Use of Mobile Phones for Exposure Assessment

Transcription

Use of Mobile Phones for Exposure Assessment
Department of Epidemiology and Public Health
Use of Mobile Phones for Exposure
Assessment
Martin Röösli, PhD
Swiss TPH Spring Symposium
8 May 2012
Many thanks to Oliver Lauer (ETHZ), Nicolas Maire and Harish Phuleria, who
contributed slides to this talk.
Content
 What is a mobile phone?
 HERMES: Use of mobile phones for radiofrequency electromagnetic field
measurements
 Sensorscope/Climaps project
 NoiseTube: collecting noise data with mobile phones
Basel, 08. 05. 2012
Martin Röösli
2
What does your smart phone?
from Lane et al.,
IEEE Com Mag, 2010
Basel, 08. 05. 2012
Martin Röösli
3
And what may your mobile phone do in the future
 barometer, temperature, humidity sensors (Intel/University of Washington
Mobile Sensing Platform)
 air quality and pollution (Honicky et al., 2008)
 blood pressure monitoring using the earphone (Poh et al., 2009)
 commercially interesting: combine low-level censor data with context and
activity data. E.g. Sense Networks a U.S. start-up company which uses
millions of GPS estimates from mobile phones to predict which
subpopulation is interested in a specific type of event (Lane et al., 2010).
Basel, 08. 05. 2012
Martin Röösli
4
Mobile phone sensing on different scales
from Lane
et al., IEEE
Com Mag, 2010
Basel, 08. 05. 2012
Martin Röösli
5
Other conceptual issues
 passive vs active recording
 smart phone vs. smart sensors
Basel, 08. 05. 2012
Martin Röösli
6
Benefits of using mobile phones for exposure assessment
 Two types of information is obtained: exposure and behaviour.
 Many data can be collected
 Continuous measurements -> directly sent to the server
 Apps can be developed to facilitate data collection (e.g. reminder,
questionnaires)
 Appstores and similar can be used for apps distribution
 E.g. collect noise data, apply learning algorithms to identity classes of
behaviour:
Basel, 08. 05. 2012
Martin Röösli
7
HERMES: A Swiss TPH project
 Health Effects Related to Mobile phone usE in adolescentS
 Is radiofrequency electromagnetic fields (RF-EMF) from using mobile phones
related to behaviour, symptoms and cognitive function
 Funding: SNF
 Cohort study in Central Switzerland:
1.
baseline investigation in 2012 in 8th grade students
2.
follow-up investigation in 2013 in the same students (9th grade)
 Use of mobile phone operator recorded data
 Modelling of environmental RF-EMF
 Collecting personal RF-EMF from 100 study participants
Basel, 08. 05. 2012
Martin Röösli
8
Measurement Concept: combine exposimeter with smart phone
 Exposimeter
1. RF-EMF measurements
Exposimeter
Smartphone
 Smartphone
1. Position
GPS
Bluetooth
Activity diary
health
2. (Use of mobile phone)
GPS
Diary
In
te
rn
et
Server
Basel, 08. 05. 2012
Martin Röösli
9
9
Calibration
1. 2JMAS01 antenna
2. 824 MHz- 5.9 GHz
Frequency Band
Min. Field [V/m]
Max. Field [V/m]
GSM900TX
0.0008
1.4778
GSM900RX
0.0031
3.9388
GSM1800TX
0.0073
6.6912
GSM1800RX
0.0243
>12.5601
DECT
0.0037
>12.4465
UMTSTX
0.0053
6.7472
UMTSRX
0.0052
9.1096
ISM2.4
0.0117
>10.0520
Basel, 08. 05. 2012
Martin Röösli
10
10
Smartphone
 Requirements
1. Bluetooth Interface
2. GPS module
3. Open source OS
 Concept
1. Data Logging / Display
Data storage
Tracking GPS location
Tracking transmission power (NF)
Data distribution using 2G/3G backbone network
2. Active diary/questionnaire
Basel, 08. 05. 2012
Martin Röösli
11
11
Test case-study
 Measurement location
1. Zürich
 Measurement settings
1. sampling period: 1.6 s
2. measurement duration: 15 min
3. linear antenna polarization
Basel, 08. 05. 2012
Martin Röösli
12
12
Measurement Results
GSM 1800rx
Basel, 08. 05. 2012
Martin Röösli
13
13
Sensorscope/Climaps project:
Real-time environmental monitoring
• Partnership EPFL (lead) &
SwissTPH (Harish
Phuleria)
• Real-time monitoring of
various air pollutants and
weather parameters in
Lausanne
•http://www.climaps.com/
Basel, 08. 05. 2012
Martin Röösli
14
Sensorscope/Climaps project:
Sensor evaluation
• Precision high in most sensors
• Both sensitivity as well as specificity
are still problems for some sensors,
and accuracy still not enough to be
used for community AQ monitoring
• Most AQ sensors are still under
development and not available
commercially
Basel, 08. 05. 2012
Martin Röösli
15
NoiseTube: citizen scientists for distributed sensing
 Participatory noise pollution monitoring using mobile phones. Maisonneuve
et al., Information Polity, 15(1-2):51-71, Aug 2010.
Basel, 08. 05. 2012
Martin Röösli
16
Noisetube architecture
NoiseTube
App (Android)
NoiseTube
server
Upload data
Store locally
Android
file system
Basel, 08. 05. 2012
Martin Röösli
17
Noisetube limitations
 Experimental state after re-implementation for Android
 Calibration issues
Basel Summer (filtered SLM data)
75
Smartphone, LAeq (dBA)
70
65
y = 0.71x + 5.1
60
2
R = 0.954 (w/o outlier)
55
y = 0.64x + 9.6
2
R = 0.867 (all data)
50
45
40
35
35
40
45
50
55
60
65
70
75
Sound Level Meter, LAeq (dBA)
Basel, 08. 05. 2012
Martin Röösli
18
Challenges with mobile phone exposure data
 Technical issues
 Selection of participants: random sample difficult to achieve
If interested in a specific population: not everybody will have a suitable smart
phone
 Operating system of Iphone is not open
 Data quality
 Amount of data
 Post processing
Basel, 08. 05. 2012
Martin Röösli
19
http://villevivante.ch/
Basel, 08. 05. 2012
Martin Röösli
20