGHQVLW\YDOXHZDVFDOFXODWHGDVWKH
TXRWLHQWRIWKHGLIIHUHQFHLQPDVVRIWKHF\OLQGHUZLWKDQG
without fuel pellets and the cylinder’s volume, according
WRWKHIRUPXOD
U
mL mO
V
where:
ȡ±EXONGHQVLW\RISHOOHWVNJāP-3
mL±PDVVRIF\OLQGHUZLWKSHOOHWVJ
mO±PDVVRIWKHHPSW\F\OLQGHUJ
V±F\OLQGHU¶VYROXPHGP3
3KRWR VKRZV WKH WHVWHG SODQW PDWHULDOV DIWHU WKHLU
shredding.
D
E
Photo. 2. 7KHK\GUDXOLFSLVWRQEULTXHWWLQJPDFKLQH-81,25
7DEOHSUHVHQWVWKHWHFKQLFDODQGRSHUDWLRQDOSDUDPHWHUV
RIWKHK\GUDXOLFSLVWRQEULTXHWWLQJPDFKLQH-81,25
Ta b l e 1 . The technical and operational parameters of the
K\GUDXOLFSLVWRQEULTXHWWLQJPDFKLQH-81,25
MeasureData
ment unit
7\SHRIEULTXHWWLQJGHYLFH
JUNIOR
Diameter of pellets
mm
0D[LPXPOHQJWKRIEULTXHWWHV
mm
%ULTXHWWLQJSHUIRUPDQFH
kg·h-1
(OHFWULFPRWRUSRZHU
kW
Maximum working pressure
MPa
Oil tank capacity
dm3
%ULTXHWWLQJGHYLFHGLPHQVLRQV
mm
îî
OHQJWK[ZLGWK[KHLJKW
%ULTXHWWLQJGHYLFHZHLJKW
kg
6SHFL¿FDWLRQ
F
Photo 1. 7KHWHVWHGSODQWPDWHULDOVDIWHUVKUHGGLQJDZKHDWVWUDZEPDL]HVWRYHUF6LGDVWDONV
(9$/8$7,212)3+<6,&$/3523(57,(6,1%5,48(77(6
3KRWRVKRZVWKHEULTXHWWHVPDGHIURPWKHWHVWHGSODQWPDWHULDOV
D
E
F
Photo 3. %ULTXHWWHVSURGXFHGIURPWKHWHVWHGSODQWUDZPDWHULDOVDZKHDWVWUDZEPDL]HVWRYHUF6LGDVWDONV
5(68/76
)LJXUHVKRZVWKHDYHUDJHPRLVWXUHFRQWHQWRISODQW
PDWHULDOVXVHGIRUWKHSURGXFWLRQRIEULTXHWWHV7KHORZHVW
PRLVWXUHZDVUHFRUGHGIRUZKHDWVWUDZDQGWKH
KLJKHVWIRUPDL]HVWRYHU7KHVWDWLVWLFDODQDO\VLV
VKRZHGWKDWVLJQL¿FDQWGLIIHUHQFHVRFFXUUHGLQWKHPRLVWXUH
of all the tested materials.
)LJXUHVKRZVWKHUHVXOWVRIPHDVXUHPHQWVRIWKHOHQJWK
RIEULTXHWWHVPDGHRIYDULRXVSODQWPDWHULDOV7KHVKRUWHVW
EULTXHWWHVZHUHREWDLQHGIURPZKHDWVWUDZPPZKLOH
WKHORQJHVWIURP6LGDVWDONVPP7KHDQDO\VLVRI
WKHUHVXOWVVKRZHGWKDWVWDWLVWLFDOO\VLJQL¿FDQWGLIIHUHQFHV
RFFXUUHGEHWZHHQWKHOHQJWKRIEULTXHWWHVSURGXFHGIURP
ZKHDWVWUDZDQGPDL]HVWRYHUDQGWKHOHQJWKRIEULTXHWWHV
PDGHIURP6LGDVWDONV7KHUHZHUHQRVWDWLVWLFDOO\VLJQL¿FDQW
GLIIHUHQFHVLQWKHOHQJWKRIEULTXHWWHVIURPZKHDWVWUDZDQG
maize stover.
Fig. 1. $YHUDJHPRLVWXUHRIWKHFRPSDFWHGSODQWUDZPDWHULDOV
)LJXUHVKRZVWKHDYHUDJHFDORUL¿FYDOXHRIWKHSODQWPDWHULDOVXVHGLQWKHPDQXIDFWXUHRIEULTXHWWHV7KHORZHVWFDORUL¿FYDOXHRFFXUUHGIRUZKHDWVWUDZ0-āNJ-1VOLJKWO\
KLJKHUYDOXHVZHUHUHFRUGHGIRU6LGDVWDONV0-āNJ-1
DQGWKHKLJKHVWIRUPDL]HVWRYHU0-āNJ-17KHDQDO\VLV
VKRZHGQRVWDWLVWLFDOO\VLJQL¿FDQWGLIIHUHQFHVLQWKHFDORUL¿F
value of all the compacted materials.
Fig. 2. $YHUDJHFDORUL¿FYDOXHRIFRPSDFWHGSODQWPDWHULDOV
Fig. 3. $YHUDJHOHQJWKRIEULTXHWWHVPDGHIURPSODQWPDWHULDOV
)LJXUHVKRZVWKHUHVXOWVRIPHDVXULQJWKHPDVVRI
pellets made from the tested materials. The lowest average
PDVVFKDUDFWHUL]HGWKHEULTXHWWHVIURPZKHDWVWUDZ
JVOLJKWO\KLJKHUEULTXHWWHPDVVZDVIRXQGIRU6LGDVWDONV
JDQGWKHKLJKHVWIRUPDL]HVWRYHUJ7KHVWDWLVWLFDODQDO\VLVLQGLFDWHGWKDWVLJQL¿FDQWGLIIHUHQFHVRFFXUUHGEHWZHHQWKHPDVVRIEULTXHWWHVPDGHIURPZKHDW
VWUDZRU6LGDVWDONVDQGWKDWRIWKHEULTXHWWHVPDGHIURP
PDL]HVWRYHU,QFRQWUDVWQRVWDWLVWLFDOO\VLJQL¿FDQWGLIIHUences occurred between the mass of wheat straw and Sida
VWDONVEULTXHWWHV
)LJXUHVKRZVWKHGHQVLW\RIEULTXHWWHVGHSHQGLQJRQ
the type of plant raw materials used. The lowest proper
GHQVLW\FKDUDFWHUL]HGWKHEULTXHWWHVIURP6LGDVWDONV
kg.m-3DQGWKHKLJKHVWWKHEULTXHWWHVIURPPDL]HVWRYHU
NJ.m-3%DVHGRQWKHVWDWLVWLFDODQDO\VLVLWZDV
IRXQGRXWWKDWVLJQL¿FDQWGLIIHUHQFHVRFFXUUHGEHWZHHQWKH
SURSHUGHQVLW\RIEULTXHWWHVSURGXFHGIURPZKHDWVWUDZRU
6LGDVWDONVDQGWKHSURSHUGHQVLW\RIEULTXHWWHVIURPPDL]H
,1,('=,Ïà.$:7$1$ĝ06=<0$1(.%=$./,.$-.2:$/&=8.-7$7$5&=$.
Fig. 4. $YHUDJHPDVVRIEULTXHWWHVPDGHIURPSODQWPDWHULDOV
Fig. 6. $YHUDJHEXONGHQVLW\RIEULTXHWWHVSURGXFHGIURPSODQW
materials
VWRYHU+RZHYHUQRVWDWLVWLFDOO\VLJQL¿FDQWGLIIHUHQFHVZHUH
found in the density of the pellets produced from wheat $PRQJWKHFRPSDFWHGPDWHULDOVWKHORZHVWPRLVWXUH
straw and Sida stalks.
DQGKHDWLQJYDOXH0-āNJ-1ZDVIRXQGRXW
for the wheat straw, and the highest for the maize stover,
DQG0-āNJ-1UHVSHFWLYHO\
$IWHUWKHDQDO\VLVRIWKHUHVXOWVRIPHDVXUHPHQWVRI
OHQJWKDQGPDVVRIWKHSURGXFHGEULTXHWWHVLWZDVIRXQG
RXWWKDWWKHVKRUWHVWEULTXHWWHVZHUHREWDLQHGIURPZKHDW
VWUDZPPDQGWKHORQJHVWIURP6LGDVWDONV
PP,QFRQWUDVWWKHORZHVWPDVVZDVUHFRUGHGIRUWKH
EULTXHWWHVPDGHIURPZKHDWVWUDZJZKHUHDVWKH
KLJKHVWIRUWKHEULTXHWWHVSURGXFHGIURPPDL]HVWRYHU
J
%DVHGRQWKHDQDO\VLVWKHORZHVWYDOXHVRISURSHUDQG
bulk density were found out for the pellets produced
IURP6LGDVWDONV±DQGNJ.m-3UHVSHFWLYHO\
DQGWKHKLJKHVWYDOXHVIRUWKHEULTXHWWHVPDQXIDFWXUHG
IURPPDL]HVWRYHU±DQGNJ.m-3UHVSHFFig. 5. $YHUDJHGHQVLW\RIEULTXHWWHVSURGXFHGIURPSODQWPDterials
tively.
The results of measurements of the average bulk density
5()(5(1&(6
depending on the kind of raw materials used are shown in
)LJXUH7KHORZHVWEXONGHQVLW\FKDUDFWHUL]HGWKHEULTXHWWHVSURGXFHGIURP6LGDVWDONVNJ.m-3DQGWKH Borkowska H., 2006: 3HOHW\]HĞOD]RZFDSHQV\OZDĔVNLHKLJKHVWWKRVHSURGXFHGIURPPDL]HVWRYHUNJ.m-3
JRQDWOHQRUP\',1&]\VWD(QHUJLD
%DVHGRQWKHVWDWLVWLFDODQDO\VLVLWZDVIRXQGRXWWKDWVLJ- 2. Denisiuk W., 2007:%U\NLHW\SHOHW\]HVáRP\ZHQHUJHW\FH,QĪ\QLHULD5ROQLF]D
QL¿FDQWGLIIHUHQFHVRFFXUUHGEHWZHHQWKHEXONGHQVLW\RI
EULTXHWWHVPDGHIURPZKHDWVWUDZRU6LGDVWDONVDQGWKH 'UHV]HU . 0LFKDáHN 5 5RV]NRZVNL $ (QHUJLD RGQDZLDOQD ± PRĪOLZRĞFL MHM SR]\VNLZDQLD
EXONGHQVLW\RIEULTXHWWHVPDGHRIPDL]HVWRYHU7KHUHZHUH
QRVWDWLVWLFDOO\VLJQL¿FDQWGLIIHUHQFHVLQWKHEXONGHQVLW\RI
LZ\NRU]\VWDQLDZUROQLFWZLH(G37,5.UDNRZ±/XEEULTXHWWHVPDGHIURPZKHDWVWUDZDQG6LGDVWDONV
OLQ±:DUVDZ
Fiszer A., 2008:%DGDQLDSRUyZQDZF]HZVSyáF]\QQLND
WUZDáRĞFLEU\NLHWyZ]HVáRP\-RXUQDORI5HVHDUFKDQG
$SSOLFDWLRQVLQ$JULFXOWXUDO(QJLQHHULQJ
CONCLUSIONS
)UąF]HN-HGPrzetwarzanie biomasy na cele enerThe results of research and statistical analysis allow for
JHW\F]QH(G37,5.UDNyZ,6%1
the following conclusions:
Grzybek A. (ed.)., 2012: 6áRPD ± Z\NRU]\VWDQLH
7KHWHVWHGSODQWPDWHULDOVXVHGIRUWKHSURGXFWLRQRI
ZHQHUJHW\FHFLHSOQHM(G,73)DOHQW\,6%1
EULTXHWWHVZHUHFKDUDFWHUL]HGE\ORZPRLVWXUHDQG
KLJKFDORUL¿FYDOXHDQGZHUHYXOQHUDEOHIRUWKHSURFHVV 7. Hejft R., 2013:,QQRZDF\MQRĞüZJUDQXORZDQLXELRPDV\&]\VWD(QHUJLD
RIFRPSDFWLRQ$OVRWKHSURGXFHGEULTXHWWHVZHUH
characterized by favourable parameters of the studied 8. Kallyan N., Morey R.V., 2009: Factors affecting
properties, i.e. length, mass proper density and bulk
VWUHQJWKDQGGXUDELOLW\RIGHQVL¿HGELRPDVVSURGXFWV
density.
%LRPDVVDQG%LRHQHUJ\
(9$/8$7,212)3+<6,&$/3523(57,(6,1%5,48(77(6
9. .RáRG]LHM%0DW\ND0HGOdnawialne
ĨUyGáDHQHUJLL5ROQLF]HVXURZFHHQHUJHW\F]QH3:5L/
6S]RR3R]QDĔ,6%1
.RPRURZLF]0:UyEOHZVND+3DZáRZVNL-
6NáDGFKHPLF]Q\LZáDĞFLZRĞFLHQHUJHW\F]QHELRPDV\
]Z\EUDQ\FKVXURZFyZRGQDZLDOQ\FK2FKURQDĝURGRZLVNDL=DVREyZ1DWXUDOQ\FK
Lewandowski W. M., Ryms M., 2013:%LRSDOLZD3URHNRORJLF]QHRGQDZLDOQHĨUyGáDHQHUJLL:17:DUV]DZD
,6%1
1LHG]LyáND,HGTechnika produkcji brykieWyZ]ELRPDV\URĞOLQQHM7RZ:\G1DXN/,%5232/,6,6%1
1LHG]LyáND,6]\PDQHN0$QHVWLPDWLRQRI
SK\VLFDOSURSHUWLHVRIEULTXHWWHVSURGXFHGIURPSODQW
ELRPDVV7HND.RPLVML0RWRU\]DFMLL(QHUJHW\NL5ROQLFWZD;
1LHG]LyáND,6]\PDQHN0=XFKQLDU]$
(QHUJHWLFHYDOXDWLRQRISRVWKDUYHVWFRUQPDVVIRUKHDWLQJSXUSRVHV7HND.RPLVML0RWRU\]DFMLL(QHUJHW\NL
5ROQLFWZD9,$
31(1±2]QDF]DQLH]DZDUWRĞFLZLOJRFL
PHWRGąVXV]DUNRZą±&]ĊĞü:LOJRüZRJyOQHMSUyEFH
analitycznej.
31(1±%LRSDOLZDVWDáH±2]QDF]DQLH
ZDUWRĞFLRSDáRZHM
31(1±%LRSDOLZDVWDáH±2]QDF]DQLH
JĊVWRĞFLQDV\SRZHM
Stolarski M., Szczukowski S., Tworkowski J., 2008:
%LRSDOLZD]ELRPDV\ZLHOROHWQLFKURĞOLQHQHUJHW\F]Q\FK(QHUJHW\ND
Szymanek M., Kachel-Jakubowska M., 2010:(VWLPDWLRQDQGDQDO\VLVRIFKRVHQIDFWRUVRIWKHLQÀXHQFH
RQTXDOLW\DQGHQHUJ\FRQVXPSWLRQDWWKHSURFHVVLQJ
of plant materials for energy purposes. Teka Komisji
0RWRU\]DFMLL(QHUJHW\NL5ROQLFWZD
20. Wu M.R., Schott D.L., Lodewijks G., 2011: Physical
SURSHUWLHVRIVROLGELRPDVV%LRPDVVDQG%LRHQHUJ\
=DUDMF]\N- Uwarunkowania techniczne i techQRORJLF]QHSURGXNFMLSHOHWX]ELRPDV\URĞOLQQHMQDFHOH
HQHUJHW\F]QH,QĪ\QLHULD5ROQLF]D0RQRJUD¿HLUR]SUDZ\7VV
2&(1$:à$ĝ&,:2ĝ&,),=<&=1<&+%5<.,(7Ï:
:<.21$1<&+=:<%5$1<&+0$7(5,$àÏ:
52ĝ/,11<&+
Streszczenie. &HOHPWHJREDGDQLDE\áDRFHQDZáDĞFLZRĞFL¿]\F]Q\FKEU\NLHWyZZ\NRQDQ\FK]Z\EUDQ\FKVXURZFyZURĞOLQQ\FK
%DGDQLDSU]HSURZDG]RQRQDWU]HFKURG]DMDFKVXURZFyZVáRPLH
SV]HQQHMVáRPLHNXNXU\G]LDQHMLáRG\JDFKĞOD]RZFDSHQV\OZDĔVNLHJR6WZLHUG]RQRĪHPDWHULDá\URĞOLQQHVWRVRZDQHGRZ\WZDU]DQLDEU\NLHWyZFKDUDNWHU\]XMHQLVNDZLOJRWQRĞüLZ\VRND
ZDUWRĞüRSDáRZDLPRJąRQH]SRZRG]HQLHPE\üSRGGDZDQH
SURFHVRZL ]DJĊV]F]DQLD 3RQDGWR Z\SURGXNRZDQH EU\NLHW\
FKDUDNWHU\]RZDá\VLĊNRU]\VWQ\PLZáDĞFLZRĞFLDPLZ]DNUHVLH
EDGDQ\FKSDUDPHWUyZF]\OLGáXJRĞFLPDV\JĊVWRĞFLZáDĞFLZHM
LJĊVWRĞFLQDV\SRZHM1DMOHSV]HZ\QLNLGODEDGDQ\FKZáDĞFLZRĞFL
X]\VNDQRGODEU\NLHWyZ]HVáRP\]NXNXU\G]\DQLHFRJRUV]HGOD
EU\NLHWyZ]HVáRP\SV]HQQHMLáRG\JĞOD]RZFDSHQV\OZDĔVNLHJR
6áRZDNOXF]RZHELRPDVDURĞOLQEU\NLHWRZDQLHZáDĞFLZRĞFL
¿]\F]QHEU\NLHWyZ
TEKA. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE – 2014, Vol. 14, No. 4, 105–112
TXDQWLW\
TXDOLW\
Increase of Reverse Water Supply Systems Effectiveness in Production
of Construction Materials
Ilya Nikolenko, Ervin Karimov
TXDOLW\
Crimean Federal V.I. Vernadsky University
181, Kievskaya Street, Simferopol, Crimea, e-mail: nikoshi@mail.ru
Received December 02.2014; accepted December 17.2014
Summary. In the DUWLFOHWKHTXHVWLRQVRIPRGHOLQJRIK\GURG\QDPLF
filtering in systems of reverse water supply in production of
construction materials are considered. The scheme of experimental
installation is provided for realization of pilot research of the
K\GURG\QDPLF ILOWHU DQG DOVR WKH WHFKQLTXH RI SLORW UHVHDUFKHV LV
given. The plan of three-IDFWRULDO H[SHULPHQW RI *') RI 3&0
wastewaters is developed, researches are conducted and the regression
HTXDWLRQ FKDUDFWHUL]LQJ WKH UHPRYDO SURFHVV RI WKH VXspended
materials is received. Dependences for calculation of the residual
content of the suspended materials depending on initial concentration
of impurities, the ratio of a useful and slime expense on the filter and
the consumption of the processed fluid are established. It is
established that in the production of construction materials the
installation of reverse water supply systems with application of
hydrodynamic filtering allows using effectively its advantages and
providing more rational use of energy and natural resources.
Key words: Productions of construction materials, industrial
wastewaters, reverse water supply, hydrodynamic filtering,
concentration, expense, residual concentration of impurity, refinement
effectiveness
INTRODUCTION
Water in industrial production is essential for ensuring
primary and secondary technological processes, as well as
fire-fighting, domestic and drinking needs of enterprises.
The TXDQWLW\ and TXDOLW\ of technical water which is
necessary in any production is defined by the scale and
nature of its technological processes. Properties of utilized
water, cost of water supply systems and water disposals
substantially define TXDOLW\ and prime cost of products and
also conditions of the rational use of natural resources.
Reserve for water resources saving at any production is
the use of circulating water supply where much depends
on the technology of wastewaters refinement. With the
installation of recycling systems for industrial water
supply there are additional reserves on consumption of
fresh water and reduction of wastewaters into reservoirs.
Industrial wastewaters refinement represents an important
technological and methodical problem in developing
effective ways for recycling refined water in industrial
processes.
Fluids’ refinement from various types of impurities
that they contain is a widespread problem. It is constantly
> @ ,Q WHFKQRORJLFDO SURFHVVHV RI SURGXFWLRQ
PDWHULDOV 3&0 ODUJH YROXPHV RI ZDWHU DUH XVHG ZKLFK
processes.
Fluids’ refinement from various types of impurities
that they contain is a widespread problem. It is constantly
faced not only in communal services and on the domestic
level but also in all the branches of industrial production
> @ ,Q WHFKQRORJLFDO SURFHVVHV RI SURGXFWLRQ
processing and also the production of construction
PDWHULDOV 3&0 ODUJH YROXPHV RI ZDWHU DUH XVHG ZKLFK
become soiled generally by mineral insoluble impurity.
For the majority of PCM, in the technological processes
water is the main working medium. The use of polluted
ZDWHUWRDQ\H[WHQWLVH[SRVHGWRUHILQHZLWKLWVVXEVHTXHQW
dumping in water objects or in reverse schemes with the
VXEVHTXHQW DSSOLFDWLRQ LQ WHFKQRORJLFDO SURFHVV
RHTXLUHPHQWVTXDOLW\RILQGXVWULDOZDVWHZDWHUVUHILQHPHQW
at their outlet in reservoirs DQG DOVR DW WKH VXEVHTXHQW
application causes broad use of various refinement
methods and technologies. While choosing a method of
impurities refinement not only their structure in
ZDVWHZDWHUV LV FRQVLGHUHG EXW DOVR UHTXLUHPHQWV ZKLFK
have to satisfy waters refinement: when disposing in a
reservoir, and at a reuse of the refined wastewaters in
production - WKRVH UHTXLUHPHQWV ZKLFK DUH QHFHVVDU\ IRU
realization of actual technological processes.
The current situation is characterized by increasing
DWWHQWLRQ RI VRFLHW\ WR TXHVWLRQV RI SRZHU DQG UHVRXUFH
VDYLQJ WKDW LV GLUHFWO\ FRQQHFWHG ZLWK TXDOLW\ DQG DQ
H[SHQVH XVHG LQ WHFKQRORJLFDO ZDWHU SURFHVVHV >@ 7KH
condition of the surrounding water medium, the developed
level of understanding of environmental problems demand
restriction of unjustified expenses of water resources and
industrial wastes disposing in natural reservoirs. Despite
the increased scientific and technical capabilities, the
problem of water surface protection and in particular
sanitary protection of water objects from impurity remains
valid DQGVWLOOGHPDQGVWKHHIIHFWLYHGHFLVLRQV>@7KH
choice of optimized technological schemes of industrial
water supply refinement is a complex challenge that is
caused by a variety of the water impurities and great
GHPDQGV PDGH RI UHILQHPHQW TXDlity. The technoeconomic rating of the ways of water preparation has a
great significance for the preparation of industrial water
from industrial wastewaters or insuring conditions of the
EXW GXUL
DQGVWLOOGHPDQGVWKHHIIHFWLYHGHFLVLRQV>@7KH
,/<$1,.2/(1.2(59,1.$5,029
GHPDQGV PDGH RI UHILQHPHQW TXD
economic rating of the ways of water preparation has a inclined baffle plates 47 … 70%.
For IW wastewaters refinement from suspended
great significance for the preparation of industrial water
from industrial wastewaters or insuring conditions of the materials hydrocyclone machines are used in which the
disposal refinement wastewaters of reservoirs. Reverse centrifugal force effecting on particles with a higher
systems of industrial water supply usually have got density than that of water is used. They successfully
replace settlers having a number of advantages: they
economic advantage.
The solution of this problem for PCM in many cases occupy small space, have high extent of refinement up to
is connected with the organization of the closed water KLJK HIILFLHQF\ KDYH QR PRYLQJ HOHPHQWV WKHLU
supply cycles. This task cannot be solved successfully operation can be completely automated.
In most cases filtering is used for integrated
without effective refinement of the circulating reverse
wastewater treatment of IW after all the preliminary
water from impurities.
treatment methods. It can be surface filtering through filter
baffle plates or volume through grained loading. In case of
additional reactant treatment of wastewaters, treatment of
$1$/<6,6 OF 38%/,&$7,216
IW with coagulant and flocculant on the score
In PCM water is used both as the main and the of suspended particles agglomeration and other alterations
secondary technological process. Conventionally, these solid particles emission during filtering improves.
Reduction of pressure drop on filtering element, increase
waters can be divided into the following groups [8,9].
Technological waters are working medium in of refinement precision of power fluid, its preservation
technological processes. These technological processes from blinding and therefore self-regeneration support can
include: water concentration of nonmetallic minerals, be provided under conditions which will pass the particles
hydro-mining, hydro-transport, hydro-washing. These through units of surface filtering element the size of which
is much lesser than “in light” units size. These conditions
ZDWHUVDUHKHDYLO\SROOXWHGDQGUHTXLUHUHILQHPHQW
Cooling waters are formed during cooling the are created on hydrodynamic filters.
+\GURG\QDPLF )LOWHULQJ +) LV RQH RI WKH PRGHUQ
HTXLSPHQW machines and devices which are used in the
main technological process. These waters generally have effective methods of fluid refinement from impurities.
the so-called pollution "temperature". Therefore, they are )OXLG UHILQHPHQW RI +) LV EDVHG RQ WKH K\GURG\QDPLF
called conditionally clean. They need only cooling and can WKHRU\RI=/)LQNHOVWHLQDERXWWKHPRYHPHQWRILPSXULW\
particles in a fluid flow near the filtering element. In this
be reused in processes.
Washing and de-dusting waters are formed as a theory it LV DFFHSWHG WKDW WKH ILOWHULQJ HOHPHQW )(
washing result of aggregates, machines and HTXLSPHQW and represents the plate covered with regularly located holes
also for dust control on PCM. These waters are heavily XQLWVRIDFHUWDLQVL]H>@
In case of the standard refinement scheme of the
polluted and need to be cleaned. $OO industrial engineering
wastewaters in their use and discharge into water bodies polluted fluid flow it goes perpendicularly WRWKH)(Slane.
Only those particles whose linear size is lesser that the size
genHUDOO\UHTXLUHUHILQHPHQW
$ large number of various impurities in the IW of filtering unit do not linger on it. Particles of the bigger
industrial wastewaters is determined by numerous size cumulate from the incident flux and gradually "clog"
methods, WHFKQLTXHV and technological scheme used while )(RSHQLQJV7KHUHIRUHGXULQJWKHZRUNRI)(LQDIOX[RI
refining them. Ways of industrial wastewaters refinement the polluted fluid its capacity decreases, drop of pressure
of insoluble impurities are divided into three groups: on it increases and finally it becomes soiled and loses
mechanical refinement – separation of impurities while working capacity. )(LVFRQVLGHUHGFORJJHGLIWKHFUHDWHG
going through the passage media; physical refinement – pressure losses on it overrun allowable maximum
separation of impurities when fluid stays in force fields; provided by its desiJQ$IWHUWKDWLWLVQHFHVVDU\WRWUDQVIHU
combined refinement – separation of impurities from fluid the clogged filter to an initial state by replacement or
at a joint mechanical and physical refinement. Mechanical effective flushing which is defined by type of the filter and
refinement of fluid is divided into the following types: nature of the detained substances in it. Running time of the
surface, volume and mixed. The last type combines filter between two consecutive flashings is called a
features of the two first types. Defecation and clarification filtering cycle.
7RUHVWRUHWKH)(LVVXEMHFWWRIOXVKZLWKDSXUHZDWHU
of the polluted water in PCM is based on particles on
sedimentation of impurities with a higher density than the backwash, replacement or regeneration. To increase
density of water at its moving with low speed. Such water contaminant capability RI)(DQGLWV VHUYLFHOLIHWLPHLWLV
refinement is made in tank clarifications or settlers of necessary to increase its surface and volume considerably.
various designs. Tank clarifications are constructed as one, Therefore such way of fluid refinement is far from perfect
two and multiple-stage ones and for keeping water long- in terms of technical and economic indicators as for the
term. Effectiveness of clarification in ponds reaches 50 … SHULRGRIUHILQHPHQW RU)(UHSODFHPHQWLWLV QHFHVVDU\WR
EXW GXULng winter period their operation is poorer . SURYLGH DGGLWLRQDO UHVHUYH )( LWV SHULRGLF RSHUDWLRQ
Ponds need to be cleaned regularly, they occupy a big without refinement.
$W+)WKHSROOXWHGIOXLGIORZJRHVSDUDOOHOWRWKH)(
surface area and pollute the environment. The
effectiveness of horizontal settles refinement with the plane. Thus, hydrodynamic features of system are such
regulating perforated baffle plates reaches 39 … 49%, that through filter units together with fluid penetrate only
with the system of dispersed water abstraction surface - those particles, which linear size in 3…10 times less than
… 69%, and for settlers with thin layer elements from XQLWVL]H%LJSDUWLFOHVDUHZDVKHGDZD\IURP)(VXUIDFH
by a fluid flow. TherHIRUH )( RI VXFK NLQG DUH QHYHU
inclined baffle plates 47 … 70%.
For IW wastewaters refinement from suspended FORJJHG ZLWK SDUWLFOHV RI WKH ELJJHU VL]H %LJ SDUWLFOHV
materials hydrocyclone machines are used in which the PRYLQJ LQ D IOXLG IORZ DUH UHPRYHG IURP )( XQLWV DQG
VXFK NLQG RI )( ZLWKRXW UHSODFHPHQW ZRUN IURP WR KLJK HIILFLHQF\ KDYH QR PRYLQJ HOHPHQWV WKHLU SRVVLELOLWLHV RI +) LQVWDOODWLRQ LQ 3&0 RI UHYHUVH ZDWHU
SURYLGH DGGLWLRQDO UHVHUYH )( LWV SHULRGLF RSHUDWLRQ
)(PDW
$W+)WKHSROOXWHGIOXLGIORZJRHVSDUDOOHOWRWKH)(
,1&5($6(2)5(9(56(:$7(56833/<6<67(06())(&7,9(1(66
XQLWVL]H%LJSDUWLFOHVDUHZDVKHGDZD\IURP)(VXUIDFH
by a fluid flow. TherHIRUH )( RI VXFK NLQG DUH QHYHU >@
FORJJHG ZLWK SDUWLFOHV RI WKH ELJJHU VL]H %LJ SDUWLFOHV – Fluid is incompressible, homogeneous and isothermal;
PRYLQJ LQ D IOXLG IORZ DUH UHPRYHG IURP )( XQLWV DQG – Particles are globule and homogeneous;
provide its continuous cleaning. The filtering systems with – Thickness influence of walls and interaction of moving
VXFK NLQG RI )( ZLWKRXW UHSODFHPHQW ZRUN IURP WR particles on velocity distribution isn't considered;
years without technical servicing and repair.
– Inertia of particles in a longitudinal flux isn’t
The purpose of the work consists in studying the
considered;
SRVVLELOLWLHV RI +) LQVWDOODWLRQ LQ 3&0 RI UHYHUVH ZDWHU – 2SHQLQJVLQ)(DUHDFFHSWHUURXQG
supply to increase its effectiveness in the way of energy
We will use the principle of superposition. We will
and natural resource saving in the process of refinement consider a vector of absolute participle velocity v as a
industrial water from impurities.
vector sum of flux velocities v0 through a large number of
RSHQLQJV LQ)(DQGVSHHGRIDORQJLWXGLQDOIOX[ vm$V D
SUHVVXUH ORVVHV RI D IOX[ SUHVVXUH PRYLQJ OHQJWKZD\V )(
67$7(0(172)7+(352%/(0
are insignificant it is possible to consider sizes of volume
H[SHQVHV WKURXJK VHSDUDWH RSHQLQJV HTXDO 6XPPDUL]LQJ
The theory of hydrodynamic refinement is based on these speed components in a certain point of space we
consideration of the particle movement located in the receive sizes of longitudinal and transverse velocities
SROOXWHG ]RQH LQ DQ RSHQLQJ ]RQH >@ :H ZLOO XQGHU WKH LQIOXHQFH RI SUHVVXUH GURS RQ )( For
FRQVLGHUWKH+)VFKHPHLQSLF7KHFRPSOH[PRYHPHQW determination of the maximum particle diameter which
RISROOXWLRQSDUWLFOHVUHODWLYHO\WR)(FDQEHSUHVHnted as a FDQ SDVV WKURXJK )( RSHQLQJ ZH ZLOO FRQVLGHU D FULWLFDO
sum of two movements: longitudinal and transverse. case. Thee particle with diameter d and center of gravity in
3DUWLFOHVZKLFKDUHLQWKHIOXLGOD\HUVFORVHVWWR)(VXUIDFH a point O LVSODFHGRQWKHSLF
For calculation we accept the following parameters:
have maximum likelihood to get into an opening. The
EDVLV RI +) WKHRU\ LV D PRGHO RI SDUWLFOH PRYHPHQW Q – VXSSO\ RI WKH SROOXWHG IOXLG RQ )( Q1 – part of
relatively to FF with the certain ratio of longitudinal and supply which is refined; ' p - pressure drop which is
transverse velocity. If the angle of slope tangent to particle allowed from operation conditions RQ)(
We will determine the parameter of a cross flux:
trajectory D arctg §¨ vo ·¸ is greater than the diagonal section
¨v ¸
© m¹
of the unit in the longitudinal plane, the particle of
pollution has an ability to pass in a unit space. Restriction
of polluted particle detention in units is represented as the
speed ratio:
v
d
! o .
2c vm
Q
,
kF
q
where:
k
S ˜ c 2 , coefficient of flow section, F – )(VTXDUH
2c m 2
Q2c m .
q
Therefore, depending on the trajectory angle D ,
FS ˜ c 2
dimension ratio of particle diameter d and diameter of the
unit opening 2c . the particle can pass in the space under
$WWKHVHWvelocity v0 RIFURVVIOX[IURPZHGHILQH
)( XQGHU WKH DFWLRQ RI D FURVV IOX[ RU EH GLVSODFHG E\ D
QHFHVVDU\)(VTXDUH
ORQJLWXGLQDOIOX[DORQJ)(
q
v0 ˜ S ˜ c 2
F
2
.
We determine the velocity of a longitudinal flux from
the condition:
Fig. 1. Scheme of hydrodynamic filtering
c – unit radius; m – the minimum distance between cells; d – particle
diameter; vm– longitudinal flux velocity v0 – cross flux velocity;
v – absolute velocity of particle balance center; l – )(PDWerial
thickness
For engineering practice development calculation
a set of assumptions was accepted, which not significantly
change the nature of hydrodynamic filtering process
>@
– Fluid is incompressible, homogeneous and isothermal;
– Particles are globule and homogeneous;
Q Q ,
Q2
where:
Q2 – flow rate of the impure IOXLGOHDYLQJ)(
)URPFRQVWUXFWLYHUHDVRQVZHFKRRVH)(OHQJWK L on
ZKLFKZHILQG)(ZLGWK:
F.
L
B
&RQVLGHULQJ)(F\OLQGULFDOLWVGLDPHWHU:
Dɤɪ
B,
S
7KHDUHDRIDFUDFNEHWZHHQ)(DQGWKHILOWHUERG\DW
2SHQLQJVLQ)(DUHDFFHSWHUURXQG
RSHQLQJV LQ)(DQGVSHHGRIDORQJLWXGLQDOIOX[
$V D
Q X
&RQVLGHULQJ)(F\OLQGULFDOLWVGLDPHWHU
ɤɪ
S
,/<$1,.2/(1.2(59,1.$5,029
X
7KHDUHDRIDFUDFNEHWZHHQ)(DQGWKHILOWHUERG\DW
the end of a longitudinal flux:
ɫɪ
Q
.
Xm
¦X
d
ª Q
Q 2 2c m º
«
» ,
2 2 2
S q l
¬ SXm
¼
0.
ª Q Q Q 2c m º
«
»
S 2 q 2l 2 ¼
¬ SXm
2
Dk
X
For realization of this condition diameters of conical
part of the body:
Dɧ
Xm
$WWKHEHJLQQLQJRIDIOX[:
Sɧ
Thus, despite the preservations average longitudinal
velocity constant along the filter length the local velocity
LQWKHJDSIURPWKHVXUIDFHRI)(GHSHQGVRQWKHULQJJDS
height. The received velocity X m for necessary filtration
degree LQWKLVFDVHZRQ
WEHHTXDOWRDYHUDJHDQGWKHUHIRUH
it is impossible directly to determine Q2
$WODPLQDUIORZVLWLVQHFHVVDU\WRZULWHGRZQ:
Q Q .
Sk
.
Critical diameter of a particle after substitutions and
transformations is defined in the following manner:
d
0,
Ugd 2
P
.
2c
z h z Q2
X
¦ m
S
h2
0
§ cUg
·
d 2 ¨¨
h ¸ dX 0 2cX m
2h 2
© P
¹̧
0.
The last formula can be solved in final coefficients with
Cardano's method however it is much simpler to find its
Thus, at a given supply the certain geometrical YDOXH ZKLFK LV DSSURDFKHG RQ WKH DYDLODEOH (&0
SDUDPHWHUV RI WKH )( DQG ERG\ DUH GHILQHG VSHHGV RI D algorithms. Further calculations don't undergo changes.
longitudinal and cross flux on which specifies the fineness
of filtration.
If the velocity of a longitudinal flux is accepted by a
0(7+2'2)7+((;3(5,0(17
constant gap section, it corresponds to the assumption of
WKH WXUEXOHQW PRGH RI WKH IOX[ PRYHPHQW DORQJ )( 7KH
([SHULPHQWDO LQVWDOODWLRQ ZKLFK VFKHPH GLDJUDP LV
acceptability of such assumption can be proved only by shown on pic.2 is developed for physical modeling of
existence of local flux resistance on an entrance to the process of PCM wastewater refinement from impurities
ILOWHU ZKLFK LV UDWKHU VPDOO LQ )( OHQJWK LQ FRPSDULVRQ ZLWK DSSOLFDWLRQ RI +') ,QVWDOODWLRQ FRQVLVWV RI WKUHH
with diameter of rather high longitudinal fluxes.
FDSDFLWLHV ZLWK LQLWLDO ZDWHU ZLWK FOHDred 2 and
$W WKH VHW JHRPHWULFDO SDUDPHWHUV DQG IOXLG YLVFRVLW\ FDSDFLWLHVIRUSROOXWHGZDWHUVWRUDJHWKHGUDLQDJHSXPS
the mode movement depends only on flux rate. Therefore, WKH K\GURG\QDPLF ILOWHU – WKH ).'- W\SH
DW D FHUWDLQ H[SHQVHV RI WKH SROOXWHG IOXLG RQ )( LW LV IORZPHWHUVPDQRPHWHUVDQGWKHUHJXODWLQJILWWLQJV
possible to provide the laminar flow movement. In case of DQGWKHE\SDVVOLQH:DWHULVVXSSOLHGE\GUDLQDJHSXPS
a laminar flow in a ring crack of velocities in a gap are WKURXJKDIORZPHWHUWKHPDQRPHWHUWKHFRFNLQ
distributed under the parabolic law. We will determine gap the hydrodynamic filter 9 where the flow is divided into
VL]HRYHU)(DWWKHEHJLQQLQJRIWKHILOWHU:
two components: the cleared water which is flushed via
the pipeline with a flowmeter 8 and the manometer 7 in
Dɧ Dɫɪ ,
FDSDFLW\ DQG WKH VOLPH IORZLQJ WR FDSDFLW\ 7KH
hɧ
2
consumption of the initial polluted water varies the degree
of closing of the valve RQ WKH VXSSO\ SLSH 2WKHU
In the end of the filter:
expense through the bypass line PHUJHVLQWKHWDQN
%DVHGRQWKHDQDO\VLVRIZDVWHZDWHUIRUH[SHULPHQWDO
Dk Dɫɪ .
studies of refinement installation process of partial flow
hk
2
hydrodynamic filter which is intended for refinement of
various fluids from insoluble impurity at supply of the
)URP D FRQGLWLRQ RI DYHUDJH YHORFLWLHV HTXDOLW\ RQ SROOXWHG OLTXLG WR OPLQ LV SURYLGHG )RU FUHDWLQJ D
VHFWLRQDORQJ)(:
ORQJLWXGLQDO IOX[ RI WKH IOXLG LQ FLUFXODWLRQ
bypassing the reILQHG IORZ 7KH SURFHVV RI +') ZDV
Q2 .
Q
modeled on artificial wastewaters. Knowing wastewaters
X m.ɫɪ
S Dɧ2 Dɮ2 S
impurity of PCM, which comes to clean, water for
H[SHULPHQW LV PRGHOHG $V WKH SROOXWLQJ VXEVWDQFH WKH
Therefore, velocity on height ring gap is distributed selected tests of slime from slime pit which operate on
PCM are applied.
on dependence:
Xm
z h z X m.ɫɪ .
h2
Thus, despite the preservations average longitudinal
LQWKHJDSIURPWKHVXUIDFHRI)(GHSHQGVRQWKHULQJJDS
X
LQWKLVFDVHZRQ
WEHHTXDOWRDYHUDJHDQGWKHUHIRUH
Q2
,1&5($6(2)5(9(56(:$7(56833/<6<67(06())(&7,9(1(66
ɫ
Fig. 2. Scheme of experimental installation
The composition of production wastewaters of
SharkhinskSLWV
SLWV$OXVKWD&ULPHD
$OXVKWD&ULPHDZKLFK
ZKLFKDUH
DUHIRUPHG
IRUPHGE\
E\
washing crushed stone is presented in TDEOH
DEOH
DEOH7KH
7KH
increased image of impurities containing in wastewaters
from crushed stone after washing has been received by a
micro-SKRWRPHWKRGLVVKRZQLQSLF,QWKLVIDFWRIGDWD
SKRWRPHWKRGLVVKRZQLQSLF,QWKLVIDFWRIGDWD
SKRWRPHWKRGLVVKRZQLQSLF,QWKLVIDFWRIGDWD
).'-ILOWHU
IUDFWLRQDOVWUXFWXUHRILPSXULWLHVIRUWKH
IUDFWLRQDOVWUXFWXUHRILPSXULWLHVIRUWKH).'
).'
ILOWHU
ILOWHU
DV
DV)(
)(WKH
WKHPHWDO
PHWDOJDX]H
JDX]HZLWK
ZLWKDDVL]H
VL]HRI
RIXQLWV
XQLWVRI
RI
[[
microns was accepted therefore the expected fineness of
the detained firm mineral particles will make 15 … 20
microns.
Table 1. Fractional composition of slimes in the total
remains
Total mass
content,
Size of fraction,
mm
1,25…0,63
0,63…0,315
0,315…0,15
0,15…0,08
0,08…0,05
0,05…0,01
0,01…0,005
0,005…0,002
0,002…0,001
aa
DJHIRUPLQ
For receiving artificial wastewater slime is previously
dried up to the constant weight in a drying cabinet. Then
slime is crushed for the purpose of receiving homogeneous
PDVV DQG HOLPLQDWLRQ IURP VOLPH OXPSV )RU +')
parameters process research the kinetics of sedimentation
of the suspended materials of artificial wastewaters is
previously studied. For this purpose dependence graphic
of optical density on weighed substances concentration are
under construction. The graphic is under construction
according to indications of optical density of the tests
ZKLFK DUH VHOHFWHG DIWHU VW PLQXWH RI VHGLPHQWDWLRQ DV
during this period large particles are drop out and they will
QRW LQIOXHQFH RQ WKH SURFHVV RI +') :H ZLOO GHWHUPLQH
WKH +') SDUDPHWHUV E\ WKH DFWXDO FRQcentration of
impurities. For its determination we use samples of the
impure water on PCM slime tests with concentration 1 …
JO DIWHU PLQXWH GHVLOWLQJ 7KHQ WHVWV ZKLFK DUH UXQ
through specially prepared paper filters are selected.
Further filters are dried up in a drying cabinet. The actual
concentration of polluted PCV of artificial wastewater is
determined by a difference of mass of the dry filter before
filtration and the dry filter with the suspended materials
after filtration carried to the volume of the filtered test.
Tests of artificial wastewaters are being prepared and
their light transmittance on the photo-colorimeter is
FKHFNHG %HFDXVH RI D KLJK WXUELGLW\ RI WHVWV LQ WKH
DFFHSWHGUDQJHRIKLJKFRQFHQWUDWLRQPRUHWKDQJOWKH
selected tests are diluted several times. On the received
values the dependence graphic of optical density on the
actual concentration of the suspended materials on which
WKH+')SDUDPHWHUVDUHHVWLPDWHGLVXQGHUFRQVWUXFWLRQ
.(<),1',1*6
7KH DQDO\VLV RI +') SURcess allowed allocating
three major factors which influence on refinement
effectiveness: initial concentration of the suspended
materials; a consumption of in-taking wastewater which is
regulated by a throttle on filter entrance; a ratio of a useful
and slime expense on the filter which are provided with
adjustment of a throttle on the bypass line. The method of
rotatable design of experiment which allows receiving
more exact mathematical
description of a surface response
IDFWRULDO+')UHVHDUFKHV
in comparison with orthogonal central composite planning
ZDV DSSOLHG WR SURFHVVLQJ RI H[SHULPHQWDO GDWD RQ +')
> @ ,W LV UHDFKHG WKDQNV WR LQFUHDVH LQ QXPEHUĮRI
experiences in the center of the plan and a special size
choice of a star shoulder a. The main characteristic of a
matrix
of rotatable design
of three-factorial
experiment
is
provided in table 2.
$WURWDWDEOHFHQWUDO FRPSRVLWHGHVLJQIRUFRHIILFLHQWV
calculation of regression and the corresponding estimates
of dispersion constants are defined:
bb
DIWHU+')
cc
)LJ0LFUR-photos
)LJ0LFUR-photos
)LJ0LFUR
ofofwastewaters
wastewatersimpurities
impuritiesreceived
receivedfrom
from
crushed stone washing:
a, – before refinement; b – after slime stDJHIRUPLQ
ɫ – DIWHU+')
Ⱥ
B
For receiving artificial wastewater slime is previously
PDVV DQG HOLPLQDWLRQ IURP VOLPH OXPSV )RU +')
,
2 ȼ>n 2B n@
n 2N N 0 nN
N
,
UHJUHVVLRQ RI +') DV UHVLGXDO FRQFHQWUDWLRQ IXQFWLRQV RI
IDFWRULDO+')UHVHDUFKHV
,/<$1,.2/(1.2(59,1.$5,029
Į
Ta b l e 2 . 7KHFKDUDFWHULVWLFRIURWDWDEOHFHQWUDOFRPSRVLWHGHVLJQIRUWKUHHIDFWRULDO+')UHVHDUFKHV
UHJUHVVLRQHTXDWLRQE\)LVFKHU
VFULWHULRQ)RUWKHHTXDWLRQ
Total number of
Number of factors Number of factorial Number of experiences Number of experiences
Į
FDOFXODWHG
design experiences
in star points
in plan centre
experiences
Ɋɞ > @ >@7KHYDOLGLW\FKHFN
Ta b l e 3 . $FWXDOH[SHULPHQWDOFRQGLWLRQV
LV
VDWLVILHG
WKHUHIRUH WKH UHJUHVVLRQ HTXDWLRQ d> @
Number of factors
n
Value
of factors at plan code values
DGHTXDWHO\GHVFULEHVDVXUIDFHUHVSRQVHIRUWKHFRQVLGHUHG
Designation
of
+')
SURFHVV
7KH
DQDO\VLV
RI WKH
Variation interval
0 UHFHLYHG
UHJUHVVLRQ
Name of variation factors
Ⱥ
variation factors HTXDWLRQDOORZVGUDZLQJDFRQFOXVLRQRQH[LVWHQFHRIWKH
ȼ> @
8
$WURWDWDEOHFHQWUDO FRPSRVLWHGHVLJQIRUFRHIILFLHQWV
Initial conc. of suspended materials
Consumption of in-taking water, l/min
Ratio of useful and slime expense
C
N
,
N N0
;
;
;
70,2
HTXDWLRQ
FKDUDFWHUL]HV
7KH UHJUHVVLRQ
WKH
20
removal process of the suspended materials on the
hydrodynamic filter and allows estimating influence of
three considered factors on residual concentration of
impurity, and also describes a surface response. For
HYDOXDWLRQ RI UHILQHPHQW HIIHFWLYHQHVV RI +') ZH ZLOO
enter function of the following type:
ZDVWHZDWHUVDIWHU+')IRURWKHUYDOXHVRIWKHFRQVLGHUHG
SDUDPHWHUV RQ SLF WKHxFDOFXODWLRQ
LV FDUULHG RXW RQ
Y
Z
˜ .
x
where: n - number of factors; N - total number of
rotatable central composite design experiences; N0 number of experiences in the plane center.
For three-factorial experiment of a constant for
coefficients calculation of regression and the
§
·
˜ ¨ corresponding estimates of dispersions; A 0, ; ȼ 0, ;
© ¹̧
7KH FDOFXODWLRQ UHVXOWV RI +') UHILQHPHQW HIIHFɋ ,.
tiveness
IURPWKHFRQVLGHUHGIDFWRUVDUHJLYHQLQSLFˈϯсϭ͕Ϯϱ
%DVHGRQWKHUHVXOWVRISUHOLPLQDU\H[SHULPHQWranges
ˈϯсϭ
From
the analysis of the received results obtained
and points in vicinities which the plan of three-factorial
DSSOLFDWLRQ RI +') IRU WKH DFFHSWHG VL]H RI XQLWV RI )(
experiment is determined:
ϵϬ
;– initial concentration of the weighed substances, and fractional composition of ϵϬ slimes can provide
ϴϬ
UHILQHPHQW HIIHFWLYHQHVV WR 7DNLQJ LQWR DFFRXnt
͕й
ϮϬ ϴϬ
ϳϬ
2 … 4 g/l.
Ϯϱ
fractional
composition
of
slimes
in
͕йsize of the total
ϮϬ
ϳϬ ϯϬ
ϲϬ
ϯϱ
; – supply of wastewater on the filter, 20 … 70
Ϯϱ
ϰϬ
ϯϬ
ϲϬ
ϰϱ
ϱϬ
UHPDLQVWDEWKHPDLQWHQDQFHRISDUWLFOHVOHVVWKDQ
ϯϱ
ϱϬ
ϰϬ
l/min.
ϰ
ϰϱ
ϱϬ
ϱϱ
ϯ͕ϱ
microns
in
size
contains
in
tests
of
artificial
wastewaters
to
ϲϬ
ϱϬ
ϯ
ϰ Y̛͕̣̥̦ͬ
; – a ratio of a useful and slime expense on the
ϱϱ
Ϯ͕ϱ
ϯ͕ϱ
ϲϬ
DQG SDUWLFOHV
OHVV WKDQ
PLFURQV - WRϲϱ Ϯ
ϳϬ
ϯ
Y̛͕̣̥̦ͬ
ϲϱ
filter, 1 … 2 K.
Ϯ͕ϱ
Ϯ
ϳϬ
sizes of impurity particles ĞŶ͕̣̐ͬ
The actual conditions for the accepted rotatable Therefore, in this range of theĞŶ͕̣̐ͬ
ϱϬͲϲϬ
ϲϬͲϳϬ RI +')
ϳϬͲϴϬ
ϴϬͲϵϬ
WKH
DFFHSWHG
SDUDPHWHUV
RI
RSHUDWLQJ
SURFHVV
central composite design of experiment are presented in
ϱϬͲϲϬ
ϲϬͲϳϬ
ϳϬͲϴϬ
ϴϬͲϵϬ
SURYLGH
WKHLU
IXOO
UHPRYDO
DFFRUGLQJ
WR
WKH
VL]H
RI
)(
WDEOH LQ WKH IRUP RI YDOXHV RI IDFWRUV DQG LQWHUYDOV RI ɚ
units.
their variation.
ˈϯсϮon the
Change of a ratio ˈofϯсϭ͕ϱ
a useful and slime expense
$V D UHVXOW RI FDUU\LQJ RXW DFFRUGLQJ WR WKH FKRVHQ
filter
in the range d x d 2 significantly influences on
$FWXDOH[SHULPHQWDOFRQGLWLRQV
SODQRIH[SHULPHQWDOVWXGLHVWKHVXEVHTXHQWSURFHVVLQJRI
refinement
in the relation of a
LWVNumber
UHVXOWV
WKH HTXDWLRQ RI UHILQHPHQW
HIIHFWLYHQHVV
of factors
Value
of factors at plan
code valueseffectiveness. With increase
ϵϬ
filter the residual
UHJUHVVLRQ RI +') DV UHVLGXDO FRQFHQWUDWLRQ IXQFWLRQV RI useful and slime expense onϮϬ the
ϵϬ
ϴϬ
Designation
ϮϬ
concentration
almost depends ϯϬless
on the size of
͕й
ϴϬ
ϳϬ
rather
Name accepted
of variationfactors is received:Variation
Ϯϱ
͕й
ϯϬ
ϳϬ
ϯϱ
wastewaters
supply on the filterϲϬ ϰϬand is defined by
ϰϬ
ϰϱ
ϱϬ
ϲϬ
ϱϬ
generally initial
concentration of
impurities. On the
ϱϬ
Y 0, 0, x 0, x2 0, x ϰ
ϱϱ
Initial conc. of
ϯ͕ϱY̛͕̣̥̦ͬ
ϱϬ
ϲϬ
ϲϬ of this residual
2
Y̛͕̣̥̦ͬ
ϯ
contrary
at
reduction
concentration
relation
ϰ
ϲϱ
Ϯ͕ϱ
0, x 0, x 0, x 0suspended
, xmaterials
ϯ͕ϱ
Ϯ
ϳϬ
ϯ
ϳϬ
almost depends less from initial concentrationϮ͕ϱ of
Consumption
of inϮ
ĞŶ͕̣̐ͬ
.
x22 0l/min
0taking
,water,
, x2 0, x
impurities
but generally defined by the size of wastewatersĞŶ͕̣̐ͬ
ϱϬͲϲϬ
ϲϬͲϳϬ
ϳϬͲϴϬ
ϴϬͲϵϬ
Ratio of useful and
on the filter.
supply
ϱϬͲϲϬ
ϲϬͲϳϬ
ϳϬͲϴϬ
ϴϬͲϵϬ
slime
expense
We
will execute validity check of the received
For finding the residual concentration in the refined
UHJUHVVLRQHTXDWLRQE\)LVFKHU
VFULWHULRQ)RUWKHHTXDWLRQ ZDVWHZDWHUVDIWHU+')IRURWKHUYDOXHVRIWKHFRQVLGHUHG
'HSHQGHQFHRIUHILQHPHQWHIIHFWLYHQHVVRI+')IURPLQLWLDO
FDOFXODWHG value of Fischer's criterion made Fp , . SDUDPHWHUV
RQ SLF WKH FDOFXODWLRQ LV FDUULHG RXW RQ
dependence:
Tabular value of Fischer's criterion at confidence
Z ·.
§
coefficient Ɋɞ - >F @ >@7KHYDOLGLW\FKHFN
ɚ
Y x ˜ ¨ © ¹̧
FP d >F @ LV VDWLVILHG WKHUHIRUH WKH UHJUHVVLRQ HTXDWLRQ DGHTXDWHO\GHVFULEHVDVXUIDFHUHVSRQVHIRUWKHFRQVLGHUHG
7KXVWKH+')SDUDPHWHUVZKLFKFDQIRUPDEDVLVIRU
ˈϯсϭ͕Ϯϱ
ˈϯсϭ
+') SURFHVV 7KH DQDO\VLV RI WKH UHFHLYHG UHJUHVVLRQ development of modern technological graphics of reverse
HTXDWLRQDOORZVGUDZLQJDFRQFOXVLRQRQH[LVWHQFHRIWKH water supply of PCM are experimentally established. The
ϵϬ
actual values of factors which provide optimum conditions residual concentration of the suspended materials received
ϵϬ
ϴϬ
of wastewaters refinement from impurities.
DIWHU +') LV VXIILFLHQW WR UHXVH
UHILQHG ZDVWHZDWHUV LQ
͕й
ϮϬ ϴϬ
ϳϬ
Ϯϱ
7KH UHJUHVVLRQ HTXDWLRQ FKDUDFWHUL]HV WKH PCM
and
to
reuse
separated
impurities.
Installation in
ϮϬ
ϳϬ ϯϬ ͕й
ϲϬ
ϯϱ
Ϯϱ
ϰϬ
ϱϬ
removal process of the suspended materials on the PCMϯϬthe
with
application
ϯϱ systems of reverse waterϲϬsupply ϰϱ
ϱϬ
ϰϬ
ϰ
ϰϱ
ϱϬ
ϱϱ
ϯ͕ϱ
hydrodynamic filter and allows estimating influence of RI +') DOORZ
XVLQJ
HIIHFWLYHO\
WKHLU
DGYDQWDJHV
WKDt
ϲϬ
ϱϬ
ϯ
ϰ Y̛͕̣̥̦ͬ
ϱϱ
ϲϱ
Ϯ͕ϱ
ϯ͕ϱ
ϲϬ
three considered factors on residual concentration of provide
more rational
use of ϯenergy
and natural resources.
Ϯ
ϳϬ
Y̛͕̣̥̦ͬ
ϲϱ
Ϯ
ϳϬ
HYDOXDWLRQ RI UHILQHPHQW HIIHFWLYHQHVV RI +') ZH ZLOO
ϱϬͲϲϬ
ϲϬͲϳϬ
Ϯ͕ϱ
ϳϬͲϴϬ
ĞŶ͕̣̐ͬ
ĞŶ͕̣̐ͬϱϬͲϲϬ
ϲϬͲϳϬ
ϳϬͲϴϬ
ϴϬͲϵϬ
ɚ
ˈϯсϭ͕ϱ
ˈϯсϮ
+\GURG\QDPLFILOWHUVDUHLQWHUPHGLDWHEHWZHHQPLFUR
ϴϬͲϵϬ
ˈϯсϭ͕Ϯϱ
ˈϯсϭ͕Ϯϱ
ˈϯсϭ
ˈϯсϭ
ϵϬ
ϵϬ
ϮϬ ϴϬ
ϮϬ Ϯϱ
ϴϬ
Ϯϱ ϯϬ ͕й
ϳϬ
ϯϱ
ϳϬ ϯϬ ͕й
ϯϱ ϰϬ
ϲϬ
ϰϬ ϰϱ
ϲϬ
ϰϱ ϱϬ
ϱϬ ϱϱ
ϱϬ
ϱϬ
ϲϬ
ˈ3ϱϱ
=1,25
ϰ
ϲϬ
ϯ͕ϱ ϰ Y̛͕̣̥̦ͬ
Y̛͕̣̥̦ͬ
ϯ͕ϱ
RIWKHVXVSHQGHGPDWHULDOVZLWKWKHVL]HVIURPPLFURQV
WR ϵϬ
PP 7KH H[LVWLQJ JULGV WKDW DUH FRPPHUFLDOO\
ϵϬ
ϴϬ
DYDLODEOH
KDYH WKH PLQLPXP XQLW VL]H RI ɯ PLFURQV
ϴϬ
ϳϬ
͕й
͕й
ϳϬ
,1&5($6(2)5(9(56(:$7(56833/<6<67(06())(&7,9(1(66
ϲϬ
ϲϬ
PLQHUDO
SDUWLFOHV ZLOO PDNH « PLFURQV 6XFK
ϱϬ
ϱϬ
ϰ
VXEWOHW\
RI UHILQHPHQW LV TXLWH DFFHSWDEOH DW SUHOLPLQDU\
ϯ͕ϱ ϰ
ϯ ϯ͕ϱ
ϲϱ
Ϯ͕ϱ ϯ stages of mechanical water and wastewaters refinement,
ϲϱ ϳϬ
Ϯ͕ϱ
Ϯ
ϯ
Ϯ
ϲϱ
ϳϬ
Ϯ͕ϱ ϯ
ĞŶ͕̣̐ͬ
Y̛͕̣̥̦ͬ
ϲϱ ϳϬ
and
it is sufficient for a number of reverse systems of the
Ϯ Ϯ͕ϱ
ĞŶ͕̣̐ͬ
Ϯ
ϳϬ
ĞŶ͕̣̐ͬϱϬͲϲϬ
ϲϬͲϳϬ
ϳϬͲϴϬ
ϴϬͲϵϬ
industrial
enterprises for refinement of technological
ĞŶ͕̣̐ͬϱϬͲϲϬ
ϲϬͲϳϬ
ϳϬͲϴϬ
ϴϬͲϵϬ
Z, %
ϱϬͲϲϬ
ϲϬͲϳϬ
ϳϬͲϴϬ Z, %
ϴϬͲϵϬ
ZDVWHZDWHUV IRU WHFKQLFDO QHHGV +') QHHG WR EH
ϱϬͲϲϬ
ϲϬͲϳϬ
ϳϬͲϴϬ
ϴϬͲϵϬ
ɚɚ
considered as a preliminary stage of mechanical
refinement for firm mineral particles removal more than
Q,̛̣̥̦ͬ
ˈϯсϭ͕ϱ
ˈ
ϯ сϮ
Q,̛̣̥̦ͬ
ˈϯсϭ͕ϱ
ˈϯсϮ
Cen͕̣̐ͬ
20 microns in size.
Cen͕̣̐ͬ
The plan of three-factoriaO H[SHULPHQW RI +')
ɚ
b
ϵϬ
wastewaters of PCM is developed, researches are
ϵϬ
ϵϬ
ϴϬ
ˈ =2
ˈ =1,5
ϮϬ
ϵϬ
FRQGXFWHG
DQG WKH UHJUHVVLRQ HTXDWLRQ FKDUDFWHUL]LQJ WKH
ϴϬ
ϮϬ
ϮϬ
͕й
ϴϬ
ϳϬ
ϯϬ
ϮϬ Ϯϱ
͕й
ϴϬ ͕й of the suspended materials removal is received.
ϳϬ
ϯϬ
process
Ϯϱ ϯϬ
ϲϬ ϰϬ
ϳϬ ͕й
ϯϬ ϯϱ
ϲϬ ϰϬ
ϳϬ
ϯϱ ϰϬ
Dependences
are established which help to calculate the
ϰϬ ϰϱ
ϱϬ
ϲϬ
ϱϬ
ϰϱ ϱϬ
ϱϬ
ϲϬ
ϱϬ
ϰ
ϱϬ ϱϱ
residual
content
of the suspended material depending on
ϯ͕ϱ
ϱϬ
ϰ
Z,
%
Z,
%
Y̛͕̣̥̦ͬ
ϲϬ
ϱϱ ϲϬ
ϯ ϯ͕ϱY̛͕̣̥̦ͬ
Y̛͕̣̥̦ͬ
ϱϬ
ϲϬ
ϲϬ ϲϱ
ϰ
Y̛͕̣̥̦ͬ
Ϯ͕ϱ ϯ
ϯ͕ϱinitial
concentration of impurity, a ratio of a useful and
ϰ
ϲϱ ϳϬ
Ϯ͕ϱ
Ϯ
ϯ
ϳϬ
ϯ͕ϱ
Ϯ
ϳϬ
Q,̛̣̥̦ͬ
Ϯ͕ϱ
ϯ
ϳϬ
Ϯ
Ϯ͕ϱ
ĞŶ͕̣̐ͬ
slime expense on the filter and a consumption of the
ĞŶ͕̣̐ͬ
Ϯ
ĞŶ͕̣̐ͬ
Q,̛̣̥̦ͬ
ĞŶ͕̣̐ͬ
SURFHVVHGIOXLGRQWKHK\GURG\QDPLFILOWHU$VDUHVXOWRI
ϱϬͲϲϬ
ϲϬͲϳϬ
ϳϬͲϴϬ
ϴϬͲϵϬ
Cen͕̣̐ͬ
ϱϬͲϲϬ
ϲϬͲϳϬ Cen͕̣̐ͬ
ϳϬͲϴϬ
ϴϬͲϵϬ
ϱϬͲϲϬ
ϲϬͲϳϬ
ϳϬͲϴϬ
ϴϬͲϵϬ
experimental studies on the simulated composition of
ϱϬͲϲϬ
ϲϬͲϳϬ
ϳϬͲϴϬ
ϴϬͲϵϬ
3&0 ZDVWHZDWHUV WKH UHJUHVVLRQ HTXDWLRQ RI UHILQHPHQW
c
d
c
d
effectiveness which characterizes the removal process of
Fig. 3. 'HSHQGHQFHRIUHILQHPHQWHIIHFWLYHQHVVRI+')IURPLQLWLDO
'HSHQGHQFHRIUHILQHPHQWHIIHFWLYHQHVVRI+')IURPLQLWLDO
suspended materials on the hydrodynamic filter is
concentration of the suspended materials and from wastewater supply
on the filter at various values of a useful and slime expense ratios on
established and allows estimating influence of three
the filter: : ɚɚ - x ,0 ; b - x , ; c - x , ; d- x 2,0
considered factors on residual impurity concentration.
+')SURYLGHKLJKH[WHQWRIUHILQHPHQWDWZDVWHZDWHUV
refinement
of PCM technological capabilities which
7KXVWKH+')SDUDPHWHUVZKLFKFDQIRUPDEDVLVIRU
7KXVWKH+')SDUDPHWHUVZKLFKFDQIRUPDEDVLVIRU
allows
using
them effectively in systems of reverse water
development of modern technological graphics of reverse
supply
of
such
industry.
water supply of PCM are experimentally established. The
ϮϬ
ϮϬ Ϯϱ
Ϯϱ ϯϬ
ϯϬ ϯϱ
ϯϱ ϰϬ
ϰϬ ϰϱ
ϰϱ
ϱϬ
ˈ3=1
ϱϬ ϱϱ
ϱϱ ϲϬ
ϲϬ
Y̛͕̣̥̦ͬ
90
90
80
80
20
25
20
70
30
35
25
70
30
60
35
60
40
45
40
45
50
55
3,5
60
50
50
4
55
3,5
60
3
65
3
65
50
4
2,5
2
70
2,5
2
70
50-60
50-60
60-70
70-80
60-70
70-80
80-90
80-90
3
3
90
90
20
80
20
25
70
30
35
60
40
45
50
55
3,5
60
80
30
70
40
60
3
65
60
50
50
4
70
2,5
2
2
70
50-60
60-70
70-80
80-90
50-60
60-70
2,5
70-80
3
3,5
50
4
80-90
residual concentration of the suspended materials received
DIWHU +')
+') LV
LV VXIILFLHQW
VXIILFLHQW WR
WR UHXVH
UHXVH UHILQHG
UHILQHG ZDVWHZDWHUV
ZDVWHZDWHUV LQ
LQ
DIWHU
PCM and to reuse separated impurities. Installation in
PCM the systems of reverse water supply with application
RI +')
+') DOORZ
DOORZ XVLQJ
XVLQJ HIIHFWLYHO\
HIIHFWLYHO\ WKHLU
RI
WKHLU DGYDQWDJHV
DGYDQWDJHV WKD
WKDt provide more rational use of energy and natural resources.
CONCLUSIONS
+\GURG\QDPLFILOWHUVDUHLQWHUPHGLDWHEHWZHHQPLFUR
+\GURG\QDPLFILOWHUVDUHLQWHUPHGLDWHEHWZHHQPLFURFORQHV $W
$W REVHUYDQFH
REVHUYDQFH RI
RI QHFHVVDU\
QHFHVVDU\
filters and hydro-FORQHV
speeds of a flow fineness of the detained particles
hydrodynamic filters ZLOO EH WLPHV OHVV WKDQ PLFURfilters, at the identical sizes of units of grids which will be
established in them.
Fineness of the detained particles in the
hydrodynamic filter is smaller than fineness of the
particles detained in a hydro-clone at identical velocity of
a flow. Thus it should be noted that micro-filters and
hydro-clones at installation in working conditions have
showed good technical and economic indicators.
+\GURG\QDPLF ILOWHUV DUH GHSULYHG RI PLFUR-filters
shortcomings - they do not demand flushing, and are
deprived of hydro-clones shortcomings – they don't have
increased mechanical wear. It provides high technical and
HFRQRPLFUDWHVDW+')LQVWDOODWLRQLQV\VWHPVRILQGXVWULDO
wastewaters refinement.
In practice of water conditioning and purification,
wastewaters refinement it is necessary to delete particles
RIWKHVXVSHQGHGPDWHULDOVZLWKWKHVL]HVIURPPLFURQV
WR PP 7KH H[LVWLQJ JULGV WKDW DUH FRPPHUFLDOO\
DYDLODEOH KDYH WKH PLQLPXP XQLW VL]H RI ɯ PLFURQV
therefore the expected fineness of the detained firm
PLQHUDO SDUWLFOHV ZLOO PDNH « PLFURQV 6XFK
VXEWOHW\ RI UHILQHPHQW LV TXLWH DFFHSWDEOH DW SUHOLPLQDU\
stages of mechanical water and wastewaters refinement,
and it is sufficient for a number of reverse systems of the
ZDVWHZDWHUV IRU WHFKQLFDO QHHGV +') QHHG WR EH
2.
7.
8.
9.
5()(5(1&(6
Sokolov L.I., 1997. Resursosberegayushchiye
tekhnologii v sistemakh vodnogo khozyaystva
promyshlennykh predpriyatiy/L.I.Sokolov – 0$69
– Alferova L.A., Nachayev A.P., 1984. =DPNQXW\\H
sistemy vodnogo khozyaystva promyshlennykh
predpriyatiy, kompleksov i rayonov./ L.$$OIHURYDL
dr. - M.: Stroyizdat. - Koganovskiy A.M., 1983. Ochistka i ispol'zovaniye
stochnykh vod v promyshlennom vodosnabzhenii. M.:
Khimiya. - Gromov B. V., Laskorin B. N., 1985. Problemy
razvitiya bezotkhodnykh proizvodstv. - M.:
Stroyizdat. – =KXNRY$,0RQJD\W,/5RG]LOOHU,'
Metody ochistki proizvodstvennykh stochnykh
YRG$,=KXNRYLGU- M.: Stroyizdat. - 1LNROHQNR,6DOLHY<H The feasibility report
on maintainability of the water supply and sewerage
system// MOTROL. – 9ROʋ– - 6DOLHY ( (FRORJRORJLFDO DQG (FRQRPLF
Problems of Power Saving up Technologies’
Introduction in Ukraine// MOTROL. - ʋ%–
%D]KHQRY <80 $OLPRY /$ 9RURQLQD 99
Treskeva N.V., 2005. Proyektirovaniye predpriyatiy
po proizvodstvu stroitel'nykh materialov i izdeliy./
<80%D]KHQRYLGU– 0$69- Bogdanov V.S., Borshchevskiy A.A., Il'in A.S.,
2000. Tekhnologicheskiye kompleksy i linii dlya
proizvodstva stroitel'nykh materialov i izdeliy./ V.S.
%RJGDQRYLGU06WUR\L]GDW– Nikolenko I.V., Skidan V.V., 2011. Perspektivy
primeneniya gidrodinamicheskikh fil'trov dlya
PDWHULDORY, 9 1LNROHQNR 8FKHQ\\H ]DSLVNL
9ROʋ7HNKQQDXNL
%D]KHQRY <80 $OLPRY /$ 9RURQLQD 99
<80%D]KHQRYLGU 0$69 ʋ $GOHU<810DUNRYD<H9*UDQRYVNL\<89
,/<$1,.2/(1.2(59,1.$5,029
RSWLPDO
Q\NK XVORYL\ <8 1 $GOHU L GU
%RJGDQRYLGU06WUR\L]GDW– Nauka. – .
%RJGDQRYLGU06WUR\L]GDW
Nikolenko I.V., Skidan V.V., 2011. Perspektivy Ruzinov L. P., 1972. Staticheskiye metody
primeneniya gidrodinamicheskikh fil'trov dlya
optimizatsii khimicheskikh protsessov. - M.: Khimiya.
obespecheniya
ratsional'nogo
ispol'zovaniya
– prirodnykh resursov (pri proizvodstve stroitel'nykh Tikhomirov V. B., 1970. Planirovaniye i analiz
eksperimenta. - M.: Legkaya industriya. - PDWHULDORY, 9 1LNROHQNR 8FKHQ\\H ]DSLVNL
Krymskogo inzhenerno-pedagogicheskogo un-ta. –
9ROʋ7HNKQQDXNL–
9ROʋ7HNKQQDXNL Simferopol'.: NITS KIPU.
– –
:=5267()(.7<:12ĝ&,6<67(0Ï:
0RFKDOLQ <H 9 .KDODWRY $ $ 0.
'267$5&=$1,$:2'<2':5271(-:352'8.&-,
*LGURGLQDPLND
]DNUXFKHQQRJR
SRWRND
Y
0$7(5,$àÏ:%8'2:/$1<&+
URWDWVLRQQ\NK ILO
WUDNK <H9 0RFKDOLQ $$
.KDODWRY ,QVWLWXW WHNKQLFKHVNR\ WHSORIL]LNL 1$1
Streszczenie. :DUW\NXOHUR]ZDĪDQHVą]DJDGQLHQLDPRGHORZDUkrainy. – K. - QLD¿OWURZDQLDK\GURG\QDPLF]QHJRZV\VWHPDFKGRVWDUF]DQLD
)LQNHO
VKWH\Q = / Primeneniye i ochistka
ZRG\RGZURWQHMZSURGXNFMLPDWHULDáyZEXGRZODQ\FK3U]HGrabochikh zhidkostey dlya gornykh mashin./ = /
VWDZLRQRVFKHPDWLQVWDODFMLGRĞZLDGF]DOQHMGRUHDOL]DFMLEDGDĔ
Finkel'shteyn. - M.: Nedra. – SLORWDĪRZ\FK¿OWUDK\GURG\QDPLF]QHJRRUD]RPyZLRQRWHFKQLNL
)LQNHO
VKWH\Q
=
/
Raschet
W\FKEDGDĔ2SUDFRZDQRSODQWUyMF]\QQLNRZHJRHNVSHU\PHQWX
JLGURGLQDPLFKHVNLNK ILO
WURY = / )LQNHO
VKWH\Q *')ĞFLHNyZ3&0SURZDG]RQHVąEDGDQLDLRWU]\PDQRUyZPnevmatika i gidravlika. Privody i sistemy
QDQLHUHJUHVMLFKDUDNWHU\]XMąFHSURFHVXVXZDQLD]DZLHV]RQ\FK
upravleniya. – Vyp. 7. – M. – – PDWHULDáyZ8VWDORQR]DOHĪQRĞFLREOLF]DQLDUHV]WNRZHM]DZDU%RMNR 1 )LQNHOVWHMQ = <DPNRYD\D 0 WRĞFL]DZLHV]RQ\FKPDWHULDáyZZHGáXJSRF]ąWNRZHJRVWĊĪHQLD
Filter for cleaning with running magnetic field//
]DQLHF]\V]F]HĔVWRVXQHNXĪ\WHF]QRĞFLLNRV]WXV]ODPXQD¿OWU]H
MOTROL. - ʋ$
ʋ$– RUD]]XĪ\FLHSU]HWZDU]DQHJRSá\QX%H]VSRUQHMHVWĪHZSUR=)LQNHOVWHLQ=9DVLOHFKNR0$VDGL New GXNFMLPDWHULDáyZEXGRZODQ\FKPRQWDĪV\VWHPyZ]DRSDWU]HQLD
posibilities for improving reliability of hydraulic ZZRGĊRGZURWQą]]DVWRVRZDQLHP¿OWURZDQLDK\GURG\QDPLF]HTXLSPHQW ZLWK WKH KHOS RI K\GURG\QDPLF FOHDQLQJ QHJRSR]ZDODVNXWHF]QLHZ\NRU]\VW\ZDüMHJR]DOHW\L]DSHZQLü
MOTROL. - ʋ-– bardziej racjonalne korzystanie z energii i zasobów naturalnych.
Sautin S. N., 1975. Planirovaniye eksperimenta v 6áRZDNOXF]RZH3URGXNFMDPDWHULDáyZEXGRZODQ\FKĞFLHNL
khimii i khimicheskoy tekhnologii. - L.: Khimiya. - SU]HP\VáRZHGRVWDUF]DQLHZRG\RGZURWQHM¿OWURZDQLHK\GUR
G\QDPLF]HVWĊĪHQLHNRV]WUHV]WNRZHVWĊĪHQLH]DQLHF]\V]F]HĔ
$GOHU<810DUNRYD<H9*UDQRYVNL\<89 VNXWHF]QRĞüRF]\V]F]DQLD
1973. Planirovaniye eksperimenta pri poiske
RSWLPDO
Q\NK XVORYL\ <8 1 $GOHU L GU - M.:
Nauka. – .
Ruzinov L. P., 1972. Staticheskiye metody
optimizatsii khimicheskikh protsessov. - M.: Khimiya.
TEKA. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE – 2014, Vol. 14, No. 4, 113–118
Research on Properties of Bitumen Modified with Polymers
Used for Asphalt Concrete Pavement on Bridges
Arthur Onischenko, Mykolay Kuzminets, Sergey Aksenov
National Transport University, Ukraine, Kyiv, str. Suvorova 1,
e-mail: Artur_onish@bigmir.net, Vectra16i@i.ua, Kabysik@bigmir.net
Received December 01.2014; accepted December 17.2014
Summary. There are given the investigation results of bitumen
PRGL¿HGZLWKWKHSRO\PHU6%5ODWH[%XWRQDO16GHSHQGing on temperature, time and the modifying agent amount, taking
LQWRDFFRXQWWKHPDQXIDFWXULQJFRPSDQ\%$6)UHFRPPHQGDtions. The carried out research has shown the possibility to proGXFHELWXPLQRXVSRO\PHURQWKHSRO\PHUODWH[%XWRQDO16EDVLV
WKDWPHHWVWKH8NUDLQHWHFKQRORJLFDOQRUPDWLYHUHTXLUHPHQWV2Q
the conducted investigations basis there have been established
the rational parameters of bituminous polymer binding agent
production process thus allowing for the determination of the
UHTXLUHPHQWVIRUWKHSRO\PHUODWH[%XWRQDO16DSSOLFDWLRQ
under domestic production conditions.
Key words: SDYLQJELWXPHQSRO\PHUODWH[%XWRQDO16ELWXminous polymer preparation process, binding agent properties.
of the binding agent physical-mechanical properties depending on the polymer amount. This research allowed to apply
WKH%XWDQRO16SRO\PHUDWWKHIROORZLQJKLJKZD\VDQG
EULGJHVFRQVWUXFWLRQ.\LY.\LY±2GHVVDNP±
NP±NP±.KDUNRY±6LPIHURSRONP
±NP.\LY±&KRSNP±NPDQGWKH
RWKHUREMHFWV)LJ
INTRODUCTION
,QURDGEXLOGLQJLQGXVWU\ELWXPHQPRGL¿FDWLRQZLWK
polymers is one of the most effective ways to extend service
life of the road-building materials produced on the organic
ELQGLQJDJHQWV>@
The most effective and recognized are the styreneEXWDGLHQHEDVHGSRO\PHUV>@$PRQJWKHSRO\PHUVRI
WKLVW\SHWKHSRO\PHUODWH[HVRIWKH%XWRQDO16VHULHV
%$6)SURGXFWLRQ86$DGYDQWDJHRXVO\GLIIHUGXHWRWKHLU
SURSHUWLHV>@
Taking into consideration the fact that domestic paving
ELWXPHQVGLIIHUIURPWKRVHXVHGLQWKH86$DQHFHVVLW\
HPHUJHGWRVWXG\LQÀXHQFHRIVXFKPRGLI\LQJDJHQWVRQWKH
properties of the paving bitumens used in Ukraine. Cationic
ODWH[%XWRQDO16EHFDPHRQHRIWKH¿UVWPRGLI\LQJODtexes used in Ukraine. On the basis of previous investigations
SHUIRUPHGE\WKH'HU]KGRUUHVHDUFKLQVWLWXWHDQG.1$58
research teams the effect was determined of the polymer
ODWH[%XWRQDO16RQWKHSDYLQJELWXPHQSURSHUWLHV>
@7KHODERUDWRU\WHVWUHVXOWVFRQ¿UPHGWKHHQKDQFHPHQW
Fig. 1. South bridge across the Dnieper in Kiev
Recently one more type of polymer latex appeared in
8NUDLQH±%XWRQDO16GHVLJQHGWRHQKDQFHWKHSDYLQJ
ELWXPHQVPRGLI\LQJHI¿FLHQF\+RZHYHULWLVREYLRXVWKDW
WRDFKLHYHWKHPD[LPXPEHQH¿WRIWKHSRO\PHUXVHDQG
WRVWXG\LWVLQÀXHQFHRQWKHELWXPHQSK\VLFDOPHFKDQLFDO
properties the preparation process rational parameters should
be determined taking into account operating conditions. In
WKLVSDSHUWKHLQÀXHQFHLVLQYHVWLJDWHGRIWKHPRGL¿HGZLWK
SRO\PHUODWH[%XWRQDO16ELWXPHQSUHSDUDWLRQSDUDPeters on the paving bitumen properties. The experimental
investigation was conducted to determine the following:
± UDWLRQDOSRO\PHUFRQVXPSWLRQIRUELWXPHQPRGL¿FDWLRQ
± LQÀXHQFHRIWKHELWXPLQRXVSRO\PHU preparation temperature and time on its main characteristics;
$57+8521,6&+(1.20<.2/$<.8=0,1(766(5*(<$.6(129
± LQÀXHQFHRIWKHSUHSDUDWLRQWHPSHUDWXUHDQGWLPHRQWKH
bituminous polymer homogeneity.
To perform this work the sample preparation procedures
were developed. The experiments were carrying out using
VDPSOHVRIELWXPHQZLWKWKHSRO\PHUODWH[%XWRQDO16
SURYLGHGE\WKH%$6)UHSUHVHQWDWLYHV±³,QWHUQDWLRQDO
chemical production, Ltd.”. The research was performed in
WKH3URI*.6XQ\DODERUDWRU\³7UDQVSRUW&RQVWUXFWLRQ
0DWHULDOVDQG'HVLJQV´RIWKH5RDG%XLOGLQJ0DWHULDOVDQG
Chemistry Department at the National Transport University.
352&('85(2)7+(%,780,128632/<0(5
35(3$5$7,21%()25(7(67,1*
To determine the influence of the polymer latex
%XWRQDO 16 RQ WKH ELWXPLQRXV SRO\PHU¶V SK\VLcal-mechanical properties, during these investigations
WKH SHWUROHXP SDYLQJ ELWXPHQ ZDV XVHG DV RQH
of the most common in Ukraine. The polymer latex was
added to this bitumen to determine its amount and other
process-dependent parameters which are relevant to production of the bituminous polymer according to domestic
UHTXLUHPHQWV
2XWSXWSDYLQJELWXPHQKDGWKHIROORZLQJRXWSXW
GDWD7DEOH
%LWXPLQRXVSRO\PHUVDPSOHVZHUHSUHSDUHG containing
DQGRIWKH%XWRQDO167HPSHUDWXUHGXULQJ
SUHSDUDWLRQYDULHGIURPɨɋWRɨɋ7KHELWXPLQRXV
SRO\PHUV¶SUHSDUDWLRQGXUDWLRQYDULHGIURPWRKRXUV
Such extended range of the modifying parameters is used
also to determine their limit values under the operating conditions.
Ta b l e 1 . 7KHRXWSXWGDWDRISDYLQJELWXPHQ
816WUHTXLUHments to petroleum Parameter
Parameters description Unit
paving bitumen
value
Needle penetration
WR
97
GHSWKDWɨɋ
mm
Softening temperature ɨ
ɋ
WR
DFFRUGLQJWR5%
Stretchability (shortcm
PLQLPXP
QHVVDWWHPSHUDWXUH
RIɨɋ
Properties change after
heating:
PLQLPXP
residual penetration
°
ɋ
PD[LPXP
softening temperature
change
2
°
Fragility temperature
ɋ
PD[LPXP
-22
°
Flash temperature
ɋ
PLQLPXP
$GKHVLRQ
90
To modify bitumen binding agent, a blade mixer instalODWLRQZDVGHYHORSHG)LJZKLFKDOORZHGIRUSHUIRUPLQJ
WKHSURFHVVZLWKWKHVSHFL¿HGWHFKQRORJLFDOPRGHV
Fig. 2. /DERUDWRU\EODGHPL[HUVLGHYLHZ
1 ± tripod, 2±FRQWUROXQLW3±HOHFWULFPRWRU4±EODGHDJLWDWRU
5±RLOWKHUPRVWDW6±RLOWDQN7±HOHFWULFWHQVRU8±WKHUPRFRXSOH
in the oil thermostat, 9±WKHUPRFRXSOHIRUPRGL¿HGELWXPHQ
10±PHWDOFRQWDLQHUDFFRUGLQJWR'67811 ±ELWXPHQ
binder.
/$%25$725<5(6($5&+5(68/76
The tests on the output bitumen as well as bitumen mod
L¿HGZLWKSRO\PHUZHUHFDUULHGRXWDFFRUGLQJWRDSSOLFDEOH
UHJXODWLRQV>@7KHRXWSXWDQGPRGL¿HGELWXPHQWHVW
UHVXOWVDUHVKRZQLQ)LJ
H
qɋ
qɋ
%LWXPLQRXV SRO\PHU
ɨɋ
ɨ
Fig. 3. %LWXPLQRXVSRO\PHUSHQHWUDWLRQGHSHQGHQFHDW
ɋ
upon the preparation time at various polymer amounts
%LWX
DW
qɋ
Fig. 4. %LWXPLQRXVSRO\PHUSHQHWUDWLRQGHSHQGHQFHDW ɨɋ
%LWXPLQRXV
upon the preparation
timeSRO\PHU
at various polymer amounts
ɨ
ɋ
5(6($5&+213523(57,(62)%,780(102',),(':,7+32/<0(56
On the basis of these results the conclusion can be made
that to establish the bituminous polymer viscosity factor it
LVVXI¿FLHQWWRPRGLI\WKHELQGLQJDJHQWGXULQJWKUHHKRXUV
and after this time period it is possible to determine its grade.
While analyzing the bituminous polymer viscosity change
LQFDVHRIWKHSUHSDUDWLRQWHPSHUDWXUHFKDQJHIURP°ɋ
to 200 °ɋLWLVVHHQWKDWDWLWVLQFUHDVHWKHYLVFRVLW\YDOXH
LQFUHDVHVWRR)LJ
$VLWPD\EHVHHQDWWKHSUHSDUDWLRQWHPSHUDWXUHRI
°ɋZLWKRISRO\PHUWKHREVHUYHGYLVFRVLW\UHGXFWLRQ
ɉHTXDOVZLWKRISRO\PHU±ZLWKRI
SRO\PHU±$WWKHWHPSHUDWXUHRI°ɋZLWKRI
SRO\PHUWKHREVHUYHGYLVFRVLW\UHGXFWLRQHTXDOVZLWK
RISRO\PHU±ZLWKRISRO\PHU±DQG
at the temperature of 200 °ɋ±UHVSHFWLYHO\DQG
2QWKHEDVLVRIVXFKUHVXOWVLWLVSRVVLEOHWRDVVXPH
that while preparing the bituminous polymer at the temperDWXUHRI °ɋWKHPRGLI\LQJSURFHVVGLGQRWWDNHSODFH
FRPSOHWHO\ZKLFKFRUUHVSRQGVWR%$6)UHFRPPHQGDWLRQV
WKHUHFRPPHQGHGUDQJHLV°ɋ
Fig. 5. %LWXPLQRXVSRO\PHUSHQHWUDWLRQGHSHQGHQFHDW °ɋ
upon the preparation temperature at various polymer amounts
Decrease of the penetration value of the bituminous
SRO\PHUSUHSDUHGDWWHPSHUDWXUHVRI °ɋDQG °ɋ
is virtually the same, however it can also be assumed that
under such conditions simultaneously with the binding agent
modifying process the intensive processes of its deterioration occurs. It is important also to note that at the preparation temperature increase and especially at polymer amount
LQFUHDVHXSWRWKHELWXPLQRXVSRO\PHUPD\WUDQVIHU
to a more viscose state. This feature of the produced bituminous polymer should be taken into consideration during
preparation, placement and consolidation of polymer road
concrete mix.
The results of determination of the bituminous polymer
softening temperature dependence upon the preparation temSHUDWXUHDQGWLPHVKRZHGLWVFKDQJHDEOHFKDUDFWHU)LJ
similar to the penetration changeability.
,QFDVHRISRO\PHUFRQFHQWUDWLRQDOUHDG\DIWHUWKH
¿UVWKRXURIELWXPLQRXVSRO\PHUEHQGLQJDJHQWSUHSDUDWLRQ)LJWKHKHDWUHVLVWDQFHYDOXHLQFUHDVHGE\°ɋDQG
remained virtually constant at its further maturing in the
UHDFWRU)LJ
,QFDVHRISRO\PHUFRQFHQWUDWLRQWKHPDLQLQFUHDVH
LQWKHKHDWUHVLVWDQFHYDOXHWRRNSODFHGXULQJWKH¿UVWKRXU
of bituminous polymer bending agent preparation and corUHVSRQGHGWR°ɋ$IWHUKRXUVRIWKHELWXPLQRXVSRO\PHU
EHQGLQJDJHQWSUHSDUDWLRQWKLVLQFUHDVHZDVHTXDOWR°ɋ
Fig. 6. %LWXPLQRXVSRO\PHUVRIWHQLQJWHPSHUDWXUHGHSHQGHQFH
upon the preparation time at various polymer amounts
,QFDVHRISRO\PHUFRQFHQWUDWLRQWKHVHSDUDPHWHUV
ZHUHHTXDOWR °ɋDQG °ɋ,WLVQHFHVVDU\WRQRWHWKDW
the bituminous polymer bending agent was prepared at the
WHPSHUDWXUHRI°ɋDFFRUGLQJWR%$6)UHFRPPHQGDWLRQV
In case of the bituminous polymer bending agent preparation
at the temperature reduction from 200 °ɋWR°ɋ)LJ
the softening temperature value respectively increased by
°ɋDQGGHFUHDVHGE\°ɋ
Fig. 7. %LWXPLQRXVSRO\PHUVRIWHQLQJWHPSHUDWXUHGHSHQGHQFH
upon the preparation temperature at various polymer amounts
,WFRQ¿UPVWKHSUHYLRXVDVVXPSWLRQWKDWWKHELWXPLQRXV
SRO\PHUEHQGLQJDJHQWSUHSDUDWLRQWHPSHUDWXUHRI °ɋ
LVLQVXI¿FLHQWIRUTXLFNSRO\PHULQWHJUDWLRQWRJHWWKHKRmogeneous mixture, and the heat resistance slow increase
at the preparation temperature of 200 °ɋHQVXUHVWKDWWKH
deterioration processes do not develop.
To examine the possible bituminous polymer bending
agent deterioration at too high temperatures, the bituminous
polymer bending agent elasticity change in a range of the
temperatures and preparation time periods was measured.
The following results were obtained:
The elasticity occurrence even at the small amount of pol\PHUDQGPRGLI\LQJWLPHDWDIWHUKRXURISUHSDUDWLRQ
)LJFRQ¿UPVWKHSRVVLELOLW\RIWKHELWXPLQRXVSRO\PHU
bending agent elastic properties considerable enhancement.
Fig. 8. %LWXPLQRXV SRO\PHU HODVWLFLW\ GHSHQGHQFH XSRQ WKH
preparation temperature at various polymer amounts
%LWXPLQRXV SRO\PHU
%LWXPLQRXVSRO\PHU
$W
$57+8521,6&+(1.20<.2/$<.8=0,1(766(5*(<$.6(129
,QFDVHRISRO\PHUFRQFHQWUDWLRQDIWHUWKH¿UVWKRXU
RISUHSDUDWLRQWKHHODVWLFLW\IDFWRUZDVHTXDOWRDIWHU
KRXUV±DQGLWUHPDLQHGFRQVWDQWDWWKHPD[LPXP
WLPHRIWKHELWXPLQRXVSRO\PHUEHQGLQJDJHQW±KRXUV
Similar increase of the elasticity factor was found at modiTXDOLW\
polyI\LQJRISRO\PHUUHVSHFWLYHO\E\DQGDQG
after
heatDWRISRO\PHU±DQG7KXVWKHSRO\PHU
tegration during storage. Therefore,
DPRXQWLQFUHDVHHYHQXSWRYLUWXDOO\GLGQRWLQÀXHQFH
WKHLQFUHDVHRIWKHHODVWLFLW\IDFWRUZKLFKLVDOVRVXI¿FLHQWO\
were conducted and
high at a smaller amount ofwhich
the polymer.
confirmed the very
It is especially
note that the
value
slight
change important
of such to
properties
at elasticity
given modiat the high temperatures of the bituminous polymer bending
DJHQWSUHSDUDWLRQUHPDLQHGYLUWXDOO\LQYDULDEOH)LJDV
compared with the preparation at low temperatures. polyThese
factor
UHVXOWVFRQ¿UPWKHSUHYLRXVVWDWHPHQWVFRQFHUQLQJWKHQHZ
binding agent deterioration resistance.
polymer
amounts and time of its modifying is very
VOLJKW $IWHU WKH ILUVW KRXU RI PRGLI\LQJ DW
SUHSDUDWLRQ WHPSHUDWXUH RI qɋ
qɋ
PRGLILHG EHQGLQJ DJHQW ZKLOH DIWHU KRXUV
q
ɋ TXLU
Fig.
9. %LWXPLQRXV SRO\PHU HODVWLFLW\ GHSHQGHQFH XSRQ WKH
$W ORZHULQJ WKH ELWXPLQRXV SRO\PHU EHQGLQJ DJHQW
q
SUHSDUDWLRQWHPSHUDWXUHWR°ɋWKLVSDUDPHWHUUHPDLQHG
ɋ
°
the same, and at the temperature
up to 200 ɋLWV
° qɋ increase
PD[LPXPYDOXHZDV ɋ)LJZKLFKDOVRPHWWKH
WKHUHTXLUHPHQWV UHTXLUHPHQWV>@
Fig. 11. %LWXPLQRXVSRO\PHUVRIWHQLQJWHPSHUDWXUHFKDQJHGHpendence upon
the preparation
temperature at various polymer
%LWXPLQRXV
SRO\PHU
amounts
Dependence of the bituminous polymer bending agent
disintegration factor during storage (according to penetraWLRQIDFWRURQWKHSRO\PHUDPRXQWWKHSUHSDUDWLRQWLPH
and temperature showed its slight change during modifying
ERWKDWORZWHPSHUDWXUHVDQGDWKLJKRQHVGHJUHHVRI
SHQHWUDWLRQ)LJ
preparation time at various polymer amounts
The bituminous polymer bending agent important parameters which characterize its processability, usability in
production conditions, and also determine the produced
ELQGLQJDJHQWTXDOLW\DUHWKHELWXPLQRXVSRO\PHUEHQGLQJ
agent properties changes after heating and disintegration
during storage. Therefore, in this work, investigations were
FRQGXFWHGDQGWKHUHVXOWVREWDLQHGZKLFKFRQ¿UPHGWKH
very slight change of such properties at given modifying
temperatures.
It may be seen that the bituminous polymer bending
agent heat resistance factor change after heating at various
polymer amounts and time of its modifying is very slight.
$IWHUWKH¿UVWKRXURIPRGLI\LQJDWSUHSDUDWLRQWHPSHUDWXUH
RI°ɋWKLVSDUDPHWHUZDVKLJKHUE\°ɋDVFRPSDUHG
to the output bituminous polymer bending agent, which is
H[SODLQHGE\WKHQRQPRGL¿HGEHQGLQJDJHQWZKLOHDIWHU
KRXUVRIPRGLI\LQJWKLVSDUDPHWHUGLGQRWH[FHHG °ɋ
)LJLHLWPHWWKHDSSOLFDEOHUHTXLUHPHQWV
Fig. 10. %LWXPLQRXVSRO\PHUVRIWHQLQJWHPSHUDWXUHFKDQJHGHpendence upon the preparation time at various polymer amounts
qɋ
ZDVHTXDOWR
Fig. 12. %LWXPLQRXVSRO\PHUGLVLQWHJUDWLRQGXULQJVWRUDJHDFFRUGLQJWRSHQHWUDWLRQIDFWRUGHSHQGHQFHXSRQWKHSUHSDUDWLRQ
Fig. 12. %LWXPLQRXV SRO\PHU
time
various polymer
amounts
LQJatVWRUDJH
DFFRUGLQJ
WR SHQHWUDWLRQ IDFWRU G
$OWKRXJKWKLVSDUDPHWHULVQRWUDWHGWKHREWDLQHGUHVXOWV
VKRZWKHVXI¿FLHQWKRPRJHQHLW\RISURGXFHGELQGLQJDJHQW
after $OWKRXJK
modifying. Dependence of the bituminous polymer
bending agent disintegration factor during storage (accordLQJWRVRIWHQLQJWHPSHUDWXUHXSRQWKHSRO\PHUDPRXQWDQG
its preparation time showed slight change of this parameter
WKDWDGGLWLRQDOO\FRQ¿UPHGWKHREWDLQHGELWXPLQRXVSRO\PHU
bending agent homogeneity as well as the ability to be proFHVVHG+RZHYHULWLVQHFHVVDU\WRQRWHWKDWDWWKHSRO\PHU
amount increase,
the disintegration factor value increases
too, although remaining within the allowable limits.
$WWKHSRO\PHUFRQFHQWUDWLRQRIWKH.L.IDFWRU
difference depending on the preparation time varied from
WR °ɋZKLOHDWWKHSRO\PHUFRQFHQWUDWLRQRIWKLV
GLIIHUHQFHZDVHTXDOWR°ɋ)LJ
Such results
are observed in
the entire range
of the bi+RZHYHULWLV
QHFHVVDU\WR
QRWHWKDW
tuminous polymer bending agent preparation temperature
change.
%LW
%LW
5(6($5&+213523(57,(62)%,780(102',),(':,7+32/<0(56
Fig. 13. %LWXPLQRXVSRO\PHUGLVLQWHJUDWLRQGXULQJVWRUDJHDFFRUGLQJWRSHQHWUDWLRQIDFWRUGHSHQGHQFHXSRQWKHSUHSDUDWLRQ
temperature at various polymer amounts
Fig. 14. %LWXPLQRXVSRO\PHUGLVLQWHJUDWLRQGXULQJVWRUDJHDFFRUGLQJWRVRIWHQLQJWHPSHUDWXUHGHSHQGHQFHXSRQWKHSUHSDration time at various polymer amounts
Fig. 15. %LWXPLQRXVSRO\PHUGLVLQWHJUDWLRQGXULQJVWRUDJHDFFRUGLQJWRVRIWHQLQJWHPSHUDWXUHGHSHQGHQFHXSRQWKHSUHSDration temperature at various polymer amounts
CONCLUSIONS
7KHELWXPLQRXVSRO\PHUEHQGLQJDJHQWRQWKHEDVLVRI
WKH%XWDQRO16SRO\PHUODWH[LQFRPSOLDQFHZLWKDOO
VWDQGDUGSDUDPHWHUVPHHWVWKHUHTXLUHPHQWVWRELWXPHQ
PRGL¿HGZLWKSRO\PHUV
2. The bituminous polymer bending agent physical-mechanLFDOSURSHUWLHVFKDQJHLQWKHZLGHOLPLWVE\
depending on the polymer amount and the preparation
process parameters shows the possibility of its properties
active regulation under the particular operating conditions.
7KHELWXPLQRXVSRO\PHUEHQGLQJDJHQWSURSHUWLHVUHVLVWance and stability under the high process temperatures
LQÀXHQFHVKRZVWKHSRVVLELOLW\RILWVVXI¿FLHQWO\ORQJ
term storage under the production conditions with the
original properties retained.
6KRUWWLPHRIWKLVELWXPLQRXVSRO\PHUEHQGLQJDJHQW
SUHSDUDWLRQRQDYHUDJHKRXUVDOORZVIRUWKHVDYLQJ
of the considerable energy resources and advantageously
distinguishes it from the bituminous polymer bending
DJHQWVSURGXFHGZLWKWKHRWKHUPRGL¿HUV
7KH%XWDQRO16SRO\PHUODWH[UDWLRQDODPRXQWIRU
PRGLI\LQJWKHELWXPHQRIWKLVJUDGHFRQVWLWXWHV
WKHSUHSDUDWLRQWLPHLVZLWKLQWKHOLPLWVRIKRXUV
DQGWKHRSWLPDOSUHSDUDWLRQWHPSHUDWXUHLVFORVHWR
°ɋ
5()(5(1&(6
628±³%LWXPHQPRGL¿HG
using laboratory blade mixer. Methods for process conWUROPRGL¿FDWLRQV
2. =RORWDUHY9$., 2009.3RO\PHUPRGL¿HGELWXPHQDQG
DVIDOWSROLPHUFHPHQWV'RUR]KQDLDWHKQLND
=RORWDUHY9$., 2003. 3URSHUWLHVRIELWXPHQ6%6SRO\PHUPRGL¿HGW\SH$YWRVKO\DKRYLNRI8NUDLQH±,VVXH
.\LY
King G.N., Radovskii B.S., 2004. Properties of polymer
bitumen binders in the U.S. and methods of testing //
6FLHQWL¿FDQG7HFKQLFDO,QIRUPDWLRQ.LW1RYRVWLYGRUR]KQRPGHOH±,VVXH0RVFRZ
King G.N., Radovskii B.S., 2004. Materials and technology company Koch Materials for the construction
DQGUHSDLURIURDGVXUIDFHV6FLHQWL¿FDQG7HFKQLFDO
,QIRUPDWLRQ .LW 1RYRVWL Y GRUR]KQRP GHOH ± ,VVXH
0RVFRZ
Hochman L. M., 2004. Complex organic binders based
RQEORFNFRSRO\PHUV6%6W\SH±0RVFRZ³(NRQLQIRUP´-6&±
7. Kirichek <$'HP¶\DQHQNR996XKRUHEU\\2$
2008.([SHULPHQWDOVWXG\RIWKHSURSHUWLHVRIPRGL¿HG
ELWXPHQXVHGLQURDGFRQVWUXFWLRQ%XOOHWLQRI3U\GQLSURYVND6WDWH$FDGHP\RI&RQVWUXFWLRQDQG$UFKLWHFWXUH±'QHSURSHWURYVN36$%$ʋ
8. 2QLVKFKHQNR $0 Improving durability of
asphalt layers by the use of polymer latexes. Theses
&DQGLGDWHRIVFLHQFHV.\LY
9. '678%9³%LWXPHQPRGL¿HGZLWKSRO\PHUV6SHFL¿FDWLRQV³=RORWDUHY9$0R]JRYR\99
=KGDQ\XN9.DQGRWKHU
'678³%LWXPHQURDGYLVFRXV6SHFL¿FDWLRQV³
Basov G., Kireev A., Kireeva M., 2010 “Improvement
of the ultrasonic diagnosing of axes of the wheeled pairs
RIUROOLQJVWRFNRIUDLOZD\V´/XEOLQ3RODQG7(.$
;$
'UX]2*LWQD\D6“Choice of the economical
method of welding at making of steel constructions” //
/XEOLQ3RODQG7(.$;,$
.UDYFKHQNR$6DNQR2 2011 “Tire life adjustment
RQWKHFRHI¿FLHQWVRIRSHUDWLRQDODQGURDGFRQGLWLRQV´
/XEOLQ3RODQG7(.$;,$
Sumorek A., Buczaj M., 2012 “New elements in vehicle communication “media oriented systems transport”
SURWRFROª/XEOLQ3RODQG7(.$;,,B
$57+8521,6&+(1.20<.2/$<.8=0,1(766(5*(<$.6(129
.XOLJ56NRQHFNL6à\VLDN*/DVNRZVNL-5XG\
S., Krzykowski A., Nadulski R., 2013 “The effect of
pressure on the compaction parameters of oakwood sawGXVWHQKDQFHGZLWKDELQGHU´/XEOLQ3RODQG7(.$
;,,,B
Korop G., 2013 “Development of structure and the
concept of functioning the modernized logistic system
of service industrial enterprise by railway” // Lublin,
3RODQG7(.$;,,,B
ɂɋɋɅȿȾɈȼȺɇɂȿɋȼɈɃɋɌȼȻɂɌɍɆɈȼ
ɆɈȾɂɎɂɐɂɊɈȼȺɇɕɏɉɈɅɂɆȿɊɈɆȾɅə
ɂɋɉɈɅɖɁɈȼȺɇɂəȺɋɎȺɅɖɌɈȻȿɌɈɇɇɕɏ
ɉɈɄɊɕɌɂɃɇȺɆɈɋɌȺɏ
Ⱥɧɧɨɬɚɰɢɹȼɪɚɛɨɬɟɩɪɢɜɟɞɟɧɵɪɟɡɭɥɶɬɚɬɵɢɫɫɥɟɞɨɜɚɧɢɹ
ɛɢɬɭɦɚɦɨɞɢɮɢɰɢɪɨɜɚɧɧɨɝɨɩɨɥɢɦɟɪɧɵɦɥɚɬɟɤɫɨɦɬɢɩɚ
ɋȻɊ%XWRQDO16ɜɡɚɜɢɫɢɦɨɫɬɢɨɬɬɟɦɩɟɪɚɬɭɪɵɜɪɟɦɟɧɢ
ɢɤɨɥɢɱɟɫɬɜɚɦɨɞɢɮɢɤɚɬɨɪɚɫɭɱɟɬɨɦɩɪɨɢɡɜɨɞɫɬɜɟɧɧɵɯ
ɪɟɤɨɦɟɧɞɚɰɢɣɤɨɦɩɚɧɢɢ%$6)ɉɪɨɜɟɞɟɧɧɵɟɢɫɫɥɟɞɨɜɚɧɢɹ
ɩɨɤɚɡɚɥɢɜɨɡɦɨɠɧɨɫɬɶɩɪɨɢɡɜɨɞɫɬɜɚɦɨɞɢɮɢɰɢɪɨɜɚɧɧɨɝɨ
ɛɢɬɭɦɚ ɥɚɬɟɤɫɨɦ %XWRQDO 16 ɤɨɬɨɪɵɣ ɫɨɨɬɜɟɬɫɬɭɟɬ
ɬɟɯɧɨɥɨɝɢɱɟɫɤɢɦɢɧɨɪɦɚɬɢɜɧɵɦɬɪɟɛɨɜɚɧɢɹɦɫɬɚɧɞɚɪɬɨɜ
ɍɤɪɚɢɧɵ ɇɚ ɨɫɧɨɜɟ ɪɟɡɭɥɶɬɚɬɨɜ ɢɫɫɥɟɞɨɜɚɧɢɣ ɛɵɥɢ
ɭɫɬɚɧɨɜɥɟɧɵ ɪɚɰɢɨɧɚɥɶɧɵɟ ɩɚɪɚɦɟɬɪɵ ɦɨɞɢɮɢɤɚɰɢɢ
ɛɢɬɭɦɧɨɝɨɜɹɠɭɳɟɝɨɩɨɥɢɦɟɪɧɵɦɥɚɬɟɤɫɧɨɣ%XWRQDO16
ɜɩɪɨɢɡɜɨɞɫɬɜɟɧɧɵɯɭɫɥɨɜɢɹɯ
Ʉɥɸɱɟɜɵɟɫɥɨɜɚɞɨɪɨɠɧɵɣɛɢɬɭɦɩɨɥɢɦɟɪɧɵɣɥɚɬɟɤɫ
%XWRQDO16ɩɪɨɰɟɫɫɩɨɞɝɨɬɨɜɤɢɛɢɬɭɦɚɦɨɞɢɮɢɰɢɪɨɜɚɧɧɨɝɨ
ɩɨɥɢɦɟɪɨɦɫɜɹɡɵɜɚɸɳɢɟɫɜɨɣɫɬɜɚɛɢɬɭɦɚ
TEKA. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE – 2014, Vol. 14, No. 4, 119–124
Characteristics of Selected Rheological Properties of Water Suspensions
of Maize TPS Biocomposites
Tomasz Oniszczuk, Agnieszka Wójtowicz, Leszek Mościcki,
Andrzej Rejak, Maciej Combrzyński
Department of Food Process Engineering, Lublin University of Life Sciences
Doświadczalna 44, 20-236 Lublin, Poland e-mail: tomasz.oniszczuk@up.lublin.pl
Received December 07.2014; accepted December 18.2014
Summary. 7KHUHVHDUFKFRYHUHGWKHDTXHRXVVROXWLRQVRI
PDL]HWKHUPRSODVWLFVWDUFK7367KHWKHUPRSODVWLFVWDUFK
granules were produced from mixtures of maize starch, glycHURODQGDQDGGLWLYHRI¿OOHUVLQWKHIRUPRIQDWXUDO¿EUHV,Q
WKHVWXG\DPRGL¿HGVLQJOHVFUHZH[WUXVLRQFRRNHU76
ZDVXVHGZLWK/' DQG/' ZLWKDQH[WUDFRROLQJRI
the end part of the barrel. The research focused on the effect
of the extruder screw speed, the plasticizing system and the
W\SHRI¿OOHUXVHGIRUDSSDUHQWYLVFRVLW\RISXOYHUL]HGJUDQXOHV
of maize starch. During the measurements, the top values of
apparent viscosity were reported for the maize TPS containing
DQDGGLWLRQRIFHOOXORVH¿EUHH[WUXGHGZLWKWKHSODVWLFL]LQJ
V\VWHP/' Key words: viscosity, thermoplastic starch, extrusion, biocomposites.
consumers until tests prove the non-carcinogenic effect of
%3$RQKXPDQV>@7KHUHDUHPDQ\PRUHH[DPSOHVRI
similar concerns. Therefore, the general public puts more
and more attention to the growing problem of plastics and
their recycling.
In order to protect the environment, and above all, protect human health, developed countries undertake research
into the manufacture of environmentally friendly polymers. The primary focus is on natural materials, includLQJWKRVHPDGHRIGLIIHUHQWW\SHVRIVWDUFK%LRSRO\PHUV
are obtained after mixing starch with a plasticizer (often
JO\FHUROVRDVWRDOORZWKHOLTXHIDFWLRQRIWKHPDWHULDODW
a temperature lower than the decomposition temperature
of the starch. Such starch is referred to as thermoplastic
VWDUFK736DQGLVUHJDUGHGDVDELRGHJUDGDEOHELRSRO\PHU>@%LRGHJUDGDEOHSRO\PHUVOLNHSHWUROHXP
INTRODUCTION
SRO\PHUVPXVWPHHWFHUWDLQUHTXLUHPHQWVLQWHUPVRI
SK\VLFDOSURSHUWLHV%LRSRO\PHUSURGXFWLRQLVGRQHRQ
The recent decades have seen a growing application WKHPDFKLQHVDQGHTXLSPHQWXVHGIRUWKHSURGXFWLRQRI
of plastics in all the areas of human activity. Today, it is synthetic polymers. These materials can be an option in
GLI¿FXOWWRLPDJLQHOLIHZLWKRXWSODVWLFVLQSDFNDJLQJWR\V WKHSODVWLFVPDUNHWRIIHULQJ>@
The aim of the study was to determine the viscosity of
FDUVPHGLFDOSURGXFWVHWF+RZHYHUEHVLGHVWKHXQTXHVWLRQDEOHEHQH¿WVWKHUHDUHDOVRVRPHQHJDWLYHFRQVHTXHQFHV thermoplastic maize starch water solutions with an addition
RIWKHLUXELTXLW\7KHPHWKRGRISURFHVVLQJDQGGLVSRVDO RIQDWXUDO¿EUHRIGLIIHUHQWRULJLQGHSHQGLQJRQWKHSURof different types of plastic after their life cycle has a tre- duction parameters.
mendous impact on the natural environment, including
KXPDQKHDOWK>@,WKDVEHHQDVVHUWHGWKDWVRPH
0$7(5,$/6$1'0(7+2'6
chemical compounds used in plastics processing for the
SURGXFWLRQRIIRRGSDFNDJLQJELRVSKHQRO$±%3$FDQ
affect the human endocrine system and are ranked among
The basic raw material used in the study was maize
cancer-causing substances. The U.S. companies represent- VWDUFKRIWKHW\SH0(5,=(7SURGXFHGE\6HJH]KD
LQJWKHSODVWLFVLQGXVWU\GHFLGHGWRZLWKGUDZ%3$IURP ,UHODQG$OVRÀD[¿EUHZDVXVHGIURPD3ROLVKSURGXFthe process of manufacturing packaging for food storage, HUFHOOXORVH¿EUH9LYDSXUW\SH-56IURPD*HUPDQ
and the U.S. government declared amendments to the rel- producer and ground pine bark. The basic characteristics
evant law on food safety that are expected to eliminate any RIWKHJURXQGEDUNFHOOXORVH¿EUHDQGÀD[¿EUHDUHJLYHQ
SURGXFWVFRQWDLQLQJ%3$WKDWDUHOLNHO\WREHGHWULPHQWDOWR LQ7DEOH
721,6=&=8.$:Ï-72:,&=/02ĝ&,&.,$5(-$.0&20%5=<ē6.,
Ta b l e 1 . %DVLFFKDUDFWHULVWLFVRIFHOOXORVH¿EUHÀD[¿EUH
and bark.
*URXQGSLQH
bark
Feature
Determination results
.±
Particle size [m] .±. .±.
.
%XONGHQVLW\
±
±
[kg/m]
+XPLGLW\>@
±
±
±
&HOOXORVH¿EUH
)OD[¿EUH
From among a considerable group of auxiliary substancHVXVHGDVSODVWLFL]HUVDQGDGGLWLYHVLPSURYLQJWKHTXDOLW\ Photo 1. 6LQJOHVFUHZH[WUXGHU76PDGHE\=0&K0HWDOof obtained material, the study used technical glycerol of FKHPLQ*OLZLFH3RODQG
SXULW\LQWKHDPRXQWRIRIGU\PDVVRIVWDUFK>@
mm and a height of 20 mm with a conical bottom surface.
7KHIROORZLQJVHWWLQJVZHUHXVHGLQWKHVWXG\N1KHDG
35(3$5$7,212)7360,;785(6
IRUFHPPPHDVXULQJJDSWKHWRWDOWHVWOHQJWKPP
KHDGVSHHGPPPLQ-1. During the study, the resistance
6WDUFKZLWKRIPRLVWXUHFRQWHQWFHOOXORVH¿EUHV force of the suspension was recorded during the movement
ÀD[¿EUHVJURXQGEDUNDQGJO\FHUROZHUHXVHGWRSUHSDUH of the plunger in one bottom-up measurement cycle, which
PDWHULDOPL[WXUHV7KHJO\FHURODFFRXQWHG736IRURI ZDVQH[WFRQYHUWHGLQWRWKHDSSDUHQWYLVFRVLW\FRHI¿FLHQW
WKHPL[WXUHZHLJKWDQGWKHSURSRUWLRQRI¿EUHVZDV 7KHPHDVXUHPHQWVZHUHPDGHXVLQJWKHWHVW;SHUWY
DQG6DPSOHVZHUHPL[HGXVLQJDODERUDWRU\PL[HU SURJUDP7KHUHZHUH¿YHUHSOLFDWLRQVWKH¿QDOUHVXOWEHLQJ
ribbon. Through repeated trials, the effective mixing time WKHDULWKPHWLFPHDQRIWKHPHDVXUHPHQWV>@
ZDVHVWDEOLVKHGDWPLQXWHV$IWHUPL[LQJWKHVDPSOHV
ZHUHOHIWLQVHDOHGSODVWLFEDJVIRUKRXUVWRKRPRJHQL]H
5(68/76
Immediately before extrusion, the samples were mixed again
IRUPLQXWHVWRREWDLQDORRVHDQGSRZGHUHGVWUXFWXUHRI
the mixture.
The use of the back extrusion chamber allowed the exDPLQDWLRQRIWKHDSSDUHQWYLVFRVLW\RI¿QHWKHUPRSODVWLF
VWDUFKJUDQXOHVDQGRIWKHGHJUHHRIERQGLQJRIWKH¿OOHUV
(;7586,21
FHOOXORVH¿EUHÀD[¿EUHDQGJURXQGEDUN7KHVHSDUDPHWHUV
are crucial in determining the processing properties of therTPS biocomposite granules were made by a single-screw PRSODVWLFVWDUFK7KHDGGLWLRQRIQDWXUDO¿OOHUVLQWKHIRUP
H[WUXVLRQFRRNHUHTXLSSHGZLWKWZRNLQGVRISODVWLFL]HU of granules is intended to stabilize the shape and improve
V\VWHPVZLWKWKHVFUHZOHQJWKGLDPHWHUUDWLRRI/' the performance of rigid forms of packaging.
DQG/' 3KRWR$VWHHOGLHZDVXVHGZLWKDKROHRI
PPLQGLDPHWHU*UDQXOHVZHUHSURGXFHGDWWKHH[WUXGHU
VFUHZVSHHGRIDQGUSP7KHH[WUXVLRQSDUDPHWHUVZHUHVHWLQWKHWHPSHUDWXUHUDQJHƒ&DQGPDLQWDLQHGE\DSSURSULDWHO\DGMXVWLQJWKHÀRZLQWHQVLW\RIWKH
FRROLQJOLTXLG7KHH[WUXGHUZDVHTXLSSHGZLWKDPDWHULDO
feeder, a plasticizing system made up of the screw linked
to the drive and housing, a preheating device and a cooling
V\VWHP>@
0($685(0(172)$33$5(179,6&26,7<
$=ZLFNWHVWLQJPDFKLQHZDVXVHGLQWKHVWXG\HTXLSSHG
with a back extrusion chamber. The obtained extrudate was
ground in a laboratory mill to the grain size below 0.8 mm.
)URPWKHJURXQGH[WUXGDWHDQGGLVWLOOHGZDWHUDWƒ&
suspensions were prepared by continuous mixing. The viscosity measurement of the suspensions was carried out after
PLQXWHVRIPL[LQJ7KHPHDVXUHPHQWVZHUHPDGHLQ
WKHEDFNH[WUXVLRQFKDPEHUPPLQKHLJKWDQGPP
RILQQHUGLDPHWHUXVLQJDSOXQJHUZLWKDGLDPHWHURI
Fig. 1. 7KHLQÀXHQFHRIFHOOXORVH¿EUHVDQGWKHH[WUXGHUVFUHZ
speed on the apparent viscosity of maize starch solutions (exWUXGHUSODVWLFL]LQJV\VWHPRI/' )LJVKRZVWKHGHSHQGHQFHRIWKHYLVFRVLW\RIDTXHRXV
solutions of thermoplastic maize starch upon the applied
&+$5$&7(5,67,&62)6(/(&7('5+(2/2*,&$/3523(57,(62):$7(56863(16,216
VFUHZVSHHGRIWKH/' YHUVLRQH[WUXGHUDQGXSRQWKH
FRQWHQWRIFHOOXORVH¿EUHLQWKHPL[WXUH,WZDVREVHUYHG
that the viscosity of the solution increased along with the
increasing extruder screw speed and a higher addition of
FHOOXORVH¿EUH7KLVGHSHQGHQF\LVFRUURERUDWHGWKURXJK
WKHSRVLWLYHYDOXHVRIWKHVORSHFRHI¿FLHQWVRISRO\QRPLDO
WUHQGOLQHVIRUDOOWKHDSSOLHGVFUHZVSHHGV7DEOH$OVR
WKHPRVWVLJQL¿FDQWGLIIHUHQFHVZHUHLQGLFDWHGEHWZHHQWKH
PHDQVS
The highest viscosity values were obtained for granuODWHGPDWHULDOSURGXFHGDWWKHH[WUXGHUVFUHZVSHHGRI
rpm-17KLVWHVWL¿HVWRDJRRGERQGEHWZHHQWKH¿EUHVDQG
biopolymer matrix.
Fig. 2. 7KHLQÀXHQFHRIFHOOXORVH¿EUHVDQGWKHH[WUXGHUVFUHZ
speed on the apparent viscosity of maize starch solutions (exWUXGHUSODVWLFL]LQJV\VWHPRI/' The solution of the granulated material obtained using
WKHSODVWLFL]LQJV\VWHPRIWKHH[WUXGHUZLWK/' GHPRQstrated lower apparent viscosity values compared with the
UHVXOWVREWDLQHGIRUWKHVKRUWHUYHUVLRQ$VLPLODUWUHQGZDV
observed: viscosity increased along with the increasing exWUXGHUVFUHZVSHHGDQGDKLJKHUDGGLWLRQRIWKH¿OOHU$OVR
LQWKLVFDVHVLJQL¿FDQWGLIIHUHQFHVZHUHUHSRUWHGEHWZHHQ
WKHPHDQV7DEOH
$QDGGLWLYHRIÀD[¿EUHFDXVHGDVOLJKWLQFUHDVHLQWKH
YLVFRVLW\RIVROXWLRQV)LJ7KHKLJKHVWYLVFRVLW\YDOues were obtained for granulated maize starch produced
DWWKHH[WUXGHUVFUHZVSHHGRIUSP-1$ORQJZLWKWKH
ULVLQJFRQWHQWRIÀD[¿EUHLQDOOWKHWHVWHGPDWHULDOVYLVFRVLW\LQFUHDVHGRQO\VOLJKWO\7KHDGGLWLRQRIRIÀD[
¿EUHVFDXVHGDGHFUHDVHLQWKHYLVFRVLW\RIVROXWLRQVZKLFK
GHPRQVWUDWHVDZHDNERQGEHWZHHQWKHÀD[¿EUHVDQGWKH
biopolymer matrix.
Fig. 3. 7KHLQÀXHQFHRIÀH[¿EUHVDQGWKHH[WUXGHUVFUHZVSHHG
on the apparent viscosity of maize starch solutions (extruder
SODVWLFL]LQJV\VWHPRI/' During the examination of the solution of extrudates
produced on the longer version of the plasticizing system,
Ta b l e 2 . 7KHUHVXOWVRIWKHVWDWLVWLFDODQDO\VLVRIYLVFRVLW\RIDTXHRXVVROXWLRQVRIWKHUPRSODVWLFVWDUFKGHSHQGLQJRQWKHDGGLtives used.
L/D Screw rotation
version
[rpm-1]
80
&HOOXORVH¿EUH
80
80
)OD[¿EUH
80
80
*URXQGSLQH
bark
80
$GGLWLYH
3RO\QRPLDOUHJUHVVLRQHTXDWLRQ
y [2[
y80 [2[
y [2[
y [2[
y80 [2[
y [2[
y [2[
y80 [2[
y [2[
y [2[
y80 [2[
y [2[
y [2[
y80 [2[
y [2[
y [2[
y80 [2[
y [2[
F test values
9.807
2.029
72.707
P value
0.0000008
0.0000009
0.0000
0.00002
0.0000
0.0000
0.00000002
0.0000
721,6=&=8.$:Ï-72:,&=/02ĝ&,&.,$5(-$.0&20%5=<ē6.,
some problems emerged with maintaining the homogeneity
of solutions which began to delaminate. Friction rose in the
SODFHVRI¿EUHVHWWOHPHQWKHQFHWKHFRQVLGHUDEOHGLIIHUHQFHV
LQWKHWKHYLVFRVLW\RIVROXWLRQVZKLFKLVYLVLEOHLQ)LJ
showing the results of measurements of the viscosity of
solutions of biopolymers obtained by using the extruder
SODVWLFL]LQJV\VWHPRI/' 7KHUHZHUHQRVLJQL¿FDQW
differences reported between the means for these granules
S!7DEOH
was caused by resistance occurring during the study. TPS
granule solutions containing ground bark obtained by using
WKHSODVWLFL]LQJV\VWHPRIWKHH[WUXGHUZLWK/' VKRZHG
KLJKHUDSSDUHQWYLVFRVLW\YDOXHV)LJ7KHWRSYDOXHV
ZHUHUHFRUGHGIRUWKHDGGLWLRQRIRIJURXQGEDUNWR
the thermoplastic starch extruded at the screw speed of 80
rpm-1P3DV
The lowest viscosity values were demonstrated by the
PL[WXUHVRIPDL]HVWDUFKDQGJO\FHUROFRQWDLQLQJD
addition of ground bark in the whole range of extruder screw
speeds.
Fig. 4. 7KHLQÀXHQFHRIÀH[¿EUHVDQGWKHH[WUXGHUVFUHZVSHHG
on the apparent viscosity of maize starch solutions (extruder
SODVWLFL]LQJV\VWHPRI/' Fig. 6. 7KHLQÀXHQFHRIJURXQGEDUNDQGWKHH[WUXGHUVFUHZVSHHG
on the apparent viscosity of maize starch solutions (extruder
$QRWKHU W\SH RI WKHUPRSODVWLF VWDUFK ELRFRPSRVLWHV SODVWLFL]LQJV\VWHPRI/' subjected to analysis were maize starch granules with the
DGGLWLRQRIJURXQGEDUN)LJDQGVKRZWKHPHDVXUHPHQW
results of the apparent viscosity depending on the version
CONCLUSIONS
of the plasticizing system used. The viscosity values of the
thermoplastic starch solutions with the addition of ground ± ,WZDVREVHUYHGWKDWWKHDSSDUHQWYLVFRVLW\RIWKHVROXbark were lower than the viscosity of TPS solutions with
tions of thermoplastic maize starch was determined by
WKHFHOOXORVH¿EUHFRQWHQW'XULQJWKHVWXG\DVLQWKHFDVH
the rotational speed of the extruder used for the producRIÀD[¿EUHVROXWLRQVWKHVXVSHQVLRQVZHUHGHODPLQDWHG
tion of the granulated matter.
± 7KHKLJKHVWDSSDUHQWYLVFRVLW\YDOXHVZHUHUHSRUWHGIRU
solutions of maize TPS with the addition of cellulose
¿EUH
± 7KHDTXHRXVVROXWLRQVRIJUDQXOHVREWDLQHGZLWKWKH
H[WUXGHUSODVWLFL]LQJV\VWHPDW/' VKRZHGKLJKHU
apparent viscosity values.
± 7KHDGGLWLRQRI¿OOHUVVXFKDVQDWXUDO¿EUHVLQFUHDVHG
YLVFRVLW\LQWKHPDMRULW\RIH[DPLQHGDTXHRXVVROXWLRQV
of extruded maize starch.
5()(5(1&(6
Averous L., Moro L., Dole P., Fringant C., 2000: PropHUWLHVRIWKHUPRSODVWLFEOHQGVVWDUFK±SRO\FDSURODFWRQH
Fig. 5. 7KHLQÀXHQFHRIJURXQGEDUNDQGWKHH[WUXGHUVFUHZVSHHG
3RO\PHU
on the apparent viscosity of maize starch solutions (extruder 2. Bledzki A.K., Gassan J., 1999: Composites reinforced
SODVWLFL]LQJV\VWHPRI/' ZLWKFHOOXORVHEDVHG¿EUHV3URJ3RO\PHU6FLHQFH
7KHDGGLWLRQRIRIJURXQGEDUNWRPDL]HVWDUFK Dyadychev V., Pugacheva H., Kildeychik A., 2010:
JUDQXOHVH[WUXGHUSODVWLFL]LQJV\VWHPRI/' FRQWULECo-injection molding as one of the most popular injecuted to the dispersion of the apparent viscosity values, which
tion molding Technologies for manufacture of polymeric
&+$5$&7(5,67,&62)6(/(&7('5+(2/2*,&$/3523(57,(62):$7(56863(16,216
GHWDLOVIURPVHFRQGDU\UDZPDWHULDOV7(.$&RPPLVLRQ
RIPRWRUL]DWLRQDQG3RZHU,QGXVWU\LQ$JULFXOWXUH3$1
9ROXPH;F
Gujral H.S., Sodhi N.S., 2002:%DFNH[WUXVLRQSURSerties of wheat porridge (Dalia). -RXUQDORI)RRG(QJLQHHULQJ
-DQVVHQ/3%00RVFLFNL/(GVThermoSODVWLF6WDUFK:LOH\9&+9HUODJ*PE+&R.*D$
:HLQKHLP
/HH6</XQD*X]PDQ,&KDQJ6%DUUHWW'0
Guinard J-X., 1999:Relating descriptive analysis and
instrumental texture data of processed diced tomatoes.
)RRG4XDOLW\DQG3UHIHUHQFH
7. Mitrus M., 2006: Investigations of thermoplastic starch
H[WUXVLRQFRRNLQJSURFHVVVWDELOLW\7(.$&RPPLVVLRQ
RIPRWRUL]DWLRQDQG3RZHU,QGXVWU\LQ$JULFXOWXUH3$1
9ROXPH9,D
8. 0LWUXV 0 2QLV]F]XN 7 :Sá\Z REUyENL
FLĞQLHQLRZR±WHUPLF]QHMQDZáDĞFLZRĞFLPHFKDQLF]QH
VNURELWHUPRSODVW\F]QHM:áDĞFLZRĞFLJHRPHWU\F]QH
mechaniczne i strukturalne surowców i produktów
VSRĪ\ZF]\FK:\G1DXN)51$/XEOLQ
9. 0RĞFLFNL/(G([WUXVLRQ&RRNLQJ7HFKQLTXHV
:LOH\9&+9HUODJ*PE+&R.*D$:HLQKHLP
0RĞFLFNL/0LWUXV0:yMWRZLF]$Technika
HNVWUX]MLZSU]HP\ĞOHUROQR±VSRĪ\ZF]\P3:5L/
Warszawa.
0RĞFLFNL / 0LWUXV 0:yMWRZLF]$ 2QLV]F]XN
T., Rejak A., Janssen L., 2012:$SSOLFDWLRQRIH[WUXsion-cooking for processing of thermoplastic starch
736)RRG5HVHDUFK,QWHUQDWLRQDO9ROSS
2QLV]F]XN73LODZND5:Sá\ZGRGDWNXZáyNLHQFHOXOR]RZ\FKQDZ\WU]\PDáRĞüWHUPLF]QąVNUREL
WHUPRSODVW\F]QHM3U]HP\Vá&KHPLF]Q\
2QLV]F]XN73LODZND52QLV]F]XN$:Sá\Z
GRGDWNXPLHORQHMNRU\VRVQRZHMQDZ\WU]\PDáRĞüWHUPLF]QąVNURELWHUPRSODVW\F]QHM3U]HP\Vá&KHPLF]Q\
2QLV]F]XN7:yMWRZLF]$0LWUXV00RĞFLFNL/
&RPEU]\ĔVNL05HMDN$*áDG\V]HZVND%
,QÀXHQFHRISURFHVFRQGLWLRQVDQG¿OOHUVDGGLWLRQRQ
H[WUXVLRQFRRNLQJHI¿FLHQF\DQG60(RIWKHUPRSODVtic potato starch, Teka Commision of Motorization and
(QHUJHWLFVLQ$JULFXOWXUH3ROLVK$FDGHP\RI6FLHQFHV
%UDQFKLQ/XEOLQYRO1RSS
2QLV]F]XN7:yMWRZLF]$0LWUXV00RĞFLFNL/
&RPEU]\ĔVNL05HMDN$*áDG\V]HZVND%
%LRGHJUDGDWLRQRI736PRXOGLQJVHQULFKHGZLWKQDWXUDO
¿OOHUV7HND&RPPLVLRQRI0RWRUL]DWLRQDQG(QHUJHWLFV
LQ$JULFXOWXUH3ROLVK$FDGHP\RI6FLHQFHV%UDQFKLQ
/XEOLQYRO1RSS
Sobczak P., 2006: Sorbitol addition on extrusion proFHVV7(.$&RPPLVVLRQRI0RWRUL]DWLRQDQG3RZHU
,QGXVWU\LQ$JULFXOWXUH3$19ROXPH9,D
Thomas D.J., Atwell W.A., 1997: 6WDUFK $QDO\VLV
0HWKRGV,Q6WDUFKHV(DJDQ3UHVV6W3DXO0LQQHVRWD
ĩDNRZVND+Opakowania biodegradowalne,
&HQWUDOQ\2ĞURGHN%DGDZF]R5R]ZRMRZ\2SDNRZDĔ
:DUV]DZD
=KDQJ<5:DQJ;/=KDR*0:DQJ<=
,QÀXHQFHRIR[LGL]HGVWDUFKRQWKHSURSHUWLHVRIWKHUPRSODVWLFVWDUFK&DUERK\GUDWH3RO\PHUV±
&+$5$.7(5<67<.$:<%5$1<&+&(&+
5(2/2*,&=1<&+:2'1<&+52=7:25Ï:
.8.85<'=,$1<&+%,2.2032=<7Ï:736
Streszczenie. %DGDQLRPSRGGDQRZRGQHUR]WZRU\JUDQXODWyZ
NXNXU\G]LDQHMVNURELWHUPRSODVW\F]QHM736*UDQXODW\VNUREL
WHUPRSODVW\F]QHM]RVWDá\Z\SURGXNRZDQH]PLHV]DQHNVNURELNXNXU\G]LDQHMJOLFHU\Q\RUD]GRGDWNXZ\SHáQLDF]\ZSRVWDFLZáyNLHQ
QDWXUDOQ\FK:EDGDQLDFK]DVWRVRZDQR]PRG\¿NRZDQ\HNVWUXGHU
MHGQRĞOLPDNRZ\76R/' L/' ]GRGDWNRZ\PFKáRG]HQLHPNRĔFRZHMF]ĊĞFLF\OLQGUDXU]ąG]HQLD%DGDQRZSá\Z
SUĊGNRĞFLREURWRZHMĞOLPDNDHNVWUXGHUD]DVWRVRZDQHJRXNáDGX
SODVW\¿NXMąFHJRRUD]URG]DMXVWRVRZDQHJRZ\SHáQLDF]DQDOHSNRĞü
SR]RUQąUR]GUREQLRQ\FKJUDQXODWyZVNURELNXNXU\G]LDQHM3RGF]DV
SRPLDUyZ]DREVHUZRZDQRĪHQDMZ\ĪV]HZDUWRĞFLOHSNRĞFLSR]RUQHMZ\VWĊSRZDá\ZSU]\SDGNXJUDQXODWyZVNURELNXNXU\G]LDQHM
]DZLHUDMąF\FKGRGDWHNZáyNLHQFHOXOR]RZ\FKHNVWUXGRZDQ\FK
SU]\]DVWRVRZDQLXXNáDGXSODVW\¿NXMąFHJRR/' 6áRZDNOXF]RZHOHSNRĞüVNURELDWHUPRSODVW\F]QDHNVWUX]MD
biokompozyty.
This research work has been supported by the funds for science for the years 2010-2013
as a research project NN313275738.
TEKA. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE – 2014, Vol. 14, No. 4, 125–130
Characteristics of Selected Rheological Properties of Water Suspensions
of Potato TPS Biocomposites
Tomasz Oniszczuk, Agnieszka Wójtowicz, Leszek Mościcki, Andrzej Rejak,
Maciej Combrzyński, Marcin Mitrus
Department of Food Process Engineering, Lublin University of Life Sciences
Doświadczalna 44, 20-236 Lublin, Poland e-mail: tomasz.oniszczuk@up.lublin.pl
Received December 07.2014; accepted December 18.2014
Summary. 7KH UHVHDUFK FRYHUHG WKH DTXHRXV VROXWLRQV RI
JUDQXOHVRISRWDWRWKHUPRSODVWLFVWDUFK7367KHWKHUPRplastic starch granules were produced from mixtures of potato
VWDUFKJO\FHURODQGDQDGGLWLYHRI¿OOHUVLQWKHIRUPRIQDWXUDO
¿EUHV ,Q WKH VWXG\ WZR FRQ¿JXUDWLRQV RI WKH SODVWLFL]LQJ
V\VWHPZHUHXVHG/' DQG/' LQDPRGL¿HGVLQJOHVFUHZH[WUXVLRQFRRNHU76ZLWKDQH[WUDFRROLQJRIWKH
end part of the cylinder. The research focused on the effect
of the extruder screw speed and the volume and types of
XVHG¿OOHUVRQWKHDSSDUHQWYLVFRVLW\RISXOYHUL]HGJUDQXOHV
of thermoplastic starch. During the measurements, it was
observed that the apparent viscosity of extruded potato starch
ZDVLQÀXHQFHGE\WKHW\SHRIWKHSODVWLFL]LQJV\VWHPLQVWDOOHG
in the extruder used for the production of TPS granules. The
highest viscosity was reported for the solutions of potato TPS
ZLWKWKHDGGLWLRQRIÀD[¿EUH
Key words: H[WUXGHU¿EUHYLVFRVLW\WKHUPRSODVWLFVWDUFKH[trusion, biocomposites.
compared with the corresponding petroleum-based plastic
and are less expensive to make [2].
Starch is the most important polysaccharide in plants
serving as a reserve and accumulated in the form of grains.
Particularly starch-rich are the grains of cereals, potato and
manioc tubers, as well as maize cobs. Starch hydrolyses only
WRĮ'JOXFRVHEXWLWLVQRWDFKHPLFDOO\XQLIRUPFRPSRXQG
in fact, it consists of two fractions: unbranched amylose and
branched amylopectin [2]. The main advantages of starch
are: biodegradability, broad availability, relatively low cost
DQGHDVHRIFKHPLFDOPRGL¿FDWLRQ>@
Pure and dried starch differs materially from synthetic
SRO\PHUV>@,WVKRXOGQRWEHUHJDUGHGDVDWKHUPRSODVWLFPDWHULDOVLQFHLWVJODVVWUDQVLWLRQWHPSHUDWXUH7J
LVVLJQL¿FDQWO\KLJKHUWKDQWKHGHFRPSRVLWLRQWHPSHUDWXUH
,QUHFHQWGHFDGHVDQH[WUXVLRQFRRNHGPRGL¿HGVWDUFK
has appeared on the market. The addition of plasticizers in
the process of extrusion results in the lowering of the glass
transition temperature of starch below its decomposition
INTRODUCTION
temperature and transforms it into thermoplastic starch
736ZKLFKOHQGVLWVHOIWRHDV\SURFHVVLQJ>@
The development of procedures for the mass produc- Plasticizers are mostly substances of low molecular weight
tion of biodegradable materials has recently been an area which can be easily embedded into the polymer matrix in orof extensive research, both academic and commercial. This der to destroy the hydrogen inter and intra molecular bonds
is attributed to the growing scarcity of crude oil resources that occur in starch. This, in the end, leads to the improved
and to the fact that petroleum-based materials are non-bi- strength and heat treatment conditions of starch-based maRGHJUDGDEOH>@3RO\PHULFELRGHJUDGDEOHPDWHULDOV WHULDOV>@7KHPRVWFRPPRQO\XVHGSODVWLFL]HUV
can be divided into two main groups, depending on the DUHJO\FHURODQGZDWHU>@
$VDX[LOLDU\DGGLWLYHVWKDWHQKDQFHWKHPHFKDQLFDODQG
source of raw materials for their production: the polymers
produced by the traditional chemical synthesis of natural physical properties of natural polymers, various types of
monomers and the polymers produced by microorganisms ¿OOHUVFDQEHXVHGVXFKDVQDWXUDO¿EUHKHPSÀD[MXWH
RUPRGL¿HGEDFWHULDWKHVRFDOOHGELRSRO\PHUV$SUDFWLFDO FRFRQXWFHOOXORVHFRWWRQRUZRRGZDVWH>@
alternative replacing the polymers based on petroleum are
The aim of the study was to examine the apparent viscosimaterials produced with the use of starch and belonging to ty of water suspensions of pulverized granules of potato therWKHODWWHUJURXS$OVRWKHPL[LQJRIWKLVQDWXUDOFRPSRQHQW PRSODVWLFVWDUFKH[WUXGHGDWVHYHUDOFRQ¿JXUDWLRQVHWWLQJVRI
with synthetic polymers is an option. Such mixtures are not the plasticizing system and to determine the impact of the type
biodegradable, still, they reveal a lower carbon emission DQGTXDQWLW\RIDGGLWLYHVRQWKHYLVFRVLW\RIVROXWLRQV
721,6=&=8.$:Ï-72:,&=/02ĝ&,&.,$5(-$.0&20%5=<ē6.,00,7586
0$7(5,$/6$1'0(7+2'6
The main raw material used in the research was potato
VWDUFKRIWKHW\SH6XSHULRU6WDQGDUG)VXSSOLHGE\Ä3HSHHV´
6$.URFKPDOQLDàRPĪD$VDQDX[LOLDU\VXEVWDQFHDFWLQJ
DVSODVWLFL]HUWHFKQLFDOJO\FHUROZDVXVHGRISXULW\LQ
DQDPRXQWRIRIVWDUFKZHLJKW
$VDGGLWLYHVRIQDWXUDORULJLQDFWLQJDV¿OOHUVFHOOXORVH
¿EUH9LYDSXUW\SH-56*HUPDQ\ÀD[¿EUHDQGSLQH
EDUN3RODQGZHUHXVHGDIWHUEHLQJJURXQGRQDODERUDWRU\
PLOO/017HVW&KHP5DGOLQ
3RWDWRVWDUFKZLWKDPRLVWXUHFRQWHQWRIDQGJO\Ferol were used to prepare TPS raw material mixtures to
ZKLFKFHOOXORVH¿EUHÀD[¿EUHDQGJURXQGEDUNZHUHDGGHG
LQWKHDPRXQWRIDQGRIWKHPL[WXUHZHLJKW6R
prepared raw material was mixed by means of a laboratory
ULEERQPL[HUIRUPLQXWHV$IWHUPL[LQJWKHPDWHULDOZDV
OHIWLQVHDOHGSODVWLFEDJVIRUKRXUVWRKRPRJHQL]HWKH
whole mass of the sample. Directly before extrusion, the
PDWHULDOZDVPL[HGDJDLQIRUPLQXWHVLQRUGHUWRORRVHQ
the mass before extrusion.
352'8&7,212)*5$18/(6
Potato starch granules with the addition of natural plant
¿OOHUVZHUHH[WUXGHGLQWKHWHPSHUDWXUHUDQJHž&
and moulded through a die with a single hole of a diameter
RIPP,QWKHSURFHVVDPRGL¿HGYHUVLRQRIWKHVLQJOH
VFUHZH[WUXVLRQFRRNHU76ZDVXVHG=0&K0HWDOFKHP
*OLZLFH3RODQG7KHPRGL¿FDWLRQLQYROYHGWKHDSSOLFDtion of two types of a plasticizing system with the screw/
GLDPHWHUUDWLRRI/' DQG/' HTXLSSHGZLWK
a temperature control system and the cooling of the end
SDUWRIWKHF\OLQGHU*UDQXOHVZHUHSURGXFHGDWDYDULDEOH
H[WUXGHUVFUHZURWDWLRQQDPHO\DQGUSP7KH
obtained granules were ground before tests in the laboratory
PLOO/017HVW&KHP5DGOLQWRWKHSDUWLFOHVL]HRI
PPDQGVWRUHGLQGU\HQYLURQPHQWXQWLOPHDVXUHPHQWV>
@
Photo 1. 7HVWLQJPDFKLQH=ZLFN%'2)%7+ZLWKPRXQWHG
back extrusion component to measure viscosity
SURJUDP7KHUHZHUH¿YHUHSOLFDWLRQVWKH¿QDOUHVXOWEHLQJ
WKHDULWKPHWLFPHDQRIWKHPHDVXUHPHQWV>@
5(68/76
7KHDSSDUHQWYLVFRVLW\RIDTXHRXVVROXWLRQVRISRWDWRWKHUPRSODVWLFVWDUFKZLWKWKHDGGLWLRQRIFHOOXORVH¿EUHH[WUXGHGLQ
DSODVWLFL]LQJV\VWHPFRQ¿JXUDWLRQRI/' LQFUHDVHGDORQJ
ZLWKWKHLQFUHDVLQJH[WUXGHUVFUHZVSHHG)LJ7KHLQFUHDVH
LQWKHFRQWHQWRIFHOOXORVH¿EUHLQWKHPL[WXUHRIUDZPDWHrials caused higher viscosities of potato starch solutions and
VLJQL¿FDQWSGLIIHUHQFHVEHWZHHQWKHPHDQV7DEOH
0($685(0(172)$33$5(179,6&26,7<
7RPHDVXUHDSSDUHQWYLVFRVLW\VROXWLRQVZHUHSUHSDUHGRIJURXQGJUDQXOHVDQGGLVWLOOHGZDWHURIƒ&3UHSDUHGVXVSHQVLRQVZHUHPL[HGIRUPLQXWHVDQGVXEMHFWHG
WRDYLVFRVLW\WHVWLQJF\FOH$EDFNH[WUXVLRQFRPSRQHQW
ZDVPRXQWHGRQWKHWHVWLQJPDFKLQH=ZLFN5RHOO%'2
)%7+HTXLSSHGZLWKDN1IRUFHKHDG)LJ7KH
FKDPEHUSDUDPHWHUVZHUHDVIROORZVF\OLQGHUKHLJKW±
PPLQQHUGLDPHWHU±PPSOXQJHUGLDPHWHU±PP
SOXQJHUKHLJKW±PPWKHSOXQJHUKDYLQJDFRQLFDOERWtom surface. During the test, the head speed was set to
PP‡PLQ-1, the measuring gap was 2 mm, and the total
WHVWOHQJWKZDVPP
During the test, the value of the apparent viscosity coHI¿FLHQWZDVGHWHUPLQHGEDVHGRQWKHUHFRUGHGUHVLVWDQFH
force of the suspension during the movement of the plunger
in one bottom-up measurement cycle; the force was next
FRQYHUWHGLQWRDSSDUHQWYLVFRVLW\LQWKHWHVW;SHUWY
Fig. 1. 7KHLQÀXHQFHRIWKHDGGLWLRQRIFHOOXORVH¿EUHDQGWKH
extruder screw speed on the apparent viscosity of potato starch
VROXWLRQVH[WUXGHUSODVWLFL]LQJV\VWHPRI/' Fig. 2 illustrates the results of measurements of apparent
YLVFRVLW\RIDTXHRXVVROXWLRQVRIJUDQXOHVZLWKWKHDGGL-
&+$5$&7(5,67,&62)6(/(&7('5+(2/2*,&$/3523(57,(62):$7(56863(16,216
WLRQRIFHOOXORVH¿EUH7KHXVHRIH[WHQGHGSODVWLFL]LQJV\VWHP
RI/' DQGDYDULDEOHH[WUXGHUVFUHZVSHHGGXULQJWKH
SURGXFWLRQRISRWDWRVWDUFKJUDQXOHVZLWKWKHDGGLWLRQRI
RIFHOOXORVH¿EUHLQWKHUHFLSHGLGQRWHQWDLODQ\VLJQL¿FDQW
changes in the viscosity of thermoplastic starch solutions.
%RWKWKHLQFUHDVHRIWKHVFUHZVSHHGGXULQJWKHSURGXFWLRQRIJUDQXODWHVDQGWKHKLJKHUFRQWHQWRIQDWXUDOÀD[
¿EUHVLJQL¿FDQWO\LPSURYHGWKHYLVFRVLW\YDOXHV7DEOH
The highest apparent viscosity values were reported for TPS
VROXWLRQVFRQWDLQLQJRIÀD[¿EUH+RZHYHULQWKLVFDVH
the higher screw speed during extrusion resulted in the lower
YDOXHVRIWKHWHVWHGSDUDPHWHU)LJ
Fig. 2. 7KHLQÀXHQFHRIWKHDGGLWLRQRIFHOOXORVH¿EUHDQGWKH
extruder screw speed on the apparent viscosity of potato starch
VROXWLRQVH[WUXGHUSODVWLFL]LQJV\VWHPRI/' Fig. 3. 7KHLQÀXHQFHRIÀH[¿EUHVDQGWKHH[WUXGHUVFUHZVSHHG
on the apparent viscosity of potato starch solutions (extruder
$YHU\ORZYLVFRVLW\RIWKHH[DPLQHGVROXWLRQVPD\ SODVWLFL]LQJV\VWHPRI/' LQGLFDWHLQVXI¿FLHQWSUHVVXUHDQGWKHUPDOWUHDWPHQWLQWKH
cooling conditions and with the application of the extended
plasticizing system, which prevented the granules with the
DGGLWLRQRIFHOOXORVH¿EUHWRREWDLQDVWDEOHVWUXFWXUH
)LJDQGVKRZWKHHIIHFWRIWKHDGGLWLRQRIÀD[¿EUH
and the extruder screw speed on the apparent viscosity of
DTXHRXVVROXWLRQVRI736H[WUXGHGLQGLIIHUHQWFRQ¿JXUDWLRQVRIWKHSODVWLFL]LQJV\VWHP7KHDTXHRXVVROXWLRQVRI
TPS granules obtained with the extruder plasticizing system
DW/' GLVSOD\HGKLJKHUYLVFRVLW\YDOXHV
$VLPLODUWUHQGZDVREVHUYHGIRUWKHH[WHQGHGSODVWLFL]LQJV\VWHPQDPHO\DORQJZLWKWKHLQFUHDVLQJFRQWHQWRIÀD[
¿EUHWKHDSSDUHQWYLVFRVLW\RIDTXHRXVVROXWLRQVRIJUDQXOHV
rose; yet, the measured viscosity values were slightly lower.
Such considerable differences in viscosity measurements
were caused by problems occurring during the measurement.
During the measurement, the solution began to delaminate,
ZKLFK VLJQL¿FDQWO\ DIIHFWHG LWV YLVFRVLW\ 7KLV LQ WXUQ
demonstrates an uneven internal structure of potato starch
Ta b l e 1 . 7KHUHVXOWVRIWKHVWDWLVWLFDODQDO\VLVRIYLVFRVLW\RIDTXHRXVVROXWLRQVRIWKHUPRSODVWLFSRWDWRVWDUFKGHSHQGLQJRQ
the additives used.
$GGLWLYH
L/D version
&HOOXORVH¿EUH
)OD[¿EUH
*URXQGSLQHEDUN
Screw rotation
[rpm-1]
80
80
80
80
80
80
3RO\QRPLDOUHJUHVVLRQHTXDWLRQ
)WHVWYDOXHV
P value
y [2[
y80 [2[
y [2[
y [2[
y80 [2[
y [2[
y [2[
y80 [2[
y [2[
y [2[
y80 [2[
y ([2[
y [2[
y80 [2[
y [2[
y [2[
y80 [2+0.090x+7.207
y [2[
2.277
0.0000
0.0000
721,6=&=8.$:Ï-72:,&=/02ĝ&,&.,$5(-$.0&20%5=<ē6.,00,7586
ELRFRPSRVLWHVDQGDZHDNERQGEHWZHHQÀD[¿EUHVDQGWKH ing system with the addition of ground bark changed only
starch matrix in the conditions of intense cooling and with VOLJKWO\7KHKLJKHU¿OOHUFRQWHQWDQGWKHH[WUXGHUVFUHZ
the application of the extended plasticizing system.
speed did not have a noteworthy effect on the value of
apparent viscosity in this case. The results indicate only
a loose bond between bark and potato starch in the granulated structure, which translates into the low viscosity of
SUHSDUHGDTXHRXVVROXWLRQV
Fig. 4. 7KHLQÀXHQFHRIÀH[¿EUHVDQGWKHH[WUXGHUVFUHZVSHHG
on the apparent viscosity of potato starch solutions (extruder
SODVWLFL]LQJV\VWHPRI/' The addition of ground bark to the potato TPS potato
VWDUFKUHVXOWHGLQKLJKHUDSSDUHQWYLVFRVLW\RILWVDTXHRXV
solutions than in the case of granules without this added
content. The lowest viscosity was reported in TPS solutions
WKDWFRQWDLQHGQR¿OOHU)LJ7KHKLJKHVWYDOXHRIWKH
apparent viscosity was obtained while testing granules with
DDGGLWLRQRIJURXQGEDUN5DLVLQJWKHEDUNFRQWHQWWR
LQWKHZKROHUDQJHRIDSSOLHGH[WUXGHUVFUHZVSHHGV
KDGDVLJQL¿FDQWLQÀXHQFHSRQHWKHGHFOLQHLQWKH
apparent viscosity of TPS solutions, as shown by the negaWLYHYDOXHVRIWKHVORSHFRHI¿FLHQWVRIWKHOLQHVRIWKHWUHQG
H[SUHVVHGE\DVTXDUHSRO\QRPLDO7DEOH
Fig. 6. 7KHLQÀXHQFHRIJURXQGEDUNDGGLWLRQDQGWKHH[WUXGHU
screw speed on the apparent viscosity of potato starch solutions
H[WUXGHUSODVWLFL]LQJV\VWHPRI/' CONCLUSIONS
± 7KHKLJKHVWDSSDUHQWYLVFRVLW\YDOXHVZHUHUHSRUWHGIRU
VROXWLRQVRI736ZLWKWKHDGGLWLRQRIÀD[¿EUH
± 7KHDSSDUHQWYLVFRVLW\RIWKHVROXWLRQVZDVGHWHUPLQHG
by the rotational speed of the extruder used for the production of the TPS granulated matter.
± 7KHDTXHRXVVROXWLRQVRI736JUDQXOHVREWDLQHGZLWKWKH
/' H[WUXGHUSODVWLFL]LQJV\VWHPGLVSOD\HGKLJKHU
apparent viscosity values.
± 7KHDGGLWLRQRI¿OOHUVVXFKDVQDWXUDO¿EUHVLQFUHDVHG
YLVFRVLW\LQWKHPDMRULW\RIH[DPLQHGDTXHRXVVROXWLRQV
of TPS.
5()(5(1&(6
Bledzki A.K., Gassan J., 1999: Composites reinforced
ZLWKFHOOXORVHEDVHG¿EUHV3URJ3RO\PHU6FLHQFH
2. Cerclé C., Sarazinb P., Basil D. Favis B.D. 2013:+LJK
performance polyethylene/thermoplastic starch blends
WKURXJKFRQWUROOHGHPXOVL¿FDWLRQSKHQRPHQD&DUERK\Fig. 5. 7KHLQÀXHQFHRIJURXQGEDUNDGGLWLRQDQGWKHH[WUXGHU
GUDWH3RO\PHUV±
screw speed on the apparent viscosity of potato starch solutions Dyadychev V., Pugacheva H., Kildeychik A., 2010:
H[WUXGHUSODVWLFL]LQJV\VWHPRI/' Co-injection molding as one of the most popular injection molding Technologies for manufacture of polymeric
No explicit effect was observed of the applied screw
GHWDLOVIURPVHFRQGDU\UDZPDWHULDOV7(.$&RPPLVLRQ
speeds during extrusion; still, the lowest screw speed reRIPRWRUL]DWLRQDQG3RZHU,QGXVWU\LQ$JULFXOWXUH3$1
sulted in the lowest viscosity of granulate solutions pro9ROXPH;F
duced in the proposed conditions with the shorter version Gujral H.S., Sodhi N.S., 2002:%DFNH[WUXVLRQSURSof the plasticizing system. The viscosity of solutions of
erties of wheat porridge (Dalia). -RXUQDORI)RRG(QJLSRWDWR736JUDQXOHVSURGXFHGZLWKWKH/' SODVWLFL]QHHULQJ
&+$5$&7(5,67,&62)6(/(&7('5+(2/2*,&$/3523(57,(62):$7(56863(16,216
-DQVVHQ/3%00RVFLFNL/(GVThermoSODVWLF6WDUFK:LOH\9&+9HUODJ*PE+&R.*D$
:HLQKHLP
Labet, M., Thielemans, W., & Dufresne, A. 2007:
3RO\PHUJUDIWLQJRQWRVWDUFKQDQRFU\VWDOV%LRPDFURPROHFXOHV±
7. /HH6</XQD*X]PDQ,&KDQJ6%DUUHWW'0
Guinard J-X., 1999:Relating descriptive analysis and
instrumental texture data of processed diced tomatoes.
)RRG4XDOLW\DQG3UHIHUHQFH
8. Mitrus M., 2006: Investigations of thermoplastic starch
H[WUXVLRQFRRNLQJSURFHVVVWDELOLW\7(.$&RPPLVVLRQ
RIPRWRUL]DWLRQDQG3RZHU,QGXVWU\LQ$JULFXOWXUH3$1
9ROXPH9,D
9. 0LWUXV 0 2QLV]F]XN 7 :Sá\Z REUyENL
FLĞQLHQLRZRWHUPLF]QHMQDZáDĞFLZRĞFLPHFKDQLF]QH
VNURELWHUPRSODVW\F]QHM:áDĞFLZRĞFLJHRPHWU\F]QH
mechaniczne i strukturalne surowców i produktów
VSRĪ\ZF]\FK:\G1DXN)51$/XEOLQ
0RVFLFNL/(G([WUXVLRQ&RRNLQJ7HFKQLTXHV
:LOH\9&+9HUODJ*PE+&R.*D$:HLQKHLP
0RĞFLFNL / 0LWUXV 0:yMWRZLF]$ 2QLV]F]XN
T., Rejak A., Janssen L., 2012:$SSOLFDWLRQRIH[WUXsion-cooking for processing of thermoplastic starch
736)RRG5HVHDUFK,QWHUQDWLRQDO9ROSS
2QLV]F]XN73LODZND5:Sá\ZGRGDWNXZáyNLHQFHOXOR]RZ\FKQDZ\WU]\PDáRĞüWHUPLF]QąVNUREL
WHUPRSODVW\F]QHM3U]HP\Vá&KHPLF]Q\
2QLV]F]XN73LODZND52QLV]F]XN$:Sá\Z
GRGDWNXPLHORQHMNRU\VRVQRZHMQDZ\WU]\PDáRĞüWHUPLF]QąVNURELWHUPRSODVW\F]QHM3U]HP\Vá&KHPLF]Q\
2QLV]F]XN7:yMWRZLF]$0LWUXV00RĞFLFNL/
&RPEU]\ĔVNL05HMDN$*áDG\V]HZVND%
,QÀXHQFHRISURFHVFRQGLWLRQVDQG¿OOHUVDGGLWLRQRQ
H[WUXVLRQFRRNLQJHI¿FLHQF\DQG60(RIWKHUPRSODVtic potato starch, Teka Commision of Motorization and
(QHUJHWLFVLQ$JULFXOWXUH3ROLVK$FDGHP\RI6FLHQFHV
%UDQFKLQ/XEOLQYRO1RSS
2QLV]F]XN7:yMWRZLF]$0LWUXV00RĞFLFNL/
&RPEU]\ĔVNL05HMDN$*áDG\V]HZVND%
%LRGHJUDGDWLRQRI736PRXOGLQJVHQULFKHGZLWKQDWXUDO
¿OOHUV7HND&RPPLVLRQRI0RWRUL]DWLRQDQG(QHUJHWLFV
LQ$JULFXOWXUH3ROLVK$FDGHP\RI6FLHQFHV%UDQFKLQ
/XEOLQYRO1RSS
6DUD]LQ3/L*2UWV:-)DYLV%'%Lnary and ternary blends of polylactide, polycaprolactone
DQGWKHUPRSODVWLFVWDUFK3RO\PHU±
Sobczak P., 2006: Sorbitol addition on extrusion proFHVV7(.$&RPPLVVLRQRI0RWRUL]DWLRQDQG3RZHU
,QGXVWU\LQ$JULFXOWXUH3$19ROXPH9,D
Talja R. A., Peura M., Serimaa R., & Jouppila K.,
2008:(IIHFWRIDP\ORVHFRQWHQWRQSK\VLFDODQGPHFKDQLFDOSURSHUWLHVRISRWDWRVWDUFKEDVHGHGLEOH¿OPV
%LRPDFURPROHFXOHV±
7HL[HLUD('i5y]$&DUYDOKR$&XUYHOR$
2007: The effect of glycerol/sugar/water and sugar/water
mixtures on the plasticization of thermoplasticcassava
VWDUFK&DUERK\GUDWH3RO\PHUV±
20. Thomas D.J., Atwell W.A., 1997: 6WDUFK $QDO\VLV
0HWKRGV,Q6WDUFKHV(DJDQ3UHVV6W3DXO0LQQHVRWD
Xie, F., Halley, P. J., Ave´ rous, L., 2012: Rheology to
understand and optimize processibility, structures and
properties of starch polymeric materials. Prog. Polym.
6FL±
22. ĩDNRZVND+Opakowania biodegradowalne,
&HQWUDOQ\2ĞURGHN%DGDZF]R5R]ZRMRZ\2SDNRZDĔ
:DUV]DZD
=KDQJ<5:DQJ;/=KDR*0:DQJ<=
,QÀXHQFHRIR[LGL]HGVWDUFKRQWKHSURSHUWLHVRIWKHUPRSODVWLFVWDUFK&DUERK\GUDWH3RO\PHUV±
=KDQJ<5=KDQJ6':DQJ;/&KHQ5<
:DQJ<=(IIHFWRIFDUERQ\OFRQWHQWRQWKH
properties of thermoplastic oxidized starch. CarbohyGUDWH3RO\PHUV
&+$5$.7(5<67<.$:<%5$1<&+&(&+
5(2/2*,&=1<&+:2'1<&+52=7:25Ï:
=,(01,$&=$1<&+%,2.2032=<7Ï:736
Streszczenie. %DGDQLRPSRGGDQRZRGQHUR]WZRU\JUDQXODWyZ
]LHPQLDF]DQHMVNURELWHUPRSODVW\F]QHM736*UDQXODW\VNUREL
WHUPRSODVW\F]QHM]RVWDá\Z\SURGXNRZDQHZ]PLHV]DQHNVNUREL]LHPQLDF]DQHMJOLFHU\Q\RUD]GRGDWNXZ\SHáQLDF]\ZSRVWDFL
ZáyNLHQQDWXUDOQ\FK:EDGDQLDFK]DVWRVRZDQRGZLHNRQ¿JXUDFMH
XNáDGXSODVW\¿NXMąFHJR/' RUD]/' ]PRG\¿NRZDQHJR
HNVWUXGHUDMHGQRĞOLPDNRZHJR76]GRGDWNRZ\PFKáRG]HQLHP
NRĔFRZHMF]ĊĞFLF\OLQGUD%DGDQRZSá\ZSUĊGNRĞFLREURWRZHM
ĞOLPDNDHNVWUXGHUDLORĞFLRUD]URG]DMXVWRVRZDQ\FKZ\SHáQLDF]\
QDOHSNRĞFLUR]GUREQLRQ\FKJUDQXODWyZVNURELWHUPRSODVW\F]QHM
3RGF]DVSRPLDUyZ]DREVHUZRZDQRĪHQDOHSNRĞüSR]RUQąUR]WZRUyZHNVWUXGRZDQHMVNUREL]LHPQLDF]DQHMPLDáZSá\ZURG]DM
]DVWRVRZDQHJRXNáDGXSODVW\¿NXMąFHJRHNVWUXGHUDVWRVRZDQHJRGR
SURGXNFMLJUDQXODWyZ7361DMZ\ĪV]ąOHSNRĞFLąFKDUDNWHU\]RZDá\
VLĊUR]WZRU\]LHPQLDF]DQHM736]GRGDWNLHPZáyNLHQOQLDQ\FK
6áRZDNOXF]RZHHNVWUXGHUZáyNQDOHSNRĞüVNURELDWHUPRSODstyczna, ekstruzja, biokompozyty.
This research work has been supported by the funds for science for the years 2010-2012
as a research project NN313275738.
TEKA. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE – 2014, Vol. 14, No. 4, 131–136
Characteristics of Selected Rheological Properties of Water Suspensions
of Wheat TPS Biocomposites
Tomasz Oniszczuk, Agnieszka Wójtowicz, Leszek Mościcki,
Andrzej Rejak, Magdalena Klimek, Maciej Combrzyński
Department of Food Process Engineering, Lublin University of Life Sciences
Doświadczalna 44, 20-236 Lublin, Poland, e-mail: tomasz.oniszczuk@up.lublin.pl
Received December 07.2014; accepted December 18.2014
Summary. 7KHUHVHDUFKFRYHUHGWKHDTXHRXVVROXWLRQVRIWKHUPRSODVWLFZKHDWVWDUFK736JUDQXOHV7KHWKHUPRSODVWLFVWDUFK
granules were produced from mixtures of wheat starch, glycerol
DQGDQDGGLWLYHRI¿OOHUVLQWKHIRUPRIQDWXUDO¿EUHV,QWKHVWXG\
DPRGL¿HGVLQJOHVFUHZH[WUXVLRQFRRNHU76ZDVXVHGZLWK
/' DQG/' ZLWKDQH[WUDFRROLQJRIWKHHQGSDUWRIWKH
cylinder. The research focused on the effect of the extruder screw
rotation speed, the volume and the type of plasticizing system
used and on the apparent viscosity of pulverized granules of
wheat TPS. During measurements it was observed that higher
apparent viscosity values were recorded in those solutions of TPS
that were produced with the extended version of the plasticizing
V\VWHPRI76H[WUXGHU
Key words: H[WUXGHU¿EUHYLVFRVLW\WKHUPRSODVWLFVWDUFKH[trusion, biocomposites.
INTRODUCTION
The production of biodegradable and environmentally
friendly materials has recently come into focus of researchers worldwide. Such a material is expected to replace petroleum-based polymers which are very durable, yet represent
DPDMRUHQYLURQPHQWDOLVVXH>@
One of the main natural compounds extensively researched for the use as a biodegradable material is starch.
7KH¿UVWDWWHPSWVWRREWDLQPDWHULDOVEDVHGRQWKLVFRPSRQHQWIRFXVHGRQWKHXVHRIVWDUFKJUDQXOHVDVD¿OOHUIRUV\QWKHWLFSRO\PHUVVXFKDVSRO\HWK\OHQHDQGSRO\SURS\OHQH>@
In order to be further processed as a biodegradable material, natural starch must be transformed into thermoplastic
VWDUFK736,QWKLVFDVHWKHJUDQXODUVWUXFWXUHRIVWDUFK
is completely degraded by the use of plasticizers in a high
WHPSHUDWXUHGXULQJH[WUXVLRQ>@8QIRUWXQDWHO\SXUH
thermoplastic starch has several disadvantages. They include
ORZPHFKDQLFDOVWUHQJWKIUDJLOLW\DQGKLJKVHQVLWLYLW\WRHQYLURQPHQWDOIDFWRUVHJPRLVWXUH>@,QRUGHUWRRIIVHW
these disadvantages, TPS is mixed with other polymers, thus
yielding, in a simple, fast and inexpensive manner, mixtures
with such properties that are generally not achievable when
XVLQJLQGLYLGXDOSRO\PHULFPDWHULDOV>@,QRUGHUWR
improve the processing and mechanical properties of TPS, it
LVFRPELQHGZLWKHJSRO\HWK\OHQH3(>@SRO\SURS\OHQH33>@DQGSRO\DPLGH3$>@,QDGGLWLRQ
in an attempt to obtain completely biodegradable materials,
numerous TPS mixtures have been developed with various
polymers which undergo complete degradation in the natuUDOHQYLURQPHQW>@$PRQJWKHELRGHJUDGDEOHSRO\PHUV
EXW\OHQHSRO\VXFFLQDWH3%6GHVHUYHVVSHFLDODWWHQWLRQQRW
RQO\EHFDXVHRILWVH[FHOOHQWELRGHJUDGDELOLW\TXDOLW\EXWDOVR
VXI¿FLHQWPHFKDQLFDOVWUHQJWK7KHUHIRUHVRPHUHVHDUFKKDV
EHHQFDUULHGRXWRQWKHFRPELQDWLRQRI3%6DQG736>@
*HQHUDOO\VSHDNLQJWKHUPRSODVWLFVWDUFKLVFRQVLGHUHG
a promising material for the production of packaging materials due to its reasonable cost, availability, renewability
and biodegradability. Recently, its use has spread to many
VHFWRUVHJRLOUH¿QLQJJUHDVHPHWDOOXUJ\H[WUDFWLRQRI
LPSXULWLHVIURPLURQWH[WLOHUXEEHUDQGSDSHUHQKDQFHPHQWRISDSHUVWUHQJWK>@
The properties of TPS are very much dependent on the
QDWXUDORULJLQRIWKHVWDUFKPRUHVSHFL¿FDOO\RQWKHUDWLRRI
its main two components: linear amylose and branched amylopectin. The share of amylose chains in starch is determined
genetically and generally the same within a particular plant
species. In standard starch, the amylose content accounts for
RIWKHWRWDOVWDUFKZHLJKWLQVSHFLDOKLJKDP\ORVH
VSHFLHVLWUHDFKHV>@7KHUHDUHQXPHURXVVWXGLHV
on the effect of amylose and amylopectin content on the
¿QDOSURSHUWLHVRIVWDUFKEDVHGPDWHULDOV>@
TPS obtained from high-amylose starch has been proven
to have better thermal and mechanical properties, still their
SURFHVVLQJH[WUXVLRQLQSDUWLFXODULVPXFKPRUHGHPDQGLQJ>@,QRUGHUWRHQKDQFHWKHPHFKDQLFDODQG
SK\VLFDOSURSHUWLHVRI736YDULRXVW\SHVRI¿OOHUVFDQEH
XVHGVXFKDVQDWXUDO¿EUHRUZRRGZDVWH>@
721,6=&=8.$:Ï-72:,&=/02ĝ&,&.,$5(-$.0./,0(.0&20%5=<ē6.,
7KHHIIHFWRIWKHW\SHRIVWDUFKDQGXVHGDGGLWLYHV¿OOHUVSODVWLFL]HUVRQWKHSURSHUWLHVRI736LVFUXFLDOZKHQ
selecting raw materials for the production of biodegradable plastics. It also allows the optimization of properties of
TPS-based mixtures for the industrial application of TPS
SURGXFWV>@
The aim of the study was to examine the apparent viscosity of suspensions of pulverized granules of thermoplastic
ZKHDWVWDUFKJUDQXOHVZLWKGLIIHUHQWQDWXUDO¿OOHUV
5(68/76
)LJVKRZVWKHGHSHQGHQFHRIWKHYLVFRVLW\RIDTXHRXV
solutions of thermoplastic wheat starch upon the applied
VFUHZVSHHGRIWKH/' YHUVLRQH[WUXGHUDQGXSRQWKH
FRQWHQWRIFHOOXORVH¿EUHLQWKHPL[WXUH,WZDVREVHUYHGWKDW
WKHYLVFRVLW\RIWKHVROXWLRQLQFUHDVHGVLJQL¿FDQWO\S
along with the increasing extruder screw speed and a higher
DGGLWLRQRIFHOOXORVH¿EUH$VLPLODUWUHQGZDVREVHUYHGIRU
maize starch.
0$7(5,$/6$1'0(7+2'6
:KHDWVWDUFKXVHGLQWKHVWXG\ZDV0HUL]HWIURP
6HJH]KD,UHODQGÀD[¿EUHIURPD3ROLVKSURGXFHUFHOOXORVH
¿EUH9LYDSXUW\SH-56IURPD*HUPDQSURGXFHUDQG
JURXQGSLQHEDUN7HFKQLFDOJO\FHURORISXULW\ZDV
used as a plasticizer.
:KHDWVWDUFKJO\FHURODQG¿OOHUVLQWKHIRUPRIÀD[
¿EUHVDQGJURXQGEDUNZHUHPL[HGIRUPLQXWHVLQDODERUDWRU\ULEERQPL[HU7KHJO\FHURODFFRXQWHGIRURIWKH
PL[WXUHZHLJKWDQGWKHSURSRUWLRQRI¿OOHUVLQWKHSUHSDUHG
PL[WXUHVZDVDQG$IWHUPL[LQJWKHVDPSOHV
ZHUHOHIWLQVHDOHGSODVWLFEDJVIRUKRXUVLQRUGHUIRUWKH
PL[WXUHWRKRPRJHQL]H>@
The baro-thermal treatment was carried out on a modL¿HG VLQJOHVFUHZ H[WUXVLRQFRRNHU 76 HTXLSSHG
with two kinds of plasticizing systems with the screw
OHQJWKGLDPHWHUUDWLRRI/' DQG/' $VWHHO
GLHZDVXVHGZLWKDKROHRIPPLQGLDPHWHU*UDQXOHV
ZHUHSURGXFHGDWWKHWKUHHH[WUXGHUVFUHZVSHHGV
DQGUSP7HPSHUDWXUHYDOXHVZHUHLQWKHUDQJH
RIž&7KHWHPSHUDWXUHZDVFRQWUROOHGE\DSXUSRVHPDGHFRROLQJV\VWHP7KHH[WUXGHUZDVHTXLSSHG
with a material feeder, a plasticizing system made up of
the screw linked to the drive and housing, and a preheating
device. To measure the temperature of the thermal and
pressure treatment, thermocouples were used installed in
the extruder cylinder; the results were displayed on the
machine control panel. The screw speed during extrusion
was monitored using a wireless electronic tachometer,
'0$5>@
7KHYLVFRVLW\RIDTXHRXVVROXWLRQVRIWKHUPRSODVWLF
VWDUFKZDVPHDVXUHGRQWKHWHVWPDFKLQH=ZLFN%'2
)%27+ HTXLSSHG ZLWK D EDFN H[WUXVLRQ FKDPEHU
The granules were ground using a laboratory mill to
REWDLQSDUWLFOHVZLWKDGLDPHWHURIOHVVWKDQPP
thermoplastic starch suspensions were prepared with
GLVWLOOHGZDWHUDWƒ&7KHYLVFRVLW\PHDVXUHPHQWVZHUH
PDGH DIWHU PLQXWHV RI PL[LQJ 'XULQJ WKH WHVW WKH
IROORZLQJSDUDPHWHUVZHUHVHWWRWDOWHVWOHQJWKPP
DQGWKHKHDGVSHHGPP‡PLQ-1. During the study, the
resistance force of the suspension was recorded during
the movement of the plunger in one bottom-up measurement cycle, which was next converted into the apparent
viscosity coefficient. The measurements were made usLQJWKHWHVW;SHUWYSURJUDP>@7KHUHZHUHILYH
replications, the final result being the arithmetic mean
of the measurements.
Fig. 1. 7KHLQÀXHQFHRIFHOOXORVH¿EUHVDQGWKHH[WUXGHUVFUHZ
speed on the apparent viscosity of wheat starch solutions (exWUXGHUSODVWLFL]LQJV\VWHPRI/' 7KH XVH RI WKH /' SODVWLFL]LQJ V\VWHP )LJ resulted in an increase of apparent viscosity. The highest
apparent viscosity values were reported for solutions with
DDGGLWLRQRIFHOOXORVH¿EUH,WZDVDOVRUHSRUWHGWKDW
ZLWKWKHLQFUHDVLQJ¿EUHFRQWHQWLQWKHPL[WXUHWKHYLVFRVLW\
of the solution decreased. This may be an indication that
WKHDGGLWLRQRIFHOOXORVH¿EUHVKDGDQDGYHUVHLPSDFWRQ
their bond with the biopolymer matrix, which, in turn, had
a negative bearing on the viscosity of the solution.
Fig. 2. 7KHLQÀXHQFHRIFHOOXORVH¿EUHVDQGWKHH[WUXGHUVFUHZ
speed on the apparent viscosity of wheat starch solutions (exWUXGHUSODVWLFL]LQJV\VWHPRI/' )LJVKRZVWKHHIIHFWRIWKHDGGLWLRQRIÀD[¿EUHRQ
the value of apparent viscosity of the solutions of wheat
&+$5$&7(5,67,&62)6(/(&7('5+(2/2*,&$/3523(57,(6
thermoplastic starch. It was observed that with increasing
extruder screw rotation speed, the viscosity of solutions rose,
regardless of the plasticizing system used.
Fig. 4. 7KHLQÀXHQFHRIÀH[¿EUHVDQGWKHH[WUXGHUVFUHZVSHHG
on the apparent viscosity of wheat starch solutions (extruder
SODVWLFL]LQJV\VWHPRI/' Fig. 3. 7KHLQÀXHQFHRIÀH[¿EUHVDQGWKHH[WUXGHUVFUHZVSHHG
on the apparent viscosity of wheat starch solutions (extruder
SODVWLFL]LQJV\VWHPRI/' +LJKHUYLVFRVLW\YDOXHVZHUHUHSRUWHGIRUWKHVROXWLRQV
RIWKHUPRSODVWLFZKHDWVWDUFKZLWKWKHDGGLWLRQRIÀD[¿EUH
DWUSP-1 of the extruder screw.
During tests, the TPS solutions delaminated, which tesWL¿HVWRDZHDNERQGEHWZHHQÀD[¿EUHDQGZKHDWVWDUFK,Q
some cases, there was more resistance between the plunger
and and the walls of the machine, which could have led to
WKHKLJKVSUHDGRIDSSDUHQWYLVFRVLW\YDOXHV)LJ
The apparent viscosity of solutions of wheat starch granules produced on the shorter version of the plasticizing system slightly increased along with the higher bark content in Fig. 5. 7KHLQÀXHQFHRIJURXQGEDUNDGGLWLRQDQGWKHH[WUXGHU
WKHJUDQXODWHGPDWWHU)LJ7KHWRSYLVFRVLW\YDOXHZDV screw speed on the apparent viscosity of wheat starch solutions
UHSRUWHGDWDFRQWHQWRIJURXQGEDUNDQGIRUWKHVFUHZ H[WUXGHUSODVWLFL]LQJV\VWHPRI/' VSHHGRIUSP-1.
Ta b l e 1 . 7KHUHVXOWVRIWKHVWDWLVWLFDODQDO\VLVRIYLVFRVLW\RIDTXHRXVVROXWLRQVRIWKHUPRSODVWLFZKHDWVWDUFKGHSHQGLQJRQWKH
additives used.
$GGLWLYH
L/D version
&HOOXORVH¿EUH
)OD[¿EUH
*URXQGSLQHEDUN
Screw rotation
[rpm-1]
80
80
80
80
80
80
3RO\QRPLDOUHJUHVVLRQHTXDWLRQ
y [2[
y80 [2[
y [2[
y [2[
y80 [2[
y [2[
y [2[
y80 [2[
y [2[
y [2[
y80 [2[
y [2[
y [2[
y80 [2[
y [2[
y [2[
y80 [2[
y [2[
F test values
P value
0.000000009
0.0000002
0.0000
0.00000
0.0000
0.0000008
0.0000
0.0000009
721,6=&=8.$:Ï-72:,&=/02ĝ&,&.,$5(-$.0./,0(.0&20%5=<ē6.,
No direct effect was noted of the screw speeds during
extrusion on the value of the apparent viscosity of TPC
ZKHDWVROXWLRQVZLWKJURXQGSLQHEDUN)LJ
Fig. 6. 7KHLQÀXHQFHRIJURXQGEDUNDGGLWLRQDQGWKHH[WUXGHU
screw speed on the apparent viscosity of wheat starch solutions
H[WUXGHUSODVWLFL]LQJV\VWHPRI/' The use of the extended version of the plasticizing system of the extruder for the production of wheat TPS granules
with the addition of bark had an impact on the increase in the
value of apparent viscosity. The highest apparent viscosity
YDOXHVZHUHUHSRUWHGIRUVROXWLRQVZLWKDDQGDGGLWLRQRIJURXQGEDUN$VLPLODUWUHQGZDVREVHUYHGLQWKDW
the rising extruder screw speed resulted in the increased
viscosity of tested solutions.
CONCLUSIONS
± 7KHDTXHRXVVROXWLRQVRIWKHUPRSODVWLFZKHDWVWDUFK
JUDQXOHVREWDLQHGZLWKWKHH[WHQGHG/' H[WUXGHU
plasticizing system displayed higher apparent viscosity
values.
± 7KHDGGLWLRQRI¿OOHUVVXFKDVQDWXUDO¿EUHVLQFUHDVHG
YLVFRVLW\LQWKHPDMRULW\RIH[DPLQHGDTXHRXVVROXWLRQV
of TPS.
± 7KHDGGLWLRQRIÀD[¿EUHHQKDQFHGWKHYLVFRVLW\RI736
solutions to the greatest extent.
± 7KHULVLQJH[WUXGHUVFUHZURWDWLRQDOVSHHGUHVXOWHGLQ
a higher apparent viscosity value in the majority of examined solutions of TPS granules.
5()(5(1&(6
&DUYDOKR$-)-RE$(1$OYHV$$6&XUYHOR
A. Gandini., 2003: Thermoplastic starch/natural rubber
EOHQGV&DUERK\GUDWH3RO\PHUV±
2. Dyadychev V., Pugacheva H., Kildeychik A., 2010:
Co-injection molding as one of the most popular injection molding Technologies for manufacture of polymeric
GHWDLOVIURPVHFRQGDU\UDZPDWHULDOV7(.$&RPPLVLRQ
RIPRWRUL]DWLRQDQG3RZHU,QGXVWU\LQ$JULFXOWXUH3$1
9ROXPH;F
*ULI¿Q*-/863DWHQW
Gujral H.S., Sodhi N.S., 2002:%DFNH[WUXVLRQSURSerties of wheat porridge (Dalia). -RXUQDORI)RRG(QJLQHHULQJ
+H<6=HQJ-%/L6/:DQJ<=
Crystallization behavior of partially miscible biodegradDEOHSRO\EXW\OHQHVXFFLQDWHSRO\HWK\OHQHVXFFLQDWH
blends.
7KHUPRFKLP$FWD±
-DQVVHQ/3%00RVFLFNL/(GVThermoSODVWLF6WDUFK:LOH\9&+9HUODJ*PE+&R.*D$
:HLQKHLP
7. /HH6</XQD*X]PDQ,&KDQJ6%DUUHWW'0
Guinard J-X., 1999:Relating descriptive analysis and
instrumental texture data of processed diced tomatoes.
)RRG4XDOLW\DQG3UHIHUHQFH
8. /L0/LX3=RX:<X/HWDO([WUXVLRQ
SURFHVVLQJDQGFKDUDFWHUL]DWLRQRIHGLEOHVWDUFK¿OPV
ZLWK GLIIHUHQW DP\ORVH FRQWHQWV - )RRG (QJ ±
9. /L-/XR;/LQ;DQG=KRX<ComparDWLYHVWXG\RQWKHEOHQGVRI3%6WKHUPRSODVWLFVWDUFK
prepared from waxy and normal corn starches. Starch,
±
/LX+;LH)<X/&KHQ//L/Thermal
processing of starch-based polymers. Prog. Polym. Sci.,
±
/LX+<X/6LPRQ*'HDQ.&KHQ/
(IIHFWVRIDQQHDOLQJRQJHODWLQL]DWLRQDQGPLFURVWUXFtures of corn starches with different amylose/amylopecWLQUDWLRV&DUERK\GU3RO\P±
Liu, P., Xie, F., Li, M., Liu, X. et al., 2011: Phase transitions of maize starches with different amylose conWHQWVLQJO\FHURO±ZDWHUV\VWHPV&DUERK\GU3RO\P
±
Mitrus M., 2006: Investigations of thermoplastic starch
H[WUXVLRQFRRNLQJSURFHVVVWDELOLW\7(.$&RPPLVVLRQ
RIPRWRUL]DWLRQDQG3RZHU,QGXVWU\LQ$JULFXOWXUH3$1
9ROXPH9,D
0RĞFLFNL/0LWUXV0:yMWRZLF]$2QLV]F]XN
T., Rejak A., Janssen L., 2012:$SSOLFDWLRQRIH[WUXsion-cooking for processing of thermoplastic starch
736)RRG5HVHDUFK,QWHUQDWLRQDO9ROSS
299.
0RUDLV7HL[HLUD(5R]$/&DUYDOKR$-)
Antonio Curvelo, A., A., S., 2005: Preparation and
Characterisation of Thermoplastic Starches from CasVDYD6WDUFK&DVVDYD5RRWDQG&DVVDYD%DJDVVH0DFURPRO6\PS±
2QLV]F]XN73LODZND5:Sá\ZGRGDWNXZáyNLHQFHOXOR]RZ\FKQDZ\WU]\PDáRĞüWHUPLF]QąVNUREL
WHUPRSODVW\F]QHM3U]HP\Vá&KHPLF]Q\
2QLV]F]XN73LODZND52QLV]F]XN$:Sá\Z
GRGDWNXPLHORQHMNRU\VRVQRZHMQDZ\WU]\PDáRĞüWHUPLF]QąVNURELWHUPRSODVW\F]QHM3U]HP\Vá&KHPLF]Q\
2QLV]F]XN7:yMWRZLF]$0LWUXV00RĞFLFNL/
&RPEU]\ĔVNL05HMDN$*áDG\V]HZVND%
,QÀXHQFHRISURFHVFRQGLWLRQVDQG¿OOHUVDGGLWLRQRQ
&+$5$&7(5,67,&62)6(/(&7('5+(2/2*,&$/3523(57,(6
H[WUXVLRQFRRNLQJHI¿FLHQF\DQG60(RIWKHUPRSODVtic potato starch, Teka Commision of Motorization and
(QHUJHWLFVLQ$JULFXOWXUH3ROLVK$FDGHP\RI6FLHQFHV
%UDQFKLQ/XEOLQYRO1RSS
2QLV]F]XN7:yMWRZLF]$0LWUXV00RĞFLFNL/
&RPEU]\ĔVNL05HMDN$*áDG\V]HZVND%
%LRGHJUDGDWLRQRI736PRXOGLQJVHQULFKHGZLWKQDWXUDO
¿OOHUV7HND&RPPLVLRQRI0RWRUL]DWLRQDQG(QHUJHWLFV
LQ$JULFXOWXUH3ROLVK$FDGHP\RI6FLHQFHV%UDQFKLQ
/XEOLQYRO1RSS
20. Pedroso, A. G., Rosa, D. S., 2005: Mechanical, thermal
DQGPRUSKRORJLFDOFKDUDFWHUL]DWLRQRIUHF\FOHG/'3(
FRUQVWDUFKEOHQGV&DUERK\GU3RO\P±
Ramis, X., Cadenato, A., Salla, J. M., Morancho,
J. M. et al., 2004: Thermal degradation of polypropylene/starchbased materials with enhanced biodegradabilLW\3RO\P'HJUDG6WDELOLW\±
22. 6KXMXQ:-LXJDR<-LQJOLQ<Preparation and
characterization of compatible thermoplastic starch/ pol\HWK\OHQHEOHQGV3RO\P'HJUDG6WDELOLW\±
Sobczak P., 2006: Sorbitol addition on extrusion proFHVV7(.$&RPPLVVLRQRI0RWRUL]DWLRQDQG3RZHU
,QGXVWU\LQ$JULFXOWXUH3$19ROXPH9,D
Teyssandier, F., Cassagnau, P., Ge´ rard, J. F., Mignard, N., Me´ Lis, F., 2012: Morphology and meFKDQLFDOSURSHUWLHVRI3$SODVWLFL]HGVWDUFKEOHQGV
prepared by highshear extrusion. Mater. Chem. Phys.
±
Teyssandier, F., Cassagnau, P., Ge´ Rard, J. F., Mignard, N., 2011:5HDFWLYHFRPSDWLELOL]DWLRQRI3$
plasticized starch blends: towards improved mechanical
SURSHUWLHV(XU3RO\P-±
:DQJ1<X-&KDQJ350D;,QÀXHQFH
of citric acid on the properties of glycerol-plasticized
GU\VWDUFK'736DQG'736SRO\ODFWLFDFLGEOHQGV
6WDUFK±-/LHWDO6WDUFK
±
27. Xie F., Halley P. J., Ave´ Rous L., 2012: Rheology to
understand and optimize processibility, structures and
properties of starch polymeric materials. Prog. Polym.
6FL±
28. <X/'HDQ./L/Polymer blends and
composites from renewable resources. Prog. Polym. Sci.,
±
29. =HQJ-%-LDR//L<'6ULQLYDVDQ0HWDO
%LREDVHGEOHQGVRIVWDUFKDQGSRO\EXW\OHQHVXFFLQDWH
with improved miscibility, mechanical properties, and reGXFHGZDWHUDEVRUSWLRQ&DUERK\GU3RO\P±
=KDQJ<5=KDQJ6':DQJ;/&KHQ5<
:DQJ<=(IIHFWRIFDUERQ\OFRQWHQWRQWKH
properties of thermoplastic oxidized starch. CarbohyGUDWH3RO\PHUV±
=RX:<X//LX;&KHQ/HWDO(IIHFWV
of amylose/ amylopectin ratio on starch-based superabVRUEHQWSRO\PHUV&DUERK\GU3RO\P±
=XOOR5,DQQDFH6 The effects of different
VWDUFKVRXUFHVDQGSODVWLFL]HUVRQ¿OPEORZLQJRIWKHUmoplastic starch: correlation among process, elongational properties and macromolecular structure. Carbohydr.
3RO\P±
&+$5$.7(5<67<.$:<%5$1<&+&(&+
5(2/2*,&=1<&+:2'1<&+52=7:25Ï:
36=(11<&+%,2.2032=<7Ï:736
Streszczenie. %DGDQLRPSRGGDQRZRGQHUR]WZRU\JUDQXODWyZ
SV]HQQHMVNURELWHUPRSODVW\F]QHM736*UDQXODW\VNURELWHUPRSODVW\F]QHM]RVWDá\Z\SURGXNRZDQH]PLHV]DQHNVNURELSV]HQQHM
JOLFHU\Q\RUD]GRGDWNXZ\SHáQLDF]\ZSRVWDFLZáyNLHQQDWXUDOQ\FK
:EDGDQLDFK]DVWRVRZDQR]PRG\¿NRZDQ\HNVWUXGHUMHGQRĞOLPDNRZ\76R/' L/' ]GRGDWNRZ\PFKáRG]HQLHPNRĔFRZHMF]ĊĞFLF\OLQGUDXU]ąG]HQLD%DGDQRZSá\ZSUĊGNRĞFLREURWRZHM
ĞOLPDNDHNVWUXGHUDLORĞFLRUD]URG]DMXVWRVRZDQHJRZ\SHáQLDF]DQDOHSNRĞüUR]GUREQLRQ\FKJUDQXODWyZSV]HQQHMVNURELWHUPRSODVW\F]QHM3RGF]DVSRPLDUyZ]DREVHUZRZDQRĪHZ\ĪV]\PLZDUWRĞFLDPL
OHSNRĞFLSR]RUQHMFKDUDNWHU\]RZDá\VLĊUR]WZRU\736Z\WZRU]RQHM
QDGáXĪV]HMZHUVMLXNáDGXSODVW\¿NXMąFHJRHNVWUXGHUD76
6áRZDNOXF]RZHHNVWUXGHUZáyNQDOHSNRĞüVNURELDWHUPRSODstyczna, ekstruzja, biokompozyty.
This research work has been supported by the funds for science for the years 2010-2012
as a research project NN313275738.
TEKA. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE – 2014, Vol. 14, No. 4, 137–142
Vehicle Transport Organization of Food Requiring Refrigeration
Halina Pawlak, Piotr Maksym, Jacek Skwarcz
University of Life Sciences in Lublin, Department of Technology Fundamentals
Doświadczalna 44, 20-236 Lublin, Poland
Received December 09.2014; accepted December 19.2014
Summary. 7KHSDSHUSUHVHQWVDGHVFULSWLRQRIWKHOHJDOUHTXLUHPHQWVIRUFDUWUDQVSRUWRIIRRGVWKDWUHTXLUHUHIULJHUDWLRQ:HUH
also carried out a survey among drivers involved in this kind of
transport, in order to assess the knowledge of drivers about the
WUDQVSRUWRISHULVKDEOHIRRGWKDWUHTXLUHVFRROLQJ
Key words: perishable foodstuff, vehicle transport, legislation.
INTRODUCTION
Nowadays the demand is rapidly growing for food with
KLJKVHQVRU\TXDOLW\IUHVKDQGULFKLQQXWULHQWV7KLVSKHnomenon is not only the driving force for the development
RIDJULIRRGLQGXVWU\EXWDOVRLQWKH¿HOGRIORJLVWLFVDQG
transport of refrigerated foods. This progress has resulted
in the possibility of provision of even very distant markets
IRUSHULVKDEOHIRRGVWXII>@
More and more often, the transport of food products
has been using methods of preservation of these products
involving the application of the cooling systems. This allows
WKHVKRUWWHUPVWRUDJHRIIUHVKIRRGDWDWHPSHUDWXUHIURP
WRƒ&RUORQJWHUPVWRUDJHLQDIUR]HQVWDWHDWDWHPSHUDWXUH
IURPWRƒ&>@
The advantage of the method of cooling is a complete
stop or slowing down of microbial growth in both chilled
and frozen foods. Furthermore, foods preserved by this
method retain vitamins and organoleptic characteristics of
WKHIUHVKIRRG7KHIXO¿OOPHQWRIVXFKFRQGLWLRQVUHTXLUHV
compliance with the principles of transport conditions of
perishable foodstuffs and the selection of proper means
of transport. Special means of transport for perishable
food items are:
± LQVXODWHGHTXLSPHQW
± UHIULJHUDWHGHTXLSPHQW
± PHFKDQLFDOO\UHIULJHUDWHGHTXLSPHQW
± KHDWHGHTXLSPHQW
Participation in road transport of perishable goods, as
well as dangerous goods, has been systematically increasing,
ZKLFKUHTXLUHVVWULFWFRPSOLDQFHZLWKWKHUHOHYDQWSURYLVLRQV
>@
3HUVLVWHQFHDQGTXDOLW\RIWUDQVSRUWHGUHIULJHUDWHGIRRG
products depends mainly on micro-climatic conditions prevailing in the cargo area. The main parameter is the temperature, which depends on the product being transported. the
variations of the temperature should be kept to the minimum
>@
During the loading, transport and unloading, the highest
temperature of frozen and deep-frozen foods should not
H[FHHGWKHWHPSHUDWXUHVJLYHQLQ7DEOH
7DEOH7HPSHUDWXUHUHTXLUHGIRUWKHWUDQVSRUWRIIUR]HQ
DQGGHHSIUR]HQIRRGVWXII>@
Type of food article
Frozen or deep-frozen cream and fruit juice
concentrates
)UR]HQDQGGHHSIUR]HQ¿VKHV
$Q\RWKHUGHHSIUR]HQIRRGVWXIIV
Frozen butter and other fats
Frozen offal, egg yolks, poultry and game
Frozen meat
$Q\RWKHUIUR]HQIRRGVWXIIV
7KHUHTXLUHG
transport
temperature
-20oC
oC
oC
oC
oC
oC
oC
This temperature may increase, for example in the
evaporator during the defrosting of the means of transport
PHFKDQLFDOO\UHIULJHUDWHGHTXLSPHQW,QVXFKFDVHWKH
WHPSHUDWXUHLVDOORZHGWRLQFUHDVHQRPRUHWKDQDƒ&ZLWK
UHVSHFWWRWKHUHTXLUHGWHPSHUDWXUHV
Furthermore, the highest temperature anywhere in cargo
during loading, transport and unloading of non-frozen foods
should not exceed the temperatures given in Table 2.
+$/,1$3$:/$.3,2750$.6<0-$&(.6.:$5&=
Ta b l e 2 . 7HPSHUDWXUHUHTXLUHGIRUWKHWUDQVSRUWRIQRQIUR]HQ
DQGQRQGHHSIUR]HQIRRGVWXII>@
Type of food article
The required
transport
temperature
oC1)
oC
oC
Poultry
%XWWHU
*DPH
0LONWDQNHUUDZRUSDVWHXULVHGLQWHQGHGIRU
oC1)
direct human consumption
Industrial milk
oC1)
0LON\SURGXFWV\RJXUWNH¿UVRXUFUHDP
oC1)
FRWWDJHFKHHVH
)LVKHVVKRXOGDOZD\VEHWUDQVSRUWHGLQLFH2)
+2oC
Prepared meat products
oC
0HDWH[FOXGLQJSRXOWU\
+7oC
Poultry and rabbits
oC
1)
,QSULQFLSOHWUDQVSRUWWLPHVKRXOGQRWH[FHHGKRXUV
2)
:LWKWKHH[FHSWLRQRIVPRNHG¿VKVDOWHGGULHGRUOLYH
3)
With the exception of products in the stabilized state by
salting, smoking, drying or sterilization.
Fig. 1. &HUWL¿FDWLRQSODWHRIFRPSOLDQFHRIWKHHTXLSPHQW±WKH
SDUWLFXODUVLQVTXDUHEUDFNHWVDUHJLYHQE\ZD\RIH[DPSOH>@
On the other hand the driver should have the original
FHUWL¿FDWHRI$73LQ3ROLVKDQG(QJOLVK6DPSOHJXLGHOLQHV
IRUYHUL¿FDWLRQRIWKHHTXLSPHQWLQWKHWUDQVSRUWRIIRRGDUH
shown in Figure 2
7KHUHTXLUHPHQWVUHODWHGWRWKHDGPLVVLRQRIYHKLFOHVWR
$QRWKHULPSRUWDQWSDUDPHWHURIPHFKDQLFDOO\UHIULJHU- WUDI¿FPXVWEHFRQVLVWHQWZLWKWKHUHTXLUHPHQWVFRQWDLQHGLQ
DWHGHTXLSPHQWLVKXPLGLW\ZKLFKVHWVDXWRPDWLFDOO\DQG WKH$73DJUHHPHQW$JUHHPHQWRQWKH,QWHUQDWLRQDO&DUULDJH
GRHVQRWUHTXLUHFRQWURO
RI3HULVKDEOH)RRGVWXIIVDQGRQWKH6SHFLDO(TXLSPHQWWR
Moreover, the interior of transport should be clean in EHXVHGIRUVXFK&DUULDJH
order not to lead to the development of miFURRUJDQLVPV%HIRUHORDGLQJLQDFFRUGDQFH
with the principles of good transport, refrigeration compartment of the vehicle should
be cooled to a temperature appropriate for
a given food product.
Carriers must be informed (need to
NQRZDERXWWKHIDFWWKDWWUDQVSRUWRIIURzen, deep-frozen and unfrozen food must be
included as a component of the storage time.
Therefore, the drivers carrying food should
note that transportation of certain articles of
food may be close to the optimum storage
time and therefore often vehicles should be
WUHDWHGDVDVSHFLDONLQGRIPDJD]LQH>@
Suitable conditions for the transport
of food and sanitary safety, as in force in
3RODQG VLQFH $73 $DJUHHPHQW
7WUDQVSRUWDWLRQ 3SHULVKDEOH DJUHHPHQW
of the “International Carriage of Perishable
IRRGVWXIIVDQGWKHVSHFLDOHTXLSPHQWIRUVXFK
FDUULDJH´UHTXLUHDSSURSULDWHLGHQWL¿FDWLRQ
RIPHDQVRIWUDQVSRUWDQGWKHUHTXLUHGGRFXPHQWV>@
Means of transport intended for the carriage of perishable food products, which
PHHWWKHWHUPVRIWKHDJUHHPHQW$73VKRXOG
EHPDUNHGE\VLJQV$73)LJZKLFKLV
mounted in a visible location on the wall of
the building isothermal for the passenger
side. The table contains the marking class
RI$73PRQWK\HDUDQGYDOLGLW\RIWKHFHUWL¿FDWH
Fig. 2. $73H[DPSOHRIJRRGSUDFWLFH>@
9(+,&/(75$16325725*$1,=$7,212))22'5(48,5,1*5()5,*(5$7,21
7KH8QLWHG1DWLRQ(FRQRPLF&RPPLVVLRQIRU(XURSH
has information about the performing centers (Competent
$XWKRULWLHVDQG7HVW6WDWLRQVOLVW>@&2&+SHUIRUPV
periodic checks of insulated body in order to extend the
SHULRGRIYDOLGLW\RIWKH$73FHUWL¿FDWH)5&)1$
For example, in the context of accreditation for the PolLVK&HQWUHIRU$FFUHGLWDWLRQ&2&+SHUIRUPV
± LQVSHFWLRQVZKLFKDUHWKHEDVLVIRUREWDLQLQJFHUWL¿FDWLRQ
RI$73
± PHDVXUHPHQWVRIWKHRYHUDOOFRHI¿FLHQW³N´RIKHDWWUDQVfer for both the new means of refrigeration transport and
WKHLQVHUYLFHRQHDVWKHEDVLVIRUREWDLQLQJFHUWL¿FDWLRQ
RI$73
± FRPSOHWHWHVWLQJRIPHFKDQLFDOO\UHIULJHUDWHGWUDQVSRUW
(air-conditioned semi-trailers, refrigerated trailers, reIULJHUDWHGWUXFNVHWFDQGQRWPHFKDQLFDOO\UHIULJHUDWHG
WUDQVSRUWLFHKRXVHFDUV
± UHVHDUFKRQWKHHIIHFWLYHUHIULJHUDWLQJFDSDFLW\RIWKH
cooling unit,
± PHDVXUHPHQWVRIWKHRYHUDOOFRHI¿FLHQW³N´RIKHDWWUDQVIHUIRUOLTXLGIRRGVWXIIVWDQNWUXFNV>@
7KHGRPHVWLFDQGLQWHUQDWLRQDOSURYLVLRQVUHTXLUHWKHFDUULHUWRWUDQVSRUWHTXLSPHQWZLWKDPHDVXULQJGHYLFHUHFRUGLQJ
the air temperature inside the vehicle. Waveforms obtained
from the temperature changes registration, depending on the
type of product being transported, must be kept for at least one
year.Monitoring and recording of temperature also applies to
loading of goods, which should be chilled to the optimum storDJHWHPSHUDWXUHWUDQVSRUWUHIULJHUDQW,WLVDOVRLPSRUWDQWWR
FRQWUROWKHWHPSHUDWXUHRIIRRGSURGXFWVEHLQJXQORDGHG>@
7KHGULYHUHPSOR\HHKDVWREHFRPSHWHQWDQGSRVVHVV
WKHNQRZOHGJHRIDOOWKHUHTXLUHPHQWVFRQWDLQHGLQWKHVH
regulations.
UHTXLUHPHQWV IRU WKH WUDQVSRUW RI IRRG LQ VSHFLDO FRQditions.
Ta b l e 3 . *HQHUDOLQIRUPDWLRQ
$JH
2. The experience of work in the driver’s
SURIHVVLRQLQ\HDUV
7KHH[SHULHQFHRIZRUNLQSHULVKDEOHIRRGVWXII
YHKLFOHWUDQVSRUWLQ\HDUV
regular
7KHW\SHRIWUDQVSRUWFKDUDFWHU
casual
Ta b l e 4 . Information on the used type of isothermal transport
vehicle
,QVXODWHGHTXLSPHQW
5HIULJHUDWHGHTXLSPHQW
0HFKDQLFDOO\UHIULJHUDWHGHTXLSPHQW
2WKHU
Ta b l e 5 . Information on time, temperature and kind of perishable foodstuff
$UH\RXDOZD\VLQIRUPHGRQZKDW
NLQGRISURGXFWV\RXWUDQVSRUW"
'R\RXNQRZZKDWLVWKHUHTXLUHG
temperature during transport
RIIRRG"
'R\RXNQRZWKHWLPHUHTXLUHGIRU
WKHWUDQVSRUWRIIRRG"
'R\RXNQRZWKHUHTXLUHGWLPH
associated with loading and unORDGLQJRIWUDQVSRUWHGIRRG"
<HV No I don’tknow
<HV No I don’tknow
<HV No I don’tknow
<HV No I don’tknow
Ta b l e 6 . Information on vehicle designation, necessary transport documents and general rules of vehicle transport
7+($,0$1'7+(5$1*(2):25.
7UDQVSRUWDWLRQRIIRRGUHTXLUHVIURPFDUULHUVWKHNQRZOHGJHRIURDGWUDI¿FUHJXODWLRQVDQGVSHFL¿FUHJXODWLRQVFRQcerning the carriage of perishable foods.
The main aim of the study was to examine the drivers’
NQRZOHGJHRIWKHUHTXLUHPHQWVUHODWLQJWRWKHWUDQVSRUWRI
frozen and perishable food. The study was conducted among
drivers transporting food in the Lublin region.
0(7+2'2/2*<
'R\RXNQRZKRZDFDUIRUWKH
transporting of food should be
PDUNHG"
2. Do you know what document is
QHFHVVDU\ZKLOHWUDQVSRUWLQJIRRG"
'R\RXNQRZZKHUHWKH$73UDWLQJSODTXHVKRXOGEHSODFHG"
'R\RXNQRZZKDWWKH¿UVWOHWWHUV
RIWKH$73UDWLQJSODTXHDUH"
'R\RXNQRZWKHUXOHVRI³JRRG
WUDQVSRUWSUDFWLFH´"
<HV No I don’tknow
<HV No I don’tknow
<HV No I don’tknow
<HV No I don’tknow
<HV No I don’tknow
The survey was conducted in three service companies
operating in the transport of food.
7KHVWXG\XVHGDQDXWKRULDOTXHVWLRQQDLUHZLWKEDVLF
information about the respondents (age, years of work in
5(68/76
WKHSURIHVVLRQDVDGULYHUHWFDQGRWKHUVSHFL¿FTXHVWLRQV
$QDQRQ\PRXVTXHVWLRQQDLUHVKHHWZDVSUHSDUHGLQWKH'Hpartment of Technology Fundamentals. The survey included
7KHVXUYH\ZDVFDUULHGRXWDPRQJGULYHUVEHWZHHQ
WKHIROORZLQJTXHVWLRQV
WKHDJHVRIWRZKRKDYHEHHQZRUNLQJLQWKHSURfession of driver from 2 to 22 years and have experience
48(67,211$,5(6+((7
LQWKHWUDQVSRUWRIIRRGIURP\HDUWR\HDUV,QIRUmation concerning the type of transport used is shown
Please kindly complete a survey, which will be used LQ)LJXUHDQGWKHZRUNH[SHULHQFHLQWKHWUDQVSRUWRI
to check the drivers’ knowledge about the knowledge IRRGLQ)LJXUH
+$/,1$3$:/$.3,2750$.6<0-$&(.6.:$5&=
$SSUR[LPDWHO\RIWKHVXUYH\HGGULYHUVKDYHKDG
D\HDURUORQJHUZRUNH[SHULHQFHLQWKHWUDQVSRUWRIIRRG
UHVSRQGHQWVIURPDOOWKHPHDQVRIWUDQVSRUWRISHULVKDEOHIRRGVXVHGPHFKDQLFDOO\UHIULJHUDWHGHTXLSPHQW
Twenty of all the tested drivers declared that they always
have the information as to what kind of food is transported
E\WKHP)LJXUHEXWRQO\RIGULYHUVNQRZWKHUXOHV
RI³JRRGWUDQVSRUWSUDFWLFH´)LJXUH
2YHURIWKHGULYHUVFDQWHOOZKDWWKHUHTXLUHGWHPperature for the transport of food is. Similarly, the drivers
are aware of the time limit, depending on the types of transSRUWHGIRRG$OPRVWDOORIWKHUHVSRQGHQWVNQRZZKHUHWKH
$73UDWLQJSODTXHVKRXOGEHSODFHGDQGKRZDFDUVKRXOG
be properly marked for the transporting of food.
$PRQJWKHVXUYH\HGGULYHUVWKHUHZHUHPDLQO\WKH
FDUULHUVRI¿VKDQGIUR]HQRUGHHSIUR]HQSURGXFWV5HTXLUHPHQWVUHODWHGWRWKHDUFKLYLQJRIVKLSSLQJGRFXPHQWDtion, registration and cyclic temperature control in vehicles
were met. The problem to which the attention was drawn
by the driver was associated with increases in the time of
XQORDGLQJRIWKHJRRGV7KHFRQVHTXHQFHRIWKDWVLWXDtion may be a raise of the temperature in the vehicle.This
situation is usually caused by the lack of assistance from
another person (assistant driver, handling assistant at the
FXVWRPHU7KHUHIRUHWKHXQORDGLQJWLPHPD\EHORQJHU
due to self-unloading.
C
B 9%
4%
CONCLUSIONS
$IRRGFDUULHUVKRXOGUHPHPEHUWKDWKHLVDOVRDFRQsumer. On his knowledge of the procedures followed for the
WUDQVSRUWRISHULVKDEOHSURGXFWVWKHLUTXDOLW\GHSHQGV7KH
conducted surveys have shown that the examined carriers
DUHFRPSHWHQWDVWRWKHUHTXLUHPHQWVIRUWKHWUDQVSRUWRI
deep-frozen and frozen food products.
D
4%
A
9%
B
13%
C
74%
A
87%
Fig. 5. $UH\RXDOZD\VLQIRUPHGRQZKDWNLQGRISURGXFWV\RX
WUDQVSRUW"$±<HV%±1R&±,GRQ¶WNQRZ
A
38%
C
46%
Fig. 3. ,QIRUPDWLRQDERXWWKHYHKLFOHNLQGXVHG$±LQVXODWHG
Fig. 3. Information about the vehicle kind used:
HTXLSPHQW%±UHIULJHUDWHGHTXLSPHQW&±PHFKDQLFDOO\UHIULJHUDWHGHTXLSPHQW'±RWKHU
A
4%
B
9%
B
15%
Fig. 6. 'R\RXNQRZWKHUXOHVRI³JRRGWUDQVSRUWSUDFWLFH´"
$±<HV%±1R&±,GRQ¶WNQRZ
C
9%
5()5(5(1&(6
$73$JUHHPHQWYDOLGIURP>RQOLQHDFFHVV@
KWWSZZZXQHFHRUJ¿OHDGPLQ'$0WUDQVPDLQZS
ZSGRF$73BHSGI
D
$73$JUHHPHQWYDOLGIURP>RQOLQHDFFHVV@
78%
KWWSZZZXQHFHRUJ¿OHDGPLQ'$0WUDQVGRF
ZS$73BHSGI
$73+DQGERRN>RQOLQHDFFHVV@KWWSZZZXQHFHRUJ¿OHFig. 4. 7KHH[SHULHQFHLQ\HDUVRIZRUNLQSHULVKDEOHIRRGVWXII
DGPLQ'$0WUDQVGRFZS+DQGERRNHSGI
Fig. 4. The experience (in years) of work in
YHKLFOHWUDQVSRUW$±EHORZ\HDU%±\HDUV&±\HDUV %ĊF]NRZVND6*UDEDUHN,&KRURPDĔVNL:
'±\HDUVDQGPRUH
Modelowanie ryzyka w drogowym transporcie towarów
9(+,&/(75$16325725*$1,=$7,212))22'5(48,5,1*5()5,*(5$7,21
QLHEH]SLHF]Q\FK]XZ]JOĊGQLHQLHPF]\QQLNDOXG]NLHJR
(UJRQRPLDZZDUXQNDFKJRVSRGDUNLRSDUWHMQDZLHG]\
5HGDNFMD=áRZRG]NL02JLĔVND+-XOLV]HZVNL7
3DZODN+.RPLWHW(UJRQRPLL3$1.UDNyZ/XEOLQ
%LHĔF]DN.=ZLHU]\FNL:6DPRFKRG\FKáRGQLF]HZWUDQVSRUFLHĪ\ZQRĞFL6\VWKHUP3R]QDĔ
&HQWUDOQ\2ĞURGHN&KáRGQLFWZD±]DNUHVEDGDĔ$73
>RQOLQHDFFHVV@KWWSZZZFRFKSO%DGDQLD$73EHQ
&RPSHWHQW$XWKRULWLHVDQG7HVW6WDWLRQV/LVW>RQOLQH
DFFHVV@ KWWSZZZXQHFHRUJ¿OHDGPLQ'$0WUDQV
PDLQZSWHVWVWDWLRQVSGI
8. .ZDĞQLRZVNL6=DVDG\GREUXXU]ąG]HĔFKáRGniczych i grzewczych do nadwozi izotermicznych. w.:
3RMD]G\L]RWHUPLF]QHLFKáRGQLF]H2¿F\QD:\GDZQLF]D
3ROLWHFKQLNL:URFáDZVNLHM:URFáDZ
9. àDVNL03DOXFK6 Transport drogowy osób
LU]HF]\*UXSD,0$*(:DUV]DZD
2ĞZLDGF]HQLHRSU]\VWąSLHQLXGRXPRZ\RPLĊG]\QDURGRZ\FKSU]HZR]DFKV]\ENRSVXMąF\FKVLĊDUW\NXáyZ
Ī\ZQRĞFLRZ\FKLRVSHFMDOQ\FKĞURGNDFKWUDQVSRUWX
SU]H]QDF]RQ\FKGRW\FKSU]HZR]yZ$73']8
QUSR]SDĨG]LHUQLND>RQOLQHDFFHVV@
KWWSLVDSVHMPJRYSO'RZQORDG"LG :'8
W\SH 3URFKRZVNL/ĩXFKRZVNL$6DPRFKRG\FLĊĪDURZHLDXWREXV\:\GDZQLFWZD.RPXQLNDFMLLàąF]QRĞFL:DUV]DZD
Rydzkowski W., Wojewódzka-Król K. 2005: Transport. Wydawnictwo Naukowe PWN, Warszawa.
Steindel M., Schnotale J. 2008:0URĪRQDĪ\ZQRĞüLMHM
WUDQVSRUW]JRGQLH]SU]HSLVDPL8QLL(XURSHMVNLHM6DPRFKRGRZ\WUDQVSRUWFKáRGQLF]\'RGDWHNPLHVLĊF]QLND
&KáRGQLFWZR.OLPDW\]DFMD(XUR0HGLD:DUV]DZD
8VWDZDRWUDQVSRUFLHGURJRZ\P']81U
SR]]GQLDZU]HĞQLDU>RQOLQHDFFHVV@KWWS
LVDSVHMPJRYSO'RZQORDG"LG :'8W\
SH 8VWDZDRWUDQVSRUFLHGURJRZ\P']8SR]
]GQLDSDĨG]LHUQLNDU>RQOLQHDFFHVV@KWWSLVDS
VHMPJRYSO'RZQORDG"LG :'8W\SH =ZLHU]\FNL : %LHĔF]DN . 5RFKDWND 7 6WDchowiak A., Tyczewski P. 2008: %DGDQLDSRMD]GyZ
FKáRGQLF]\FKRUD]NRQWURODWHPSHUDWXU\ZáDGRZQL6DPRFKRGRZ\WUDQVSRUWFKáRGQLF]\'RGDWHNPLHVLĊF]QLND
&KáRGQLFWZR.OLPDW\]DFMD(XUR0HGLD:DUV]DZD
25*$1,=$&-$75$16325786$02&+2'2:(*2
ĩ<:12ĝ&,:<0$*$-Ą&(-&+à2'=(1,$
Streszczenie. :DUW\NXOH]DSUH]HQWRZDQRRSLVZ\PDJDĔSUDZQ\FK]ZLą]DQ\FK]WUDQVSRUWHPĪ\ZQRĞFLZ\PDJDMąFHMFKáRG]HQLD3U]HSURZDG]RQRDQNLHWĊZĞUyGNLHURZFyZ]ZLą]DQ\FK
]WDNLPURG]DMHPWUDQVSRUW$QNLHWDPLDáDQDFHOXVSUDZG]HQLH
VWDQXZLHG]\NLHURZFyZZ]DNUHVLHSU]HZR]XĪ\ZQRĞFLV]\ENRSVXMąFHMVLĊNWyUDZ\PDJDFKáRG]HQLD
6áRZDNOXF]RZHDUW\NXá\Ī\ZQRĞFLRZHWUDQVSRUWVDPRFKRGRwy, regulacja prawna
V\VWHP ZDV GHYHORSHG IRU G\QDPLF RVFLOODWLRQV TXHQFKLQJ
WLRQVWRWKHEDVHRIWKHPDFKLQH$QDQDO\VLVZDVSH
RVFLOODWLRQV
TXHQFKLQJ
7KH PDWKHPDWLFDO
TEKA. COMMISSION OF MOTORIZATION AND ENERGETICS
IN AGRICULTURE
– 2014,
Vol. 14, No. 4,VHTXHQFH
143–150 ZDV
TXHQFKHU 7KH SDUDP
ZRUNLQJ HTX
WLRQVTXHQFKLQJ
TXHQFKHU G\QDPLF RVFLOODWLRQV K
The Dynamic Vibrations Hydraulic Quencher
Leonid Pelevin, Mykola Karpenko
QLTXH ZKLFK LV
Kyiv National University of Construction
Architecture
HTXLSSHGand
E\ DFWLYH
DFWLRQ HQJLQHV DQG XVHG IRU
Povitroflotskyy Prosp., 31, Kyiv, Ukraine, 03680, e-mail: karpenko_knuba@ukr.net
Received December 01.2014; accepted December 17.2014
Summary. $ UHYLHZ DQG DQDO\VLV ZHUH FDUULHG RXW RI WKH
GHYHORSHGK\GUDXOLFV\VWHPIRUTXHQFKLQJG\QDPLFRVFLOOations. The mathematical model was made for determining
the time delay in operation of the hydraulic system for dyQDPLFTXHQFKLQJRIRVFLOODWLRQV $FDOFXODWLRQZDVPDGHRI
soil cleavage period and operation time delay of dynamic
RVFLOODWLRQVTXHQFher, from which it is possible in theory to
establish the ability of the hydraulic system for dynamic
oscillaWLRQV TXHQFKLQJ WR RSHUDWH LQ WLPH 7KH K\Graulic
V\VWHP ZDV GHYHORSHG IRU G\QDPLF RVFLOODWLRQV TXHQFKLQJ
inside the working unit to prevent the transmission of vibraWLRQVWRWKHEDVHRIWKHPDFKLQH$QDQDO\VLVZDVSHrformed
of the damper’s means and the method of dynamic damping
on which the hydraulic system was developed for dynamic
RVFLOODWLRQV TXHQFKLQJ 7KH PDWKHPDWLFDO VHTXHQFH ZDV
built for the determination of operation time delay of the
TXHQFKHU 7KH SDUDPeters have allowed to construct the
experimental model of hydraulic system for dynamic oscillaWLRQVTXHQFKLQJ
Key words: TXHQFKHU G\QDPLF RVFLOODWLRQV Kydraulic
system, time lag response, soil cleavage period.
$ UHYLHZ
DQG DQDO\VLV ZHUH FDUULHG RXW RI WKH
INTRODUCTION
GHYHORSHGK\GUDXOLFV\VWHPIRUTXHQFKLQJG\QDPLFRVFLOOamatical model was made for determining
construction
often
works forthat
theThe
time delay
in operation
of theincludes
hydraulic system
dyQDPLFTXHQFKLQJRIRVFLOODWLRQV
$FDOFXODWLRQZDVPDGHRI
cannot
be performed by conventional
machines.
age period
operationtechQLTXH
time delay of
dynamic
In this case,
usingand
a special
ZKLFK
LV
RVFLOODWLRQVTXHQF er, from which it is possible in theory to
HTXLSSHG
E\
DFWLYH
DFWLRQ
HQJLQHV
DQG
XVHG
IRU
establish the ability of the hydraulic system for dynamic
groundWLRQV
operations
canWRbe
consider
as a7KH
solution.
TXHQFKLQJ
RSHUDWH
LQ WLPH
K\Graulic
One
of
the
disadvantages
of
this
special
techV\VWHP ZDV GHYHORSHG IRU G\QDPLF RVFLOODWLRQV TXHQFKLQJ
inside
the
working
unit
to
prevent
the
transmission
of
nology is the transmission of vibrations fromvibrathe
WLRQVWRWKHEDVHRIWKHPDFKLQH$QDQDO\VLVZDVSH
formed
working
body to base machine, accompanied
by
of the damper’s means and the method of dynamic damping
the premature wearing
down
of
the
basic
machine
lic system was developed for dynamic
parts
whichTXHQFKLQJ
do not participate
in the ground
RVFLOODWLRQV
7KH PDWKHPDWLFDO
VHTXHQFHdeZDV
built for the determination of operation time delay of the
struction.
TXHQFKHU
7KH
SDUDP
ters have allowed
to construct
the
To solve
the
above-mentioned
problem
amoramic oscillaWL]DEOH
HTXLSPHQW can be used to isolate vibraWLRQVTXHQFKLQJ
tions caused TXHQFKHU
by the working
body movement
G\QDPLF RVFLOODWLRQV
K draulic
from the base machine.
*LYHQWKDWWKHFXUUHQWFXVKLRQLQJGHYLFHVDUH
WL]DEOH HTXLSPHQW can be used to isolate vibracaused by thePRGHO
working
body movement
–tions
$ PDWKHPDWLFDO
IRU GHWHUPLQLQJ
WKH
from the base machine.
*LYHQWKDWWKHFXUUHQWFXVKLRQLQJGHYLFHVDUH
TXHQF
–not$ effective enough, there is demand for the
construction of a new hydraulic system for dynamic oscillations TXHQFKLQJ DV ZHOO DV mathematical model for the determination of the main
characteristics of the new system, namely: determining the time delay in the operation of the
hydraulic system for dynamic oscillations
TXHQFKLQJ, its
evaluation, timeliness, triggering
7+(0$,10$7(5,$/
of specified dynamic fluctuations.
the vibration transmitted to
ZRUNLQJ HTXLSPHQW
%DVLFDOO\
385326(2):25.
chines with d QDPLFDFWLYHZRUNLQJWRROV$VD
result
of work,
theUHVXOWV
vibr RI WKH dynamic analysis
%DVHG
RQ WKH
toofthe
machine
and
destruc
the method andcause
vibration
cushioning devices
transmit
the work aimed to develop:
body
– $ PDWKHPDWLFDO PRGHO IRU GHWHUPLQLQJ WKH
elements
time delay in the operation of the hydraulic
tions transmitted to the base machine. The main
system for dynamic oscillations TXHQFhing;
method of vibration damping is called
– $ hydraulic construction developed by the
of dynamic viEUDWLRQGDPSLQJ> authors for extinguishing dynamic oscillations
that arise inside the working part in order to
based on
make their transmission to the base machine
devices to change the
impossible.
given object. The
LFTXHQFKHULV
based on putting out the force transmitted to the
REMHFW 7KLV G\QDPLF TXHQFK
7+(0$,10$7(5,$/
other method of reducing vibration, characterized
by impos
In engineering it is often necessary to damp
linka
its
the vibration transmitted to the machine from
ZRUNLQJ HTXLSPHQW %DVLFDOO\, it concerns mamchines with
ZKHQ
MRLQLQJ D G\QDPLF TXHQFKHU
dyQDPLFDFWLYHZRUNLQJWRROV$VD
be
achieved
by the vibrations
redistrib can be transmitted
result
of work,
HQHUJ\IURPWKHREMHFWWRWKHTXHQFKHUDQGLQWKH
to the machine and cause destruction. To prevent
>
REMHFW 7KLV
m
ZK
be achieved
HQHUJ\IURP
direction of
fluctuations
by changing
TXHQFKHU RY
excitation by
erties of the
tacha
TXHQFKHUV $
press harmo
fluctu
range the sec
in
attaching
the object
called
RI WKH G\QDP
elastic
ZDVSH
7+(0$,10$7(5,$/
VHTXHQFH ZDV
HTXLSPHQW %DVLFDOO\/(21,'3(/(9,10<.2/$.$53(1.2
chines with dyQDPLFDFWLYHZRUNLQJWRROV$VD vibration in the SDUWV ZKHUH WKH TXHQFKHU LV IDstened. Often it may be associated even with the
result of work, the vibrations can be transmitted
deterioration of the object’s vibration in the other
to the machine and cause destruction. To prevent
less appropriate places.
transmitting the vibrations from the working
body to the base machine the so-called springy
elements are used, which try to put out the vibrations transmitted to the base machine. The main
method of vibration damping is called – a method
of dynamic viEUDWLRQGDPSLQJ>, , , ].
The method of dynamic vibration damping is
based on the application of additional protective
devices to change the vibration properties in a
given object. The work of the dynamLFTXHQFKHULV
based on putting out the force transmitted to the
Fig. 1. The overall look of shock absorbing passive elements: ɚ – VSULQJRIYHKLFOH, b – spring
REMHFW 7KLV G\QDPLF TXHQFKing differs from another method of reducing vibration, characterized
by imposition of the additional kinematic object
linkages, such as fixing some of its points [2, ].
'\QDPLF TXHQFKHU FDQ EH FRQVWUXFWLYHO\ LmChanging the vibrating condition of the base
SOHPHQWHGEDVHGRQWKHSDVVLYHHOHPHQWV)LJ
machine ZKHQ MRLQLQJ D G\QDPLF TXHQFKHU can
PDVVHV VSULQJV VKRFN DEVRUEHUV GDPSHUV DQG
be achieved by the redistribution of vibrational
the active ones, which have their own power
HQHUJ\IURPWKHREMHFWWRWKHTXHQFKHUDQGLQWKH
sources.
direction of the increasing energy dissipation
In the last case we are talking about the use of
fluctuations >, 20]. The former is implemented
automatic control units that use elements driven
by changing the system’s settings of the objectby an electric, hydraulic or pneumatic system.
TXHQFKHU RYHU WKH IUHTXHQFLHV RI WKH YLEUDWLRQ
Their combination of passive devices is successexcitation by correcting the elastic-inertial propful, an example of which is the shock absorber
erties of the system. In this case, the devices atshown in Fig. 2.
tachable to the object are called inertial dynamic
TXHQFKHUV $Q LQHUWLDO TXHQFKHU LV XVHG WR VXppress harmonic mono or narrowband random
fluctuations.
During a vibration’s load of the wider frequency
range the second method is preferred. It is based on
increasing dissipative properties of the system by
attaching additional specific damping elements to
the object. DynaPLFTXHQFKHUGLVVLSDWLYHW\SHVDUH
Fig. 2. *HQHUDOYLHZRIWKHVKRFNDEVRUEHU
called vibration absorbers >]. The combined ways
The utilization of the active elements expands
RI WKH G\QDPLF TXHQFKLQJ XVLQJ ERWK FRUUHFWLRQ
the possibilities of dynamic vibration suppreselastic-inertial and dissipative properties of the
system
system are
are also
also possible.
possible. InIn such
such cases
cases we
we talk
talk sion,
sion, because
because it allows to conduct continuous
DGMXVWPHQWRIWKHSDUDPHWHUVRIG\QDPLFTXHQF
DERXWWKHG\QDPLFTXHQFKHr
DERXWWKHG\QDPLFTXHQFKH of friction [7, ].
].
DGMXVWPHQWRIWKHSDUDPHWHUVRIG\QDPLFTXHQFh:KHQLPSOHPHQWLQJG\QDPLFTXHQFKHUFRXn:KHQLPSOHPHQWLQJG\QDPLFTXHQFKHUFRXn- ererasasaafunction
functionofofexcitation
excitationacting,
acting,and
andthus
thus to
teraction fluctuations the object is affected
fected by
by SHUIRUP
SHUIRUPTXHQFKLQJ
TXHQFKLQJLQ
LQFRQGLWLRQV
FRQGLWLRQVRI
RIFKDQJLQJ
FKDQJLQJ
reactions that are passed to it from the attached
attached YLEUDWLRQORDGV$VLPLODU
YLEUDWLRQORDGV$VLPLODUresult can be achieved
bodies. For this reason, considerable
bleeffects
effectswith
with sometimes
sometimes by
by means of passive devices with
limited amplitudes of the masses adjusted can
canbe
be nonl
nonlinear characteristics.
DFKLHYHGRQO\E\ODUJHPDVVPRPHQWRILQHUWLD
DFKLHYHGRQO\E\ODUJHPDVVPRPHQWRILQHUWLD
Shock absorber is the device which converts
of connected bodies, typicalO\
O\§§ RI
RIWKH
WKH mechanical
mechanical energy
energy ininto thermal and is used for
reduced mDVVPRPHQWRILQHUWLDSULPDU\V\VWHP
DVVPRPHQWRILQHUWLDSULPDU\V\VWHP vibration
vibration damping
damping and shock absorption. It
UDPH 6KRFN
with an appropriate
appropriateform
formofofvibrations
vibrationswithin
withinthe
the bum
bumps acting on the casing (fUDPH
6KRFNDDbIUHTXHQF\TXHQFKLQJZKLFKLVSHUformed,
IUHTXHQF\TXHQFKLQJZKLFKLVSHU
,respecrespec- sorbers
sorbersare
areused
usedininconjunction
conjunctionwith
withelastic
elasticelelements:
WLYHO\>].
WLYHO\>
ments:springs
springs (ofDYHKLFOH
DYHKLFOH, pillows, etc.
+\GUDXOLF
7\SLFDOO\
7\SLFDOO\ DD G\QDPLF
G\QDPLF TXHQFKHU
TXHQFKHU LV
LV XVHG
XVHG WR
WR
+\GUDXOLFVKRFN
VKRFNDEVRUEHUV
DEVRUEHUV have become the
achieve
achieveaalocal
localeffect:
effect:aareduction
reductionofofthe
theobject’s
object’s most
most commonly
commonly used.
used. InIn a hydraulic shock abvibration in the SDUWV
SDUWVZKHUH
ZKHUHWKH
WKHTXHQFKHU
TXHQFKHULV
LVIDsIDs- sorber
sorberthe
theresistance
resistanceforce
forcedepends
dependson
onthe
thespeed
speed
tened.
tened. Often
Often itit may
may be
be associated
associated even
even with
with the
the ofof rod movement. Oil is the working medium.
deterioration of the object’s vibration
tionininthe
theother
other The
Theprinciple
principleofofoperation
operationofofthe
theshock
shockabsorber
absorber
ZRUNLQJ
QV K draulic
works that
achines.
XH ZKLFK LV
QG XVHG IRU
a solution.
pecial techns from the
panied by
sic machine
ground de-
blem amorolate vibramovement
GHYLFHVDUH
and for the
for dyO DV mathethe main
mely: detertion of the
oscillations
, triggering
analysis
ing devices
IUHTXHQF\TXHQFKLQJZKLFKLVSHU
WLYHO\>
7\SLFDOO\ D G\QDPLF TXHQFKHU LV XVHG WR
+\GUDXOLF
sorber the res
of
The principle
is based on
piston shock
hol
verting mecha
tion damping
K\GUDXOLF HOH
pos
ZRUN DQG FDQ
tude.
)LJV
contains an
crease the res
through the c
ing, DFFRUGLQJ
/LTXLG
hy
signed based
dampers.
blan
teristics of sy
ticular, the t
system perfo
various point
OLFVKRFNVV
transients LV XVHG WR
HQFKHU LV IDseven with the
n in the other
UXFWLYHO\ LmPHQWV)LJ
GDPSHUV DQG
own power
out the use of
ments driven
ic system.
is successock absorber
EHU
ments expands
suppres-
UDPH 6KRFN D
DYHKLFOH
+\GUDXOLF VKRFN DEVRUEHUV
7+('<1$0,&9,%5$7,216+<'5$8/,&48(1&+(5
sorber the resistance force depends on the speed
of rod movement. Oil is the working medium.
The principle of operation of the shock absorber
is based on the reciprocating movement of the
piston shock absorber, which through a small
hole puts oil from one chamber to another, converting mechanical energy into the heat energy.
Today, the generally used solutions for vibration damping devices are those which utilize the
K\GUDXOLF HOHPHQWV +\GUDXOLF GDPSHUV DV Rpposed to friction ones, have the longer duration of
ZRUN DQG FDQ TXHQFK a small oscillation amplitude.
)LJVhows the design of the damper, which
contains an adjusting screw. This allows to increase the resistance value of the OLTXLG IORZLQJ
through the channel and thus control the damping, DFFRUGLQJWR>, ].
SRZHUVRXUFHFKDUDFWHULVWLFV>].
Total delay time of the system’s response
can be defined as a first approximation by the
formula:
td
'V V
,
Qh Qb
Nowadays, the most promising system is the
hydraulic vibration damping one, which is designed based on hydraulic shock absorbers and
dampers.
In the design of hydraulic systems for
blanking the oscillations the dynamic characteristics of systems must be considered, in particular, the transfer speed signals and the total
system performance, pressure fluctuations in
various points of the system (including hydrauOLFVKRFNVVXsWDLQDELOLW\DQGTXDOLW\RIV\VWHP
transients [, ].
Movement of actuating mechanism always
Movement of actuating mechanism always
comes with some delay in relation to the input
o the input
signal. The identification of the delay’s amount
signal. The identification of the delay’s amount
allows to determine the system’s dynamic, the
ic, the
total response time and the need to introduce
total response time and the need to introduce
appropriate units to compensate for the delay
appropriate units to compensate for the delay
calculation, deSHQGLQJ RQ WKH IUHTXHQF\ control
SHQGLQJ RQ WKH IUHTXHQF\ control
signal and set according to the corresponding
corresponding
pulses [8, , 9].
To perform the system’s calculations it is necTo perform the system’s calculations it is necessary to know the basic system parameters, inessary to know the basic system parameters, including the size of pipelines, hydraulic and mecluding the size of pipelines, hydraulic and mechanical resistance properties of the working
chanical resistance properties of the working
fluid and hydraulic machines as well as hydraulic
hydraulic
SRZHUVRXUFHFKDUDFWHULVWLFV>].
SRZHUVRXUFHFKDUDFWHULVWLFV>
Total delay time of the system’s response
Total delay time of the system’s response
can be defined as a first approximation by the
can be defined as a first approximation by the
''V V
,
where:
ǻV – UHGXFHVWKHYROXPHRIOLTXLGLQWKHV\VWHP
by increasing the pressure on the value of ǻɪ, m,
V – volume of fluid reTXLUHG WR ILOO additional
volumes in the system, m, Qb – leak in the system for working pressure, m/s, Qh – the nominal
flow rate in the system, m/sǤ
In this case Qh and V are determined from the
formula:
N h
,
Ph
Qh
Fig. 3. /LTXLGGDPSHU’s adjusting screw
where:
Nh – hydraulic drive power, kW, Ph – nominal
pressure of hydraulic system MPa.
7KH YROXPH RI WKH IOXLG UHTXLUHG WR ILOO WKH
additional volume in the system V LVRI
the total volume of fluid in the hydraulic system
V, m. The total volume of fluid in the hydraulic
system is calculated as follows:
V
Vc Ve ,
SSD 2
L ,
where:
where:
L
L – total length of pipelines, m, D – internal diameter hy
ameter hydraulic of the pipeline, m2, calculated
by the formula:
by the formula:
D Qh W ,
where
where:
W VSHHG OLTXLG
W – VSHHG OLTXLG in the hydraulic system at a
prescribed pressure
prescribed pressure, m/s.
V V $WILUVWDSSURDFKLQJWKHGHOD\RSHUDWLRQRIWKH
$WILUVWDSSURDFKLQJWKHGHOD\RSHUDWLRQRIWKH
(T ZHREWDLQWKHHTXDWLRQ
(T ZHREWDLQWKHHTXDWLRQ
' $WILUVWD
system (T
where
P
the coefficie
WKHHTXDWLRQ
where
j
measuremen
in the sys
YDOXHRIǻ
where:
Ve – the amount of hydraulic fluid that is
eTXLSSHG LQ K\GUDXOLF V\VWHP, m, Vc – the
amount of hydraulic fluid that is in the pipeline
hydraulic system (TZKLFKLVFDOFXODWHGE\
WKHHTXDWLRQ
Vc
VSHHG
prescribed p
where
į
depends on
section inn
line
’s response
tion by the
VSHHG OLTXLG
WKHV\VWHP
e of ǻɪ, m,
O ditional
k in the systhe nominal
$WILUVWDSSURDFKLQJWKHGHOD\RSHUDWLRQRIWKH
system (T ZHREWDLQWKHHTXDWLRQ
'V V
˜
.
Qb
Qh
2Qh
In the view of that:
Qb
Kb P ,
ed from the
where:
P – operating pressure in the system, MPa, Kb –
the coefficient of leakage of liTuid, received from
WKHHTXDWLRQ
Kb
nominal
G WR ILOO WKH
VRI
aulic system
he hydraulic
uid that is
– the
the pipeline
DOFXODWHGE\
j
Nh
P2
,
short and rigid as possible;
2. Volume losses should be lowered to a minimum;
Pump capacity should be significant.
In general, the performance of the dynamic
oscillations Tuencher is determined for each particular system, provided that the signal can be
transmitted with a specific delay, but performance must be such as not to violate the stability
of the whole circuit >].
To achieve the stated conditions, we need to
find out the time of soil cleavage, i.e. the time at
which the dynamic ripper makes one complete
cycle of the movement Tc [], which is inverse
WR WKH DYHUDJH RVFLOODWLRQ IUHTXHQF\ PD[LPD RI
cutting the soil, and is given by:
s,
nm
(
n0
s,
Tɫ
nm
where:
j – coefficient of the changes in the units of
measurement of l/min in m/s and 0.278 matter.
In this case, reduction in WKHYROXPHRIOLTXLG
in the system while increasing pressure by the
YDOXHRIǻp is calculated as follows:
Ww
s
H
nm
Finally, after GHWHUPLQLQJ HTXDWLRQV ZLOO JHW
GHWHUPLQLQJ HTXDWLRQV ZLOO JHW
(T simplified the delay triggering and performance
Determine the relationship (T between
formance the PLGGOHIUHTXHQF\RVFLOODWLRQFX
will look like:
the PLGGOHIUHTXHQF\RVFLOODWLRQFXtting forces:
GGSSLLVV
.
Q h Kb P
n0
nm s, 2
n0 ˜ ˜ s.
From the dependence it is obvious that to reis obvious that to reduce the time delay triggering it is necessary:
sary:
Working channels and pipelines should be as
orking channels and pipelines should be as
The initial data of the hydraulic system for
short and rigid as possible;
blan
N:
blanking dynamic oscillations: N N:, P
2. Volume losses should be lowered to a mini0
PV
0
PV
mum;
T
T
˜
˜
˜ where:
n0
blan
0
H – WKH DYHUDJH RVFLOODWLRQ IUHTXHQF\ RI FXtting
soil,
m - loosening depth,
'V GSL ,
Ww – speed of the working body.
Let us etermine the dependence of the time of
where:
delay of triggeriQJ TXHQFKHU G\QDPLF IOXctuations
į – coefficient of decrease of the liTuid, which
of hydraulic parameters [2, ].
depends on the operating pressure; S – crossSuppose that a dynamic body is working in
section inner diameter hydraulic of the piperocky
soil at the depth of H , m, in which
line, m2.
case the rate of dynamic body is
Moreover, S is calculated as follows:
Ww= 2 m/s.
First of all determine the time of soil cleavage
SD 22
age:
S SD .
ɫ
Tɫ
0, 09 s.
td
/(21,'3(/(9,10<.2/$.$53(1.2
V V td
that the syste
TXHQFKLQJ VS
device’s trig
the
%\FKDQJL
tem G\QDPLF
the supply
reduction of
RVFLOODWLRQ FX
PLGGOH IUHTXHQF\
˜
sary:
should be as
ed to a mini-
dynamic
for each parnal can be
but perfore the stability
, we need to
the time at
one complete
is inverse
\ PD[LPD RI
F\ RI FXtting
the time of
F IOX tuations
s working in
m, in which
FLHQF\RIG\QDPLFTXHQFKLQJ
7+('<1$0,&9,%5$7,216+<'5$8/,&48(1&+(5
2
The initial data of
for
˜ the hydraulic
system blanking dynamic oscillations:
Nh N:, Ph
0Pa, P MPa, L m,
W PV
hydraulic
system for
Let us carry out the calculation:
0
PV
Qh
˜
Vcon.
which is based on the use of the above-
N:,
m/s,
D ˜ ˜ mm,
s, ˜ 2
˜ m, ˜ V ˜ m, ˜ ˜ m, ˜ 2
S
m2,
˜
m
,
(
VXSSO\V\VWHP)LJDQGRQ
UHGXFWLRQRIIOXLG)LJ
7KH K\GUDXOLF TXHQFKHU G\QDPLF IOXFWX
Kb
td
˜
kW/MPa2, ˜ 2
, ˜ ˜ s. ˜
˜ ˜ kW/MPa , From the resulting example we can conclude
that the
system
performance
satisfies oscillation
˜ ˜ s. TXHQFKLQJ
VSHFLILHG
condition
˜ ˜ of this dynamic
device’s triggering delay is lower WKDQ RI
the soil cleavage time.
From the resulting
example
we can syscon%\FKDQJLQJthe
parameters
of hydraulic
clude
that the
system IOXFWXDWLRQV
performance
satisfies
tem
G\QDPLF
TXHQFKLQJ
– namely
RVFLOODWLRQ
TXHQFKLQJ
VSHFLILHG
condition
the supply of hydraulic fluid in the system andof
reduction of fluid volume ratio, and substituting
them in the present calculation, we obtain the
dependence of the delay in the operation of the
hydraulic system dyQDPLF TXHQFKing oscillation
VSHHG RQ the hydraulic fluid supply system
(Fig. DQGRQ WKH coefficient reduction of fluid
(Fig. .
7KH K\GUDXOLF TXHQFKHU G\QDPLF IOXFWXations
were developed to improve the efficiency of dyQDPLF TXHQFKLQJ of oscillations, which is based
on the use of the above-mentioned system.
The dynamic oscillations TXHQFKHU(Fig. works as follows >0].
Vibrations that are transmitted from the working body to the base machine are blanked with
the help of dynamic fluctuaWLRQV TXHQFKHU 1 $W
active work, the oscillatory body rod 3 tries to
reproduce vibrational motion in the housing 2.
+RZHYHU ZKHQ the direction of the vibrational
Fig. 4. *UDSK RI WKH WLPH GHOD\ dependence
during the operation of hydraulic blanking dynamic fluctuations on hydraulic fluid supply.
QDPLF TXHQFK
VSHHG RQ
DQGRQ WKH
7KH K\GUDXOLF TXHQFKHU G\QDPLF IOXFWX
QDPLF TXHQFKLQJ
TXHQFKHU
>
switch
WKH
Fig. 5. *UDSK RI WKH WLPH GHOD\ dependence
signal
ceases
to be submitted
normally
during
the operation
of hydraulic
blanking dycontact
namic fluctuations on the fluid amount reducWLRQV TXHQFKHU $W
ope
tion coefficient
active work,
the oscillatory body rod 3 tries to
allowing
the hydra
reproduce po
vibrational
motion
in LQ
theWKH
housing
2.
additional
WLRQV RI WKH
OLTXLG
SOXQJHU
+RZHYHU
direction of the vibrational
cavity
osci ZKHQ
ODWLRQVthe
TXHQFKHU
motionof isreed
directed,
example, left by movemoval
switch for$IWHUH[FOXVLRQRIUHOD\
ment of fluid through the holes throttled 6 plungco
er 4, 8 rods switch
blocking
valve and plunger valve 11
tromagnetic
distributor
are moving
blocking right. Thus blocking rods 8
pos
LRQWKHQIHHGDGGLWLRQDOSRUWLRQRIWKHOLTXLG
press
valve rods
washer 7.
Meanwhile, blockWR
WKHthe
TXHQFKHU
G\QDPLF
IOXFWX
ing plunger valve 11 presses the plunger 4, block+\GUDXOLFIOXLGLVIHGWRWKHTXHQFKHUWKURXJKWKH
ing throttling holes 6VRWKDWWKHOLTXLGEHJLQVWR
pipe
flow
through passage the holes 12, which extin%HFDXVHRIWKHG\QDPLFIOXFWXDWLRQVTXHQFKHU
1guish the movement of the rod 3 left. Once the
plunger
4 reaches the reed switch 14, the magnetchine,
during
ic field of the magnet constant step 5 shut reed
7KHVLJQDOZLOOJRWRG
+HLQWXUQWKHGHOD\UHOD\H[FOXVLRQ
$IWHUWKDW
LRQWKH
WR WKH TXH
+\GUDXOLFIO
%HFDXVH
1
chine, durin
%DVHGRQ
2. %DVHG R
RQTXHQF
DQG VXSS
DQGRQ WKH
7KH K\GUDXOLF TXHQFKHU G\QDPLF IOXFWX
works as follows >].
OD
TXHQFKHU
QDPLF TXHQFKLQJ
/(21,'3(/(9,10<.2/$.$53(1.2
reed switch 14, the magnetic field of the
>
TXHQFKHU
LRQWKHQ
WR WKH TXHQ
+\GUDXOLFIOX
WLRQV TXHQFKHU $W
%HFDXVHR
+RZHYHU ZKHQ
WKH
QDPLF TXHQFK
%DVHGRQ
VSHHG RQ
DQGRQ WKH
Fig. 6. 4XHQFKHU of dynamic fluctuations
7KH K\GUDXOLF TXHQFKHU G\QDPLF IOXFWX
WLRQV RIVRWKDWWKHOLTXLGEHJLQVWR
WKH OLTXLG LQ WKH SOXQJHU
ODWLRQV TXHQFKHU
$IWHUH[FOXVLRQRIUHOD\
QDPLF TXHQFKLQJ
>
TXHQFKHU
WLRQV TXHQFKHU $W
+RZHYHU ZKHQ
7KHVLJQDOZLOOJRWRG
LRQWKHQIHHGDGGLWLRQDOSRUWLRQRIWKHOLTXLG
WR WKH TXHQFKHU G\QDPLF IOXFWX
+HLQWXUQWKHGHOD\UHOD\H[FOXVLRQ
+\GUDXOLFIOXLGLVIHGWRWKHTXHQFKHUWKURXJKWKH
$IWHUWKDW
%HFDXVHRIWKHG\QDPLFIOXFWXDWLRQVTXHQFKHU
FRQWURO 7KH HOHFWURPDJQHWLF FRQWURO
LQ WKH OHIW SRVLWLRQ +
%DVHG RQ
RQTXHQFK
DQG VXSSO
$ QHZ G
IOXLG LQ WKH SOXQJHU FDYLW\ TXHQFKHU G\QDPLF
([FHVV IOXLG IORZV RXW RI URGV
%DVHGRQWKHDQDO\VLVRIG\QDPLFFXVKLR
TXHQFKHU G\QDPLF FDYLW\ RVFLOODWLRQV
VRWKDWWKHOLTXLGEHJLQVWR
Fig. 7. The hydraulic
circuit control in dynamic oscillations TXHQFKHU a and electrical circuit control
distributor b
right by moving the working fluid through the guish the movement of the rod 3 left. Once the
Vibrations
are switch
transmitted
the throttling
magnet constant
5 shut
reed contacts
14
holes 6,step
8, rods
blocking
valve and
plunger
4 reachesthat
the reed
14, the from
magnetbody
to constant
the basestepmachine
are 2.plunger
(Fig.
7, valve
bWKH
7KH
VLJQDO
WR GHWHQWLRQ
11
move
left. JR
Valve
blocking 2.
%DVHG
RQ
YDOXHV
WKHZLOO
icworking
field of the
magnet
5 shut reed
plunger 11 presses washer 10 and valve blocking
contacts 14 (Fig. 7, b7KHVLJQDOZLOOJRWRGeWLRQVTXHQFKHU
$WDFWLYHZRUN
+HLQ
WKHGHOD\
UHOD\
H[FOXVLRQ
rods
8 pressWXUQ
plunger
4 blocking
throttling
hole 6.
tention
relay 22, which
shut normally open con$VRQTXHQFKLQJFRHII
D UHVXOW$IWHUWKDW
WKH OLTXLG EHJLQV WR IORZ WKURXJK
tact 23+HLQWXUQWKHGHOD\UHOD\H[FOXVLRQ
passage
9 , putting
the movement
of FKDQJLQJ
the rod 3 DQG VXSSO\
RI K\GUDXOLF
IOXLG %\
is turned on$IWHUWKDW, delay
relay exclusion 24
+RZHYHUZKHQWKH
right.
Once
the
plunger
4
moves
away
from the
shuts contact 25, which starts the electromagnetic
PDJQHWLF FRQWURO 7
reed switch 14 and the magnetic field of the
FRQWURO 7KH HOHFWURPDJQHWLF FRQWURO 21 togmagnet
constant step
5 stops toSXPS
influence the reed
gles the distributor 18 LQ WKH OHIW SRVLWLRQ +yOHIW SRVLWLRQ
+\GUDXOLF
$ QHZ
GHVLJQ
draulic pump 15 works through
thewe
variable
tion,
obtainorithe switch
14 (reed
switch contacts open up 14WKH
fice with check valve 26, whichoperation
regulatesof the
the signal ceases to be submitted normally to open
supply of hydraulic fluid
distributor
18 oscillation
and presQDPLF
TXHQFKing
contact 23. This, in turn, relays switching delay
sure
line RQ
19 takes an additional portion
the open up exclusion 24. It will work for a while,
VSHHG
supply of
system
IOXLG LQ
WKH SOXQJHU
FDYLW\ TXHQFKHU
DQGRQ
WKH coefficient
reductionG\QDPLF
of fluid allowing the hydraulic pump 15 to submit several
SOXQJHU FDYLW\
G\QDPLF
fluctuations
1 ([FHVV IOXLG IORZV RXW RI URGV additional
porWLRQVTXHQFKHU
RI WKH OLTXLG
LQ WKHIOXFWX
SOXQJHU
WKHOLTXLGEHJLQVWRIORZWKURXJKSDVVDJHWKH
([FHVV
IOXLG
IORZV
RI URGV
TXHQFKHU
G\QDPLFTXHQFKHU
FDYLW\ RVFLOODWLRQV
1 through
7KH K\GUDXOLF
G\QDPLF IOXFWXations
cavity oscilODWLRQV TXHQFKHU 1-for-4RXW
plunger
re5()(5(1&(6
the drain
line 20 and
distributor
to the tank
of
developed
to improve
the 18
efficiency
of dymoval of reed switch
14$IWHUH[FOXVLRQRIUHOD\
hydraulic
fluid 16. When plunger 3 movesistobased
the
QDPLF TXHQFKLQJ
contact delay 24, the 25, 21 will control the elecright by moving the working fluid through
. the tromagnetic switch distributor 18 in the far right
throttling holes 6, 8, rods blocking
valve and positLRQWKHQIHHGDGGLWLRQDOSRUWLRQRIWKHOLTXLG
TXHQFKHU(Fig.
1$8
plunger valve 11> move left. Valve blocking
WR WKH TXHQFKHU G\QDPLF IOXFWXations 1 end.
+\GUDXOLFIOXLGLVIHGWRWKHTXHQFKHUWKURXJKWKH
$V D UHVXOW WKH OLTXLG EHJLQV
WRTXHQFKHU
IORZ WKURXJK
WLRQV
$W
7(.$
%HFDXVHRIWKHG\QDPLFIOXFWXDWLRQVTXHQFKHU
(QHUJ5ROQ2/3$1YRO (QHUJ5R
J\ +DQ
SUHG
F IOXFWX
.
HU(Fig. om the workblanked with
XHQFKHU $W
tries to
e housing 2.
e vibrational
eft by moveplungnger valve 11
ocking rods 8
, block, blockXLGEHJLQVWR
which extineft. Once the
, the magnetshut reed
ZLOOJRWRGely open conH[FOXVLRQ
sion 24
magnetic
QWURO
togSRVLWLRQ +yvariable oriregulates the
and presortion of the
KHU G\QDPLF
RXW RI URGV
QV through
tank of
moves to the
through the
ng valve and
blocking
alve blocking
tling hole 6.
IORZ WKURXJK
of the rod 3
way from the
field of the
ence the reed
WLRQV RI WKH OLTXLG LQ WKH SOXQJHU
ODWLRQV TXHQFKHU
$IWHUH[FOXVLRQRIUHOD\
QRVWURHQLH
7+('<1$0,&9,%5$7,216+<'5$8/,&48(1&+(5
sian.
tromagnetic switch distributor 18 in the far right
positLRQWKHQIHHGDGGLWLRQDOSRUWLRQRIWKHOLTXLG 8. Lewis (, Sterh H., 1966. +\GUDXOLF FRQWURO
WR WKH TXHQFKHU G\QDPLF IOXFWXations 1 end.
system. M.: Mashinostroenie, (in Russian.
+\GUDXOLFIOXLGLVIHGWRWKHTXHQFKHUWKURXJKWKH 9. Nagorniy V., Denisov A., 1991. Devices of
pipe 13.
automation and hydro pneumatic. M.: Mashi%HFDXVHRIWKHG\QDPLFIOXFWXDWLRQVTXHQFKHU
nostroenie, (in Russian.
1 reduces dynamic fluctuations in the base ma Patent Ukraine ʋ IURP0D\ (in
chine, during the working bodies active action.
Ukraine.
Popov D., 1987. Dynamics and regulation of
hydraulic and pneumatic systems. M.: Mashinostroenie, (in Russian.
CONCLUSIONS
Schokdemper,
2014
$YDLODEOH
DW
http://nl.wikipedia.org/wiki/Schokdemper,
ac %DVHGRQWKHDQDO\VLVRIG\QDPLFFXVKLRning
cessed 20 Jul. (in Nederlands.
devices for vibration in the hydraulic system,
Shorin V., 1980. (OLPLQDWLRQ RI IOXFWXDWLRQV LQ
the mathematical model of the process of deair pipes. M.: Mashinostroenie, (in Russian.
termining the delay time of their operation is
Vetrov
Ju., Vlasov V., 1995. Machines for exworked out, which allows to design these syscavation.
Sample calculation: Teach. user.. –
tems.
.ȱ6'2 (in Russian.
2. %DVHG RQ WKH YDOXHV WKH dependency graphs
Vilde Ⱥ., Cesnieks S., Rucins A., 2004. Miniare built of: time delay operation dependence
misation of Soil Tillage. 7(.$ NRP 0RW (nof the hydraulic system dynamic oscillations
HUJ5ROQ2/3$1YRO-
RQTXHQFKLQJFRHIIicients of reduction of fluid
Vilde
Ⱥ., Rucins A., 2004. The Impact of Soil
DQG VXSSO\ RI K\GUDXOLF IOXLG %\ FKDQJLQJ
Physical and Mechanical Properties on Draft Rethese parameters the system was designed for
sistance of Ploughs. 7(.$ NRP 0RW (QHUJ
adjusting the hydraulic damping system dy5ROQ2/3$1YRO-
namic oscillations.
Vilde Ⱥ, 7DQDĞ W., 2005. Determination of the
$ QHZ GHVLJQ was performed of hydraulic
blanking of dynamic fluctuations with the
soilfriction coefficient and specific adhesion.
ability to change the filling parameters.
7(.$ NRP 0RW (QHUJ 5ROQ 2/ 3$1 YRO
The design provides adjustable vibration base
-
machine for vibrations attachments.
Walusiak S., DziubiĔski M., Pietrzyk W.,
2005. $Q DQDO\VLV RI K\GUDXOLF EUDNLQJ V\stem
reliability. 7(.$ NRP 0RW (QHUJ 5ROQ 2/
5()(5(1&(6
3$1YRO-
=DNKDUFKXN%, Telushkin V., 1987. %XOOGR]HU
Bud'ko V., 2003. Dynamics and regulation
and rippers. M.: Mashinostroenie, (in Rushidropnevmosystem.: K.1$8 (in Ukraine.
sian.
2. Cândea I., Popescu S., 2003. Theoretical and
20. =LSNɿQ <D., 1977. Foundations of the theory of
experimental study on soil vibrators used for the
automatic systems. M.: Mashinostroenie, (in
germinal layer preparation. 7(.$: kom. Mot.
Russian.
(QHUJ5ROQ2/3$1YRO-
Chelomej V.N., 1981. Vibrations in TechnoloJ\ +DQGERRN LQ YROXPHV Red. Sovet:
SUHG-M.:
(in RusȽɂȾɊȺȼɅɂɑȿɋɄɂɃȽȺɋɂɌȿɅɖ
(PWVHY Mashinostroenie, 7
mechanics.:
sian.
ȾɂɇȺɆɂɑȿɋɄɂɏɄɈɅȿȻȺɇɂəɏ
ȽɂȾɊȺȼɅɂɑȿɋɄɂɃȽȺɋɂɌȿɅɖ
(PWVHY B., 1987. Technical hydromechanics.:
+ydraulic drive.
ȾɂɇȺɆɂɑȿɋɄɂɏɄɈɅȿȻȺɇɂəɏ
M.: Mashinostroenie, (in Russian.
Ⱥɧɧɨɬɚɰɢɹ ɉɪɨɜɟɞɟɧ ɨɛɡɨɪ ɢ ɚɧɚɥɢɡ
ɫɭɳɟɫɬɜɭɸɳɢɯ ɚɦɨɪɬɢɡɢɪɭɸɳɢɯ ɭɫɬɪɨɣɫɬɜ
Gavrilenko B. Minin V., 1958. +ydraulic drive.
ɉɪɨɜɟɞɟɧ
ɨɛɡɨɪ ɢ ɝɚɲɟɧɢɹ
ɚɧɚɥɢɡ
ation of Ⱥɧɧɨɬɚɰɢɹ
Ɋɚɫɫɦɨɬɪɟɧ ɦɟɬɨɞ
ɞɢɧɚɦɢɱɟɫɤɨɝɨ
: M.: Mashinostroenie, (in Russian.
ɚɦɨɪɬɢɡɢɪɭɸɳɢɯ
ɭɫɬɪɨɣɫɬɜ
QRVWURHQLH (in ɫɭɳɟɫɬɜɭɸɳɢɯ
ɤɨɥɟɛɚɧɢɣ ɋɨɫɬɚɜɥɟɧɚ
ɦɚɬɟɦɚɬɢɱɟɫɤɚɹ
ɦɨɞɟɥɶ
Gijom M.,
ɦɟɬɨɞ ɡɚɩɚɡɞɵɜɚɧɢɹ
ɞɢɧɚɦɢɱɟɫɤɨɝɨ
ɝɚɲɟɧɢɹ
1964. Investigation and calculation of Ɋɚɫɫɦɨɬɪɟɧ
ɨɩɪɟɞɟɥɟɧɢɹ ɜɪɟɦɟɧɢ
ɫɪɚɛɚɬɵɜɚɧɢɹ
hydraulic systems.-M.: MashiQRVWURHQLH
(in ɤɨɥɟɛɚɧɢɣ ɋɨɫɬɚɜɥɟɧɚ ɦɚɬɟɦɚɬɢɱɟɫɤɚɹ ɦɨɞɟɥɶ
draulic
ɝɢɞɪɨɚɜɬɨɦɚɬɢɱɟɫɤɨɣ
ɫɢɫɬɟɦɵ
ɝɚɲɟɧɢɹ
Russian.
ɜɪɟɦɟɧɢ
ɡɚɩɚɡɞɵɜɚɧɢɹ
ɫɪɚɛɚɬɵɜɚɧɢɹ
ɞɢɧɚɦɢɱɟɫɤɢɯ
ɤɨɥɟɛɚɧɢɣ
ɡɧɚɱɟɧɢɟ
ɤɨɬɨɪɨɝɨ
in Rus- ɨɩɪɟɞɟɥɟɧɢɹ
7. Korobochkin B., 1976. dynamics of hydraulic ɝɢɞɪɨɚɜɬɨɦɚɬɢɱɟɫɤɨɣ
ɝɚɲɟɧɢɹ
ɩɨɡɜɨɥɹɟɬ
ɫɨɡɞɚɜɚɬɶ ɫɢɫɬɟɦɵ
ɝɢɞɪɨɚɜɬɨɦɚ-ɬɢɱɟɫɤɢɟ
ɤɨɥɟɛɚɧɢɣ
ɡɧɚɱɟɧɢɟ
ɤɨɬɨɪɨɝɨ
machines. M.: Mashinostroenie, (in Rus- ɞɢɧɚɦɢɱɟɫɤɢɯ
ɫɢɫɬɟɦɵ
ɝɚɲɟɧɢɹ
ɤɨɥɟɛɚɧɢɣ
ɜɨɜɪɟɦɹ
(
+\GUDXOLF FRQWURO ɩɨɡɜɨɥɹɟɬ
ɝɢɞɪɨɚɜɬɨɦɚ ɬɢɱɟɫɤɢɟ
sian.
ɪɟɚɝɢɪɭɸɳɢɯɫɨɡɞɚɜɚɬɶ
ɧɚ
ɞɢɧɚɦɢɱɟɫɤɢɟ
ɜɧɟɲɧɢɟ
sian.
ɝɚɲɟɧɢɹ
ɤɨɥɟɛɚɧɢɣ
ɜɨɜɪɟɦɹ
ɜɨɡɦɭɳɟɧɢɹɉɪɨɜɟɞɟɧɪɚɫɱɟɬɩɟɪɢɨɞɚɫɤɚɥɵɜɚɧɢɹ
8. Lewis (, Sterh H., 1966. +\GUDXOLF FRQWURO ɫɢɫɬɟɦɵ
ɪɟɚɝɢɪɭɸɳɢɯ
ɧɚ
ɞɢɧɚɦɢɱɟɫɤɢɟ
ɜɧɟɲɧɢɟ
ɝɪɭɧɬɚ
ɩɪɢ
ɪɚɛɨɬɟ
ɪɵɯɥɢɬɟɥɹ
ɢ
ɜɪɟɦɟɧɢ
ɜɨɡɦɭɳɟɧɢɹɉɪɨɜɟɞɟɧɪɚɫɱɟɬɩɟɪɢɨɞɚɫɤɚɥɵɜɚɧɢɹ
ɡɚɩɚɡɞɵɜɚɧɢɹ
ɫɪɚɛɚɬɵ ɜɚɧɢɹ
ɝɚɫɢɬɟɥɹ
ɝɪɭɧɬɚ
ɩɪɢ ɪɚɛɨɬɟ
ɪɵɯɥɢɬɟɥɹ
ɢ ɜɪɟɦɟɧɢ
ɞɢɧɚɦɢɱɟɫɤɢɯ
ɤɨɥɟɛɚɧɢɣ
ɧɚ ɨɫɧɨɜɟ
ɤɨɬɨɪɵɯ
ɡɚɩɚɡɞɵɜɚɧɢɹ
ɫɪɚɛɚɬɵ
ɜɚɧɢɹ
ɝɚɫɢɬɟɥɹ
ɭɫɬɚɧɚɜɥɢɜɚɟɬɫɹ
ɫɩɨɫɨɛɧɨɫɬɶ
ʋ IURP0D\
ɞɢɧɚɦɢɱɟɫɤɢɯ ɤɨɥɟɛɚɧɢɣ ɧɚ ɨɫɧɨɜɟ ɤɨɬɨɪɵɯ
ɫɭɳɟɫɬɜɭɸɳ
Ɋɚɫɫɦɨɬɪɟɧ
ɤɨɥɟɛɚɧɢɣ
ɨɩɪɟɞɟɥɟɧɢɹ
ɝɢɞɪɨɚɜɬɨɦɚ
ɞɢɧɚɦɢɱɟɫɤɢ
ɩɨɡɜɨɥɹɟɬ
ɫɢɫɬɟɦɵ
ɪɟɚɝɢɪɭɸɳɢ
ɜɨɡɦɭɳɟɧɢɹ
ɝɪɭɧɬɚ ɩɪɢ
ɡɚɩɚɡɞɵɜɚɧɢ
ɞɢɧɚɦɢɱɟɫɤɢ
ɭɫɬɚɧɚɜɥɢɜɚ
ɝɢɞɪɨɚɜɬɨɦɚ
ɦɢɱɟɫɤɢɯ
ɨɛɟɫɩɟɱɢɜɚɹ
ɤ
ɛɚɡɨ
ɝɢɞɪɨɚɜɬɨɦɚ
ɦɢɱɟɫɤɢɯ ɤɨ
ɨɪɝɚɧɟ ɞɥ
ɤɨɥɟɛɚɧɢɣɤ
Ʉɥɸɱɟɜɵɟ
ɤɨɥɟɛɚɧɢɹ
ɡɚɩɚɡɞɵɜɚɧɢ
ɝɪɭɧɬɚ
Ɋɚɫɫɦɨɬɪɟɧ ɦɟɬɨɞ ɞɢɧɚɦɢɱɟɫɤɨɝɨ ɝɚɲɟɧɢɹ ɝɪɭɧɬɚ ɩɪɢ ɪɚɛɨɬɟ ɪɵɯɥɢɬɟɥɹ ɢ ɜɪɟɦɟɧɢ
ɫɪɚɛɚɬɵ ɜɚɧɢɹ
ɝɚɫɢɬɟɥɹ
ɤɨɥɟɛɚɧɢɣ ɋɨɫɬɚɜɥɟɧɚ ɦɚɬɟɦɚɬɢɱɟɫɤɚɹ ɦɨɞɟɥɶ ɡɚɩɚɡɞɵɜɚɧɢɹ
ɞɢɧɚɦɢɱɟɫɤɢɯ
ɤɨɥɟɛɚɧɢɣ
ɧɚ
ɨɫɧɨɜɟ
ɤɨɬɨɪɵɯ
ɨɩɪɟɞɟɥɟɧɢɹ ɜɪɟɦɟɧɢ
ɡɚɩɚɡɞɵɜɚɧɢɹ
ɫɪɚɛɚɬɵɜɚɧɢɹ
ɝɢɞɪɨɚɜɬɨɦɚɬɢɱɟɫɤɨɣ
ɫɢɫɬɟɦɵ
ɝɚɲɟɧɢɹ
ɭɫɬɚɧɚɜɥɢɜɚɟɬɫɹ
ɫɩɨɫɨɛɧɨɫɬɶ
ʋ IURP0D\
ɞɢɧɚɦɢɱɟɫɤɢɯ ɤɨɥɟɛɚɧɢɣ ɡɧɚɱɟɧɢɟ ɤɨɬɨɪɨɝɨ ɝɢɞɪɨɚɜɬɨɦɚɬɢɱɟɫɤɨɣ ɫɢɫɬɟɦɵ ɝɚɲɟɧɢɹ ɞɢɧɚ
/(21,'3(/(9,10<.2/$.$53(1.2
ɩɨɡɜɨɥɹɟɬ
ɫɨɡɞɚɜɚɬɶ
ɝɢɞɪɨɚɜɬɨɦɚ ɬɢɱɟɫɤɢɟ ɦɢɱɟɫɤɢɯ ɤɨɥɟɛɚɧɢɣ ɜɨɜɪɟɦɹ ɫɪɚɛɚɬɵɜɚɬɶ
and regulation
of ɨɛɟɫɩɟɱɢɜɚɹ ɩɪɟɞɨɬɜɪɚɳɟɧɢɟ ɩɟɪɟɞɚɱɢ ɤɨɥɟɛɚɧɢɣ
ɫɢɫɬɟɦɵ
ɝɚɲɟɧɢɹ Dynamics
ɤɨɥɟɛɚɧɢɣ
ɜɨɜɪɟɦɹ
DXOLF FRQWURO
Mashiɛɚɡɨɜɨɣ
ɦɚɲɢɧɟ
Ɋɚɡɪɚɛɨɬɚɧɚ
ɪɟɚɝɢɪɭɸɳɢɯ
ɧɚ
ɞɢɧɚɦɢɱɟɫɤɢɟ
ɜɧɟɲɧɢɟ ɤ
sian.
ɝɢɞɪɨɚɜɬɨɦɚɬɢɱɟɫɤɚɹ ɫɢɫɬɟɦɚ ɝɚɲɟɧɢɹ ɞɢɧɚɜɨɡɦɭɳɟɧɢɹɉɪɨɜɟɞɟɧɪɚɫɱɟɬɩɟɪɢɨɞɚɫɤɚɥɵɜɚɧɢɹ
evices of ɝɪɭɧɬɚ ɩɪɢ ɪɚɛɨɬɟ ɪɵɯɥɢɬɟɥɹ ɢ ɜɪɟɦɟɧɢ ɦɢɱɟɫɤɢɯ ɤɨɥɟɛɚɧɢɣ ɜɨɡɧɢɤɚɸɳɢɯ ɧɚ ɪɚɛɨ-ɱɟɦ
$YDLODEOH
DW
Mashi- ɡɚɩɚɡɞɵɜɚɧɢɹ
ɫɪɚɛɚɬɵ-ɜɚɧɢɹ
ɝɚɫɢɬɟɥɹ
,
ac- ɨɪɝɚɧɟ ɞɥɹ ɩɪɟɞɨɬɜɪɚɳɟɧɢɹ ɩɟɪɟɞɚɱɢ ɷɬɢɯ
ɞɢɧɚɦɢɱɟɫɤɢɯ ɤɨɥɟɛɚɧɢɣ
ɧɚ ɨɫɧɨɜɟ
ɤɨɬɨɪɵɯ ɤɨɥɟɛɚɧɢɣɤɛɚɡɨɜɨɣɦɚɲɢɧɟ
ɭɫɬɚɧɚɜɥɢɜɚɟɬɫɹ
ɫɩɨɫɨɛɧɨɫɬɶ
(OLPLQDWLRQ RI IOXFWXDWLRQV LQ Ʉɥɸɱɟɜɵɟ ɫɥɨɜɚ ɝɚɫɢɬɟɥɶ ɞɢɧɚɦɢɱɟɫɤɢɟ
\ (in
ɤɨɥɟɛɚɧɢɹ ɝɢɞɪɨɚɜɬɨɦɚɬɢɱɟɫɤɚɹ ɫɢɫɬɟɦɚ ɜɪɟɦɹ
ɝɢɞɪɨɚɜɬɨɦɚɬɢɱɟɫɤɨɣ ɫɢɫɬɟɦɵ ɝɚɲɟɧɢɹ ɞɢɧɚ in Russian.
ɦɢɱɟɫɤɢɯ ɤɨɥɟɛɚɧɢɣ ɜɨɜɪɟɦɹ ɫɪɚɛɚɬɵɜɚɬɶ ɡɚɩɚɡɞɵɜɚɧɢɹ ɫɪɚɛɚɬɵɜɚɧɢɹ ɩɟɪɢɨɞ ɫɤɚɥɵɜɚɧɢɹ
Machines
for ex- ɝɪɭɧɬɚ
regulation of ɨɛɟɫɩɟɱɢɜɚɹ
ɩɪɟɞɨɬɜɪɚɳɟɧɢɟ ɩɟɪɟɞɚɱɢ
ɤɨɥɟɛɚɧɢɣ
ser.. –
Mashi- ɤ
ɛɚɡɨɜɨɣ
ɦɚɲɢɧɟ
Ɋɚɡɪɚɛɨɬɚɧɚ
.ȱ6'2
ɝɢɞɪɨɚɜɬɨɦɚɬɢɱɟɫɤɚɹ
ɫɢɫɬɟɦɚ
ɝɚɲɟɧɢɹ ɞɢɧɚ
Ⱥ
LODEOH
DW ɦɢɱɟɫɤɢɯ ɤɨɥɟɛɚɧɢɣ ɜɨɡɧɢɤɚɸɳɢɯ ɧɚ ɪɚɛɨ ɱɟɦ
7(.$
NRP 0RW
(
ɨɪɝɚɧɟ ɞɥɹ ɩɪɟɞɨɬɜɪɚɳɟɧɢɹ
ɩɟɪɟɞɚɱɢ
ɷɬɢɯ
ɤɨɥɟɛɚɧɢɣɤɛɚɡɨɜɨɣɦɚɲɢɧɟ
HUJ5ROQ2/3$1YRO Ⱥ ɫɥɨɜɚ ɝɚɫɢɬɟɥɶ ɞɢɧɚɦɢɱɟɫɤɢɟ
XFWXDWLRQV LQ Ʉɥɸɱɟɜɵɟ
ɤɨɥɟɛɚɧɢɹ ɝɢɞɪɨɚɜɬɨɦɚɬɢɱɟɫɤɚɹ ɫɢɫɬɟɦɚ ɜɪɟɦɹ
ɡɚɩɚɡɞɵɜɚɧɢɹ ɫɪɚɛɚɬɵɜɚɧɢɹ ɩɟɪɢɨɞ ɫɤɚɥɵɜɚɧɢɹ
7(.$ NRP 0RW (QHUJ
ɝɪɭɧɬɚ
5ROQ2/3$1YRO Ⱥ 7DQDĞ
RHQLH
RP 0RW (
0RW (QHUJ
2/ 3$1 YRO
DNLQJ V\
J 5ROQ 2/
%XOOGR]HU
7(.$ NRP 0RW (QHUJ 5ROQ 2/ 3$1 YRO
Ĕ
$Q DQDO\VLV RI K\GUDXOLF EUDNLQJ V\
7(.$ NRP 0RW (QHUJ 5ROQ 2/
3$1YRO =DNKDUFKXN%
%XOOGR]HU
=LSNɿQ <D
TEKA. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE – 2014, Vol. 14, No. 4, 151–160
$
Correlation of Plastic Forming andFKLQH
Structure
Formation Parameters
SDUWV UHTXLUH
in Powder Materials
VLVWDQFH>
Lyudmila Ryabicheva, Dmytro Usatyuk, Yuri Nikitin
Volodymyr Dahl East Ukrainian National University,
Department of Engineering Mechanics, Chair of Material Science
Molodizhny bl., 20a, Lugansk, 91034, Ukraine, e-mail: resource.saving@gmail.com
&RQVHTXHQWO\
Received December 04.2014; accepted December 17.2014
S u m m a r y . $ WKHRUHWLFDO DQDO\VLV RI WKH NLQHWLFV RI VRftening processes occurring in the powder porous body during
deformation at high temperatures has been conducted. ConstiWXWLYHHTXDWLRQVUHODWLQJWKHGHIRUPDWLRQparameters and structure formation parameters that are characterizing dynamic
softening processes during deformation. The linear dependence of the axial stress logarithm and accumulated deformation of hard phase as a function of the reciprocal of the
temperature. The activation energy of dynamic softening at
uniaxial compression estimated. It has shown that at low deformation temperatures the softening mechanism is dynamic
recovery and polygonization while dynamic recrystallization
is taking place at elevated temperatures. Porosity decreases the
activation energy of dynamic softening. The dynamic softening mechanism in powder material was confirmed by metallographic analysis.
K e y w o r d s : mathematical model, recovery, polygonization, recrystallization, activation energy.
INTRODUCTION
$ wide variety of working conditions of maFKLQH SDUWV UHTXLUH the development of materials
with special properties that ensure high wear reVLVWDQFH>, 2]. This problem may be solved by implementation of new materials produced by a combination of heat treatment and plastic forming processes. The power and kinematic parameters of
plastic deformation during hot and semi-hot deformation take an influence on structure of powder
materials and changing of their operational properties. &RQVHTXHQWO\, investigation of the deformation of powder materials is important for solving problem of interrelation of deformation parameters and structure formation 7KLV TXHVWLRQ has
deeply studied for deformation of compact materiDOV > @ It has shown clearly that temperature,
strain rate and intensity of deformation take an in-
7KLV TXHVWLRQ
deeply studied for deformation of compact materiDOV > @ It has shown clearly that temperature,
strain rate and intensity of deformation take an influence on structure formation parameters that are
determining the mechanism of softening process
>@It has established theoretically and experimentally that increment of material’s plasticity at small
degrees of deformation and low temperatures is
stipulated by dynamic recovery and polygonization, while it is connected with the kinetics of dynamic recrystallization at increasing of the temperDWXUHDQGGHJUHHRIGHIRUPDWLRQ>@,QFUHDsing of strain rate leads to growing resistance of
deformation, decrease in plasticity due to intensification of hardening processes [9]. Obviously, the
same dynamic softening processes may be observed into the solid phase of powder material
>@+RZHYHUWKHNLQHWLFVRIVRIWHQLQg processes
is under the influence of pore phase presented in
powder materials.
This paper is aimed in theoretical analysis of
the kinetics of softening processes taking place in
the powder material during plastic deformation at
elevated temperatures and determination of dependences between deformation and structure formation parameters.
0$7(5,$/6$1'0(7+2'6
Plastic forming at any conditions, on a basis
of dislocation representations, may be characterized by changing of dislocation structure in hard
phase of powder material, which causes the development of two mutually balanced processes - hardening and softening. The expression of changing
EHZULWWHQDV>@
>@
U KH k U ,
W
0$7(5,$/6$1'0(7+2'6
>@
/<8'0,/$5<$%,&+(9$'0<75286$7<8.<85,1,.,7,1
phase of powder material, which causes the development of two mutually balanced processes - hardening and softening. The expression of changing
the dislocations’ density during plastic deformation
may EHZULWWHQDV>@
1
\ e 2 MJ 2 ,
1T
W
where: \ , M – are porosity functions; e – is the
volume changing rate; J – is the shape changing
U KH k U ,
rate.
Porosity functions may be calculated by exwhere: U – is the dislocation density; k – is the pressions >@
%ROW]PDQQIXQFWLRQ; H – is the strain rate; K – is
the coefficient that characterises the ability of hard
2 ( 1 T )3
2
phase to accumulate dislocations at particular
\
, M ( 1T ) ,
3
T
strain rate.
The first term on the right side of the eTXaand assuming of ((Tand ((T
WLRQ GHVFULEHV WKH KDUG phase hardening and
increment of dislocation density per unit of time
W
that is growing with the strain rate H . The second
1
Z ³
MJ 2 \ e2 dW .
term describes decreasing of strength through dec
T
1
0
rementing of dislocation density due to thermally
activated processes expressHG E\ WKH %ROW]PDQQ
function:
The volume changing rate for uniaxial compression may be written as:
k0 exp( E / kT ) ,
k
e
ez 2er ,
where: k0 – is the IUHTXHQF\ IDFWRU WKDW LV LQGea shape changing rate may be determined uspendent of temperature; E – is the activation enering the formula:
gy of softening processes; T – is the absolute temperature.
7KH HTXDWLRQ has a solution >@ at the
2
J
e z er ,
H
(
t
)
9
const
constant strain rate
and bounda3
ry conditions U ( 0 )
U
K9
§
¨ U0 k
©
U0 :
§ Z · K9
·
,
¸ exp ¨ k ¸ ¹
© 9¹ k
FRQVLGHULQJWKHHTXDWLRQ:
where: Z – is the accumulated deformation with
taking into account the influence of porosity.
The accumulated deformation of hard phase
is determined by the following expression >@
Z
W
³ WdW ,
er
ez
r 1
,
2r
Q
aIWHU VXEVWLWXWLRQ WR (T WKH YROXPH
changing rate has transformed to the formula:
e
1 2Q ez .
$ spherical component of the stress tensor:
0
p
1
Vz,
3
where: W – is the rate of changing the accumulated deformation of powder material; W – is the pethe intensity of shear stress is determined by
riod of time.
the
formula:
The rate of changing the accumulated deformation of powder material may be written in the
2
W
Vz .
following way >@
3
W
\ M
T
\ e 2 MJ 2 ,
e
Loading surface of powder body with taking
Zof
K9
W of
K9
W
V
&255(/$7,212)3/$67,&)250,1*$1'6758&785()250$7,213$5$0(7(56
Loading surface of powder body with taking
into account pore formation process may be implemented in the form of:
D p a 2 EW 2
c2 ,
where: D , E ,a,c – are coefficients that are dependent on the porosity >@
7KH IROORZLQJ HTXDWLon that describes dimensional changes during uniaxial compression
has obtained in [7] on the basis of the plasticity law
((T ZKile considering ((TDQG(T:
r
1D §
D ·
¨1 3 ¸
3E©
Vz ¹
FRUGLQJWR(TDWthe condition K9 const .
The ultimate density of dislocations under
the given conditions of deformation goes to the
value of K9 k EDVHG RQ WKH H[SUHVVLRQ . The
average dislocations’ density for maximum stress
reached for this stage of deformation defined simiODUO\WR>@:
Uk
F
K9
k
,
where: F - is the ratio that is within 0 F .
The dependence of the maximum flow stress
V z for the certain deformation stage from the dis-
location density U k may be assumed in the following way [8]:
AU k n ,
Vz
2
2º
ª
1 D « 6DE c D 6 E 6DE a »
.
where: A and n - are constants.
3 E « D a c 2 D 6 E 6DE a 2 »
The expression ((T DIWHU the substitu¬
¼
tion of ((Tlooks like:
The HTXDWion of axial stress under uniaxial
compression looks like:
Vz
6 c 2 D 6 E 6DEa 2
3Da
. D 6E
D 6E
Vz
dZ
dH z
1
1T
1 T 1 2Q ,
2 1
M \ 1 2Q sign e z .
3 r2
n
$IWHU WDNLQJ WKH ORJDULWKP VXEVWLWXWLRQ RI
((TDQGWUDQVIRUPDWLRQVobtained:
Therefore, changing of porosity and accumulated deformation during forming operation
may be calculated from the expressions:
dT
dH z
§ K9 ·
.
A¨ F
© k ¹̧
ln V z
ª § K9 ·n º nE
ln « A ¨ F
.
¸ »
« © k0 ¹ » RT
¬
¼
Obviously, the maximum flow stress V z for
certain forming stage is corresponding to the accumulated deformation Z k . Then, substituting the
H[SUHVVLRQWKHYDOXHRIDFFXPXODWHGVWUDLQDQG
HTXDWLQJ DQG DIWHU WUDQVIRUPDWLRQV ZH Rbtain:
It is possible to determine the axial stress
and accumulated deformation from (T DQG
k ·
9 ª§
1 º
(T . The right side of ((T contains non
Zk
ln «¨¨ U0
F
1
» linear functions of porosity, FRQVHTXHQWO\VROXWLRQ
k ¬© K9 1 ¸¹̧
¼
of differential equations’ system was performed
numerically by the Newton-Raphson method. The
It has assumed from ((TWKDWWKHIDFWRU
function ((T describes a decrementing change
1
in case of balance beof dislocations' density U >@ 7KH YDOXH RI U ln U 0 k /( K9 1 )F 1
asymptotically goes to the limiting value K9 k at tween hardening and softening processes tends to a
constant value for a certain flow stress. In this
Z o f and W o f . The value of K9 k depends case, the rate of changing the dislocation density
on the deformation temperature and activation en- goes to zero. 7KHIROORZLQJHTXDWLRQREWDLQHGIrom
ergy of thermally activated softening process ac- ((TDWDFRQVWDQW strain rate:
FRUGLQJWR(TDWthe condition K9 const .
The ultimate density of dislocations under
k
>
K9 k EDVHG RQ WKH H[SUHVVLRQ @
Uɤ
K9
7KHIROORZLQJHTXDWLRQREWDLQHGI
5(68/76$1'',6&866,21
(TDWDFRQVWDQW /<8'0,/$5<$%,&+(9$'0<75286$7<8.<85,1,.,7,1
performed for evaluation of the activation energy
of dynamic softening processes at uniaxial comU ɤ K9
pression of copper-titanium powder material. SamThen :
ples were prepared from charge consists of copper
powder PMS– and titanium powder %7–0 with
DPDVVIUDFWLRQRIWLWDQLXPDQGDSRURVLW\RI
ª§ U
ª§ k ·
·
1 º
1 º
ln «¨ U0 1¸ F 1 » ln «¨ 0 1¸ F 1 » - DIWHU VLQWHULQJ DW – 920 ºC during ¬© K9 ¹
¼
¬© U ê ¹
¼
hours into a synthesis gas atmosphere. Samples
were deformed on the WHVWLQJ PDFKLQH ='– DW
It has accepted that the dislocation density of temperDWXUHV RI DQG ºC with
-
the hard phase before and after deformation are VWUDLQUDWHV while recording of the indicator
GLIIHUHQWE\-WLPHV >@and F | 0 ,8 y 0 ,9 , diagram.
The accumulated deformation values were
means that the value of ((T may be approxicalculated
using ((T D[LDO stress values - by
mately determined as ln 10 | 2 ,3 .
and
ln V z 1 T
The eTXDWion ((T was transformed to ((T , dependences
the form:
ln Zɤ 1 T (Fig have drawn.
The obtained dependences are straight lines,
9
9
§ E ·
.
H[FHSWIRUWKHSRLQWVDW °C, in which there are
Zɤ | 2 ,3 # 2,3 exp¨
k
k0
© RT ¹̧
gaps of functions due to deformation aging.
Straight lines consist of two branches - low temthan, after taking the logarithm, obtained:
perature branch that is characterizing deformation
process DW – ºC and high temperature
E
9
branch for deformation process DW – ºC.
ln Z ɤ ln
.
V define
Zɤ Slopes of these functions
the activation
enk 0 RT
ż Tsoftening
a parŸ Tof dynamic
ergy
passing through
ticular
mechanism.
The degree of deformation
(TXDWLRQV(TDQG(TDUHUHODWLRQV characterizes by the stage N .
connecting the main parameters of the deformation
The low-temperature branch possess the
of the porous body flow stress, accumulated delowest DFWLYDWLRQ HQHUJ\ )LJ D with values
formation of hard phase, strain rate, temperature
within 0.20- H9 DW SRURVLW\ VDPSOHV DQG
and structural characteristics of the powder materi-0.28 eV at porosity, which is the result
al (K , k , E , Uɤ which characterizes softening of dynamic recovery and polygonisation [9].
process during deformation at the elevated temperThe activation energy at high temperatures
atures. $ linear character of dependences of the JURZV PRUH WKDQ WLPHV )LJ E that indicates
accumulated deformation and corresponding stress more intensive softening. The greatest increment
from the reciprocal temperature follows from these of activation energy - H9 has observed at
HTXDWLRQVwith a slope of the OLQHHTXDOWRWKHDFWi- high temperatures during the third stage. In this
vation energy of dynamic softening process flow- case, the activation energy of softening comparable
ing by one or another mechanism.
with the activation energy of self-diffusion of pure
$ slope of the function ln Zɤ f 1 T is FRSSHU HTXDO WR H9 >@ VR ZH FDQ DVVXPH
E RT and corresponding to ((T . Conse- that softening during the third step carries out by
dynamic recrystallization.
TXHQWO\ the slope of the function ln V z f 1 T It should be noted that the value of activais nE RT according to ((TTherefore, slopes tion energy of softening process depends on the
of these functions different by the value n are initial porosity of samples and takes higher values
WHPSHUDWXUHEUDQFKŸ T 0 ż T 0 characterizing a maximum possible density of dis- DWporosity )LJ
The presence of pores decelerates the dylocations.
namic softening that has confirmed by experiPHQWDO VWXGLHV >@ )RU H[DPSOH E eV at
T 0 DQG E eV at T 0 IRU high tem5(68/76$1'',6&866,21
perature deformation when softening takes place
by
dynamic recrystallization.
Verification of the mathematical model has
The existence of low-temperature and highperformed for evaluation of the activation energy
temperature
branches on dependences V 1 T ,
of dynamic softening processes at uniaxial compression of copper-titanium powder material. Sam-
1
k
.
%7
DPDVVIUDFWLRQRIWLWDQLXPDQGDSRURVLW\RI 7L
&255(/$7,212)3/$67,&)250,1*$1'6758&785()250$7,213$5$0(7(56
a
b
b a
1. The Tdependences
V
–
1 T – a, N Z
Fig. 1. The dependences ln V z 1 T – a, | ln Zɤ | 1 T – bŸ – T 0Fig.
ż–
2
–
N
ɤ | 1–TN– b:
0
Ÿ T 0 ż T 0 N N
a
The low-temperature branch possess the
N DFWLYDWLRQ HQHUJ\ )LJ D
H9 DW SRURVLW\ VDPSOHV DQG
JURZV PRUH WKDQ WLPHV )LJ E
H9
WHPSHUDWXUHEUDQFKŸ
T
ż
T
DFWLYDWLRQ HQHUJ\ )LJ D
H9 DW SRURVLW\ VDPSOHV DQG
JURZV PRUH WKDQ WLPHV )LJ E
H9
FRSSHU HTXDO WR H9V>@
1 TVR ZH FDQ
Zɤ DVVXPH
| 1 T
ż
Ÿ
N
PHQWDO
H[DPSOH
N
T 0 VWXGLHV >@
T0 )RU
a
b T IRU
T DQG
N b
FRSSHU HTXDO WR H9 >@ VR ZH FDQ DVVXPH
Variation of branch;
activation
during softeningbranch;
pro-
Fig. 2. Variation of activation energy during softening process: a – isFig.
the 2.
low-temperature
b –energy
is the high-temperature
cess:
branch; b – is the highŸ – T 0 ż – T 0 .
$ a – is the low-temperature
LQHTXLJUDQXODULW\
WHPSHUDWXUHEUDQFKŸ
ż T 0 with
by dynamic recrystallization.
0 connected
has been observed. It Thas
inhomoge-
TheDFWLYDWLRQ
presence of pores)LJ
decelerates
dyD the
The existenceHQHUJ\
of low-temperature
and highDW
)LJ
H9 DW
SRURVLW\ VDPSOHV
temperature branches
ondependences
ln V z 1 DQG
T,
PHQWDO
VWXGLHV >@
)RU H[DPSOH E characterize softening
IRU has been
Tthat
T mechanism
0 DQG E verified
by metallographic 0analysis. The character
of structure changes in the powder material with
JURZV
PRUH
WLPHV )LJ
Eupon the tem
7L
and WKDQ
porosity
depends
perature of deformation and observed at magnifica H9 DQG FRQGLWLRQ
V 1 T RI
tion x ()LJ *UDLQ
VKDSH
their boundaries characterize the processes occurring in the powder material during its deformation
>@ 7KHVH experiments allowed to explain obFRSSHU
HTXDO
H9 >@
ZH FDQ DVVXPH
7Lphenomena,
WR
served
establish
theVR
beginning
of dynamic recrystallization and follow the kinetics of
WHPSHUDWXUHEUDQFKŸ
ż DQG
T 0 VKDSH
T0 FRQGLWLRQ
)LJ *UDLQ
RI
its development.
The starting structure after sintering of the
powder material into a synthesis gas atmosphere at
>@
E of copPHQWDO
VWXGLHV
>@ )RU H[DPSOH
900 –7KHVH
920
ºC is characterized
by the presence
DW
)LJ
E
DQG
IRU
grains,
pores
and
titanium
particles
(Fig. a
Tper
T
0
0
$ considerable LQHTXLJUDQXODULW\ of microstructure
has been observed. It has connected with inhomogeneous development of static recrystallization during
sintering due to inhomogeneous stress stateVformed
1 Tat
>@
neous development of static recrystallization during
sintering due to inhomogeneous stress state formed at
compaction
of >@
charge)RU
from
copper and
titanium
PHQWDO
VWXGLHV
H[DPSOH
DW
)LJ
powders
into
a
closed
matrix
>@
T 0 DQG
T 0 IRU
Shapes of deformed copper grains observed
on the photo of metallographic section of sample
deformed by compression to the degree of deformation 0.69 at temperature 100 °C and strain rate
V V- (Fig. EDUHGLIIHUHQWRIHTXLD[HGJUDLQV
IRUPHG GXULQJ VLQWHULQJ )LJ D The dynamic
recovery does not lead to rebuilding of structure,
so distorted boundaries appeared as the conse
7LRI VHvere
deformation of hard phase. The
TXHQFH
refinement of grains has observed near titanium
*UDLQ
VKDSHofDQG
FRQGLWLRQ
RI
particles
due)LJ
to a
local
increase
internal
stresses
around the particles of alloying addition.
Deformation at 400 °C leads to formation of
>@
7KHVH
complex-shaped
ERXQGDULHV )LJ , F WKDW indicates processes associated with the migration of
grain boundaries and formation of new ones. New
interfaces presented by coherent particles of precipitates have formed at 400 °C as the result of
DOV>@
>@
ERXQGDULHV )LJ F WKDW
/<8'0,/$5<$%,&+(9$'0<75286$7<8.<85,1,.,7,1
grain boundaries and formation of new ones. New
interfaces presented by coherent particles of pre
V
cipitates have EDUHGLIIHUHQWRIHTXLD[HGJUDLQV
formed at 400 °C as the result of
IRUPHG
GXULQJ VLQWHULQJ
)LJ Dsolid solution
decomposition
of a supersaturated
during deformation of the copper-titanium materiDOV>@that promotes the primary recrystallizaTXHQFH
RI+RZHYHU
VH
WLRQ >@
WKH GHYHORSPHnt of dynamic
recrystallization inhibited due to blocking of grain
boundaries by particles, thus preventing of their
migration and resulting in assuming of serpentine
shape (Fig. , F
0LFURVWUXFWXUHV RI VDPSOHV ZLWK 7L DQG ERXQGDULHV
F WKDW
The microstructure
of )LJ
the sample
after de
formation at 600 ºC is characterized by the presIRUPDWLRQDWVWUDLQUDWH
HQFH RI HTXLD[LDO copper grains formed as the reVXOWRIG\QDPLFUHFU\VWDOOL]DWLRQ)LJG
The recrystallized grains have a polygonal
shape. Intragranular twins, appeared during dynamic recrystallization, have formed by separation
DOV>@
of growing twins from double angle boundaries
WLRQ
>@ +RZHYHU WKH GHYHORSPHgrain growth. It
>@DVWKHUHVXOWRIrecrystallized
VKRXOG EH QRWHG WKDW HTXLD[ial structure is formed
by the volume of sample. It allows to suggest a
uniform and complete flow of dynamic recrystalliF
]DWLRQDW ºC.
Increase of titanium content up to 2 LQWKH
powder material RI porosity at low temperaHQFH
RI HTXLD[LDOleads to growing of the stress and
ture deformation
VXOWRIG\QDPLFUHFU\VWDOOL]DWLRQ)LJG
ultimate degree of deformation that is correspond-
ing to changing the activation energy and, conseTXHQWO\ the deformation mechanism. These processes provide grain refinement during compression to various degrees RI GHIRUPDWLRQ )LJ Different barriers like grain boundaries and pores,
twin boundaries and titanium particles are places
of defects concentration in copper-titanium powder
materials, where the most fine- grained structure
has been observed )LJ, E*UDLQUHILQHPHQWRQ
boundaries of copper and titanium particles during
plastic0LFURVWUXFWXUHRIVDPSOHV7LSRURVLW\FRPSUH
deformation is a FRQVHTXHQFHRIGLIIHUHQFHV
in the plastic and elastic
properties
of copper and
RIGHIRUPDWLRQRI
titanium.
Formation of finer grain size less than 2 ȝP
has been observed near titanium particles )LJ, D
DVDUHVXOWRIFRPSUHVVLRQRIVDPSOHVFRQWDLQLQJ
RIWLWDQLXPDWƒ&XQWLOWKHGHJUHHRIGHIRUPDWLRQ
. +igh values of stresses and deformations in
these places promotes to beginning of dynamic recrystallization leading to formation of new grains.
+RZHYHU intermediate phases, precipitated as a result
of WKHVWUDLQDJLQJ>@ are inhibiting growth of dynamically recrystallized grains [22]. &RQVHTXHQWO\,
anisomerous structure near titanium particles preserved up to degree of GHIRUPDWLRQ)LJ, E
Further compaction to the degree of deformation
IRUPV D KRPRJHQHRXV ILQH-grained structure
b
0LFURVWUXFWXUHRIVDPSOHV7LSRURVLW\FRPSUH
a
RIGHIRUPDWLRQRI
c
ȝP
)LJ D
DVDUHVXOWRIFRPSUHVVLRQRIVDPSOHVFRQWDLQLQJ
RIWLWDQLXPDWƒ&XQWLOWKHGHJUHHRIGHIRUPDWLRQ
+
+RZHYHU
WKHVWUDLQDJLQJ>@
&RQVHTXHQWO\
0LFURVWUXFWXUHV RI VDPSOHV ZLWK
7L DQG GHIRUPDWLRQ)LJ
E
d
b
d
0LFURVWUXFWXUHV RI VDPSOHV
ZLWK 7L DQG Fig. 3 0LFURVWUXFWXUHV RI VDPSOHV ZLWK 7L DQG Fig. 3 0LFURVWUXFWXUHV
ZLWK
7L DQG : b VDPSOHV
– t =deforming
100ILQH
ºC; IRUPDWLRQDWVWUDLQUDWH
s RI
a – afterDsintering;
after
to degree of deFig. 3 0LFURVWUXFWXUHV
RI VDPSOHV
ZLWK DQG
de porosity;
porosity;
a – after sintering;
after deforming
to 7L
degree
of
porosity;IRUPV
a – after KRPRJHQHRXV
sintering; after -deforming
to degree of de-
s : b – t = 100 ºC;
porosity; a – after sintering; after sdeforming
to degree
400IRUPDWLRQDWVWUDLQUDWH
ºC; d – t = 600 ºC.
: b – t = 100
ºC; c –oft =deIRUPDWLRQDWVWUDLQUDWH
IRUPDWLRQDWVWUDLQUDWH IRUPDWLRQDWVWUDLQUDWH
s : b – t = 100 ºC;
c – t = 400 ºC; d – t = 600 ºC.
c – t = 400 ºC; d – t = 600 ºC.
The recrystallized grains have a polygonal
)LJ E*UDLQUHILQHPHQWRQ
RI DQG
FRQVHTXHQFHRIGLIIHUHQFHV
&255(/$7,212)3/$67,&)250,1*$1'6758&785()250$7,213$5$0(7(56
ȝ
SRZGHU PDWHULDO ZLWK DQG RI WL
0HWDOO
RI DQG
a
a
7LLVDVVRFLDWHGZLW
WLRQV)LJ
b
Fig. 4. 0LFURVWUXFWXUHRIVDPSOHV7LSRURVLW\FRPSUHssion at 100 °C and strain rate of 0.001 s-: a - 0.079 the degree of
deformation; b - the degree RIGHIRUPDWLRQRI
Formation of finer grain size less than 2 ȝP
with the copper grain size 7.28 ȝm by improving
)LJ of
D
completeness
of the dynamic recrystallization.
DVDUHVXOWRIFRPSUHVVLRQRIVDPSOHVFRQWDLQLQJ
Deformation at 600 ºC follows by intensive
RIWLWDQLXPDWƒ&XQWLOWKHGHJUHHRIGHIRUPDWLRQ
decrease
+of copper grain size while increasing degree
of deformation, which is typical for copper-titanium
SRZGHU PDWHULDO ZLWK DQG RI WLtanium
(Fig.
0HWDOOographic studies have shown that ani+RZHYHU
somerous
structure observed at low deformation deWKHVWUDLQDJLQJ>@
grees RI – DQG caused by inhomogeneous
&RQVHTXHQWO\
development of dynamic recrystallization. Formation
of a 0LFURVWUXFWXUHRIVDPSOHV7LSRURVLW\FRPSUH
homogeneous fine-grained
structure due to inGHIRUPDWLRQ)LJ
E
creasing of dynamic recrystallization
rate have ocWKHGHJUHHRI
curred,
whileWKHGHJUHHRIGHIRUPDWLRQRI
of deformation
degree to
IRUPV
Dincreasing
KRPRJHQHRXV
ILQH
.
The microstructures of samples ZLWKDQG
7L after compression is characterized by copper
grains with serrated boundarieV)LJ7KHVWUXFWXUH
RIVDPSOHVZLWK7L is less stable, grain boundaries are extremely tortuous and include a large number of "tips." The reason of serration is local heterogeneity of deformation in the border volumes and the
FRQVHTXHQW GLIIHUHQFH LQ WKH GHQVLW\ RI GHIHFWV LQto
local volumes on both sides of the original boundary
that is stimulating migration of small areas to the volume with higher density of defects. Toothed shape of
boundaries indicates the dynamic recrystallization
>@ 5HGXFtion of curvature of grain boundaries in
&RPPHUFLDOO\ SXUH WLWDQLXP %7 U
b
WDOOL]HV DW WHPSHUDWXUHV
>@
Fig. 50LFURVWUXFWXUHRIVDPSOHV7LSRURVLW\FRPSUHssion at 400 °C at a strain rate of 0.001 s-: a - WKHGHJUHHRI
WHPSHUDWXUH
UDQJH deformation; b - WKHGHJUHHRIGHIRUPDWLRQRI.
The microstructures of samples ZLWKDQG
7L
V)LJ7KHVWUXFWXUH
RIVDPSOHVZLWK7L
FRQVHTXHQW GLIIHUHQFH LQ WKH GHQVLW\ RI GHIHFWV LQ
>@ 5HGXF
a
b
Fig. 6. 7KHPLFURVWUXFWXUHRIVDPSOHVRISRURVLW\DIWHUFRmSUHVVLRQVWUDLQUDWHRIV- at a temperature and deformation
degree 600 ºC 0.916: and - 7LE- 7L.
Obviously, the dynamic recovery does not
/<8'0,/$5<$%,&+(9$'0<75286$7<8.<85,1,.,7,1
samples with 2 7LLVDVVRFLDWHGZLWh inhibition of
grain boundaries’ migration by pores, titanium particles and disperse precipitaWLRQV)LJ
Increasing of the deformation temperature
causes softening of hard phase and, as shown by
metallographic analysis, softening of copper begins
at °C for the account of recovery and above
ºC – by the dynamic recrystallization.
&RPPHUFLDOO\ SXUH WLWDQLXP %7– UecrysWDOOL]HV DW WHPSHUDWXUHV – 800 ºC >@
7KHPLFURVWUXFWXUHRIVDPSOHVRISRURVLW\DIWHUFR
7KHPLFURVWUXFWXUHRIVDPSOHVRISRURVLW\DIWHUFR
Therefore,
we can assume that in the investigated
SUHVVLRQVWUDLQUDWHRIV
SUHVVLRQVWUDLQUDWHRIV
WHPSHUDWXUH UDQJH – 7L
ºC softening takes
7LE
7L
7LE
place for the account of the dynamic recovery.
Obviously, the dynamic recovery does not
allow to complete internal release of stresses removal and titanium particles are crushed because
of high intensity of plastic deformation.
CONCLUSIONS
5()(5(1&(6
2.
Theoretical analysis
analysis of
of the
the kinetics
kinetics of softening
Theoretical
processes has been conducted for deformation
at high temperatures and based on the dislocation concepts of plastic deformation and plasticity theory of porous powder bodies. ConstituWLYH HTXDWLRQV that are relating the main parameters of the deformation - flow stress, accumulated deformation of hard phase, strain
rate, temperature and structural characteristics
of the material - ability to accumulate dislocaWLRQV %ROW]PDQQ IXQFWLRQ DFWLYDWLRQ HQHUJ\
density of dislocations, which may be used for
evaluation the mechanism of dynamic softening
during deformation of porous powder materials
at the elevated temperatures.
2. The linear character of the dependencies
ln7KHPLFURVWUXFWXUHRIVDPSOHVRISRURVLW\DIWHUFR
V z 1 T and ln Zɤ 1 T , which allows to
SUHVVLRQVWUDLQUDWHRIV determine the mechanism
dynamic softening
7LE of
7L
of porous bodies has found. It has established
by estimating of activation energy that at low
temperatures the deformation mechanism is dynamic softening and recovery polygonization, at
high temperatures - dynamic recrystallization.
The presence of porosity phase reduces the activation energy of softening and makes its development less intensive.
The mechanism of dynamic softening was
confirmed by metallographic examination of
structure evolution in compression samples
from copper-titanium powder materials of different titanium content.
7.
8.
9.
5()(5(1&(6
3LURZVNL = *RĞFLDĔVNL 0 7(.$ &R
3LURZVNL = *RĞFLDĔVNL 0 Casting alloys for agricultural tools operating under the
harsh conditions of abrasive wear, 7(.$ &RmPLVVLRQRI0RWRUL]DWLRQDQG(QHUJHWLFVLQ$JULFXlWXUH9RO1RSS–
Gromenko, V., Krivonosov, S. and Snizhko A.,
2012.: ;-5$<6WUXFWXUDO5HVHDUFKRI3URGXFWVRI
&DYLWDWLRQDO (URVLRQ RI 0HWDOV, 7(.$ &RPPLsVLRQRI0RWRUL]DWLRQDQG(QHUJHWLFVLQ$JULFXOWXUH
– 9RO1RSS-.
Abbod M.F., Sellars C.M., Cizek P., Linkens
D.A. and Mahfouf M., 2003.: Modelling the Flow
%HKDYLRXU 5HFU\VWDOOL]DWLRQ DQG &U\VWDOORJUDSKLF
7H[WXUH LQ +RW 'eformed Fe- ZW 1L $XVWHnite, $FWD0ater, No. , pp. -
Luton M.J., Sellars C.M., 1969.: Dynamic Recrystallization in Nickel and Nickel-,URQ $OOR\V
'XULQJ +LJK 7HPSHUDWXUH 'HIRrmation, $FWD
Matallurgica, 9RO, pp-
(OZD]UL A.M.(VVDGLTL(<XH6 Kinetics of Metadynamic Recrystallization in MicroalOR\HG +\SHUHXWHFWRLG Steels, ISIJ International,
9RO, No , pp. -
Poliak (,, Jones J.J., 2003. Initiation of DynamLF 5HFU\VWDOOL]DWLRQ LQ &RQVWDQW 6WUDLQ 5DWH +RW
Deformation, ISIJ International, Vol. , No. ,
pp-
Ryabicheva L.A., 1998.: The Phenomenological
$SSURDFK WR (VWLPDWLRQ RI 6WUXFWXUH by Macroscopic Parameters of the, Izvestija vuzov, Ferrous
Metallurgy, No. 7, pp. - LQ5XVVLDQ
Meyers M.A., Lasalvia J.C., Nestorenko
V.F., &KHQ<-DQG Kad B.K., 1996.: Dynamic
Recrystallization iQ +LJK 6WDLQ 5DWH 'HIRUPDWLRQ
3URFHVVLQJ RI 5H;C WKH 7KLUG ,QWHUQDWLRQDO
Conference on Recrystallization and Related Phenomena, pp. 279–
Ryabicheva L.A., 1996.: 7KH %LWPDS FRQWURO RI
structure formation processes at hot stamping,
(DVW-Ukrainian State University, Luhansk. (in RusVLDQ
Bardi F.&DELEER0(YDQJHOLVWD(6LSJDUHlli S. and Vukcevic M., 2003.: $QDQDO\VLVRIKRW
GHIRUPDWLRQ RI DQ $O-Cu-Mg alloy produced by
powder metallurgy, MateriDOV 6FLHQFH DQG (QJiQHHULQJ$ Vol. , 1R-2, pp. -
=RXKDU*, 1974.: %HXUWHLOXQJGHU(UKROXQJV- und
Rekristallisationsneigung der Stähle bei der WarmIRUPJHEXQJ PLW +LOIH GHV :DUPWRUVLRQVYHUVXFKV,
Neue Hütte, No 7, pp. - LQ*HUPDQ
Leshhinskij V.M., Ryabicheva L.A., 1997.: Simulation of the dynamic recrystallization process,
Metallovedenie i termoobrabotka, No. , pp. 9-
LQ5XVVLDQ
Shtern M.B., 1989.: $ PRGHORIWKH SURFHVVHVRI
deformation of compressible materials with an allowance made for pore formation II. Uniaxial tension and compression of porous bodies, Powder
Metallurgy and Metal Ceramics, Vol. 28, Issue SS 2
HULDOV DW (O
20.
22.
LQ5XVVLDQ
LQ5XVVLDQ
$ PRGHORIWKH SURFHVVHVRI
&255(/$7,212)3/$67,&)250,1*$1'6758&785()250$7,213$5$0(7(56 lowance made for pore formation II. Uniaxial tension and compression of porous bodies, Powder
Metallurgy and Metal Ceramics, Vol. 28, Issue SS-
Frost H.J., Ashby M.F., 1982.: DeformationMechanism Maps, Pergamon Press.
Gaponova 2, Ryabicheva L., 2008. Deforming
of the Copper-Titanium Powder MatHULDOV DW (Oevated Temperatures, International Conference Deformation and fracture in structural PM materials”
DF PM 2008 Proceedings, Stará Lesná, High Tatras, Slovak Republic, pp. 202-
Haessner F., 1978.: Recrystallization of metallic
materials, Shtuttgart, 'U5LHGHUHU9HUODJ*PE+.
.ROHURY 2. Characteristics of primary
recrystallization and its role in the sintering of
metal powders, Powder Metallurgy and Metal Ceramics, 9RO,VVXHSS. -
Lawson C.L., Hanson R.J., 1974: Solving Least
6TXDUHV3UREOHPV3UHQWLFH–+DOO
Soffa W.A./DXJKOLQ'( 2004.: +LJK-strength
age hardening copper–titanium alloys: redivivus,
Progress in Materials Science, No. , pp –
McLean D., 1957.: *UDLQ %RXQGaries in Metals,
Oxford University Press, London.
Beljaev S.P., Lihachev V.A., Myshljaev M.M.
and 6HQ
NRY 21 Dynamic recrystallization of aluminium, Physics of Metals and Metallography, Vol., No, pp- LQ5XVVLDQ
Gorelik S.S., 1978.: Recrystallization of metals
and alloys, Moscow, Metallurgy. LQ5XVVLDQ
McDonald D.T., Humphreys F.J., Bate P.S.,
2007.: Microstructure and texture of dynamically
9RO
LQ5XVVLDQ
ȼɁȺɂɆɈɋȼəɁɖɉȺɊȺɆȿɌɊɈȼ
ɉɅȺɋɌɂɑȿɋɄɈȽɈȾȿɎɈɊɆɂɊɈȼȺɇɂə
ɂɋɌɊɍɄɌɍɊɈɈȻɊȺɁɈȼȺɇɂə
ȼɉɈɊɈɒɄɈȼɕɏɆȺɌȿɊɂȺɅȺɏ
Ɋɟɡɸɦɟ ɉɪɨɜɟɞɟɧ ɬɟɨɪɟɬɢɱɟɫɤɢɣ ɚɧɚɥɢɡ ɤɢɧɟɬɢɤɢ
ɪɚɡɭɩɪɨɱɧɹɸɳɢɯ ɩɪɨɰɟɫɫɨɜ ɩɪɨɯɨɞɹɳɢɯ ɜ ɩɨɪɨɲɤɨɜɨɦ
ɩɨɪɢɫɬɨɦɬɟɥɟɩɪɢɞɟɮɨɪɦɢɪɨɜɚɧɢɢ ɜɨɛɥɚɫɬɢ ɩɨɜɵɲɟɧɧɵɯ
ɬɟɦɩɟɪɚɬɭɪ
ɉɨɥɭɱɟɧɵ
ɨɩɪɟɞɟɥɹɸɳɢɟ
ɭɪɚɜɧɟɧɢɹ
ɫɜɹɡɵɜɚɸɳɢɟ ɩɚɪɚɦɟɬɪɵ ɞɟɮɨɪɦɚɰɢɢ ɢ ɩɚɪɚɦɟɬɪɵ
ɫɬɪɭɤɬɭɪɨɨɛɪɚɡɨɜɚɧɢɹ ɤɨɬɨɪɵɟ ɯɚɪɚɤɬɟɪɢɡɭɸɬ ɩɪɨɰɟɫɫɵ
ɞɢɧɚɦɢɱɟɫɤɨɝɨ ɪɚɡɭɩɪɨɱɧɟɧɢɹ ɩɪɢ ɞɟɮɨɪɦɢɪɨɜɚɧɢɢ
ɉɨɤɚɡɚɧɚ ɥɢɧɟɣɧɚɹ ɡɚɜɢɫɢɦɨɫɬɶ ɥɨɝɚɪɢɮɦɚ ɨɫɟɜɨɝɨ
ɧɚɩɪɹɠɟɧɢɹ ɢ ɧɚɤɨɩɥɟɧɧɨɣ ɞɟɮɨɪɦɚɰɢɢ ɬɜɟɪɞɨɣ ɮɚɡɵ ɜ
ɮɭɧɤɰɢɢɨɛɪɚɬɧɨɣɬɟɦɩɟɪɚɬɭɪɵȼɵɩɨɥɧɟɧɚɨɰɟɧɤɚɷɧɟɪɝɢɢ
ɚɤɬɢɜɚɰɢɢ ɞɢɧɚɦɢɱɟɫɤɨɝɨ ɪɚɡɭɩɪɨɱɧɟɧɢɹ ɩɪɢ ɨɞɧɨɨɫɧɨɦ
ɫɠɚɬɢɢɉɨɤɚɡɚɧɨɱɬɨɩɪɢɧɢɡɤɢɯɬɟɦɩɟɪɚɬɭɪɚɯɞɟɮɨɪɦɚɰɢɢ
ɦɟɯɚɧɢɡɦɨɦɪɚɡɭɩɪɨɱɧɟɧɢɹɹɜɥɹɟɬɫɹɞɢɧɚɦɢɱɟɫɤɢɣɜɨɡɜɪɚɬɢ
ɩɨɥɢɝɨɧɢɡɚɰɢɹ ɩɪɢ ɩɨɜɵɲɟɧɧɵɯ ɬɟɦɩɟɪɚɬɭɪɚɯ
ɞɢɧɚɦɢɱɟɫɤɚɹ ɪɟɤɪɢɫɬɚɥɥɢɡɚɰɢɹ ɉɨɪɢɫɬɨɫɬɶ ɫɧɢɠɚɟɬ
ɷɧɟɪɝɢɸ ɚɤɬɢɜɚɰɢɢ ɞɢɧɚɦɢɱɟɫɤɨɝɨ ɪɚɡɭɩɪɨɱɧɟɧɢɹ
Ɇɟɬɚɥɥɨɝɪɚɮɢɱɟɫɤɢɣ ɚɧɚɥɢɡ ɩɨɞɬɜɟɪɠɞɚɟɬ ɦɟɯɚɧɢɡɦ
ɞɢɧɚɦɢɱɟɫɤɨɝɨɪɚɡɭɩɪɨɱɧɟɧɢɹɩɨɪɨɲɤɨɜɨɝɨɦɚɬɟɪɢɚɥɚ
Ʉɥɸɱɟɜɵɟ ɫɥɨɜɚ ɦɚɬɟɦɚɬɢɱɟɫɤɚɹ ɦɨɞɟɥɶ ɜɨɡɜɪɚɬ
ɩɨɥɢɝɨɧɢɡɚɰɢɹɪɟɤɪɢɫɬɚɥɥɢɡɚɰɢɹɷɧɟɪɝɢɹɚɤɬɢɜɚɰɢɢ
and alloys, Moscow, Metallurgy. LQ5XVVLDQ
McDonald D.T., Humphreys F.J., Bate P.S.,
2007.: Microstructure and texture of dynamically
recrystallized copper and copper – tin alloys, Materials Science Forum, 9RO, pp-
Kapyrin G.I., 1977.: Titanium alloys in machine
building, Leningrad, Mashinostroenie. LQ5XVVLDQ
ȼɁȺɂɆɈɋȼəɁɖɉȺɊȺɆȿɌɊɈȼ
ɉɅȺɋɌɂɑȿɋɄɈȽɈȾȿɎɈɊɆɂɊɈȼȺɇɂə
ɂɋɌɊɍɄɌɍɊɈɈȻɊȺɁɈȼȺɇɂə
ȼɉɈɊɈɒɄɈȼɕɏɆȺɌȿɊɂȺɅȺɏ
Ɋɟɡɸɦɟ ɉɪɨɜɟɞɟɧ ɬɟɨɪɟɬɢɱɟɫɤɢɣ ɚɧɚɥɢɡ ɤɢɧɟɬɢɤɢ
ɪɚɡɭɩɪɨɱɧɹɸɳɢɯ ɩɪɨɰɟɫɫɨɜ ɩɪɨɯɨɞɹɳɢɯ ɜ ɩɨɪɨɲɤɨɜɨɦ
ɩɨɪɢɫɬɨɦɬɟɥɟɩɪɢɞɟɮɨɪɦɢɪɨɜɚɧɢɢ ɜɨɛɥɚɫɬɢ ɩɨɜɵɲɟɧɧɵɯ
ɬɟɦɩɟɪɚɬɭɪ
ɉɨɥɭɱɟɧɵ
ɨɩɪɟɞɟɥɹɸɳɢɟ
ɭɪɚɜɧɟɧɢɹ
ɫɜɹɡɵɜɚɸɳɢɟ ɩɚɪɚɦɟɬɪɵ ɞɟɮɨɪɦɚɰɢɢ ɢ ɩɚɪɚɦɟɬɪɵ
ɫɬɪɭɤɬɭɪɨɨɛɪɚɡɨɜɚɧɢɹ ɤɨɬɨɪɵɟ ɯɚɪɚɤɬɟɪɢɡɭɸɬ ɩɪɨɰɟɫɫɵ
ɞɢɧɚɦɢɱɟɫɤɨɝɨ ɪɚɡɭɩɪɨɱɧɟɧɢɹ ɩɪɢ ɞɟɮɨɪɦɢɪɨɜɚɧɢɢ
ɉɨɤɚɡɚɧɚ ɥɢɧɟɣɧɚɹ ɡɚɜɢɫɢɦɨɫɬɶ ɥɨɝɚɪɢɮɦɚ ɨɫɟɜɨɝɨ
ɧɚɩɪɹɠɟɧɢɹ ɢ ɧɚɤɨɩɥɟɧɧɨɣ ɞɟɮɨɪɦɚɰɢɢ ɬɜɟɪɞɨɣ ɮɚɡɵ ɜ
ɮɭɧɤɰɢɢɨɛɪɚɬɧɨɣɬɟɦɩɟɪɚɬɭɪɵȼɵɩɨɥɧɟɧɚɨɰɟɧɤɚɷɧɟɪɝɢɢ
ɚɤɬɢɜɚɰɢɢ ɞɢɧɚɦɢɱɟɫɤɨɝɨ ɪɚɡɭɩɪɨɱɧɟɧɢɹ ɩɪɢ ɨɞɧɨɨɫɧɨɦ
ɫɠɚɬɢɢɉɨɤɚɡɚɧɨɱɬɨɩɪɢɧɢɡɤɢɯɬɟɦɩɟɪɚɬɭɪɚɯɞɟɮɨɪɦɚɰɢɢ
ɦɟɯɚɧɢɡɦɨɦɪɚɡɭɩɪɨɱɧɟɧɢɹɹɜɥɹɟɬɫɹɞɢɧɚɦɢɱɟɫɤɢɣɜɨɡɜɪɚɬɢ
ɩɨɥɢɝɨɧɢɡɚɰɢɹ ɩɪɢ ɩɨɜɵɲɟɧɧɵɯ ɬɟɦɩɟɪɚɬɭɪɚɯ –
ɞɢɧɚɦɢɱɟɫɤɚɹ ɪɟɤɪɢɫɬɚɥɥɢɡɚɰɢɹ ɉɨɪɢɫɬɨɫɬɶ ɫɧɢɠɚɟɬ
ɷɧɟɪɝɢɸ ɚɤɬɢɜɚɰɢɢ ɞɢɧɚɦɢɱɟɫɤɨɝɨ ɪɚɡɭɩɪɨɱɧɟɧɢɹ
Ɇɟɬɚɥɥɨɝɪɚɮɢɱɟɫɤɢɣ ɚɧɚɥɢɡ ɩɨɞɬɜɟɪɠɞɚɟɬ ɦɟɯɚɧɢɡɦ
ɞɢɧɚɦɢɱɟɫɤɨɝɨɪɚɡɭɩɪɨɱɧɟɧɢɹɩɨɪɨɲɤɨɜɨɝɨɦɚɬɟɪɢɚɥɚ
Ʉɥɸɱɟɜɵɟ ɫɥɨɜɚ ɦɚɬɟɦɚɬɢɱɟɫɤɚɹ ɦɨɞɟɥɶ ɜɨɡɜɪɚɬ
ɩɨɥɢɝɨɧɢɡɚɰɢɹɪɟɤɪɢɫɬɚɥɥɢɡɚɰɢɹɷɧɟɪɝɢɹɚɤɬɢɜɚɰɢɢ
TEKA. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE – 2014, Vol. 14, No. 4, 161–168
Calculation of Deflection of One-Layer and Two-Layer Slabs
Supported on Four Sides
Dmytro Smorkalov
Kyiv National University of Construction and Architecture
Povitroflotskyy Prosp., 31, Kyiv, Ukraine, 03680, e-mail: smorkalov@i.ua
Received December 04.2014; accepted December 17.2014
Summary. The article presents the method and results
of experimental research of deflection of one-layer
and two-layer slabs influenced by short-term lateral
load. The proposed method of calculation is based on
WKH OLPLW HTXLOLEULXP PHWKRG WKH FDOFXODWLRQ RI VODE
defleFWLRQV YDOXHV E\ /,5$-&$' EXQGOHG VRIWZDUH
The comparison is carried out of experimental and
theoretical results of slabs deflection calculation.
Key words: slab, deflection, steel fiber concrete.
INTRODUCTION
Layered constructions have been increasingly
applied in building recently. When appropriate
composition of separate layers is selected, multilayer constructions with perfect construction
properties may be created [9]. Layers are mostly
composed of heavy concrete and effective steel
fiber concrete. Such constructive decisions have
a widespread use in road and airfield pavements,
logistics areas, heavy-weight industrial floors,
etc. > @ $PRQJ WKH PRVW SURPLVLQJ
trends of reasonable usage of steel fiber concrete
is its application in composite structures, as a
rule, in combination with concrete or ferroconcrete, with distinct partition of functions of every material. In particular, the steel fiber concrete
that is rather thriftily applied along the construction outline, in a thin layer, provides high crack
resistance of constructions, as well as its high
durability due to high indices of tensile strength,
frost resistance, corrosion resistance and high
rates of other types of resistance of the steel fiber concrete >@ $WWKHVDPHWLPHWKLV solution
provides necessary preconditions for significant
reduction of strength and value of the primary
concrete and reduction of the number of reinforcement rod. Thus, there are preconditions for
obtaining high indices created while their cost
drops.
PU5326(2)WORK
The main purpose of proposed work is the
comparison of proposed method of deflection
calculation for layered slabs under lateral load
with the results of experimental research.
(;3(5,0(17$/ 5(6($5&+
$FFRUGLQJ to the set purpose of research,
slabs of series were produced, two slabs for
each series. The scope and outline of experimental studies is set in Table >].
The total size of single-layer slabs amounts to
800×800× mm; the thickness of each layer of
reinforced concrete (concrete and steel fiber
FRQFUHWHLQWZR-OD\HUVODEVLV mm.
Series I (ɉɎUHSUHVHQWVDVODEPDGHRIVWHHO
fiber concrete.
Series II (ɉɁ UHSUHVHQWV D VLQJOH-layer reinforced concrete slab with single-layer reinforcement Ø4 %S-I laid at the bottom of the slab
ZLWKSURWHFWLYHFRQFUHWHOD\HU mm thick with
mm pitch
Series III (ɉȻɎ UHSUHVHQWV D WZR-layer concrete slab, the top layer of which is made of unreinforced heavy concrete and the below one –
of the steel fiber concrete.
Series IV (ɉɁɎRIthe studied samples represents slabs consisting of an upper layer of steel
fiber concrete and a heavy concrete layer reinforced with metal reinforcement mesh Ø %S-I
VHWZLWK mm pitch.
Slab concreting was carried out in two stages.
6ODEV RI ɉɁ JUDGH DQG FRQFUHWH OD\HUV RI ɉɁɎ
DQGɉȻɎVODEVZHUHFRQFUHWHGDWWKHILUst stage.
Siliceous sand and giaQW JUDYHO RI … mm
IUDFWLRQ 3RUWODQG FHPHQW RI 0 JUDGH ZDV
used as binding material; water-to-cement ratio
'0<7526025.$/29
amounted to W/C 0, 3ODWHV RI ɉɁ DQG ɉɁɎ
grade were reinforced with binding wire mesh of
%S-, JUDGH PP LQ GLDPHWHU DQG mm pitch
in two directions. Concrete protective layer was
mm. The surface is bush-hammered while the
concrete is immature.
$WWKHVHFRQGVWDJHDIWHUGD\VVODEVRIɉɎ
grade were concreted and steel fiber concrete
layer slabs of ɉɁɎ grade were additionally concreted.
Steel fiber concrete contained steel fiber with
diameter df = mm and length lf mm;
volume percent of reinforcement was —f = Fine concrete without coarse aggregate was used
as a concrete matrix; water-to-cement ratio
HTXDOHGWR:& 0,
Table 1. Scope of experimental studies
Fig. 1. *HQHUDODSSHDUDQFHRIWHVWLQJEHQFK
Series
Slab
grade
I
ɉɎ
ɉɎ2
ɉɁ-
II
Section
Composition
–steel fiber
concrete
–reinforced
concrete
ɉɁ-2
ɉȻɎ-
III
ɉȻɎ-2
ɉɁɎ-
IV
ɉɁɎ-2
–concrete;
2–steel fiber
concrete
a
–steel fiber
concrete;
2–reinforced
concrete
*HQHUDO appearance of testing bench is
showed in Fig. .
The same calculation model was applied for
both the one- and two-layer slabs exposed by
lateral load: a slab is hinge-supported on four
sides and influenced by evenly distributed load
(Fig. b
Fig. 2. Distribution of load (aand support (b upon
slab: 1 hinged support, 2 cylinder support
,W LV VXJJHVWHG WKDW FRQFHQWUDWHG IRUFHV
evenly allocated on the slabs surface show no
significant difference during the operation, as
compared to evenly distributed load, that is why
in further theoretical study of strength, crack resistance, and deformation of studied slabs a design model was adopted for slabs supported by
&$/&8/$7,212)'()/(&7,212)21(/$<(5$1'7:2/$<(56/$%6
hinged bearings on four sides and influenced by
evenly distributed load. The load was applied by
degrees Pi=2,0 N1ZLWK-minute timing at each
stage to take readings from devices. The value of
load was fixed by indices of model forcemeter of
K\GUDXOLFSXPSLQJVWDWLRQ%HIRUHWHVWLQJWKHKydraulic system consisting of a pumping station,
jacks, and model forcemeter was calibrated using
model forcemeter of Tokarev system.
During the application of load in the center of
the slab deflections and deformations over supports were recorded using time indicators with
mm scale graduation value.
The load was applied by two hydraulic jacks
RI kN united by common oil circuit connected to a common pump station.
%HIRUH WHVWLQJ WKH VODEV SK\VLFDO DQG Pechanical properties of used materials were determined: those of heavy concrete, steel fiber
concrete and reinforcement 7DEOH.
$VSURSRVHGE\$ $ *YR]GHY>], it is posVLEOHWRPDNHXVHRIFKDUDFWHULVWLFSRLQWVDQG
on the diagram (Fig. Table 2. Physical and mechanical properties of concretes and reinforcement
Fig. 3. Design diagram of slab deflection:
1 cracking, 2 appearance of the plastic hinge
Type of
concrete or
fitting
concrete
Strength,
MPa
cube
prism
Steel fiber
concrete Reinforcement
ȼɪ-
–
Tensile Starting elasstrength, ticity factor,
MPa
MPa
Deflection values in the areas between fcr and
fu are determined by interpolation.
The general view of the formula f of slab deflection of slab supported on four sides and bearing a cracks, may be obtained from the following ratio:
qu qcr
q qcr
–
$FFRUGLQJ to results of experimental studies
with regard to nature of destruction [], all
slabs collapsed according to normal sections.
&$/&8/$7,212)'()/(CTION
7KHSURSRVHGPHWKRGEDVHGRQWKHOLPLWHTXilibrium method, which may be represented –
GXULQJWKHVWDWHRIOLPLWHTXLOLEULXP– by the system of disks united along the lines of fracture
with plastic hinges.
f u f cr
,
f f cr
where:
qu and qɫr – load at destruction and crack formation;
fu and fcr – slab deflection at the moment of destruction and crack formation correspondingly.
It should look as follows:
f
f cr q qcr
( f u f cr .
qu qcr
The value fcr is determined based on elastic
system calculation according to load qcr, which
in turn may be obtained by bending factor, when
first crack appeared in a slab area with the highest tension.
The deflections f at the moment of formation
of plastic hinges may be determined as follows.
Until the conditional yield point of reinforcement achieved along all the lines of fracture,
cracks are formed and significantly increased on a
VODE$WWKHVDPHWLPHDUHDVZLWKFUDFNVZLOOEH
'0<7526025.$/29
especially distorted that will mostly determine the
maximum value of slab deflection.
If insignificant curvature of slab areas neglected bearing no cracks, but rigidity is high,
the slab calculation model may be represented as
stiff disks connected by yielding bracing with
width ǻ %HQGLQJ ULJLGLW\ RI DOO MRLQWV LV FDOFulated according to V.M. Murashov theory [7],
though the coefficient ȥ is taken as a one, as the
reinforcements reaches instability the influence
of stretched concrete between cracks disappears
or becomes insignificant. This assumption substantially simplifies the calculation.
For further simplification the angle fracture
EHWZHHQGLVFVHTXDOWR
'
is assumed as if conr
centrated along the lines of fracture. The calculated deflection surface prior to exhaustion of
the bearing capacity turns out to be similar to the
surface used in calculatLQJ E\ OLPLW HTXLOLEULXP
method for the calculation of works on possible
movements. Though such likening is not accurate, it allows determining the maximum deflection at a rather decent level.
There is a calculation model of VTXDUH slab
presented on Fig. and a diagram of angle rotaWLRQ DW VODE FHQWHU GHIOHFWLRQ WKDW LV HTXDO WR fu.
Owing to symmetry, the fracture diagram of
value ǻ for all plastic hinges is the same.
Rigid discs of the slab will turn in relation to
supports by angle:
M
2
2 fu
.
l
Mutual angle adjacent discs
M
2 2 fu
l
'
l'f ym
whereof:
2 2 Es (d x
fu
,
r
.
where:
– curvature-multiplication of which by ǻ
r
HTXDOVWRUHFLSURFDODQJOHRIURWDWLRQRIDdjacent
discs
r
f ym
Es (d x
,
(
2 2
– factor derived from geometrical consid-
erations, which is transition to the angle of rotation of the disk relative to the support,
For fiber reinforced structures (such as fiber
FRQFUHWHWKHYDOXHfy and Es at the point of critical steel stress is replaced by the value fctf and
elastic modulus Ef suitable to the material. For
two-layer slabs the given geometric, strength,
deformation properties of two materials are
used.
%\WKHFRPELQDWLRQRI(T -(ZHFDQGefine a final ratio for the calculation of current deflection of the slab supported by four sides influenced by evenly distributed load:
f
f cr q qcr ( ' f cr ,
qu qcr r
where:
fcr – slab deflection at the moment of of formation of the first cracks in stretched area of the
element;
qcr – load, when first cracks were created;
qu – load corresponding to the limit of the slab
bearing capacity;
Thus, the calculated width of deformed area
ǻ remains unknown in the (T (7DVDUHVXOWLW
is not possible to calculate the value f.
In order to solve such problem the following
method of finding the desired value of deflection
f may be proposed. First of all, a boundary value
of the slab deflection is set according to the
standards for that class of structures fu=[ f ] apply it in the (T (7f=fu=[ f ]. The (T(7LVVHtWOHG ZLWK UHVSHFW WR YDOXH ǻ DQG WKHQ REWDLQHG
result is applied to the (T (WKHUHIRUHREWDLning the deflection at the time of formation of
plastic hinges with regard to real-specified parameWHUV$WWKHVDPHWLPHWKHUHVXOWRI(T (7
shows the value of current deflection by introducing the calculated value of width of deIRUPHGDUHDǻ
&$/&8/$7,212)'()/(&7,212)21(/$<(5$1'7:2/$<(56/$%6
7KHEDVLVRI/,5$-&$'is represented by the
calculation of components and structures by finite element method [].
The calculation model of a slab (Fig. is
built out of tridimensional finite elements (type
ɋȿ-The slab is separated into finite elements according to plan. The sectional area of
the slab is composed of OD\HUV PP HDFK.
The load is applied in the form of concentrated forces. The distribution of load and supports
is accepted as in Fig. 2.
a
b
a
7KHYDOXHRIIFUDQGTFUFDQEHFDOFXODWHGLI
the combine (T (7 ZLWK WKH IRUPXOD
%+*alerkina [2] IRU VTXDUH SODWHV supported
on four sides, the deflection at the center of
slabs:
b
Fig. 4. Calculation diagram of VTXDUH slab influenced
by evenly distributed load:
a – fracture diagram; b – diagram of disc rotation angle rate
f
0,
ql .
Ei h To determine the width of the deformed zone
ǻVODEVDVHULHVRILVRODWHGSRLQWVRQVHYHUDOUesearch graphs deflections. Points are usually preVFULEHGLQWKHRSHUDWLRQDOZRUNLQJORDGUDQJH
often – is 0,7...0,8 from destructive load. To find
WKHYDOXHǻXVLQJ(TDQGWDNLQJLQWRDccount the specific slabs construction.
Results of calculation of one- and two-layer
VODEVE\WKHOLPLWHTXLOLEUium method are shown
in Fig. 7, 8.
Considering complexity of mathematical calculations for slab deflection due to analytical
methods [] and unsatisfactory precision of results, a decision was made to do calculations on
FRPSXWLQJ PDFKLQH ZLWK D KHOS RI /,5$-&$'
bundled software [8].
Fig. 5. Calculation model RIVODELQ/,5$-&$':
ɚ± general view; b – side view
The ɋȿ-finite element is a universal tridimensional eight-node isoparametric finite element, designed for the calculation of tridimensional constructions. There is a diagram represented in Fig (DFK of finite element nodes
has three degrees of variance U, V, W defined
with regard to global coordinates X, Y, Z and are
linear displacements according to axis, whose
positive direction coincides with the direction of
coordinate axis. $V a result of modeling, there
are ,nodes and ,elements
'0<7526025.$/29
Fig. 6. Diagram of ɋȿ-finite element
The assumed calculation model makes it possible to change the rigidity of materials for both
one-layer and two-layer slabs.
The slab calculation was performed in linear
position for loads corresponding to loading pitches at testing. Non-linear physical-mechanical
properties were taken into consideration by
means of changing the elasticity modulus.
Initial values of elasticity modulus for concrete and steel fiber concrete were assumed according to [], that is Ec = 22,5·10 MPa,
Ecf = ,8·10 MPa.
In accordance with recommendations [] the
nonlinear behavior of construction is recommended to consider by means of introducing decreasing coefficients: 0,2 – in case of any cracks,
or 0,– in case no cracks revealed.
That is why during the calculations the decreasing coefficient was 0,before appearance of
any cracks and 0,2 – after the first cracks appeared. Reduction of slab rigidity as a result of
crack was also considered by means of introducing zero rigidity elements in the tensile area within height of the crack. The rigidity of slab supports was not reduced to avoid forcing through
the slab thickness
$V a result of calculation of one-layer slabs in
/,5$ bundled software, diagrams of deflection
of the slab center f of the total pressure Ptot=Pi
were obtained, which are presented in Fig. 7.
ɚ
b
Fig. 7. Calculation results for deflection of one-layer
slabs of series ȱ grade ɉɎ ɚ and slabs of series ȱȱ
grade ɉɁb 1 experimental; 2 – calculation by the
OLPLW HTXLOLEULXP PHthod; 3 – FDOFXODWHG LQ /,5$
bundled software
When calculating the two-layer slabs, relevant
elasticity modulus of material was applied for
each slab layer. The value of decreasing coefficients and zero elasticity elements were applied
similar to the calculation of one-layer slabs.
$V a result of calculation of two-layer slabs by
means of /,5$ bundled software, diagrams of
deflection of the slab center f of the total pressure
Ptot=Pi were obtained, which are presented in
Fig. 8.
&$/&8/$7,212)'()/(&7,212)21(/$<(5$1'7:2/$<(56/$%6
ɚ
b
Fig. 8. Calculation results for deflection of two-layer
slabs of series ȱȱȱgrade ɉȻɎɚand slabs of series ȱV
grade ɉɁɎ b 1 experimental; 2 ± calculation by
WKH OLPLWHTXLOLEULXP PHWKRG 3 – FDOFXODWHGLQ/,5$
bundled software
CONCLUSIONS
*LYHQWKDWWRGD\¶VFRQVWUXFWLRQLQGXstry is
represented by the vigorous process of increasing the strength of construction materials, particularly concrete and reinforcement, due to
achievements in chemistry, there is a strengthenLQJ RI TXDOLW\ LQGLFDWors of buildings and constructions, in particular bearing construction arrangements. Thus, systems making it possible to
work in a multi-axial load state (shell structures,
slabs, wall-EHDPV HWF DUH JHWWLQJ PRUH SRSular. There is an opportunity to significantly reduce the cost by reduction of cross-section oper-
ational overcuts at the expense of increased
strength of materials. The new technologies
make it possible to perform the most complex
design elements made of any materials. Considering the current trends, it should be noted that
the issue of performance reliability for buildings
DQG VWUXFWXUHV LV QRW DERXW WKH VWUHQJWK UHTXLUements, but the rigidity of elements and buildings
in general. Therefore, the study of rigidity (most
commonly the deflections RI H[DPLQHG VODEV
seems to be a topical issue.
$QRWKHU TXHVWLRQ WKLV ZRUN EHDUV DQ Dnswer to is the feasibility of using multi-layer
slabs. From the point of view of rigidity (bendLQJ RI VODEV WKH WZR-layer slabs have an adYDQWDJH WKH\ VKRZ OHss deflections, than
the one-layer ones. Considering the higher level
of crack resistance of tow-layer slabs, the use of
two-layer slabs is absolutely justified.
&DOFXODWLRQ E\ D FRPSXWHU XVLQJ /,5$
bundled software provides wide opportunities to
deterPLQH ULJLGLW\ GHIOHFWLRQ IRU ERWK VLQJOHlayer and multi-layer slabs owing to computing
WHFKQRORJLHV+RZHYHUWKH obtained calculation
results indicate a deficiency in accuracy, compared to the experimental data. The fact is that
compliance with regulatory guidelines, implemented to consider nonlinear structure operation
by introduction of decreasing coefficients, sometimes does not match the actual conditions of
slab deformation. Furthermore, there are some
doubts as to the correctness of defining the depth
crack distribution along the slab height, which
determines its actual rigidity.
. The comparative analysis of experimental
and theoretical diagrams of slab deflection evidences good matching of results. Deviations at
maximum loads were as follows: for one-layer
slabs of VHULHVȱ (ɉɎ – for slabs of VHULHVȱ,
(ɉɁ – for two-OD\HU VODEV RI VHULHV ȱ,,
(ɉȻɎ – for slabs RIVHULHVȱ9ɉɁɎ – Such deviation in calculations may be explained
by complexity of defining the real rigidity of
slabs, i.e. the definition of deformation modulus
and the height of crack creation to set the zero rigidity elements.
5()(5(1&(6
Barashykov $<D, Smorkalov D.V., 2014.
Calculation of solidity of one-layer and twolayer reinforced concrete slabs supported on four
sides. Resource efficient materials, structures,
WLRQ RI QHZ JHQHUDWLRQ FRQFUHWHV 7(.$
0RW(QHUJ5ROQ
;% '0<7526025.$/29
, Issue 9, - LQ8NUDLQH
2.
7.
8.
9.
buildings, and constructions: Collected studies.
Rivne, , Issue 28, - LQ8NUDLQH.
Galerkin B.G., 1933. The resilient thin plate. M,
*RVVWURLL]GDW (in RusVLDQ
Gorodetsky A.S., Schmukler V.S., Bondarev
A.V., 2003. Information Technology of calculation and design of builGLQJ NRQVWUXNWVɿ\ 3URF
Manual. Kharkiv 178 .3, (in
5XVVLDQ
Gvozdev A.A., 1949. Calculation of bearing capacity E\ OLPLW HTXLOLEULXP PHWKRG Moscow,
6WUR\L]GDW9, 280 (in RusVLDQ
=KXUDYVN\L 2.D., Smorkalov D.V., 2002.
Methodology and results of experimental studies
of two-layer slabs. Steel reinforcement concrete
constructions. Research, design, construction,
operation: Collected research papers, Issue ,
Kryvyi Rig, KTU, 2002 LQ8NUDLQH
Korolyov A.N. Calculation methods for slab deflections supported on four sides at short-term
load. Concrete and reinforcedCollected
concrete studies.
Vol. ,
LQ8NUDLQH.
, 9- (in RusVLDQ
ate. M,
Murashev V.I., 1950. Crack resistance, stiffness
*RVVWURLL]GDW
VLDQ
and strength of concrete. M, Mashstroyizdat,
ndarev
(in RusVLDQ
Information
Technology
of
calculaLIRA-CAD 2011. 7XWRULDO(OHFWURQLF(Gition ,
LQ5XVVLDQ GLQJ NRQVWUXNWVɿ\ 3URF
178 .3, (in
Rudenko N., 2010. The development of concep5XVVLDQ
WLRQ RI QHZ JHQHUDWLRQ FRQFUHWHV 7(.$ Kom.
Calculation
of bearing ca0RW(QHUJ5ROQ,
Vol. ;%, -.
E\ OLPLW HTXLOLEULXP PHWKRG Moscow,
Smorkalov D.V., 2003. Crack resistance and
6WUR\L]GDW
VLDQ
fracture modes for two-layer slabs. Resource ef=KXUDYVN\L
2
, 2002.
ficient materials, structures, buildings,
and
constructions: Collected research papers. studies
Rivne,
concrete
, Issue 9, - LQ8NUDLQH
construction,
Snyder M. 1972. Factors affecting the flexural
Issue ,
strength of steel fibrous concrete. $&, -RXUQDO,
LQ8NUDLQH
9RO
VLDQ
VLDQ
$&,-RXUQDO9RO 1R VLDQ
7XWRULDO(OHFWURQLF(G
LQ5XVVLDQ
WLRQ RI QHZ JHQHUDWLRQ FRQFUHWHV 7(.$
LQ5XVVLDQ
0RW(QHUJ5ROQ
;% %RQG VWUHQJWK LQ VWHHO
LQ8NUDLQH
9RO
$&, -RXUQDO
VLDQ
$&,-RXUQDO9RO 1R ɊȺɋɑȿɌɉɊɈȽɂȻɈȼ
Snyder M.
1972. Factors affecting the flexural
ɈȾɇɈofɂȾȼɍɏɋɅɈɃɇɕɏɉɅɂɌ
strength
steel fibrous concrete. $&, -RXUQDO,
ɈɉȿɊɌɕɏɉɈɄɈɇɌɍɊɍ
, 9RO,
No. 2, -
SP 52-103-2007, 2007. Code of practice on deȺɧɧɨɬɚɰɢɹ
ɪɟɡɭɥɶɬɚɬɵ
sign and ɉɪɢɜɟɞɟɧɵ
construction. ɦɟɬɨɞɢɤɚ
Reinforcedɢconcrete
castɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɵɯ
ɢɫɫɥɟɞɨɜɚɧɢɣ
in-place constructions
of buildings. ɩɪɨɝɢɛɨɜ
Moscow,
ɨɞɧɨɫɥɨɣɧɵɯ
ɢ ɞɜɭɯɫɥɨɣɧɵɯ ɩɥɢɬ ɩɨɞ ɞɟɣɫɬɜɢɟɦ
2007 (in RusVLDQ
ɩɨɩɟɪɟɱɧɨɝɨ
ɤɪɚɬɤɨɜɪɟɦɟɧɧɨɝɨ
Stages A., 1981.
Ring fiber reinforcedɧɚɝɪɭɡɤɢ
concrete.
Ɋɚɫɫɱɢɬɚɧɵ
ɩɪɨɝɢɛɵ
ɩɥɢɬ ɫɩɨɫɨɛɨɦ
ɨɫɧɨɜɚɧɧɨɦ
$&,-RXUQDO9RO
1R -
ɧɚ
ɩɪɟɞɟɥɶɧɨɝɨ
ɪɚɜɧɨɜɟɫɢɹ ɢ
ɦɟɬɨɞɨɦ
ɦɟɬɨɞɟ
ACI Journal.
1973. State-of-the-art
report
on fiɤɨɧɟɱɧɵɯ
ɷɥɟɦɟɧɬɨɜ
ɫ
ɩɨɦɨɳɶɸ
ɩɪɨɝɪɚɦɧɨɝɨ
ber reinforced concrete, , Vol. 70, 729-
ɤɨɦɩɥɟɤɫɚ
ɅɂɊȺ
ɫɪɚɜɧɟɧɢɹ
Tarasov V.P.,
1974. ȼɵɩɨɥɧɟɧɵ
The use of fiber-reinforced
ɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɵɯ
ɢ
ɬɟɨɪɟɬɢɱɟɫɤɢɯ
ɪɟɡɭɥɶɬɚɬɨɜ
concrete in construction. Industrial construction.
ɪɚɫɱɟɬɚɩɪɨɝɢɛɨɜɩɥɢɬ
, Vol. 7, - LQ5XVVLDQ
Ʉɥɸɱɟɜɵɟ ɫɥɨɜɚ ɩɥɢɬɚ ɩɪɨɝɢɛ ɫɬɚɥɟɮɢɛɪɨ
Tattersall G.H., 1974. %RQG VWUHQJWK LQ VWHHOɛɟɬɨɧ
fibre-reinforced concrete. Journal of Concrete
Research. Vol No. 87, -
ɊȺɋɑȿɌɉɊɈȽɂȻɈȼ
ɈȾɇɈ- ɂȾȼɍɏɋɅɈɃɇɕɏɉɅɂɌ
ɈɉȿɊɌɕɏɉɈɄɈɇɌɍɊɍ
Ⱥɧɧɨɬɚɰɢɹ. ɉɪɢɜɟɞɟɧɵ ɦɟɬɨɞɢɤɚ ɢ ɪɟɡɭɥɶɬɚɬɵ
ɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɵɯ
ɢɫɫɥɟɞɨɜɚɧɢɣ
ɩɪɨɝɢɛɨɜ
ɨɞɧɨɫɥɨɣɧɵɯ ɢ ɞɜɭɯɫɥɨɣɧɵɯ ɩɥɢɬ ɩɨɞ ɞɟɣɫɬɜɢɟɦ
ɩɨɩɟɪɟɱɧɨɝɨ
ɤɪɚɬɤɨɜɪɟɦɟɧɧɨɝɨ
ɧɚɝɪɭɡɤɢ
Ɋɚɫɫɱɢɬɚɧɵ ɩɪɨɝɢɛɵ ɩɥɢɬ ɫɩɨɫɨɛɨɦ ɨɫɧɨɜɚɧɧɨɦ
ɧɚ ɦɟɬɨɞɟ ɩɪɟɞɟɥɶɧɨɝɨ ɪɚɜɧɨɜɟɫɢɹ, ɢ ɦɟɬɨɞɨɦ
ɤɨɧɟɱɧɵɯ ɷɥɟɦɟɧɬɨɜ ɫ ɩɨɦɨɳɶɸ ɩɪɨɝɪɚɦɧɨɝɨ
ɤɨɦɩɥɟɤɫɚ ɅɂɊȺ ȼɵɩɨɥɧɟɧɵ ɫɪɚɜɧɟɧɢɹ
ɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɵɯ ɢ ɬɟɨɪɟɬɢɱɟɫɤɢɯ ɪɟɡɭɥɶɬɚɬɨɜ
ɪɚɫɱɟɬɚɩɪɨɝɢɛɨɜɩɥɢɬ.
Ʉɥɸɱɟɜɵɟ ɫɥɨɜɚ ɩɥɢɬɚ ɩɪɨɝɢɛ ɫɬɚɥɟɮɢɛɪɨɛɟɬɨɧ
TEKA. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE – 2014, Vol. 14, No. 4, 169–174
Working of Deep-Water Minerals with Sectored Way
Mykhailo Sukach
Kyiv National University of Construction and Architecture
Povitroflotskyy prosp., 31, Kyiv, Ukraine, 03680, e-mail: msukach@ua.fm
Received December 09.2014; accepted December 19.2014
Summary. The article presents the problems of obtaining the
bottom minerals from the depth of water. The sectored way of
working mine is suggested and schemes of movement of the
bottom mining are proposed. The calculations are done of movement trajectory of the carriage and length of the hose-cable of
the mining machine, taking into account the turn inside and
outside the sector.
Key words: deep-water minerals, sectored way, movement trajectory, hose-cable, concretions.
INTRODUCTION
The geological investigations performed in the central
areas of oceans during the last decades, allowed to made it
possible to investigate the promising for industrial developPHQWVDUHDVRISRO\PHWDORUHDFFXPXODWLRQV±FRQFUHWLRQV
±SULPDULO\LQWKHUHJLRQRI&ODULRQ&OLSSHUWRQRQWKH3DFL¿F
RFHDQ>@2QWKHUHJLRQDOVWDJHRIWKHJHRORJLFDO
survey the deposits with overall density of concretions ocFXUUHQFHDUHLGHQWL¿HGXSWRNJɦ2WKDWFRQWDLQ
the industrial concentration of manganese, nickel, copper
DQGFREDOW>@
$WWKHVDPHZD\WKHWHFKQRORJ\DQGWHFKQLFDOZD\V
needed for the survey and experimental testing stages of
works were developed: collection of concretions and lift
to watercraft, pre-processing, storage and handling of the
H[WUDFWHGPDVVWRWKHRUHWUDQVSRUWLQJVKLS>@
The conditions of concretions occurrence are complex
DQGXQLTXH±LWLVWKHGHSWKRIɦORZFDUU\LQJFDSDFLW\RIVHGLPHQWVELJTXDQWLW\RIURFN\H[LWVDQG
FDYLWLHV YDULDEOH FRQ¿JXUDWLRQ RI VHGLPHQWDWLRQV 7KH
DERYHVSHFL¿HGIDFWRUVVLJQL¿FDQWO\DIIHFWHGWKHRSHUDWLRQ
of the survey, pilot-testing machines and machinery at the
ERWWRP>@,QVXFKFRQGLWLRQVLWLVUHDVRQDEOHWR
SHUIRUPWKHH[SORLWDWLRQZRUNVXVLQJWKH¿[HGRULQDFWLYH
mountain reconnaissance complexes, that include the eleva-
tion system that interacts with base bottom module of collection aggregate and fast moving gathering working parts.
The latter are connected to base unit hose cable which
provides transportation of the extracted rock mass and energy supply to drive the carriage of the gathering working
ERG\>@
385326(2)7+($57,&/(
The research aimed at the grounding of the possibility of
the technological scheme of clearing excavation by sector
ways with any predetermined or regulated angle of discloVXUHRIVHFWRU$WWKDWWZRRSWLRQVRIFDUULDJHWUDMHFWRULHV
ZHUHRIIHUHG±ZLWKDWXUQLQVLGHWKHVHFWRURUEH\RQGLWV
FRQWRXUV)LJ
5(6($5&+$1'&$/&8/$7,216
The carriage can maneuver at some distance from base
module, the maximum radius depends on the length of
hose-cable that is reeled from the coil. To determine the
DPRXQWRIWLPHQHHGHGIRUWKHSURFHVVLQJLWLVUHTXLUHGWR
identify the area of sector and the length of the way travelled
E\WKHFDUULDJHZKHUHDVIRU¿QGLQJWKHYROXPHRIH[WUDFWLRQ
±WKHDPRXQWRIFRVWVRQWKHXQSURFHVVHGDUHDVRIWKHVHFWRU
During the work of carriage with turn inside the sector
contours on each operation cycle of the part of circle with
width BLQVLGHWKHVHFWRUZLWKDQJOHĮLVSURFHVVHG$WWKH
HQGRIWKHVWULSWKHFDUULDJHLVWXUQHGƒPRUHRYHUWKH
hose-cable is reeled to the length B WKDWHTXDOVWKHZLGWKRI
FDUULDJHDQGWKHQH[WRSHUDWLRQF\FOHVHH)LJ
7KHLQLWLDOGDWDIRUFDOFXODWLRQĮ±WKHDQJOHRIWXUQRI
sector; B±ZLGWKRIFDUULDJHLm±OHQJWKRIKRVHFDEOHRU
maximum radius, passed by the carriage; L0±UDGLXVRIWKH
base module of collecting aggregate. Needed parameters:
0<.+$,/268.$&+
K±QXPEHURIRSHUDWLRQF\FOHVR0±PLQLPDOUDGLXVVWDUWLQJ age of the developed area; L±ZD\SDVVHGE\WKHFDUULDJH
from which the carriage maneuver is possible; S±SURFHVVHG D±VSHFL¿FDUHDLHWKHDUHDUHGXFHGWRWKHXQLWRIZD\
GHYHORSHGDUHDS*±IXOODUHDRIWKHVHFWRUE±SHUFHQW- passed by the carriage.
Fig. 1. Calculated scheme of carriage motion trajectory with turns into a sector:
I –not processed areas; II - IV – processed zones, from them II – in the first measure,
III – on intermediate measures, IV – on the last measure; V –carriage motion trajectory
Fig. 2. Calculation scheme of carriage motion trajectory with turns out of sector:
I – not processed space; II –carriage motion trajectory; III – superfluous areas; IV – processed
areas
:25.,1*2)'((3:$7(50,1(5$/6:,7+6(&725(':$<
$WHDFKLQWHULPoperation cycle the carriage
rotates 180° from point Ai to Ⱥ ɚnd the
length of hose-cable increases by width of the
S*
(DL2m .
carriage ȼ; then the carriage moves from point
2
Ⱥ to point Ai , in the result of which the
Number of operation cycles of carriage:
hose-cable rotates at the angle:
Full area of sector:
K ' ( Lm L0 B .
Mh
Į arcsin
Minimal radius of carriage turn:
R0c
B
B
arcsin
,
R
BR
Lm KB .
where: R – distance from the carriage to the
point of mantling of hose-cable to base module
of collecting aggregate.
For the full turn of carriage inside the
On each operation cycle the center of carsector the following conditions are reTXLUHG riage passes the way:
M cr M2 cr d D ,
where:
M cr
M2 cr
arcsin B ( R0 B ,
arcsin B ( R0 2BE .
Į arcsin B (R0 B) .
(R0 B/ 2 )Min ,
SURFHVVHGGHYHORSHGDUHD:
S in
>
Sh
>
@
@
$WWhe last step of the operation cycle after
the processing of the land, the area of which is
determined by (T ( (the hose-cable
rotates at the angle:
Mc
arcsin
B
.
Lm
$WWhat the carriage passes the way:
Lc
Sc
(R0 B) 2 R02 M in .
2
2 B (R BE 2 R 2 M h . 2ʌ
2
(Lm B/ 2 ) Mc .
$QGWKHODQGLVSURFHVVHG:
Center of carriage moves the way:
Lin
S B 2 ( R0 B / 2 M h .
The processed area makes up:
$WWKDW R0 R0/ B is used so that to satisfy the condition , in this case
K K '[ , where [ safety factor.
Note, that with K' 0 processing is not
possible, and with K ' only one operation
cycle is processed. In the latter case, K is
FRQVLGHUHGHTXDO Ʉ
, and R0 R0c .
In the first operation cycle the carriage is
moved from position A0 to position A;
+RVH-cable is turned (rotatHGat the angle:
Min
Lh
>
@
2
Lm ( Lm B) 2 M ê . 2
The total way and area (L ɿ S one calculates as sum of corresponding sizes of areas on
the initial, all the intermediate ones and the final operation cycle.
The percentage of the processed area:
E
S / S * ,
0<.+$,/268.$&+
specific area:
D
L
S / L.
( R0 B / 2D ( R0 B / 2 BD ... [ R0 B / 2 ( K B]D
K ( 2 R0 KB .
2D
With work of carriage with turn outside the
contours of sector with angle Įon each operation cycle the carriage processes the part of the
([WUDZD\RUZD\SDVVHGIRUWKHturn:
circle with width ȼ (see Fig. $W WKDW WKH
part of the hose-FDEOHWKDWHTXDOVWKHZLGWKRI
B
(
L
K
S
.
the carriage operation cycle is reeled from the
2
coil placed on the base module of collecting
carriage.
([WUDZD\, passed by carriage :
When you save the similar to the above
considered variant output data, you need to
L
,
EL
add to thH GHVLUHG VHDUFKHG SDUDPHWHUV WKH
L L
following: S area, processed by the carriage
outside the contours of the sectors (extra area
ȿ percentage of extra area; L extra way specific area:
and ȿ percentage of extra way.
S
In this case the full area of sector, the numD
.
L L
ber of operation cycles and minimal radius are
accordingly determined with (T (
Mathematical model
is doneis
fordone
collecting
that
Mathematical
model
foraggregate
collecting
Useful area, processed with aggregate,:
S
2
( Lm R02 .
2D
([WUDVSDFHDWWKDWLV:
S
( K 2
B .
2S
processes with sector scheme the ore deposits with complex
FRQ¿JXUDWLRQZLWKELJTXDQWLW\RIREVWDFOHVRQWKHERWWRPOLNH
URFN\H[LWVDQGFDYLWLHVHWF%\PHDQVRIFRPSXWHUSURJUDP
ZLWK ELJ TXDQWLW\ RI REVWDFOHV RQ WKH ERWWRP
the following values are calculated; K, R0, S, S*, S, E, E, L,
HWF%\PHDQVRI
L, ȿL, D IRUDQJOHVĮ ƒƒZLGWKRIFDUULDJHVHL]LQJ
ȼ ɦZLWKOHQJWKRIKRVHFDEOHLm ɦ
+DQGSURGXFWLYLW\RIPLQLQJFRPSDQ\ZLWKPLOOLRQ
ȿ
of concretions Į
can obtain
minerals with minimal losses by
ƒƒ
using as part of the collection aggregate of lightweight highȼ ɦ
speed carriage, that has to be characterized by coordinating
ɦ
connection with the base module.
+DQGSURGXFWLYLW\RIPL
Since processing of K operation cycles one
needs to perform (K – of turns. The percentCONCLUSIONS
age of processed area in the sector is determined with expression ,QWKHGHSWKRIWKHRSHQRFHDQWKHUHDUHELJDUHDVZLWK
concretions lying on the bottom surface with increased
The percentage of extra areas processed by
XSWRNJɦ2GHQVLW\0LQLQJFRQGLWLRQVRIWKHVH
the carriage :
E
S
.
S S
The way passed by the carriage consists of
segments of way with useful processing and
ways passed for rotation. Useful way is calculated with the formula:
deposits are notably hard due to prominence of landforms and the presence of rocky exits.
'XHWRWKHQHFHVVLW\RIFKRRVLQJHTXLSPHQWDQGWHFKnology of sewage treatment works, the organization of
excavation works with the scheme with sedentary colOHFWLRQXQLWEDVHPRGXOHDQGIDVWPRYLQJH[FDYDWLRQ
XQLWSLFNXSLVVXJJHVWHG
7KHGHWHUPLQDWLRQRISDUDPHWHUVRIPLQHUDOVH[WUDFWLRQ
LVJLYHQEDVLQJRQWKHH[WUDFWLRQRIPRUHWKDQPLOORI
concretions per year with their minimal losses by means
of usage of coordinating connection between the pickup
and base module with sector scheme.
7KHPDWKHPDWLFDOPRGHOLVJLYHQDQGNH\SDUDPHWHUVRI
sector method of concretions pickup are calculated.
:25.,1*2)'((3:$7(50,1(5$/6:,7+6(&725(':$<
5()(5(1&(6
Bakurov G., 1988. Ships for deep-water mountain geoORJLFDOUHVHDUFKHV0RVFRZ6KLSEXLOGLQJʋ
2. Ferromanganese concretions of the central part of
WKH3DFL¿FRFHDQ1986.8QGHUHGLWLQJ,2ɆXUGPDD
1ɋ6NRUQLDNRYD0RVFRZ1DXND
Fouco I., 1982.0RGHUQVWDWHRIWHFKQLTXHRIERRW\RI
GHHSZDWHUIHUULPDQJDQHVHFRQFUHWLRQVȼɐɉʋȿ
0RVFRZLVW)XVHQ9RO
1XURN*%UXMDNLQ<X%XELV<XDQGRWKHU. Mining
technology from the bottom of lakes, seas and oceans.
0RVFRZ1HGUD
2JRURGQLNRYɋɉ+\GURPHFKDQL]DWLRQRIGHYHORSPHQWRIVRLOV0RVFRZ6WUR\L]GDW
3DVFKNLQ9,DNRYOHY3ɋRNRORY9. Dredging,
ɪɟɮɭɥɟɪɧɵɟDQGɝɢɞɪɨWKHPHFKDQL]HGZRUNVWUDLQDLG
2GHVD$VWURSULQW
7. 6FKQLXNRYȿ=LERURY$ Mineral riches of the
%ODFNVHD.\LY1$18
8. Shkaryvsky G., 2014.(VWLPDWLRQRILQÀXHQFHVWUXFWXUally of layout charts of power facilities on completing
RIDJJUHJDWHVRQWKHLUEDVH0RWURONRP0RW(QHUJ
5ROQ2/3$19RO1R
9. Sukach M., 2004%RRW\DQGSRUWDJHRIRFHDQPHWDORI
containing crusts. Industrial hydraulic and pneumatic,
9RO
Sukach M., 2004.:RUNÀRZVRIGHHSPDFKLQHV.\LY
1DXNRYDGXPND
Sukach M., 2012'HHSZDWHUWHFKQLTXHDQGWHFKQRORJ\
for development of minerals of the World ocean. Labours
9,,67.³(QHUJLD´6LPIHURSRO$OXSND
Sukach M., 2012. Problems of booty of hard minerals
from the bottom of the World ocean. Motrol: kom. Mot.
(QHUJ5ROQ2/3$19RO
Sukach M., 2013.3URVSHFWVRIɪɚɡɪɚɛɨɬɤɢRIPDULQH
deposits of mineral raw material. Innovations in science
are innovations in education: collection of labours. Ju5*3813,1RYRFKHUNDVVN
Sukach M., 2013. Research and development deep-waWHUERRW\WHFKQLTXH.\LY*%'009RO
Sukach M., Lysak S., Sosnowski S., 2010. Kinematic
DQDO\VLVRIWKHZRUN±LQJSURFHVVRIWUHQFKHU7(.$
NRP0RW(QHUJ5ROQ2/3$19RO;
Sukach M., Lytvynenko I., Bondar D., 2009. System of
the automated management and measuring of parameters
RIWHFKQRORJLFDOSURFHVVHV0RWURONRP0RW(QHUJ
5ROQ2/3$19RO%
Technical instructions on the production of the marine
dredging, 1986ɊȾ0RVFRZ:60RUWHFKLQIRUPUHNODPD
=LERURY$ To obtain or not obtain the black Sea
VDSURSHOVLQ8NUDLQH*HRORJ\DQGPLQHUDOVRIWKH:RUOG
RFHDQ9RO
=LERURY$. Prospects and tasks of mastering of
PDULQHGHSRVLWVRIPLQHUDOUDZPDWHULDO*HRORJ\DQG
PLQHUDOVRIWKH:RUOGRFHDQ9RO
ɊȺɁɊȺȻɈɌɄȺȽɅɍȻɈɄɈȼɈȾɇɕɏɉɈɅȿɁɇɕɏ
ɂɋɄɈɉȺȿɆɕɏɋȿɄɌɈɊɇɕɆɋɉɈɋɈȻɈɆ
Ⱥɧɧɨɬɚɰɢɹɉɨɤɚɡɚɧɵɩɪɨɛɥɟɦɵɞɨɛɵɱɢɞɨɧɧɵɯɩɨɥɟɡɧɵɯ
ɢɫɤɨɩɚɟɦɵɯɢɡɛɨɥɶɲɨɣɝɥɭɛɢɧɵɉɪɟɞɥɨɠɟɧɫɟɤɬɨɪɧɵɣ
ɫɩɨɫɨɛɪɚɡɪɚɛɨɬɤɢɦɟɫɬɨɪɨɠɞɟɧɢɹɢɩɪɢɜɟɞɟɧɵɫɯɟɦɵɞɜɢɠɟɧɢɹɞɨɧɧɨɝɨɞɨɛɵɜɚɸɳɟɝɨɚɝɪɟɝɚɬɚȼɵɩɨɥɧɟɧɵɪɚɫɱɟɬɵ
ɬɪɚɟɤɬɨɪɢɢɞɜɢɠɟɧɢɹɤɚɪɟɬɤɢɢɞɥɢɧɵɲɥɚɧɝɨɤɚɛɟɥɹɞɨɛɵɜɚɸɳɟɣɦɚɲɢɧɵɫɭɱɟɬɨɦɪɚɡɜɨɪɨɬɚɜɧɭɬɪɢɫɟɤɬɨɪɚɢɜɧɟ
ɟɝɨɩɪɟɞɟɥɨɜ
Ʉɥɸɱɟɜɵɟɫɥɨɜɚɝɥɭɛɨɤɨɜɨɞɧɵɟɩɨɥɟɡɧɵɟɢɫɤɨɩɚɟɦɵɟ
ɫɟɤɬɨɪɧɵɣɫɩɨɫɨɛɬɪɚɟɤɬɨɪɢɹɞɜɢɠɟɧɢɹɲɥɚɧɝɨɤɚɛɟɥɶ
ɤɨɧɤɪɟɰɢɢ
TEKA. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE – 2014, Vol. 14, No. 4, 175–180
Comparison of the Usefulness of Cluster Analysis and Rough Set Theory
in Estimating the Rate of Mass Accumulation of Waste in Rural Areas
Tomasz Szul, Krzysztof Nęcka
Department of Power Engineering and Agricultural Processes Automation, Agricultural University of Cracow
Balicka Str. 116B, 30-149 Kraków, Poland, e-mail: tomasz.szul@ur.krakow.pl
Received December 01.2014; accepted December 17.2014
Summary. The study shows the comparison between k-means
and EM methods of clustering and the rough set theory as far
as determining the rate of mass accumulation of waste in rural
areas is concerned. Performed comparative analyses reveal that
WKHDYHUDJHPHDQDEVROXWHSHUFHQWDJHHUURU±0$3(IRUk-means
and EMDOJRULWKPUDQJHGEHWZHHQDQGIRUWKHWUDLQLQJ
VHWDQGEHWZHHQDQGIRUWKHWHVWVHW7KHURXJKVHW
WKHRU\ZDVFKDUDFWHULVHGE\DPXFKEHWWHUTXDOLW\RISURJQRVLV
IRUZKLFK0$3(YDOXHHVWDEOLVKHGIRUWKHWHVWVHWZDV
Key words: cluster analysis, households, waste, rough set theory.
INTRODUCTION
$PHQGPHQWVWRWKH$FWRQ0DLQWDLQLQJ&OHDQOLQHVV
DQG2UGHULQWKH0XQLFLSDOLWLHVRI6HSWHPEHUHQWHUHGLQWRIRUFHLQ-DQXDU\DQGZHUHDJDLQDPHQGHGLQ
-DQXDU\>FRQVROLGDWHGWH[W-RXUQDORI/DZVRI
LWHP@7KHVHFKDQJHVUHYROXWLRQLVHGZDVWHPDQDJHPHQW
V\VWHP$FFRUGLQJWRWKHDPHQGPHQWVWKHPXQLFLSDOLWLHV
became owners of waste and as such took control over waste
PDQDJHPHQWLQWKHLUDUHDV:DVWHPDQDJHPHQWUHTXLUHV
FRQVLGHUDEOH¿QDQFLDOUHVRXUFHVZKLFKDUHHVWLPDWHGDW
3/1±PLOOLRQSHU\HDULQ3RODQGZKLFKFRQVWLWXWHV
±RIDOOWKHHQYLURQPHQWDOH[SHQGLWXUHV>.RQLHF]QD
.XOF]\FND@$SDUWIURPHFRQRPLFFULWHULDWKHFUHDWLRQ
of waste management system has to encompass also the
criteria of social acceptability and ecological effectiveness.
The basis of rational waste management planning is the
rate of waste accumulation, whose proper selection is the
PRVWLPSRUWDQWWDVNRIWKHSODQQLQJVWDJH>.HPSD@
7KHDPRXQWRIJHQHUDWHGZDVWHLVLQÀXHQFHGE\HFRQRPLF
social and infrastructural factors. Determining the groups of
elements that affect the change in the amount of generated
waste is not enough, as it is not known how strong their
LQWHUDFWLRQVDUH>0DOLQRZVNLHWDO7DáDáDM6]XO
HWDO@,QWKHFKRLFHRIDPHWKRGDOORZLQJWRGHYHORS
a model that predicts the amount of generated waste and is
the basis of management planning in a given area, a municipality, should take into account a number of features, which
ZLOOH[SHFWHGO\KDYHDQHVVHQWLDOHIIHFWRQWKH¿QDORXWFRPH
'XHWRGH¿QLQJDQXPEHURIIHDWXUHVLHPXWXDOO\FRUUHODWHG
TXDQWLWDWLYHDQGTXDOLWDWLYHYDULDEOHVLWLVDQLQWHUHVWLQJ
alternative to apply methods using cluster analysis and the
rough set theory.
Methods of cluster analysis are often used in objects
and features clustering. This concept was introduced by
7U\RQLQ&XUUHQWO\WKLVWHUPLQFOXGHVPDQ\GLIIHUHQWDOJRULWKPVRIFODVVL¿FDWLRQ>+DUWLJDQ+DUWLJDQ
:RQJ1ĊFND6QHDW6RNDO:DUG
:LWWHQ)UDQN@DPRQJZKLFKWKHSRSXODURQHVDUH
k-means and EMDOJRULWKPV*HQHUDOO\LWFDQEHVDLGWKDW
cluster analysis is an exploratory analysis of data, aiming
at extracting objects from a large set in such a way that elements belonging to one group are as homogenous as possible
within particular groups and as different as possible from
objects belonging to other groups. Cluster analysis methods
allow to identify structures present in a set, but they do not
explain the mechanism of their creation.
$FODVVLFk-means clustering algorithm was popularised
E\+DUWLJDQ>+DUWLJDQ+DUWLJDQ:RQJ@'XULQJLWVLPSOHPHQWDWLRQDVWKH¿UVWVWHSREVHUYDWLRQVDUH
randomly allocated to an established k number of clusters.
Next, observations are transferred between the clusters in
VXFKDZD\WKDWWKHPHDQVLQWKHFOXVWHUVIRUDOOYDULDEOHV
DUHDVGLIIHUHQWIURPRQHDQRWKHUDVSRVVLEOH$VWKHRSWLPDO
number of clusters is not known, it has to be determined
by an expert or on the basis of the developed algorithms.
Usually the number of clusters is selected with the use of
v-fold cross validation algorithm. The idea of this method
is to divide the whole sample into v subsets, and then, the
same analysis is in turn performed on the observations of
v-1 subsets, i.e. on the so-called training sample. Next, the
results of the analysis are applied to the data of the training
720$6=6=8/.5=<6=72)1ĉ&.$
sample, which had not been so far used in the analysis, and ZHOODVV\VWHPVRIIHDWXUHDQGFODVVL¿FDWLRQUHFRJQLWLRQ
the measure of predictive power is determined on its basis. The results of theoretical study within RST involve logics,
The results of v repetitions are aggregated and give one VHWWKHRU\NQRZOHGJHUHSUHVHQWDWLRQGDWD¿OWHULQJDOJRULWKassessment of the model’s stability, i.e. its ability to predict mic problems connected with information systems [Nguyen
new observations.
6HPHQLXN3ROVNRZVND@$OWKRXJKGHYHORSHG
$QRWKHUSRSXODUSURFHGXUHLVEM method cluster anal- a short time ago, rough set theory is used in a number of new
ysis, whose detailed description was presented by Witten ¿HOGVRIVWXG\1RZDGD\VLWLVXVHGERWKLQPHGLFLQHSKDUand Frank [2000]. This algorithm calculates the probabil- macology, economics, banking, chemistry, sociology, acousity of cluster membership, with the assumption of one or tics, linguistics, general engineering, neuroengineering as
many probability distributions. The aim of the algorithm well as in the diagnostics of machines, geography, land manis to maximise the general probability for a given division DJHPHQWDQGHQYLURQPHQWDOHQJLQHHULQJ±WKHSXEOLFDWLRQV
into clusters. The advantage of EM algorithm over k-means RIUHVXOWVFDQEHIRXQGLQWHUDOLDLQ>%RQGDU1RZDNRZVND
%RQGDU 1RZDNRZVND'HMD+DFKRá%RQGDU
%RQGDU 1RZDNRZVND'HMD+DFKRá%RQGDU
DOJRULWKPLVWKHIDFWWKDWLWFDQEHXVHGERWKIRUTXDQWLWDWLYH 'HMD+DFKRá%RQGDU1RZDNRZVNDDQG5HLQ 0UyĪHN
3áRQND 3DZODN %RQGDU 1RZDNRZVND'HMD+DFKRá%RQGDU
DQGTXDOLWDWLYHYDULDEOHV
KDUG.RPRURZVNLHWDO0UyĪHNDQG3áRQND
0UyĪHN
3áRQND 3DZODN $QRWKHUPHWKRGLVWKHURXJKVHWWKHRU\ZKLFKZDVLQ- 6NRZURQ
3DZODN3RONRZVNLDQG6NRZURQ5HQLJLHU
5HQLJLHU 5HQLJLHU
%LáR]RU
DQG
0UyĪHN%LáR]RU
3áRQND
3DZODN
6NRZURQ 5HQLJLHU %LáR]RU 5HQLJLHU %LáR]RU DQG
WURGXFHGLQWKHVE\SURIHVVRU=G]LVáDZ3DZODN>@ 5HQLJLHU%LáR]RU5HQLJLHU%LáR]RUDQG%LáR]RU
%LáR]RU 5HQLJLHU
:LĞQLHZVNL %LáR]RU
6áRZLĔVNL
%LáR]RU DQG
6NRZURQ
%LáR]RU
5HQLJLHUDQG
5HQLJLHU
5HQLJLHU %LáR]RU DQG :LĞQLHZVNL 6áRZLĔVNL It is a relatively new mathematical method of%LáR]RU
data analysis.
5HQLJLHU%LáR]RUDQG:LĞQLHZVNL6áRZand %LáR]RU
5HQLJLHU %LáR]RU DQG :LĞQLHZVNL 6áRZLĔVNL It is used as a tool for the synthesis of advanced
effec- LĔVNL6]XOHWDO@
tive analyses methods and for the reduction
of data sets
>0XUXV]NLHZLF]@5RXJKVHWVVHUYHDVDPHWKRGRORJ\
in the process of discovering knowledge in databases. This
0(7+2'2/2*<
process is usually both iterative and interactive (a lot of
0(7+2'2/2*<
0(7+2'2/2*<
GHFLVLRQVDUHPDGHE\WKHXVHU>6RGáDFNL@7KHURXJK
The research was
limited to two commonly used meth0(7+2'2/2*<
VHWWKHRU\LVYHU\VLJQL¿FDQWLQWKHSURFHVVRIGDWDH[WUDFWLRQ ods of cluster analysis, i.e. k-means and EM methods. In
due to the fact that it is one of the fastest developing areas both the methods, calculations began with dividing objects
RIDUWL¿FLDOLQWHOOLJHQFH,WLVXVHGWRGHVFULEHLPSUHFLVH into the training and test set, then input variables were standuncertain knowledge, to model decision-making systems ardised and the number of clusters established. V-fold cross
DQGDSSUR[LPDWHUHDVRQLQJ>6HPHQLXN3ROVNRZVND@ validation was performed in order to establish an optimal
Methodology of deduction that uses rough set theory 1H[W³*HQHUDOLVHGFOXVWHUDQDO\VLV´PRGXOHDYDLODEOHLQ
refers QXPEHURIFOXVWHUV1H[W³*HQHUDOLVHGFOXVWHUDQDO\VLV´
1H[W³*HQHUDOLVHGFOXVWHUDQDO\VLV´PRGXOHDYDLODEOHLQ
RQO\WRWKHTXDOLWDWLYHQDWXUHRIWKHREMHFWV¶IHDWXUHV7KLV
module available in Statistica 10.0 program was used. It
1H[W³*HQHUDOLVHGFOXVWHUDQDO\VLV´PRGXOHDYDLODEOHLQ
FDXVHVOLPLWDWLRQVDQGGLI¿FXOWLHVZKHQZHGHDOZLWKTXDQWLtransferred objects between these clusters in such a way as
WDWLYHDQGQRWTXDOLWDWLYHIHDWXUHV,QVXFKDFDVHWKHLQWHJUD- to minimise variability within the clusters and maximise
tion of valued tolerance relation proves useful [Stefanowski variability between the clusters. The following distances
DQG7VRXNLDV@,WDOORZVWRLQWURGXFHPRUHÀH[LELOLW\ were set while performing analyses with k-means method:
to the rough set theory when examining data(XFOLGHDQGLVWDQFH
and to analyse
(XFOLGHDQGLVWDQFH±JHRPHWULFGLVWDQFHZLWKLQDPXO(XFOLGHDQGLVWDQFH
REVHUYDWLRQVH[SUHVVHGLQDTXDQWLWDWLYHIRUP7KLVFRXUVHRI
tidimensional
space:
(XFOLGHDQGLVWDQFH
action is aimed at selecting the most important conditional
2
σQ ൫X -Y ൯ attributes which are necessary to make the right decision
(XFOLGHDQGLVWDQFH = ට
(XFOLGHDQGLVWDQFH ටσQi=1൫ i i ൯
in individual decision-making subgroups [Renigier 2008].
Q
ට
σ ൫
(XFOLGHDQGLVWDQFH
൯
Standard assumption of the rough set theory is based ondistance
the
– 0DQKDWWDQGLVWDQFH±VXPRIGLIIHUHQFHVPHDVXUHGDORQJ
sum of differences measured along dimensions:
LQGLVFHUQLELOLW\UHODWLRQFRQFHSWDVDSUHFLVHHTXLYDOHQFH dimensions:
Q
Q
relation, which means that the objects will be indiscernible
ȁ
0DQKDWWDQGLVWDQFH ෍ȁ
Q
RQO\ZKHQWKH\KDYHVLPLODUDWWULEXWHV±V\VWHP$S
0DQKDWWDQGLVWDQFH = ෍ȁX
i -Yi ȁ ȁ
0DQKDWWDQGLVWDQFH ෍ȁ
plication of valued tolerance relation to the rough set theory
i=1
LWLVXVHGZKHQZHZDQWWRGHILQHWZRREMHFWVDVÄGLIIHUHQW´ZKHQWKH\
allows determination of the upper and lower approxima&KHE\VKHYGLVWDQFH±LWLVXVHGZKHQZHZDQWWRGH¿QH
– LWLVXVHGZKHQZHZDQWWRGHILQHWZRREMHFWVDVÄGLIIHUHQW´ZKHQWKH\
tion of a set with different levels of indiscernibility relation WZRREMHFWVDVÄGLIIHUHQW´ZKHQWKH\GLIIHULQRQHGLPHQLWLVXVHGZKHQZHZDQWWRGHILQHWZRREMHFWVDVÄGLIIHUHQW´ZKHQWKH\
>G¶$PDWR@2ZLQJWRWKLVVROXWLRQRQHFDQFRPSDUH sion:
ȁ
dimension: &KHE\VKHYGLVWDQFH ሺܺǡ ܻሻ PD[ȁ
WZRVHWVRIGDWDDQGDFKLHYHDUHVXOWLQWKHUDQJHZKLFK
ȁ
&KHE\VKHYGLVWDQFH ሺܺǡ ܻሻ PD[ȁ
constitutes the level of indiscernibility relation. This range is
&KHE\VKHYGLVWDQFH ሺܺǡ ܻሻ PD[ȁXi -Yi ȁ a membership function derived from the assumptions
of
the
$VWKHQH[WVWHSWKHVHPHWKRGVZHUHFRPSDUHGZLWKWKHFDOFXODWLRQVXVLQJWKHURXJK
$VWKHQH[WVWHSWKHVHPHWKRGVZHUHFRPSDUHGZLWKWKHFDOFXODWLRQVXVLQJWKHURXJK
IX]]\VHWWKHRU\7KHFORVHUWKHUHVXOWWRWKHPRUHVLPLODU
$VWKHQH[WVWHSWKHVHPHWKRGVZHUHFRPSDUHGZLWK
$VWKHQH[WVWHSWKHVHPHWKRGVZHUHFRPSDUHGZLWKWKHFDOFXODWLRQVXVLQJWKHURXJK
DUHWKHREMHFWVLQGLVFHUQLEOHZLWKUHJDUGWRWKHDQDO\VHG the calculations using the rough set theory, whose detailed
attribute, and the closer the result to 0, the more
discernible methodology
alia in the following stud3DZODN
%LáR]RUwas presented inter
@
3DZODN LHV>3DZODN5HQLJLHU%LáR]RU6]XOHWDO@
%LáR]RU
@
WKH\DUH>5HQLJLHU%LáR]RUD5HQLJLHU%LáR]RU
3DZODN
%LáR]RU
@
%LáR]RU6WHIDQRZVNL@
In this
method, municipalities
selected for analysis were
The rough set theory is a certain theory of knowledge divided in a way analogous to the analysis of clusters into
WKHRU\RILQIRUPDWLRQV\VWHPVDQGVHUYHVDVDWRROIRU two subsets: the training set and the test set. Objects within
describing uncertain, imprecise knowledge, for modelling the training set were presented in the form of a decision table
approximation reasonings and decision making systems as where the features characterising the municipalities were
˜¦
˜
&203$5,6212)7+(86()8/1(662)&/867(5$1$/<6,6
p
described with condition attributes. The decision attribute
n di di
MAPE
˜¦
˜ of the rate of mass accumulation of waste in households,
n i
di
kg·(person·\HDU-1 was also established. Next, the matrix
RIÄYDOXHGWROHUDQFHUHODWLRQ´ZDVFDOFXODWHGIRUFRQGLWLRQ where:
attributes:
di±WKHUDWHRIPDVVDFFXPXODWLRQRIZDVWHLQWKHKRXVH- KROGVNJāSHUVRQā\HDU-1’
·
§ n
p
R j ( x, p max¨¨ ¦ R j ( x, p ¸¸ di ±SUHGLFWHGUDWHRIPDVVDFFXPXODWLRQRIZDVWHLQWKH
¹
©j
KRXVHKROGVNJāSHUVRQā\HDU-1.
where:
5(68/7
Rj ±YDOXHGWROHUDQFHUHODWLRQ
x±DWWULEXWHRIWKHFRQVLGHUHGREMHFW
5(68/76
$QDO\VHV SUHVHQWHG LQ WKH VWXG\ ZHUH SHUIRUPHG RQ WKH EDVLV RI VWDWLVWLFDO GDWD IURP
p±DWWULEXWHEHORQJLQJWRWKHFRQGLWLRQDOSDUWRIWKHFRQsidered decision rule,
$QDO\VHVSUHVHQWHGLQWKHVWXG\ZHUHSHUIRUPHGRQWKH
0DáRSROVND 9R
>*86 'XULQJ WKLV WLPH LQ WKH DQDO\VHG DUHD where
EDVLVRIVWDWLVWLFDOGDWDIURP0DáRSROVND9RLYRGHVKLSRI
max(0, min(c j ( x c ( y k max((c WKRXVDQG
j ( x c ( y 0J RI ZDVWH ZDV JHQHUDWHG ZKLFK FRQVWLWXWHV >*86@'XULQJWKLVWLPHLQWKHDQDO\VHGDUHD
R j ( x, y k
WKRXVDQG0JRIZDVWHZDVJHQHUDWHGZKLFKFRQVWLwhere:
\HDU IRU0DáRSROVND9R\YRGHVKLSDQGLWZDVRQO\VOLJKWO\ORZHU
ZDVNJ WXWHVRIWKHZDVWHVWUHDPRQDQDWLRQDOVFDOH7KH
Rj(x,y)±LVWKHUHODWLRQEHWZHHQWZRVHWVZLWKDPHPEHUVKLS indicator expressing the amount of waste produced per one
WKDQ WKH QDWLRQDOLQKDELWDQWLQZDVNJ
DYHUDJH LH NJ
DU ,\HDU
$Q DYHUDJH
KRXVHKROG LQ 0DáRSROVND
.
-1
IXQFWLRQ>@
(person
IRU0DáRSROVND
cj(x),cj(y)±YDULDEOHRIWKHDQDO\VHGREMHFW SURGXFHVNJ Voyvodeship
\HDU and it was only slightly lower than the national
k±FRHI¿FLHQWWDNHQDVDVWDQGDUGGHYLDWLRQLQWKHVHWRI DYHUDJHLHNJ.(person,\HDU-1$QDYHUDJHKRXVHKROG
RILQGLYLGXDOPHWKRGV¶HIIHFWLYHQHVVZKLOHGHWHUPLQLQJWK
LQ0DáRSROVNDSURGXFHVNJ.(person,\HDU-1, while in the
a given attribute of the analysed object.
DUHDVZDVGRQHRQWKHH[DPSOHRIWKHVHWRIUDQGRPO\
$IWHU KDYLQJ GHWHUPLQHG LQGLVFHUQLELOLW\ FODVVHV IRU UXUDODUHDVWKLVYDOXHLVORZHUE\DERXW
The comparative analysis of individual methods’
effec- RI 0DáRSROVND
FRQGLWLRQ DQG GHFLVLRQ DWWULEXWHV TXDOLW\ DQG DFFXUDF\
PXQLFLSDOLWLHV
indicators of approximations within individual decisions tiveness while determining the rate of waste accumulation
sub-clusters were calculated:
IRUUXUDODUHDVZDVGRQHRQWKHH[DPSOHRIWKHVHWRI
randomly
chosen
rural municipalities
andWKH
rural
areas of
ur- GLYLGHG LQWR WZR
7KHQ WKH
PXQLFLSDOLWLHV
FKRVHQ IRU
DQDO\VLV
ZHUH
EDQDQGUXUDOPXQLFLSDOLWLHVRI0DáRSROVND9RLYRGHVKLS
card ( POS (U c
VXEVHWVWKHWUDLQLQJVHWFRQWDLQLQJREMHFWVDQGWKHWHVWVHWFRPSULVLQJREMHFWV
BBBBBBBBBBBBBBBBBB The number of objects within the set was chosen in a way
J (X card (O X i WRHQDEOHWKHOHYHORIFRQ¿GHQFHRI7KHQWKHPX
nicipalities chosen for the analysis were divided into two
where:
· F
O
_ X ±WKHQXPEHURIORZHUDSSUR[LPDWLRQREMHFWVFDUGLQDO- VXEVHWVWKHWUDLQLQJVHWFRQWDLQLQJREMHFWVDQGWKHWHVW
set comprising 20 objects.
LW\RIWKHORZHUDSSUR[LPDWLRQRI;VHW
ƿ;±WKHQXPEHURIXSSHUDSSUR[LPDWLRQREMHFWVFDUGLQDOLW\
Objects within the training set were presented in the form
RIWKHXSSHUDSSUR[LPDWLRQRI;VHW
RIDGHFLVLRQWDEOH7DEOHZKHUHWKHIHDWXUHVFKDUDFWHUPOSc±WKHQXPEHURIREMHFWVLQWKHLQGLVFHUQLELOLW\FODVVRI ising the municipalities were marked with symbols c·F7,
and the rate of mass accumulation of waste in households,
a decision attribute.
which is a decision attribute was marked with d symbol.
card (O X Ec (X B
Ta b l e 1 . ,QIRUPDWLRQV\VWHPGHFLVLRQWDEOH
card (O X where:
Condition attributes
Decision attribute
Municipality/
O X±WKHQXPEHURIORZHUDSSUR[LPDWLRQREMHFWVFDU- object number F c2 F F F F c7
d
GLQDOLW\RIWKHORZHUDSSUR[LPDWLRQRI;VHW
ƿ;±WKHQXPEHURIXSSHUDSSUR[LPDWLRQREMHFWVFDUGL- 6RXUFHRZQVWXG\RQWKHEDVLVRI*HQHUDO6WDWLVWLFDO2I¿FH¶VGDWD
QDOLW\RIWKHXSSHUDSSUR[LPDWLRQRI;VHW
+DYLQJGLVWLQJXLVKHGUHSUHVHQWDWLYHGHFLVLRQUXOHVWKH
author determined the rate of mass accumulation of waste.
For the aforementioned attributes, domains were deterFor this purpose the municipalities from the test set were mined according to the following assumptions:
XVHG$SSO\LQJYDOXHGWROHUDQFHUHODWLRQ975WKHDXWKRU c1±SRSXODWLRQGHQVLW\>SHRSOHāNP-2],
checked to which of the decision rules selected above the c2±DYHUDJHDUHDRIDJULFXOWXUDOODQG>KD@
7KHTXDOLW\RIWKHPDWFK
analysed municipality has the highest level of membership. c3±EXLOGLQJ¶VDJHUDWHHVWDEOLVKHGDVDZHLJKWHGDULWKPHWLF
7KHTXDOLW\RIWKHPDWFK
7KHTXDOLW\RIWKHPDWFKEHWZHHQWKHSUHGLFWHGUDWHRI
mean of the number of buildings from different periods
mass accumulation of waste in households and its real value
RIWLPHLHEHIRUH
was estimated by determining
the value of error:
˜¦
c4 ±SDUWLFLSDWLRQRIEXLOGLQJVKHDWHGZLWKQDWXUDOJDV
n
p
ME
˜ ¦ d i d i c5±PXQLFLSDOLW\W\SH±VXEXUEDQ±WRXULVW±DJn i
ULFXOWXUDO
c
APE
d i d ip
˜ di
˜
˜¦
˜¦
dp
˜ dp
˜ c6±SDUWLFLSDWLRQRIKRXVHKROGVGHULYLQJLQFRPHIURPDJ
ricultural
activity,
720$6=6=8/.5=<6=72)1ĉ&.$
With the purpose of a better presentation of the changes
c7±LQFRPHUDWHPXQLFLSDOLWLHV¶RZQLQFRPH±SDUWLFLSDWLRQ
in taxes comprising national budget income personal in differences generated for individual methods, empirical
GLVWULEXWLRQIXQFWLRQIRU$3(KDVEHHQVKRZQLQ)LJXUH
LQFRPHWD[>3/1āSHUVRQā\HDU-1],
d±WKHUDWHRIPDVVDFFXPXODWLRQRIZDVWHLQWKHKRXVHKROGV
>NJāSHUVRQā\HDU-1].
The values of particular attributes were established on
the basis of statistical data included in the Regional Data
%DQNRI*HQHUDO6WDWLVWLFDO2I¿FHIRUDQG*HQHUDO$JULFXOWXUDO&HQVXVDYDLODEOHRQWKH*HQHUDO6WDWLVWLFDO
2I¿FH¶VZHEVLWH>*86@
With the use of condition attributes (c±F7WKHWUDLQLQJ
set was divided by Statistica 10.0 program into an optimal
number of clusters on the basis of v-fold cross validation. Observations from the test set were assigned to different groups.
Then, on the basis of the training set, mean values of the
decision attribute (dĞU>NJāSHUVRQā\HDU-1@LWVYDULDELOLW\DQG
WKHFRHI¿FLHQWV>@ZHUHGHWHUPLQHGIRULQGLYLGXDOFOXVWHUV
The results of achieved analyses are presented in Table 2.
Fig. 1. &RPSDULVRQRIHPSLULFDOGLVWULEXWLRQIXQFWLRQIRU$3(
Ta b l e 2 . Decision attribute’s variability for determined clusters
cluster:
2QWKHHPSLULFDOGLVWULEXWLRQIXQFWLRQIRU$3(GLDJUDP
)LJZHFDQVHHWKDWWKHURXJKVHWWKHRU\ZDVFKDUDF(0
WHULVHGE\WKHEHVWTXDOLW\RISURJQRVLVRIWKHUDWHRIPDVV
accumulation of waste in households for the test set. ParticidĞU
V
pation
of error with the lowest value was similar to k-means
FOXVWHULQJPHWKRGDQGLWZDVOHVVWKDQRIWKHREVHUYD2
tions. The advantage of rough set theory for such a small
97
test was very much visible for bigger errors of the prognosis.
0D[LPXP$3(YDOXHGHWHUPLQHGZLWKWKLVPHWKRGGLGQRW
JREH\RQGZKHUHDVIRUk-means method it was around
$VWKH¿QDOVWHSLQGLYLGXDOFOXVWHUVRIWKHWHVWVHWZHUH 7KHORZHVWTXDOLW\RISURJQRVLVGHVSLWHWKHKLJKHVW
attributed with decision algorithm values i.e. the rate of percentage of low value errors was characteristic of EM
mass accumulation of waste from households, determined method of clustering. Low value errors accounted for almost
on the basis of the training set. The achieved values were RIREVHUYDWLRQVEXWDWWKHVDPHWLPHWKHPD[LPXP
compared with real data and the error level was established. YDOXHVRIHUURUVZHUHDVKLJKDV
7KHDFKLHYHGUHVXOWVDUHSUHVHQWHGLQ7DEOH
The performed analyses show that the mean value of the
CONCLUSIONS
rest for all methods of cluster analysis determined for the
WUDLQLQJVHWZDV>NJāSHUVRQā\HDU-1]. For the training set it
RVFLOODWHGEHWZHHQ±>NJāSHUVRQā\HDU-1] for the rough set
The performed comparative analyses show that the avWKHRU\DQG>NJāSHUVRQā\HDU-1] for k-means method, for HUDJHPHDQHUURU±0(IRUDOOPHWKRGVRIFOXVWHUDQDO\VHV
ZKLFKWKH(XFOLGHDQGLVWDQFHEHWZHHQREMHFWVZDVFDOFXODWHG GHWHUPLQHGIRUWKHWUDLQLQJVHWZDV>NJāSHUVRQā\HDU-1].
In case of the training set observations, k-means method of )RUWKHWUDLQLQJVHWLWYDULHGIURP±>NJāSHUVRQā\HDU-1]
clustering generated underestimated prognoses independent- IRUURXJKVHWWKHRU\WR>NJāSHUVRQā\HDU-1] for k-means
ly of the type of distance calculated between objects, contrary PHWKRGIRUZKLFKWKH(XFOLGHDQGLVWDQFHEHWZHHQREMHFWV
to EM PHWKRGDQGWKHURXJKVHWWKHRU\7KHDYHUDJH0$3( was calculated. In case of the training set observations,
for k-means and EMDOJRULWKPUDQJHGEHWZHHQDQG k-means method of clustering generated underestimated
IRUWKHWUDLQLQJVHWDQGEHWZHHQDQGIRUWKHWHVW prognoses independently of the type of distance calculated
set. The rough set theory was characterised by a much better between objects, contrary to EM method and the rough
TXDOLW\RISURJQRVLVIRUZKLFK0$3(YDOXHZDV
set theory.
Clustering algorithm:
k-means±GLVWDQFHEHWZHHQWKHREMHFWV
(XFOLGHDQ
Manhattan
Chebyshev
dĞU
V
dĞU
V
dĞU
V
Ta b l e 3 . Characteristic of the estimation error of the rate of mass accumulation of waste in households
Sample:
training
test
(UURUFOXVWHULQJDOJRULWKP
k-means±GLVWDQFHEHWZHHQWKHREMHFWV
(XFOLGHDQ
Manhattan
Chebyshev
0(
0$3(
0(
0$3(
0(
0$3(
0
0
0
22
29
20
29
(0
0(
0
Rough set theory
0$3(
0(
0$3(
&203$5,6212)7+(86()8/1(662)&/867(5$1$/<6,6
7KHDYHUDJH0$3(RISURJQRVLVIRUk-means and EM 3DZODN = Rough set approach to knowlDOJRULWKPUDQJHGEHWZHHQDQGIRUWKHWUDLQLQJVHW
HGJHEDVHGGHFLVLRQVXSSRUW(XURSHDQ-RXUQDORI2SDQGEHWZHHQDQGIRUWKHWHVWVHW7KHURXJKVHW
HUDWLRQDO5HVHDUFK
WKHRU\ZDVFKDUDFWHULVHGE\WKHEHVWTXDOLW\RISURJQRVLV Polkowski, L. Skowron, A., 2001: Rough mereological
IRUZKLFK0$3(YDOXHZDV
FDOFXOLRIJUDQXOHV$URXJKVHWDSSURDFKWRFRPSXWDWLRQ
The performed analyses have proved that rough set the&RPSXWDWLRQDO,QWHOOLJHQFH
ory should be used for estimating the rate of mass accumu- Renigier M., 2006:=DVWRVRZDQLHDQDOL]\GDQ\FKPHlation of waste from rural areas especially when the number
WRGą]ELRUyZSU]\EOLĪRQ\FKGR]DU]ąG]DQLD]DVREDPL
of objects within the cluster is low.
QLHUXFKRPRĞFL6WXGLDL0DWHULDá\7RZDU]\VWZD1DXNRZHJRQLHUXFKRPRĞFL
5HQLJLHU%LáR]RU0%LáR]RU$Opracowanie
systemu wspomagania podejmowania decyzji z wyko5()(5(1&(6
rzystaniem teorii zbiorów rozmytych oraz teorii zbiorów
SU]\EOLĪRQ\FKZSURFHVLHNV]WDáWRZDQLDEH]SLHF]HĔVWZD
%RQGDU1RZDNRZVND(2GG]LDá\ZDQLHUREyW
NRQVHUZDF\MQ\FKQDÀRUĊLIDXQĊNRU\WZ\EUDQ\FKFLHSU]HVWU]HQL$FWD6FLHQWLDUXP3RORQRUXP$GPLQLVWUDWLR
NyZQL]LQQ\FK=HV]1DXN$5:URFáDZ5R]SUDZ\
/RFRUXP
5HQLJLHU%LáR]RU0$QDOL]DU\QNyZQLHUXFKR&/;;,,,QU
2. Deja R., 2000:=DVWRVRZDQLHWHRULL]ELRUyZSU]\EOLĪRPRĞFL]Z\NRU]\VWDQLHPWHRULL]ELRUyZSU]\EOLĪRQ\FK
6WXGLDL0DWHULDá\7RZDU]\VWZD1DXNRZHJRQLHUXFKRQ\FKZDQDOL]LHNRQÀLNWyZ3UDFDGRNWRUVND,QVW\WXW
PRĞFL9RO
3RGVWDZ,QIRUPDW\NL3ROVNLHM$NDGHPLL1DXN
*áyZQ\8U]ąG6WDW\VW\F]Q\%DQN'DQ\FK/RNDOQ\FK 5HQLJLHU%LáR]RU0:LĞQLHZVNL57KH(IIHFKWWSVWDWJRYSOEGODSSVWURQDKWPO"SBQDPH LQGHNV
WLYHQFHVVRIUHDOHVWHWHPDUNHWYHUVXVHI¿FLHQF\RILWV
SDUWLFLSDQWV(XURSHDQ6SDWLDO5HVHDUFKDQG3ROLF\9R
+DFKRá-%RQGDU1RZDNRZVND(5HLQKDUG$
QU
2008: 2GG]LDá\ZDQLHZ\EUDQ\FKHOHPHQWyZNRU\WD
FLHNXQD]ELRURZLVNDQDF]\QLRZ\FKURĞOLQZRGQ\FK 20. 5HQLJLHU%LáR]RU0%LáR]RU$$SSOLFDWLRQRI
,QIUDVWUXNWXUD L (NRORJLD 7HUHQyZ :LHMVNLFK 1U
the rough set theory and the fuzzy set theory in land man3ROVND$NDGHPLD1DXN2GG]LDáZ.UDNRZLH
DJHPHQW$SOLFDWLRQMXQHU$QQXDOFRQIHUHQFH
7KH(XURSHDQ5HDO(VWDWH6RFLHW\±(5(6/RQG\Q
Hartigan J. A., Wong M. A., 1978:$OJRULWKP ĝOHV]\ĔVNL 3 D 'HOLPLWDFMD REV]DUyZ
ZLHMVNLFK R QDMJRUV]\FK ZVNDĨQLNDFK UR]ZRMX VSR$NPHDQVFOXVWHULQJDOJRULWKP$SSOLHG6WDWLVWLFV
áHF]QRJRVSRGDUF]HJRE'HOLPLWDFMDREV]DUyZZLHMVNLFKRQDMJRUV]\FKZVNDĨQLNDFKGRVWĊSQRĞFLGRXVáXJ
Hartigan, J. A., 1975: &OXVWHULQJDOJRULWKPV1HZ<RUN
SXEOLF]Q\FKFRSUDFRZDQLDPDSLNRQVXOWDFMHNDUWRWiley.
7. .HPSD(6*RVSRGDUNDRGSDGDPLPLHMVNLPL
JUD¿F]QH,*L3=3$1:DUV]DZDPDS\GOD0L$UNDG\:DUV]DZD
nisterstwo Rozwoju Regionalnego (Krajowa Strategia
8. .RPRURZVNL-3DZODN=3RONRZVNL/6NRZ5R]ZRMX5HJLRQDOQHJR
ron, A., 1999:5RXJKVHWV$WXWRULDO´5RXJKIX]]\ 22. 6áRZLĔVNL5,QWHOOLJHQWGHFLVLRQVXSSRUW$SSOLK\EULGL]DWLRQ$QHZWUHQGLQGHFLVLRQPDNLQJ
cations and advances of the rough sets theory. Kluwer
$FDGHPLF3XEOVKHUV'RUGUHFKW
9. Konieczna R., Kulczycka J., 2011: $QDOL]DHNRQRPLF]QDV\VWHPyZJRVSRGDUNLRGSDGDPLF],,,*60L(3$1 Sneath, P. H. A., & Sokal, R. R., 1973: Numerical
Karków.
WD[RQRP\6DQ)UDQFLVFR:+)UHHPDQ&R
0DOLQRZVNL0.UDNRZLDN%DO$6LNRUD-:RĨ- 6]XO7.QDJD-1ĊFND.$SSOLFDWLRQRI
niak A., 2009: ,ORĞFL JHQHURZDQ\FK RGSDGyZ NRrough set theory for establishing the rate of mass accumulation of waste in the households in rural areas.
munalnych w aspekcie typów gospodarczych gmin
ZRMHZyG]WZDPDáRSROVNLHJR,QIUDVWUXNWXUDL(NROR(FRORJLFDO&KHPLVWU\DQG(QJLQHHULQJ6ZGUXNX
JLD7HUHQyZ:LHMVNLFK1U3ROVND$NDGHPLD1DXN 7DáDáDM ,$ :Sá\Z Z\EUDQ\FK F]\QQLNyZ
2GG]LDáZ.UDNRZLH±
VSRáHF]QRHNRQRPLF]Q\FKQD]PLDQ\LORĞFLRGSDGyZ
0UyĪHN$3áRQND/$QDOL]DGDQ\FKPHWRGą
NRPXQDOQ\FKZZRMHZyG]WZLHSRGODVNLP,QĪ\QLHULD
]ELRUyZSU]\EOLĪRQ\FK$NDGHPLFND2¿F\QD:\GDZ(NRORJLF]QD1U
Tryon, R. C., 1939: &OXVWHU$QDO\VLV$QQ$UERU0,
nicza PLJ, Warszawa.
(GZDUGV%URWKHUV
1ĊFND. Selection of decisive variables for the
FRQVWUXFWLRQRIW\SLFDOHQGXVHUSRZHUGHPDQGSUR¿OHV 27. Ward, J. H. 1963.+LHUDUFKLFDOJURXSLQJWRRSWLPL]HDQ
7(.$ .RPLVML 0RWRU\]DFML L (QHUJHW\NL 5ROQLFWZD
REMHFWLYHIXQFWLRQ-RXUQDORIWKH$PHULFDQ6WDWLVWLFDO
$VVRFLDWLRQ
9RO1R/XEOLQ
1XWHFK6ROXWLRQ±6FLHQFHIRU%XVLQQHVKWWS 28. :LWWHQ,+)UDQN(Data Mining: Practiwww.nutechsolutions.com.pl/.
FDO0DFKLQH/HDUQLQJ7RROVDQG7HFKQLTXHV1HZ<RUN
Morgan Kaufmann.
720$6=6=8/.5=<6=72)1ĉ&.$
325Ï:1$1,(35=<'$712ĝ&,
$1$/,=<6.83,(ē25$=7(25,,=%,25Ï:
35=<%/,ĩ21<&+'26=$&2:$1,$:6.$ħ1,.$
0$62:(*21$*520$'=(1,$2'3$'Ï:
1$2%6=$5$&+:,(-6.,&+
Streszczenie. W pracy przedstawiono porównanie metod grupowania k-ĞHGQLFKLEMRUD]7HRULL=ELRUyZ3U]\EOLĪRQ\FKGR
Z\]QDF]DQLDZVNDĨQLNDPDVRZHJRQDJURPDG]HQLDRGSDGyZ
RGELRUFyZZLHMVNLFK=Z\NRQDQ\FKDQDOL]SRUyZQDZF]\FKZ\QLNDĪHĞUHGQLDZDUWRĞüEáĊGX0$3(GODDOJRU\WPXNĞUHGQLFK
i EM]DZLHUDáDVLĊZSU]HG]LDOHRGGRGOD]ELRUXXF]ąFHJRLZ]DNUHVLHRGGRGOD]ELRUXWHVWRZHJR'XĪR
OHSV]ąMDNRĞFLąSURJQR]\ZVNDĨQLNDFKDUDNWHU\]RZDáDVLH7HRULD
=ELRUyZ3U]\EOLĪRQ\FKGODNWyUHMZDUWRĞü0$3(Z\]QDF]RQD
GOD]ELRUXWHVWRZHJRNV]WDáWRZDáDVLHQDSR]LRPLH
6áRZDNOXF]RZHDQDOL]DVNXSLHĔJRVSRGDUVWZDGRPRZHRGSDG\7HRULD=ELRUyZ3U]\EOLĪRQ\FK
TEKA. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE – 2014, Vol. 14, No. 4, 181–184
An Analysis of Variability in Demand for Natural Gas at Rural Households
Małgorzata Trojanowska, Dorota Lipczyńska
Department of Power Engineering and Agricultural Processes Automation, Agricultural University of Cracow
Balicka Str. 116B, 30-149 Kraków, Poland, e-mail: malgorzata.trojanowska@ur.krakow.pl
Received December 11.2014; accepted December 19.2014
Summary. The variability in hourly demand for natural gas in
rural households was analyzed at various time intervals. The
results enabled the determination of typical daily courses of
gas consumption by this group of consumers, separately for
workdays and weekends, divided into two periods i.e. high and
low gas demand. For the purpose of drawing typical curves of
the loads of rural gas networks, the courses of gas consumption
ZHUHFODVVL¿HGZLWKWKHXVHRIYDULDQFHDQDO\VLVFOXVWHUDQDO\VLV
and based on the principal indicators describing the variability
in gas consumption.
Key words: JDVPDUNHWW\SLFDOSUR¿OHVRIQDWXUDOJDVFRQVXPSWLRQ
analogy, this method can also be used to forecast the demand
IRUQDWXUDOJDV>@
The aim of the presented study was to analyse the variability of demand for natural gas in rural households at
different time intervals for the purpose of determining the
typical daily courses of gas consumption by this group of
consumers. This study focused on the daily and weekly
variability in gas consumption within the periods of high
and low demand for this fuel.
0$7(5,$/6$1'0(7+2'6
INTRODUCTION
In this study, a statistical analysis of the consumption
RIQDWXUDOJDVE\UXUDOKRXVHKROGVZKLFKDUHDVSHFL¿F
customer group of natural gas distribution companies, was
FDUULHGRXW,QRUGHUWRREWDLQW\SLFDOSUR¿OHVRIGDLO\JDV
usage, the courses of gas consumption were categorised with
the use of variance analysis, cluster analysis, particularly
the agglomeration and k-means methods, as well as using
principal indicators describing gas consumption.
Calculations were made on the basis of data of a gas
company, pertaining to gas consumption by rural customers
supplied via a low-pressure network from a selected grade
I gas pressure reduction station located in the province of
Lower Silesia.
In the study area, the density of the natural gas distribuWLRQQHWZRUNLVNPSHUNP2, and the consumption
RIJDVSHUUHVLGHQWLVFDP3.
Despite great efforts being made to open up the natural
JDVPDUNHWLQ3RODQGLWKDVQRWEHHQIXOO\OLEHUDOLVHG\HW$W
WKHHQGRI'HFHPEHUWKHJDVH[FKDQJHZDVODXQFKHG
DWWKH3ROLVK3RZHU([FKDQJHDQGDSDUWLDOGHUHJXODWLRQRI
JDVSULFHVIRULQGXVWU\RFFXUUHGLQZKLOVWRQ$XJXVW
DQHZHQWLW\3*1L*5HWDLO//&ZDVVSXQRIIIURP
WKHH[LVWLQJVWUXFWXUHRIWKH3ROLVK2LODQG*DV&RPSDQ\
-RLQW6WRFN&RPSDQ\3*1L*6$$OOWKHWUDGHVHUYLFHVLQ
the area of natural gas sales to retail clients were spun off to
WKLVQHZFRPSDQ\$WSUHVHQWWKHUHLVQRSRVVLELOLW\WROLEHUalise natural gas prices for retail consumers, but according
to experts it will happen within the next couple of years.
For business entities involved in sales of natural gas, this
near perspective of the liberalisation of gas market means
the increasing importance of developed forecasts of demand
IRUWKLVIXHOSDUWLFXODUO\VKRUWWHUPIRUHFDVWV>
@
5(68/76
In the energy industry, the most demanding market in
WHUPVRIWKHTXDOLW\RIIRUHFDVWVLVWKHHOHFWULFLW\PDUNHW
Individual consumers use natural gas for heating buildOne of the ways to predict the demand in the electricity ings, providing domestic hot water and cooking meals. The
industry is to determine the demand for electricity on the amount of consumption depends on a number of factors
EDVLVRIW\SLFDOORDGSUR¿OHVRIFXVWRPHUV>@%\ >@DPRQJZKLFKDLUWHPSHUDWXUHLV
0$à*25=$7$752-$12:6.$'2527$/,3&=<ē6.$
of the course were determined according to the following formula
SDUWLFXODUO\LPSRUWDQW7KHFRUUHODWLRQFRHI¿FLHQWEHWZHHQ
the mean daily demand for gas in a given month and the
PHDQWHPSHUDWXUHLV([DPSOHVRIWKHFKDQJHVRIWKH
WZRFRUUHODWHGYDOXHVDUHSUHVHQWHGLQ)LJ
20
19,2
19,1
16
Gi Gdsr
¦ G
j Gdsr ,
i = 1, 2, …, 24 2
j
where:
where:
KRXU
Gi, Gj±ORDGLQLth (jthKRXU
ORDGLQKRXUV
Gdsr±PHDQORDGLQKRXUV
18,8
18
gi
15,4
14
12,9
m3
12
11
10
8,5
8
6,5
6
4,8
4
2,8
2,7
2
1
0
1
2
3
4
5
6
7
8
9
10
11
%RWKPHWKRGVSURGXFHGWKHVDPHUHVXOWVIRUWKHSHULRG
%RWK PHWKRGV SURGXFHG WKH VDPH UHVXOWV IRU WKH SHULRG RI K
of high and low consumption alike, which permitted two
characteristic days of the week i.e.: workday and weekend
day, with respect to the dailyDLO\YDULDELOLW\RIGHPDQGIRUJDV)LJ
variability of demand for gas
)LJ
12
110
Month
mean daily demand for gas in the month
mean monthly temperature
100*Distance/Distance max
100
Fig. 1. The mean daily demand for natural gas in particular
months of the year vis-à-vis mean monthly air temperature
90
Gas demand [m3]
The variance analysis completed in this study showed
80
that the values of average daily gas consumption by rural
households over a month-long period did not differ signif70
icantly from one another from November to March, and
IURP$SULOWR2FWREHU7KHVHWZRSHULRGVDUHFRQVLGHUHG
60
separately later in the paper and are referred to as periods
of high and low consumption of natural gas, respectively.
50
When a large number of consumers are supplied at the
Friday
Wednesday
Monday
Sunday
Thursday
Tuesday
Saturday
same time, certain regularities can be seen in the timing
of gas consumption. These changes are illustrated in Fig. Fig. 3. 'LDJUDPRIDJJORPHUDWLRQRIVLPLODULWLHVRIGDLO\SUR¿OHV
2 where the courses of demand for gas are presented in of gas consumption on particular
)LJ days of week
particular hours of July and December.
Sets of various indicators characterising the variability in
25
loads are often used to classify the daily courses of demand
>@$PRQJWKHLQGLFDWRUVPRVWRIWHQXVHGWRGHVFULEH
20
>@$PRQJWKH
the variability in demand for electricity are the medium
and
15
EDVHOHYHORIORDG>@7KHVHZHUHGH¿QHGIRUQDWXUDO
gas in the following way:
10
±PHGLXPOHYHORIJDVORDG
5
Gsr
,
Gmax
±EDVHOHYHORIJDVORDG - base level of gas load
m
1
25
49
73
97
121
145
169
193
217
241
265
289
313
337
361
385
409
433
457
481
505
529
553
577
601
625
649
673
697
721
0
Hours
July
December
Fig. 2. The courses of demand for gas in particular hours of July
and December
$VLPLODULW\DQDO\VLVRIGDLO\ORDGVRIJDVQHWZRUNVZDV
performed in order to identify the regularity in the courses
of changes. For the purposes of the similarity analysis of
gas consumption in particular days of the week, normalized
YHFWRUVRIGDLO\FRXUVHVFDOOHGQRUPDOL]HGGDLO\SUR¿OHV
ZHUHGHWHUPLQHGDQGFODVVL¿HGXVLQJWKHCluster analysis
module in the Statistica software package, in particular the
agglomeration and k-means methods.
7KHQRUPDOL]HGSUR¿OHVRIGDLO\ORDGVRIJDVQHWZRUNV
containing information on the shape of the course were determined according to the following formula [9]:
G
mo
Gmin
Gmax
where:
*VU*PD[*PLQDUHPHGLXPPD[LPXPDQGPLQLPXP
* * *
levels of gas consumption, respectively.
The values of these indicators for daily
and weekly peRIWKHVHLQGLFDWRUVIRUGDLO\DQGZH
ULRGVZHUHFRPSLOHGLQ7DEOH
7DEOHVKRZVWKDWWKHFRXUVHVRIGHPDQGIRUJDVLQWKH
low-consumption-period are characterized by greater unevenness and lesser balanced than in the high-consumption period.
The differences are so great that there was a need to develop
standard daily load graphs separately for each of these periods.
$1$1$/<6,62)9$5,$%,/,7<,1'(0$1')251$785$/*$6$7585$/+286(+2/'6
Ta b l e 1 . Indicators of daily and weekly load of gas network
Value
Mean
Minimum
Maximum
Period of low gas consumption
md
mdo
mt
0.00
0.28
$VDUHVXOWRIWKHDQDO\VLVSHUIRUPHGIRXUW\SLFDOUHGXFHG
SUR¿OHVRIGDLO\JDVFRQVXPSWLRQE\UXUDOFRQVXPHUVLH
for a workday and a weekend day during the low-consumption-period, and for a workday and a weekend day during the
high-consumption-period, in the form of averaged courses,
and corrected, at the same time. The reference value was the
respective maximum hourly demand for gas in the low- or
KLJKFRQVXPSWLRQSHULRGV7KHSUR¿OHVDUHSUHVHQWHGLQ
)LJVDQG
mto
0.00
0.00
0.00
Period of high gas consumption
md
mdo
mt
0.07
mto
0.22
for periods of high and low demand for gas. These curves
can be used both for the purpose of operating gas distribution networks and in short-term forecasts of gas demand by
KRXVHKROGVLQUXUDODUHDV$WSUHVHQWJDVWUDGHUVXVXDOO\XVH
the simplest, naive method to predict demand.
5()(5(1&(6
$QDOL]DLSURJQR]DREFLąĪHĔHOHNWURHQHUJHW\F]Q\FK
3UDFD]ELRURZD:17:DUV]DZD
0,8
2. Azadeh A., Asadzadeh S.M., Ghanbari A. 2010:$Q
adaptive network-based fuzzy inference system for short0,6
term natural gas demand estimation: Uncertain and com0,4
SOH[HQYLURQPHQWV(QHUJ\3ROLF\
0,2
%LDQFR96FDUSD)7DJOLD¿FR/$$QDO\VLV
and future outlook of natural gas consumption in the
0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
,WDOLDQUHVLGHQWLDOVHFWRU(QHUJ\&RQYHUVLRQDQG0DQHour
DJHPHQW
Workday
Weekend day
%UDEHF0.RQDU23HOLNDQ(0DO\0
Fig. 4. 7\SLFDOSUR¿OHVRIGDLO\JDVGHPDQGLQORZJDVFRQ$QRQOLQHDUPL[HGHIIHFWVPRGHOIRUWKHSUHGLFWLRQRI
sumption period
natural gas consumption by individual customers. InterQDWLRQDO-RXUQDORI)RUHFDVWLQJ±
%UDEHF0.RQDU20DO\03HOLNDQ(9RQ1
dracek J. 2008: $ VWDWLVWLFDO PRGHO IRU QDWXUDO JDV
0,8
VWDQGDUGL]HGORDGSUR¿OHV-5R\6WDWLVW6RF6HULHV&
0,6
$SSOLHG6WDWLVWLFV±
&KHQ46KH<;X;Combination model for
0,4
VKRUWWHUPORDGIRUHFDVWLQJ7KH2SHQ$XWRPDWLRQDQG
0,2
&RQWURO6\VWHPV-RXUQDO
7.
Chicco
G. 2012: Overview and performance assess0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
ment of the clustering methods for electrical load pattern
Hour
JURXSLQJ(QHUJ\
Workday
Weekend day
8. Ferreira A.M.S., Cavalcante C.A., Fontes C.H., MaFig. 5. 7\SLFDOSUR¿OHVRIGDLO\JDVGHPDQGLQKLJKJDVFRQrambio J. 2012: $QHZSURSRVDORIW\SL¿FDWLRQRIORDG
sumption period
SUR¿OHVWRVXSSRUWWKHGHFLVLRQPDNLQJLQWKHVHFWRU
of electric energy distribution. Internacional Industrial
The studies demonstrated that gas consumption by rural
&RQIHUHQFHRQ(QJLQHHULQJDQG2SHUDWLRQV0DQDJHPHQW
households on weekend days is slightly higher than on
-XO\*XLPDUmHV3RUWXJDOLD,','
ZRUNGD\VLQWKHODVWWZR\HDUV±E\FDWKRXJKLWLV 9. Dudek G. 2004: Wybrane metody analizy szeregów
F]DVRZ\FKREFLąĪHĔHOHNWURHQHUJHW\F]Q\FK0DWHULDá\
much more uneven, with clearly marked peaks of consumpKonferencji Naukowej Prognozowanie w elektroenertion in the midday hours.
getyce PE ‚04&]ĊVWRFKRZD±
Góra S. 1975:*RVSRGDUNDHOHNWURHQHUJHW\F]QDZSU]HCONCLUSIONS
P\ĞOH3:1:DUV]DZD
Kelner J.M. 2003: Prognozowanie krótkoterminowe poERUyZJD]X]VLHFLSU]HV\áRZ\FKPHWRGąV]WXF]Q\FKVLHFL
The demand for gas in rural households shows periodic
GDLO\ZHHNO\DQGPRQWKO\ÀXFWXDWLRQV
QHXURQRZ\FK*D]:RGDL7HFKQLND6DQLWDUQD
Considering the shapes of gas usage curves, four stand- Melikoglu M. 2013: Vision 2023: Forecasting Turkey’s
QDWXUDOJDVGHPDQGEHWZHHQDQG5HQHZDEOH
DUGSUR¿OHVZHUHGLVWLQJXLVKHGUHSUHVHQWLQJWKHFRQVXPSDQG6XVWDLQDEOH(QHUJ\5HYLHZV
tion, i.e. for a workday and a weekend day, respectively
G/Gdmax
G/Gdmax
1
0$à*25=$7$752-$12:6.$'2527$/,3&=<ē6.$
1DLPLQJ;&KDRTLQJ<<LQJMLH< ForecastLQJ&KLQD¶VHQHUJ\GHPDQGDQGVHOIVXI¿FLHQF\UDWHE\
JUH\IRUHFDVWLQJPRGHODQG0DUNRYPRGHO(OHFWULFDO
3RZHUDQG(QHUJ\6\VWHPV
3RWRþQLN36ROGR%âLPXQRYLü*âDULü7-HURPHQ$*RYHNDU( Comparison of static and
adaptive models for short-term residential natural gas
IRUHFDVWLQJLQ&URDWLD$SSOLHG(QHUJ\
3URJQR]RZDQLHZHOHNWURHQHUJHW\FH=DJDGQLHQLDZ\EUDQHUHG,'REU]DĔVND:\GDZQLFWZR3ROLWHFKQLNL&]ĊVWRFKRZVNLHM&]ĊVWRFKRZD
Smith P., Husejn S. 1997: Forecasting short term reJLRQDOJDVGHPDQGXVLQJDQH[SHUWV\VWHP([SHUW6\VWHPVZLWK$SSOLFDWLRQV
Soldo B. 2012: Forecasting natural gas consumption.
$SSOLHG(QHUJ\
7DVSÕQDU)&HOHEL17XWNXQ1Forecasting
of daily natural gas consumption on regional basis in
7XUNH\XVLQJYDULRXVFRPSXWDWLRQDOPHWKRGV(QHUJ\
DQG%XLOGLQJV
9RQGUiþHN-3HOLNiQ(.RQiU2ýHUPiNRYi-
(EHQ.0DOê0%UDEHF0$VWDWLVWLFDOPRGHO
IRUWKHHVWLPDWLRQRIQDWXUDOJDVFRQVXPSWLRQ$SSOLHG
(QHUJ\
20. <X);XO;$VKRUWWHUPORDGIRUHFDVWLQJPRGel of natural gas based on optimized genetic algorithm
DQGLPSURYHG%3QHXUDOQHWZRUN$SSOLHG(QHUJ\
$1$/,=$=0,(112ĝ&,=$3275=(%2:$1,$
:,(-6.,&+*2632'$567:1$*$==,(01<
Streszczenie. 3U]HDQDOL]RZDQR]PLHQQRĞüJRG]LQRZHJRSRERUX
JD]X]LHPQHJRSU]H]ZLHMVNLHJRVSRGDUVWZDGRPRZHZUyĪQ\FK
LQWHUZDáDFKF]DVRZ\FKLQDWHMSRGVWDZLHRSUDFRZDQRW\SRZH
GRERZHSU]HELHJL]XĪ\FLDJD]XSU]H]WĊJUXSĊRGELRUFyZRGdzielnie dla dni roboczych i weekendowych, w rozbiciu na dwa
RNUHV\WMGXĪHJRLPDáHJR]DSRWU]HERZDQLDQDJD]'ODSRWU]HE
RSUDFRZDQLDW\SRZ\FKNU]\Z\FKREFLąĪHQLDZLHMVNLFKVLHFL
JD]RZ\FKSU]HELHJLSRERUXJD]XNODV\¿NRZDQR]Z\NRU]\VWDQLHPDQDOL]\ZDULDQFMLDQDOL]\VNXSLHĔDWDNĪHZRSDUFLX
RSRGVWDZRZHZVNDĨQLNLRSLVXMąFH]PLHQQRĞü]XĪ\FLDJD]X
6áRZD NOXF]RZH U\QHN JD]X W\SRZH SUR¿OH ]XĪ\FLD JD]X
ziemnego.
TEKA. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE – 2014, Vol. 14, No. 4, 185–190
Determination of the Rheological Properties
of Biofuels Containing SBME Biocomponent
Grzegorz Wcisło
Faculty of Production Engineering and Power Technologies
University of Agriculture in Krakow, Poland
email: grzegorz.wcislo@ur.krakow.pl
Received December 08.2014; accepted December 19.2014
Summary. 6LPLODUO\WRGLHVHORLO%%LRGLHVOD%6%0(
dynamic viscosity at positive temperatures in principle increases
ZLWKGHFUHDVLQJWHPSHUDWXUH+DYLQJH[FHHGHGoC, it begins to
LQFUHDVHUDSLGO\7KHG\QDPLFYLVFRVLW\IRU%6%0(DWƒ&
ZDVP3DVIRU%6%0(±P3DVDQGIRU%6%0(±
P3DV7KHVWXG\KDVVKRZQWKDW%6%0(FDQQRWEHXVHG
in practice as a pure fuel without a package of viscosity-lowering
DGGLWLYHV$WWKHVDPHWLPHWKHYLVFRVLW\YDOXHVIRU%DQG%
biofuels, in particular at positive temperatures, are close to the
viscosity of diesel fuel. Under such conditions one can safely
XVH%DQG%ELRIXHOVLQFRPSUHVVLRQLJQLWLRQHQJLQHVHYHQ
in those with a state-of-the-art injection apparatus.
Key words: diesel HQJLQH%LRGLHVHOELRIXHO6)0(, dynamic
viscosity, shearing rate.
INTRODUCTION
4XDOLW\VWDQGDUGV31(1IRUGLHVHOIXHODQG
(1 ,62 IRU )$0( IXHO GHWHUPLQH RQO\ NLQHPDWLF
viscosity. No obligatory norm has been introduced so far
for determining dynamic viscosity. Kinematic viscosity is
DSDUDPHWHUGHVFULELQJWKHUHVLVWDQFHRIÀXLGÀRZGXHWR
gravity forces. In order to determine kinematic viscosity
WKHWLPHÀRZIRUFRQVWDQWÀXLGYROXPHWKURXJKDFDSLOODU\WXEHRIDVWDQGDUGYLVFRVLPHWHUXQGHUWKHLQÀXHQFH
of gravity forces is measured, under repeatable conditions
and at known, strictly controlled temperature. The value of
NLQHPDWLFYLVFRVLW\LVFRPSXWHGE\PXOWLSO\LQJWKHÀRZ
WLPHE\YLVFRVLPHWHUVWDQGDUGL]DWLRQFRQVWDQW+RZHYHUWKH
norm allows three groups of viscosimeters, so the methods of
measurements may differ from the described above dependLQJRQWKHNLQGDQGUDQJHRIWKHWHVWHGÀXLGYLVFRVLW\>@
$QDO\VLVRIWKHVXEMHFWOLWHUDWXUHVKRZVYDULRXVYDOXHVRI
50(NLQHPDWLFYLVFRVLW\ZKLFKDFFRUGLQJWRVRPHDXWKRUV
at the temperature of e.g. 20o&UDQJHGIURP>@WR
>P3DV@>@+RZHYHULWVHHPVWKDWWKHVFDWWHURIUHVXOWVZDV
not so wide but was rather due to a measurement error or
application of little precise methods. Therefore even a small
mistake during measurement may cause a considerable scatWHURIREWDLQHGNLQHPDWLFYLVFRVLW\YDOXHV$GGLWLRQDOO\VXFK
error may be multiplied at dynamic viscosity determination
>@
In recent years a rapid development of injection apparatus based on pump-injectors or common rail has been
observed, where very high pressure occurs. In this situation
LWLVPRVWLPSRUWDQWWRGHWHUPLQHWKHÀXLGÀRZUHVLVWDQFH
under dynamic, not static conditions. It is the more imporWDQWZKHQW\SH³%´IXHOVZLWKELRFRPSRQHQWVXSSOHPHQWRI
KLJKHUYLVFRVLW\DUHXVHGIRU=6HQJLQHIHHGLQJ7KHUHIRUH
dynamic, not kinematic viscosity should be determined most
precisely. So far dynamic viscosity has not been determined
separately, only obtained from kinematic viscosity. It was
due to a lack of proper tools which were relatively expenVLYH+RZHYHUDG\QDPLFGHYHORSPHQWRIUKHRPHWHUVLQUHcent years, particularly dynamic types, allowed for a most
precise determination of dynamic viscosity. Moreover, for a
EHWWHUDVVHVVPHQWRIIXHOPHFKDQLFDOSURSHUWLHVWKHLQÀXHQFH
of many rheological parameters on the behaviour of fuels
or biofuels may be also tested.
The advantages of using rotational rheometers for viscosity determination comprise: small volume of fuel sample
DERXWPOLVHQRXJKIXOODXWRPDWLFDQGFRPSXWHUL]HG
measurements, possibility of testing both viscous and elastic
properties, possible investigation of tixotropy and antitixotropy phenomena.
'\QDPLFYLVFRVLW\LVDPHDVXUHRIÀXLG¶VUHVLVWDQFHWR
ÀRZRUÀXLGGHIRUPDWLRQ±3ROLVKVWDQGDUG31(1,62
,WDOVRDIIHFWVWKHLQMHFWLRQFRXUVHVWUHDPUDQJHDQG
IXHOVSUD\LQJLQWKHHQJLQHFRPEXVWLRQFKDPEHU,WLQÀXHQFes lubrication properties, which is particularly important in
the case of rotational injection pumps because in the pumps
of this type the pump elements are lubricated with diesel
oil. It may be the reason why one sometimes encounters
*5=(*25=:&,6à2
WKHRSLQLRQWKDWVPDOOYLVFRVLW\DQGUHVXOWLQJJRRGÀRZ
properties are more important for the engine start up than
WKHFHWDQHQXPEHU>@7KHUHLVDOVRDVWULFWUHODWLRQVKLS
between viscosity, temperature and shearing rate.
There is a serious problem concerning an excessive viscosity of some biofuels, which in recent years has become
one of the key issues. It is primarily connected with the use
of injection apparatus, which supplies fuel to the engine at
G\QDPLFSUHVVXUHUHDFKLQJEDU7KHUHIRUHHYHQDVOLJKW
increase in this parameter may negatively affect the work
of injection apparatus. The fact that biofuels would enter
WKHIXHOPDUNHWVZDVNQRZQLQVRWKHPDQXIDFWXUHUV
should adjust the injection systems also for the fuels with a
WRKLJKHUYLVFRVLW\%LRGLHVHOTXDOLW\DOVRSRVHVD
SUREOHP,WWXUQVRXWWKDWXVXDOO\)$0(KDVPRUHSURGXFWV
of incomplete conversion to esters of oil obtained through
WUDQVHVWHUL¿FDWLRQSURFHVV(1VWDQGDUGIRU)$0(
%LRGLHVHOIXHOVWDWHVWKHPD[LPXPDOORZDEOHDPRXQWRI
monoacyloglycerols LQIXHOVDVZKHUHDVGLDF\OJO\FHU\OHWKHUVRQO\PP$QRWKHUSUREOHPLVZURQJ
separation of ester from glycerine phase, since even trace
amounts of glycerine phase left over lead to a consideraEOHLQFUHDVHLQYLVFRVLW\$VUHVXOWVIURPKH$XWKRU¶VRZQ
research, viscosity of properly separated glycerine phase
obtained after rapeseed oil methanolysis at 20oC is about
>P3DV@ZKHUHDVLQGLHVHOIXHODERXW>P3DV@50(HVWHUVDERXW>P3DV@ZKHUHDVUDSHVHHGRLODERXW>P3DV@
It results from the data given above that at 20oC oil viscosity
LVWLPHVKLJKHUDQGYLVFRVLW\RIJO\FHULQHSKDVHE\RYHU
WLPHVKLJKHUWKDQ50(YLVFRVLW\>@
0(7+2'62)5(6($5&+
Measuring set with two coaxial cylinders was applied in
WKHUKHRPHWHU%HVLGHWKHFRQHSODWHYLVFRPHWHULWLVRQHRI
the most precise devices for measuring dynamic viscosity of
IXHOVDQGELRIXHOV)LJXUHVKRZVWKHVFKHPDWLFGLDJUDPRI
the measuring set with marked parameters which served to
formulate the main relationships: for tangent force, oscillatLQJWRUTXHVKHDULQJIRUFHDQGG\QDPLFYLVFRVLW\
2S rHW
WKHIOXLGWRWKHLQQHUF\OLQGHUFDXVHWKHGHVFULEHGRVFLOODWLQJWRUTXH
F
GHVFULEHGXVLQJIRUPXOD
r
r
J
x
M
K
ȍ
2:
S W R2
2
R2
,
SKH:
,
2
R2
R2
§ ·M
,
¨¨ 2 2 ¸¸
SH © R R2 ¹ :
URWDWLQJIUHTXHQF\RIWKHVSLQQLQJHOHPHQW
K
J
x
:
§ ¨
S ¨© RVFLOODWLQJWRUTXHDFWLQJRQVSLQQLQJHOHPHQWD[LV
where:
ȍ±URWDWLQJIUHTXHQF\RIWKHVSLQQLQJHOHPHQW
$,0$1'6&23(2)5(6($5&+
M±RVFLOODWLQJWRUTXHDFWLQJRQVSLQQLQJHOHPHQWD[LV
H±KHLJKWRIELRIXHOVDPSOH
6%0( W\SHELRIXHOV7KUHHNLQGVRIIXHOVZHUHSUHSDUHG21%%%
r±GLVWDQFHIURPURWDWLRQD[LV
R±RXWHUUDGLXV
R2±LQQHUUDGLXVRIF\OLQGHUVOHHYH
%LRGLHVHO REWDLQHG IURP 6%0(
R2
DOORZVWRXVHXSWR YYRIELRFRPSRQHQWVXSSOHP
R1
$,0$1'6&23(2)5(6($5&+
LQ 3RODQG ZH QHHGHG WR FRQVXPH RQ DYHUDJH RI ELRIXHOV DQ
R r
H
$VVXPLQJWKDWWKHWHVWHGVDPSOHKDVWKHKHLJKWH, tanJHQWIRUFHLQWKHÀXLGDWWKHGLVWDQFHr from the rotation axis
PD\EHH[SUHVVHGE\WKHIRUPXOD&RQVLGHULQJURWDWLQJ
IUHTXHQF\RIWKHVSLQQLQJHOHPHQWDQGRXWHUGLDPHWHURIWKH
spinning element Rand inner diameter of cylinder sleeve
R2¿OOHGZLWKWKHWHVWHGÀXLGZHPD\GHULYHIRUPXOD
describing the relationship for shearing force. If oscillating
WRUTXHFDXVHGE\WDQJHQWIRUFHLVHTXDOLWPD\EHJHQHUDOO\
written as M=F·r. On the other hand for the set applied in
the rheometer, i.e. measuring set with coaxial cylinders, the
RVFLOODWLQJWRUTXHPD\EHVKRZQE\IRUPXOD7DQJHQWIULFWLRQIRUFHVWUDQVIHUUHGE\WKHÀXLGWRWKHLQQHUF\OLQGHUFDXVH
WKHGHVFULEHGRVFLOODWLQJWRUTXHM. Considering the above
mentioned assumptions the formula for dynamic viscosity
XVLQJFRD[LDOF\OLQGHUVHWPD\EHGHVFULEHGXVLQJIRUPXOD
R r+dr
Fig. 1. Measuring set with coaxial cylinders
7KH VHFRQG
FKRVHQ ELRIXHO
%
E\ D PHDQ ELRFRPS
The research aimed
at determining
theZDV
effect
ofVLQFH
temperaEDODQFHRIIXHOVFRQVXPHGE\WKHWUDQVSRUWZLOOUHDFKDWOHDVW7KH
WXUHRQG\QDPLFYLVFRVLW\RI%LRGLHVHO6%0(W\SHELRIXHOV
% RU SXUH 6%0( HVWHU
7KUHHNLQGVRIIXHOVZHUHSUHSDUHG21%%%DQG
ZHUH SHUIRUPHG RQ WKH FRPPHUFLDO GLHVHO DQG 50( IXHOV IURP D VHUYL
%OLVNDVHUYLFHVWDWLRQFKDLQ
%7KHYDOXHDWWDFKHGWR³%´OHWWHUGHQRWHVYROXPHWULF
7KH EDVLF IXHO IRU W\SH % DQG %
SURSRUWLRQRI6%0(PHWK\OHVWHUVREWDLQHGIURPVR\D
PDQXIDFWXUHGE\3.125/(16$FRPSDQ\7KHUHVHDUFKGHWHUPLQHGWK
EHDQ¶VRLOLQWKHPL[WXUHZLWKIXHORLO
WR
These biofuels were selected because of the current atWHPSWVWRFUHDWHDQDOWHUQDWLYHWR%LRGLHVHOREWDLQHGIURP
6%0(VR\DEHDQRLO&XUUHQWO\LQ3RODQGLWLVSRVVLEOHWR
RIWKHUKHRPHWHUVSLQGOHZDVFRQVWDQW>V SXUFKDVHVXQÀRZHURLODWDSULFHFRPSHWLWLYHWRVR\DEHDQRLO
These biofuel types were selected because, currently
passed act on biocomponents and biofuels allows to use up
'(7(50,1$7,212)7+(5+(2/2*,&$/3523(57,(6
WRYYRIELRFRPSRQHQWVXSSOHPHQWVLQIXHOVZLWKRXW
the obligatory relevant information for the buyer about the
supplement. In accordance with the National Index Target,
LQLQ3RODQGZHQHHGHGWRFRQVXPHRQDYHUDJH
of biofuels and/or bio-components in relation to the total
fuel consumption, calculating in energy terms.
7KHVHFRQGFKRVHQELRIXHOZDV%VLQFHE\D
mean biocomponent share in the total balance of fuels conVXPHGE\WKHWUDQVSRUWZLOOUHDFKDWOHDVW7KHWKLUG
ELRIXHOVHOHFWHGIRUFRPDSDUWLYHWHVWLQJZDV%RUSXUH
6%0(HVWHU,QDGGLWLRQIRUFRPSDULVRQSXUSRVHVWHVWVZHUH
SHUIRUPHGRQWKHFRPPHUFLDOGLHVHODQG50(IXHOVIURP
DVHUYLFHVWDWLRQEHLQJSDUWRI%OLVNDVHUYLFHVWDWLRQFKDLQ
7KHEDVLFIXHOIRUW\SH%DQG%ELRIHXOVZDVWKH
FRPPHUFLDO9(59$21IXHORLOPDQXIDFWXUHGE\3.125/(16$FRPSDQ\7KHUHVHDUFKGHWHUPLQHGWKHYDULDELOLW\
of dynamic viscosity within the temperature range from -20
WRoC. The range of temperatures was assumed because
due to the applied thermostatic bath it was impossible to lower the sample temperature below -20oC. On the other hand
UDLVLQJWKHXSSHUWHPSHUDWXUHDERYHoC was considered
unnecessary because it does not generally affect a change of
dynamic viscosity. In the initial part of the test shearing rate
RIWKHUKHRPHWHUVSLQGOHZDVFRQVWDQW>V-1].
&+$5$&7(5,=$7,212)0($685,1*67$1'
The main device used at the measuring stand was ReRODE4&UKHRPHWHUPDQXIDFWXUHGE\D*HUPDQ$QWRQ3DDU
*PE+FRPSDQ\)LJ7KHUKHRPHWHULVDGHYLVHGHVLJQHG
for determining mechanical and rheological parameters of
ÀXLGVDQGIXHOV7KHGHYLFHPHDVXUHVDPRQJRWKHUVG\QDPLF
viscosity, surface tension, shearing forces, shearing rate,
VKHDULQJWHQVLRQHWF7KHUKHRPHWHULVDOVRHTXLSSHGZLWK
a temperature sensor and integrated system of time measurement. In order to determine the effect of temperature on
the above mentioned parameters, the rheometer used at the
PHDVXULQJVWDQGZDVDGGLWLRQDOO\HTXLSSHGZLWKWKHUPRVWDW-
LFEDWKPDGHE\DQ$XVWULDQ*UDQWFRPSDQ\7KHUHVXOWVRI
research using measuring system of the viscosimeter were
VHQWWRDFRPSXWHUDQGVDYHGWKHUHWREHVXEVHTXHQWO\SURFHVVHGXVLQJ5+(23/869
7KHUKHRPHWHUZDVHTXLSSHGZLWKLQWHUQDOPHPRU\DQG
WKHV\VWHPIRUUHVHDUFKSURJUDPPHJHQHUDWLRQ)LJXUH
SUHVHQWVWKHDOJRULWKPRIWKH5HRODE4&UKHRPHWHUH[WHUQDO
control. The rheometer may be externally controlled by a
computer which allows for creating and editing measuring
programmes, which makes possible optional and multiple
parameter setting and saving them without the necessity
of deleting.
5(68/76$1'',6&866,21
)LJXUHVWKURXJKVKRZWKHUHVXOWVRIUHVHDUFKRQGHtermining the effect of temperature on dynamic viscosity.
CONCLUSIONS
'\QDPLFYLVFRVLW\RI%6%0(%LRGLHVHOLQWKHWHPSHUDWXUHUDQJHIURPWRoC assumes the values from
FDWR>P3DV@'\QDPLFYLVFRVLW\RI%6%0(
%LRGLHVHODWoC was 9[mPas]. When the temperature was
decreasing its value was increasing and at -20oC reached
>P3DV@'\QDPLFYLVFRVLW\IRU%6%0(%LRGLHVHODW
o&ZDV>P3DV@EXWZLWKFRROLQJIXHOVDPSOHLWZDV
JURZLQJWRUHDFK>P3DV@DWoC. Dynamic viscosity of
GLHVHORLO%LQWKHWHPSHUDWXUHUDQJHIURPWRoC
DVVXPHVWKHYDOXHVIURPFDWR>P3DV@&RQGXFWHG
UHVHDUFKGHPQVWUDWHGWKDWG\QDPLFYLVFRVLW\RI³%´ELRIXHOV
is considerably affected by the temperature. Therefore, for
DEHWWHUDVVHVVPHQWRIWKHHIIHFWRI6(HQJLQHIHHGLQJZLWK
biofuels on the durability and reliability of the injection
apparatus, not kinematic but dynamic viscosity should be
considered. It is important because the changes of dynamic
YLVFRVLW\LOOXVWUDWHWKHDFWXDOFKDQJHVRIWKHÀRZUHVLVWDQFH
accompanying engine feeding with biofuels and biocomponents. Currently conducted research focuses on introduction
of a proper standard for determining dynamic viscosity of fuels and biofuels. There are standards for rotation rheometers
by means of which dynamic viscosity and other parameters,
including surface tension, shearing forces, shearing rate or
shearing tension may be highly precisely determined, which
will make possible a better analysis of rheological properties
of fuels and biofuels.
5()(5(1&(6
Fig. 2. The researchers post was furbished with a reometer and
tub thermostats
&LHĞOLNRZVNL%-XOLV]HZVNL70D]XUNLHZLF]-
2006: /HSNRĞü NLQHPDW\F]QD ELRSDOLZD L ID]\ JOLFHU\QRZHM,QĪ\QLHULD5ROQLF]DYRO
2. &LVHN-0UXN$+ODYĖD9 The properties of
D+'9'LHVHOHQJLQHIXHOOHGE\FUXGHUDSHVHHGRLO7HND
.RPLVML0RWRU\]DFMLL(QHUJHW\NL5ROQLFWZD9RO;,
*5=(*25=:&,6à2
Fig. 3. 7KHDOJRULWKPLFZRUNVFKHPDWDLVXVLQJWKHUHRPHWHU5HRODE4&
'(7(50,1$7,212)7+(5+(2/2*,&$/3523(57,(6
Anton Paar
GmbH
Biodiesel SBME B100
Diesel (B7)
200
dynamic viscosity [mPa s]
180
160
140
120
100
80
60
40
20
0
-20
-15
-12
-10
-5
o
temperature C
0
5
10
15
20
30
40
50
Rheoplus
Rheoplus
)LJ'LDJUDPRI%6%0(
'LHVHO%
)LJ'LDJUDPRI%6%0( and 'LHVHO% dynamic viscosity dependence in the function of temperature
Fig. 4. 'LDJUDPRI%6%0(DQG'LHVHO%G\QDPLFYLVFRVLW\GHSHQGHQFHLQWKHIXQFWLRQRIWHPSHUDWXUH
Diesel (B7)
Diesel (B7)
SBME B20
SBME B20
Anton Paar GmbH
Anton Paar GmbH
SBME B50
SBME B50
dynamic
viscosity
[mPa
s] s]
dynamic
viscosity
[mPa
65
55
45
35
25
15
5
-20
-15
-12
-10
-5
0
o
temperature C
temperature C
5
10
15
20
30
40
50
Rheoplus
Rheoplus
)LJ'LDJUDPRI%0%0 6%0( and 'LHVHO% dynamic viscosity dependence in the function of
Fig. 5. 'LDJUDPRI%%6%0(DQG'LHVHO%G\QDPLFYLVFRVLW\GHSHQGHQFHLQWKHIXQFWLRQRIWHPSHUDWXUH
)LJ'LDJUDPRI% % 6%0(
'LHVHO%
Cisek J., Mruk A. 2012::áDĞFLZRĞFLVLOQLND=6]D- 6WDQGDUG',18NáDGSRPLDURZ\UHRPHWUXRF\VLODQHJRQDWXUDOQ\PROHMHPU]HSDNRZ\P=HV]\W\1DOLQGUDFKZVSyáRVLRZ\FK
ukowe Instytutu Pojazdów Politechniki Warszawskiej 3ROLVK6WDQGDUG31(13DOLZDGRSRMD]GyZ
VDPRFKRGRZ\FK2OHMHQDSĊGRZH:\PDJDQLDLPH]VHULL0HFKDQLND(NRORJLD%H]SLHF]HĔVWZR0HFKDWUR'\QDPLF YLVFRVLW\ RI % 6%0( %LRGLHVHO LQ WKH WHPSHUDWXUH
UDQJH IURP WR
C assumes the
DW
YDOXHVIURPFDWR>P3DV@'\QDPLFYLVFRVLW\RI%6%0(%LRGLHVHO
QLND9RO
WRG\EDGDĔ3ROLVK
'\QDPLF YLVFRVLW\ RI % 6%0( %LRGLHVHO LQ WKH WHPSHUDWXUH
UDQJH IURP
WR
C assumes the
&UHDFKHG>P3DV@'
DW
YDOXHVIURPFDWR>P3DV@'\QDPLFYLVFRVLW\RI%6%0(%LRGLHVHO
%LRGLHVHO+DQGOLQJDQG8VH*XLGHOLQHV86'H6WDQGDUG31(1,623U]HWZRU\QDIWRZH
IRU % 6%0( %LRGLHVHO DW & ZDV >P3DV@ EXW ZLWK FRROLQJ
IXHO VDPSOH LW ZDV JURZLQJ WR UHDFK
&UHDFKHG>P3DV@'
LQWKHWHPSHUDWXUHUDQJHIURPWR
>P3DV@DW
SDUWPHQWRI(QHUJ\7KLUG(GLWLRQ6HSWHPEHU
CieczeIXHO
przezroczyste
i nieprzezroczyste.
IRU
% 6%0( %LRGLHVHO DW & ZDV >P3DV@%
EXW ZLWK
FRROLQJ
VDPSOH LW ZDV
JURZLQJ WR UHDFK Oznaczanie lep 6 .PLHFLN -
% LQWKHWHPSHUDWXUHUDQJHIURPWR
>P3DV@DW / 5yĪDĔVND
%521,$5=35(66
NRĞFLNLQHPDW\F]QHMLREOLF]DQLHOHSNRĞFLG\QDPLF]QHM
7KHUHIRUHIRUDEHWWHUDVVHVVPHQWRIWKHHIIHFWRI6(
$QDOL]DUHRORJLF]QDSDOLZLELRSDOLZFLHNá\FK
:FLVáR*:\]QDF]HQLHZSá\ZXWHPSHUDWXU\
7KHUHIRUHIRUDEHWWHUDVVHVVPHQWRIWKHHIIHFWRI6(
$S&KHP
QDOHSNRĞüG\QDPLF]QąELRSDOLZURĞOLQQ\FK,QĪ\QLHULD
5ROQLF]DYRO
8]GRZVNL00RĪOLZRĞFLZ\NRU]\VWDQLDPLHszanin paliw tradycyjnych i alternatywnych do zasilania :FLVáR*$QDOL]DZSá\ZXRGPLDQU]HSDNXQD
ZáDVQRĞFLELRSDOLZ50(RUD]SDUDPHWU\SUDF\VLOQLND
VLOQLNyZ=60RWURO9RO$
7. Tys J. i in. 2003: Technologiczne i ekonomiczne uwarunR]DSáRQLHVDPRF]\QQ\P0RQRJUD¿DKDELOLWDF\MQD
NRZDQLDSURGXNFMLELRSDOLZD]U]HSDNX,QVW\WXW$JUR¿:\GDZQLFWZR)$//.UDNyZ
:FLVáR*'HWHUPLQLQJ(QHUJ\9DOXHRI%LRGLH]\NLLP%RKGDQD'REU]DĔVNLHJR3$1Z/XEOLQLH
8. 6]ODFKWD==DVLODQLHVLOQLNyZZ\VRNRSUĊĪQ\FK
VHO)$0(0DWHULDá\]NRQIHUHQFML37166.21*5(6
±³&RPEXVWLRQ(QJLQHV´
SDOLZDPLU]HSDNRZ\PL:.Là
9. 6]ODFKWD==DEáRFNL0&LVHN-6RZD. :FLVáR* Determining Rheological Properties of
%DGDQLDZSá\ZXSDOLZ]ROHMXU]HSDNRZHJRQDUR]UXFK
&60(%LRGLHVHO7\SH%LRIXHOVÄ&RPEXVWLRQ(QJLQHV³
LSUDFĊVLOQLNyZZ\VRNRSUĊĪQ\FKZQLVNLFKWHPSHUDWX9RO6&
UDFKRWRF]HQLD%DGDQLDZ\NRQDQHZUDPDFKSURMHNWX 8VWDZD]GQLDVLHUSQLDURELRNRPSRQHQWDFK
LELRSDOLZDFKFLHNá\FK']8QUSR]
.%1QU6.UDNyZ6SUDZR]GDQLH
]SyĨQ]P
,36L663.QU.%1PDWQLHSXEOLNRZDQH
*5=(*25=:&,6à2
2.5(ĝ/(1,(:à$612ĝ&,5(2/2*,&=1<&+
%,23$/,:=$:,(5$-Ą&<&+%,2.20321(17
6%0(
Streszczenie. /HSNRĞüG\QDPLF]QD%LRGLHVOD%6%0(Z]DNUHVLHGRGDWQLFKWHPSHUDWXUZ]DVDG]LHURĞQLHZUD]]REQLĪDQLHP
WHPSHUDWXU\SRGREQLHMDNROHMXQDSĊGRZHJR%1DWRPLDVWSR
SU]HNURF]HQLXR&]DF]\QDJZDáWRZQLHURVQąü/HSNRĞüG\QDPLF]QDZWHPSHUDWXU]HR&%6%0(Z\QRVLáDP3DV
%6%0(P3DVQDWRPLDVW%6%0(P3D3U]HSURZD-
G]RQHEDGDQLDSRND]Dá\ĪHZSUDNW\FH%&60(QLHPRĪH
E\üVWRVRZDQHMDNRVDPRLVWQHSDOLZREH]]DVWRVRZDQLDSDNLHWX
GRGDWNyZREQLĪDMąF\FKOHSNRĞü1DWRPLDVWGODELRSDOLZW\SX
%L%ZDUWRĞFLOHSNRĞFLV]F]HJyOQLHZ]DNUHVLHGRGDWQLFK
WHPSHUDWXUVą]EOLĪRQHGROHSNRĞFLROHMXQDSĊGRZHJR:WDNLFK
ZDUXQNDFKEH]REDZPRĪQDXĪ\ZDü%L%GR]DVLODQLDVLOQLNyZ]]DSáRQHPVDPRF]\QQ\FKQDZHWSRVLDGDMąF\FKQRZRF]HVQąDSDUDWXUĊZWU\VNRZą
6áRZDNOXF]RZHVLOQLNZ\VRNRSUĊĪQ\%LRGLHVHOELRSDOLZR
6)0(OHSNRĞüG\QDPLF]QDV]\ENRĞüĞFLQDQLD
TEKA. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE – 2014, Vol. 14, No. 4, 191–196
The Determination of Energetic Potential of Waste Wood Biomass Coming
from Dębica Forestry Management Area as a Potential Basis for Ethanol
Biofuels of II Generation
1
Grzegorz Wcisło, 2Natalia Labak
Faculty of Production Engineering and Power Technologies
University of Agriculture in Krakow, Poland
2
PhD student at the University of Agriculture in Krakow, Poland
1
Received December 08.2014; accepted December 19.2014
Summary. The goal of this study was to determine the heat of
FRPEXVWLRQWRSFDORUL¿FYDOXHDQGWKHGHWHUPLQDWLRQRIIXHO
YDOXHERWWRPFDORUL¿FYDOXHRIZDVWHZRRGELRPDVVRISRWHQWLDO
raw material for the manufacture of ethanol biofuels of second
generation. There determined the energy potential of waste wood
biomass, which may be obtained for energy purposes from the
WHUULWRU\RI'ĊELFD)RUHVW0DQDJHPHQW$UHD7KHKLJKHVWKHDWRI
FRPEXVWLRQDQGFDORUL¿FYDOXHDPRQJWKHVWXGLHG¿YHVSHFLHVRI
IRUHVWZRRGSLQHELUFKRDNDVKDQGSRSODUIHDWXUHGSLQH±
0-NJ0-NJDQGWKHORZHVWRDN±0-NJ0-
NJ)URPWKHDERYHUHVXOWVWKDWWKHFDORUL¿FYDOXHVLPLODUO\
WRKHDWRIFRPEXVWLRQRISLQHLVDSSUR[7KHIXHOYDOXHRI
ZRRGREWDLQHG\HDUO\E\WKH'ĊELFD)RUHVW0DQDJHPHQW$UHD
RYHU\HDUVLV3-
Key words: biomass, ethanol, biofuels of II generation, heat of
FRPEXVWLRQWRSFDORUL¿FYDOXH
INTRODUCTION
In Poland since 2007 it has been legal to manufacture fuels
and introduce them into free circulation. Manufactured are
ELRIXHOVRI¿UVWJHQHUDWLRQWKDWLVPDLQO\ELRGLHVHODQGELRHWKanol, and they are introduced as biofuels and fuel additives. In
WKHDYHUDJHVKDUHRIELRIXHOVDQGIXHOELRDGGLWLYHVRIWKH
WRWDOIXHOFRQVXPSWLRQDPRXQWHGWRDWOHDVWFRQVLGHULQJ
energy value in relation to Diesel fuel and petrols. SimultaneRXVO\ZLWKWKHPDQXIDFWXUHRI¿UVWJHQHUDWLRQELRIXHOVZRUNV
have been started on new generation biofuels, the so called
second generation. One of the objectives of the new biofuels
ZDVWRPDQXIDFWXUHWKHPIURPQRQIRRGVRXUFHV%LRHWKDQRO
may be manufactured of forestry and agricultural biomasses,
ZKLFKLQFOXGHFHOOXORVHDQGOLJQRFHOOXORVH$YHU\LQWHUHVWLQJ
idea seems to be the use of forestry wood waste.
)RU(XURSHWKHPDLQVRXUFHVRIELRPDVVZLWKFHOOXORVH
and lignocellulose content are forests. For that reason it is
today important to assess the energy potential of wood waste
biomass. This is also of local importance, because at locations
with large resources of cellulose biomass in future will be
constructed manufacturing facilities of second generation
biofuels for transport. The development of the above fuels will
cause partial independence from oil supplies and generate new
MREVDQGZKDWLVPRVWLPSRUWDQWLWVKDOOIDYRXUDEO\LQÀXHQFH
WKHHQYLURQPHQW$WSUHVHQWWKHDUHDRIIRUHVWVLQ3RODQGLV
WKRXVDQGKHFWDUHVZKLFKFRUUHVSRQGVDIRUHVWDWLRQ
UDWHRI>@,QWKHDUHDRIIRUHVWVLQ3RODQGZDV
WKRXVDQGKHFWDUHVDFFRUGLQJWR*863ROLVKQDWLRQDO
VWDWLVWLFDODJHQF\±WKHFRQGLWLRQDVRIZKLFK
ZDVHTXLYDOHQWWRIRUHVWDWLRQUDWH>@
7KHTXLFNHFRQRPLFGHYHORSPHQWZKLFKWRRNSODFH
in the second half of the twentieth century, brought about
DPRGL¿FDWLRQLQWKHXVHRIHQHUJ\UDZPDWHULDOV$QHZ
model of global economy was shaped, which is mainly based
on oil and earth gas, with decreasing use of black coal. The
energy industry has the biggest share in emission of greenhouse gases into the atmosphere. In Poland the manufacture
RIHOHFWULFHQHUJ\LVEDVHGPDLQO\RQEODFNFRDOOLJQLWHHDUWKJDVDQGUHQHZDEOHHQHUJ\VRXUFHV
LQWRWDO>@8QIRUWXQDWHO\WKHHQHUJ\VHFWRU
based on oil and coal causes excessive emissions of the so
called greenhouse gases, mainly CO2>@)RUWKDWUHDVRQ
7+(&+$5$&7(5,67,&62)7+(678',('
in recent year more and more emphasis is put on efforts to
'ĉ%,&$)25(670$1$*(0(17$5($
OLPLWWKHHPLVVLRQRIXQGHVLUDEOHJDVHV7KH(XURSHDQ8QLRQ
published several documents, that order a gradual replace7KH'ĊELFD)RUHVW0DQDJHPHQW$UHDLVORFDWHGLQ3RGPHQWRIPLQHUDOIXHOVZLWKUHQHZDEOHRQHV7KH
&(GLUHFWLYHVWDWHVWKDWXQWLOWKHVKDUHRIUHQHZDEOH NDUSDFNLH3URYLQFH'LVWULFWVRI'ĊELFDDQG6ĊG]LV]yZ±
HQHUJ\LQWKHWRWDOEDODQFHRIFRQVXPHGHQHUJ\VKDOOEH 5RSF]\FH7KH)RUHVW0DQDJHPHQW$UHDLQFOXGHVWZRIRUHVW
*5=(*25=:&,6à21$7$/,$/$%$.
FLUFXLWV±'ĊELFDDQGĩGĪDU\DQGLVGLYLGHGLQWRHOHYHQ
IRUHVWULHV7KHWRWDO)RUHVW0DQDJHPHQW$UHDFRPSULVHV
KHFWDUHVIRUHVWDUHDKHFWDUHV,QDGGLWLRQWKH
'ĊELFD)RUHVW0DQDJHPHQW$UHDVXSHUYLVHVIRUHVWVZKLFK
GRQRWEHORQJWRWKH6WDWH7UHDVXUHRIWRWDODUHDRI
KHFWDUHV±)LJ7KHPDLQIRUHVWVSHFLHVDUHSLQH
EHHFK¿URDN
PDQXIDFWXUHGIURPLWLVEHWZHHQDQG>@7KHORZ
YDOXHRIWKLVFRHI¿FLHQWUHVXOWVIURPKLJKHQHUJ\RXWOD\V
related to use, forestation, transport and processing of these
raw materials.
Wood waste biomass features in comparison with other
traditional fuels two undoubted advantages:
± WKHXQFHDVLQJUHSURGXFLELOLW\RIZRRGLQIRUHVWV
± LWVDYDLODELOLW\LQRXUJHRJUDSKLFFRQGLWLRQV>@
$FFRUGLQJWRVWXGLHVWKHFDORUL¿FYDOXHRIGU\IRUHVW
ZRRGELRPDVVLVRQWKHDYHUDJHORZHUZLWKDSSUR[DV
FRPSDUHGZLWKFDORUL¿FYDOXHRIEODFNFRDODQGZLWKDSSUR[
ORZHUWKDQFDORUL¿FYDOXHRIIXHORLO0-NJDQG
HDUWKJDV0-P3>@
$YHUDJHKXPLGLW\RIGHFLGXRXVZRRGGLUHFWO\DIWHUFOHDULQJUHDFKHV
Wood waste biomass burns easily and is a valuable fuel,
if dried properly. Wood dried outdoors in a natural way
FRQWDLQVWRWDOKXPLGLW\:KHQEXUQLQJZRRGZLWK
excessive content of humidity problems can occur with igniting, that is its ignition time will be longer and it will be
PRUHGLI¿FXOWWRUHDFKSURSHUERLOHUHI¿FLHQF\>@,Q)LJ
Fig. 1. 7KHQDWXUDODQGJHRJUDSKLFORFDWLRQRIWKH'ĊELFD)RUHVW ZDVSUHVHQWHGWKHUHODWLRQEHWZHHQZRRGFDORUL¿FYDOXHDQG
0DQDJHPHQW$UHD
total humidity.
&+$5$&7(5,67,&62):22':$67(
%,20$66:,7+5()(5(1&(
72,76(1(5*<3523(57,(6
Wood waste biomass displays the most favourable parameters in relation to volume among the types of biomass
used for energy purposes. The cost of energy obtained from
wood waste biomass is decisively lower as compared with
traditional sources. If we adopt the cost of energy obtained
IURPZRRGDWWKHOHYHORIJU.:KJU 3/1
DVLQSDUWLFXODUFRQGLWLRQVWKHQWKHFRVWRIHQHUJ\
REWDLQHGIURPEXUQLQJRIFRNHLVRIWKDWYDOXHIURP
EXUQLQJRIOLTXLGJDVDQGHDUWKJDVDQG
of that value respectively, and from burning of black coal
RIWKDWYDOXHZLWKRXWWKHFRVWRIWUDQVSRUW>@
The share of particular components with wood waste
ELRPDVVGLIIHUVGHSHQGLQJRQVSHFLHV7DEOH3DUWLFXODUO\
worth noting is the difference when comparing wood of
FRQLIHUVDQGGHFLGXRXVWUHHV7KLVDVSHFWLVUHÀHFWHGERWKLQ
the cost of transport, effectiveness of wood burning process
as well as mineral content of ash remained after burning.
Fig. 2. &DORUL¿FYDOXHDVIXQFWLRQRIWRWDOKXPLGLW\FRQWHQWLQ
ZRRG9ROW]
&+(0,&$/&20326,7,21
2):22':$67(%,20$66
*HQHUDOO\ WKH FKHPLFDO FRPSRVLWLRQ RI SDUWLFXODU
ZRRGVSHFLHVLVVLPLODUDQGFRQVLVWVRIGU\PDVVFRDO
R[\JHQK\GURJHQQLWURJHQ
%HVLGHVZRRGWKHZRRGZDVWHELRPDVVLVFRPSRVHG
Ta b l e 1 . Percentage share of wood, green mass and bark with RIJUHHQPDVVOHDYHVEUDQFKHVQHHGOHFRYHUDQGEDUN
particular wood waste biomass species [2]
$VKHVLQEDUNFRQVWLWXWHDQGLQZRRG
$VKHVLQFOXGHQXWULHQWVZKLFKRFFXULQWKHIRUPRIPLFURWood waste
:RRG>@ *UHHQPDVV>@ %DUN>@
elements and oxides, like: K20, Na2O, P2O, CaO, MgO.
biomass
The content of selected microelements is presented in TaDeciduous trees
EOH%HVLGHVWKHVSHFL¿HGFRPSRQHQWVWKHZRRGZDVWH
Conifers
70-80
biomass includes: resins, tannins, waxes, fats, alkaloids
%\XVLQJWKH3(53XUH(QHUJ\5DWLRH[SUHVVHGDV and mineral salts [2].
relations between obtained energy and consumed energy
'XHWRODUJHFRQWHQWRIYRODWLOHSDUWVZRRG
we are able to determine the economic value of a particular ignites easily. Most part of volatile components are emitIXHO)RUFRDOWKHYDOXHRIWKLVUDWLRLVLQFOXGHGEHWZHHQ WHGDWWHPSHUDWXUHVƒ&EXWWKHSURFHVVRIWKHUPDO
DQGIRURLOLWDPRXQWVWRDQGIRUSK\WRPDVVDQGIXHOV GHFRPSRVLWLRQRIZRRGVWDUWVDWDSSUR[ƒ&
7+('(7(50,1$7,212)(1(5*(7,&327(17,$/
2%-(&7,9($1'6&23(2)7+(:25.
The goal of this study was to determine the heat of
FRPEXVWLRQWRSFDORUL¿FYDOXHDQGWKHGHWHUPLQDWLRQRI
IXHOYDOXHERWWRPFDORUL¿FYDOXHRIZDVWHZRRGELRPDVV
of potential raw material for the manufacture of ethanol
biofuels of second generation. There will be determined
the energy potential of waste wood biomass, which may be
REWDLQHGIRUHQHUJ\SXUSRVHVIURPWKHWHUULWRU\RI'ĊELFD
)RUHVW0DQDJHPHQW$UHD7KHREWDLQHGUHVXOWVVKDOOEHXVHG
LQWKHDERYH)RUHVW0DQDJHPHQW$UHDLQRUGHUWRGHYHORS
a long term waste wood management strategy. The wood
biomass studied in order to determine energy parameters
ZDVGULHGWRUHDFKWKHWHFKQLFDOKXPLGLW\RI
$3//,('0(7+2'
%LW´FRPSDQ\7KHGLDJUDPRIWKHFDORULPHWHULVSUHVHQWHG
LQ)LJ
'(7(50,1$7,212)723+($72)&20%867,21
&$/25,),&9$/8(
The determination of heat of combustion in the calorimHWHULVEDVHGRQWKHVLPSOL¿HGHTXDWLRQRIWKHUPDOEDODQFH
of the calorimeter presented below:
Qca mpal 4dmd Pwcwt+mscs¨W .¨W
where:
4ac±KHDW RI ZRRG FRPEXVWLRQ UHODWHG WR WKH DQDO\WLFDO
sample,
mpal±ZHLJKWRIZRRGVDPSOH
4d±KHDWRIFRPEXVWLRQRIVWHHOZLUH
md±ZHLJKWRIZLUH
mw±ZHLJKWRIZDWHULQFDORULPHWULFYHVVHO
cw±VSHFL¿FKHDWRIZDWHU
ms±ZHLJKWRIVROLGERGLHVRIFDORULPHWHU±ERPEDQGYHVVHO
cs±VSHFL¿FKHDWRIVROLGERGLHV
'W±FRUUHFWHGWHPSHUDWXUHLQFUHDVH
.±FRQVWDQWWKHUPDOFDSDFLW\RIFDORULPHWHU
The goal of the study was the determination of energy potential of waste wood biomass, which is a potential
raw material for the manufacture of ethanol biofuels of II
generation of cellulose biomass obtained from wood in the
'ĊELFD)RUHVW0DQDJHPHQW$UHD7KHEDVLVIRUWKHGHWHUmination of these parameters was the determination of heat
+HDWRIFRPEXVWLRQZDVGHWHUPLQHGE\WKHFDORULPHWHU
of combustion when burning wood samples coming from
WKHDERYH)RUHVW0DQDJHPHQW$UHD7KHVWXG\LQFOXGHG using the following relation:
WKHIROORZLQJVSHFLHVRIZRRGSUHVHQWLQWKH'ĊELFD)RUHVW
K't
0DQDJHPHQW$UHD6FRWVSLQH3LQXVV\OYHVWULVZDUW\ELUFK
Qca
m pal
%HWXODSHQGXOD(QJOLVKRDN4XHUFXVUXEUDDVK)UD[LQXVWUHPXODSRSODU3RSXOXVWUHPXOD7KHPDWHULDOZDV
collected without bark from top part of bolt or log. Then
&DORUL¿FYDOXHZDVFDOFXODWHGRQWKHEDVLVRIWKHSUHWKHPDWHULDOZDVFRPPLQXWHGDQGGULHGXVLQJ+637 YLRXVO\GHWHUPLQHGKHDWRIFRPEXVWLRQ7KHFDORUL¿FYDOXH
9DFXXP'ULHUWRUHDFKWKHWHFKQLFDOKXPLGLW\RI
was referred to the analytical condition and calculated using
the formula below:
'(7(50,1$7,212)+($72)&20%867,21
$1'&$/25,),&9$/8(2)),9()25(67
:22'63(&,(6
The study was performed in compliance with Polish
VWDQGDUGV31&DQG31*6ROLGIXHOV
GHWHUPLQDWLRQRIKHDWRIFRPEXVWLRQDQGFDORUL¿FYDOXHLQ
IRUFH>@+HDWRIFRPEXVWLRQZDVGHWHUPLQHGXVLQJ
DXWRPDWLF./FDORULPHWHUPDQXIDFWXUHGE\Ä3UHF\]MD
Qwa
Qca mH 2O
˜r ,
m pal
where:
+HDW RI HYDSRUDWLRQ U N-NJ 7KH VXP RI ZDWHU
weights related to fuel humidity and weight of water from
EXUQLQJRIK\GURJHQLQFOXGHGLQIXHOLVWKHTXDQWLW\RIZDWHU
after condensing, that is analytical humidity expressed in
humidity kg/ wood kg.
where:
FRQWUROXQLW
2. display of heat of combustion,
FRPSXWHUV\VWHPFRPSXWHUV\VWHP
GLJLWDOGLVSOD\
DJLWDWRU
FDORULPHWULFERPE
7. electric switch,
8.
9.
Fig. 3. 6FKHPDWLFGLDJUDPRI./FDORULPHWHU
thermometer,
signalling diodes,
VWDUWRIPHDVXUHPHQW
ZDWHUPDQWHOWKHUPRPHWHU
DJLWDWRURIZDWHUPDQWHO
FRLO.
*5=(*25=:&,6à21$7$/,$/$%$.
8VLQJVWRLFKLRPHWULFHTXDWLRQVZHDUHDEOHWRFDOFXODWH gives more energy than oak wood is the fact, that it contains
WKDWIURPNJK\GURJHQZHFDQREWDLQNJZDWHUWKDWLVK more volatile oils and resins, which considerably increase
LWVFDORUL¿FYDOXH>@
which can be presented using the formula below :
7KHFDORUL¿FYDOXHRIZRRGGHSHQGVRQLWVW\SHKXmH 2 O
midity and processing form. Despite the fact, that wood
a
a kgH 2O
9h W
transactions are settled almost exclusively in volume units
m pal
kgpaliwa
±FXELFPHWHUVJHQHUDOO\LWVFDORUL¿FYDOXHLVGHWHUPLQHGE\
$VDUHVXOWZHREWDLQHGWKHUHODWLRQIRUFDOFXODWLQJFDO- LWVVSHFL¿FPDVV)RUH[DPSOHDFXWGRZQSLQHKDVGHQVLW\
of 700 kg/m3, but in totally dry condition its density falls
RUL¿FYDOXHZKHQZHNQRZWKHKHDWRIFRPEXVWLRQ
WRNJP3.
a
a
a
a
For energy purposes it is best to use dry wood, howQw Qc r (9h W ever sometimes the waste wood biomass stored for energy
From the above relations results, that in order to deter- SXUSRVHVIHDWXUHVGLIIHUHQWKXPLGLW\$PDWHULDOZKLFKKDV
PLQHWKHFDORUL¿FYDOXHLWLVQHFHVVDU\WRNQRZWKHFRQWHQW already been dried, for example in periods with heavy rains
of hydrogen and analytical humidity in the studied fuel.
or in winter can become moist and will feature a lower
FDORUL¿FYDOXH7RLOOXVWUDWHZKDWWKHLQÀXHQFHRQFDORUL¿FYDOXHRIZRRGIURPIRUHVWWUHHVKXPLGLW\FDQKDYH
7(675(68/76
taking into consideration the already obtained test results,
WKHRUHWLFDOFDOFXODWLRQVRIFDORUL¿FYDOXHVRISDUWLFXODU
,Q)LJZHSUHVHQWHGWHVWUHVXOWVIRUWKHGHWHUPLQDWLRQ ZRRGVSHFLHVDWDVVXPHGKXPLGLW\RIDQG
RIFDORUL¿FYDOXHDQGFDOFXODWLRQRIKHDWRIFRPEXVWLRQRI respectively were performed. The results of calculation
VWXGLHGIRUHVWZRRGVSHFLHVDWDEVROXWHKXPLGLW\RI
ZHUHSUHVHQWHGLQ7DEOHDQGLQWKH¿JXUHZDVSUHVHQWHG
WKHLQÀXHQFHRIKXPLGLW\RQFDORUL¿FYDOXHRIZRRGVSHFLHV
DWKXPLGLW\RI
Ta b l e 2 . +XPLGLW\LPSDFWRQFDORUL¿FYDOXHRISDUWLFXODU
wood species.
Type
of wood
Fig. 4. &RPSDULVRQRIKHDWRIFRPEXVWLRQDQGFDORUL¿FYDOXHRI
VWXGLHGIRUHVWWUHHVDWKXPLGLW\RI
7KHKLJKHVWFDORUL¿FYDOXHDPRQJWKHVWXGLHGZRRG
ZDVWHELRPDVVVKRZVSLQH3LQXVV\OYHVWULV±0-NJ
DQGDORZHURQHRDN4XHUFXVUXEUD±0-NJ)URP
WKHDERYHUHVXOWVWKDWWKHFDORUL¿FYDOXHRISLQHDVZHOO
DVKHDWRIFRPEXVWLRQLVDSSUR[KLJKHUDVFRPSDUHG
ZLWKFDORUL¿FYDOXHRIRDN$SUREDEOHFDXVHWKDWSLQHZRRG
Pine
%LUFK
Oak
$VK
Poplar
DW
humidity
%RWWRPFDORUL¿FYDOXH>0-NJ@
DW
DW
DW
humidity
humidity
humidity
In compliance with statistical information made availDEOH E\ WKH 'ĊELFD )RUHVW 0DQDJHPHQW$UHD NQRZLQJ
the percentage share of particular wood species in the
whole waste wood biomass obtained yearly by the above
management area was calculated the total calorific value
for all species that constitute the forest stand of the above
Ta b l e 3 . (QHUJ\SRWHQWLDORIZDVWHZRRGELRPDVVREWDLQHGLQVXEVHTXHQW\HDUVE\WKH'ĊELFD)RUHVW0DQDJHPHQW$UHD
(QHUJ\SRWHQWLDORIZRRGREWDLQHGLQVXEVHTXHQW\HDUV
4XDQWLW\RIZRRGRE&DORUL¿FYDOXHRI
&DORUL¿FYDOXHRI
<HDU
WDLQHGLQWKHVXEVHTXHQW
wood [MJ]
ZRRG>*-@
3
years [m ]
2007
2008
2009
In total
Average yearly result
62 944
5995989766
5995989.77
(OHFWULFHQHUJ\
[MWh]
1665552.7
7+('(7(50,1$7,212)(1(5*(7,&327(17,$/
PDQDJHPHQW DUHD7KH UHVXOWV DUH SUHVHQWHG LQ7DEOH LV *- 7KLV DPRXQW RI HQHUJ\ HTXDOV
below.
0:KHOHFWULFHQHUJ\$QDYHUDJHEDVHG
)URP7DEOHUHVXOWVWKDWWKHFDORUL¿FYDOXHRIZRRG
RQPHGLXP\HDUO\UHVXOWRI0:KLVHTXDO
FDOFXODWHGLQ>*-@IURPWKHWRWDORIZRRGREWDLQHG\HDUO\
WR*-HQHUJ\
E\WKH'ĊELFD)RUHVW0DQDJHPHQW$UHDRYHUWKHSHULRGRI 7KHIXHOYDOXHRIDOODVVRUWPHQWVRIZDVWHZRRGREWDLQHG
\HDUVLV>*-@DVDUHVXOWRIWKH
E\WKH'ĊELFD)RUHVW0DQDJHPHQW$UHDDWWKHH[DPSOH
RI\HDUWRWDOOHG*-
DVVXPSWLRQWKDW0:K 0-WKHREWDLQHGLQWKLV
SHULRGELRPDVVLVHTXDOWRHOHFWULFHQHUJ\RI
MWh over a period of six years, and expressed as average
5()(5(1&(6
\HDUO\TXDQWLW\LWLV0:KZKLFKFRQYHUWHGLQWR
>*-@\LHOGV\HDUO\HQHUJ\
,Q7DEOHZHUHVXPPDULVHGWHVWUHVXOWVZKLFKVKRZ %XþNR - 2VYDOG$ : Rozklad dreva teplom
ZKDWLVWKHFDORUL¿FYDOXHRIWKHELRPDVVIURPDOOVRUWVRI
DRKĖRP78YR=YROHQH
ZDVWHZRRGDWWKHH[DPSOHRI\HDU
2. 'RPDĔVNL0LLQQL'UHZQRMDNRPDWHULDáHQHUJHW\F]Q\:\GDZQLFWZR6**::DUV]DZD
Ta b l e 4 . (QHUJ\SRWHQWLDORIDOOVRUWVRIZDVWHZRRGREWDLQHG Glijer L., 19993URFHV\VSDODQLDLZDORU\ĞURGRZLVNR\HDUO\E\WKH'ĊELFD)RUHVW0DQDJHPHQW$UHDDWWKHH[DPSOH
we wykorzystania drewna do celów grzewczych. Post.
RI\HDU
7HFK/HĞQU±
/DXUyZ=: Wykorzystanie surowca drzewnego
(QHUJ\SRWHQWLDORIZDVWHZRRG
GRFHOyZHQHUJHW\F]Q\FK%LEOLRWHF]NDOHĞQLF]HJR=HType of obtained assortment from <HDU &DORUL¿FYDOXH
waste wood
[m3]
>*-@
V]\WQU
*862FKURQDĝURGRZLVND:DUV]DZD
Dead wood from standing trees
*862FKURQDĝURGRZLVND:DUV]DZD
Dead wood from lying trees
7. *862FKURQDĝURGRZLVND:DUV]DZD
Dead wood from twigs
8. Janowicz L., 2006 %LRPDVD Z 3ROVFH (QHUJHW\ND
Dead wood from stumps and roots L(NRORJLD
In total
9. àXNDVLN$: Szanse dla robinii w Polsce. Trybuna
7KHFDORUL¿FYDOXHRIDOODVVRUWPHQWVRIZDVWHZRRG
/HĞQLNDQU
REWDLQHGE\WKH'ĊELFD)RUHVW0DQDJHPHQW$UHDDWWKHH[- RDLP w Katowicach1DGOHĞQLFWZR.RELyU3ODQ
DPSOHRI\HDUZDV*-
8U]ąG]DQLD/DVXQDRNUHV
5RPHU(, 1999: Regiony klimatyczne Polski. PWTN,
VHU%QU:URFáDZ
Trampler T i in., 1990Ä5HJLRQDOL]DFMH3U]\URGQLF]RCONCLUSIONS
/HĞQDQDSRGVWDZDFKHNRORJLF]QR¿]MRJUD¿F]Q\FK´
PWRiL, Warszawa.
7KHVWDWHRZQHG1DWLRQDO)RUHVWV/DV\3DĔVWZRZH
enterprise is able to deliver wood waste biomass for Wisz J., Matwiejew A., 2005%LRPDVDEDGDQLDZODenergy purposes in the form of different assortments
ERUDWRULXPZDVSHNFLHSU]\GDWQRĞFLGRHQHUJHW\F]QHJR
such as: small dimensioned wood, rests from clearings,
VSDODQLD(QHUJHW\ND
ZLQGIDOOZRRGIXHOZRRGDQGORZTXDOLW\SXOSZRRG =DPRURZVNL.:VSyáVSDODQLHELRPDV\ZNRWOH
LQFDVHRIQDWXUDOGLVDVWHUVKXUULFDQHVÀRRGVLQVHFW
UXV]WRZ\P(QHUJHW\NDQU
SHVWLQIHVWDWLRQVZRRGRIKLJKHUTXDOLW\IRUSURWHFWLRQ Voltz K. R., 1995+ROW]5RKVWRIIGHU=XNXQIW+ROW]=HQWUDOEODWW6WXWJDUWQU
reasons, in order to prevent their depreciation in the
PN-86/C-040623DOLZDFLHNáH2]QDF]DQLHFLHSáDVSDforest.
2. Forest wood waste biomass is a perfect raw material for
ODQLDLZDUWRĞFLRSDáRZHM
the manufacture of ethanol biofuels of II generation, be- PN-81/G-045133DOLZDVWDáH2]QDF]DQLHFLHSáDVSDODQLDLZDUWRĞFLRSDáRZHM
FDXVHLWLVSRVVLEOHWRREWDLQODUJHTXDQWLWLHVRIELRPDVV
with cellulose and lignocellulose content.
7KHKLJKHVWKHDWRIFRPEXVWLRQDQGFDORUL¿FYDOXHDPRQJ
2.5(ĝ/(1,(327(1&-$à8(1(5*(7<&=1(*2
'(1'520$6<2'3$'2:(-32&+2'=Ą&(-
WKHVWXGLHG¿YHVSHFLHVRIIRUHVWZRRGSLQHELUFKRDN
DVKDQGSRSODUIHDWXUHGSLQH±0-NJ0-NJ =1$'/(ĝ1,&7:$'ĉ%,&$-$.2327(1&-$/1(-
%$=<'/$%,23$/,:(7$12/2:<&+
DQGWKHORZHVWRDN±0-NJ0-NJ)URP
,,*(1(5$&-,
WKHDERYHUHVXOWVWKDWWKHFDORUL¿FYDOXHVLPLODUO\WR
KHDWRIFRPEXVWLRQRISLQHLVDSSUR[KLJKHUWKDQ
WKHFDORUL¿FYDOXHRIRDN7KHSUREDEOHFDXVHRIWKHIDFW Streszczenie. &HOHP SUDF\ E\áR oznaczenie FLHSáD VSDODQLD
ZDUWRĞFLRSDáRZHMJyUQHMRUD]Z\]QDF]HQLHZDUWRĞFLRSDáRthat pine wood has higher energy value than oak wood,
ZHMZDUWRĞFLRSDáRZHMGROQHMELRPDV\]GUHZQDRGSDGRZHJR
is because pine has more volatile oils and resins which
potencjalnego surowca do produkcji biopaliw etanolowych II geFRQVLGHUDEO\LQFUHDVHLWVFDORUL¿FYDOXH
QHUDFML1DVWĊSQLH]RVWDQLHRNUHĞORQ\SRWHQFMDáHQHUJHW\F]Q\
7KHIXHOYDOXHRIZRRGREWDLQHG\HDUO\E\WKH'ĊEL- GHQGURPDV\MDNLPRĪQDSR]\VNDüQDFHOHHQHUJHW\F]QH]WHUHQX
FD)RUHVW0DQDJHPHQW$UHDRYHU\HDUV
*5=(*25=:&,6à21$7$/,$/$%$.
1DGOHĞQLFWZD'ĊELFD1DMZ\ĪV]\PFLHSáHPVSDODQLDLZDUWRĞFLą
RSDáRZąZĞUyGSU]HEDGDQ\FKSLĊFLXJDWXQNyZGU]HZOHĞQ\FK
VRVQDEU]R]DGąEMHVLRQLWRSRODFKDUDNWHU\]RZDáDVLĊVRVQD±
0-NJ0-NJQDWRPLDVWQDMPQLHMV]ąGąE±
0-NJ0-NJ:DUWRĞüRSDáRZDGUHZQDSR]\VNLZDQHJR
FRURF]QLHSU]H]1DGOHĞQLFWZR'ĊELFDQDSU]HVWU]HQLODW
Z\QRVL3-
6áRZDNOXF]RZHELRPDVDHWDQROELRSDOLZD,,JHQHUDFMLFLHSáR
VSDODQLDZDUWRĞüRSDáRZD
TEKA. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE – 2014, Vol. 14, No. 4, 197–200
Determination of the Impact of the Type of Camelina Oil
Used for Production of Biofuels on the Fractional Composition of CSME
Grzegorz Wcisło, 2Bolesław Pracuch
1,2
Faculty of Production Engineering and Power Technologies, University of Agriculture in Krakow, Poland
2
BioEnergia Małopolska Centre for Renewable Energy Sources, Poland
e-mail: Grzegorz.wcislo@ur.krakow.pl
1
Received December 08.2014; accepted December 19.2014
Summary. The aim of the study was to determine the impact
RIWKHIU\LQJSURFHVVRQWKHIUDFWLRQDOFRPSRVLWLRQRI&60(
%LRGLHVHOLQFRPSDULVRQWRWKH&60(REWDLQHGIURPXQXVHG
IUHVKFDPHOLQDRLO7KHIUHVKO\SUHVVHGFDPHOLQDRLOZDVGLYLGHG
LQWRWZRSRUWLRQV2QHZDVXVHGIRUIU\LQJFKLSVDWƒ&IRU
DSHULRGRIKRXUV7KHVWXG\VKRZHGWKH&60(ELRGLHVHO
SURGXFHGIURPXQXVHGSXUHFDPHOLQDRLOJHQHUDOO\KDVEHWWHU
distillation properties. The temperatures at the start of distillation
ZHUHVLPLODUIRUERWKRIWKH&60(V:LWKLQWKHPLG
UDQJHWHPSHUDWXUHVWKH&60(SURGXFHGIURPWKHXVHGFRRNLQJ
camelina oil was characterized by higher distillation temperatures for the same volume of fuel. The largest differences were
REVHUYHGIRUWKHDQGGLVWLOODWLRQWHPSHUDWXUHVDQGWKH
¿QDOWHPSHUDWXUHRIWKHGLVWLOODWLRQSURFHVV7KLVPD\WHVWLI\WR
ORZHUSXULW\RIWKH&60(SURGXFHGIURPWKHXVHGFRRNLQJRLO
In such a biofuel there may be more less volatile mono- and
diglycerides or other chemicals which e.g. remain in the oil after
frying. It must be said, though, these are not solid particles, as
WKRVHZHUHVHSDUDWHGIURPWKHRLOWKURXJK¿OWUDWLRQ
Key words: %LRGLHVHO%LRGLHVHOGLHVHOHQJLQHIUDFWLRQDOFRPposition, temperature distillation.
INTRODUCTION
,QDFFRUGDQFHZLWKWKH$FWRQELRFRPSRQHQWVDQGOLTXLGIXHOVDGRSWHGE\WKH3ROLVK6HMPRQ$XJXVW
biofuels may be produced and marketed legally in Poland as
RI-DQXDU\6RIDUWKHFRXQWU\KDVODXQFKHGPDMRU
LQVWDOODWLRQVLQWHQGHGIRUWKHSURGXFWLRQRI)$0(50(
biofuels, whose total production capacity is estimated to
EHDVKLJKDVPLOOLRQWRQQHVRIHVWHUVD\HDU2QWKHRWKHU
hand, the annual national demand for diesel fuel is around
PLOOLRQWRQQHVSHU\HDU7KHXVHRIDIXHODGGLWLYHLQWKH
IRUPRIYYRIELRFRPSRQHQWQHFHVVLWDWHVSURGXFWLRQ
RIDSSUR[WRQQHVRIHVWHUVSHU\HDU
Recently, there has been a great interest among individuals, including farmers, as well as companies and institutions
EHLQJLQSRVVHVVLRQRIYHKLFOHÀHHWVLQWKHSRVVLELOLW\RI
producing biofuels for their own purposes. Under the law
currently applicable in Poland, one may legally produce biRIXHOVIRUWKHLURZQSXUSRVHV$PRQJHVSHFLDOO\SULYLOHJHG
groups are farmers, who are allowed to produce raw material
for the production of biofuels for their purposes, which sigQL¿FDQWO\UHGXFHVWKHSURGXFWLRQFRVWIRUWKLVHQHUJ\FDUULHU
)$0(%LRGLHVHOLVREWDLQHGLQWKHSURFHVVRIWUDQVHVWHUL¿FDWLRQ,WVSDUDPHWHUVGHYLDWHVOLJKWO\IURPWKRVHRI
WKHGLHVHOIXHOKRZHYHULIWKHWUDQVHVWHUL¿FDWLRQSURFHVV
is carried out properly, the resulting biofuel can be used as
an additive in the form of a diesel bio-component or used
DVDSXUHIXHO%)$0(ELRGLHVHOKDVEHWWHUSDrameters compared to the diesel fuel: higher cetane number,
better lubricating properties, higher ignition temperature and
ORZVXOIXUFRQWHQW>@
One of the principal parameters used for assessing the
VXLWDELOLW\RI)$0(ELRGLHVHOVIRUFRPSUHVVLRQLJQLWLRQHQgines is the fractional composition, which is the reason why
this very subject was chosen for investigation by the authors
of this paper. The aim of the research presented below was
to determine and compare the fractional compositions of
WZR&60(ELRIXHOVRQHSURGXFHGIURPSXUHFDPHOLQD
canola oil and the other derived from the same oil but used
in the process of frying chips in a restaurant for a period of
one week. When used in frying, the oil was heated to the
WHPSHUDWXUHRIƒ&
$JURZLQJGHPDQGIRUELRIXHOVSURGXFHGPDLQO\IURP
rape-seed oil makes producers search for new alternative
SODQWV*ROGRISOHDVXUH&DPHOLQD6DWLYDDGLFRW\OHGRQ
EHORQJLQJWREUDVVLFDVSODQWVRIWKHFDEEDJHIDPLO\EHLQJ
RQHRIWKHP>@$VIDUDVVRLOVDUHFRQFHUQHG*ROG
of pleasure is undemanding, compared with oilseed rape,
DQGFDQEHJURZQRQVRLOVRIWKHthDQGthFODVVHV$URXQG
700dm3RIRLOFDQEHREWDLQHGIURPKHFWDURIODQGZKLOH
DSSO\LQJDRQHVWHSPHWKRGRIFROGSUHVVLQJ>@%LRIXHORI
WKH&60(%LRGLHVHOW\SH&DPHOLQD6DWLYD0HWK\O(VWHUV
*5=(*25=:&,6à2%2/(6à$:35$&8&+
ZDVSURGXFHGLQD*:UHDFWRUFRQVWUXFWHGE\RQHRIWKH
0HWK\ODOFRKROPHWKDQROZDVXVHGIRUWUDQVHVWHUL¿FDWLRQ
DXWKRUV*:
RI*ROGRISOHDVXUHRLOZLWKDONDOLQHSRWDVVLXPK\GUR[LGH
SRWDVVLXPK\GUR[LGHSXUHSDDVDFDWDO\VWLQWKHUHDFWLRQ
7KHSURFHVVRIWUDQVHVWHUL¿FDWLRQZDVFDUULHGRXWLQWZR
352'8&7,212)50(%,2)8(/6,17+(
stages and the obtained degree of oil transition into methyl
352&(662)75$16(67(5,),&$7,21)520
HVWHUVZDVHTXDOWRPP7KHUHVXOWKDVSURYHG
385(2,/$1'86('2,/
WKDWWKHREWDLQHG&60(ELRIXHOFRPSOLHVZLWK(1
standards of biofuel for a high pressure engine, as regards
%LRIXHO RI WKH &60( %LRGLHVHO W\SH
&DOFXODWLQJWKHRSWLPXPVWRLFKLRPHWULFDPRXQWRIUHDF- WKHHVWHUFRQWHQWLQ)$0()DWW\$FLG0HWK\O(VWHUV
&DPHOLQD6DWLYD0HWK\O(VWHUVZDVSURGXFHGLQD*: UHDFWRUFRQVWUXFWHGE\RQHRIWKHDXWKRUV*:
WDQWVQHHGHGWRFDUU\RXWWKHWUDQVHVWHUL¿FDWLRQSURFHVVXVXDOO\
LQYROYHVWKHXVDJHRIVLPSOL¿HGPRGHOV>@+RZHYHULQ
'(7(50,1$7,212)7+(,03$&72)7+(
order to determine the appropriate amount of reactants need352'8&7,212)50(%,2)8(/6,17+(352&(662)75$16(67(5,),&$7,21)520385(2,/
7<3(2)&$0(/,1$2,/86(')25%,2)8(/
HGWRSURGXFH50(WKHDXWKRUVRIWKLVSDSHUXVHGDPRGHO
$1'86('2,/
352'8&7,21217+()5$&7,21$/
developed
by one of the co-authors, which makes it possible
&20326,7,212)&60(%,2',(6(/
WRRSWLPDOO\GHWHUPLQHWKHTXDQWLWLHVRIPHWK\ODOFRKRODQG
WKHFDWDO\VWQHFHVVDU\IRUWKHSURFHVVRIWUDQVHVWHUL¿FDWLRQ
&DOFXODWLQJ WKH RSWLPXP VWRLFKLRPHWULF DPRXQW RI UHDFWDQWV QHHGHG WR FDUU\ RXW WKH WUDQVHVWHULILFDWLRQ
$YHU\LPSRUWDQWSDUDPHWHUXVHGIRUWKHDVVHVVPHQWRI
±)LJ>@7KHIROORZLQJUDWLRZDVXVHGIRUWKHSXUSRVH
OLILHG PRGHOV >@
+RZHYHU LQ RUGHU WR GHWHUPLQH WKH DSSURSULDWH
3
DPRXQWRIUHDFWDQWVQHHGHGWRSURGXFH50(WKHDXWKRUVRIWKLVSDSHUXVHGDPRGHOGHYHORSHGE\RQHRIWKHFR
RIWUDQVHVWHUL¿FDWLRQRIFDQRODRLOVIRUHDFKGP
of oil, fuel/biofuel operating properties is their fractional composiDXWKRUV ZKLFK PDNHV LW SRVVLEOH WR RSWLPDOO\ GHWHUPLQH
PHWK\O on the basis of the temperDPL[WXUHREWDLQHGIURPGLVVROXWLRQRIJRI.2+LQ
tion. WKH
SaidTXDQWLWLHV
parameter isRIdetermined
3
)LJ
>@
7KH
IROORZLQJ
UDWLR
ZDV XVHGofIRU
WKH
SXUSRVH
RI
dm RI&+2+ZDVXVHG7UDQVHVWHUL¿FDWLRQZDVSHUIRUPHG atures of distillation. The temperature
fuel
ignition
in an
RIRLODPL[WXUHREWDLQHGIURPGLVVROXWLRQRIJRI.2+LQ
in aWUDQVHVWHULILFDWLRQRIFDQRODRLOVIRUHDFKGP
single step, with the temperature of the start of the process
engine largely depends on the temperature of the start of dis
RI&+2+ZDVXVHG7UDQVHVWHULILFDWLRQZDVSHUIRUPHGLQD
VLQJOHVWHSZLWKWKHWHPSHUDWXUHRIWKH
Go&3DSXULW\&+
EHLQJ
2+PHWK\ODOFRKRORIDPROHFXODU tillation and the amount
of fuel vaporised in the initial stage
DOFRKRO RI
D PROHFXODU
ZHLJKW
JPRO
ZDV
VWDUW RI WKH SURFHVV EHLQJ & 3DSXULW\ &+2+ PHWK\O
ZHLJKWRIJPROZDVXVHGIRUWKHWUDQVHVWHUL¿FDWLRQ
of distillation.
The
higher content
of RI
lightweight
fractions
ZLWK SD
.2+
SRWDVVLXPproperties
K\GUR[LGH
D PROHFXODU
SURFHVVDORQJZLWKSDSXULW\.2+SRWDVVLXPK\GUR[LGH
is, SXULW\
the better
self-igniting
are,ZLWK
which
translates
ZHLJKWRIJPRODVWKHFDWDO\VW
ZLWKDPROHFXODUZHLJKWRIJPRODVWKHFDWDO\VW
GLUHFWO\LQWRJHQWOHUZD\RIVWDUWLQJWKHHQJLQH>@
0RGHOIRUUHFHLYLQJ50()$0(IURPW\SLFDOWULJO\FHULGHIRUFDQRODRLOFRPSULVHGRIWZRROHLFDFLGV
and one linoleic acid
We break down big triglyceride molecule into three small molecules, from which by transesterification using methanol, two molecules of
ROHLFDFLGDQGRQHRIOLQROHLFDFLGDUHREWDLQHG7KHUHVLGXHPDUNHGZLWKV\PERO$DQGWKUHH2+JURXSVGHULYHGIURPEUHDNLQJdown the
methanol molecule create glicerol.
Oleic acid
Unsaturated bonds
MethanoOFDWDO\VW Potassium methoxide
Linoleic acid
Linoleic acid
$VDUHVXOWRIWUDQVHVWHULILFDWLRQRIWULJO\FHULGHWKUHHPROHFXOHVRIIDWDFLGPHWK\OHVWKHUV)$0(DQGRQH
molecule of glycerine are received
R and R2 are acid radicals of oleic acid and linoleic acid, respectively
Methanol
*O\FHULQH
Methanol
Methanol
Oleic acid methyl esther
Linoleic acid methyl esther
Fig. 1. 'LDJUDPRIUDSHVHHGRLOWUDQVHVWHUL¿FDWLRQ
)LJ'LDJUDPRIUDSHVHHGRLOWUDQVHVWHULILFDWLRQ
0HWK\O DOFRKRO PHWKDQRO ZDV XVHG IRU WUDQVHVWHULILFDWLRQ RI *ROG RI SOHDVXUH RLO ZLW
K\GUR[LGHSRWDVVLXPK\GUR[LGHSXUHSDDVDFDWDO\VWLQWKHUHDFWLRQ
'(7(50,1$7,212)7+(,03$&72)7+(7<3(2)&$0(/,1$2,/
Vegetable oils have worse distillation properties, and thus
ZRUVHHQJLQHVWDUWLQJSURSHUWLHVFRPSDUHGWR)$0(>@
In order to achieve proper starting and combustion propHUWLHVLWLVYHU\LPSRUWDQWWRHVWDEOLVK¿YHSRLQWV7KHVHDUH
the temperature at the start of distillation, the temperature
IRUGLVWLOODWLRQRIYYIXHOWKHWHPSHUDWXUHIRUHYDSRUDWLRQRIYYIXHOWKHWHPSHUDWXUHIRUGLVWLOODWLRQ
RIYYIXHODQGWKHWHPSHUDWXUHDWWKHHQGRIWKH
distillation process.
The research determining the fractional compositions
RI&60(ELRIXHOVREWDLQHGIURPSXUHDQGXVHGFDQRODRLO
ZDVFDUULHGRXWLQWKHELRIXHOVODERUDWRU\RI³%LR(QHUJLD´
0DORSROVNL&HQWUHIRU5HQHZDEOH(QHUJ\6RXUFHVDWDZRUNVWDWLRQHTXLSSHGZLWKDFDPHUDIRUGHWHUPLQLQJWKHFRPSRsition of the fuels and biofuels with the method of normal
GLVWLOODWLRQ±)LJ
UHVHDUFKRQWKHGLVWLOODWLRQWHPSHUDWXUHVRI50(%%LRGLHVHOREWDLQHGIURP%/,6.$VHUYLFHVWDWLRQFKDLQRZQHG
E\3.125/(1JURXSDQG(NRGLHVHOIXHOREWDLQHGIURP
3.125/(1JURXSVHUYLFHVWDWLRQV
Table 2 summarizes the values of the most important
SRLQWVRIWKHGLVWLOODWLRQFXUYHIRU50(%LRGLHVHOVREWDLQHG
from both of the canola oils, i.e. the temperatures at the start
DQGHQGRIWKHGLVWLOODWLRQSURFHVVDQGWKHSHUFHQWDJHYY
RIGLVWLOOHGIXHOVDWRUEHORZƒ&DQGƒ&
Ta b l e 1 . Comparison of distillation temperatures for two
&60(%LRGLHVHOVDQG50(%LRGLHVHOIURP%/,6.$VHUYLFH
stations and diesel fuel
>YY@RI &60(%LRGLHVHO &60(%LRGLHVHO 50(%LRGLHVHO
ON
distillation from pure oil
from used oil
%/,6.$
0
202
20
222
270
279
287
70
80
90
Ta b l e 2 . Characteristic distillation curve points for diesel
DQG&60(ELRIXHOV
Fig. 2. 3KRWREHQFKHTXLSSHGZLWKDGLVWLOOHU+$'E\
+HU]RJ
5(68/76
8SWRWKLVWHPSHUDWXUHYYZDVGLVWLOOHG
Start of
(QGRI XSWRoC XSWRoC
fuel
distillation distillation
distils
distils
[oC]
YY>@
YY>@
[oC]
&60(%LRGLHVHO
0
29
from pure oil
&60(%LRGLHVHO
0
27
from used oil
50(%LRGLHVHO
0
%/,6.$
ON
CONCLUSIONS
7KHVWXG\KDVVKRZQWKDW&60(%LRGLHVHOSURGXFHG
7DEOHVXPPDUL]HVWKHUHVXOWVRIWKHUHVHDUFKGHWHUPLQ- IURPXQXVHGIUHVKFDPHOLQDRLOLVFKDUDFWHUL]HGE\EHWWHU
LQJWKHVHGLVWLOODWLRQSURSHUWLHVRI&60(%%LRGLHVHOV distillation properties. The initial stages of distillation and the
For comparison purposes, the table shows the results of the TXDQWLW\RIPLGGOHGLVWLOODWHVLQVDLG&60(VDUHVLPLODU7KH
200
*5=(*25=:&,6à2%2/(6à$:35$&8&+
7. :FLVáR*: Utilization of used oils and fat for
PDQXIDFWXULQJ)$0(ELRIXHOV7HND.RPLVML0RWRU\]DFMLL(QHUJHW\NL5ROQLFWZD9RO;V
8. :FLVáR*: Przetwarzanie biomasy na cele enerJHW\F]QH3UDFD]ELRURZDSRGUHGDNFMą)UąF]HN-8QLZHUV\WHW5ROQLF]\LP+.RááąWDMD.UDNyZ
9. :FLVáR*2NUHĞOHQLHVNáDGXIUDNF\MQHJRELRSDOLZUROQLF]\FK]DZLHUDMąF\FKELRNRPSRQHQW&60(
,QĪ\QLHULD5ROQLF]D9RO
Wojtkowiak R. and others. 2009: Production Costs
LQD1RYHO0HWKRGRI0DQXIDFWXUHRIWKH0HWK\O(VWHUV)URP)DOVH)OD[&DPHOLQD6DWLYD/2LOIRU)HHG
WKH3LVWRQ&RPSUHVVLRQ,JQLWLRQ(QJLQHV-RXUQDORI
5HVHDUFKDQG$SSOLFDWLRQLQ$JULFXOWXUH(QJLQHHULQJ
9RO
Wojtkowiak R. and others. 2007: Olej lniankowy jako
SDOLZRGR]DVLODQLDVLOQLNyZ]]DSáRQHPVDPRF]\QQ\P
0RQRJUD¿DSRGUHGDNFMą==E\WNDWRP:\EUDQH
]DJDGQLHQLDHNRORJLF]QHZHZVSyáF]HVQ\PUROQLFWZLH
3U]HP\VáRZ\ ,QVW\WXW 0DV]\Q 5ROQLF]\FK 3R]QDĔ
Wojtkowiak R. and others. 2007: Koszt produkcji paOLZD]ROHMXOQLDQNRZHJRGRVLOQLNyZ]]DSáRQHPVDPRF]\QQ\P0RQRJUD¿DSRGUHGDNFMą==E\WNDWRP
:\EUDQH]DJDGQLHQLDHNRORJLF]QHZHZVSyáF]HVQ\P
UROQLFWZLH3U]HP\VáRZ\,QVW\WXW0DV]\Q5ROQLF]\FK
3R]QDĔ
6]ODFKWD==DVLODQLHVLOQLNyZZ\VRNRSUĊĪQ\FK
paliwami rzepakowymi, Wydawnictwa Komunikacji
LàąF]QRĞFL:.à±:DUV]DZD
Biodiesel 2006+DQGOLQJDQG8VH*XLGHOLQHV86'H5()(5(1&(6
SDUWPHQWRI(QHUJ\7KLUG(GLWLRQ6HSWHPEHU
8VWDZD]GQLDVLHUSQLDURELRNRPSRQHQWDFK
LELRSDOLZDFKFLHNá\FK']8QUSR]
&LVHN-0UXN$+ODYĖD9 The properties of
]SyĨQ]P
D+'9'LHVHOHQJLQHIXHOOHGE\FUXGHUDSHVHHGRLO7HND
.RPLVML0RWRU\]DFMLL(QHUJHW\NL5ROQLFWZD9RO;,
Cisek J., Mruk A. 2012::áDĞFLZRĞFLVLOQLND=6]D2.5(ĝ/(1,(:3à<:852'=$-88ĩ<7(*2
2/(-85=(3$.2:(*2'2352'8.&-,%,23$/,:
VLODQHJRQDWXUDOQ\PROHMHPU]HSDNRZ\P=HV]\W\1D1$6.à$')5$.&<-1<&60(
ukowe Instytutu Pojazdów Politechniki Warszawskiej
]VHULL0HFKDQLND(NRORJLD%H]SLHF]HĔVWZR0HFKDWURStreszczenie. 3U]HSURZDG]RQHEDGDQLDSRND]Dá\ĪHQLH]DOHĪQLH
QLND9RO
Jakóbiec J., Ambrozik A. 2009: Procesy starzenia RGURG]DMX]DVWRVRZDQHJRROHMXOQLDQNLGRSURGXNFML50(F]\
HVWUyZPHW\ORZ\FKNZDVyZWáXV]F]RZ\FKROHMXU]HSD- EĊG]LHWRROHMQLHXĪ\W\OXE]XĪ\W\]DNUHV\WHPSHUDWXUGHVW\ODFMLE\á\SRGREQH1LHZLHONLHUyĪQLFH]DQRWRZDQRMHG\QLHGOD
NRZHJR,QĪ\QLHULD5ROQLF]DV
WHPSHUDWXUNRĔFDGHVW\ODFML&60(Z\SURGXNRZDQH]]XĪ\WHJR
8]GRZVNL0 20060RĪOLZRĞFLZ\NRU]\VWDQLDPLHROHMXOQLDQNLSRWU]HERZDáRZ\ĪV]\FKWHPSHUDWXUGRRGSDURZDQLD
szanin paliw tradycyjnych i alternatywnych do zasilania FDáHMREMĊWRĞFL)$0(0RĪHWRĞZLDGF]\üRPQLHMV]HMF]\VWRĞFL
VLOQLNyZ=60RWURO9RO$
&60(X]\VNDQHJR]H]XĪ\WHJRROHMX:WDNLPELRSDOLZLHPRĪH
Tys J. i in. 2003: Technologiczne i ekonomiczne uwa- ]QDMGRZDüVLĊZLĊFHMPDáRORWQ\FKPRQRLGLJOLFHU\GyZOXE
runkowania produkcji biopaliwa z rzepaku. Instytut LQQ\FK]ZLą]NyZNWyUHQSSR]RVWDá\ZROHMXSRSURFHVLHVPD$JUR¿]\NLLP%RKGDQD'REU]DĔVNLHJR3$1Z/XEOLQLH ĪHQLDIU\WHN3U]\F]\PQLHFKRG]LWXRF]ąVWNLVWDáHSRQLHZDĪ
:FLVáR* 2011: 7HVWLQJ$)0(DQG50(ELRIXHOVIRU WH]RVWDá\RGG]LHORQHRGROHMXSRGF]DV¿OWUDFML
composition of fatty acids. Teka Komisji Motoryzacji 6áRZDNOXF]RZH%LRGLHVHOELRSDOLZRVLOQLNZ\VRNRSUĊĪQ\
VNáDGIUDNF\MQ\WHPSHUDWXU\GHVW\ODFML
L(QHUJHW\NL5ROQLFWZD9RO;,&
VWDUWRIGLVWLOODWLRQIRUERWKWKH&60(VRFFXUUHGDWDSSUR[
o&$SSUR[YYRI50(ZDVGLVWLOOHGXSWRoC.
*UHDWHUGLIIHUHQFHVZHUHREVHUYHGIRUWKHYYGLVWLOlation temperatures and at the end of the distillation process.
YY&60(&60(YDSRULVHGXSWRWKHWHPSHUDWXUHRI
270oC, whearas for biufuel derived from used oil the temperature was 282o&&60(REWDLQHGIURPWKHIUHVKFDPHOLQDRLO
ZDVHQWLUHO\GLVWLOOHGXSWRWKHWHPSHUDWXUHRIoC, while
50(GHULYHGIURPWKHXVHGFDPHOLQDRLOYDSRULVHGRQUHDFKLQJo&7KLVPD\WHVWLI\WRORZHUSXULW\RIWKH&60(
produced from used cooking oil. In such biofuel, there may be
more less volatile mono- and diglycerides or other chemicals
which result from the lower level of oil-to-biofuel conversion
and/or are an effect of residues from the process of frying
chips. It must be said, though, these were not solid particles,
DVWKRVHZHUHVHSDUDWHGIURPWKHRLOWKURXJK¿OWUDWLRQ
$IWHUWKHFRPSDULVRQRIWKHUHVXOWVIRUERWKWKH&60(V
ZLWKDFRPPHUFLDO50(ELRIXHOREWDLQHGIURP%/,6.$
service stations, it turned out that biofuels from camelina
are characterized by slightly worse distillation properties.
1RWDEOHLVWKHGLIIHUHQFHLQWKHTXDQWLW\RI50(GLVWLOOHGXS
WRWKHWHPSHUDWXUHRIƒ&VLQFH%/,6.$VHUYLFHVWDWLRQ
ELRIXHOVYDSRUL]HGLQJUHDWHUDPRXQWV±YYPRUHWKDQ
WKH&60(SURGXFHGIURPWKHSXUHRLODQGPRUHWKDQ
WKH&60(IURPWKHXVHGFRRNLQJFDPHOLQDRLO
%RWKWKH&60(VGRQRWFRPSO\ZLWKWKHUHTXLUHPHQWV
VHWE\(1IRU)$0(SODQWELRIXHOVGXHWRWKH¿QDO
distillation temperature. Under the above-mentioned standDUGWKHWHPSHUDWXUHRIƒ&QHHGVWRYDSRULVHWKHHQWLUH
amount of biofuel.
2.
TEKA. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE – 2014, Vol. 14, No. 4, 201–210
Effects of Pre-Sowing Magnetic Stimulation on the Growth, Development
and Changes in Physicochemical Properties in Sugar Beet Seedlings
Miłosz Zardzewiały, Grzegorz Zaguła, Czesław Puchalski
Department of Bioenergy Technologies, University of Rzeszow
ul. Rejtana 16C, 35-959 Rzeszow, Poland
Received December 02.2014; accepted December 17.2014
Summary. 7KHPDJQHWLF¿HOGLVDSK\VLFDOIDFWRUWRLPSURYHJHUmination and development of plants. The laboratory experiment
was conducted to determine the effect of pre-sowing magnetic
¿HOGVWLPXODWLRQRQWKHDELOLW\RIJURZWKDQGGHYHORSPHQWDQG
changes in the physicochemical properties of sugar beet seedOLQJV8VHGPDJQHWLF¿HOGRIORZIUHTXHQF\I +]% P7H[SRVXUHWLPHW VHFRQGV7KHQLGHQWL¿HGWKHPRVW
favorable induction. In the rest of the experiment the results were
compared with a control group, taking into account changes in
the basic physical and chemical properties of beet seedlings.
The observations carried out during the experiment focused on
the growth of plants and determining the basic composition of
micro- and macronutrients in the emerging plants.
Key words: PDJQHWLF ¿HOGV SK\VLFRFKHPLFDO FRPSRVLWLRQ
heavy metals; sugar beet germination.
INTRODUCTION
6XJDUEHHW%HWDYXOJDULVVXEVSYXOJDULVFRQYDUFUDVVDSURYDUDOWLVVLPDLVDQLQGXVWULDOSODQWZLWKODUJHFRQWHQWV
of sucrose and, after sugarcane, it is the second most important source of sugar produced for consumption, accounting
IRUDSSUR[RIJOREDOSURGXFWLRQ>@6XJDUEHHW
belongs to the Chenopodiaceae family. It originated from
WKHFRDVWVRIWKH0HGLWHUUDQHDQ&DVSLDQDQG%ODFN6HDV
,Q3RODQGDQGRWKHUFRXQWULHVJOREDOO\VXJDUEHHWLV
the basic raw material used for production of sugar in the
WHPSHUDWHFOLPDWH]RQH>@0RUHRYHUVXJDUEHHWPD\EH
a valuable forage crop or raw material for various branches
RILQGXVWU\>@
Crop cultivation is indispensable for human existence,
for production of food of both plant and animal origin.
People must continuously increase food production due
to the growing population. In order to provide sustenance
IRUSHRSOHLQDGHTXDWHTXDQWLW\DQGTXDOLW\LWLVQHFHVVDU\
WRVLJQL¿FDQWO\LPSURYHIUXLWIXOQHVVLQSODQWV7KLVFDQ
be achieved by using two groups of technologies: those
necessary for enhancing genotypes of cultivars as well as
more effective and environmentally friendly cultivation
systems. Until the eighteenth century crops were increased
by expanding area designated for cultivation. Starting from
WKHQLQHWHHQWKFHQWXU\DSSOLFDWLRQRIVFLHQWL¿FDFKLHYHments became more and more important; these included
theoretical basics of soil chemistry and agronomy, initiated
production of superphosphate and import of nitrates from
&KLOHWRWKH86$DQG(XURSHV\QWKHVLVRIDPPRQLDDQG
FRQVWUXFWLRQRIWKH¿UVWDPPRQLDIDFWRU\7KH¿UVWQDWXUDO
pesticide was tobacco extract, used from the early eightHHQWKFHQWXU\WRGHVWUR\DSKLGVDQGWKH¿UVWV\QWKHWLFDJHQW
ZDVGLQLWURRUWKRFUHVRODWH>@&RQWHPSRUDU\DJULFXOWXUH
utilizes large amounts of chemical agents which adversely
impact the environment and the condition of soil. Therefore
various endeavours are initiated in order to reduce application of chemical substances and restore biodiversity [20].
<HWLQRUGHUWRHQKDQFHVRZLQJPDWHULDOLQWKHWLPHVRI
the disturbed natural environment it is necessary to look
IRUQHZVDIHPHWKRGVIRUDFKLHYLQJWKLV>@5HFHQW\HDUV
have seen a notable increase in the size of farming areas
designated for cultivation of crops by means of ecological or integrated methods; there is alsogrowing interest in
SURHFRORJLFDOPHWKRGVRILPSURYLQJWKHTXDOLW\DQGKHDOWK
of seeds [20].
During the last decade more and more research has
focused on effects of pre-sowing electromagnetic radiaWLRQRQVHHG¿HOGSHUIRUPDQFH7KLVW\SHRIVWLPXODWLRQLV
cost-effective, and does not adversely impact the plants.
+HQFHWKHUHLVDJUHDWQHHGIRUGHYHORSLQJQHZPHWKRGV
RIHQKDQFLQJVHHGV>@
4XDOLW\RIVHHGVXVHGIRUVRZLQJLVDPDMRUIDFWRULPpacting growth and development of plants, and ultimatelythe
\LHOG%\DSSO\LQJYDULRXVPHWKRGVRIHQKDQFLQJVRZLQJ
material it is possible to considerably improve its germinaWLRQUDWH>@3K\VLFDOIDFWRUVVXFKDVLQIUDUHGXOWUDYLROHW
laser, or microwave radiation, ultrasounds or electric, mag-
0,à26==$5'=(:,$à<*5=(*25==$*8à$&=(6à$:38&+$/6.,
202
QHWLFDQGHOHFWURPDJQHWLF¿HOGDUHPRUHDQGPRUHIUHTXHQWO\
used to stimulate seeds before sowing. These methods are
considered to be safe for the environment; hence they may
SURYHXVHIXOIRURUJDQLFIDUPLQJ>@
3K\VLFDODJHQWVPRVWGH¿QLWHO\ZLOOQRWUHSODFHHIIHFWLYH
FKHPLFDOPHWKRGV\HWWKH\PD\EHDEHQH¿FLDOVXSSOHPHQW
for the latter. One of the factors which may prove useful for
stimulating seed vigour and growth of plants is magnetic
¿HOGEHFDXVHLWVLPSDFWRQVHHGVDQGJURZWKRISODQWVLV
QRWLFHDEOHHYHQZLWKORZLQGXFWLRQYDOXHV>@,PSDFW
RIPDJQHWLF¿HOGRQSODQWVGHSHQGVRQLWVVL]HDQGQDWXUH Fig. 1a. Multilayer air core inductor.
3ODQWVDUHH[SRVHGWRGLIIHUHQWW\SHVRIPDJQHWLF¿HOG±
VWDWLFZLWKFRQVWDQWPDJQHWLFLQGXFWLRQDOWHUQDWLQJ>@
RVFLOODWLQJ>@DQGSXOVHG>@
Numerous studies allow a conclusion that stimulation
RIVHHGVZLWKPDJQHWLF¿HOGEHIRUHVRZLQJUHVXOWVLQKLJKer crops without the use of additional mineral fertilizers
>@3UHYLRXVUHVHDUFKFRQGXFWHGLQODERUDWRULHVDQGDW
PLFUR¿HOGVVKRZKLJKO\SRVLWLYHHIIHFWRIVWLPXODWLRQE\
PHDQVRIPDJQHWLF¿HOGRQJHUPLQDWLRQDQGJURZWKDVZHOO
as yield in selected cereals, pulses, root crops, vegetables and
ÀRZHULQJSODQWV>@
Ta b l e 1 . 0DJQHWLF¿HOGYDOXHVLQUHVHDUFK>
@
Plant
Wheat
Sugar snap peas
Flowering plants
Potato
Maize
0DJQHWLF¿HOGYDOXH
)URPDIHZP7WR7
P7P7P7P7
P7P7
P7P7P7
P7P7
7KHSXUSRVHRIWKHSUHVHQWVWXG\ZDVWRGH¿QHWKHLPSDFWRIVWLPXODWLRQZLWKVORZFKDQJLQJPDJQHWLF¿HOGZLWK
LQGXFWLRQYDOXHVRIDQGP7DWIUHTXHQF\RI+]
DQGGXUDWLRQRIH[SRVLWLRQVHFRQGVRQWKHHPHUJHQFH
and growth of sugar beet seedlings; additionally after the
PRVWEHQH¿FLDOPDJQHWLF¿HOGZDVLGHQWL¿HGFKDQJHVLQ
physicochemical properties of sugar beet seedlings were
also investigated.
0$7(5,$/$1'0(7+2'6
7HQFXOWLYDUVRIVXJDUEHHW%HWDYXOJDULV/ZHUHVHlected for the study. Seeds of each cultivar were divided
LQWRJURXSVHDFKFRPSULVLQJVHHGV(DFKFXOWLYDU
ZDVH[SRVHGWRDOWHUQDWLQJPDJQHWLF¿HOGRIDQG
P7DWIUHTXHQF\RI+]LQRUGHUWRGHWHUPLQHWKH¿HOG
ZLWKWKHPRVWEHQH¿FLDOLPSDFWRQWKHVSHHGRIJHUPLQDWLRQ
DQGJURZWKRIVHHGV7KHSUHVRZLQJVHFRQGPDJQHWLF
stimulation was conducted by means of air core inductor
±VROHQRLGRIFRSSHUZLUHPPFRLOV¿JXUHDE
,QGXFWRUSDUDPHWHUV/HQJWK±P'LDPHWHU±P
1XPEHURIFRLOV±LQZLQGLQJOD\HUV
One group, i.e. control seeds, was not subjected to
stimulation. The laboratory experiment was carried out in
SK\WRWURQZLWKFRQVWDQWFRQGLWLRQVLHWHPSHUDWXUHƒ&
Fig. 1b. 6LPXODWHGKRPRJHQHLW\RIWKHVXUURXQGLQJ¿HOGGLVtribution.
“ƒ&KXPLGLW\DQGFRQVWDQWLOOXPLQDWLRQ6HHGVLQ
JURXSVRIZHUHSODQWHGLQSRWV¿OOHGZLWKVRLO7KHWRWDO
RISRWVZHUHSODFHGLQWKHSK\WRWURQIRUHDFKFXOWLYDU
WKHUHZHUHIRXUYDULDQWV±P7P7P7DWIUHTXHQF\
RI+]DQGWKHFRQWUROVDPSOH
7KHH[SHULPHQWZDVFRQWLQXHGIRUGD\V(DFKGD\DW
the same time the seeds were watered with distilled water,
POSHUHDFKSRW7KHQXPEHURIHPHUJLQJVKRRWVZDV
recorded and the lengths of seedlings were compared during
WKHFRQVHFXWLYHGD\VRIWKHH[SHULPHQW$WWKHHQGRIWKHH[periment the results were entered into a summary table and,
based on that, graphs were complied to show the effects of
PDJQHWLF¿HOGRQJHUPLQDWLRQUDWHLQWKHVSHFL¿FFXOWLYDUV
¿QDOO\WKHPRVWEHQH¿FLDOPDJQHWLF¿HOGZDVLGHQWL¿HGIRU
IXUWKHUSK\VLFRFKHPLFDOWHVWV$QDO\WLFDOPHDVXUHPHQWVRI
the control sample and the sprouts from seeds stimulated
ZLWKWKHRSWLPXPPDJQHWLF¿HOGZHUHSHUIRUPHGXVLQJWKH
IROORZLQJHTXLSPHQW
± 7*$/HFRŠWKHUPRJUDYLPHWULFDQDO\]HUWRGHWHUmine the contents of water, ash, and volatile substances;
± 7UXH6SHF&+1/HFRŠHOHPHQWDOGHWHUPLQDWRUWRLGHQtify the contents of basic building elements;
± ,&32(6L&$3'XDO7KHUPRŠWRGHWHUPLQHFRQcentrations of selected micro and macro elements, with
the use of microwave mineralization.
$QDO\WLFDO PHDVXUHPHQWV RI WKH FRQWURO VDPSOH DQG WKH
IROORZLQJHTXLSPHQW
x
())(&762)35(62:,1*0$*1(7,&67,08/$7,21
x
7UXH 6SHF &+1
x
,&32(6L&$3'XDO
5(68/76
)LJXUH SUHVHQWV FRQFHQWUDWLRQV RI VHOHFWHG KHDY\
metals in shoots of prestimulated plants in comparison to
Findings of the experiment allow a conclusion that seedlings which had not been exposed to magnetic stimulaSUHVRZLQJVWLPXODWLRQRIVHHGVZLWKDPDJQHWLF¿HOGVLJ- tion. The graph shows decreased tendency for accumulating
QL¿FDQWO\LPSDFWHGWKHDELOLW\RIVXJDUEHHWVWRJHUPLQDWH harmful metals following magnetic prestimulation of the
ERWKGXULQJWKHLQLWLDOVHYHQGD\V)LJXUHPHDQUHVXOWV sowing material, in particular for such elements as zinc,
IRUWKHFXOWLYDUVDQGWKURXJKRXWWKHHQWLUHH[SHULPHQW
nickel and lead. On average thedifference in the overall
G
days. The speed of germination in the seeds stimulated with DPRXQWRIDFFXPXODWHGKDUPIXOHOHPHQWVUHDFKHVSHU
PDJQHWLF¿HOGZDVVLJQL¿FDQWO\KLJKHU
a cultivar and the standard deviation between results for
VSHFL¿FFXOWLYDUVGRHVQRWH[FHHG
40
EƵŵďĞƌŽĨƐĞĞĚůŝŶŐƐ΀ĞĂĐŚ΁
35
120%
seeds witout stimulation
30
seeds with 40mT prestimulation
100%
25
0 mT
20
80%
10 mT
15
20 mT
10
60%
40 mT
5
40%
0
1
2
3
4
6
7
ƚ΀ĚĂLJƐ΁
Fig. 2. (IIHFWVRISUHVRZLQJVWLPXODWLRQZLWKPDJQHWLF¿HOGRQ
PHDQYDOXHVIRUFXOWLYDUV
the speed of germination in the seeds
of sugar beets during the
LQLWLDOVHYHQGD\VRIWKHH[SHULPHQW±PHDQYDOXHVIRUFXOWLYDUV
Figure 2.(IIHFWVRISUH-sowing stimulation with magnetic field on the speed of germination in the seeds of
20%
0%
Al
Cd
Cr
Ni
Pb
Zn
Fig. +HDY\PHWDOVFRQFHQWUDWLRQLQVHHGOLQJVVXEMHFWHGDQGQRWVXEMHFWHGWRPDJQHWLFVWLPXODWLRQ
3. +HDY\PHWDOVFRQFHQWUDWLRQLQVHHGOLQJVVXEMHFWHGDQG
P7
QRWVXEMHFWHGWRPDJQHWLFVWLPXODWLRQ±PHDQUHVXOWVIRUWKH
7KHUHVXOWVRIWKHVWXG\VXJJHVWWKDWP7PDJQHWLF cultivars.
P7
P7
ŵĂĐƌŽĞůĞŵĞŶƚƐĐŽŶĐĞŶƚƌĂƚŝŽŶ΀ŵŐͬŐ΁
ŵĂĐƌŽĞůĞŵĞŶƚƐĐŽŶĐĞŶƚƌĂƚŝŽŶ΀ŵŐͬŐ΁
¿HOGKDGWKHPRVWEHQH¿FLDOLPSDFWRQWKHVSURXWLQJYLJRXU +HDY\PHWDOVFRQFHQWUDWLRQLQVHHGOLQJVVXEMHFWHGDQGQRWVXEMHFWHGWRPDJQHWLFVWLPXODWLRQ
DFFXPXODWHJUHDWHUTXDQWLWLHVRI
LQVXJDUEHHWVRIDOOWKHPDJQHWLF¿HOGYDOXHVDSSOLHGLQ
)LJXUHVKRZVWKHWHQGHQF\RISODQWVHPHUJLQJIURP
DQG GRHV QRW GHSHQG RQ WKH FXOWLYDU ZKLFK FDQ EH VHHQ LQ WKH VPDOO PD[LPXP WKHH[SHULPHQWLHP7DQGP7DQGP7)LJXUH VHHGVVWLPXODWHGPDJQHWLFDOO\WRDFFXPXODWHJUHDWHUTXDQ
Therefore, sprouts which emerged from seeds stimulated tities of macroelements. The tendency is visible for each
DFFXPXODWHJUHDWHUTXDQWLWLHVRI
ZLWKP7PDJQHWLF¿HOGZHUHVHOHFWHGIRUIXUWKHUDQDO\WLFDO element and does not depend on the cultivar, which can
DQG GRHV QRW GHSHQG RQ WKH FXOWLYDU ZKLFK FDQ EH VHHQ LQ WKH VPDOO PD[LPXP tests. Presented below, the results provide comparative data EHVHHQLQWKHVPDOOPD[LPXPVWDQGDUGGHYLDWLRQLQ
for the contents of microelements, macroelements, heavy measurements for various cultivars.
metals, water and ash in the control sample and the sample
9,00
H[SRVHGWRWKHRSWLPXPPDJQHWLF¿HOGEHIRUHVRZLQJ
seeds witout stimulation
seeds with 40mT prestimulation
8,00
'XULQJWKHGD\SURFHVVWKHPRVWQRWDEOHZDVWKH
7,00
fourth day of the experiment, when the most pronounced
6,00
difference was observed between the number of seedlings
5,00
in the control sample and the sprouts emerging from mag4,00
QHWLFDOO\VWLPXODWHGVHHGV7DEOH7KHGLIIHUHQFHRIXS
3,00
WRZDVLQIDYRXURIWKHPDJQHWLFDOO\LQGXFHGVHHGV
2,00
The results for all the cultivars, presented in the following
VXPPDU\WDEOHFRQ¿UPWKHDERYHVWDWHPHQW
1,00
0,00
Ta b l e 2 . Number of shoots on the fourth day of the experiment
LQVDPSOHVVWLPXODWHGZLWKPDJQHWLF¿HOGDQGLQWKHFRQWUROVDPSOH
Number of shoots [each]
Control sample
Sugar beet
40 mT
SD
– 0 mT
cultivar no. PDJQHWLF¿HOG
13 - Milton
0.7
9
8 - Primadonna
23 - Schubert
22
25 - Alegra
14 - Agent
0.9
2 - Janosik
28
'DQXĞND
27
4 - Agnieszka
29
26 - Silvetta
27 - Tadeusz
2.8
SD
2.9
0.8
2.8
2.9
Ca
K
Mg
Na
P
S
Fig.
4. Concentrations of selected macroelements-mean results
for the investigated cultivars.
The tendency for shoots of plants prestimulated with alWHUQDWLQJPDJQHWLF¿HOGWRDFFXPXODWHVPDOOHUTXDQWLWLHVRI
PLQHUDOFRPSRQHQWVLVFRQ¿UPHGE\UHVXOWVRIWKHUPRJUDYLPHWULFDQDO\VLV)LJXUHSUHVHQWVWKHFRQVLVWHQWWHQGHQF\LQ
the measurements of total ash in incinerated plant material.
5HVXOWVRIWKHVHDQDO\VHVDUHVWDWLVWLFDOO\VLJQL¿FDQWIRUHDFK
RIWKHFXOWLYDUVXQGHUGLVFXVVLRQ
7KHVH¿QGLQJVDUHIXUWKHUFRQ¿UPHGE\PHDVXUHPHQWV
RIZDWHUFRQWHQWLQWKHHPHUJLQJVHHGOLQJV$VGHPRQVWUDWHGE\)LJXUHWKHUHVXOWVVKRZHGWKHVHHGOLQJVVXEMHFWHG
to stimulation before sowing tended to accumulate greater
TXDQWLW\RIIUHHZDWHU,QWKLVVWLPXODWLRQJURXSLQHDFKFDVH
seeds witout stimulation
seeds witout stimulation
seeds with 40mT prestimulation
seeds witout stimulation
seeds with 40mT prestimulation
seeds witout stimulation
13 13
8
8
23 23 25 25 14 14 2 2 5
sĂƌŝĞƚŝĞƐŶƵŵďĞƌ
5
4
4
26 26 27 27
seeds with 40mT prestimulation
seeds witout stimulation
seeds witout stimulation
seeds with 40mT prestimulation
seeds witout stimulation
seeds with 40mT prestimulation
seeds witout stimulation
8
8
23 23 25 25 14 14 2 2 5
sĂƌŝĞƚŝĞƐŶƵŵďĞƌ
5
4
4
26 26 27 27
seeds with 40mT prestimulation
seeds witout stimulation
seeds with 40mT prestimulation
seeds with 40mT prestimulation
seeds witout stimulation
seeds with 40mT prestimulation
seeds witout stimulation
seeds with 40mT prestimulation
5
seeds witout stimulation
4
4
26 26 27 27
seeds with 40mT prestimulation
seeds witout stimulation
seeds with 40mT prestimulation
seeds witout stimulation
seeds with 40mT prestimulation
seeds with 40mT prestimulation
seeds witout stimulation
seeds with 40mT prestimulation
seeds witout stimulation
seeds with 40mT prestimulation
seeds witout stimulation
seeds with 40mT prestimulation
23 23 25 25 14 14 2 2 5
sĂƌŝĞƚŝĞƐŶƵŵďĞƌ
seeds with 40mT prestimulation
seeds with 40mT prestimulation
seeds witout stimulation
seeds with 40mT prestimulation
seeds witout stimulation
$V GHPRQVWUDWHG E\ )LJ
seeds witout stimulation
88
seeds with 40mT prestimulation
90
seeds with 40mT prestimulation
86
seeds witout stimulation
seeds witout stimulation
8
seeds witout stimulation
seeds witout stimulation
seeds witout stimulation
seeds with 40mT prestimulation
8
seeds with 40mT prestimulation
seeds witout stimulation
13 13
seeds with 40mT prestimulation
seeds witout stimulation
seeds with 40mT prestimulation
13 13
seeds with 40mT prestimulation
seeds with 40mT prestimulation
VLJQLILFDQWGHFUHDVHLQWKLVSDUDPHWHUIRUVSURXWVHPHUJLQJIURPVHHGVWUHDWHGZLWKP7
seeds witout stimulation
92
seeds with 40mT prestimulation
seeds witout stimulation
>ĞǀĞůŽĨǁĂƚĞƌ͕й
>ĞǀĞůŽĨĂƐŚ͕й
seeds with 40mT prestimulation
seeds witout stimulation
>ĞǀĞůŽĨǀŽůĂƚŝůĞ͕й
DFFXPXODWH VPDOOHU TXDQWLWLHV RI PLQHUDO FRPSRQHQWV
SU
0,à26==$5'=(:,$à<*5=(*25==$*8à$&=(6à$:38&+$/6.,
VLJQLILFDQWIRUHDFKRIWKHFXOWLYDUVXQGHUGLVFXVVLRQ
2,5
3
1,5
2
0,5
1
0
Fig. 5. Results of analyses investigatingash content in the examined beet root seedlings.
98
96
94
WR DFFXPXODWH JUHDWHU TXDQWLW
84
ZDWHUFRQWHQWZDVKLJKHURQDYHUDJHE\LQFRPSDULVRQ
Fig. 6. 5HVXOWVRIDQDO\VHVLQYHVWLJDWLQJZDWHUFRQWHQWLQWKHH[DPLQHGVXJDUEHHWVHHGOLQJVDIWHUGU\LQJWHVWDWWHPSHUDWXUHRIƒ&
4
3,5
3
2,5
$QRWKHU LQYHVWLJDWHG SDUDPHWHU ZDV WKH FRQWHQW
2
1,5
1
PLQXW
0,5
$V LOOXVWUDWHG E\ )LJ
0
Fig. 7. 5HVXOWVRIDQDO\VHVLQYHVWLJDWLQJYRODWLOHVFRQWHQWLQWKHH[DPLQHGVXJDUEHHWVHHGOLQJVRIWKHVHOHFWHGFXOWLYDUV
5HVXOWV RI DQDO\VHV LQYHVWLJDWLQJ YRODWLOHV FRQWHQW LQ WKH H[DPLQHG VXJDU EHHW VHHGOLQJV RI WKH Fig. 10. Results of analyses investigating hydrogen content in the dry mass of seedlings.
seeds witout stimulation
seeds with 40mT prestimulation
seeds witout stimulation
seeds witout stimulation
seeds with 40mT prestimulation
seeds witout stimulation
seeds with 40mT prestimulation
seeds witout stimulation
13 13
8
8
23 23 25 25 14 14 2 2 5
ǀĂƌŝĞƚŝĞƐŶƵŵďĞƌ
5
4
4
26 26 27 27
seeds with 40mT prestimulation
seeds witout stimulation
seeds witout stimulation
seeds witout stimulation
seeds with 40mT prestimulation
seeds witout stimulation
seeds with 40mT prestimulation
seeds witout stimulation
13 13
8
8
23 23 25 25 14 14 2 2 5
ǀĂƌŝĞƚŝĞƐŶƵŵďĞƌ
5
4
4
26 26 27 27
seeds with 40mT prestimulation
seeds witout stimulation
seeds with 40mT prestimulation
seeds with 40mT prestimulation
seeds witout stimulation
seeds with 40mT prestimulation
seeds witout stimulation
seeds with 40mT prestimulation
seeds witout stimulation
seeds witout stimulation
seeds with 40mT prestimulation
seeds witout stimulation
5
4
4
26 26 27 27
seeds with 40mT prestimulation
seeds witout stimulation
seeds with 40mT prestimulation
seeds with 40mT prestimulation
seeds witout stimulation
seeds with 40mT prestimulation
seeds witout stimulation
seeds with 40mT prestimulation
seeds witout stimulation
seeds with 40mT prestimulation
seeds witout stimulation
seeds with 40mT prestimulation
seeds witout stimulation
seeds with 40mT prestimulation
ǀĂƌŝĞƚŝĞƐŶƵŵďĞƌ
23 23 25 25 14 14 2 2 5
ǀĂƌŝĞƚŝĞƐŶƵŵďĞƌ
seeds with 40mT prestimulation
seeds with 40mT prestimulation
seeds witout stimulation
seeds with 40mT prestimulation
seeds witout stimulation
seeds with 40mT prestimulation
seeds with 40mT prestimulation
seeds witout stimulation
8
seeds with 40mT prestimulation
seeds witout stimulation
seeds with 40mT prestimulation
seeds witout stimulation
>ĞǀĞůŽĨŶŝƚƌŝƚŝŽŶ͕йĚƌLJŵĂƐƐ
>ĞǀĞůŽĨŶŝƚƌŝƚŝŽŶ͕йĚƌLJŵĂƐƐ
8
seeds witout stimulation
seeds with 40mT prestimulation
seeds witout stimulation
>ĞǀĞůŽĨĐĂƌďŽŶ͕йĚƌLJŵĂƐƐ
>ĞǀĞůŽĨĐĂƌďŽŶ͕йĚƌLJŵĂƐƐ
13 13
seeds with 40mT prestimulation
seeds with 40mT prestimulation
seeds witout stimulation
>ĞǀĞůŽĨŚLJĚƌŽŐĞŶ͕йĚƌLJŵĂƐƐ
())(&762)35(62:,1*0$*1(7,&67,08/$7,21
7
6
5
4
3
2
1
0
Fig. 8. Results of analyses investigating nitrogen content in the dry mass of seedlings.
45
44
43
42
41
40
39
38
37
36
35
34
Fig. 9. Results of analyses investigating carbon content in the dry mass of seedlings.
8
7
6
5
4
3
2
1
0
ǀĂƌŝĞƚŝĞƐŶƵŵďĞƌ
0,à26==$5'=(:,$à<*5=(*25==$*8à$&=(6à$:38&+$/6.,
ZDWHUFRQWHQWZDVKLJKHURQDYHUDJHE\LQFRPSDULson with the sample which had not been stimulated with
PDJQHWLF¿HOG
$QRWKHULQYHVWLJDWHGSDUDPHWHUZDVWKHFRQWHQWVRIYROatiles which were determined in thermogravimetric analyzer
E\LQFLQHUDWLQJUDZSODQWVDPSOHDWWKHWHPSHUDWXUHRIƒ&
IRUWKHGXUDWLRQRIPLQXWHVLQFRYHUHGFRQWDLQHUV,QWKLV
FDVHWKHUHVXOWVZHUHDOVRXQDPELJXRXV$VLOOXVWUDWHGE\
)LJXUHHDFKFXOWLYDUZDVIRXQGZLWKVWDWLVWLFDOO\VLJQL¿cant decrease in this parameter for sprouts emerging from
VHHGVWUHDWHGZLWKP7VWLPXODWLRQEHIRUHVRZLQJ
Finally, the investigated parameters included the basic
building elements impacting the stability of the plants’ tissues and cells, i.e. carbon, hydrogen and nitrogen, which
were examined by means of element determinator employing near infrared band to examine dry analytical sample
H[SRVHGWRFDUULHUJDVHV7KH¿QGLQJVUHODWHGWRQLWURJHQ
content in dried samples of beet seedlings for each cultivar show the content of this element increases as a result
RIPDJQHWLFSUHVWLPXODWLRQ)LJXUH7KLVWHQGHQF\LV
SDUWLFXODUO\SURQRXQFHGLQFXOWLYDUVDQGZKHUHWKH
UHOHYDQWLQFUHDVHUHDFKHVWKHYDOXHRIQRPLQDOO\LQFUHDVHIURPWR
Carbon content in dry mass tends to decrease in cultivars
DQG,QWKHUHPDLQLQJFXOWLYDUVQRVWDWLVWLFDOO\
VLJQL¿FDQWGLIIHUHQFHZDVIRXQGEHWZHHQVDPSOHVVWLPXODWHG
before sowing and those planted without stimulation (FigXUH&KDQJHVLQK\GURJHQFRQWHQWLQWKHVHHGOLQJGU\PDVV
DVVRFLDWHGZLWKWKHTXDQWLW\RIZDWHUERXQGHGLQFKHPLFDO
compounds of fruit tissue, tended to increase as a result of
the applied prestimulation procedure in half of the cultivars
RIVXJDUEHHWVLQTXHVWLRQ,QWKHUHPDLQLQJFXOWLYDUVQRVLJQL¿FDQWFKDQJHVZHUHIRXQGIRUWKLVSDUDPHWHU)LJXUH
DISCUSSION
Many available publications describe studies investing
WKHHIIHFWVRIPDJQHWLF¿HOGRQSODQWV5HOHYDQWUHSRUWHG
¿QGLQJVVKRZWKDWLQPRVWFDVHVVKRUWWHUPDSSOLFDWLRQRI
the physical factor involving pre-sowing magnetic stimulation of seeds impacts the parameters of seedlings in the
investigated plants.
:yMFLN>@VKRZHGWKDWVWLPXODWLRQZLWKP7PDJQHWLF¿HOGIRUWKHGXUDWLRQRIVHFRQGVEHQH¿FLDOO\LPSDFWHG
capacity for germination, sugar content and overall yield in
VXJDUEHHWV$VDUHVXOWRIPDJQHWLFVWLPXODWLRQWKHUHZDV
a slight decrease in the content of melassigenic substances.
$FFRUGLQJWR5RFKDOVND>@VWLPXODWLRQRIVXJDUEHHWVHHGV
ZLWKPDJQHWLF¿HOGRIP7+]SRVLWLYHO\DIIHFWHGWKH
vigour of these seeds, chlorophyll content during vegetation
DQG¿QDOO\UHVXOWHGLQLQFUHDVHG\LHOGDQGVXJDUFRQWHQW
in the roots.
.RUQDU]\ĔVNL >@ UHSRUWHG EHQH¿FLDO HIIHFWV RI WKH
PDJQHWLF¿HOGRIDQGP7RQJHUPLQDWLRQLQÀRZHULQJSODQWV3RVLWLYHLPSDFWRIPDJQHWLF¿HOGLVSDUWLFXODUO\
visible if seeds germinate in stressful conditions, such as low
temperature and shortage of water. Pre-sowing stimulation
of seeds improves sprouting capacity in sugarsnap peas,
particularly if there is shortage of moisture in the soil. Such
treatment seems to be more effective in these conditions than
LQDVLWXDWLRQRIRSWLPDOPRLVWXUH>@
$VWXG\FDUULHGRXWE\%LODOLVHWDO>@VKRZHGWKDW
PDJQHWLF¿HOGFRXOGUHSODFHKRUPRQHVLQYHJHWDWLYHSURSagation. The obtained results provided evidence for the fact
WKDWPDJQHWLF¿HOGVWLPXODWHGWKHURRWLQJSURFHVVLQRUHJDno plants. On the other hand a combined use of magnetic
¿HOGDQGKRUPRQHVOHGWRVLJQL¿FDQWO\ORZHUSHUFHQWDJH
RIFRUUHFWO\URRWHGSODQWVWKDQZKHQPDJQHWLF¿HOGDORQH
was applied. Magnetic stimulation methods ensuring better
oregano seedlings may potentially be useful for producers
of planting material, particularly in organic farming where
chemical agents are not allowed.
$KPHW(VLWNHQDQG0HWLQ7XUDQ>@FRQGXFWHGDVWXG\
LQYHVWLJDWLQJWKHHIIHFWRIPDJQHWLF¿HOGRQWKH\LHOGDQG
kation accumulation in strawberry leaves. The experiment
was carried out in a greenhouse. The plants were exposed
WRPDJQHWLF¿HOGRI77DQG7$OOLQGXFWLRQVRIWKHPDJQHWLF¿HOGLQFUHDVHGWKHPHDQZHLJKWRIIUXLW
in comparison with the control sample. The best fruit yield
ZDVDFKLHYHGE\DSSO\LQJ7¿HOG0DJQHWLF¿HOGZLWK
LQGXFWLRQLQFUHDVHGWR7UHVXOWHGLQKLJKHUFRQWHQWV
RI1.&D0J&X)H0Q=Q1DDQGORZHUFRQWHQWRI
P and Sin strawberry leaves.
Masafumi Muraji et al. [27] investigated the impact of
DOWHUQDWLQJPDJQHWLF¿HOGRQWKHJURZWKUDWHRISULPDU\
roots in maize. Maize seedlings were growing in darkness,
DWDFRQVWDQWWHPSHUDWXUHƒ&DQGKXPLGLW\
7KH\ZHUHH[SRVHGWRP7DOWHUQDWLQJPDJQHWLF¿HOGDW
IUHTXHQFLHVRIRU+]7KHUDWHVRIURRWJURZWK
LQWKHSODQWVVXEMHFWHGWRHDFKIUHTXHQF\RIWKHPDJQHWLF
¿HOGZHUHPHDVXUHGDQGFRPSDUHGZLWKWKHFRQWUROVDPSOH
Root growth rate in seedlings developing in the presence of
PDJQHWLF¿HOGRIYDULHGIUHTXHQFLHVLQFUHDVHGLQUHODWLRQWR
the control group. The highest pace of growth was observed
LQVHHGOLQJVH[SRVHGWRDOWHUQDWLQJPDJQHWLF¿HOGRI+]
IUHTXHQF\
0RUHRYHU$ONDVVDE$7DQG$OEDFK'&>@UHVHDUFKHG
WKHUHVSRQVHRI0H[LFDQDVWHU&RVPRVELSLQQDWXV$VWHUDFHDHDQG¿HOGPXVWDUG6LQDSLVDUYHQVLV%UDVVLFDFHDHWR
PDJQHWLFDOO\WUHDWHGZDWHU07:IURPJHUPLQDWLRQWR
ÀRZHULQJ8VHGIRUWUHDWLQJZDWHUDPDJQHWLFWUHDWPHQW
GHYLFHLQWKHUDQJHRI±P7
MTW affected growth and several biochemical parameters of treated plants depending on the number of passes
of water. Irrigation water MTW resulted in increasing plant
height, the amount of leaves and branches per plant and
chlorophyll content compared to the control not irrigated
water MTW.
The present study explicitly demonstrated the effects of
pre-sowing stimulation applied to the planting material of
VHOHFWHGFXOWLYDUVRIVXJDUEHHWRQSK\VLFRFKHPLFDOSURSHUWLHVRIWKHHPHUJLQJVHHGOLQJV0RVWVLJQL¿FDQWO\P7
PDJQHWLF¿HOGRI+]IUHTXHQF\LPSDFWHGWKHWHQGHQF\
of the examined seedlings to accumulate basic macro and
micro elements; the results were also manifested in lower
content of total ash. Importantly, the reduced accumulation
RIKDUPIXOHOHPHQWVVXFKDV$O&G&U1L3E=QPD\EHRI
())(&762)35(62:,1*0$*1(7,&67,08/$7,21
207
particular importance in a situation when seeds are planted in %LODOLV'.DWVHQLRV1(IWKLPLDGRX$(IWKLPLsoil contaminated by industry, fertilizers or crop protection
adis P. & Karkanis A. 2012.: Pulsed electromagnetic
¿HOGVHIIHFWLQRUHJDQRURRWLQJDQGYHJHWDWLYHSURSDJDagents. The previously known methods of preventing heavy
metals accumulation, such as liming or soil ionization are
WLRQ$SRWHQWLDOQHZRUJDQLFPHWKRG$FWD$JULFXOWXUDH
very expensive and may lead to changes in the structure,
6FDQGLQDYLFD6HFWLRQ%±6RLO3ODQW6FLHQFHYRO
S+DQGRWKHUVWDUYDWLRQUHODWHGVRLOFRQGLWLRQV>
@2QWKHRWKHUKDQGSUHVWLPXODWLRQZLWKRXW 7. Bovelli R. & Bennici A. 2000.: Stimulation of germinainterfering with the soil structure and properties, prevents
tion callus growth and shoot regeneration of Nicotiana
accumulation of heavy metals which are a major hazard for
WDEDFXP/E\3XOVLQJ(OHFWURPDJQHWLF)LHOGV3(0)
SHRSOHDQGDQLPDOV$GGLWLRQDOO\DVGHPRQVWUDWHGE\WKHVH
+RUWLFXOWXUDO6FLHQFH
authors, the faster pace of seed germination following mag- 8. Bujak K. & Frant M.2009.: :Sá\ZSU]HGVLHZQHMVW\netic stimulation suggests another agritechnical advantage.
mulacji nasion zmiennym polem magnetycznym na ploThe possibility to achieve faster germination rate allows for
QRZDQLHSV]HQLF\MDUHM>(IIHFWRISUHVRZLQJVWLPXODWLRQ
higher crops from such seeds.
RIVHHGVZLWKDOWHUQDWLQJPDJQHWLF¿HOGRQWKH\LHOGVRI
VSULQJZKHDW@$FWD$JURSK\VLFD3ROLVK
9. Bujak K. & Frant M. 2010.: :Sá\ZSU]HGVLHZQHM
CONCLUSIONS
stymulacji nasion zmiennym polem magnetycznym na
SORQRZDQLH L MDNRĞü WHFKQRORJLF]Qą ]LDUQD SV]HQLF\
3UHVRZLQJVWLPXODWLRQRIVXJDUEHHWVHHGVZDVPRVW
R]LPHM>(IIHFWRISUHVRZLQJVWLPXODWLRQRIVHHGVZLWK
HIIHFWLYHZLWKWKHDSSOLHGPDJQHWLF¿HOGLQGXFWLRQRI
DOWHUQDWLQJPDJQHWLF¿HOGRQ\LHOGDQGWHFKQRORJLFDOP7DQGIUHTXHQF\RI+]
TXDOLW\RIJUDLQVLQZLQWHUZKHDW@$FWD$JURSK\VLFD
%\XVLQJP7LQGXFWLRQLWZDVSRVVLEOHWRLPSURYH
3ROLVK
Byszewski W. 1979.%LRORJLDEXUDNDFXNURZHJR>%LR
sugar beet germination rate.
logy of sugarbeet]. PWN. Warszawa, Poland.
7KHUHZDVDQHDUO\LQFUHDVHLQWKHQXPEHURIVXJar beet seedlings on the fourth day of the experiment, &DPSV5DJD % *\DZDOL 6 ,VODP 1( in comparison with the control sample, which was not
*HUPLQDWLRQUDWHVWXGLHVRIVR\EHDQXQGHUVWDWLFDQG
SUHVWLPXODWHGZLWKPDJQHWLF¿HOG
ORZIUHTXHQWO\PDJQHWLF¿HOG,(((7UDQVDFWLRQDQ'L 7KHUHZDVQRWDEOHGHFUHDVHLQKHDY\PHWDOVDFFXPXODHOHFWULFVDQG(OHFWULFDO,QVXODWRQYRO
tion in the seedlings of beets exposed to magnetic stim- &KáRSHFND$%DFRQ-5:LOVRQ0-.D\,
XODWLRQZKLFKZDVSDUWLFXODUO\VLJQL¿FDQWLQWKHFDVHRI
Forms of cadmium, lead and zinc in soils form Southwest
lead, nickel and zinc concentrations.
3RODQG-RXUQDORI(QYLURQPHQW4XDOLW\±
&LHĞOD$ .UDV]HZVNL: 6NRZURQ 0 6\UHN 3
2006.: Wykorzystanie silnego pola magnetycznego wzbu5()(5(1&(6
dzonego przez elektromagnes nadprzewodnikowy do bioVW\PXODFMLSU]HGVLHZQHMQDVLRQ>$SSOLFDWLRQRIVWURQJ
$NVHQRY 6, %XO\FKHZ $$ *UXQLQD 7 <X PDJQHWLF¿HOGLQGXFHGE\VXSHUFRQGXFWLQJHOHFWURPDJQHW
Turovetsky V.B. 2001.:(IIHFWRIHOIHPIWUHDWPHQWRQ
for pre-sowing biostimulation of seeds]. Materials of the
wheat seeds at different stages of germination and possi7KLUG,QWHUQDWLRQDO&RQIHUHQFH³(IIHFWVRIPDJQHWLF¿HOGV
EOHPHFKDQLVPVRIWKHLURULJLQ(OHFWURPDJQHWLF%LRORJ\
LQDJULFXOWXUDOHQYLURQPHQW´/XEOLQS3ROLVK
'XOELĔVND'$Wlianie postoiannovo magnitDQG0HGLFLQH
2. Aladjadjiyan A. 2003.:6WXG\RIWKHLQÀXHQFHRIPDJQRYRSRODQDURVWSURURVWNRYNXNXUX]\>(IIHFWRIVWDWLF
QHWLF¿HOGRQVRPHELRORJLFDOFKDUDFWHULVWLFVRI]HDPD\V
PDJQHWLF¿HOGRQWKHJURZWKRIPDL]HVHHGOLQJV@)L]LRO
-RXUQDORI&HQWUDO(XURSHDQ$JULFXOWXUHYRO
5DVWYRO5XVVLDQ
Alkassab A.T. & Albach D.C. 2014.: Response of (VLWNHQ$7XUDQ0$OWHUQDWLQJPDJQHWLF
0H[LFDQDVWHU&RVPRVELSLQQDWXVDQG¿HOGPXVWDUG6L¿HOGHIIHFWVRQ\LHOGDQGSODQWQXWULHQWHOHPHQWFRPSRnapisarvensis to irrigation with magnetically treated
VLWLRQRIVWUDZEHUU\)UDJDULD[DQDQDVVDFYFDPDURVD
ZDWHU07:%LRORJLFDO$JULFXOWXUH+RUWLFXOWXUH
$FWD$JULFXOWXUDH6FDQGLQDYLFD6HFWLRQ%±6RLO
$Q ,QWHUQDWLRQDO -RXUQDO IRU 6XVWDLQDEOH 3URGXFWLRQ
3ODQW6FLHQFHYRO
*RUODFK(0HWDOHFLĊĪNLHMDNRF]\QQLN]DJUD6\VWHPVYRO
Baran S., Martyn W. & Bojarski J. 1998.: :Sá\Z
ĪDMąF\Ī\]QRĞFLJOHE\>+HDY\PHWDOVDVDIDFWRULPSDLUZHUPLNRPSRVWX]RVDGXĞFLHNRZHJRLZĊJODQXZDSQLD
LQJVRLOIHUWLOLW\@=HV]\W\3UREOHPRZH3RVWĊSyZ1DXN
5ROQLF]\FKD±3ROLVK
QDPLJUDFMĊPHWDOLFLĊĪNLFKGRáDĔFXFKDWUR¿F]QHJR>(Ifect of vermicompost from sewage sludge and calcium Górecki R. J. & Grzesiuk S. 1994.:ĝZLDWRZHWHQGHQFMH
carbonate on migration of heavy metals to trophic chain].
LNLHUXQNLXV]ODFKHWQLDQLDPDWHULDáyZVLHZQ\FK>*OREDO
=HV]\W\3UREOHPRZH3RVWĊSyZ1DXN5ROQLF]\FK
trends for enhancing planting materials]. Proceedings
±3ROLVK
of the conference “Planting material enhancements”.
2OV]W\Q±.RUWRZRS3ROLVK
Belyavskaya N.A. 2004.:%LRORJLFDOHIIHFWVGXHWRZHDN
PDJQHWLF¿HOGRQSODQWV$GYDQFHVLQ6SDFH5HVHDUFK Hernandez A. C., Dominguez-Pacheco A, Carballo
&$&UX]2UHD$,YDQRY5/ySH]%RQLOOD-/
208
0,à26==$5'=(:,$à<*5=(*25==$*8à$&=(6à$:38&+$/6.,
Valcarcel Montañez J. P. 2009.: $OWHUQDWLQJ0DJQHWLF
)LHOG,UUDGLDWLRQ(IIHFWVRQ7KUHH*HQRW\SH0DL]H6HHG
)LHOG3HUIRUPDQFH$FWD$JURSK\VLFDYRO
+HUQDQGH]$&'RPLQJXH]3$&UX]2$,YDQRY5&DUEDOOR&$=HSHGD%5 Laser in
DJULFXOWXUH,QWHUQDWLRQDO$JURSK\VLFV
20. Janas R. & Grzesik M. 2006.: Proekologiczne metody
SRSUDZ\MDNRĞFLQDVLRQURĞOLQRJURGQLF]\FK>3URHFRORJLFDOPHWKRGVRILPSURYLQJTXDOLW\RIVHHGVIRUKRUWLFXOWXUH@=HV]\W\1DXNRZH3RVWĊSyZ1DXN5ROQLF]\FK
3ROLVK
-DVLĔVND = .RWHFNL$ 6]F]HJyáRZD XSUDZDURĞOLQ>3ODQWJURZLQJLQGHWDLO@YRO,S
:URFáDZ3ROLVK
22. Kordas L. 2002.:7KHHIIHFWRIPDJQHWLF¿HOGRQJURZWK
development and the yield of spring wheat. Polish JourQDORI(QYLURQPHQWDO6WXGLHVYRO
.RUQDU]\ĔVNL.:Sá\ZSRODPDJQHW\F]QHJR
LHOHNWU\F]QHJRQDNLHáNRZDQLHQDVLRQZ\EUDQ\FKURĞOLQ
NZLDWRZ\FK>(IIHFWVRIPDJQHWLFDQGHOHFWULF¿HOGRQ
JHUPLQDWLRQRIVHOHFWHGÀRZHULQJSODQWV@,QĪ\QLHULD
UROQLF]D3ROLVK
Kuziemska B. & Kalembasa S. 1997.::Sá\ZZDSQRZDQLDGDZNLLURG]DMXRVDGyZĞFLHNRZ\FKRUD]QDZRĪHQLD13.QDSORQVNáDGFKHPLF]Q\URĞOLQLJOHE\F]ĊĞü
,,,=DZDUWRĞüZ\EUDQ\FKPHWDOOLFFLĊĪNLFKZPDWHULDO
URĞOLQQ\P>(IIHFWVRIOLPLQJGRVDJHDQGW\SHRIVHZDJH
sludge and fertilizing on yield, chemical composition of
plants and soil, part III. Selected heavy metals content
LQSODQWPDWHULDO@$UFKLZXP2FKURQ\ĝURGRZLVND±
3ROLVK
Marks N. & Szecówka P.S. 2010.: Impact of variable
PDJQHWLF¿HOGVWLPXODWLRQRQJURZWKRIDERYHJURXQG
SDUWVRISRWDWRSODQWV,QWHUQDWLRQDO$JURSK\VLFV
Moon J. & Chung H. 2000.: $FFHOHUDWLRQRIJHUPLQDWLRQRISRWDWRVHHGE\DSSO\LQJ$&HOHFWULFDQGPDJQHWLF
¿HOGV-RXUQDORI(OHFWURVWDWLFV
27. Muraji M., Asai T.& Tatebe W. 1998.: Primary root
growth rate of zea mays seedlings grown in an alternatLQJPDJQHWLF¿HOGRIGLIIHUHQWIUHTXHQFLHV%LRHOHFWURFKHPLVWU\DQG%LRHQHUJHWLFV
28. 1LHP\VNDàXNDV]XN-:Sá\ZVNáDGXJUDQXORPHWU\F]QHJRLRGF]\QXJOHE\QD]DZDUWRĞüSU]\VZDMDOQ\FKIRUPPHWDOLFLĊĪNLFK>(IIHFWRIJUDQXORPHWULF
FRPSRVLWLRQDQGVRLOS+RQWKHFRQWHQWRIDVVLPLODEOH
KHDY\PHWDOV@=HV]\W\3UREOHPRZH3RVWĊSyZ1DXN
5ROQLF]\FK±3ROLVK
29. Pietruszewski S. 2000.::Sá\ZSRODPDJQHW\F]QHJRQD
SORQ\EXUDNDFXNURZHJRRGPLDQ.DOZLDL3RONR>(IIHFWRI
PDJQHWLF¿HOGRQWKH\LHOGRI.DOZLDDQG3RONRFXOWLYDUV
RIVXJDUEHHW@,QĪ\QLHULD5ROQLF]D3ROLVK
3LHWUXV]HZVNL 6 0XV]\ĔVNL 6 ']LHZXOVND$
2007.: (OHFWURPDJQHWLF¿HOGVDQGHOHFWURPDJQHWLFUDdiation as non invasive external stimulants for seeds
VHOHFWHGPHWKRGVDQGUHVSRQVHV,QWHUQDWLRQDO$JURSK\VLFV
Pietruszewski S. 1999.: Magnetyczna biostymulacja
PDWHULDáXVLHZQHJRSV]HQLF\MDUHM>0DJQHWLFELRVWLP-
ulation of spring wheat planting material]. Rozprawy
QDXNRZH$NDGHPLD5ROQLF]D/XEOLQ3ROLVK
3RGOHĞQ\-:Sá\ZSU]HGVLHZQHJRWUDNWRZDQLD
QDVLRQĞZLDWáHPODVHURZ\PQDNV]WDáWRZDQLHFHFKPRUIRORJLF]Q\FKLSORQRZDQLHERELNX>(IIHFVRISUHVRZingtreatment of seeds with laser light on morphological
SURSHUWLHVDQG\LHOGLQYLFLDIDED@=HV]\W\3UREOHPRZH
3RVWĊSyZ1DXN5ROQLF]\FK3ROLVK
3RGOHĞQ\-3LHWUXV]HZVNL6:Sá\ZVW\PXlacji magnetycznej nasion na wzrost i plonowanie grochu
VLHZQHJRXSUDZLDQHJRSU]\UyĪQHMZLOJRWQRĞFLJOHE\
>(IIHFWVRIPDJQHWLFVWLPXODWLRQRIVHHGVRQWKHJURZWK
and yield of sugarsnap peas cultivated in soils of varied
PRLVWXUHOHYHO@,QĪ\QLHULDUROQLF]D3ROLVK
Racuciu M. 2011.:+])UHTXHQF\0DJQHWLF)LHOG
(IIHFWVRQ0LWRWLF$FWLYLW\LQWKH0DL]H5RRW5RPDQLDQ
-RXUQDORI%LRSK\VLFVYRO
Racuciu M., Creanga D. & Horga I. 2008.: Plant
JURZWKXQGHUVWDWLFPDJQHWLF¿HOGLQÀXHQFH5RPDQLDQ
-RXUQDORI3K\VLFV
Rochalska M., Grabowska-Topczewska K. & Mackiewicz A. 2011.: ,QÀXHQFH RI DOWHUQDWLQJ ORZ IUHTXHQF\PDJQHWLF¿HOGRQLPSURYHPHQWRIVHHGTXDOLW\
,QWHUQDWLRQDO$JURSK\VLFV
Rochalska M. 2001.: 3RSUDZDMDNRĞFLPDWHULDáXVLHZQHJR]DSRPRFą]PLHQQHJRSRODPDJQHW\F]QHJRF]ĊĞü
,%DGDQLDODERUDWRU\MQH>(QKDQFHPHQWRISODQWLQJPDWHULDOZLWKDOWHUQDWLQJPDJQHWLF¿HOG±SDUW,/DERUDWRU\
H[SHULPHQW@%LXOHW\Q,+$53ROLVK
Rochalska M. 2003.::Sá\ZSRODPDJQHW\F]QHJRQD
QDVLRQDLURĞOLQ\>(IIHFWVRIPDJQHWLF¿HOGRQVHHGVDQG
SODQW@3RVWĊS\QDXNUROQLF]\FK3ROLVK
5RFKDOVND02U]HV]NR5\ZND$,QÀXHQFH
RIDOWHUQDWLQJPDJQHWLF¿HOGRQUHVSLUDWLRQRIVXJDUEHHW
VHHGV,QWHUQDWLRQDO$JURSK\VLFV
5RFKDOVND0*UDERZVND.=LDUQLN$ ImSDFWRIORZIUHTXHQF\PDJQHWLF¿HOGVRQ\LHOGDQGTXDOLW\
RIVXJDUEHHW,QWHUQDWLRQDO$JURSK\VLFV
5RVD5=DQLHZLF]%DMNRZVND$)UDQF]XN-.RVWHUQD(:Sá\ZZDSQRZDQLDJOHE\QDDNXPXODFMĊRáRZLXZV]HĞFLXRGPLDQDFKEXUDNDüZLNáRZHJR
>(IIHFWRIOLPLQJRQOHDGDFFXPXODWLRQLQVL[FXOWLYDUVRI
UHGEHHW@2FKURQDĝURGRZLVNDL=DVREyZ1DWXUDOQ\FK
3ROLVK
Wójcik S. 2006.: 3ORQRZDQLHLMDNRĞüWHFKQRORJLF]QD
NRU]HQLEXUDNDFXNURZHJRZ]DOHĪQRĞFLRGVW\PXODFML
QDVLRQ><LHOGVDQGWHFKQRORJLFDOTXDOLW\RIUHGEHHWURRWV
GHSHQGLQJRQVWLPXODWLRQRIVHHGV@,QĪ\QLHULDUROQLF]D
3ROLVK
=DQLHZLF]%DMNRZVND$5RVD5)UDQF]XN-
.RVWHUQD( Wapnowanie gleby, a akumulacja
NDGPXZEXUDNXüZLNáRZ\P>6RLOOLPLQJDQGFDGPLXP DFFXPXODWLRQ LQ UHG EHHW@ 2FKURQD ĝURGRZLVND
L=DVREyZ1DWXUDOQ\FK3ROLVK
=LPQ\-%DQDV]DN=0DUFLQLDN. NowRF]HVQHWHFKQRORJLHZSURGXNFMLURĞOLQQHM±SU]\MD]QH
GODF]áRZLHNDLĞURGRZLVND>0RGHUQWHFKQRORJLHVLQ
SODQWSURGXFWLRQ±IULHQGO\IRUSHRSOHDQGWKHHQYLURQPHQW@3ROLVK-RXUQDORI$JURQRP\±3ROLVK
())(&762)35(62:,1*0$*1(7,&67,08/$7,21
209
]GROQRĞüZ]URVWXLUR]ZRMXRUD]]PLDQ\Z¿]\NRFKHPLF]-
ĩXUDZVND0-DNLVLHZWDNL]ELyU><RXZLOO
Q\FKZáDĞFLZRĞFLDFKNLHáNyZEXUDNyZFXNURZ\FK6WRVRZDQR
KDUYHVWZKDW\RXVRZ@%XUDN&XNURZ\3ROLVK SROHPDJQHW\F]QHRQLVNLHMF]ĊVWRWOLZRĞFLI +]% :3à<:35=('6,(:1(-67<08/$&-,
0$*1(7<&=1(-1$:=526752=:Ï-,=0,$1<
:à$ĝ&,:2ĝ&,),=<.2&+(0,&=1<&+52ĝ/,1
%85$.$&8.52:(*2
Streszczenie. 3ROHPDJQHW\F]QHMHVWF]\QQLNLHPGR¿]\F]QHM
SRSUDZ\NLHáNRZDQLDLUR]ZRMXURĞOLQ'RĞZLDGF]HQLHODERUDWRU\MQHSU]HSURZDG]RQRZFHOXRNUHĞOHQLDZSá\ZXVW\PXODFML
przedsiewnej nasion zmiennym polem magnetycznym na ich
P7F]DVHNVSR]\FMLW VHNXQG1DVWĊSQLHQDMEDUG]LHMNRU]\VWQąLQGXNFMĊ]LGHQW\¿NRZDQRLZGDOV]HMF]ĊĞFL
GRĞZLDGF]HQLDMHMHIHNW\SRUyZQ\ZDQR]JUXSąNRQWUROQą
ELRUąFSRGXZDJĊ]PLDQ\ZSRGVWDZRZ\FKZáDĞFLZRĞFLDFK
¿]\NRFKHPLF]Q\FKVLHZHNEXUDNyZ3URZDG]RQHZF]DVLH
HNVSHU\PHQWXREVHUZDFMHNRQFHQWUXMąVLĊQDZ]URĞFLHURĞOLQ
LRNUHĞOHQLXSRGVWDZRZHJRVNáDGXPLNURLPDNURVNáDGQLNyZ
ZZVFKRG]ąF\FKURĞOLQDFK
6áRZDNOXF]RZHSRODPDJQHW\F]QHVNáDG¿]\NRFKHPLF]Q\
PHWDOHFLĊĪNLHNLHáNRZDQLDEXUDNyZFXNURZ\FK
TEKA. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE – 2014, Vol. 14, No. 4, 211–216
Analysis of Oil Leaks in a Variable-Height Gap Between the Cylinder
Block and the Valve Plate in a Piston Pump by Means of Author-Designed
Software and CFD Fluent
Tadeusz Zloto, Damian Sochacki, Piotr Stryjewski
Institute of Mechanical Technologies, Czestochowa University of Technology
Al. Armii Krajowej 21, 42-201 Czestochowa, e-mail: zlotot@o2.pl
Received December 04.2014; accepted December 19.2014
Summary. The paper presents computational models for obtaining oil leaks intensity in a variable height gap between the
cylinder block and the valve plate in an axial piton pump. The
computations are based on numerical methods and commercially
DYDLODEOHVRIWZDUH&)')OXHQW%\PHDQVRIWKHPRGHOVGHYHORSHGDQDO\VLVRIOHDNÀRZLQWHQVLW\LVSHUIRUPHGIRUYDULDEOH
parameters and dimensions of the pump.
Key words: oil leaks, gap between the cylinder block and valve
plate, piston pump.
In piston pumps energy losses occur at the mating surfaces: piston-cylinder, slipper-swash plate and cylinder
block-valve plate. The latter forms the valve system, an
important part of every hydraulic pump, which deserves
special attention in examining the characteristics of hydraulic machines.
INTRODUCTION
Piston pumps are applied in the drives of complex
PDFKLQHVZLWKKLJKGHPDQGVFRQFHUQLQJHI¿FLHQF\DQG
reliability. This provides an incentive for continuous development towards improving exploitation parameters of
WKRVHPDFKLQHVE\PRGHUQL]LQJWKHLUFRQVWUXFWLRQ>@
The range of applications of piston pumps is wide and still
H[SDQGLQJ([DPSOHVRIGHYLFHVHPSOR\LQJSLVWRQSXPSV
DUHSUHVHQWHGLQ)LJ>@
The most important applications of hydraulic piston
machines include:
í DYLDWLRQLQGXVWU\DLUSODQHV
í DXWRPRWLYHLQGXVWU\SUHVVHVPDFKLQLQJFHQWUHVLQMHFWLRQPROGLQJPDFKLQHV
í KHDY\LQGXVWU\SUHVVXUHIRXQGULHVUROOLQJPLOOVFRNHULHV
í FRQVWUXFWLRQLQGXVWU\H[FDYDWRUVORDGHUVH[WHQVLRQ
DUPV
í IRUHVWLQJDQGDJULFXOWXUHPDFKLQHVFUDQHVHOHYDWRUV
GULOOLQJULJVKDUYHVWHUV
í PLOLWDU\YHKLFOHVPXOWLIXQFWLRQYHKLFOHVYHKLFOHVXVHG
IRUFRQVWUXFWLQJEULGJHV
The biggest manufacturers include such companies as
3DUNHUDQG%RVFK5H[URWK
Fig. 1. $SSOLFDWLRQVRISLVWRQSXPSV
In real conditions, the gap between the cylinder block
and the valve plate is of variable height due to differences
LQWRUTXHVFRPLQJIURPK\GURVWDWLFSUHVVLQJDQGUHOLHYLQJ
IRUFHVZKLFKDIIHFWWKHSRVLWLRQRIWKHF\OLQGHUEORFN>
@
When a pump is operating, oil leaks to the outside and
LQVLGHRIWKHYDOYHSODWHDIIHFWLQJWKHYROXPHWULFHI¿FLHQF\
of the pump and its other parameters.
The paper employs numerical methods and a computational model developed within the software package CFD
Fluent for determining oil leaks intensity in the valve system
of an axial piston pump.
7$'(86==/272'$0,$162&+$&.,3,275675<-(:6.,
&20387$7,2102'(/2)2,/)/2:
,17(16,7<,17+(*$3%(7:((1
7+(&</,1'(5%/2&.$1'9$/9(3/$7(
7RGHWHUPLQHRLOÀRZLQWHQVLW\LQWKHJDSEHWZHHQWKH
cylinder block and valve plate, a numerical model was deYHORSHG>@7KHIROORZLQJDVVXPSWLRQVZHUHDGRSWHGLQ
WKHPRGHO>@
± WKHÀRZLVODPLQDU
± VXUIDFHVDUHLQ¿QLWHO\ULJLG
± WKHOLTXLGFRPSOHWHO\¿OOVWKHJDS
± WDQJHQWVWUHVVLV1HZWRQLDQ
± WKHOLTXLGLVLQFRPSUHVVLEOH
± LQHUWLDIRUFHVRIWKHOLTXLGDUHQHJOLJLEOH
%HVLGHVFDYLWDWLRQDQGKHDWWUDQVIHUSKHQRPHQDZHUH
disregarded.
In the model developed, the valve plate was divided
LQWRIRXU]RQHVRIRLOOHDNÀRZQDPHO\WKHGLVFKDUJHSRUW
the inlet port, the upper transition zone and the lower
transition zone. In all the four zones oil leaks occur to
the inside and outside of the valve plate. In the transition
zones, there are also leaks between the discharge and inlet
zones.
In the transition zones, the oil leak intensity was obtained
from the elementary product of the variable-height gap and
WKHPHDQÀRZYHORFLW\DVLQWKHIRUPXODEHORZ
X
M
M
M
H
į
M
‫׋‬DQJOHRIDJLYHQÀRZFURVVVHFWLRQ
ݱLQFOLQDWLRQDQJOHRIWKHF\OLQGHUEORFN
į±DQJOHEHWZHHQWKHD[LVx and the smallest gap height h,
R±UDGLXVRIWKHF\OLQGHUEORFN
The computation model of the oil leak intensity was
implemented in the programming language C++ with
the use of the VCL library. The software so developed
PDNHVLWSRVVLEOHWRDQDO\VHWKHOHDNÀRZLQWHQVLW\LQD
variable-height front gap in the valve system of different
construction variants of a piston pump. The software also
enables the user to set the accuracy of computations by
prescribing the number n of interpolation intervals. Thanks
to using the VCL library, it is possible to represent the
results visually in the form of graphs and to save them
DVWH[W¿OHV
7KHWRWDOOHDNÀRZLQWHQVLW\LQWKHYDOYHV\VWHPLVREWDLQHGE\DGGLQJWKHOHDNVIURPWKHSDUWLFXODUÀRZ]RQHV
&20387$7,2102'(/2)2,//($.)/2:
,17(16,7<(03/2<,1*&)')/8(17
$QDOWHUQDWLYHPHWKRGRIH[DPLQLQJRLOOHDNÀRZLQtensity in the gap between the cylinder block and valve
plate was developed on the basis of commercially available software CFD Fluent. The stages of building the model
n
Q P ¦ X r sr i gap in the CFD Fluent package are
of the variable-height
ni 0
presented in Fig. 2.
The geometrical model of the variable-height gap was
where:
section
area of the gap,
P±WRWDOFURVVVHFWLRQDUHDRIWKHJDS
FRQVWUXFWHG LQ WKH $XWR&DG SURJUDPPH IRU WZR FRQn±QXPEHURILQWHUSRODWLRQLQWHUYDOV
struction types of the valve plate: with positive overlap
ȣrsri ±PHDQÀRZYHORFLW\
DQGZLWKUHOLHIJURRYHV)LJ,QERWKFDVHVWKHVDPH
dimensions of the radius were applied r Pr2
P r P DQG r P UHVSHF7KHÀRZFURVVVHFWLRQZDVREWDLQHGRQWKHEDVLVRIWKH
QXPHULFDOLQWHJUDWLRQE\WUDSH]RLGDOUXOHDFFRUGLQJWR>@ WLYHO\ DQG WKH VDPH OHQJWK RI WKH WUDQVLWLRQ ]RQHV Įm,
HTXDOWR>ƒ@
º
ª h r , M0 h r , Mn n
$QXPHULFDOJULGJHQHUDWHGDXWRPDWLFDOO\LQWKHSUR ¦ h r ,M i » P ln «
2
i ¼
¬
JUDPPH*DPELWZDVWKHQLPSOHPHQWHGRQWKHJHRPHWULFDO
model of the variable-height gap. The grid consists of volwhere:
h(r, ‫׋‬±KHLJKWRIWKHYDULDEOHKHLJKWJDSDWWKHUDGLXVDQG XPHWULFFHOOVRIWKH+H[:HGJHW\SHVXLWDEOHIRUWKHJDS
angle under consideration;
VKDSH%HVLGHVWKHUHJLRQVRIERXQGDU\FRQGLWLRQVZHUH
‫׋‬0±DQJOHDWWKHHQWU\RIWKH]RQHXQGHUFRQVLGHUDWLRQ
VSHFL¿HGLQWKHSURJUDPPH*DPELW)LJ
‫׋‬n±DQJOHDWWKHH[LWRIWKH]RQHXQGHUFRQVLGHUDWLRQ
The last stage of constructing the numerical model
n±QXPEHURILQWHUYDOVLQWKHQXPHULFDOLQWHJUDWLRQE\WUDS- of the variable-height gap in the valve system is to enter
ezoidal rule,
the numerical grid with the boundary condition regions
ln±OHQJWKRIWKHLQWHUYDOLQWKHQXPHULFDOLQWHJUDWLRQ
to the programme Fluent, in which the values of oil
h r sin M ˜ cos G ˜ tgH r cos M ˜ sin G ˜ tgH RtgH h
pressure in the boundary regions are determined and
simulations of oil pressure distribution are performed.
The gap height in a given interval was obtained from
On the basis of the so obtained pressure area on the
h r sin M ˜ cos G ˜ tgH r cos M ˜ sin G ˜ tgH RtgH h inside and outside of the valve plate, the oil leak flow
intensity is determined.
where
r±FXUUHQWUDGLXVRIDJLYHQFURVVVHFWLRQ
Fig. 2. Stages of building the model of the variable-height gap in the CFD Fluent package
$1$/<6,62)2,//($.6,1$9$5,$%/(+(,*+7*$3
cylinder block inclination for two constructional variants of
the valve plate: the positive overlap variant and the relief
groove variant.
The following input data were assumed in the computational model:
í LQWKHSUHVVXUHSRUWWKHGLVFKDUJHSUHVVXUHpt 03D
í LQWKHVXFWLRQSRUWWKHLQOHWSUHVVXUHps 03D
í RXWVLGH DQG LQVLGH WKH YDOYH SODWH WKH SUHVVXUH po 0 MPa,
í DQJXODUYHORFLW\ȦRIWKHF\OLQGHUEORFNȦ UDGV
í RLOG\QDPLFYLVFRVLW\FRHI¿FLHQWȘ 3DV
í DQJOHį UDGEHWZHHQWKHD[LVx and the smallest
gap height h,
í DQJOHEHWZHHQWKHF\OLQGHUEORFNDQGYDOYHSODWHİ UDG
í PLQLPDOJDSKHLJKWh āím,
í FKDUDFWHULVWLFUDGLXVHVRIWKHYDOYHSODWHLQDJLYHQSXPS
are r Pr2 Pr PDQGr P
)LJSUHVHQWVWKHYDULDWLRQRIWKHRLOOHDNÀRZLQWHQVLW\
as a function of the discharge pressure pt.
Fig. 3. &RQVWUXFWLRQYDULDQWVRIWKHYDOYHSODWHDZLWKSRVLWLYH
RYHUODSEZLWKUHOLHIJURRYHV
Fig. 4. 1XPHULFDOJULGFRQVLVWLQJRIYROXPHWULFFHOOVRIWKH+H[
Wedge type and boundary condition region
5(68/762)&20387$7,216
Fig. 5. 7RWDORLOOHDNÀRZLQWHQVLW\LQWKHYDOYHV\VWHPDV
a function of the discharge pressure pt obtained by means of
the programme QP developed by the authors and CFD Fluent
QFDSRVLWLYHRYHUODSYDOYHSODWHEYDOYHSODWHZLWKUHOLHI
grooves
The computational models developed and described
DERYHZHUHDSSOLHGIRUGHWHUPLQLQJWKHWRWDORLOOHDNÀRZLQtensity in the gap between the cylinder block and valve plate
Increase in the discharge pressure causes linear increase
in a hydraulic piston pump. The analysis was performed for LQWKHOHDNÀRZLQWHQVLW\
)LJSUHVHQWVWKHYDULDWLRQRIWKHRLOOHDNÀRZLQWHQvariable dimensions and exploitation parameters such as the
discharge pressure ptWKHDQJXODUYHORFLW\ȦRIWKHF\OLQGHU VLW\DVDIXQFWLRQRIWKHDQJXODUYHORFLW\ȦRIWKHF\OLQGHU
EORFNWKHG\QDPLFYLVFRVLW\ȘRIRLODQGWKHDQJOHİof the block.
7$'(86==/272'$0,$162&+$&.,3,275675<-(:6.,
Ș
DSRVLWLYHRYHUODS
Fig. 6.YDOYHSODWHEYDOYHSODWHZLWKUHOLHIJURRYHV
7RWDORLOOHDNÀRZLQWHQVLW\LQWKHYDOYHV\VWHPDVDIXQFWLRQRIWKHDQJXODUYHORFLW\ȦRIWKHF\OLQGHUEORFNREWDLQHGE\
means of the programme QP developed by the authors and CFD
Fluent QFDSRVLWLYHRYHUODSYDOYHSODWHEYDOYHSODWHZLWK
relief grooves
Increase in the angular velocity of the cylinder block
GRHVQRWVLJQL¿FDQWO\DIIHFWWKHOHDNÀRZLQWHQVLW\
)LJSUHVHQWVWKHYDULDWLRQRIWKHRLOOHDNÀRZLQWHQVLW\DVDIXQFWLRQRIWKHG\QDPLFYLVFRVLW\FRHI¿FLHQWȘ
of oil.
Increase in the dynamic viscosity of oil causes decrease
LQWKHRLOOHDNÀRZLQWHQVLW\LQWKHYDOYHV\VWHP
)LJSUHVHQWVWKHYDULDWLRQRIWKHRLOOHDNÀRZLQWHQVLW\
as a function of the angle İ of the cylinder block inclination
obtained by means of the programme developed by the authors and by means of CFD Fluent.
It can be observed that increase in the inclination angle
H
RIWKHF\OLQGHUEORFNOHDGVWRDVLJQL¿FDQWLQFUHDVHLQWKH
LQWHQVLW\RIOHDNÀRZLQWKHYDOYHV\VWHP
SRVLWLYHRYHUODSYDOYHSODWHEYDOYHSODWHZLWKUHOLHIJURRYHV
+DYLQJREWDLQHGWKHUHVXOWVRIRLOOHDNÀRZLQWHQVLW\
from the two sources, i.e. the programme developed by the
authors and from CFD Fluent, we went on to compare them.
TheWKH
comparison
was made by calculating relative differenc+DYLQJ REWDLQHG
UH
HVEHWZHHQWKHUHVXOWVRIRLOOHDNÀRZLQWHQVLW\REWDLQHG
from QP and from CFD Fluent QF. The relative
differences
were calculated according to:
ߜொ ൌ
ȁொು ିொಷ ȁ
ȁொಷ ȁ
ή ͳͲͲΨ Fig. 7. 7RWDORLOOHDNÀRZLQWHQVLW\LQWKHYDOYHV\VWHPDVD
IXQFWLRQRIWKHG\QDPLFYLVFRVLW\ȘRIRLOREWDLQHGE\PHDQV
of the programme QP developed by the authors and CFD Fluent
QFDSRVLWLYHRYHUODSYDOYHSODWHEYDOYHSODWHZLWKUHOLHI
groovesH
D
Fig. 8. 7RWDORLOOHDNÀRZLQWHQVLW\LQWKHYDOYHV\VWHPDVD
sents selected relative differences between the results obtained from the
of the angle İ at which the cylinder block is inclined
7DEOHSUHVHQWVVHOHFWHGUHODWLYHGLIIHUHQFHVEHWZHHQ function
İ
the results obtained from the two sources, i.e. the authors’ obtained by means of the programme QP developed by the authors
SURJUDPPHDQG&)')OXHQWIRUWKHYDULDEOHDQJOHİRIWKH and CFD Fluent QFDSRVLWLYHRYHUODSYDOYHSODWHEYDOYHSODWH
with relief grooves
cylinder block inclination.
$1$/<6,62)2,//($.6,1$9$5,$%/(+(,*+7*$3
Ta b l e 1 . Relative differences į4 between the values of total
OHDNÀRZLQWHQVLWLHVREWDLQHGIURPWKHDXWKRUV¶SURJUDPPHDQG
from CFD Fluent depending on the angle İ of the cylinder block
inclination for the two variants of the valve plate
İ>ƒ@
0
0,0 2
Positive overlap
į4 >@
Relief grooves
į4 >@
$VFDQEHVHHQWKHYDOXHVRIWKHUHODWLYHGLIIHUHQFHV
between the results obtained from the authors’ programme
and from CFD Fluent increase with the increase in the angle
İof the cylinder block inclination. In the case of a positive
RYHUODSYDOYHWKHLQFUHDVHLVIURPWRDERXWDQGLQ
the case of a valve with relief grooves the difference groes
IURPDERXWWRDERXW
CONCLUSIONS
The study can be concluded by the following observations:
7KHPRGHOVGHYHORSHGSURYLGHDGHTXDWHWRROVIRUGHWHUPLQLQJWKHÀRZLQWHQVLW\RIRLOOHDNVGHSHQGLQJRQWKH
variable parameters and dimensions of the pump.
2. Increase in the cylinder block inclination angle and in the
discharge pressure cause increase in the intensity of oil
OHDNÀRZ,QFUHDVHLQWKHG\QDPLFYLVFRVLW\FRQWULEXWHV
WRGHFUHDVHLQWKHLQWHQVLW\RIOHDNÀRZDQGLQFUHDVH
in the angular velocity of the cylinder block does not
VLJQL¿FDQWO\DIIHFWLW
7KHLQWHQVLW\RIRLOOHDNVLVJUHDWHUIRUDYDOYHSODWHZLWK
relief grooves than for a positive overlap valve plate.
5()(5(1&(6
Ivantysyn J., Ivantysynova M., 2001:+\GURVWDWLF3XPSV
DQG0RWRUV$NDGHPLD%RRNV,QWHUQDWLRQDO1HZ'HOKL
2. Jang D.S., 1997:9HUOXVWDQDQDOLVHDQ$[LDONROEHQKHLWHQ
'LVVHUWDWLRQ5:7+$DFKHQ
.DF]PDUHN55XWDĔVNL-3RPS\ZLHORWáRF]NRZHRVLRZH3RPLDUJUXERĞFLV]F]HOLQ\ZUR]G]LHODF]X
z wykorzystaniem indukcyjnych czujników pomiaroZ\FK3U]HJOąG0HFKDQLF]Q\QU
Kondakow L. A., 1975:8V]F]HOQLHQLDXNáDGyZK\GUDXlicznych. WNT, Warszawa.
Nikitin G.A., 1982:6]F]LHOHZ\MHLáDELULQWQ\MHXSáRWnienia gidroagregatow. Maszinostrojenie, Moskwa.
0DMFKU]DN(0RFKQDFNL%Metody numeryczne. Podstawy teoretyczne, aspekty praktyczne
L DOJRU\WP\ :\GDZQLFWZR 3ROLWHFKQLNL ĝOąVNLHM
*OLZLFH
7. Murrenhoff H., 2005:*UXQGODJHQGHU)OXLGWHFKQLN
7HLO+\GUDXOLN6KDNHU9HUODJ$DFKHQ
8. 2VLHFNL$+\GURVWDW\F]Q\QDSĊGPDV]\Q:17
Warszawa.
9. 2VLHFNL$2VLHFNL/ Prace rozwojowe nad
QRZąNRQVWUXNFMąSRPSZLHORWáRF]NRZ\FKRVLRZ\FK
+\GUDXOLNDL3QHXPDW\ND1UV
2VLSRZ$) Objemnyje gidrowliczieskie masziny. Maszinostrojenie, Moskwa.
Pasynkov R.M., 1965: K razczietu torcowych razpriedielitielei aksialno-porszniewych nasosow. Viestnik
0DV]LQRVWURMHQLD1U
Pasynkov R.M.,1976: Wlijanie pieriekosa cilindrowowo bloka na rabotu tarcowowo razpriedielitiela
aksialno-porszniewoj gidromasziny. Viestnik MaszinoVWURMHQLD1U
3RGROVNL0(8SRUQ\MHSRGV]LSQLNLVNROĪHQLD
Leningrad.
. Ryzhakov A., Nikolenko I., Dreszer K., 2009: Selection of discretely adjustable pump parameters for
K\GUDXOLFGULYHVRIPRELOHHTXLSPHQW3ROVND$NDGHPLD
1DXN7HND.RPLVML0RWRU\]DFMLL(QHUJHW\NL5ROQLFWZD7RP,;V/XEOLQ
6]\GHOVNL=2OHFKRZLF]-(OHPHQW\QDSĊGX
i sterowania hydraulicznego i pneumatycznego. PWN,
Warszawa.
Stryczek S.,1995:1DSĊG+\GURVWDW\F]Q\7RP:17
Warszawa.
=KDQJ < 9HUEHVVHUXQJ GHV $QODXI XQG
/DQJVDPODXIYHUKDOWHQVHLQHV$[LDONROEHQPRWRUVLQ
6FKUlJVFKHLEHQEDXZHLVHGXUFKNRQVWUXNWLYHXQGPDWHULDOWHFKQLVFKH 0DȕQDKPHQ 'LVVHUWDWLRQ 5:7+
$DFKHQ
=ORWR76RFKDFNL' Oil Leakage in a VariaEOH+HLJKW*DS%HWZHHQWKH&\OLQGHU%ORFNDQGWKH
9DOYH3ODWHLQD3LVWRQ3XPS3ROVND$NDGHPLD1DXN
7HND.RPLVML0RWRU\]DFMLL(QHUJHW\NL9RO9QU&
/XEOLQ
$1$/,=$35=(&,(.Ï:2/(-8:6=&=(/,1,(
52=5=Ą'83203<:,(/27à2&=.2:(-
=8:=*/ĉ'1,(1,(0:à$61(*2352*5$08
,&)')/8(17
Streszczenie. W pracy przedstawiono modele obliczeniowe do
RNUHĞODQLDQDWĊĪHQLDSU]HSá\ZXSU]HFLHNyZROHMXZV]F]HOLQLH
R]PLHQQHMZ\VRNRĞFLSRPLĊG]\EORNLHPF\OLQGURZ\PLWDUF]ą
UR]G]LHODF]DSRPS\ZLHORWáRF]NRZHM:REOLF]HQLDFKZ\NRrzystano metody numeryczne oraz komercyjny program CFD
)OXHQW6WRVXMąFRSUDFRZDQHPRGHOHSU]HSURZDG]RQRDQDOL]Ċ
QDWĊĪHQLDSU]HSá\ZXSU]HFLHNyZGOD]PLHQQ\FKSDUDPHWUyZ
geometryczno-eksploatacyjnych pompy.
6áRZDNOXF]RZHSU]HFLHNLROHMXV]F]HOLQDSRPLĊG]\EORNLHP
F\OLQGURZ\PLWDUF]ąUR]G]LHODF]DSRPSDWáRNRZD
Spis treści
Janusz Bowszys, Teresa Bowszys
Drying Faba Bean Seeds in a Silo with a Vertical Air Circulation System ..........................................................
3
Valery Chybiryakov, Anatoly Stankevich, Dmitry Levkivskiy, Vladimir Melnychuk
Application of Generalized Method of Lines for Solving the Problems of Thick Plates Thermoelasticity
Part 1. Construction of resolving equations .....................................................................................................
7
Józef Gorzelany, Natalia Matłok, Dagmara Migut
Assessment of The Mechanical Properties of Fresh Soil-grown Cucumber Fruits ..............................................
15
Józef Gorzelany, Natalia Matłok, Dagmara Migut, Tomasz Cebulak
Quality of Dill Pickled Cucumbers Depending on The Variety
And Chemical Composition of Pickle Brine ....................................................................................................
19
Jacek Halbiniak, Bogdan Langier
Research on the Frost Resistance of Concretes Modified with Fly Ash ............................................................ 23
Alexander Holoptsev, Alexander Bolshikh, Valeriya Bekirova, Mariya Nikiforova
Assessment of Monthly Mean Total Ozone Distribution Changes
With Regard to Atlantic Ocean Surface Temperatures Variations .....................................................................
31
Magdalena Klimek, Leszek Mościcki, Agnieszka Wójtowicz, Tomasz Oniszczuk,
Maciej Combrzyński, Marcin Mitrus
Dynamic Viscosity of Water and Milk Suspensions of Extruded Corn Porridge ................................................ 37
Andrzej Kornacki
The Note on Application of Logistic Model in Agriculture Research ................................................................
41
Konrad Kowalski, Tadeusz Zloto
An Analysis of Pressure Distribution in Water and Water Emulsion
In a Front Gap of a Hydrostatic Bearing ......................................................................................................... 45
Konrad Kowalski, Tadeusz Zloto
Exploitation and Repair of Hydraulic Cylinders Used in Mobile Machinery ...................................................... 53
Andrzej Kusz, Jacek Skwarcz, Mateusz Gryczan
Application of the Computation Procedure in Bayesian Network in Estimation of Total Cost
of Natural Stone Elements Production ............................................................................................................ 59
63,675(ĝ&,
Khachatur Kyureghyan, Wiesław Piekarski
The Analysis of Oil Balance in Crank Bearing ................................................................................................ 65
Anna Leshchyns’ka, Yuliya Zelen’ko, Marina Bezovs’ka, Michael Sandowski
The Development of New Technologies for Processing and Disposal
of the Oil Containing Wastes Enterprises of Railway Infrastructure .................................................................
71
Rafał Nadulski, Jacek Skwarcz, Grzegorz Łysiak, Ryszard Kulig
Strength Properties of Horse Bean Seeds (Vicia faba L. var. minor) ................................................................
81
Krzysztof Nęcka, Małgorzata Trojanowska
Comparative Analysis of The Variability of Daily Electric Power Loads ............................................................. 87
Krzysztof Nęcka, Małgorzata Trojanowska
Short-Term Forecasting of Natural Gas Demand by Rural Consumers Using Regression Models ....................... 93
Ignacy Niedziółka, Wojciech Tanaś, Mariusz Szymanek, Beata Zaklika,
Józef Kowalczuk, Jarosław Tatarczak, Janusz Zarajczyk
Evaluation of Physical Properties in Briquettes Made from Selected Plant Materials .......................................... 99
Ilya Nikolenko, Ervin Karimov
Increase of Reverse Water Supply Systems Effectiveness
in Production of Construction Materials ......................................................................................................... 105
Arthur Onischenko, Mykolay Kuzminets, Sergey Aksenov
Research on Properties of Bitumen Modified with Polymers
Used for Asphalt Concrete Pavement on Bridges ............................................................................................ 113
Tomasz Oniszczuk, Agnieszka Wójtowicz, Leszek Mościcki, Andrzej Rejak, Maciej Combrzyński
Characteristics of Selected Rheological Properties of Water Suspensions
of Maize TPS Biocomposites .......................................................................................................................... 119
Tomasz Oniszczuk, Agnieszka Wójtowicz, Leszek Mościcki, Andrzej Rejak,
Maciej Combrzyński, Marcin Mitrus
Characteristics of Selected Rheological Properties of Water Suspensions
of Potato TPS Biocomposites ......................................................................................................................... 125
Tomasz Oniszczuk, Agnieszka Wójtowicz, Leszek Mościcki,
Andrzej Rejak, Magdalena Klimek, Maciej Combrzyński
Characteristics of Selected Rheological Properties of Water Suspensions
of Wheat TPS Biocomposites ........................................................................................................................ 131
Halina Pawlak, Piotr Maksym, Jacek Skwarcz
Vehicle Transport Organization of Food Requiring Refrigeration ....................................................................... 137
Leonid Pelevin, Mykola Karpenko
The Dynamic Vibrations Hydraulic Quencher ................................................................................................. 143
Lyudmila Ryabicheva, Dmytro Usatyuk, Yuri Nikitin
Correlation of Plastic Forming and Structure Formation Parameters in Powder Materials ................................... 151
Dmytro Smorkalov
Calculation of Deflection of One-Layer and Two-Layer Slabs Supported on Four Sides ..................................... 161
Mykhailo Sukach
Working of Deep-Water Minerals with Sectored Way ..................................................................................... 169
Tomasz Szul, Krzysztof Nęcka
Comparison of the Usefulness of Cluster Analysis and Rough Set Theory
in Estimating the Rate of Mass Accumulation of Waste in Rural Areas ........................................................... 175
63,675(ĝ&,
Małgorzata Trojanowska, Dorota Lipczyńska
An Analysis of Variability in Demand for Natural Gas at Rural Households ...................................................... 181
Grzegorz Wcisło
Determination of the Rheological Properties of Biofuels Containing SBME Biocomponent ................................ 185
Grzegorz Wcisło, Natalia Labak
The Determination of Energetic Potential of Waste Wood Biomass
Coming from Dębica Forestry Management Area as a Potential Basis
for Ethanol Biofuels of II Generation ............................................................................................................... 191
Grzegorz Wcisło, Bolesław Pracuch
Determination of the Impact of the Type of Camelina Oil
Used for Production of Biofuels on the Fractional Composition of CSME ........................................................ 197
Miłosz Zardzewiały, Grzegorz Zaguła, Czesław Puchalski
Effects of Pre-Sowing Magnetic Stimulation on the Growth,
Development and Changes in Physicochemical Properties in Sugar Beet Seedlings ........................................... 201
Tadeusz Zloto, Damian Sochacki, Piotr Stryjewski
Analysis of Oil Leaks in a Variable-Height Gap Between the Cylinder Block and the Valve Plate
in a Piston Pump by Means of Author-Designed Software and CFD Fluent ..................................................... 211
List of the Reviewers
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
Leszek Mościcki
Janusz Laskowski
Ignacy Niedziółka
Dariusz Dziki
Stanisław Sosnowski
Tadeusz Złoto
Kazimierz Zawiślak
Marek Kuna-Broniowski
Andrzej Kornacki
V.O. Płoskyi
Petro Kulikov
A.M. Stankevich
Editors of the „TEKA” quarterly journal of the Commission of Motorization and Energetics in
Agriculture would like to inform both the authors and readers that an agreement was signed with
the Interdisciplinary Centre for Mathematical and Computational Modelling at the Warsaw University referred to as “ICM”. Therefore, ICM is the owner and operator of the IT system needed to
conduct and support a digital scientific library accessible to users via the Internet called the “ICM
Internet Platform”, which ensures the safety of development, storage and retrieval of published
materials provided to users. ICM is obliged to put all the articles printed in the “Teka” on the ICM
Internet Platform. ICM develops metadata, which are then indexed in the “Agro” database.
Impact Factor of the TEKA quarterly journal according to the Commission of Motorization and
Energetics in Agriculture is 2,07 (June 2014).
GUIDELINES FOR AUTHORS (2014)
The journal publishes the original research papers. The papers (min. 8 pages) should not exceed 12 pages including
tables and figures. Acceptance of papers for publication is based on two independent reviews commissioned by
the Editor.
Authors are asked to transfer to the Publisher the copyright of their articles as well as written permissions for reproduction of figures and tables from unpublished or copyrighted materials.
Articles should be submitted electronically to the Editor and fulfill the following formal requirements:
– Clear and grammatically correct script in English,
– Format of popular Windows text editors (A4 size, 12 points Times New Roman font, single interline, left and
right margin of 2,5 cm),
– Every page of the paper including the title page, text, references, tables and figures should be numbered,
– SI units should be used.
Please organize the script in the following order (without subtitles):
Title, Author(s) name (s), Affiliations, Full postal addresses, Corresponding author’s e-mail
Abstract (up to 200 words), Keywords (up to 5 words), Introduction, Materials and Methods, Results, Discussion
(a combined Results and Discussion section can also be appropriate), Conclusions (numbered), References, Tables,
Figures and their captions
Note that the following should be observed:
An informative and concise title; Abstract without any undefined abbreviations or unspecified references; No nomenclature (all explanations placed in the text); References cited by the numbered system (max 5 items in one
place); Tables and figures (without frames) placed out of the text (after References) and figures additionally prepared in the graphical file format jpg or cdr.
Make sure that the tables do not exceed the printed area of the page. Number them according to their sequence in
the text. References to all the tables must be in the text. Do not use vertical lines to separate columns. Capitalize
the word ‘table’ when used with a number, e.g. (Table1).
Number the figures according to their sequence in the text. Identify them at the bottom of line drawings by their
number and the name of the author. Special attention should be paid to the lettering of figures – the size of lettering
must be big enough to allow reduction (even 10 times). Begin the description of figures with a capital letter and observe the following order, e.g. Time(s), Moisture (%, vol), (%, m3m-3) or (%, gg-1), Thermal conductivity (W m-1K-1).
Type the captions to all figures on a separate sheet at the end of the manuscript.
Give all the explanations in the figure caption. Drawn text in the figures should be kept to a minimum. Capitalize
and abbreviate ‘figure’ when it is used with a number, e.g. (Fig. 1).
Colour figures will not be printed.
Make sure that the reference list contains about 30 items. It should be numbered serially and arranged alphabetically by the name of the first author and then others, e.g.
7. Kasaja O., Azarevich G. and Bannel A.N. 2009. Econometric Analysis of Banking Financial Results in Poland.
Journal of Academy of Business and Economics (JABE), Vol. IV. Nr 1, 202–210.
References cited in the text should be given in parentheses and include a number e.g. [7].
Any item in the References list that is not in English, French or German should be marked, e.g. (in Italian), (in Polish).
Leave ample space around equations. Subscripts and superscripts have to be clear. Equations should be numbered
serially on the right-hand side in parentheses. Capitalize and abbreviate ‘equation’ when it is used with a number,
e.g. Eq. (1). Spell out when it begins a sentence. Symbols for physical quantities in formulae and in the text must
be in italics. Algebraic symbols are printed in upright type.
Acknowledgements will be printed after a written permission is sent (by the regular post, on paper) from persons
or heads of institutions mentioned by name.

Similar documents

Processing, Characteristics and Uses of Extruded Plant Protein

Processing, Characteristics and Uses of Extruded Plant Protein ‡ RIQLWURJHQGLVSHUVHGLQZDWHU 7KHVH DUH D PHDVXUH RI WKH SURWHLQ¶V VROXELOLW\ LQ ZDWHU DQG DUH LQGLFDWLYH RI WKH OHYHO RI KHDW WUHDWPHQW 7KH 3', WHVW LV D PRUH UDSLG WHVW DQG ZLOO XVXDOO\ JLY...

More information