densimetric exchange flow in rectangular channels
Transcription
densimetric exchange flow in rectangular channels
NOVEMBRE 1 9 6 3 - № 7 LA H O U I L L E BLANCHE 757 Densimetric exchange flow in rectangular channels 11.—SOME OBSERVATIONS OF THE STRUCTURE OF LOCK EXCHANGE FLOW BY D. I. H. BABE, DEPARTMENT OF CIVIL ENGINEERING THE ROYAL COLLEGE OF SCIENCE AND TECHNOLOGY, GLASGOW AND A. M. M. HASSAN, PORT OF BASRAH, IRAQ (RESEARCH STUDENT AT ROYAL COLLEGE, 1960-62) 77ii's second paper of the series describes how greater understanding of the varying mechanisms of ex change flow was obtained from relatively simple experiments involving the colouring of ' blocks ' of wa ter before the start of an experiment. It became apparent that capacity for the fronts of an exchange flow of large densimetric Froude-Reynolds number to maintain almost the initial velocity for conside rable relative distance (i.e. for a travel distance of many times the depth) depended on the continual discardment of the diluted water at the front and its replacement by more or less undiluted wafer which overtook the front. Although with decreasing densimetric Froude-Reynolds number the rate of entrainment at the fronts decreased, the rate of discardment decreased more rapidly and the velocity of the fronts diminished in a relatively shorter distance. At very small densimetric Froude-Reynolds numbers when the flow was basically laminar, dilution of the fronts became the dominant factor in the lock exchange flow phenomenon. Attempts to obtain recordings of the velocity and dilution structure were only moderately successful in illustrating the effects of variation of scale because of the combined limitations imposed by the size of the flumes used and by the recording techniques available. However, taken together with some previous observations, and with observations made of dye streaks injected into the moving bodies of water—a modification of the original block colouring method—the combined evidence is considered to be suffi cient to support the contentions. 1. INTRODUCTION I n t h e first p a g e u n d e r t h e g e n e r a l t i t l e of t h e s e r i e s ( B a r r , 1963) w h i c h w i l l b e r e f e r r e d t o a s I, v a r i o u s p u r e d e n s i t y c u r r e n t c a s e s of d e n s i m e t r i c e x c h a n g e flow i n w a t e r w e r e l i s t e d , a n d information on their overall characteristics was given. It w a s d e m o n s t r a t e d t h a t t h e scale of s u c h p h e n o m e n a s h o u l d be d e t e r m i n e d on t h e b a s i s of t h e d e n s i m e t r i c F r o u d e - R e y n o l d s n u m b e r . D e t a i l s w e r e g i v e n of t h e v e l o c i t i e s of t h e f r o n t s , b o t h i n r e s p e c t of c h a n g e s i n t h e coeffi c i e n t of p r o p o r t i o n a l i t y w i t h v a r i a t i o n of s c a l e a n d b e t w e e n d i f f e r e n t t y p e s of f r o n t a n d a l s o i n r e s p e c t of t h e p a t t e r n of d i m i n u t i o n of v e l o c i t y of a f r o n t . Using this knowledge, a design m e t h o d for h y d r a u l i c m o d e l s t u d i e s i n v o l v i n g d e n s i m e t r i c spread h a d been devised. This s h o w e d t h a t t h e p r a c t i c a l r e l e v a n c e of the idealised two dimensional exchange or spread studies w a s not confined to the u n d e r s t a n d i n g of s m a l l d e n s i t y difference effects i n c a n a l a n d lock s y s t e m s a n d t h e like, b u t e x t e n d e d to t h e m u c h m o r e c o m m o n o c c u r r e n c e of t h e t h r e e d i m e n s i o n a l s p r e a d of a b u o y a n t d i s c h a r g e . It Article published by SHF and available at http://www.shf-lhb.org or http://dx.doi.org/10.1051/lhb/1963053 № LA HOUILLE BLANCHE 758 w a s s a i d i n I t h a t t h e n e x t s t a g e i n the p r o g r a m m e of s t u d y of e x c h a n g e flow s h o u l d b e to a t t e m p t to l e a r n m o r e of t h e s t r u c t u r e — t h e i n t e r n a l velocities a n d t h e d i l u t i o n p a t t e r n s . T h i s p a p e r is c o n c e r n e d w i t h s u c h o b s e r v a t i o n s . 2. B is t h e b r e a d t h of t h e r e c t a n g u l a r flume; is t h e p r i m a r y c h a r a c t e r i s t i c v e r t i c a l d i s t a n c e ; i n t h e case of l o c k e x c h a n g e flow t h e d e p t h ; is a l e n g t h a l o n g t h e flume—measur ed f r o m t h e r e m o v e a b l e b a r r i e r ; H L L is t h e d i s t a n c e from t h e r e m o v e a b l e b a r r i e r t o t h e fixed b a r r i e r in t h e case of a " s h o r t " lock. is t h e velocity of a f r o n t a f t e r s o m e extension; is t h e i n i t i a l velocity of a f r o n t i m m e d i a t e l y a f t e r t h e r e m o v e a b l e b a r r i e r is lifted; is t h e n o n - d i m e n s i o n a l d e n s i t y differ e n c e o r t h e d e n s i t y difference r a t i o ; Ap = p — p w h e r e pj a n d p a r e t h e d e n s i t i e s of t h e t w o b o d i e s of l i q u i d ; a n d it is a s s u m e d p i=.p p; 0 V V N O T A T I O N S (as used in I) 0 Ap/p x 2 2 x 2 1/2 VA is [(Ap/p) . < 7 - H ] or the characteris t i c velocity s u c h t h a t t h e d e n s i m e t r i c F r o u d e n u m b e r (g? ) e q u a l s o n e ; g; = V , / [ ( A p / p ) . ^ H ] w h e r e Y is a c h a racteristic velocity; K is t h e r a t i o V / V ; A h c 0 g« 0\ A is t h e d e n s i m e t r i c F r o u d e - R e y n o l d s n u m b e r [(Ap/p)<7 H / v ] , "where v is t h e k i n e m a t i c v i s c o s i t y (see I for t h e limitations on this n u m b e r ) . A 1/2 3 / a 7 - NOVEMBRE 1 9 6 3 uncoloured front progresses into coloured water its f o r m m a y be difficult to d i s t i n g u i s h b e c a u s e of t h e c o l o u r e d w a t e r w h i c h is d r a w n i n t o its s w i r l i n g t i p . B y c o l o u r i n g first t h e m o r e d e n s e a n d t h e n t h e less d e n s e w a t e r a n d t a k i n g s e t s of s i m u l t a n e o u s p h o t o g r a p h s a t selected s t a g e s of d e v e l o p m e n t of t h e e x c h a n g e flow i n b o t h cases, K e u l e g a n (1957) b u i l t u p a c o m p o s i t e p i c t u r e of e x c h a n g e flow for o n e c h o s e n c a s e . H i s c o n f i g u r a t i o n , influenced b y a n i n t e r e s t i n t h e m o t i o n of salt w a t e r r e l e a s e d i n t o a c a n a l f r o m a s h o r t lock ( l e n g t h L ) w a s B / H = 0.5, L / H = 7, a n d t h e r e w a s sufficient c a n a l l e n g t h for L / H for t h e u n d e r f l o w to r e a c h 40. With H = 10 i n c h e s , Ap/p = 0.020, K . g T ^ t f l was 23,800. A l t h o u g h t h e l a t t e r s t a g e s of d e v e l o p m e n t w e r e n a t u r a l l y m u c h affected b y t h e reflection (Fig. 1) r e s u l t i n g f r o m t h e overflow^ s t r i k i n g t h e e n d of t h e l o c k t h e e a r l y r e c o r d i n g s f r o m t h e s e e x p e r i m e n t s first d e m o n s t r a t e d t h a t t h e d e v e l o p m e n t of t h e overflow a n d u n d e r flow i n free s u r f a c e l o c k e x c h a n g e flow a r e n o t s y m m e t r i c a l . B a r r (1959) s t u d i e d b o t h overflow a n d u n d e r f l o w a n d f o u n d a s s h o w n o n F i g u r e s 1, 2 a n d 4 of I t h a t t h e i n i t i a l t i p v e l o c i t y of t h e overflow e x c e e d e d t h a t of t h e u n d e r f l o w b y a b o u t 12 % t h r o u g h o u t t h e r a n g e of W^GX a t t a i n a b l e i n a m o d e r a t e l y sized flume. No m e a s u r e m e n t s of w ater velocities w e r e m a d e b y K e u l e g a n o r B a r r , n o r h a v e s u c h b e e n r e p o r t e d for c o n t r o l l e d c o n d i t i o n s b y a n y o t h e r w o r k e r s , so f a r a s is k n o w n (Allen a n d P r i c e , 1959, h a v e c o m p a r e d s o m e velocity m e a s u r e m e n t s for a complex a n d unsymetrically non-prismatic pro totype configuration and a model thereof). In deed t h e t o t a l c o l o u r i n g of o n e o r o t h e r of t h e b o d i e s of w a t e r t o a l l o w e a s y o b s e r v a t i o n of t h e tip velocities h a s t e n d e d t o p r e v e n t a n y v i s u a l i m p r e s s i o n of t h e i n t e r n a l velocities beingobtained. P r a n d t l (1952) h a s i n d i c a t e d t h a t 0 0 r 3. SOME FURTHER DETAILS O F PREVIOUS LOCK EXCHANGE EXPERIMENTS r Before t h e p r e s e n t p r o g r a m m e of s t u d i e s w as i n i t i a t e d a t t h e R o y a l College of Science a n d T e c h n o l o g y , Glasgow, a t t e n t i o n h a d b e e n , in general, directed towards the underflow. It w a s therefore usually found convenient to colour the m o r e dense w a t e r in its original position a n d t h u s see c l e a r l y t h e p r o g r e s s of t h e u n d e r f l o w after t h e r e m o v a l of t h e b a r r i e r . T o t h e eye, a n d t o t h e c a m e r a , t h e c o l o u r e d w ater is d o m i n a n t over u n c o l o u r e d w a t e r . T h e d i l u t i o n of t h e p r o g r e s s i n g u n d e r f l o w c a n b e q u i t e a d v a n c e d before it is v i s u a l l v o b v i o u s . O n t h e o t h e r h a n d if a n r FIG. 1 Diagramatic illustration of reflection effects in lock exchange flow-overflow reflected. Representation schématique des phénomènes de réflexion intéressant un écoulement d'échange en écluse, avec réflexion de l'écoulement « par en-dessus ». NOVEMBRE 1 9 6 3 - № 7 D . I. H . B A R R AND A . M. M. H A S S A N f o l l o w - u p velocities a p p r o a c h i n g t w i c e t h e fron tal velocity m a y occur in analogous cold-warm air p h e n o m e n a (truly analogous to d a m burst a n a l o g y e x c h a n g e flow). As r e g a r d s m i x i n g a c t i o n s , t w o t y p e w e r e n o t e d . At t h e t i p , e s p e c i a l l y t h e u n d e r f l o w t i p , there w a s a rolling u p process similar to t h a t s h o w n i n P r a n d t l ' s (1952) i l l u s t r a t i o n s . This was observed w h e n the interface w a s otherwise completely smooth, suggesting practically lami n a r c o n d i t i o n s of flow a t t h e i n t e r f a c e a t least. In some cases t h e spiral w a s seen quite as dis t i n c t l y a s i n P r a n d t l ' s i d e a l i s e d figure ( B a r r , 1959). A s t h e i n c r e a s i n g of t h e d e p t h o r of i n i t i a l d e n s i t y difference, o r b o t h , led t o w a r d s more turbulent conditions, t h e spiralling layers no longer a p p e a r e d to have distinct existence, b u t t h e g e n e r a l p a t t e r n of m o v e m e n t s e e m e d t o be t h e s a m e . T h e o t h e r t y p e of m i x i n g a c t i o n w h i c h w a s c l e a r l y o b s e r v e d , o c c u r r e d b e h i n d t h e t i p of t h e u n d e r f l o w w h e n t h e d e p t h a n d d e n s i t y difference w e r e s u c h a s t o give v a l u e s of K.g> dl of t h e o r d e r of 5,000 or r a t h e r l e s s . I n t e r f a c i a l w a v e s , on t h e p o i n t of b r e a k i n g , w e r e o b s e r v e d i n t h e region behind t h e underflow front in exchange flow s of t h e o r d e r of 3 i n c h e s t o t a l d e p t h i n a n 18 i n c h w i d e f l u m e a n d w h e n t h e e x t e n s i o n t o d e p t h r a t i o of t h e f r o n t , L / H , w a s of t h e o r d e r of 20 t o 30. W h e n K.W^bX w a s s l i g h t l y i n c r e a s e d , b r e a k i n g of t h e w a v e s c o u l d b e seen a n d o n f u r t h e r i n c r e a s e t h e i n d i v i d u a l waA'es could no longer be distinguished, the general i m p r e s s i o n g a i n e d b y t h e first a u t h o r after watching m a n y experiments, being that the turbulent mixing between t h e two layer grew m o r e i n t e n s e w i t h i n c r e a s i n g v a l u e s of K.&'^OlA r T h e a p p e a r a n c e of t h e t w o c o n d i t i o n s of n o n breaking a n d j u s t breaking waves w a s very s i m i l a r t o t h e p h o t o g r a p h s given b y I p p e n a n d H a r l e m a n (1952) for a s i m i l a r , t h o u g h s t e a d y state, circumstance. T h i s t y p e of i n t e r f a c i a l wave f o r m a t i o n w a s also noted b y Ellison a n d T u r n e r (1959) a s o c c u r r i n g b e h i n d t h e n o s e of a n underflow layer progressing d o w n a slight slope. It s e e m e d r e a s o n a b l e t o a s s u m e t h a t s i m i l a r w a v e s c o u l d b e o b t a i n e d b e h i n d a n "overflow front, t h o u g h s u c h w e r e n o t a c t u a l l y o b s e r v e d . T h u s t h e o v e r a l l i m p r e s s i o n a t t h e e n d of t h e first s t a g e of t h e i n v e s t i g a t i o n of lock e x c h a n g e flows w a s t h a t t h e t w o m i x i n g a c t i o n s , p a r t i c u larly t h e second, intensified w i t h increasing va l u e s of K.g> dl a n d that interfacial drag pro v i d e d t h e e x p l a n a t i o n for t h e r e l a t i v e l y m o r e p r o n o u n c e d d i m i n u t i o n of velocity of l o w v a l u e s of K . $ i 01. W i t h o u t a n y a c t u a l m e a s u r e m e n t s A A 759 h a v i n g b e e n t a k e n , t h e i m p r e s s i o n of a n i n t e r face m o r e o r less d i s t i n c t , d e p e n d i n g o n t h e d e g r e e of t u r b u l e n c e , a n d w i t h t u r b u l e n t or l a m i n a r t y p e velocity d i s t r i b u t i o n p a t t e r n s a b o v e and below t h e interface w a s also present. 4. THE FLUMES ( A , B and C) It is c o n v e n i e n t t o briefly d e s c r i b e t h e flumes u s e d for t h e e x p e r i m e n t s c o n s i d e r e d h e r e , a n d w h i c h w e r e u s e d i n o b t a i n i n g t h e r e s u l t s given in I. S o m e d e t a i l s p e r t i n e n t to t h e n e x t p a p e r (.III) a r e i n c l u d e d . F l u m e A w a s b u i l t i n 1958 a t t h e s t a r t of t h e p r o g r a m m e of s t u d y of d e n s i m e t r i c effects w h i c h w a s t h e n p r i m a r i l y i n t e n d e d t o give u n d e r s t a n d i n g of t h e useful scope of h e a t d i s s i p a t i o n m o d e l s a n d of t h e s c a l i n g t h e r e o f . Thus the flume w a s p l a n n e d to serve v a r i o u s f u n c t i o n s a n d w a s a c o m p r o m i s e b e t w e e n t h e n e e d s of these various functions and t h e space available. It w a s 18 i n c h e s w i d e , 10 i n c h e s d e e p a n d h a d a t o t a l l e n g t h of 19 feet. T o g e t h e r w i t h a n 18 feet b y 7 feet b y 18 i n c h e s d e e p t a n k u s e d for t h e t h r e e d i m e n s i o n a l s t u d i e s m e n t i o n e d i n I, i t f o r m e d a c i r c u i t i n w h i c h a c o n t r o l l e d flow c o u l d b e o b t a i n e d b y m e a n s of a % c u s e c p u m p , a c o n s tant head t a n k a n d a V-notch weir installed as p a r t of t h e c i r c u i t . T o u s e t h e f l u m e f o r lock e x c h a n g e flow e x p e r i m e n t s , a p e r m a n e n t b a r r i e r w as p l a c e d n e a r t h e " u p s t r e a m " e n d a n d a n adjustable gate at the " d o w n s t r e a m " end w a s raised. T h e p o s i t i o n of t h e g r o o v e s for t h e r e m o v e a b l e b a r r i e r gave a 13 feet l e n g t h b e tween it a n d the end gate. Initially t h e p e r m a n e n t b a r r i e r w a s p l a c e d t o give a 4 feet s h o r t e r length and latterly a feet s h o r t e r l e n g t h . T h i s flume, w h i c h h a d o n e side t r a n s p a r e n t , is s h o w n i n F i g u r e s 5 a n d 6 of I a n d w a s a l w a y s used open, there being no top. It w a s not, in g e n e r a l , e a s y t o light for p h o t o g r a p h i n g or t o p h o t o g r a p h , p a r t of i t s l e n g t h r u n n i n g close t o a wall. r At a h i g h e r level i n t h e l a b o r a t o r y t w o b a t c h i n g t a n k s w e r e s e r v e d b y t h e n o r m a l h o t a n d cold w a t e r s u p p l i e s , a n d w e r e of sufficient c a p a c i t y to p r o v i d e t h e 17 a n d 7 c u b i c feet n e c e s s a r y to fill t h e l a r g e r a n d s h o r t e r l e n g t h s r e s p e c t i v e l y . D u r i n g Jock e x c h a n g e e x p e r i m e n t s t h i s w a t e r w a s fed i n t o t h e l e n g t h s , s e p a r a t e d b y t h e r e m o veable barrier. After a t e s t t h e w a t e r w a s quickly d u m p e d into the tank by lowering the a d j u s t a b l e g a t e l e a v i n g t h e f l u m e r e a d y for a n o t h e r test. F l u m e B w a s a 4y« i n . b y 4% i n s q u a r e " p i p e , " a g a i n w i t h o n e side t r a n s p a r e n t . I t w a s s i x t e e n LA H O U I L L E 760 feet long, w i t h t h e r e m o v e a b l e b a r r i e r in t h e m i d d l e a n d w i t h solid e n d s . It w a s p l a c e d on a long t a b l e w h i c h could b e r a p i d l y tilted t o aid e m p t y i n g a n d filling from t h e s a m e h i g h level b a t c h i n g t a n k s as u s e d for flume A. F l u m e B c o u l d b e e a s i l y p h o t o g r a p h e d , a n d is s h o w n in F i g u r e s 4 a n d 5 b of I. F l u m e C w a s also of t h e enclosed type, 4 feet long a n d of IVi i n c h by % i n c h section w i t h t h e r e m o v e a b l e b a r r i e r i n t h e m i d d l e . It c o u l d b e u s e d as e i t h e r a " w i d e " flume w i t h B / H — 6 or a s a v e r y n a r r o w flume w i t h B / H = 0.167. 5. OBSERVATIONAL EXPERIMENTS W I T H BLOCK COLOURING (Flume A, 1961) By i n t r o d u c i n g o n e or m o r e a d d i t i o n a l t h i n vertical c r o s s b a r r i e r s i n t o t h e flume o n c e i t h a d b e e n filled in t h e n o r m a l w a y for a lock type, e x c h a n g e e x p e r i m e n t , it w a s p o s s i b l e t o c o l o u r a block of e i t h e r t h e m o r e d e n s e o r t h e less d e n s e w a t e r w i t h o u t o t h e r w i s e affecting t h e experiment. These additional barriers were then slowly w i t h d r a w n , l e a v i n g t h e c o l o u r e d b l o c k m o d e r a t e l y d i s t i n c t a n d s o o n after t h i s t h e e x p e r i m e n t could b e s t a r t e d i n t h e n o r m a l w a y b y swift ly lifting t h e m a i n b a r r i e r . T h i s s i m p l e t e c h n i q u e at o n c e gave a n e w i n s i g h t i n t o e x c h a n g e flow. F i r s t a b l o c k of t h e m o r e d e n s e w a t e r next to the m a i n barrier w a s coloured during an e x p e r i m e n t of d e p t h a n d d e n s i t y difference s u c h a s t o give a l o w d e n s i m e t r i c F r o n d e - R e y n o l d s n u m b e r ( K . g > ¿ 1 = 1,000). Although upon i n i t i a t i o n of t h e e x c h a n g e s o m e of t h e c o l o u r e d water was distributed along the extending interface m o s t of it m o v e d a l o n g t h e flume w i t h t h e underflow. Dilution occurred due to the entry of t h e less d e n s e w a t e r j u s t b e h i n d t h e c h a r a c teristic bulge, b u t the diluted water mostly r e m a i n e d i n t h e f o r w a r d p a r t of t h e u n d e r f l o w . T h e velocity r a p i d l y d i m i n i s h e d a n d it a p p e a r e d t h a t t h e d i l u t i o n h a d i n h i b i t e d t h e c a p a c i t y for advance. W h e n a block further back from the m a i n barrier w a s coloured, no coloured w a t e r r e a c h e d t h e f r o n t d u r i n g t h e p e r i o d of observation w h i c h lasted until the frontal velocity h a d fallen to a s m a l l f r a c t i o n of t h e i n i t i a l velocity. Similar experiments were then u n d e r t a k e n with K . S"A. dv v a l u e s of 7,000 u p w a r d s for b o t h underflow a n d overflow. B l o c k s of w a t e r i n i tially some small distance from the m a i n barrier were coloured. W h e n these came into motion m o s t of t h e c o l o u r e d w a t e r w a s seen to m o v e r a p i d l y after t h e f r o n t , t o o v e r t a k e it, to be diluted by the pronounced mixing action at t h e n o s e , a n d t o be d i s c a r d e d to f o r m a n i n t e r m e A 7 BLANCHE № 7 - NOVEMBRE 1 9 6 3 d i a t e l a y e r b e t w e e n t h e m a i n s t r e a m following ( a n d feeding) t h e f r o n t a n d t h e o p p o s i n g c o u n t e r flow. This intermediate layer t h u s served to separate the m a i n forward transfer zone from t h e n e c e s s a r y c o u n t e r flow. It is c o n v e n i e n t t o call t h e m a i n flow t h e s u b - c u r r e n t , w h e t h e r it b e t h e u n d e r f l o w or t h e overflow c a s e , b e c a u s e it is d i s t i n g u i s h e d a s b e i n g s o m e d i s t a n c e w i t h i n t h e b o u n d a r y of t h e u n d e r f l o w or overflow a s m i g h t b e defined e i t h e r b y t h e line j o i n i n g z e r o velocity p o i n t s or t h e l i n e of e q u a l m i x i n g of the t w o differing b o d i e s of w a t e r . 6. VARIOUS RECORDINGS OF THE STRUCTURE O F LOCK E X C H A N G E F L O W Explanatory note. T h e obvious follow u p t o t h e b l o c k c o l o u r i n g o b s e r v a t i o n s m a d e i n 1961, s e e m e d to b e t o o b t a i n m e a s u r e m e n t s of t h e i n t e r n a l s t r u c t u r e of e x c h a n g e flow—velocities a n d d i l u t i o n — as e v i d e n c e of t h e v a r y i n g m e c h a n i s m s t h a t h a d b e e n o b s e r v e d . T h i s w a s in fact a t t e m p t e d w i t h o n l y m o d e r a t e s u c c e s s . N o w as t h i s p a p e r is b e i n g p r e p a r e d i n 1963, the. s o m e w h a t difficult t a s k of i n t e r n a l s t r u c t u r e m e a s u r e m e n t s i n a n u n s t e a d y s y s t e m s e e m s less i m p o r t a n t for several reasons: (i) A l t h o u g h t h r e e d i m e n s i o n a l s p r e a d is n o t r e a l l y w i t h i n t h e scope of t h e s e p a p e r s , i t h a s b e e n e x p l a i n e d i n I t h a t t h e d e s i r e to f o r m u l a t e r u l e s for t h e s c a l i n g of h y d r a u l i c m o d e l s i n v o l v ing three dimensional spread was the original m o t i v a t i o n of t h e s t u d i e s . After t h e a t t e m p t s to o b t a i n r e c o r d i n g s of t h e s t r u c t u r e i n t h e t w o d i m e n s i o n a l case d u r i n g 1 9 6 1 , it w a s d e c i d e d t o a p p l y a m o d i f i c a t i o n of t h e b l o c k c o l o u r i n g m e t h o d to t h e simplified o u t f a l l s t u d i e s m e n t i o n ed i n I. H e r e t h e p r o c e d u r e w a s e x t r e m e l y simple-—the b u o y a n t w a t e r d i s c h a r g e d f r o m t h e outfall w a s coloured w i t h a w e a k dye. Some t i m e after t h e s t a r t of a n e x p e r i m e n t w h e n a s u r f a c e field h a d f o r m e d , a s e c o n d a n d d o m i n e n t c o l o u r i n g a g e n t w a s a d d e d to t h e o u t f a l l flow a n d t h e f u r t h e r t i m e i n t e r v a l for t h e s e c o n d c o l o u r to o v e r t a k e t h e s p r e a d i n g f r o n t on, say, t h e p r o d u c e d c e n t r e l i n e of t h e o u t f a l l w a s n o t ed. V a r i o u s i n i t i a l i n t e r v a l s w e r e so t e s t e d a n d t h e n t h e w h o l e r e p e a t e d a t a different h o r i z o n t a l scale (on fifth size w i t h a p p r o p r i a t e v e r t i c a l e x a g g e r a t i o n ) . T h i s p r o v e d to be a v e r y u s e f u l m e t h o d of a s s e s s i n g t h e d e g r e e of s i m i l a r i t y obtained in internal motions as between small scale i d e a l i s e d outfall c o n f i g u r a t i o n s u s i n g t h e congruency d i a g r a m scaling method, a n d did NOVEMBRE 1 9 6 3 - № 7 D . I. H . B A R R AND A . M. M. n o t i n v o l v e a n y d i r e c t m e a s u r e m e n t of fluid velocities. A g a i n , k n o w i n g n o w w h a t to look for, t h e overtaking and discardment patterns, which m u s t b e g e n e r a l t o all s p r e a d p h e n o m e n a w h e r e t h e t w o l i q u i d s or fluids a r e m i s c i b l e , w e r e easily a n d reassuringly recognised in the large heat dissipation models being operated by the Civil E n g i n e e r i n g D e p a r t m e n t of t h e R o y a l College d u r i n g 1962 ( S m i t h , 1962). (ii) It is n o w k n o w n t h a t t h e r e a r e a t l e a s t t w o m e t h o d s of s e t t i n g u p s t e a d y s t a t e e x c h a n g e flow; t h e first of t h e s e h a s a l r e a d y b e e n d e s c r i b ed ( B a r r , 1962), t h e s e c o n d a n d m o r e i m p o r t a n t c a s e is to be d e a l t w i t h i n I I I . A l t h o u g h t h e m e c h a n i s m s of e n t r a i n m e n t a n d d i s c a r d m e n t m a y differ i n detail i n s u c h cases, t h e r e m u s t be basic, s i m i l a r i t y t o t h o s e m e c h a n i s m s as t h e y occur in the non-steady cases a n d certainly r e c o r d i n g s w o u l d b e m u c h s i m p l e r to o b t a i n . F o r t h e s e r e a s o n s it w a s d e c i d e d (in 1963) m e r e l y t o o b t a i n , a s s i m p l y as possible, suffi cient additional recordings t h a t the combined e v i d e n c e w o u l d c l e a r l y i l l u s t r a t e h o w v a r i a t i o n of t h e d i s c a r d m e n t t o e n t r a i n m e n t r a t i o affects t h e d i m i n u t i o n of v e l o c i t y p a t t e r n s . If, a s is h o p e d , e n l a r g e d a n d i m p r o v e d facilities b e c o m e a v a i l able for t h e s t u d y of b o t h n o n - s t e a d y s t a t e a n d s t e a d y s t a t e e x c h a n g e flows, it c a n t h e n b e d e c i d e d t o w h a t e x t e n t d e t a i l e d o b s e r v a t i o n s of s t r u c t u r e a r e d e s i r a b l e a n d feasible i n t h e n o n steady cases. P h o t o g r a p h s of p a i r s of e x p e r i m e n t s w i t h differencial colouring. K e u l e g a n ' s (1957) u s e of t h e t e c h n i q u e of differencial c o l o u r i n g h a s a l r e a d y b e e n m e n t i o n ed, i n 3 a n d F i g u r e 4 of I s h o w s typical r e s u l t s obtained in this way. D e s p i t e t h e s h o r t lock l e n g t h ( L / H — 7) a n d t h e n a r r o w flume w i d t h ( B / H = 0.5) K e u l e g a n ' s r e s u l t s c a n b e h e l d to provide" s o m e e v i d e n c e r e l e v a n t to t h e s t a n d a r d c a s e — i t c a n n o t b e t h o u g h t for i n s t a n c e t h a t e i t h e r t h e n a r r o w w i d t h or t h e effect of a reflection of t h e overflow f r o m t h e lock e n d w o u l d a t a n y t i m e i n c r e a s e the velocity of a n u n d e r f l o w f r o n t . I n t h i s case w i t h a K-3> 6l v a l u e of 23,800, t h e f r o n t velocity (V) a t an e x t e n s i o n to d e p t h r a t i o ( L / H ) of 39.3 w a s s l i g h t l y g r e a t e r t h a n 0.9 V . At all t i m e s u p to this extension u n d i l u t e d saline water was found b y K e u l e g a n t o e x t e n d a l o n g t h e b o t t o m of t h e flume a n d r i g h t u p t o t h e v e r y front of t h e u n d e r f l o w . A b o v e t h i s b o t t o m l a y e r lay a zone of m i x e d w a t e r , t y p i c a l l y o c c u p i n g b e t w e e n one fifth a n d o n e s i x t h of t h e t o t a l d e p t h . It will be s e e n f r o m F i g u r e 8 of I t h a t t h e L / H r a t i o at K-WTTft of a b o u t 24,000 for V / V = 0.9 is, b y 0 A 0 0 HASSAN 761 e x t r a p o l a t i o n , e s t i m a t e d to b e a b o u t 110, n e a r t h e " e s t i m a t e d " l i m i t of 120 for t h e s t a n d a r d case of a w i d e c h a n n e l ( B / H ^ 6) w i t h n o reflection. T h e c o m p a r a b l e l i m i t s of L / H (i.e. L / H for V / V = 0.9) for t h e n a r r o w c h a n n e l ( B / H = 0,5) as f o u n d b v K e u l e g a n w e r e a b o u t 50 for L / H of 7.2 a n d "65 for L / H of 14.4. D a t a for t h e s t a n d a r d c a s e a t K.<J! Jl v a l u e s f r o m 20,000 u p w a r d s is v e r y m u c h n e e d e d — i t is n o t p o s s i b l e to fully d i s t i n g u i s h b e t w e e n t h e effects of t h e n a r r o w c h a n n e l a n d of t h e reflection w h i c h m u s t o b v i o u s l y c o m b i n e to r e d u c e t h e c a p a c i t y of t h e u n d e r f l o w to m a i n t a i n t h e i n i t i a l velocity, b u t t h e r e s u l t s of K e u l e g a n q u o t e d lead one to e x p e c t t h a t for K . 3< oX v a l u e s of 24,000 u p w a r d s a n d p r e s u m i n g t h e s t a n d a r d case, u n d i l u t e d w a t e r w o u l d b e p r e s e n t a t t h e f r o n t m o v i n g a t velocity V > 0.9 V for L / H v a l u e s of u p w a r d s of 70 a n d perhaps m u c h greater. 0 0 0 A A 0 F i g u r e 4 a n d 5 of I p r o v i d e r o u g h l y c o m p a r able i n f o r m a t i o n for K.W^lJL v a l u e s of a b o u t 5,000. I n t h e case of F i g u r e 4 t h e L / H v a l u e for t h e overflow w a s 18 at t h e t i m e e a c h p h o t o g r a p h w a s t a k e n (i.e. a n e x t e n s i o n of 6 feet). T h e e x t e n s i o n of t h e u n d e r f l o w is seen to b e a b o u t 5 feet 5 i n c h e s ( L / H = 16.2) and (18-16.2)/16.2 is a b o u t 11 % , v e r y close t o t h e t y p i c a l 12 % q u o t e d in I. T w o t r e n d s c a n b e o b s e r v e d : firstly t h e r e a r e s i g n s of d i l u t i o n a t the fronts despite the comparatively small L / H r a t i o s ( L / H for F i g u r e 5 a is 3.2 a n d for F i g u r e 5 b is 11.6); a n d s e c o n d l y t h e z o n e s of m i x ed w a t e r a p p e a r to be t h i n n e r t h a n in K e u l e g a n ' s experiment. F o r t h e n e x t t w o stages of d e c r e a s e of K . 9< o\ w h i c h a r e t o be d e s c r i b e d , n o a t t e m p t h a s b e e n m a d e t o o b t a i n p h o t o g r a p h s ; it w a s t h o u g h t t h a t it w o u l d be difficult to o b t a i n m e a n ingful r e s u l t s . F u r t h e r t h e t r e n d s b e c o m e m o s t p r o n o u n c e d a n d , b e c a u s e of t h e g r e a t i n c r e a s e i n t i m e a v a i l a b l e for v i s u a l o b s e r v a t i o n , e a s i e r to d e s c r i b e . T h e s a m e flume (B) a s is s h o w n i n F i g u r e 4 of I w a s filled to 1 i n c h d e p t h o r V i n c h d e p t h ( K . ^ (R. in t h e r e g i o n 200-600). T h u s a m u c h greater relative extension w a s possible t h a n w h e n it w a s full or n e a r l y full. F i g u r e 8 of I s h o w s h o w p r o n o u n c e d d i m i n u t i o n of v e l o c i t y o c c u r r e d at r e l a t i v e l y s m a l l e x t e n s i o n s . It w a s m o s t n o t i c e a b l e t h a t a c o l o u r e d f r o n t become considerably diluted and t h a t this dilu tion e x t e n d e d b a c k for s o m e d i s t a n c e ; m o r e o v e r it w a s n o w p r a c t i c a l l y i m p o s s i b l e t o o b s e r v e a n uncoloured front penetrating into a coloured zone b e y o n d t h e i n i t i a l s t a g e s of d e v e l o p m e n t . A 2 A T h e final s t a g e of d e c r e a s e of K . " p ol w a s r e a c h e d in F l u m e C. T h i s % i n c h d e e p e n c l o s e d flume w a s c o n s t r u c t e d e n t i r e l y of p e r s p e x a n d A 762 LA HOUILLE t h e f r o n t s w e r e o b s e r v e d b y viewing f r o m above w i t h a w h i t e b a c k g r o u n d below. Although t h e i n i t i a l Yi i n c h of p o t a s s i u m p e r m a n g a n a t e c o l o u r e d w a t e r a p p e a r e d a s a d e n s e colour, t h e d i l u t i o n w a s so p r o n o u n c e d t h a t i t b e c a m e difficult t o o b s e r v e even t h e c o l o u r e d f r o n t a t L / H v a l u e s of 30 a n d above. I n o n e e x p e r i m e n t (K. &> 6X, = 45.5) w h i c h w a s c o n t i n u e d long after t h e stage r e q u i r e d t o o b t a i n d a t a f o r F i g u r e 8 of I, t h e f r o n t w a s still j u s t visible a t L / H of 62, m o v i n g a t a b o u t 0.005 i n c h e s p e r second (0.017 V ) a n d w i t h t h e colour d e e p e n i n g only gradually with distance back towards the barrier. The impression w a s gained that the mechanism of e x c h a n g e w a s c o m p l e t e l y r e v e r s e d f r o m t h a t obtaining in t h e turbulent region. I n s t e a d of undiluted water continually overtaking t h e front — a n d t h u s n e c e s s i t a t i n g g r e a t e r i n t e r n a l velo cities t h a n t h a t of t h e f r o n t — t h e w a t e r to t h e r e a r a p p e a r e d t o h a v e a l m o s t c o m e t o rest, w i t h the front m a i n t a i n i n g i t s a d v a n c e o n l y b y c o m p l e t e l y e n t r a i n i n g t h e w a t e r i n t o wdiich i t moved. № BLANCHE 7 - NOVEMBRE 1963 ed t o p a s s t h e t u b e b y s o m e p r e d e t e r m i n e d d i s t a n c e t h e n d y e w a s i n j e c t e d a n d t h e e x t e n s i o n of t h e t i p of t h e f r o n t a t t h e p o i n t w h e n t h e i n j e c t ed d y e r e a c h e d t h e t i p w a s n o t e d — t h e p o i n t of " o v e r t a k i n g " . Results were obtained as s h o w n i n T a b l e 1. TABLE 1 A Details of overtaking K.#A~tfl = observations 5,650 0 D y e injection observations. T o o b t a i n s o m e definite r e s u l t s i l l u s t r a t i n g the entrainment a n d discardment process a s i m p l e d y e i n j e c t i o n s y s t e m w a s a r r a n g e d for flume B. Experiments were conducted by c o l o u r i n g o n e of t h e d i s s i m i l a r b o d i e s of w a t e r w i t h fluorisene a n d b y i n j e c t i n g p o t a s s i u m p e r m a n g a n a t e s o l u t i o n once t h e e x c h a n g e flow h a d b e e n i n i t i a t e d . T w o c o m b i n a t i o n s of d e p t h a n d of d e n s i t y difference •were c h o s e n t o b e close t o t h e l i m i t s of K.~$> (R. t h o u g h t r e a s o n a b l e i n t h e circumstances A Depth (£) (if) (H) 3 in. lin. Ap/p (assuming K = 0.5)' 0.032 0.005 5,650 430 A 0.03 i n c h b o r e s t a i n l e s s steel t u b e w a s u s e d t h e inject t h e d y e ; o n e e n d w as b l o c k e d a n d a c i r c u l a r h o l e of slightly s m a l l e r d i a m e t e r w a s d r i l l e d a t r i g h t a n g l e s t o t h e axis of t h e t u b e a n d j u s t above t h i s e n d . T h e t u b e w a s i n s e r t e d i n t o t h e flume t h r o u g h h o l e s drilled v e r t i c a l l y i n t h e t o p b o a r d o n e i n c h f r o m t h e p e r s p e x side a n d w a s a l w a y s p o s i t i o n e d so t h a t t h e axis of t h e outlet h o l e w a s n o r m a l t o t h e l e n g t h of t h e flume. TYPE OF FRONT Inches Relative Inches Relative Underflow. . 9 3 H 36 12 H Underflow. . 18 6 H 69 23 H Overflow. . . 9 3 H 36 12 H Overflow. . . 18 6 H 84 28 H Figure 2 shows photographs taken during a n e x p e r i m e n t of t h i s t y p e . T h e fluorisene j u s t s h o w s o n t h e o r i g i n a l p r i n t a n d d o t t e d lines h a v e b e e n a d d e d t o d e l i n e a t e the. t i p . T h e n u m b e r s i n d i c a t i n g feet f r o m t h e b a r r i e r h a v e also b e e n re-touched. I n t h i s case t h e p a s s i n g d i s t a n c e e s t i m a t e d f r o m F i g u r e 2 a w a s 3.5 H o r s l i g h t l y m o r e a n d i t , c a n b e seen t h a t o v e r t a k i n g h a d o c c u r r e d b y 16 H (c) b u t t h a t t h e full d e n s i t y of colour a t t h e t i p h a d n o t y e t b e e n r e a c h e d . I n a n o t h e r set of p h o t o g r a p h s of a n overflow e x p e riment, which were obtained b y t i m e lapse cine c a m e r a , t h e p a s s i n g d i s t a n c e w a s j u s t over t h e desired 3 H a n d t h e relative distance to t h e o v e r t a k i n g p o i n t w as a b o u t 13 H — t h i s b e i n g in reasonable agreement with t h e visual observation. r R e s u l t s for s i m i l a r e x p e r i m e n t s a t t h e l o w e r K . W< 61 v a l u e s (430) w e r e a s s h o w n i n T a b l e 2, the tube being placed in t h e same relative position. A r Considering t h e experiments with t h e larger v a l u e of K . g r (Jl (5,650) first, t h e i n j e c t i o n t u b e w a s p o s i t i o n e d 9 i n c h e s (3 H) i n f r o n t of t h e b a r r i e r a n d e i t h e r half a n i n c h . f r o m t h e b o t t o m or j u s t b e l o w t h e w a t e r s u r f a c e for underflow' a n d overflow r e s p e c t i v e l y . T h e f r o n t w a s allow- OVERTAKING POINT (distance from tube) PASSING DISTANCE TABLE Details 2 of overtaking K.Wa~üZ = observations 430 PASSING DISTANCE OVERTAKING POINT (distance from tube) TYPE OF FRONT Inches Relative Inches Relative A 7 Underflow. . 3 3 H 15 15 H Underflow. . 6 6 H 45 45 H . . 6 6 H 45 45 H Overflow. NOVEMBRE 1 9 6 3 - № 7 D . I. H . B A R R AND A . M. M. H A S S A N 763 Just after start of injection-front well ahead. Juste après le début de l'injection. Le « front » précède de beaucoup le débit coloré. (c) Dye has reached front, but not a full intensity. Le débit coloré a rattrapé te « front », mais le colorant n'a pas encore atteint sa pleine intensité. (b) Dye stream in the process of overtaking. Débit colore rattrapant le «front». (d) Intensity of dye at front building-up. Augmentation de l'intensité du colorant au front. Fia. 2 Views of dye injection experiment. (The figures indicate distance in feet from the barrier.) Essai avec injection de colorant. (Les chiffres visibles sur les photos donnent la distance, en pieds, à partir de la A l t h o u g h t h e i n c r e a s e i n r e l a t i v e d i s t a n c e in t h e first of t h e s e o b s e r v a t i o n s w a s slight c o m p a r ed w i t h t h e c o r r e s p o n d i n g e x p e r i m e n t i n t h e m o r e t u r b u l e n t r a n g e , it a p p e a r e d t h a t t h e u s e of t h e s a m e t u b e w i t h t h e s a m e i n t e n s i t y of s p u r t of d y e i n t o t h e m u c h s h a l l o w e r a n d m o r e s l o w l y m o v i n g f r o n t t e n d e d to i n t r o d u c e a n error. T h e s e c o n d a n d t h i r d o b s e r v a t i o n s do show a m a r k e d divergence from the correspondi n g t e s t s i n t h e p r e v i o u s set, a n d i n all cases, it was noted t h a t w h e n the dye did reach the f r o n t it w a s c o n s i d e r a b l y m o r e d i l u t e d t h a n p r e viously. T h e i m p r e s s i o n of a definite o v e r t a k i n g p l a c e w a s c e r t a i n l y lost. Internal velocity 1961). measurements (Flume A, A m i n i a t u r e c u r r e n t m e t e r of t h e t y p e developed b y t h e H y d r a u l i c R e s e a r c h S t a t i o n ( D e d o w a n d King, 1954) w a s a v a i l a b l e a n d it s e e m e d barrière.) w o r t h w h i l e to a t t e m p t to u s e it for velocity m e a s u r e m e n t s . T h e i n s t r u m e n t w a s c a p a b l e of r e c o r d i n g velocities d o w n to a b o u t 1 i n c h p e r s e c o n d . A l t h o u g h f r o n t velocities m u c h g r e a t e r t h a n t h i s c o u l d b e o b t a i n e d in t h e flume u s i n g a s a l i n e d e n s i t y difference, t h i s w a s n o t f o u n d p r a c t i c a b l e . T h e c o u n t of r e v o l u t i o n s of t h e t i n y r o t o r (1 c m ) d e p e n d s o n p a s s a g e of c u r r e n t through the water. P r o v i s i o n is m a d e for b a l a n c i n g t h e c i r c u i t w i t h fresh or salt w a t e r , b u t difficulty w a s e x p e r i e n c ed w i t h t h e c h a n g i n g c o n c e n t r a t i o n a t t h e r o t o r . T h e m a i n t a i n e n c e i n b a l a n c e w a s f o u n d t o be m u c h e a s i e r w h e n t h e r m a l d e n s i t y difference was employed, though this m e a n t t h a t the inst r u m e n t w a s a l w a y s u s e d v e r y n e a r to t h e l o w e r l i m i t of effective m e a s u r e m e n t . T h e c o u n t of r o t o r r e v o l u t i o n s s h o w n o n t h e d e c a t r o n d i s p l a y c a n b e e i t h e r c o n t i n u o u s or i n t e r m i t t e n t (i.e. t h e c o u n t l a s t i n g 10 sec. is m a d e 764 LA HOUILLE BLANCHE • № 7 - NOVEMBRE 1 9 6 3 m o v e m e n t a n d t h e n s u c c e s s i v e c o u n t s of 10 p u l ses w e r e m a r k e d o n t h e d e s k b y t i c k i n g t h e p o s i t i o n of t h e h a n d . T h e m e t h o d t h u s t e n d e d to give i n d i v i d u a l e r r o r s b u t e l i m i n a t e c u m u l ative e r r o r . F i g u r e s 3 a n d 4 s h o w t y p i c a l r e s u l t s ; w h e t h e r a t 1 foot or 6 feet f r o m t h e b a r r i e r o r for overflow o r u n d e r f l o w , it w a s a l w a y s found t h a t the m e a n velocity indicated w a s g r e a t e r t h a n t h e i n i t i a l f r o n t velocity — w h i c h did not in fact d i m i n i s h g r e a t l y w i t h i n t h e flume l e n g t h at t h e K.gi cK. v a l u e s of a b o u t 10,000. To obtain roughly comparable m e a s u r e m e n t s a t s m a l l v a l u e s of K . & d l w i t h velocities b e l o w t h e 1 i n c h p e r s e c o n d m i n i m u m of t h e c u r r e n t m e t e r , dye s p l o t c h e s w e r e r e l e a s e d s o m e s h o r t d i s t a n c e b e h i n d t h e overflow f r o n t s o o n a f t e r w i t h d r a w a l of t h e b a r r i e r . Typical results, s h o w i n g c o m p a r i s o n of front t r a v e l w i t h t h a t of t h e f o r e m o s t p o i n t of t h e d y e t r a c e a r e given on F i g u r e 5. T h e r e w a s c e r t a i n l y m u c h less sign of o v e r t a k i n g d u r i n g tjhese t e s t s a t K.g> éí v a l u e s a b o u t 2,400, t h a n d u r i n g t h e p r e v i o u s l y d e s c r i b e d t e s t s a t K.ff <Ji v a l u e s a b o u t 10,000. A O Run I - Essai / • Run 2 - Essai? A _L O 10 20 30 40 50 60 70 80 90 Time from lifting of barrier (seconds? Temps compté à partir au soulèvement de ia barrière (secondes) FIG. 3 Typical results of velocity measurement with miniature current meter, K.<F £fl about 10,640, rotor 6 ft. from removeable barrier. A Résultats typiques de mesures de vitesses au micro-moulinet, avec K.& u\ égal à environ 10 640, le rotor du moulinet étant à environ 1 pied de la barrière amovible. A every o t h e r 10 s e c ) . B e c a u s e of t h e u n s t e a d y n a t u r e of lock e x c h a n g e flow a n d t h e relatively s h o r t d u r a t i o n of a n y e x p e r i m e n t , t h e i n t e r m i t tent setting was discarded on the ground that half t h e p o t e n t i a l velocity m e a s u r e m e n t s w o u l d be missed. Two longitudinal positions were c h o s e n for t h e r o t o r , a t 1 feet a n d 6 feet f r o m t h e b a r r i e r , a n d t h e r o t o r a x i s w a s set p a r a l l e l to t h e c e n t r e line of t h e flume b o t t o m a t 0.16 feet f r o m t h e b o t t o m a n d 0.16 feet below w a t e r s u r f a c e for m e a s u r e m e n t s of u n d e r f l o w s a n d overflows respectively, t h e t o t a l d e p t h b e i n g m a d e 0.8 feet, t h r o u g h o u t . At t h e s t a r t of a n e x p e r i m e n t a s t o p clock w i t h a c i r c u l a r p a p e r d i s k s t u c k to t h e face w a s also s t a r t e d a n d t h e t i m e s c o r r e s p o n d i n g t o t h e first i n d i c a t i o n of A A ¿i 5 g I f t 4 Front ; repeat runs "Front ", essais de répétition X Oye splotch - Tache de colorant 0 20 I 40 60 80 .100 120 140 Time from lifting of borner ( seconds) Temps compté à partir du soulèvement de la barrière 160 (secondes) FIG. 5 Typical results of velocity measurement by observation of dye splotch, K.g^rJt about 2,400. Résultats typiques de mesures de vitesses par observation d'une tache de colorant, avec K.£ïï <Jl égal à environ 2 400. A A t t e m p s at dilution measurement. • Run 3 - Essai 3 o Run 4 - Essai 4 \ 0 10 20 30 40 50 60 70 80 90 100 Time from lifting of borner (seconds) Temps compté à partir du soulèvement de la barrière (secondes) Fie. 4 Typical results of velocity measurement with miniature current meter, K.ff oX about 8,420, rotor 6 ft. from removeable barrier. A Résultats typiques de mesures de vitesses au micro-moulinet, avec K. & ûX égal à environ 8 420, rotor à 6 pieds de la barrière amovible. A T h e difficulties i n v o l v e d i n t h e m e a s u r e m e n t of d i l u t i o n i n a n u n s t e a d y t u r b u l e n t s y s t e m a r e not i n c o n s i d e r a b l e , a n d h a v e n o t b e e n o v e r c o m e i n t h i s case. W h a t s e e m e d d e s i r a b l e w a s to obtain simultaneous vertical traverses at a r a n g e of p o i n t s a l o n g d e v e l o p i n g e x c h a n g e flows. A r e c o r d i n g s y s t e m b a s e d on t h e r m o p i l e p r o b e s with oscillograph recording h a d been developed (Barr, 1962) a n d successfully u s e d ( B a r r , 1963 A) in a s t e a d y s t a t e m i x i n g s t u d y . If t h e s y s t e m was used w i t h the four thermo-junctions p r o t r u d ing f r o m t h e m e a s u r i n g e n d of e a c h Ys i n . d i a m . p r o b e u n c o v e r e d , localised m e a s u r e m e n t s (to NOVEMBRE 1 9 6 3 - № 7 D . I. H . B A R R AND A. M. M. H A S S A N w i t h i n a n Ys i n . c u b e r o u g h l y ) c o u l d b e o b t a i n e d of t h e t u r b u l e n t f l u c t u a t i o n s i n a m i x i n g >:one of w a r m e r a n d cooler b o d i e s of w a t e r . By f o r m i n g a b l o b of w a x o v e r t h e m e a s u r i n g e n d , t h e s p e e d of r e s p o n s e w a s v e r y m u c h r e d u c e d a n d the t i m e average t e m p e r a t u r e at a point in a m i x i n g z o n e c o u l d be f o u n d if t h e s y s t e m w e r e steady state. R e c o r d s f r o m eight m e a s u r i n g points could be obtained in one second. But e v e n t h e a v a i l a b i l i t y of a m o d e r a t e l y s o p h i s t o c a t ed r e c o r d i n g s y s t e m s u c h a s t h i s w a s n o t r e a l l y h e l p f u l . T h e s u p e r i m p o s i t i o n of s h o r t p e r i o d turbulence transients on longer period transients c a u s e d b y t h e r a p i d l y c h a n g i n g s t a t e of d e v e l o p m e n t of t h e e x c h a n g e flow m a d e b o t h c o n d i t i o n s of t h e p r o b e e n d s u n s u i t a b l e . W h a t w a s d o n e w a s to a t t e m p t t o i s o l a t e v e r t i c a l s a m p l e s b y p l a c i n g IY2 i n c h d i a m e t e r p e r s p e x t u b e s i n t o t h e flume d u r i n g a n e x p e r i m e n t a n d t h e n m a k i n g a vertical traverse with an angled bulb t h e r m o m e ter lowered vertically into the tubes using a ratchet mechanism which incorporated a depth scale. T h e m e t h o d w a s n o t v e r y s a t i s f a c t o r y ; s o m e a d d i t i o n a l m i x i n g often t o o k p l a c e d u r i n g or i m m e d i a t e l y a f t e r t h e p l a c i n g of t h e t u b e , although the records from the subsequent down w a r d s t h e n u p w a r d s traverses were fairly con s i s t e n t . T h e o n l y definite c o n c l u s i o n t h a t c o u l d b e d r a w n f r o m t h e r e s u l t s ( H a s s a n , 1962) w a s t h a t t h e n e t t r a n s p o r t of w a t e r i n a u n d e r f l o w w h e r e K.$ dl w a s i n t h e r e g i o n of 10,000 w a s observably greater t h a n in a corresponding d e v e l o p m e n t of u n d e r f l o w w i t h K . g » (R a b o u t 2,000; e s p e c i a l l y i n t h e r e g i o n n e a r t h e t i p . A A 765 i n c r e a s i n g scale t h e s t a g e is r e a c h e d well w i t h t h e l a b o r a t o r y o r d e r of size w h e n a d i s c a r d m e n t p r o c e s s a l l o w s t h e e x c h a n g e t o c o n t i n u e to v e r y m u c h greater relative extensions. Exchange flow i n s u c h c i r c u m s t a n c e s — t h e c i r c u m s t a n c e s p r e s u m a b l y of all full size o c c u r r e n c e s — i s n o t a two layer system but a three layer system. During the early stages the intense mixing a c t i o n a t t h e f r o n t s does n o t c a u s e d i m i n u t i o n of velocity. Of c o u r s e d i m i n u t i o n of velocity of the fronts eventually does occur. It s e e m s a not unreasonable hypothesis that this results both from m o u n t i n g frictional drag and because t h e " s u b - c u r r e n t s " will s t a r t to e n t r a i n w a t e r from t h e intermediate zone. T h u s a front's p r o gress m a y eventually be inhibited not by the i m m e d i a t e d i l u t i o n d u e to t h e f r o n t a l m i x i n g a c t i o n b u t b e c a u s e m o r e a n d m o r e of t h e d i l u t e d water, t h o u g h initially discarded, r e t u r n s to the f r o n t in t h e " s u b - f l o w " . This trend has been observed in steady state exchange experiments in the laboratory, where the relative extension is c o m p a r a t i v e l y s m a l l a n d to a m u c h g r e a t e r e x t e n t i n t h e field w h e r e w i t h t h e m u c h g r e a t e r r e l a t i v e e x t e n s i o n s p o s s i b l e , t h e r e is m o r e o p p o r t u n i t y for t h e g r a d u a l e n t r a i n m e n t of a l r e a d y diluted w a t e r from the intermediate layer. It a p p e a r s t h a t t h e f o r m a t i o n of w a v e s on t h e interface behind a front as observed by Ippen a n d H a r l e m a n (1952), E l l i s o n a n d T u r n e r (1959) a n d B a r r (1959) is t o g e t h e r Avith t h e n e x t s t a g e of t h e b r e a k i n g of t h e w a v e s , a t r a n s i t o r y s t a g e i n t h e d e v e l o p m e n t f r o m l a m i n a r to t u r b u l e n t conditions. The formation of considerable l a y e r s of i n t e r m e d i a t e w a t e r above the e x t e n d i n g m a i n flows at l a r g e v a l u e s of 3> (R r e s u l t s f r o m d i s c a r d m e n t of w a t e r f r o m t h e f r o n t s , a n d n o t f r o m t h e i n t e n s i f i c a t i o n of t h e a f o r e s a i d wave action. A 7. DAM-BURST ANALOGY FLOW EXCHANGE T h i s c a s e of p u r e d e n s i t y e x c h a n g e flow w a s defined i n I a n d s o m e a s s e s s m e n t s of t h e coeffi cient of p r o p o r t i o n a l i t y for t h e i n i t i a l velocity of b o t h t h e u n d e r f l o w a n d overflow w e r e given. A few " b l o c k " c o l o u r i n g e x p e r i m e n t s w e r e c a r r i e d o u t for t h i s c a s e a n d it w a s f o u n d t h a t , as w o u l d be expected, t h e s a m e o v e r t a k i n g , e n t r a i n m e n t and discardment process took place at the fronts as h a d b e e n o b s e r v e d i n l o c k e x c h a n g e flow. 8. CONCLUSIONS It h a s b e e n s h o w n t h a t t h e m e c h a n i s m of l o c k e x c h a n g e flow c h a n g e s c o n s i d e r a b l y w i t h c h a n g e of s c a l e — s c a l e b e i n g m e a s u r e d i n t e r m s of t h e W^OZ n u m b e r . A t v e r y s m a l l scales t h e e x t e n s i o n of t h e f r o n t s is r a p i d l y i n h i b i t e d b y t h e b u i l d u p of d i l u t e d w a t e r a t t h e front. W i t h T h e stage h a s been reached w h e r e experi m e n t s of a m u c h l a r g e r scale t h a n so f a r p o s s i ble a r e r e q u i r e d : i n p a r t i c u l a r t h e e x t e n s i o n of t h e c o n g r u e n c y d i a g r a m for t h e s t a n d a r d c a s e of l o c k e x c h a n g e u n d e r f l o w a n d t h e f o r m a t i o n of a d i a g r a m for t h e overflow is a p r e s s i n g n e e d . It is t h o u g h t t h a t m e a s u r e m e n t s of s t r u c t u r e of e x c h a n g e flow s h o u l d n o w b e a t t e m p t e d for the s t e a d y s t a t e cases, b e f o r e a r e t u r n is m a d e to t h e m o r e difficult e x p e r i m e n t a l p r o b l e m of the non-steady cases. # T h e experimental w o r k w a s carried out in the Civil E n g i n e e r i n g L a b o r a t o r i e s of t h e R o y a l College of Science a n d T e c h n o l o g y , G l a s g o w . T h e a u t h o r s a r e m o s t g r a t e f u l to P r o f e s s o r W i l l i a m F r a z e r for t h e facilities g r a n t e d , a n d for h i s h e l p f u l advice a n d c r i t i c i s m . T h e e x p e r i m e n t s d e s c r i b e d i n 5 a n d 6 (rf) a n d (e) w e r e p e r f o r m e d by t h e s e c o n d a u t h o r u n d e r t h e d i r e c t i o n of t h e first. 766 LA H O U I L L E B L A N C H E № 7 - NOVEMBRE DEDOW ( H . R.) and KING (R. F . J . ) , 1954. — 178, 4626, 396-398. REFERENCES ALLEN ( F . H.) and PBICE ( W . A . ) , 1959. — The Dock Harbour Authority, 40, 465, 72-76. and BARR ( D . I. H . ) , 1959. — Proc. 8th Congress International Association for Hydraulic Research, Paper 6-C. BARR ( D . I. H . ) 1962 ( A ) . — Civil Engineering Works Review, 57, 675, 1277-1279. BARR ( D . I. H . ) , 1962 ( B ) . — Instrument 1355-1361. and Practice, BARR ( D . I. H . ) , 1963 ( A ) . — The Engineer, 352. Public 16, 11, 215, 55S7, 34a- BARR ( D . I. H . ) , 1963 ( B ) . — Paper I of this series. ELLISON (T. H.) and TURNER Mech., 6, 423-448. (J. S . ) , 1959. — 1963 Engineering, /. Fluid HASSAN (A. M. M . ) , 1962. — Scale problems in hydraulic models where density spread is simulated. M. Sc. Thesis, Glasgow University. IPPEN (A. T.) and HARLEMAN ( D . R. F . ) , 1952. — Steadystate characteristics of sub-surface flow Nat. Bur. Standards, Circ. 521, Gravity Waves, 79-93. PRANDTL (L.), 1952. — The essentials of fluid dynamics Blacliie Lond (Translation of 3rd edition of Führer durch die Strömungslehre, 1949). SMITH ( A . A . ) , 1962. — The Engineer, 214, 5566, 532-535. RÉSUMÉ Courants de densité en canal rectangulaire II. — QUELQUES EXPÉRIENCES SUR LA STRUCTURE DE L'ÉCOULEMENT CONSÉCUTIF A L'OUVERTURE D'UNE VANNE PAR D. I. H. BARR ET A. M. M. HASSAN Cet article, le second de la série, considère le cas de la figure 1 a de l'article précédent. Au moyen d'expériences simples (en particulier la coloration de masses d'eau bien délimitées au départ), une connaissance plus approfondie du mécanisme de l'écoulement des fronts d'onde (underflow ou overflow) a p u être obtenue, qui explique assez bien l'influence du nombre de FroudeReynolds densimétrique sur la vitesse de propagation du front. Aux faibles valeurs de ce nombre, l'eau mélangée qui se produit au front y reste et diminue la vitesse de propagation. Aux valeurs élevées de ce nombre, l'eau mélangée se répand à l'aval du front et forme une troisième couche de densité intermédiaire, si bien que, l'eau du front étant constamment renouvelée à p a r t i r du corps de l'écoulement, la vitesse de propagation du front diminue beaucoup moins vite. Les tableaux 1 et 2 et la figure 2 illustrent ce phénomène. Une injection de colorant est p r a tiquée dans l'écoulement, en un point situé à quelque distance de la barrière (3 H dans le cas étudié), un peu après le passage du front (celui-ci a dépassé le tube d'injection d'une distance que les auteurs appellent « passing distance »). Le colorant rejoint le front d'onde lorsque celui-ci est arrivé au point appelé « overtaking point », dont la distance au tube d'injection est donnée dans les tableaux. Des mesures de vitesses au point fixe, dans le corps de l'écoulement, confirment les observations visuelles. Les figures 3 et 4 portent en abscisse le temps (compté à partir de l'ouverture de la barrière) et en ordonnée la vitesse mesurée en un point situé à une certaine distance de la barrière (0,30 m p o u r la figure 3, 1,80 m p o u r la figure 4). La vitesse, plus grande que celle du front, indique bien une réalimentation de celui-ci. La figure 5 correspond à une faible valeur de K. g ? cK.- On voit en ordonnée, en fonction du temps, la position du front et celle d'une tache de colorant qui ne semble pas devoir le rattraper. Les auteurs concluent à la nécessité d'expériences à plus grande échelle, en particulier l'extension du diagramme de la figure 8 de l'article I pour les grandes valeurs de K •W ~ûVA A