Silica Nanoparticles: nano
Transcription
Silica Nanoparticles: nano
SiO2 nanoparticles Silica Nanoparticles: nano-glass! SiO2 20 nm 70 nm 300 nm SiO2 nanoparticles Silica nanoparticles since ever? 1860: colloidal silica discovered by Thomas Graham (sol-gel) 1933: aqueous suspension of colloidal silica produced and commercialized by IG Farben (Germany) 1956: Kolbe observe the formation of silica nanoparticles when tetraethoxysilane (TEOS) is reacted with water in alcohols 1964: Stober and Fink report the controlled polymerization of TEOS in ethanol/water/ammonia 1992: Van Blaadered demonstrates the possibility to include organosilanes in silica nanoparticles. 1998: Arriagada and Osseo-Asare report the reversed emulsion synthesis 2003: Prasad reports the microemulsion synthesis of ORMOSIL nanoparticles SiO2 nanoparticles Silica nanoparticles everywhere? SiO2 nanoparticles Silica nanoparticles everywhere? … Nanobiotecnologie Silica nanoparticles: inorganic polymers Reactions of ethoxysilanes and silanols CH3 CH3 Si OCH3 CH3 CH3 CH3 Si OCH3 CH3 CH3 CH3 Si OH CH3 H2O CH3 Cat. CH3 CH3 OCH 3 H 3CO Si OCH 3 OCH 3 CH3 Si OH CH3 CH3 Si OH CH3 CH3 Si OH CH3 H2 O Cat. Cat. Cat. ? Hydrolysis CH3 CH3 CH3 CH3 Si O Si CH3 CH3 CH3 CH3 CH3 Si O Si CH3 CH3 CH3 Condensation Condensation Polymerization 5 Nanobiotecnologie Silica nanoparticles: synthesis Base-catalyzed polymerization O O O Si O O Cat. O O Si OH O Si O O O O O O Si O Si O O O O Si O Si O O O ? Cat. OH O ? O O Si O O Since silicon is less electronewithdrawing than carbon, oligomer silanols are better nucleophiles than hydrolyzed monomer silanols: growth prevails over nucleation in base catalysis conditions. 6 Nanobiotecnologie Silica nanoparticles: synthesis Base-catalyzed polymerization O O O Si O OH O O Si HO OH O O HO Si HO O O O Si O O Si HO HO k1 HO O O Si HO OH k2 O OH Oligomer O O OH Hydrolysis of precursor tretalkoxysilane is the rate-determining step. Polymer-monomer reaction is faster than monomer-monomer reaction→ monodisperse particles growth. However oligomers, once formed, are higlhy unstable and condese to form larger particles. HO O OH O OH O OH HO Oligomer Oligomer O HO O O OH HO O O O OH O O HO Si OH O O OH Oligomers condensation stops when the total charge is high enough to grant colloidal stability to the particles. Starting from that moment the particles grow by furter monomer condensation on their surface. Finale dimensions are essentially controlle by the amount of catalist (ammonia) present in the reaction 7 medium: ammonia generates salts that increase the ionic stenght of the medium and as a consequence decreases the colloidal stability of the particles. SiO2 nanoparticles Silica nanoparticles: preparation HO O M + O OH HO M+ HO OH Si HO HO HO OH HO Si OH ion exchange resin water M+ O O M+ O OH M+ HO O M + O OH HO M+ O O O Si O a) NH3 , H 2O, EtOH b) NH3 , H 2O, AOT n-ottano M+ O O M+ O OH M+ H2O H 2O HO O M + O OH HO M+ O Si O O NH 3, AOT, H 2O M+ O O M+ O OH M+ Nanobiotecnologie Silica nanoparticles Electrostatically stabilized nanoparticles HO O pKa ~ 3 M M O O OH M O ~ 4.5 OH / nm2 10-30% Si (T3) SiO2 nanoparticles Interesting for nanomedicine? Polymer Lipid Metal/Inorganic Silica Nanobiotecnologie Silica nanoparticles Platforms for multifunctional systems Bulk Surface O HO O OH O HO HO 70 nm O HO Si O O O Si O Si O O Si O OH O Si O O O Si Si OH OH O OH OH OH O HO OH O O O O OH HO OH HO O • La superficie può essere funzionalizzata con derivati organosilani. O OH OH Pores • Le pareti dei pori possono essere funzionalizzati con organosilani. • Nei pori e nella matrice possono essere intrappolate molecole organiche, specie inorganiche e persino altre nanoparticelle. • Se si effettuano successive aggiunte di precursori, le particelle possono essere cresciute a stadi. 11 Nanobiotecnologie Silica nanoparticles Covalent doping with alkoxysilanes Etanolo Si(OEt)4 NH3/H2O O NH N NH NH N HN (EtO)3 Si E’ necessario usare derivati organosilani, ma nelle sintesi con tensioattivi si può ottenere anche intrappolamento sterico. 12 Stober, 1956; van Blaaderen, 1991 Nanobiotecnologie Silica nanoparticles Surface functionalization HO O O O O O OH M M HO O O O OH M O F Si OR F F RO OR Si O OH O O O O Si O OH Nanobiotecnologie Silica nanoparticles Fluorescent nanoparticles Le nanoparticelle di silice sono trasparenti alla luce e possono essere drogate con molecole organiche. E’ quindi semplice produrre nanoparticelle di silice fluorescenti: • Il fluoroforo protetto dal solvente: maggior resa quantica. • Il fluoroforo è protetto dall’ossigeno: fotobleaching ridotto. • La particella contiene decine di fluorescenti: maggior luminosità (brightness) NBD 14 Nanobiotecnologie Fluorescent silica nanoparticles Nanoparticle-enhances assays Sandwich fluorescence immunoassays (FIA) DNA microarrays Nanobiotecnologie Fluorescent silica nanoparticles Fluorescence imaging PO32- PO32- PO32- PO32- PO32- PO32- PO32PO32- TEM micrograph of 70 nm silica particles doped with FTIC-APTES and surface functionalized with TAT peptide PO32- PO32- PO3 2- = GRKKRRQRRR (TAT) HO O OH COOH = H N HN FTIC-APTES Si(OEt)3 S Fluorescence microscope images of human lung adenocarcinoma cells after incubation with nanoparticles with (left) and without TAT peptide W. Tan et al., Chem. Commun., 2004, 2810-2811 Nanobiotecnologie Fluorescent silica nanoparticles Fluorescence probes pH microelettrodo Nano-sonda 17 Nanobiotecnologie Fluorescent silica nanoparticles Fluorescence probes 1995: approvazione della FDA per l’applicazione oncologica Terapia antitumorale che si avvale dell’utilizzo di: - fotosensibilizzatore - luce - ossigeno molecolare CITOTOSSICITA’ 1PS* 3PS* h 1PS IMAGING 18 1O * 2 3O 2 Nanobiotecnologie Fluorescent silica nanoparticles PDT agents Tween/H2O + VTES Dialisis m-THPC Singlet oxygen production Cells viability after irradiation P.N. Prasad et al., Nano Lett, 2007, 7, 2835-2842 Nanobiotecnologie Fluorescent silica nanoparticles PDT agents 850 nm Singlet oxygen Transmission images of HeLa cells treated with NP before (c) and after (d) irradiation at 850 nm Absorption and emission spectra of the two dyes P.N. Prasad et al., JACS, 2007, 129, 2269-2275 Nanobiotecnologie Nanoparticles@nanoparticles Silica encapsulation HO O OH O OH O OH HO Oligomer Oligomer O HO O O OH HO O O O OH O O HO Si OH O OH O Since polymer-monomer reaction is faster than monomer-monomer reaction, monomers added to a basic solution of an appropriate template may lead to the formation of a silica shell. Nanobiotecnologie Iron oxide@silica Multimodal imaging FTIC Fe3O4 SiO2 Schematic structure (up) and TEM micrograph of FTIC-APTES doped 50 nm silica particles entrapping 10-nm Fe3O4 nanoparticles B A A) Fluorescence microscope images of human mesenchymal stem cells (hMSCs) after incubation with nanoparticles (green) and a lysosomes probe B) MRI images of a nude mouse with injected SiO2@Fe3O4 nanoparticles D.-M. Huang et al., Nano Letters, 2007, 7, 149-154 Nanobiotecnologie Iron oxide@silica In vitro cell detection and separation W. Tan et al., Anal. Chem. 2007, 79, 3075-3082 Nanobiotecnologie Gadolinium oxide@silica Multimodal imaging A Fluorescence reflectance images of a nude mouse after injection of SiO2@Gd2O3 nanoparticles PEG FTIC Gd2O3 SiO2 MRI images of a nude mouse with injected SiO2@Gd2O3 nanoparticles B 24 C. Riviere, S. Roux et al., JACS, 2007, 129, 5076-5084 Nanobiotecnologie Latex@silica@layer-by-layer polymer Controlled drug release Drug relase modes TEM micrograph of hollow mesoporous silica nanoparticles IBU release in simulated stomach (pH 1.4) and intestinal (pH 8) fluids J. Shi et al., Angew. Chem. Int. Ed., 2005, 44, 5083-5087 Nanobiotecnologie Mesoporous silica Surfactant aggregates templated synthesis Alcuni tensioattivi in elevata concentrazione formano strutture tubolari impaccate Tali strutture funzionano come stampi per la produzione di materiali mesoporosi Sintesi di silice mesoporosa MCM-41 26 Nanobiotecnologie Mesoporous silica Surfactant aggregates templated synthesis • Surfactant: CTAB (cationic) • Silica precursor: TEOS • Catalyst: NaOH • Solvent: water • Co-precursor: organosilane (12%) • Surfactant removal: calcination or HCl extraction • The use of the co-precursor allows shape control Nanobiotecnologie Mesoporous silica Surfactant aggregates templated synthesis 1. Tunable particle size. The particle size of MSN can be tuned from 50 to 300 nm allowing a facile endocytosis by living animal and plant cells without any significant cytotoxicity. 2. Stable and rigid framework. Compared to other polymer-based drug carriers, MSN is more resistant to heat, pH, mechanical stress, and hydrolysis-induced degradations. 3. Uniform and tunable pore size. The pore size distribution of MSN is very narrow and the pore diameter can be tuned between 2 and 6 nm. These features allow one to adjust the loading of different drug molecules and to study the kinetics of drug release with high precision. 4. High surface area and large pore volume. As mentioned previously, the total surface area (> 900 m2/g) and pore volume (> 0.9 cm3/g) are very large, which allows high loadings of drug molecules. 5. Two functional surfaces. MSN have an internal surface (i.e., cylindrical pores) and an external surface (i.e. exterior particle surface). This characteristic allows the selectively functionalization of the internal and/or external surfaces of MSN with different moieties. 6. Unique porous structure. MSN is comprised of honeycomb-like, 2D hexagonal porous structure with cylindrical pores running from one end of the sphere to the other. There is no interconnectivity between individual porous channels. Nanobiotecnologie Mesoporous silica Gatekeeping delivery The DTT-induced release profiles of Vancomycin and ATP from the CdS-capped MSN system upon DTT addition Ca2+ efflux in astrocites upon incubation with ATP loaded MSN after addition of mercaptoethanol Nanobiotecnologie Mesoporous silica Gatekeeping delivery TEM images of MSN (a), iron oxide particles (b), capped MSN (c) HeLa cells incubated with fluorescein loaded MSN Nanobiotecnologie Mesoporous silica Gatekeeping delivery TEM TEM Confocal microscpe Lin S-J et al., JACS, 2004, 126, 13216-13217 Nanobiotecnologie Mesoporous silica Nanimpellers/nanovalves Apoptosis of PANC-1 incubated with MSNP induced by releasing CPT after irradiating for increasing times Nanobiotecnologie Mesoporous silica Nanimpellers/nanovalves KB-31 cancer cells endocytosed doxorubicinloaded fluorescein-labeled MSNPs within 3 h. This action is followed by doxorubicin release to the nucleus, induction of cytotoxicity, and the appearance of apoptotic bodies after 60 h (indicated by arrows), followed by nuclear fragmentation after 80 h. Nanobiotecnologie Mesoporous silica Nanimpellers/nanovalves Before magnetic field activation (viability 100%) MPN loaded with Fl + magnetic field (viability 84%) apoptotic bodies MPN loaded with Dox + magnetic field (viability 63%) Nanobiotecnologie Nanoparicles@Mesoporous silica • CTAB can act both as water solubilizing agent and pore template. • Different nanoparticles can be encapsulated by retaining their properties. a) Iron oxide np b) Iron oxide nanowires c) MnO np d) Fe3O4 np and CdSe np Nanobiotecnologie Nanoparicles@Mesoporous silica Theranostic agents Fe3O4@mSiO2 Nanobiotecnologie Nanoparicles@Mesoporous silica Theranostic agents HMn@mSiO2 mSiO2@Fe3O4