motive sb.exe
Transcription
motive sb.exe
Lecture Notes in Mathematics Edited by A. Dold B. Eckmann and R Takens t Subseries: Mathematisches Institut der Universitat und Max-Planck-Institut fur Mathematik, Bonn - vol. 14 1400 Uwe Jannsen Mixed Motives and Algebraic K-Theory Springer-Verlag Berlin Heidelberg NewYork London ParisTokyo Hong Kong Author Uwe Jannsen Max-Planck-Institut fur Mathematik Gottfried-Claren-Str. 26 5300 Bonn 3, Federal Republic of Germany Untv.-Bibtiothak R&genshuf§ Mathematics Subject Classification (1980): Primary: 14A20,14C30,14G13,18F25 Secondary: 12A67, 14C35, 14F15 ISBN 3-540-52260-3 Springer-Verlag Berlin Heidelberg NewYork ISBN 0-387-52260-3 Springer-Verlag NewYork Berlin Heidelberg This w o r k is subject to copyright. All rights are reserved, w h e t h e r the w h o l e or part of the material is c o n c e r n e d , specifically the rights of translation, reprinting, re-use of illustrations, recitation, b r o a d c a s t i n g , reproduction on microfilms or in other w a y s , a n d storage in data banks. Duplication of this publication or parts thereof is only permitted under the provisions of the G e r m a n C o p y r i g h t L a w of S e p t e m b e r 9, 1965, in its version of June 2 4 , 1985, a n d a copyright fee must always be p a i d . Violations fall under the prosecution act of the G e r m a n C o p y r i g h t Law. © Springer-Verlag Berlin Heidelberg 1990 Printed in G e r m a n y Printing and b i n d i n g : D r u c k h a u s Beltz, H e m s b a c h / B e r g s t r . 2 1 4 6 / 3 1 4 0 - 5 4 3 2 1 0 - Printed on acid-free paper Preface This is an almost unchanged version of my 1988 Habilitationsschrift at Regensburg. My original plan was to completely rewrite it for publication; in particular I wanted to make it more readable for the non—expert. Finally I chose to rather publish it like it is than turn it into a long range project. So I have only made some minor corrections and added three appendices. Thefirstone reproduces a letter from S. Bloch to me and the second one consists of an example by C Schoen. I thank both for the permission to publish this material, and the latter for the effort of rewriting the example, which alsofiguredin a letter to me. The third appendix contains some remarks and complements written in 1989. Uwe Jannsen Bonn, November 1989 This text category In part of II algebraic mixed we in (very) Chern Grothendieck of algebraic to £-adic cycle of trivial structure to of cycles motives of Hodge in not and j can algebraic §10 that tensions a mixed £-adic of structures cohomology varieties or gives - and [D5] rise to cohomology prove these Tate , For example 1 H (X) i , the and the i s that realization non-compact of [D9] mixed zero was introduced as rise to shows t h a t structures, of the an algebraic from the sending of the a faithful. which shows - this and often arise i n [.D5 non-trivial d i f f e r e n t weights treatments the equivalence Deligne re- formulation functor varieties, give theories smooth a morphism is fully these, a c l a s s of parallel the i n both of modulo h o m o l o g i c a l to [SR] i n p a r t i c u l a r those interpreted in his , way, be of homologous structure the some il-adic and between i n d i f f e r e n t cohomology weight geometry. Concerning pure cycles. in present into ,[Klj of 2 singular cycles a relations fields, cohomology H -^(X)(J), and [Ma] weights. the i t s cohomological cover Hodge structures I I I we global coherent A l l t h i s o n l y concerns c y c l e s does mixed part define absolute K-theory phenomena i s pure into or I we cases. explain codimension part possible, and In from fields Hodge t h e o r y variety conjectures motive to as K-theory, varieties in a the projective finite concept algebraic and general characters specific The by lated as In s e t t i n g of arbitrary varieties. on Background parts. i n the algebraic v a r i e t i e s over some three investigate, of conjectures of motives cycles, cohomology for consists is ] ex- called Hodge t h e o r y and cohomology arbitrary too. Indeed, of both facts are directly Chow g r o u p the r e l a t e d , and and a s e t t i n g of work o f a category a K-theory, absolute f [DMOS] problematic, Part - has Hodge c y c l e s cations and I In i n the of factor and natural . 1 for a AH-motives the with [Sch 1] of mixed forms, these construction by [Bei 2]. only motives algebraic the for cycles appli- motives is corresponobvious way. observation (AH-motive) c o r o l l a r y we , standard of i n an crucial constructed constructed the higher but s u b r e a l i z a t i o n of modular representations simple, suffices for Hodge c y c l e s to 1] Finally, that the reali- is a direct show t h a t there having £-adic as Deligne [D1] are (Re- motives a l g e b r a i c a l l y ) . of direct factors in the cohomology. In §2 we realizations category MR^, allowed. some o f of - a [Bei q . to so-called extend but associated a p p l i c a t i o n i s the k simple related (algebraic nor a Another In apply s u b m o t i v e . As Scholl are methods later absolute cently, £-adic the introduced a motive realizations neither K replacing definition whole , [D10] definition" which o f t e n Grothendieck s start hence ones 4] are the "working latter [Bei i s quite with the arbitrary varieties in motives motives a algebraic idempotents) we given of related to together (the An language zation d e s c r i p t i o n of motives are of definition), since §1 a mixed cycles definition Deligne Grothendieck s dences like mixed that s a t i s f a c t o r y theory conjectures. in of suggests Grothendieck's gives expects s a t i s f a c t o r y treatment Beilinson algebraic one their §3 we make a of precise definition AH-motives over of These mixed prove field k a category live, r e a l i z a t i o n s , i n which obviously formal a of are Tannakian by also i n which defining mixed categories, and a bigger structures we study properties. that for a c h a r a c t e r i s t i c zero smooth i t s &-adic, variety U deRham a n d over Betti a the field cohomolo- Vll qies all define taken showing an o b j e c t H(U) from papers t h a t one has with tients AH-motives. In §4 the Tannakian that subcategory Deligne's subcategory objects and can i n MM^, be . This ginal one, hull, inverting the If G gives and MG with §5 Deligne mainly case M^ cohomology), , and with of the quo- the prove Tannakian projective of than pure the ori- pseudo-abelian the commutation "Galois groups" MM^ ( f o r some embedding above is pure . We o f M^ associated the the subcategory changing then which i s d e f i n e d as the smooth, full and k H(U) t a k i n g the o b j e c t and pro-unipotent quotient of i s , except contained MG U, identifying of fibre M^-»MM^ is reflected in an 5.13 1 Hp(X,ZZ ( 1 ) ) The and or conjectures i n those G with the maximal . f o r theorems cohomology motivational. are the definition of categories that in of p r o - a l g e b r a i c groups connected, II by the simpler -* G and are -> G -> 1 , pro-reductive Part with the a h o m o m o r p h i s m MG with a theory m o t i v e s ov*?r realizations are Betti i n each identified processes defines 1 -> U -> MG be identified given sequence can the functor exact mixed generated Lefschetz n e u t r a l Tannakian by M^ a p p l i e d here main p o i n t c o n s i s t i n g isomorphisms, of MR^ by a v o i d i n g the constraints. the of category generated varieties, MM^ the techniques filtration comparison category . The Deligne, a weight compatible are the of i n MR^ formulated 5.15 etale cohomology s t a t e d here later (comparing O(X)* 1 H^ (X,(1))), t f o r the smooth for arbitrary varie- ties . In §6 a very and Ogus [BO],of the aspects of important tool appears, a twisted Poincare a cohomology theory the duality and an n o t i o n , due theory, to Bloch axiomatizing a s s o c i a t e d homology theory. Vlll In this n setting the Poincare -* H 1 (0.1) H (X J) f between with cohomology values of weights or mixed 2 d i n a tensor modeled £-adic Tate to arbitrary ( 0 . 1 ) . We if the classical true - also X f o r mixed The b a s i c structures & - a d i c , deRham a n d B e t t i i n part values i n MR^ the right being reobtained i s true i s , and t h a t . i s that formulations conjecture I - that o f Hodge a n d observation the c l a s s i c a l Hodge c o n j e c t u r e Hodge the conjectures Hodge a version i n t r o d u c i n g t h e concept with how t o e x t e n d this . We d e f i n e the results theory varieties. f o rthe Tate i f and o n l y t h e same i s basically characters and Riemann- conjectures. § 8 we r e c a l l In f o r smooth extending that d = dim X , After discussing duality show i s an isomorphism the situation i s t h e homology, by , category, sheaves. §7 we p r o p o s e setting (X,d-j) after i s a Poincare In i and homology c o h o m o l o g y we p r o v e there ^ duality" some p r o p e r t i e s o f C h e r n Roch t r a n s f o r m a t i o n s assuring (0.2) H^(X,$(b) )®$£ (0.3) H?J(X,®(b) )-> that t h e maps t -> H ^ ( X x k , ( J ( b ) ) k r H ( x « n ,©(b)) H k , £ , a char k * I , k = C , M (where and i s the motivic denotes ties on H the group to arbitrary In §9 duality varieties, thus relations and a l g e b r a i c c y c l e s homologous why a naive extension particular, [Bei the 3 proving between t o zero. of the conjectures disproves a Hodge-theoretic non-injectivity of the Abel-Jacobi map CH (X) o -> H " 2 j (X,<r)/H ~ 1 (X ZZ ( j ) ) + F f 5.13 a n d for j show t othe a,b € TZ i s f a l s e . I n conjecture examples . curves. of realizations o f Hodge a n d T a t e from 1 theorems A s a c o n s e q u e n c e we the counterexample 2 j conjectures the conjectures extensions t a l l functoriali- t h e o r i e s . We s t a t e deduce j satisfy o f (0.2) a n d (0.3) f o r a r b i t r a r y this 2] .We b y B e i l i n s o n v i a K J (X) o f (0.2) a n d (0.3) a n d e x t e n d we d i s c u s s surjectivity defined o f Hodge c y c l e s ) , o f morphisms o f P o i n c a r e the surjectivity 5.15 homology by B e i l i n s o n o f Mumford on Then C by we H J ( extend X ) In H o using everything "* c o n t results §10 we for any r e a s o n a b l e H 2 J " 1 In t o o many f f i £<3))) recall the fact results to higher-dimensional are non-injective quite duality parameters. of Bloch theory for finite fields, some i d e a s of Beilinson that h i s philosophy - o n t h e s t r u c t u r e o f Chow g r o u p s over Chow g r o u p . Part is arbitrary an e x t e n s i o n some We a weak imply over form since for H a Tate they i t would these standard fields, would , ' with [ B e i 4] sheaves earlier should f o l l o w from would ones by be regarded t o t h e whole the i n j e c t i v i t y f o l l o w from homology of positive M X a over similarities i n [D.E.] finite prove fields i t i n some several "classical" at least The 3F p conjecture and f l a t . Note f o r a smooth, p r o j e c t i v e X would varieties X by w r i t i n g explain this k con- i f we a s s u m e of arbitrary characteristic, = I i m H ,(X , Q ( b ) ) . We a ot a of a global function f i e l d even over i n § 1 2 we of singularities. varieties (X,Q(b)) the case motivic conjectures forvarieties of motivic fields non-proper the that of resolution arbitrary M the s i - o f smooth p r o j e c t i v e I think (0.2) i s a n i s o m o r p h i s m , a description a i s that on mixed m o t i v e s - extending on smooth, p r o j e c t i v e v a r i e t i e s , X = Iim X +a the base map. a n d show t h a t jectures fields. Our b a s i c c o n j e c t u r e t h a t here cases conjectures of Grothendieck's remark cycle III principally, global function o f mixed Bloch of varieties theme o f o u r c o n j e c t u r e s and B e i l i n s o n , some q u i t e e x p l i c i t as - provided The main imply varieties , fields. §11 we stress ^' maps Poincare i s different number X Bloch's of several conjectures and ( maps [ B i 1] . Abel-Jacobi contains tuation We k' extend show t h a t and G of Bloch and field ( t o t h e £-adic A b e l - J a c o b i transition i n more t h a t we , and and t h e d i f f e r e n c e s t o t h e a p p r o a c h maps, c detail need observe o f A r t i n and We but don't i n §13 (0.4) have we (where range" gical discuss ^et a > dim only pieces our Final conjectures learnt lectures by cated my to It latter The for a in recent and four paper work on I would Galois cohomolo- mixed p o s s i b l e , i . e . , Tate In §14 with we by define linear this structures objects, a class spaces, property, ideas like so of like and prove most in inspiring varieties. (Harvard of the on to N. Schappacher from paper thank Hodge c y c l e s 198 3/84), a n d my own investigations whether the such motives (see by Ogus, and Bloch K-homology chapters by I I and Beilinson*s "stable them and and extension for this realiza- § 1 ) . A. Scholl communi- classes inspiration (cf. and the end of 1985 I t should be noted further discussions. to a exist few our It will also 1-motives [D5] in . [D10] form category be i n f l u e n c e d by I would to in this mathematicians. to Deligne. I I I are B e i l i n s o n , but Deligne's as for absolute construction similar much p a r t s certain structures are stratified f o r m s come communicated that pure remain. a question some i d e a s first were of simple motives i s a pleasure two to i n the . varieties) attention to me of acknowledgements f o r modular brought [J3] Anderson s t a r t e d by tions is related f o r these about G. bijectivity * e t a l e homology) modified as flag the fields, £ phenomena or on f o r number t . This are r e m a r k s and I a H^ (X,© (b) ) , (containing those Grassmannians and - counterpart mixed varieties were + b conjecture conjecture certain X extreme whose p u r e that is a general a investigations in The §6). similarly H^(X,Q(b) r of a like and thank J . Neukirch to his MR^ clear work since also to and the ideas s t r e s s the appears reader of how Bloch influence of r e i n t e r p r e t a t i o n of heartily for his constant Xl enthusiasm their at was interest encouragement, and support. Bonn, w h e r e t h i s written. Gazo for and program Special f r o m t h e MPI, a phantastic Also was t h a n k s go and typing and a l l friends I thank started t o K. in particular under the i n Regensburg Max-Planck-Institut and where Deutler, t o M. b i g pressure for the final M. Grau and Pertl from Regensburg of time. H. part Wolf- Contents Preface III Introduction PART I V - MIXED MOTIVES FOR ABSOLUTE HODGE CYCLES §1 Some remarks on absolute Hodge cycles 1 §2 The category of mixed realizations 9 §3 The mixed realization of a smooth variety 25 §4 The category of mixed motives 43 PART II - §5 ALGEBRAIC CYCLES, K-THEORY, AND EXTENSION CLASSES The conjectures of Hodge and Tate for 57 smooth varieties §6 Twisted Poincare duality theories §7 79 The conjectures of Hodge and Tate for 107 singular varieties §8 Homology and K-theory of singular varieties 121 §9 Extension classes, algebraic cycles, and the 139 case i = 2j — 1 § 10 On the non-injectivity of the Abel-Jacobi map § 11 Chow groups over arbitrary PART III - 169 fields 178 K - T H E O R Y AND t-ADIC COHOMOLOGY § 12 Finitefieldsand global function fields § 13 Number § 14 Linear varieties 214 Appendix A: A letter from Bloch to the author 222 Appendix B: An example by C. Schoen 224 Appendix C: Complements and problems 227 fields 189 205 Bibliography 235 Notations 241 Index 244 1 j ! PART I MIXED §1. MOTIVES Some r e m a r k s Let k beddable G^ i n these H (M) 1 H (M) Then - ( f o r each Hodge 1 Co of i s em- k and l e t with motives [D6], k f o r ab- see also notations over asi n has r e a l i z a t i o n s a descending 1) which filtration a Q -Vector 1 F^ space, on continuously, o: k «-* (E) structure on a Q-vector space H ( M ) 8 3R , i . e . , a Q 0 structure, o f t h e same f i n i t e oarison M number embedding a Hodge k by D e l i g n e i n with acts ( f o r each with all prime c closure we d e a l a motive a k - v e c t o r space Gj zero, we u s e s i m i l a r - - 0 as d e f i n e d §6, i n p a r t i c u l a r which cycles of characteristic . In the following references. (M) D R Hodge (T . F i x a n a l g e b r a i c Hodge c y c l e s [DMOS]II HODGE C Y C L E S on a b s o l u t e be a f i e l d = G a l (Ji/k) solute H FOR ABSOLUTE dimension. Furthermore, there a r e com- isomorphisms : V r 0 M > •c C H ~ DR ( M ) ®k,c « and for each If an H D extension X integer, R ( M ) = H D R a : k i s a smooth projective the motive M = h (X) ( X ) = H H d r ( X x = H (M) = H (X) = H (Xx G g e t (x/k) = H (X) 1 variety n H (M) 1 (E o f k ^ N k / i sgiven ( d e Rham Q l ) C,Q) 0 over ( 1 ^ a d i c k and n ^ O by t h e r e a l i z a t i o n s cohomology) cohomology) (singular cohomology) . The comparison ones X x v between n$ isomorphisms are obtained the cohomology over theories (E . N a m e l y I n H (Xx ^Ce ) ^ ^ ( X x k and I i H t k f - 1 a from of the v a r i e t y i s given C, C l the canonical ) aX = by it ^ (Xx E H t k f C l ) i s i n d u c e d bv M H CaX (J) - S a s . n n 7 If i we summand H l e t h(X) = of h(X)(m) is rather 1.1. Let k-subspace U 0)-subspace such U M M ( ) R 5 H morphisms. Then q (M) there such that indices Proof U (this sub-d)-Hodge say. DR, 1 Then Y giving rise o r =H summands, a and 1 — (M) a 5 1 a : k «-* <C a structure, the comparison M = M^ where a © M^ runs iso- i n mothrough a a . U are compatible with the weight i n the statement that assume a moronism M t o non-degenerate * H (M) pairings - H (l(-r)) a pure the U are g of weight r , of motives (M = d u a l a given a Q -Subspace i s a sub-Q-Hodge M(-r) a . Suppose and f o r each (M.) c H exists H (M) 1 each s t r u c t u r e s ) , we may : M k c o r r e s p o n d under i s implicit there direct h ( x ) t f o r some the possible i s a decomposition As t h e subspaces gradings f , which a the * over i s a G^-submodule, G of i s a . describes be a m o t i v e D M important f o r the following. that these subspaces tives m € ZZ lemma, w h i c h £E R (X) , any m o t i v e a n d some H D , which 1 dim X © h n=o easy b u t very Lemma H (M) X following m , the m-fold Tate-twist smooth p r o j e c t i v e The R ( a V ( C ) of for = M) a G Q 1 {DR,1,a} ( T ) Q ( T ) a = DR a = 1 a = a which are for a compatible = under 1 and the with structure for comparison isomorphisms. of real Hodge H (M)SlR $ a fact, of the to r motive for a over k giving smooth . Then theorem one a by may r : h (X) -> the pairings combining with the Poincare r H (X) a t w i s t s by morphism Let U , U DR ^DR then V h 2 d ~ r and H 2 d a . Or: 2 d h - that of M n divisor and Hodge c y c l e above the in C hard 2 d i n Hodge d ^o the H 2 d a are (X) Poincare r and 1 V V be Cf the , respectively, * B y t n under of e c o the m P then H ~ Lefschetz (XxX) see obtained by (l(-d)) a pairings , whose give an iso- composition orthogonal with a t i b i l i t with complements respect o V comparison the V follows is a g Q-Hodge H to the of pairings f t n e l ^ t sub-Q-Hodge like e s e (x,Cx) spaces the U : the G ^invariance structure, Q-Hodge > O [D4] also as shows ^ g that p. 44, t h a t any structure is a direct for a l l O * G, ~ k of k and is a U polariza- fl V O argument the a the This n a isomorphisms. A l s o (M) from structures. Deligne's a polarized r r theory, 71 (2TTi) iJ; d pairings r h (X) (-r) substructures of invariance of is dimension a (compare powers r ^^ a of with ~ ( X ) (d-r) ~ (X)- (X) ( d - r ) U correspond tion induce g O a i);.^ , a n d ^ correspond . I are ® d-r V__ , V D R l ' X '""-operator" The Y the twisting motives ample absolute 6.2. is e t c . , and 3R(-r) variety very [DMOS] I I $ G^-action homomorphism motivic v e r s i o n of and a - by other projective a = Moreover, assume adding using a - a c o n s t r u c t s an $ the and structures like structures. H (M)®3R f i x i d e a s we Tate h (X) various Hodge polarizations In the x € H (M) 8 sub-structure factor): 3R =O O one , where has C is the Weil Hodge operator: C s t r u c t u r e , see = i € S (3R ) = C [D4] (2.1.14). acting As C on every IR- respects the sub1 Hodge structure claimed. By and 0 V__ DR U DR rk induce U the = O for as a : conclude and an the U- and element = h(X) H (M) = h(X) we by that M then ^ ® V = 1 O then a the v a r i o u s this 6.7 and p is of (g) r e s p e c t s t h e Hodge the the or p a 6.1 filtration i s a homomorphism of ~ O = are f o r any with [DMOS]II O M^ (M) H ( X family i s a projector X,Y . T h e r e f o r e the Im p = (h(X),p) 1 If and and i n the M gives the = 2 Im(1-p) ; n o t a t i o n of smooth v a r i e t i e s morphism f : Y -» X wanted [DMOS]. over and for k g: with X -+ Y X the of r e p r e s e n t e d by r e p r e s e n t e d by factors of The r h (X) r r H (X) a motive g* and as H V = U a as (see p which f*: Proof =O get isomorphisms, p with taking have Corollary projective, is also are compatible V-spaces. , note decomposition is IR ) g H (M) a P r ^ t i o n a p € End(M) Hodge s t r u c t u r e s ) , kernel IR D ( U ® we r comparison i t i s compatible 1.2. ® g decompositions c M U isomorphisms , which f f o r the M . The {DR I,a} structures gives we endomorphisms a € case IR comparison p for 8 g -> H ( Y ) Kerf* c r h » H (X) Im g* c {DR,l,a} (X) r : H (Y) a motive a € and a € r h (X) the image of {DR,l,a} , and these are direct . cohomology groups f * and g*L a r e m o r o n i s m s o o • [D4] . So Ker f* and Im g * r H (Y) have mixed of mixed are Q-Hodge (pure) Q-Hodge structures, structures sub-Q-Hodge structures of the pure, Im g* i n the other Im g* under rial polarized lemma In U Y = Ker f* we ) • to K e r f* Ker f * as t h e s e , and o f c o u r s e or X and are functo- i n the 1-adic S o we and reali- can apply the Im g * ) . by a c o n j e c t u r e o f G r o t h e n d i e c k - S e r r e on t h e semi- get a result of the action Corollary of G^ r r r r which on t h e 1 - a d i c In the situation above, cohomology. the kernel of : H (x) - H (Y) t h e image o f g* are direct Of maps factors course, like : H (Y) - H (X) r of H (x) similar of t h e cohomology w i t h U of . This 1.4. M(f) Proof into to other natural i s needed form r -> H (X) compact support o f an open subvariety t h e cohomology o f a smooth p r o j e c t i v e Corollary modular . G y s i n maps o r t h e c a n o n i c a l map r X as G^-modules considerations apply H (U) c N isomorphisms, ( be t r u e more f* X Q should simplicity and for H correspond ( ^ - i n v a r i a n t subspaces. particular generally 1.3. exist one g e t s (with realizations the comparison and a l s o zations Q-Hodge s t r u c t u r e s i n the proof The r e a l i z a t i o n s f by Deligne o f the next attached ([D6] §7) variety corollary. t o an belong elliptic t o a motive . Let f and c h a r a c t e r b e a new e for form o f weight k+2 (k = 0 ) , conductor r There I ( N ) = { ( ] c d € S L 2 ( E ) i s a smooth p r o j e c t i v e 1 ( c d } s curve ( X 0 1 } (N) 1 m o d N } * over <D and an open s u b v a r i e t y j: such that the C-valued Y (N) X (N) 1 1 p o i n t s c a n be i d e n t i f i e d = ^ (N) where 1 Jfy i s t h e P o i n c a r e u p p e r Let N = 3 ; then there g: E halfplane. i s the universal -> Y (N) 1 Deligne describes the r e a l i z a t i o n s the "universal 1 ( X (N) , J 1 one has t o form this of M(f) as p a r t s o f cohomology), k 3lt 1 Sym (R the 1-adic,de gjtc Q) ) Rham a n d s i n g u l a r namely as k e r n e l o f T - a n prime on to N , where t h e cohomology a^ are not i n sense: Let T Q(a.,a_,...), I z Q the and T^ By t h e n we 1 n 2 T T i z k by t h e T -•> E T^ by T n 1 ( Y (N) , S y m ( R g 0 ) ) ) + 1 »H n . I f k 1 1 N k 1 denotes K a E = ( X (N) , j * S y m ( R g*Q) ) 1 H^ and b y oc . 1 H (Y (N),Sym (R g Q)) which acting diagram ; in n morphism, d e f i n e t h e r e a l i z a t i o n s o f annihilated 1 generated have a morphism t h e commutative H fora l l n I a q , q = e . I f the \ A n n-1 , one h a s t o t a k e t h e k e r n e l i n t h e f o l l o w i n g be t h e Q - a l g e b r a as the p a r t versions a r e t h e Hecke c o r r e s p o n d e n c e s f (z) = OL i s t h e k e r n e l o f t h i s M(f) curve cohomology" H of elliptic , and (i.e., c o m p a c t i f i c a t i o n by adding the cusps , T (N) \ 1 with cohomology w i t h + compact support , and the maps of are the canonical M(f) o n e s , one c a n a l s o t o be t h e k e r n e l of the T define - a n the r e a l i z a t i o n s i n the parabolic n cohomology k HpCY Sym a k 1 (N) , S y m ( R 1 (R g*<R) direct factor k-fold formula), of fibre where Finally Q) ) = Im(H^(Y R E k factor (g^) Q = E x q k E ( Y (N) , . . . ) ) . 1 which i n turn i s Y ( 1 N ) version o f the Kunneth = Y (N) . q 1 H k with + * E (relative (N) , R ( g ) * < D ) =* H (Y (N),R (g ) Q) 1 sequence and moreover, 1 g q 1 k (R g*$)* 1 by d e f i n i t i o n P 1 of (N) •• •"Y ( N ) 1 of the spectral degenerates Y (N) , . . .) S H 1 ,f o r + product H (Y P g 3 l 5 i s a direct : the 1 P + Q (E ,Q) k as remarked by Lieberman, the subspace o f H P + Q (E ,Q) k q m identifies • id_ i n d u c e s t h e m u l t i p l i c a t i o n by m k p . 1 6 8 . T h e same i s t r u e f o r t h e c o h o m o l o g y , on which , compare [D1] E Altogether of the r e a l i z a t i o n s of M(f) with compact are direct support. factors the cohomology H which K + 1 (E ,$) are defined dences: = Im(H K the T n k + 1 (E ,Q) as t h e k e r n e l are also -> H k k + 1 (E ,Q)) k of several defined algebraic as c o r r e s p o n d e n c e s corresponof E k+1 and so o f which E [D1 ] (3.16), the subquotient of E H^ ^ J '®) C corresponds to HpCY via , see K 1 1 k (N) , ( R g * Q ) ® ) the s p e c t r a l sequence 5 H^Y k (N) , R ( g ) *Q) 1 k c a n be i d e n t i f i e d with the subspace k+1 of Hp (E ,Q) where k t h e morphism induces t h e m u l t i p l i c a t i o n by ing Sym of to k 1 (R g * ® ) the symmetric group If one l i k e s 1 i n (R g*Q) S K on In i d x . . . x m i d 1 Iti . . . Iti 1 ®k £ k K £ (nu € , and t h e p a r t c a n be i d e n t i f i e d by t h e a c t i o n E ^ . - and i n p a r t i c u l a r i f one does S ) correspond- not like to elaborate this as the d e f i n i t i o n : o f t h e above the realizations a k+1 „k+1 H ( E ) = Im (H (E ) p,a k a,c k T in as t h e d e Rham v e r s i o n s 1 TT k+1 the kernel sufficiently T of the many - one c a n t a k e M(f) are obtained , f o r a € {DR I O} , k a ~ n of (E )) 1 steps f ' (m^ i d x . . . xrn^idg) * - m n £ € ZS , a n d a*-1 . . .it^ 1 fora l l a € S r for c Aut(E ). k k k+1 They are substructures, sub-Q-Hodge s t r u c t u r e s i . e . , G^-submodules k+1 of H^ the with (P OT compact k support smooth E k [D1] projective E containing still variety. of k E k E have Now that as an open + 1 compatible cohomology with with exists subvariety k by a a smooth projective (either 1 o r by D e i i g n e s i n positive E direct comvariety by H i r o n a k a ' s construction characteristic), a n d by diagram by t h e commutative k e to replace a appears as a subquotient H r d e Rham there H k a , i . e . , a smooth k of singularities the commutative Tj ^ f o r the coho- i n [HL] . 5.5, w h i c h a l s o w o r k s k+1 H^ (E ) a n c ^ K^ exist under and t h e c o m p a r i s o n i s o m o r p h i s m t o s i n g u l a r g e t a m o t i v e we resolution C of algebraic c a n be found pactification also E support . A definition cohomology To compact ( Jc^' ( E ) e t c . , and correspond t h e c o m p a r i s o n i s o m o r p h i s m s , as t h e s e mology e of (I ) k H + 1 < V of H^ ( E ) . We k diagram from Poincare k + 1 (E ) k . H 2 ( k + 1 remark duality >(E ) k f H we h a v e Im \\> - ( K e r p) k + 1 (E ) k t 2 H c (orthogonal ( k + 1 ) (E V k ) complement) . T h i s shows that H we could express the subquotient ( E ) = p ( i m ty) * Im i|i/Im ij; n K e r p = k + 1 (Ker p ) / ( K e r by lemma give subquotients 1.1 (applied compatible again for a l l b y lemma twice), define More e x p l i c i t e l y : M(f) in lemma H 1.1, k + 1 (E ) ( K e r p)^ p)"*" D K e r p (Ker For with bigger a motive, §2. The c a t e g o r y The a mixed the by the motive contains 2.1. define M(f) p (H(M(f)))/ t o be from under by 1 M(f) . a motive a finite again p. 206. section suggest to define do t h i s also which covers t h e cohomology o f i n general by f o r m a l i z i n g the weight a l l gives rise to the properties of graduation o f motives filtration. k be a f i e l d , closure Definition absolute a motive i n [D1 ] p . 1 5 8 . T h i s and t h a t r e a l i z a t i o n s and r e p l a c i n g algebraic M(f). the r e a l i z a t i o n s of motives with non-proper v a r i e t i e s , again M(f) can c a l l and so the fixed part [DMOS] structures a weight a motive o f mixed r e a l i z a t i o n s s t r u c t u r e s . We Let an that extra (smooth) compare w h i c h we like now gives i s a motive, considerations o f the previous category their n Ker p SL^fffi/N'ZZ ) n Ker 1 be t h e r e a l i z a t i o n s o f 1 v i a taking gives w h i c h we p~ (H(M(f))) one g e t s N' subgroup o f l e t H(M(f)) i s a motive, N = 1,2 define : i n a l l i t s r e a l i z a t i o n s and so a motive, , then k {DR,1,a} and the r e a l i z a t i o n s o f substructures 1.1 a € p) 1 k These i n terms o f p entirely of k which , and The c a t e g o r y Hodge c y c l e s ) over G MR k k i s embeddable k = Gal(k/k) o f mixed consists in C , k . realizations of families (for p. f DR' 1' O oo ' l , a ' l prime t0 a: k number C where a) H_ UK creasing i s a finite-dimensional (F ) ^ ( t h e Hodge f i l t r a t i o n ) and an n t LL filtration (W ) (the weight filtration). m mtffi H^ c) Q^-vector space w i t h a con- G - a c t i o n a n d an i n c r e a s i n g f i l t r a t i o n (W ) k ^ m m€5Z weight f i l t r a t i o n ) , which i s G ^ - e q u i v a r i a n t . H 1 C i s a mixed 0 creasing and a decreasing on H $ C a W Gr H ma with H^' a = Hy a I the filtrations the weight ,a : H a tration n f of p and -» ~ Q . that 1 i s F^GrH ma r t H__ ®. £ DR k,a i W Gr H ma 0 C = on both / such for filtrations of H 0 p € G^ H-, 0 V l H ' a m q © H* • ^ a P-P 1,0,-' H © _. ^ p+q=m P identifying ^ J (respectively, sides. filtration that * C = of weight i s an isomorphism ^ i n d u c e d b y t h e Hodge the weight H f i n d u c e s a (J)-Hodge s t r u c t u r e filtrations) transforming i s ani n - C r r } = W H /W -H m a m-1 a 4 i . e . , there m (W ) (the weight f i l t r a t i o n ) on H^ m mcZZ o filtration (F )^ ( t h e Hodge filtration) , which d) 00 Q-Hodge s t r u c t u r e , filtration 3 on r77 i s a finite-dimensional tinuous (the n filtration increasing b) k - v e c t o r space w i t h a de- P into the weight fil- commutes. T H E 1 a OO^a n d 1 I A morphism a Q r e f: H c a l l ^ d H' the comparison o f mixed f f isomorphisms. realizations f ^ DR' I' O^ 1 prime is a family number a: k ^ C where 1. ) f D : H R filtrations 2. ) f^ the 4.) and F O of degree zero f o r the . i s a Q - I i n e a r G^-morphism w h i c h 1 -•H 1 i s a morphism o f mixed <p-Hodge respects ,f, structures, * O compatible with the f and filtrations. : H O i s k-linear r : H ^ -* H | f i.e., H^ R W weight 3.) D and f filtrations W c o r r e s p o n d under and F . the comparison isomor- phisms. 2.2. 1. ) 1 2. ) ' Remark f D f 1 Assuming 3.) 4.) ,we only have to require i s k-linear. R i s a Q - I i n e a r G^-morphism. 1 This follows 2.3. Proposition Proof This mixed Hodge from the p r o p e r t i e s MR^ i s clear i s an from structures p a r t i c u l a r the morphism [D4](1.1.5) cokernels and with the filtrations and the remark f__ DK D above abelian , f, and ± filtrations comparison isomorphisms. abelian category. form an are the obvious of the comparison W and category f_ O and (componentwise) isomorphisms. the f a c t [D4]. In are s t r i c t l y F that , and compatible kernels and ones w i t h the i n d u c e d 2.4. of Remark de and Of combine structures do m If 6 MR W m realizations category of of vector ( W I realization, H W H W H m DR' m l' m a i I m r ' stands 7 w I o o and a H 1 Q-Hodge ) . Note spaces with we define ; I c»,o| ' w 1 I ^ I • m of mixed H how- filtrations the subobject by = where categories categories. i s a mixed r H 1-adic define Hodge r e a l i z a t i o n s categories abelian H the the separately and d r these with i n general form 2.5. H (containing that not WH could Rham r e a l i z a t i o n s then ever c o u r s e we I for H ®^(r ma <R the -> w ~ >l,o,J ' m w restriction H__ m ®, DR a k,a -I 1 W i s the r e s t r i c t i o n m HI m G CQ - W H m a Q l ~ m l m 1 1 IO F 2.6. if ii) of Definition W H = H m The MR^ We i) and W category of A mixed successive that realizations are i n general extension H i s pure of the i s the direct any sums o f object pure H 2.7. and full pure in weight realizations subcategory realizations. MR^ c m of .H=O. m-1 , whose o b j e c t s see realization is w Gr H m a := m-1 There taking is a the natural natural tensor structures law on on the MR^ by components, defining namely m, the induced filtrations W l F V (H DR D R and similarly for by p(x = the natural ® x') spaces tensor category, G^ on the comparison Q Q , Q 1 = 1 zero Q) the (the " i n t e r n a l Horn") 1 n F Hom <H ,H' > b) k ( H D R H DR' DR ) 1 H o m k = MR H DR p € acting . Furthermore, gets k 1.2, ; Id , o0f0 1 k , F k = Q-Hodge H the with by taking for structure identity of a object Id ^ ) 1 0 5 , trivial structure induced 1 € MR = < h D R c by Q -* of action type C ^ k of (0,0) , and = pf(p f define k H ' d R P { f ' f ^r Hom 1 D R W w ) ) i F S W ^ Horn(H,H ) t € MR R P h + n H' H f with 1 for R r+m DR (H ,H£) m -1 c) H| 1.1, (fIf(F H = 1 weight 3 by - R H (Horn(H,H )) (pf)(h) ® 1 that Q H, = D R H o n < associativity constraints 1 For ** (Horn(H,H )) m F • and isomorphisms Definition W 0 R . 1 k H H unique 2.6. a) P © W H s DR on Q , (F°k 1 * r e a l i z a t i o n s , and [DMOS] I I (k, f J- p+q=n other px' cf. = weight Q ® 1.1.12) T WH r DR r 4-s=m = i t is clear, 1 of the DR> commutativity vector pure H ® px [D4] ®H' ) = DR t t H ^ (cf. ° r a 1 a l l p} 1 r } , ' G -action k ^ h) for p € G and k h € H 1 , and similar filtration, 1 H (Horn(H,H )) g = Hom (E m structure, i . e . , with above, [D4] cf. , a f H ) a with Hodge and the weight induced mixed filtration Q-Hodge like d) the obvious comparison of H Then and we H have (2.9) Horn (T, 2.10. For 1 a natural H € MR n d jection the Q Horn(H,H') we (2.11) In H I F O I X Q Y J for x f I o r a x , DR 1 1 € a F c ^ f f 1 (2.9) € MR H ° DR we obtain [SR] 0 Hodge c y c l e s and W H o DR that by x^ € T(H) properties € H^ d) n W H^ } ' . From s e e s by and and Q of H o r k ^ C Q - v e c t o r s p a c e , a s one x e) proof € g the d e f i n i t i o n 1 r(Horn(H,H )) of implies . functorial isomorphisms i s represented MR and k i s a neutral [DMOS] I I 2 . 1 9 ) , tensor category (fibre functors) with exact by 1 H,H ) , i . e . , the c o n t r a v a r i a n t k ® H,H') Theorem ones see Tv~»Hom(T easily the . - C Hom(T,Hom(H,H')) ^ Horn(T ® T H H (see x to a . Note , H') the s e t of absolute = Horn(H,H') = (2.12) 2.13. a q particular, for Horn (T ® H isomorphisms (E) n W H a isomorphism finite-dimensional comparison F°(H ® (functorial) define k 1 t o one by . restricting is a induced Horn (H ,H ' ) ) a This isomorphisms functor Horn(H,H'). With Tannakian category namely faithful a rigid Q-Iinear this over abelian tensor Q Q-Iinear functors by ly " MD . _> each The category of finite- dimensional * H Q-vector spaces 0 a : k «-» C . proof i s routine axioms o f a T a n n a k i a n vector — • ttf^ a H for T/p« spaces additional a n d we and r a t h e r a r e modeled s t r a i g h t f o r w a r d , as the after are dealing with structure), the properties of vector where a l l f u n c t o r i a l spaces maps (with some a r e the ob- v vious is ones. We only note that the dual H of H € MRj g i v e n by H = Horn (H,1) v where 1, - (I 00 , a ) v and , respectively. taken tely H componentwise, determined by by f »* ( f and only 2.15. of f D R There MR^ 1 i f H 0 contains R^ R^ and d u a l s , exactness of subobjects v as 00 , o and and c o k e r n e l s a r e f G Horn(H,H') isomorphism i s comple- H o m ( I H ) ^ T(H) f / i np a r t i c u l a r the object i s a (neutral) have subcategory of functor t o prove subquotients. the formation the identity f o l l o w s by a p p l y i n g (twice) . But q u o t i e n t s Tannakian the formation and i t c o n t a i n s T(H) * O i f 1 . i s c l o s e d under only I O 3 of the inclusion s t a t e m e n t , w h i c h we H h~»H O i s c l o s e d under Obviously as k e r n e l s of -» H' . O i s a canonical 1 , which products case : H (D Zf (I) rf (D) Proposition Proof The i s exact, - Remark are the transposes - and f a i t h f u l , J 2.14. v (I. - ) 1, a follows of tensor object from the second f o r quotients, the exact o f pure o b j e c t s 1 . as t h e functor are obviously pure, and t h e g e n e r a l quotient weights 2.16. H © H' -» H" we must Im H n Im H There a) the base b) = H__ ® , k ' DK K = Res_ H Gj^, I 1 k k 1 1 H,H =0 are natural k with 1 as f o r a G with different . base H of fields 1 ^k l extension G as above G MR^, the induced and r e - , 1 up t o c o n j u g a c y G^) C and H € MR^ by G, K given closures extending i n and filtrations, K of the algebraic defined x = H v i a t h e map 1 1 k' extension H' DK H I 1 induction, functors: F o r an e x t e n s i o n define f o l l o w s by of realizations have Definition striction i) case , with by an k ^ k inclusion 1 (well t h e same w e i g h t f i l - tration . c) 1 H 1 = H for 0 mixed d) 1 I Q-Hodge for 00, o 1 — r = I 1 1, a ii) H a) For a = R , k H D 1 o = a ' I, IK / k H' 1,a c 1 and H' of J ® ,,a' R C a as above, O T € MR V a 7 : k " extension H' <T k'/k t h e same v i a the canonical 1 ' rr and a = O L- • IK define the restriction by : k (restriction j r H = DR k for 1 finite = H I R , with °°, o isomorphism I : k structure, . = I 1 e) a' 0 of scalars to k) with t h e same filtrations, b) H, = Ind l H G , to G k 1 , i . e . , the representation induced from l k K (we may assume k = k' and G , k 5 G^) , with the G weight k IndG , 01 k ^ filtration W H = O {T: R © H' - - T x€Ja k 1 (T I for x| k = 0} C H' . 1 , with 1 m k c) (direct I for ,0 00 01 k ^ C J 0 = sum o f t h e m i x e d structures), d) G, , i s g i v e n by Q-Hodge via the c a n o n i c a l isomorphism k ' ®, ' K e) I - 1 L F : © T€J 0 for a l l for o G, - I n d * H' = ~ k' H' T Q 1 G a p' G G ^ } : k = k <-+ C { f : G, 1 (with 1 7 C -^C k c| = a k k' #, , ' <E, K a T - H' | f ( p ' p ) = p ' f (p) (pf)(p ) f(p P)) 1 the G^-action with © T€J = Q and a| 1 = a Q i s given by A A = 5 < T>x€Jo p V ) 1 = I^ap-I ( a c ' p ^ ^ k which lies i n Ind n H' G , 1 by p r o p e r t y e) of the comparison k isomorphism. 2.17. Definition 1(1) is pure = i) The T a t e (MD CD (I), f o f weight -2 k(1) = k b) Q ( I ) = Z Z (1) ®nn; Q 1 1 P i s t h e group natural Qd) e) I d o ^ d ) , i d o 1 of filtration / where n l -th F°k(1) ZZ roots i s t h e (D-Hodge s t r u c t u r e ( f o r any i d ^^(1) ,o i d , -(1) 0: i s induced for a ^ - 1 = 0,F~ k(1) of unity i n a k ^ by : k 2??i Q k <C Q <n H(n) k , i s induced (a " 1 by (exp realization H H 1(1 ) ® ® , o f Hodge (E) , 2iri and n n ) ) n n € 2Z we l e t n = 0 = n Hom(l(1)®~ ,H) Tate twist of H . n < 0 =k(1), and n 1 F o r any mixed n-fold ^ l (1) = ^ i m y n 1 1 1 the ^ ( 1 ) ) with the k 2fri ffi - ffi (1) , 2-rrit H ii) l G -action, (-1,-1) d) Hodge 1 n Q(I), with! a) c) with 1 realization type 2.18. W^ m Remarks (H(n)) = i) Twisting ( W H ) ( n ) m+Zn The Tate objects above d e f i n i t i o n sentations and of Tate G the [d33. We of Rham r e a l i z a t i o n s : de also obtain weight i s compatible twists and k the by -2 so that . 9 ii) shifts a i n the of the category category notion with of usual notion 1-adic repre- o f Hodge s t r u c t u r e s , Tate twists i n the of see category H„(n) equals H_ as k-vector DK DK s p a c e w h e r e a s t h e Hodge f i l t r a t i o n i s F^H .-. (n) = F ^ H . - . DK DK W i t h t h i s we c a n w r i t e H(n) = (H (n),H (n),H (n);I ( n ) , I , -(n) DK 1 O oo,0 i,U D + n r r 1 The the next sequel is P(x p P to Aut D R ,x l f acts (k«) k x ) on H D R X , k , then factorizes DR ®k lies in T(E) * € n DK x k c t a ^ k' D R ^ t via 1 r k on X = k , as image °f a where to ; note k that = algebraic on k reader by k x i s an = G the lifting -» G for 1 quotient, e € MR 1 Aut (F ) G a l (ic/k) n H k H so reading. Aut Ck ) on 1 e), in the r (H x^k) map basis r (H of extension closure X c x F(H k'/k c J ^O * k . ^) Obviously . Pf / 1 f Hom(Hx k',Kx k'), k a n < k e P needed r k = k z r f o r some f i n i t e x and e above a p p l i e s (pf o 4.7 first for and If a of not K, k) k = f ) proof ^') trivially finite v x k' x^k ). r(Hom(Hx k',K k')) pf p a c t i o n of e ®, o 1 r(H J x Z t e c h n i c a l and on projection acts the H__ r(H The the k I 1 2.20 r (H via c through k X ZP R very i n the and on J ^' G , x^) 1 D and = , of H 0 k GaMkVk') X (P D R r 2.19 acts = a are partially skip € Aut (JT ) (x sections except advised 2.19. two ) for f , and for 1 p € Aut (k J 1 one has = H,K and k (Pf )(X) 1 Horn(Hx^k ,Kx^k ) r(Horn(H,K)x^k') with k similar for a p 1 i n p a r t i c u l a r to Pf (P l - 1 X) € MR f = for Hom(H,K) -+ Horn = . Here k ^ d r ' ^ ' V x € (Hx H € 1 k,kx k)". 2.2Q. a) Proposition The base adjoint b) \vk extension ( H ' d) ( 1 € MR , k v k » R k t / k Hom(H,R , H') iii) Hom(R k e) R (R ( H = R k v k k k , ) k H' in H ^ a) i m H )V isomorphism IHx Ic' H € MR k V There i s a natural If k'/k i s a Galois V/k ( H X k under T h e maps k , ) k Hom(H',Hx k') . k k the f i r s t - will t i P l i c be called the familiar r i f we w r i t e -* S p e c l MR , k J c v ^ = a <P* n d k . we h a v e u H' € Kom(Hx k',H') k 1 and k 9 H') k by t h e l e f t and f o r H € MR a i s canonically i s canonically the trace k t i o n b k Y and k ^ ' : H' € MR ,: k r i s the identity. k f) Proof s H ' ) x k' B H ' particular, and is k 7 k - especially f o r <p: S p e c x . *k ' ( H f o r m u l a s ; n o t e t h a t we o b t a i n adjointness k'/k H' i In k F o r t h e c o m p o s i t i o n o f t h e maps g i v e n right H i v isomorphisms, = R H',H) isomorphisms = cp* k H* and r i g h t isomorphisms - »*k ' = H ® tP*H' = (p* (tp*H ® H') x k' k V k k . = T(H') = R / k projection form of i s left H'*—>R functorial ) H' ii) kl / k HHiHx^k' functor ) V are functorial H the 1 H extension . k i) H i s a canonical There These be a f i n i t e functorial = V/k ' ) V H R H f functor are canonical There for k to the r e s t r i c t i o n There c) Let a direct a direct action factor of extension, 9 H i Aut (k') k of Aut (k') k t h e map R . (Hx k') k / k factor k = Gal(k'/k) . R of R c H x ^ J »/k ' ^ c on R k f ] '/k^ k K H x ' • ^ (Hx k'). k k k k ' (2.20.1) such H ^ R that right 7 k 1 DR where space / k (h of H ' ^ = * k t ^ ' o DR ® V H^ h ® a k ^k ' r h' denotes Q o n w n i c I G I 1 k IndJ H k' 1 f: p ph G ± -» H» 1 ® k k ' 1 Q t o t h e sub- coincide which - gives k' this a . G k Ind* k' I <==^ J 1 V k' ^ k ' P c ^F=* q 1 1 1 morphism w f°ll° s: (h' e 1 ) k -structures k' ® s \ h' 3 a' h of a ^ DR the projection of to the m u l t i p l i c a t i o n H H > both (j,q) the DR i n K' R DR 7 = > a'-h' « p r o j e c t i o n by t h e idempotent section DR /y and i n e c D 1) K e DR <—» 1 r P H I—» h 9 1 a a ^•/k •) X (R ,H adjointness DR ^ h k k ' ) k the l e f t x of H G h.tr , ( H x (i,p) give adjointness N the k G 1 f(1) ^ 1 f: G k H' 1 1 —•H^ 'ph' , P € G 1 I pf(p~ ) p€G /G k < 1 f: G where G the functor € G /G , k = ( t :k 1 d a H rr p • G , >f: f ( p ) a s i n 2.16 0 for 1 a : k' I T I . = a} Ik © H i we C , a s , k P^G HV, of representatives i n s a l I j a c n • > * h-, * a H 1 T€J . (h;) a TtJ o f the ^ T , T and define x€J > (h) ii)e), ( t h e sum i s i n d e p e n d e n t k rr q„ h i s defined means c h o o s i n g a n y s y s t e m k choice) . F i n a l l y , J i k Ind^ f o r the cosets k h' 1 k l G P - H v T a a a h^ = 0 f o r T *a• k It i s lengthy with but easy the comparison r For x J '/]^ c ( © H k k '^ t o check, t h a t isomorphisms, which ' B Y 2 1 - ) ® <E 6 1 ( H * 0 T€J t h e s e maps a r e c o m p a t i b l e O i a 0 DR s ^ ) V Q are given i v e n b as ^ h#a®c C k , a follows. o © I T€J © T and I € (HOCt) J a - 1 © 0, H__ DR k, a <C (h®x(a)-C) T F T€J for a : k <C with a 1 = a L by G © k Ind* H G , 1 (H ® Q , ) 1 T € J k A a » ( a T ) f T f For H" 1 = (R ,^ H )* k' k k a a : G 1 -> H. 1 = I Sp-I V p - 1 > ( p ) ( 1 f , I^ k k i s d e t e r m i n e d by the commutative diagram ( © H') ( © ® C ( H DR®k k , ) ®k',a' C h ' ' H^) 0 C h' ® oo (h» where on t h e r i g h t 9 T€J onto 1 I ( ^ the factor ( H i . ® (D ) T h side -» ' ® c a'(a')c V /T (H^ * (E) morphically a • k r ®k '^o H' OR ®k' a'^ s 8, , _,<T, w h i l e K ,u I n d * H' G , 1 K i m S a'(a')c) a PP e I V I,O d isoi s T , a = (a;) a f H T f with t h e same n o t a t i o n s Finally 2.2) that i t i s clear t h e above filtrations, the a) Galois Once i H - = I Sp-^ -P- ) ' 1 ) a 1 f 0 the d e f i n i t i o n s respect action i , j , p and q realizations, morphisms may example, be (especially a l lrelevant e t c . . We R give k the d e f i n i n g now using structures prove that x k'/k like the claims DR d H ® ' the of R the r e a l i z a t i o n s . i , k /k ( H > k ( ( R , seen DR H- H ) k /k ' x H k * Rham — ^ H \ * > k k For H — - ^ i n t h e de ® k' k k ) k ' a' x - k k l V (h <& 1) 8 -f R (H* k-))x / k i s easily > 1 adjunction P k -~^> a of of of compositions (R . V h properties morphisms k the i d e n t i t i e s , H to define i n anyone H K ' _ J U L ^ . k are proved checked the f a c t i HX n p k above. from maps ( a G proposition. mixed a as ! R k k ' / k H ' realization DR V (h ® H' « k' 1)-a* = h R DK h' That > the f o l l o w i n g H V A H can i R . k ® q tej * checked H , T 0 8 1 > wk ( ( T i.^ f9 x€J ( a give V/k ' H > h' • 1 the identities k H ) x k , ) (^,/j^tHXj^k'JJx^' i n t h e Hodge J i compositions ' x k' be h' e p€J H 1 * ) p a > ® H' h' \ k ' H 7 ) realizations: = H X Tc' k , (h; ) I T H > ((h;-6 •—-—> © TGJ T p ) ) p , T H > --^ I (h;6 T p ) p = ( h . ) H a ° a (h-6 .) TO b) The f i r s t iii) ,as I^ general = I 1 x f c ^ j c ' • i s the s p e c i a l T n e second which i s o b v i o u s and a l s o (see [DMOSlII € M fc functor, 1.9) x f c of the fact from in f c d) t h e more that k k ') a formal HH-)H x k 1 consequence is a tensor isomorphism DR by V D R 1 V ( H ^ (x 0 y) 8 a ' - b ' < and the i d e n t i t y c) By 2.14, given DR V ' > 1 (x 0 a') 0 i n the other this k - W (y 0 b') realizations. i s a special case o f the adjunction; t h e map by (x i x DR' I t i s easily x l) K I ' o l,o* checked ^ - ' W R ' h ® h ' i-» ( h ® h') ® (X DR' ill' ( X ) T x€J ) a l,a . that (2.20.3) n — * t p * ( < p * H 0tp*cp H ' ) * cp (tp*H 0 H ' ) * tp*tp*(H 8cp*H') an isomorphism; "DRVDR H = I 1 (H is 1 (H 0 K) x^k" = (H x k ) <S> (K x k') i s given sle case 1 fc by t h e o b v i o u s (2.20.3) H ©CP H' . = h TO follows x k' -> Horn (H X J c ,K H,K d) X h6 T Horn (H, K) for is > isomorphism (2.20.2) which isomorphism / T + + f o r example V 2 1 K (h ® ( H DR 1) ® V >V (h' ® ( H k DR®k '> 1) v* (h ® - ( H DR®^ 1) ® h ' , ) < 8 H k' ' t is obviously an isomorphism. Writing Horn(T,Horn(H,RH')) R = R i / k Horn(T,R Horn(Hxk',H')) |j\ ||\ad j u n c t i o n 1 1 Horn (T ft H,RH ) f[\ Hom((T 0 H)xk',H') a n y T € MR =• (2.20.3) , which fc gives Hom((Txk') ft (Hxk') ,H ' ) i i ) . Similarly, 1 Horn(T,Horn(RH , H) ) ||\ a d j u n c t i o n 1 Horn(T ft RH',H) 111 D for any T € MR e) The first i s immediately 3 3tt : J I/]^** R C H gR Ind where k H G T J c " - 1 i d R H D R Ind Galois. G k G H x V H on i S ' 1 i s given j4c . Explicitely, e s c r i b e d ky t n e M A P S x f t a » * x f t T ( a ' ) , a lifting ^ Cp Cp* x)* , inducing + k cate- i n $ . T) ( S p e c k '^ the d e f i n i t i o n i s a Q-Iinear fc f c the d e f i n i t i o n s q.e.d. M T ) * C O * = cp^tp* "* k ' / k ^ a l s o denotes from that T € Aut (k') (Spec T ) * (Spec k '^ V directly k'/k x note c l e a r from i s invertible the adjunction P Jc P* -* CP ( S p e c T part the action o f t Hom((Txk') ft H', Hxk') , and therefore i i i ) . [k' : k] Formally, by t fc ftH*),H) adjunction t h e maps. F o r t h e s e c o n d f) 1 Horn(Txk ,Horn(H ,Hxk')) Hom(R((Txk') gory and we h a v e Horn(T,R Horn(H',Hxk')) ||\ of 1 Hom(Txk' ,HomCHxk ,H ) ) ||\ad j u n c t i o n for we have k f - i n G that fc T f : T f(p) = . With io q = this, (i~ p) 1 i f i t follows z T for TEGal(k'/k) §3. The mixed realization Let k, k o V be the let fc and G of be fc category a as of smooth in the smooth variety previous paragraphs quasi-projective varieties n over n k € . We to n 3.1 Let . n (U) = of the de we only 3.2. By Hironaka's there exists i = a) x Each is etale nates" for X 1 f some union b) of € f. = 3 H n ( U Z Rham c o m p l e x ) . show that result c j : U -^X on ^ r u For construction to a of / , such structure) , with i s the normal following X over =" v the a f f i n e space T(V O ) x ^min(d,N) v is a = union a f f i n e open r Y eauivalent an A , and coordinate local equation Hodge i s defined over = dim Y. X € part at 3.3. The along O a by Y regular sheaf i s not system ft^<Y> i s defined 1 P. , via in x € this X fc "coordi- by of A that X ...x 1 the . and J = I {1,...,N}) I f . i of re- such pull-back 1 Ci an hold i s defined hyperplanes for [Hir] , the that V the of of as a unit at parameters x} differentials the subsheaf of , then at x with j * ^ X and dlog J 3 4 A 7 / w h e r e we write . smooth d i v i s o r s neighborhood V D Y k and (with Recall , d over k to fc and singularities XMJ of F structures conditions , i.e., is first filtrations mixed crossings. has € d that for fc (Zariski-hyper- the everything - * MR ' ) k X the the If (U/k) smooth p r o j e c t i v e v a r i e t y ...,x O R f c realization 1 ,a"* 1, 0 ,0 of 1,...,N of n •V i t s n-th fc Q Q O ° H resolution subscheme means o n e V have immersion , i H Deligne's a € V n H ^ follow duced U f [D4], open each functors o (H^(U) ,H (U) H (U) ; I cohomology we to n = Y construct TL , a s s o c i a t i n g H (U) W want and Q X ( f . ) _ _ i i€J is x . logarithmic generated 1 and Q 1 poles over for the 1 ^ /k sheaves dlog a n c x f = ^jr 1 ^U/k ^ fora unit r f ^ l a t l . Then v e d i f f e r e n t i a l s , and < ^ Y > i s l o c a l l Y free, namely <Y> for an open with affine dx V i n 3.2a), basis — - kr |V x v X^ O ftl like dx , 1 X ,... i s a f r e e 0 -module v <Y> • By d e f i n i n g V+ I rf^ = A Cl 1 A ft <y> , a n d t a k i n g oQf<Y> thos :e for the d i f f e r e n t i a l s j^ft^ one o b t a i n s d t o be t h e r e s t r i c t i o n s the logarithmic de Rham base k complex X 3 0 x Its formation base change 1 ft <v> x " 2 ft <v> x " i s compatible i n 3.4. Lemma ——————— 3 with change in and e t a l e X . T h e map * ft*<Y> x j * f tu * induces isomorphisms i n the Zariski-hypercohomology B n n (X,Q^<Y>) Proof and As IH (X, Y i s a divisor U ^ u } ^ ( with normal = H ( U ) * crossing, j i s affine, therefore P R J*^u This implies The = 0 the second first P > 0 and a l l q . isomorphism. isomorphism follows by base fact methods, [D3] I I 3.14. One c a n a l s o proof see along polydisk criterion these over for corresponding 3.5. DR lines, by s i m i l a r ones (E , w h i c h change from the c a n be proved by r e p l a c i n g give by a n a l y t i c a purely the considerations f o r the a f f i n e filtration W on ^C for a space A , using the fc 3.2 a) . The w e i g h t algebraic < Y > i s d e f i n e c ^ b Y m < O , m ftP" A^v<Y> X X m X O ^ m < p P<Y> m ^ o fi The we differentials d g e t an i n c r e a s i n g respect these filtration subspaces, of < ^ Y > b W Q"<Y> (Note t h a t W . 0 , W = Q* o X ITl X -1 when d = d i m X) . F o r a n i n t e g e r m 0 1 i„ < i ± N m < i . Y and and and so indeed subcomplexes W, = ft*<Y> , a X indices c o n s i d e r t h e map m x which i s locally g i v e n by dx. i a A x. a h where for a dx. x. i i s a holomorphic Y.. T h e i n d u c e d i (p-m)-form and x^ i s a local equation map W 6r flP<Y> m X does n o t depend for other on t h e c h o i c e o f t h e l o c a l equations x| equations x^ , as one has x. dx! i x! i dx. i i X . 1 which i s holomorphic. Also i t factorizes through p-m (b^ 1 ITl where b. V 1 Y. f). . . DY. I In 1 m immersion, A as dx. i where m-fold Y (m) (I ) ftm * (m) rn + intersections i s the closed x. • a a r e mapped t o z e r o . v -» Y \y 1^i«<. . .<i I 1 v map We o b t a i n a n i n d u c e d m and i X 1 W Gr m Y. of the 1 «P<Y> X . V m i s the d i s j o i n t Y^,...,, which union of the i s also the normalization of m Y = Y. . I ' * 'Sn : Y i 3.6. is , and where m (m) X Lemma (3.6.1) c x 1 1^i..<. . . < i i sthecanonical map (O) Y * ' = X) . (by d e f i n i t i o n T h e map o f c o m p l e x e s P : ( i )*fT , rn an isomorphism [-m] (recall - GrJJfi'<Y> that (K'tn]) 1 = K 1 + n f o r a complex K') . Proof By c r i t e r i o n 3.2 a) only be checked f o r t h e c a s e and Y i = 1,...,v for U = U 1 X = X x U ) x X as i n 2 and 2 1 the exact 0 3 4 t isomorphism l x need x^,..-x^ x X U X 2 1 o f both x Y case (i.e., 2 reduces sides to the m = 1 ^ and ' Q Q "* X <Y> x "* ^ t o the exact i 1 U 0 Y sequence works characteristic zero t h e lemma a l s o sponding statement about 0 of k[x] -modules -^ - k - 0 also P^ m 1 an proof u s i n g base decomposition one e a s i l y Q <Y>/Q y 0 -> k [ x ] d x - k [ x ] by coordinates i n theonly interesting O this sequence corresponding This change Y^ = ( x ^ = 0} f o r Y = Y [D2] I I 3.6 we o b v i o u s l y h a v e (I ) via 1 base with fc o f the hyperplanes d = 1 , where = 1 X = A . By u s i n g t h e c a n o n i c a l products case p the union and e t a l e i ncharacteristic analytic extension to (D follows sheaves p from proved , while for the correi n [D3l I I 3.6, a n d t h e GAGA p r i n c i p l e , as the are linear. K 3.7. Remark I f (x ) n n t cci i s the canonical increasing filtration (coitiDare T [D4] (1.4.6.)) o f a TL - q r a d e d n-1 K' -> complex K' Ker d n ni n-1 . - K K* we h a v e T n K n + K 1 n+2 T ft"<Y> e W ft*<Y> n X — n x n - ft*<Y> X n n-1 X 1 ft ~ <Y> Ker d i n X However, the i n contrast i d e n t i t y map complexes i s not T general: which Gr n (ft^<Y>,x) trated 3.8. ft*<Y> X (Q*<Y>,W) n = H (Q'<Y>) x not true t h e complex i n dimension n ( s e e [D4] n complexes i n i s concentrated analytic version n £ 7 Z i n dimension n ( i n . . [-n] of the latter , quasi-isomorphic (a ) (3.1.8)), of the algebraic W ~ f o r G r Q'<Y> = n A The " s t u p i d " f i l t r a t i o n O Q'<Y> X case a quasi-isomorphism o f f i l t e r e d i s i n qeneral Cwhereas to the analytic to of ^ ^ < i n Y ijs c o n c e n - ) * ^ > i s n ( ) t ~ ^ )• n ^ i v e n 0 nl fi < > x n 3.9. of 1 ->ft ~ <Y> X Y Recall that a complex K" P,q = E P+q n f o ra decreasing o f sheaves sequence f o r t h e hypercohomology E -+ ft .<Y> X (x,Gr^K-) - on X bireqular there P + q (X,K') p (F ), p€ i s an a s s o c i a t e d s p e c t r a l ([D 4] (1.4.5.)) H filtration , where the the d i f f e r e n t i a l s short exact The filtration for which + We apply ( p Gr E P F n B filtration n f P P - F KVF o ) £2Z p = E ' n p to obtain H t h e n (U) n B n Defintion induced (3.10.1) ^E ' P r associated F By P B n {X Q' f q = <Y>) as (3.10.3) also K F E P n = B B K 1 P + q q can apply {X K') r . f and t h e Hodge . F on H n (U) P n => B P + q (X Q'<Y>) f A 11 (a ) P n -> B A (X,fl'<Y>)) . X P = ft <Y>[-p] with i * 0) the complex the s p e c t r a l P =* B P to the i n c r e a s i n g filtration but i n a d d i t i o n i.e., f (X,a ft*<Y>) = B (X,ft <Y>) 3.9 ^ complexes for q i s the sequence (X,Gr ft'<Y>) i s identified = 0 ' n (X K')) filtration the s p e c t r a l = Im(B the d e c r e a s i n g back, n by P to the f i l t r a t i o n a sheaf written to by P and E filtration Gr ft^<Y> K° = K term . O A (3.10.2) We Hodge the isomorphism of (where -> O r (X,ft*<Y>) I A morphisms f o r A The filtration Gr K- (X, F K ") -+ B the weight = p - liniit JJK 3.10. K- , i s given = Im(B f on n P + 2 d (X K*) this are the connecting sequences G rr ^ V O - q d^' there (W n + q K" sequence (X,ft^<Y>) filtration = W ) ^ and -n ntzz i s a shift involved. 3.11. D e f i n i t i o n The w e i g h t f i l t r a t i o n — • t a i n e d from the f i l t r a t i o n W' induced by on that can be . W , by passing translating rrt W such H n (U) UK the s p e c t r a l i s obsequence (3.11.1) of P E w ' q = 3H the f i l t r a t i o n 1 W [nj , W n + 3.12. k H n By of : G A ; < Y > < ^ Y > b y a =* n n ~ P H f o l d + q (X , Q^<Y>) shift: W = that i m P+ W the isomorphism - ( i ) ft* m and t h e r e f o r e we h a v e 2 = K P + c F which induces an i s o - an isomorphism ^ ( Y ^ , ^ , i n [ D 4 ] ( 3 . 2 .4 . 1 ) ) p' [- ] m * y(in) fi-<Y» filtrations . On b o t h differ i s an i s o m o r p h i s m .) sides by a s h i f t ; of filtered there i n fact complexes, m one t a k e s . k i sfinite i sa misprint natural n ( X , W ^ < Y > ) - 3H ( X , ^ < Y > ) ) hypercohomolgy, H <* ( X , G r are n (3.6.1) = m X i n Zariski (3.12.1) if ( X , G r ^ f t V Y>) the isomorphism the fact (there Q (X,ft^<Y>) = I m ( 3 H m morphism W + i.e., p' and P " the f i l t r a t i o n induced by a on t h e l e f t side (m) and the f i l t r a t i o n (af-m] 1 = a 1 m ) a(Y from )[-m] o b t a i n e d the stupid by filtration shifting o f ft*, , . T h u s we c a n r e w r i t e t h e s p e c t r a l s e q u e n c e ( 3 . 1 1 . 1 ) as (3.12.2) EP'<* = K P S ( Y - P ) S r ^ Mp) * H (X,fi-<Y>) 2 + t P W which p Y^ ^ 2.18: F P + m A write i s compatible with , i f of (p) o t h e Hodge indicates A(m) = A filtrations the shift as a b e l i a n group, the spectral w E P ' q sequence = H P (Y The f i l t r a t i o n s the particular choice ( q ) q of X and t h e of the f i l t r a t i o n with P E ' W 1 q = .E ^ W 2 p asi n P filtration r 7 , F (A(m) = + q '" p to as ,ft* ) (-q) and W ( F + j . I t i s c o n v e n i e n t t o renumber (3.12.3) 3.13. f of X on B P + q X H ^ (U) T (X,ft <Y>) T 3 . a r e independent and a r e f u n c t o r i a l i n U , as one sees like zation of 3.14. F o r t h e 1 - a d i c r e a l i z a t i o n we l e t U in [D4] cohomology), functoriality creasing i.e., P n q fined q n . Then as k id ^ P t k x k,R J k n G r by n+k 3.18 E n E below 3.15. For » ' and a; k ^ C 3tt (J) ) O = W aU = U x W for P E ' q by w P + q = E . b e t h K R n W Gr ' q H (U) c — n X and f o r H (U) + q = i s de0 of P E E ... c: W E — zx\ n result = 1 n of _ i n sequence with c W E — n e X JJ Q ) (U n W independent n * k a C defined over n = E n functorial ([D4](3.2.11)). c*fl) sheaf cohomology) w i t h by D e l i g n e [D4] <E . I f ax = X f o r the x C K. e t c . , t h e n by i n 3.14. P from q F t h e Hodge f i l t r a t i o n and d e f i n i t i o n the weight -> H P + Q (0U,Q) H (au,(l)) ® C F on H n (aU smooth simi- filtration sequence , n on the , O the Leray s p e c t r a l = H ( 0 X , R j*<T)) t h e Hodge f i l t r a t i o n given s t 0 , Y ^ i s o b t a i n e d as (3.15.1) and Y n n ,E 1 cohomology or a n a l y t i c JC , larly i e H filtration = H (u Q-Hodge s t r u c t u r e variety - 1 ... c W E — n t L we l e t n mixed reali- induced v i a fc the Leray s p e c t r a l the analogous H (U) (singular T p € G # 1 c — , i.e., = of y n with t h e de Rham ) Q l x _> P q (X the weight W'tn] x E, i n d u c e d by c WE — o 1 q x U = H 0 = W E -1 r E ~ ' from E ' = H^(U w i t h the a c t i o n filtration (3.14.1) gives . H^(U) (etale (3.2.11). T h i s i s just a n ) the one ( a n a l y t i c de Rham DK cohomology o f t h e complex via the isomorphism analytic space <jU an associated to a U) n (3.15.2) H (au,<J)) ® <C induced from filtration H n (au a n ,ft'^ the cruasi-isomornhism i s defined filtration GAGA - Q F a n ) =H n R (aU a n C-^ft' ^ . This *— .••.^•n aU a ) Hodge i n t h e same way a s t h e a l g e b r a i c defined above and c o m p a t i b l e w i t h Hodge i tunder t h e isomorphism H (3.15.3) with DR ( a l j a n ) t h e a l g e b r a i c d e Rham 3.16. Combining H ~ DR ( a U / ( E ) cohomology. these isomorphisms w i t h the base change iso- morphism (3.16.1! we o b t a i n the comparison (3-16.2) I„ As m e n t i o n e d , spects H p = I^ (U) f a 0 0 a p : H respects ,a the weight spectral IH I isomorphism (compare ( U ) [D4] ( 3 . 1 . 7 ) , q a n H W a n ,gr ft* q <aY >) QX - B P + q B The p (aX a n and i t r e - isomorphism o f (3.1.8)) (aU,C) ,ft* GX <aY a n » -> ~ a n GAGA (ax, g r ^ ST <aY>) x first p + q a n GAGA . filtration, by the c a n o n i c a l ( a x , R j * (T) (ax . U^iV)^^ v t h e Hodge filtration sequences a isomorphism an follows (ft- _ < Q Y > , W ) GX B from (ft* ax P + q D GAGA (aX,ft^ <0Y>) X 2 the quasi-isomorphisms a n P <aY >,x) ^ (J QaU jlf , T) q H + (aU R a i of filtered duces complexes, as t h e q u a s i - i s o m o r p h i s m - + Gr [q] = H 3.17. The l a t t e r <oY >[q] - a q R J*S ( i ) ,,ft' ^ ^ a n $ Q-structures, considerations spectral E w q -> + i n [D4] (3.2.7) identified E 2' q with P ' induces 3.18. fined I = P H (0"Y ( Q ) q • (2iri) - (3.2.10) ,Q) (-q) (3.18.1) c C . This and the show t h a t we q = 3H P ( (°Y q sequence ,n* ) H P + q have t h e (2iri) 1 ^ 5 = I i / a ( q U ) between ( q ) c a n be (3.12.3) )(-q) m - P + q P ) : H ( u a ® c l ~ x and those n 1 H i ( u ) f o r of the canonical and e t a l e H (OU Q ) f ) ^ H n t cohomology (OU Q ) 7 1 q (aX,ft; <QY>)=H ^ (aU) of C Y ^ . complex the isomorphisms (aU,$) whose c o m p l e x i f i c a t i o n the s p e c t r a l t o be t h e c o m p o s i t i o n morphism an i s o m o r p h i s m q the comparison isomorphisms f o r c u (regarding with this (i )*<^(-q) Q(-q) = Q m i x e d (D-Hodge s t r u c t u r e s , w that : R j <J) where sheaves sequence (3.17.3) via ) <c M q shows i n [D4] ( 3 . 1 . 9 ) (3.17.2) of the quasi-isomorphisms an i s o m o r p h i s m o f a n a l y t i c Deligne a aU combined w i t h a n ^ ' (3.17.1) of ina n ) aU gives ft QU an i s o m o r p h i s m R^j C g C 5 : k <C i s de- comparison i s o - (3.18.2) (3.18.3) p For H G w ^ k e n a v e t e ( a a* tr "k^'V U = J 0 = a p k J]^ a n c r T H n e t ( U "^,(B )-H (O) 1 ^ therefore 1 a commutative diagram 1 : 1,5 H t o u H^ (OD Q ) £-* Hj (OU Q ) 4^-* t ^ f t I 1 of - respects spectral E q 2' P 2 ' by for is f 1 the weight f i l t r a t i o n s H ( U x et k k '«l Hg (Ux k t as there k f f f i l ) ) i s an i s o m o r p h i s m sequences = q 1 p H (OX R t q f P j f 1 q = H (0X R j (D) f p H ^(OU Q ) ^ ) ® Q + «* 1 t h e c o m p a r i s o n theorem between constructible constructible n H (U) = P + q (oU,Q) complex GQ , 1 and e t a l e cohomology s h e a v e s , s e e [SGA 4] XV 4 . N o t e by 3.19. D e f i n i t i o n quasi-projective H 1 [SGA 4] XV 5.1 The mixed variety n U n n (H (U),H (U),H (U); R q R J j f c . n realization over that k H (U) o f a smooth i s I , ,^ , > , 0 0 a 1 5 p c r Oik -+ i m e C a rlc^-* <E n where H ^(U) 3.14, H (U) Clearly, n this i s defined by 3.15 by , I o o Q 3.1, 3.10 a n d 3.11, b y 3.16 and I ^ - n H (U) by b y 3.18 . a s s i g n m e n t i s f u n c t o r i a l , s o we g e t t h e d e s i r e d Q 1 functors (n € 2Z ) n H : ^ - U the following k n U In MR h->>H (U) we w r i t e U, j e t c . f o r the base extensions X ^k , j x i d ^ e t c . 1 3.20. P r o p o s i t i o n There are canonical isomorphisms of 1-adic sheaves q (3.20.1) such : R IU(I) that weight v i a these filtration (3.20.2) (note w that where be on the i t t J) / C ] L ) (- ^ are acyclic D,q 7 H P ( Y s t ^ Q f 1 ) giving the with H ^ U , ^ ) q) f o rthe etale (-q) given as f o l l o w s : L e t (5.)„ : H P ( T ^ Q ) (-q) 1 t the Gysin f Then P d ' q : y H |J 2 2 (Y cohomology), >, D Y. X q immersions * ...x. 1 (-q-1 ) ( -q+1) ) (Y by t h e c l o s e d , ... x 1 q = I (-1) (6.) j= 1 1 Proof induced : Y . X - -. H ^ 1 morphism 3 the c a n be i d e n t i f i e d 1 t 6. 6* H (U) (3.14.1) the d i f f e r e n t i a l s d are the s n e c t r a l sequence f ' ^ = RP (Y E (i UQ^-q) ^ 1 ...x g . + 3 Vfe c l o s e l y f o l l o w t h e arguments o f Rapoport and Zink i n [RZ] § 2 . L e t ( r + 1 ) - Y ( r ) , 1 ^ j ^ r+1 , b e t h e map i n d u c e d by inclusions Y n...n Y i 1 X Y r+1 1 I n . _ n $ 1 n J n Y Sr+1 for 1 - < ... < i r + - N 1 a . T h e n we h a v e 6 = j r a r +i ' (r) where a : Y -> Y we g e t f u n c t o r i a l i s t h e c a n o n i c a l map. By a d j u n c t i o n morphisms r r 1 (6 .)*(£> .) F - F for any e t a l e sheaf 8 for J any s h e a f ... is exact, Proof on r + 1 I i s injective 1 r + 1 ) I 2 (a ) r d = I(-1)^3. l e t I" (O 1 on ( a r ) ! F on Y , then l J | t (a )4-...-(a ) (a ) I r 1 + 1 - I - O . be an i n j e c t i v e X . There 0 - I (3.20.4) I I' 1 J 1 T By a p p l y i n g t h e a b o v e get a r e s o l u t i o n ^ (3.20.5) total - I* - lemma (note j^j*!- complex i to o f the constant sequence j*j*I* ~> 0 . ~t i " I " and by (3.20.4) we = i a ) m m ... -(I )^(I ) I--I--. I 1 1 - 0 . sC'' (i resolution i s an e x a c t ...-(Ij„(Ij V - The (V* Y . )*(a where " ! p morphisms A s i n [ R Z ] Lemma 2.5. Now sheaf a If -(a , and t h e r e f o r e <W*< r+1> : F 3 . 2 0 . 3 . Lemma on a s s o c i a t e d to the double J J i J * I 1 q • p.q = q = 0 , complex with the d i f f e r e n t i a l s quasi-isomorphic Now to ( i q by p u r i t y , 1 the following 0 0 c ' 1 ' (3.20.5) , i s therefore i s quasi-isomorphicto 1 therefore double c from . = IR ( i ) ' Q Q (-q)[-2q] to induced complex 0 c 2 C ' 1 2 ' C'* i s quasi-isomorphic C** 0 c 3 3 / I m 3» 0 ' C '" c 1 4 ' 4 C '" 4 0 C 1 C 2 C '~ /Im3' As C P / q =0 6 f o r p + 2q < 0 s C * ' := 9 q--r r T. the canonical of s C'' J 3 . 2 0 . 6 . Lemma and Proof q 0 £ C t h e second r , T) ^ 5 C 5 have P , q £ T s (s C C " r p+q^r B ( s C"* morphism o f f i l t e r e d P C ' , we 5 (increasing) ' , 6) i sa filtration quasi-iso- complexes. A s i n [ R Z ] Lemma 2.7. This induces quasi-isomorphisms q R J ^ 3 1 q - ( G r 5*5*1 •) [ q ] - (Gr s ~ ) [ a ] = = (I ) q q slt IR I ^ Q [2q] 1 ((I >*igl'[q]) [ql (I ) Q I S Q C^) 1 et and therefore Leray p E ' the q t h e wanted spectral = E 2 p second + q ' p sequence isomorphisms (3.14.1) - be i d e n t i f i e d filtration, where d> . Furthermore, the c a n - up t o r e n u m b e r i n g with the spectral the d i f f e r e n t i a l s sequence fo] dP' are = = q p q q ( Y H ( " p (I_ ) 1 P ) ,Q ) q the , we morphisms morphism IH (X,C-' P - this P + 1 C*' ) P + 1 . As H q (X C w 7 p ) (X, ( i _ ) ^ C ( P ) [ 2 p ] ) p t P that d ' . ( V 1 1 q i s induced ) ^ V (i )*(i )"I* = r g i v e s the by ) * ! - 1 (I ) r 3 l t alternating • IR ( i ) 'Q r sum of 1 the q as r 6_. for q see quasi-isomorphisms r q 9=M-1)V 3> q "* (- ) *Q-_ (-*") [ - 2 r ] Gysin K C" = 1 (-p) 1 Q ) , ( i ) * ( i ) - r Via - the morphism (X,(J)+TR + P : H (X,C" ) i n d u c e d by 3H 2 q c l a i m e d , as i = 6 ^ i . , and t h e G y s i n _______ _____ Pi 3 Q ' (r+1) (r) : Y -*• Y i s g i v e n by t h e q u a s i - i s o m o r v phism (6j)^Q (-1)[-2] - 1 followed by 1 (6j) ]R (6*) Q + 1 the a d j u n c t i o n 1 (6*)+TR ( 6 * ) Q I n m o r e down t o e a r t h - Q 1 terms: . 1 i f J" i s an injective resolution (r) of Q 1 on Y then the G y s i n morphism i s g i v e n by the isomorphism Q_(-1) the 2 - 1 R (6^) Q quasi-isomorphism 2 1 R (Sj) Q and the 2 = 1 ! tf ((6j) J*) canonical cohomology P H (Y ( r ) this 1 J ' corresponds , ,_(-!)) P = H (Y P second (6j) J'[2], map = H | Y' (the I -> (6j)^ ( 6 In , 1 isomorphism ( r ) 2 + 1 ) from » to 2 , ( Y the ! R (6^) (23 ) 1 l r ' ^ ) C spectral n $ H P + 2 (Y sequence ( r ) ,Q ) 1 for , ! (6j) ), the at least map strict 3.21. 6 ^ r * O . For i s not a closed to the Lemma quences for Y c ± a) Y The (3.12.3) Gysin morphisms b) The isomorphism immersion, differentials d (3.17.3) as p and , q Y one ( 0 ) = has X to re- i n the s p e c t r a l are given i n proposition (3.17.2) as R (aj)*0) - se- alternating sums 3.20. of a n a l y t i c q : , i.e., (1) and of r = O sheaves (Oi ) Q(-q) # q et corresponds structible to <J> q (smooth) v i a the comparison sheaves f o r the e t a l e l y t i c t o p o l o g y [SGA 4] XVI 4.1. c) There are c a n o n i c a l isomorphisms 5 _' q = Het - H P t ( Y ( q ) (aY 'G>l ( q ) ) ( - isomorphism and f o r con- t h e complex of spectral ana- sequences q ) p q H ^ (OU Q ) ,(D )(-q) f 1 1 I ^P' 1 P = given H (cY by spectral which sequences a) reference. via ,Q(-q)) the comparison cohomology, Proof ( q ) plies Q isomorphism correspond The +c -> 1 to the HP 2(aU,Q) * claim of isomorphisms though t the isomorphism (3.6.1) f o r the s i n g u l a r cohomology, and etale of the Leray <{> . q I could f o r t h e de Rham c o h o m o l o g y 1 n (J)^ a n d not c a n be and f o r t h e G y s i n m o r p h i s m g i v e n i n [Ber] V I the c l a i m Q between complex v i a the isomorphisms seems t o b e w e l l - k n o w n , the d e f i n i t i o n formula • as the find good checked explicit 3.1.3. T h i s Gysin a im- morphisms correspond under Another is given proof a x on approach n . Then we a canonical (3.21.1) which E P ' n q : R (°j)*Q spectral q P = H (cY ( q ) a s i n lemma the c o r r e s p o n d i n g complex process cal the functor s p e a k i n g , we to limits on each base change structible et <!>_ i nthe sheaves (aU,Q) spectral sequence arealternating and Q - Sheaves 1 1 1 the etale q (Gj e t e* we the comparison et ) ^Q a n and there (3.20.2) v i athe canoni- we '^g see that 1 1 a n t o prove ' = ^ ^(-q) change ( O i J ) , < B _ <-q) 1 between the spectral v i a the comparison (base isomorphisms. remains c isomorphism, i . e . , i s an i s o m o r p h i s m ® Q t h e whole n - 2 — ^ a n d (3.21.1) sheaf E -sheaves and base v 1 f o r con- t ),« * l Q isomorphisms e* (Oi^ ) 1 with etale c a n compare change a n construction i s exact, a j , and ( s e e [SGA 4] X V I 4 . 1 ; ZZ/ I ) , tensoring t o each sheaf for sums o f G y s i n after associating n R (aj It P + q to consider and as base change) ' q analytic have a r e compatible under sequences o f b) (°iJ*Q(-q) q morphisms. As t h e s e g i v e sheaves commutative, p e* step with e*R is z 3.20. M o r e o v e r , applying pass construction out f o ranalytic ,Q) (-q) = > H d and strictly t h e whole proof sequence the d i f f e r e n t i a l s morphisms natural g e t isomorphisms i s isomorphic to the Leray where then that 3.20 c a n b e c a r r i e d *4>* q and isomorphisms. and p r o b a b l y t h e most by t h e o b s e r v a t i o n o f lemma a the comparison • There i s an isomorphism depending on the fixed ordering of the Y_. , and a canonical isomorphism q a n R (CTj ) <i) given 1 by an <j> the are to show ox by cup-product compatible '4> an A R - + = a n open (Oj (compare with these . The <$>an 1 D )*Q [D4] 3.1). d is local, , with D = v and suppose that aY = cY. 3 j=1 that at OU 0 X = (D ) D x D " q of finition V R (aj an a , with ) Q D X = i s isomorphic + 1 (cb ) n V with maps the class an Both <j> and so we only have and we can isomorphisms, question polycylinder a n {z€C| ]z| < -1 = p r . (0) D l aY. DMO} . H (aU,Q) of oY . dx. —2. _ x. d i n the \} , such Then q to replace the fibre , and fibre by de- of 3 (Oi a n ) j t c Q at 0 to the class of H n (au,Q)(1) , where 3 X^ are the canonical generator the canonical coordinates i n D .In the same setting, of j is the image u n d e r H 1 the connecting (ox^oY ,Q) (1) - ^ H 3 of the morphism 2 canonical generator (OX Q)(I) y ~ f J ou of i H which sends positive ( O X ^ o Y j ,Q-2-rri) the choice of of OYj (w.r.t. i = V^l) the image o f to as dx . 1 J = the a^ 1 x Yj 2iTi H (oX^oYj,Q(1)) and 1 the generating path orientation to = Hom(fT ( o X ^ o Y j ) , Q - 2 i T i ) 2 TTi around orientation an . Now under - OYj ' <f> the 1 ox sends restriction H (aU Q(1)) r of which , has given the map by class we see that we nave From quence of = t h e above coincides with ^ i t i s clear 0 the weight t h a t we have a spectral se- )(-q) filtration P ~H + q (U) on t h e r e a l i z a t i o n a the d i f f e r e n t i a l s r e v 9 i e n attached ^Y sums o f G y s i n m o r p h i s m s . d Ker to asubquotient degenerates for by l /Im d 2 2 §4. f a H s a t the E^-terms. [D4] n k G r n ( Y ^ ) (-k) the s p e c t r a l The l a t t e r and i s proved +k n H i s i s o ~ , namely t o sequence has o n l y (3.22.1) t o be f o r t h e Hodge proved realization (3.2.13). The c a t e g o r y With of * one r e a l i z a t i o n , Deligne In p a r t i c u l a r , to alternating W morphic dx. —^- , i . e . , of .an 4^ ^P' - = H ^ Y ^ , where the class realizations (3. 2 2 . 1) U image ,,an ' cf)^ shown 3.22. giving this of mixed motives the notations o f the previous section we define the functor H= by H(U) 4.1. = 9 n=0 n ^ H (U) Definition - MR for U Hodge c y c l e s ) o v e r of generated MR^ 4.2. P r o p o s i t i o n if and o n l y smooth q u a s i - p r o j e c t i v e o v e r The c a t e g o r y absolute k MM^ k i s the Tannakian by t h e image o f A mixed o f mixed motives (for subcategory H . realization i f i t i s a subquotient k . of H € MR^ i s a mixed H(U) ® H ( V ) V = motive Horn(H(V),H(U)) and V over Proof a) f o r some s m o o t h q u a s i - p r o j e c t i v e v a r i e t i e s k . We quotients. first Let U V f i) H (U) € M M of an idempotent n n ii) W H (U) m in H 1.1: B y 3.22 n of over a n d some the language Lemma subquotient n So Gr H (U) m mixed motive iii) (Y)(n") H(U) f i . e . , as k e r n e l . by i n d u c t i o n on WH (U)EMM implies m j*c n W v n , as k Gr H (U) CMM m n Gr H (U) MM fact, k iv) If Y of H (Y)(r) f o r some s m o o t h i s smooth p r o j e c t i v e , n , r E ZZ n factor projective over variety Y lemma 1.1 k , then any , i s a direct n of H(r) E M M , then r i s canonically i s c l o s e d under By t h e l a s t so W v) If H c H = — o max by H '(Y)(n") factor. , which i sa by t h e f o l l o w i n g remark. and over m t o a sub- E Z Z , a n d we c a n r e f o r m u l a t e i s a direct 1(-1) m n ,H (U) = m— I i s isomorphic m : for f o ra l l r f o r a l l r E ZZ k 2 In m of realizations: H E MM If n',n" of m € ZZ n m a n d lemraa 4.3. f o ra l l k contains a l l these sub- k factor End(H(U)) =H (U) ,and quotient in n € ZZ . and k -> G r H ( U ) ) E M M n m k MM o € V n WH (U) in K e r ( W H (U) 3.22 show t h a t as a d i r e c t k € MM n m » 0 U (H(U) formation argument V 0 H(V) ) of tensor n also E MM H(U) ft H ( V ) isomorphic V fft V H = of m € E H' H E MM — k we show with n! WH mo Gr H m nI » and d u a l s . n V m E MM R m E Z2 . f o ra l l f) ) , and (W_ H (V)) 1 W Gr H * 0 . L e t m (nEzz | Gr^H * 0 } and c o n s i d e r t h e cartesian W t h e number 1 (~? products W (H (V) ) k to . Gr*H mo by induction m = square Then the quotient Gr^U^/Gr^B i s in MM , as i t i s a k direct W factor Gr^H G of r H m € MM^ Q b y lemma i s a subquotient o projective of H 1.1 n o r r a t h e r 4.3. N a m e l y (Y)(n") f o r some smooth Y and n ' , n " G ZZ b y t h e same a r g u m e n t s a s i n i i ) , 2dimY - n as H (Y ) & H * <Y )(dim Y ) by P o i n c a r e d u a l i t y , n. n« n.+n* H '(Y ) ® H ^(Y ) c H ^(Y x Y ) by t h e K i i n n e t h f o r m u l a , 2 2 2 1 1 1 H (Y1K-I) n n c H + 2 1 ( Y xJP ) Therefore H varieties 1 € MM W W H mo -> G r ^ H / G r H m o m T the commutative W n and 1 smooth p r o j e c t i v e 2 Y H (Y J 9 H and i n n (Y ) = H n 2 1 , a s i t i s t h e k e r n e l o f t h e map k . By i n d u c t i o n W .H m-1 J exact is in MM, — k , and H .H m-1 0 A w Gr H >0 vv > Gr H m H = K e r (H' H /W H 0 m-1 b) Now of a we have t o show t h a t t h e f u l l a l l subquotients Tannakian i) Let B'/A' the MR of H 1 canonical of € MR i s (isomorphic i s in 0 MM. — k consisting 0 for U and V € V H € MR^ , A c B c H r k A' 5 B , 1 c H' to) a subquotient , and . Then of H ® H 1 , via isomorphism B O B ' v H(U (H(U ) ® H ( V ) J 1 1 x U ) 2 ®(H(U ) 1 S H(V x V 2 2 ) V B ~ A ® B' + A' ® B ii) / 7 V ® H(V ) ) 3 = H(U )® 1 is . k be a s u b q u o t i e n t a subquotient B/A ® B'/A' of .H) m-1 -> subcategory v H(U) ® H ( V ) of subcategory B/A from diagram H see that 3 € ZZ . i m-1 we (Y JLY ) f o r • A B V 7 " A' i s isomorphic H(U ) * H ( V ) 2 1 V ® to H(V ) 2 V iii) If (B/A) V B/A V = A /B i s a subquotient V = H(V) 0 H ( U ) Now it V subcategory of formation i t contains identified with of the i d e n t i t y H(Spec MR^ k) absolute a fully The f u n c t o r faithful subcategory tensor M^ of realizations, D in V formed MR^ and object H: M^ k remarks show that t which can a Tannakian which t o any m o t i v e i t s realization, f u n c t o r and i d e n t i f i e s MM k M^ with the , whose o b j e c t s a r e d i r e c t i . e . , with the c a t e g o r i a l sums intersection . o V and smooth q u a s i - p r o j e c t i v e v a r i e t i e s , k diagram a r e t h e c a t e g o r i e s o f smooth projective respectively, we have of functors o H Bk where v and d u a l s . associates If commutative H(V) ) by t h e above s u b - 1 € MRj -» R^ b) k v (H(U) 0 . q.e.d. Hodge c y c l e s ) o v e r MM^ , and , so i t i s indeed (for pure v of tensor products a) of H MR^ 4.4. T h e o r e m full of , then i s o b v i o u s l y a b e l i a n , and t h e above subcategory is H € MR^ . i s c l o s e d under Finally be i s a subquotient the f u l l quotients of means a fully faithful functor giving an embedding a of a subcategory and where c) I f we ^ which means i s c l o s e d under an e q u i v a l e n c e identify with we w i l l always do from is also the Tannakian by t h e image o f H now Y on, then ' Y k d) H € MR^ i s a motive of H(X)(r) f o r some s m o o t h and some H(X)(r) Proof r € ZZ . and d ) : H: the left was already mentioned are to just direct some the MR^ MR H also , which M^ which of motives i s generated . k i fi tis a projective -* MR^ subquotient variety a direct X over summand i s the unique i n the diagram k of of b) that i t i s fully f u n c t o r making commutative, faithful choosen i n such a way s e e [DMOS] category ( p a s s i n g from " f a l s e I I p . 203) t h a t and i t (compare g ) ) . The c o n s t r a i n t s o f t h e t e n s o r "true motives", H M^ motives" becomes a functor. For is triangle I I 6.7 tensor of i f and o n l y I t i s then under . a) [DMOS] M^ the category - k of subquotients, of categories. i t s image subcategory | formation a motive factor r € ZZ of over H(X)(r) , compare a sum o f p u r e form M k , the r e a l i z a t i o n d) i s a f o r some s m o o t h p r o j e c t i v e [DMOS] realizations, stated i n H(M) I I 6.7 b) . I n particular, i.e., lies . Furthermore we 2 H(X) 0 H CIP H(X) 0 X/k in R^ and H(M) , and i t i s o f have 1 )® l r l H(X) ( r ) so H(X)(r) any subquotient shows d.) . and t h e r e f o r e a l s o of H(X)(r) 2 (H (1P H(M) 1 V ) )® lies r in r > 0 , MM^ " i s " a m o t i v e b y lemma . Conversely, 1.1/4.3, which Finally, l e t H subquotient V k . By ~ = W © G r (B/A) , s o we o n l y me TZ a l l m € TZ . B u t G r (B/A) W V ® H(V) ) = f V are t o show W © U w G r (B/A) € H ( M ) m -k i s a subquotient of w Gr (H(U) m as a assumption, have m for , given f o r A c B 5 H(U) ® H ( V ) , w h e r e B/A smooth q u a s i - p r o j e c t i v e o v e r B/A MM^ n be an o b j e c t o f 1 V G r H(U) 0 G r ^ H ( V ) s o b v u s i n g 4.3 p q p+q=m \ a s b e f o r e , we o n l y h a v e t o show t h a t G r (H(U) ® H ( V ) ) € H ( M ) m —k W f o r a l l m € TZ , i . e . , t h a t G r H ( U ) € M, f o r a l l smooth q u a s i v 1 P projective products U/k M^. as and d u a l s , K ~ i s c l o s e d under W and v Gr (H(V) ) 4 X 3 u smooth p r o j e c t i v e W we o b t a i n t h a t G r H(U) q Y = i = 1 i sa direct ^ sum o f t h e W n b y 3.22 t h a t and therefore a motive the summand o f M^ M£ inclusion e lemma N and R^ ^*MR^ to 4.5. contains f o l l o w s from 2.15, t h e c o r r e s p o n d i n g 1.1/4.3, H subcategory M£ f o r X € V^ subcategory. of 2 n p ~ (Y ( p ~ n ) )(-p+n b y lemma 4.3. by rest i s a subquotient be t h e Tannakian H(X) ( r ) . The other Tannakian Gr H (U) H: V ^ -» M R ^ . T h e n image o f (U) , P and and c ) : L e t _ Gr H P b) of tensor v (Gr (H(V)) . Choosing " Y^ as i n s e c t i o n 3 , N and formation W = generated every f o r M M ^ <^-» M R ^ direct r € ZZ , a n d s o i t c o n t a i n s the fact that i s closed w.r.t. statement by f o r M ^ °—> M R ^ i t f o l l o w s from M^ i sa subquotients i s equivalent 4.2 a n d t h e i s clear. Remark In the proof we h a v e the subobjects W^N N In particular, r seen, that a r e mixed motives f o r any mixed motive and t h e s u b q u o t i e n t s W Gr m a r e motives. extension of motives, any mixed motive and t h e s p e c t r a l = H P t Y ^ ) (-q) is a spectral sequence o f mixed sequence =» P motives. H + ( 3(U) i s a successive (3.22.1) 4.6 By a b a s i c Tannakian theorem on Tannakian c a t e g o r i e s , categories and MM^ are equivalent gories of representations of certain pro-algebraic These a arise as automorphism neutralization: the automorphism H : MM 0 by t h e r e s t r i c t i o n G(o) t h e automorphism H Rep G denotes representations valences the inclusion M as MR M k and MM M Rep G k -» MR 1 M- k for k MM l e t MG (a) be functor Vec^ Rep ^ k -+ V e c ^ MM k of (finite group dimensional) algebraic G/Q , we k'/k equi- G(o) motives morphisms IT: G (a) (loc.cit.). Finally, . Thus : M G ° (o) have c o r r e s p o n d s t o a morphism k of Artin k -> MM- k , and . -> G inclusion U extension G°(o) k i functor functors j over i n MTT : MG(a) ~* G^ H(U)X ^k g e t homomorphisms , where and extension , as c a n o n i c a l l y MG(a) k the base induces base we The ofpro- ( s e e [DMOS] I I 6.17) a smooth q u a s i - p r o j e c t i v e v a r i e t y Mi ( s e e 2.13) R e p MG(a) , ( s e e 2.16 i ) ) and extension and M gives k o: k <-* C i): MG(a) -* G ( a ) , s e e [ S R ] . the category k giving of the r e s t r i c t i o n k k k M groups Q . functors : MR q over categories MM of H groups c o of a pro-algebraic o f tensor algebraic Vec the category M and of group : M q -+ k to the cate- of the f i b r e of the f i b r e given If groups F o r an embedding group the neutral 1 - x H(U and a : G°(o) ^') field -+ G(o) = G(o) = A u t ® ( H - | _ ) M and I —k o MG the — ® (o) = MG(a) = A u t ( H J J fibre embedding functor o : k H- on CE with m m .) M k a r e t and o I, Unto-BiMothek n e automorphism MM- = o . groups o f r e s p e c t i v e l y , f o r some 4.7. b) Theorem Via a) \j; i s a n e p i m o r p h i s m , \\) , G(o) quotient of i s identified MG(O) ; the kernel i . e . ,faithfully with t h e maximal U(o) of \\) flat. pro-reductive i s connected and pro-unipotent. c) With with t h e above oj = k algebraic o) notations there (involving a choice i s a commutative exact of o : k <C diagram o f p r o - groups U(o) U(Q) i MG (O) -> 0 d) G (O) of G(o) and reductive e) and HOL MG(a) quotient F o r any T € G restrictions f) F o r any p r i m e TT o S p g) 1 1 a r e c o n n e c t e d and t h e i d e n t i t y G°(a) on to 1 MMr K i s the maximal p r o - -1 , and TT , regarding ® ( T ) = Horn (H-,HCT , there : G^ -+ G ( O ) ( Q ) 1 1 = i d are canonical and Msp : and Sp section G 1 1 r continuous for I : G(o) Gr = TT , a n d I © Sp 1 = Msp 1 w m homomor- 1 = ^ o Msp m £ ZZ Pictorially: ) MG(O)(Q )With 1 . MG(o) of to the s e m i - s i m p l i f i c a t i o n functor MTT O I OT H- . MM, One h a s components . T i s a canonical corresponding G(g) ' (MTT)" (T) = Horn®(H-,H- ) = i d , MTT O M s p There (O) MG°(a) as f u n c t o r s Sp •I o . , respectively. of MTT MG(O) 1 k the phisms G MG°(a) and Mi 0 -> N f o r any 1 . \p , MTT - MG(Q) ^ Msp - G k 1 (4.7.1) G(O) SP is commutative Proof ful II a) i s faithfully and s a t u r a t e d w.r.t. equi-directed horizontal flat, as M subquotients <-> MM k G(c) II 6.22 Let i s p r o - r e d u c t i v e , as i s fully k b y 4.4 b) be t h e maximal faith- , s e e [DMOS] to subquotients. w N = © m€ZZ Gr N ,i.e., For N € R m = G(o) . We quotient of pro-unipotent radical MG (O) c) i s semi-simple k N € Rep G(a) MG(a) . t h e r e f o r e have N € MM H R = K R e p G ( a ) =Rep G ( a ) MG°(a) G°(o) , and by o f the connected - f ) • The statements the proofs c) Mi K and thus i s t h e maximal c) , U(o) i sthe p r o - a l g e b r a i c group for for MG(o) G(O) a r e p r o v e d i n [DMOS] I I 6.23, are similar: i s a c l o s e d immersion as any o b j e c t N of MMj- i s see t h e a s u b q u o t i e n t o f an o b j e c t N x k with N € c r i t e r i o n i n [DMOS] I I 2.21 b ) ) . I n f a c t , i t s u f f i c e s v case models with . and the groups). and c l o s e d we and t h e r e f o r e t h e same a r g u m e n t s , pro-reductive 0 v conclude With s e e [DMOS] f o r non-connected K = Rep G(a) . G(a) i s semi-simple, k pro-reductive quotient of R e p G ( a ) c R e p MG(a) = MM respect k M ( h e r e we u s e " r e d u c t i v e " a l s o G(o) Then we maps. 2.21 a) . b) M \p i n a l l ways w i t h 1 N = H(U) 0 H ( V ) U' can take and N q V 1 over for k U V a finite = R ,^ (H(U') k to consider ° f € V^ ; but extensions v 0 H(V) ) U k' and of k = H(Res y U') 0 k k V have , and H(Res^,/ U' - v k Spec MTT ') k 1 t where - Spec w.r.t. o 1 -* MG U (o) (o) the in M G ° (a) any non-trivial ducts, see = MM- must are of X be the of have a 2.22. = k MG(Q) ^ k faithful MM X which to stable such an object zero, as the G°(Q) e) F i n N, , and under tensor pro- N G Re£ weights we MG°(o) occurring therefore have reduced i s the in bounded. i n [DMOS] I I MG°(Q) for category of and i s proved t o any g € MG(o) element T = MTT (g) for M,N of . We € MM = (R) Horn to the 6.22. full identity and k = Horn (H ®R,H ®R), a a ( H - , H ~ ) (R) = t write H q (M,R) = H (M) ® R q f € Horn(M,N) there A M — ^ H (M R) F g f M clear the H (M R) a = f H-^. (M F H-(N R) map is show t h a t f- by . Finally, diagram H (M R) 5 have MG°(a) i s not occurring of . k of g fact, and of case TT O \\J MTT = M G ( a ) we But canonical . Then commutative In surjective. . for k special , as , which to associate * k (4.7.2) restriction is the exactness is a , Rep 0 T M=M V is fully k 0 of - O G (Q) Horn® ( H - ® R , H _ ® R ) is M^ <=-• M of weight € M a (D-algebra, a and Grothendieck S H(U')®H(V') i s t o t a l l y disconnected, k component R 1 M ° <^ MM -* 1 k same a s t h o s e of We as = k e r MTT , n pure connectedness e) n [DMOS] I I N G N ^ k representation particular As G connectedness subquotients i s the k s u b q u o t i e n t s , and factorization the ^ U' MTT For In k t , as -> MG (o) lies n k Mi d) N Res is faithfully flat saturated from V = H (N R) applying x Horn(M,N) -* N a f the N _; l ^ functoriality one sees that H (N R) a of = f the g M H 5 7 R) f QT (N R) f to the t h e r e i s a commutative evaluation, diagram H (M R) a -i f H (M R) a f (4.7.3) H (N R) a for any On ? € H o the other be r e g a r d e d Rep G the choice and we of f v i athe action of G^ p the extension Horn(M,N) : k o J (C . This . Then Horn(M,N) H and i s induced Horn D R (Hom(M,N) ) = H CHom(M N) by the p r o j e c t i o n 1 F (H (M) H (N)) 1 CB f J- 1 1 f = a If the projection MTT (g) = T to 0 k) K F F (Tf) G^Q (M) i s a morphism on 1 , H r r (N)) and and on Horn(M,N) by d e f i n i t o n . So (4.7.2) g acts follows H (M) Q like from H 5 Q x on (4.7.3), as ( M ) T 5 H (N) H-(N) M r r on <E , j 0 Hj(M) g F k M° = : k there k of Horn(H-(M),H-(N)) = H o r n ( H ( M ) , H ( N ) ) . , then Hom(M N) c Hom(M N) is F = Hom(M N) t o Hom ( H respectively, p G F J- H (Horn(M,N)) is (Hom(M N) A H 5 T (M) commutative. The diagram (4.7.2) i n Hom(H-(M,R) shows t h a t , i f we , H- (MR)) by t h e upper OT T /JurK T Hom(M N) depends such that - u 1 F f o r any a for g = g , Hom(M N) ( s e e 2.19) [DMOS] I I 6.17 a n d 6.18) motives where f m o t i v e , i . e . , an o b j e c t o f an e x t e n s i o n choose f rr as an A r t i n (compare mixed a (Horn(M N ) ) = Horn(H^ (M) ,H ( N ) ) a 0 o hand, can k H (N R) f define line t h e image o f of (4.7.2), we g e t elements which compatible Horn with ( H - ® R, H ~ factor o f an are functorial tensor T ® R) object products. in These , a s any o b j e c t ft for M in M and define in MM^ is we have bijective looking f) Msp it defined a map a s o n e may at (4.7.2) i s shorter MM^ We maps a only MM unique t o note to K Sp just = 1 (T) in 1 Horn . (H-,H~ ) , which T the construction, [DMOS] I I 6.23 to define o Sp that (d), but i t by . 1 M>~~>s.s.M b y 4.5, a n d t h a t i s a tensor f o r any H € R^ functor, there i s isomorphism ~ H= W Gr H e m m € TZ inducing the i d e n t i t y on the graded for realizations of different pure direct $ (MTT) like f o r us h e r e , have is a again. Msp g) and , s e e 2.20 e) see by r e v e r s i n g c a n be d e f i n e d 1 , elements i n -1 So R pieces, 1 as weights. Horn(H,H ) = With respect 0 to this isomorphism, M is the i d e n t i t y , MM R s K s A - M a n d s . s . commutes K with H . Therefore s.s. a induces t h e homomorphism As s . s . commutes we have 4.8. [SR] with I a n d we the inclusions MTT © I = IT , a n d t h e r e s t For the d e s c r i p t i o n of I V §2 on f i l t e r e d functors W H „ = ma H HW am q on MM k Tannakian M° o Z = MM K id . and M^ M K , i s clear. U(a) we can use Saavedra's categories. are f i l t e r e d Namely t h e by t h e w e i g h t results fibre filtration , and i f $ 1 Aut is have the subfunctor of Aut (H ) Q (H ) a formed by those tensor automorphisms of H which o w Gr H ma induce = W H ZVJ ,H ma m-1 a Proposition Gr H o 1 , t h e n we rr 4.9. t h e i d e n t i t y on U(a) = A u t ® k C Proof , respectively From the proof canonically 1 (H • ) = Aut® a: k Gr H we U(a) = Ker(MG(a) have = Aut® 1 g (H , a 4.10. i n 4.7 . With to see that G(a) is group o f the f i b r e this identification -• G ( a ) ) = K e r (Aut® (H . ) a j MM^ M X i r apply to inconvenient varieties, A u t ® (GrH W and k smooth proper can define the k , MG°(a) and to r e s t r i c t G°(a) by t h e to projective or a n d we w i l l show t h a t o W, •K be t h e c a t e g o r i e s o f smooth v a r i e t i e s over this isi n exactly quasi-projectivity 3, the v a r i e t i e s not necessarily .We by W t h e same way construction now k separated , respectively . Then we functors H: motives l a not necessary. and [D4] aI£ = a . c) . I t i s often Let in MM^ for — k quasi-projective fact on ) MMr; ) . same c o n s i d e r a t i o n s diagram with | MM, 1 The = H .s.s. (H- • a t o the automorphism functor q (C 1 k o f 4.7 g) i t i s e a s y isomorphic W Gr H m o © crrf have JMM a: = was k 3, b e c a u s e n o w h e r e t h e u s e d . Of c o u r s e , projective claim MR as i n s e c t i o n X,Y,Y..,Y^ o f mixed this. - k are only then; this Hodge s t r u c t u r e s that we with the notations smooth of and p r o p e r and corresponds to Deligne's f o r smooth v a r i e t i e s d o n o t g e t new m i x e d motives or w w MM k 4.11. Proposition H : W_ -> R k factorizes k through and o H: MR^ Proof is Let U an open result is By Chow's a proper Then be a smooth o on r e s o l u t i o n Hironaka MM we may . k variety over lemma there X X we q f : X -> X q and b i r a t i o n a l 1 that X variety X U = f 1 o Hironaka s , and a g a i n Let [N], U , and by c a n assume t o be smooth. i s proper . By N a g a t a i s a projective morphism assume k variety of singularities birational f : U -+ U induced through subvariety of a proper smooth. and factorizes Q by ( U Q ) . and t h e r e f o r e t h e map f* : H(U ) q H(U) o f mixed r e a l i z a t i o n s i s i n j e c t i v e - i n f a c t , i n a l l t h r e e cohomology theories duality support. i.e., we there conclude i n v e r s e by t h e t r a n s p o s e of the corresponding So with have i s a left U f* identifies map = X o and b y 4.4. a) a s 2 U = X Poincare f o r t h e cohomology w i t h H(U ) q with a m i x e d m o t i v e b y 4.2. F o r o under U a subobject q and can use H ( X )€ R . o —k 1 of H(U), smooth and 4.4 ,we d) compact proper can also PART I I ALGEBRAIC §5. CYCLES, K-THEORY, The c o n j e c t u r e s The the common o f Hodge object description a smooth p r o j e c t i v e k be a f i e l d projective Chow g r o u p s linear 5.1. whose r r =Cl Z H under G^ group over 5.2. For whose r x : 2 r r CH (X) r 2 r —> H X k and Tate i s i n t h e cohomology conjectures, l e t k , G^. = G a l (k/k) , X a r , and CH (X) r X of codimension k there r map on the modulo 2 r k (X)(r) , part i (H that i s a cycle H I * char £ 2 r 2 r ( X ) (r) ) t h e image o f c l ^ i s finitely —> for (X,ffi (r)) = H =: T conjectures : CH (X) (X((E) ,(B) 2 r i n the f i x e d Q^ , i f =cl ' these k cycle f k = (E cycles k , X = X >< k cycles (X Q^r) )° . Tate o f Hodge (see, e.g., [Kl]§2) . image c o n s i s t s H over i s a canonical image l i e s C l variety To r e c a l l closure CLASSES f o r smooth v a r i e t i e s of algebraic algebraic equivalence and T a t e variety. of algebraic There C l with EXTENSION of the conjectures o f the group of smooth AND generated generates as a f i e l d map (X«E),Q) , of ( r , r ) - c l a s s e s , i . e . , i s contained r r n H ' (X,CE) = H ( X ( C C ) ,(D) 2r ([T r 0 F H 2 r (X,(E) . in this 1]). The Hodge c o n j e c t u r e group over 5.3. In map by Cl into Q our r j = r C l the r i t is better 2iTi and r : CH (X) r-fold the image o f el generates this Tate to regard renormalize i t as 2 r —> H ( X ( ( E ) ,Q- twist of the a the last cycle map r (2iri) ) Q-Hodge = H 2 r ( X ) (r) structure 2r (X) (Note If x ^ that [Gr]). setting powers o f 2r H. (cf. states := the one (X((E),Q) first cl^ = C , whose F ° ( H ( r ) ) 0 (C = F H Chern Chern i s the classes, ® <E of for a t h i s amounts (O, O) - c l a s s e s . Hodge to structure using the H ) more class 1 : Pic(X) 1 image c o n s i s t s r formula works w i t h natural which H 2 = H (X,0*) — > connecting morphism H (X,Z-2Tri) for the exact , sequence of analytic sheaves O —> Then no choice Z-27Ti — > of r and C l complex Finally, cycle = /^T is P > x O —> involved, O and . moreover are g and compatible etale f o r any under the comparison cycle 0 C ^>R image l i e s H r field ' X ) k of c h a r a c t e r i s t i c zero ~> H ^ ( X Z k ) (r) = ( F V j i ( X ) ) (r) = in F ° ( H ^ ( X ) (r» isomorphisms cohomology. map whose the r maps c l ^ between i e x O 3 , H^(XXr) there is a and which e f o r any o : k —> (E i s compatible c l cj* r r =- c i ' 0 X r r : CH (X) CH (GX) £' with t h e map a X — > H 2 r (aX (CE) , (D) ( r ) = H 0 2 r (X) (i 0 2r under t h e comparison 5.4. Thus isomorphism I o oQ ( X ) (r) . f o r c h a r k = 0 we o b t a i n a c y c l e map c l = c l ^ : CH (X) — > T ( H ( X )(r) r r X r 2 r H A H 2r into the group o f a b s o l u t e Hodge c y c l e s in H (X)(r) (denoted 2r T(H (X) (r)) i n t h e f i r s t p a r t ) . A s a c o m b i n a t i o n a n d w e a k e r f o r m o f 5.1 a n d 5.2 o n e may c o n j e c t u r e t h a t t h e i m a g e o f c l generates 2r CD-vector the r r H ' (X) 0 r ^ ( H space n H (X) ( r ) ) . In f a c t , (X)(r) H 0 this T A H (H T a l g 2 r (H i s implied 2 r (X)(r)) by e i t h e r r := I m c l ' we 5.5. Lemma a) L e t be a f i n i t e l y X true k^ c k i s defined over and every for X finite and k^ G : K —> (E , t h e n X 0 Q have . I f Tate's extension of generated field such conjecture i s true f o r k^ , t h e n c o n j e c t u r e 5.4 i s k . b) I f t h e H o d g e c o n j e c t u r e i s t r u e f o r a k t h e Hodge o r t h e T a t e More p r e c i s e l y , X (X)(r)° (X)(r)) conjecture. that 2 r ** (5.4.1) we s e e , t h a t by the i n c l u s i o n s aX f o r some c o n j e c t u r e 5.4 i s t r u e f o r X/k . embedding Proof a) It i s clear defined over is f o r every true 2.19 kQ finitely over absolute element k^ in H r r 5.4.1, the same (X/k) under , see It suffices 5.4.1, k' which 5.6. We r a) for k note that 2 r = k : k —> : H 2 r over (X) should k kg k is finitely the assumption are algebraic, by t a k i n g fixed closed. i s algebraic over hence modules k , a n d we By assumption over some g e t an field algebraic s e e [DV] e x p . 0 . r finitely "inclusion" case 2 r 2 r imply some other -^-> an 0 H 2 r H 2 r case h a d Hodge s h o u l d be surjective i s D e l i g n e 's " e s p o i r e " that see [D6]. ( X ) (r) k s h o u l d be surjective for k field. ( X ) (r) f o r c o : k ^—> CE with isomorphism (X) ( r ) ] ® Q £ ^ H 2 r and s u f f i c i e n t l y i s known, b u t a) w o u l d we ( X ) (r) CE ; t h i s H generated " . In the f i r s t second H H the prime ® induce r £ that extension a r e t h e same. By over i s a b s o l u t e Hodge [H ' (X) k r c generated -(r) = a r ( r ) ) 8 ® g -> AH finitely H Z (X) CL T (H (X) for . By generated t h e above c o n j e c t u r e s would a and b) k k algebraically generated ( X ) ( r ) ) ^=—> 2r I k by s p e c i a l i z a t i o n , Hodge c y c l e c) and k i n [DMOS]I 2 . 9 t h a t a b s o l u t e Hodge c y c l e every 2 r k^ ®£ Q this ones: (H A H k 0 is , since (X /k ) finitely proved , and f o r to consider is finitely over k D R k 2.19. every cycle weaker for = H some a l l a b s o l u t e Hodge c y c l e s statement and over over extension of to consider the case . I t i s then Hodge c y c l e s and 11 a b s o l u t e Hodge c y c l e generated , i.e., i t suffices generated a| every i t i s t h e r e f o r e defined over of b) some that we imp]y (X) (r)° b i g . I n g e n e r a l , no " c " c o u l d conclude Tate Tate. k a n d b) w o u l d imply =» H o d g e , i n t h e d) dim (H f J 3 r , r (X) 2 r n H ( X ) (r) s h o u l d be independent of a . 2r e) dim_ f) These and [H (X)(r)] 0 dimensions sufficiently 5.7. Remark [DMOS]I 2.11; and s t r o n g e r form The results In in the fact, hold t h e work stated be of k & . finitely the for abelian generated in varieties varieties Shimura-Taniyama [Se 2] § to the 3, and have associated 6.27 , see complex S e r r e , even also Pohlmann of motives f o r example X with and compare category [DMOS] 6.26 conjectures a)-c) of a) containing compare setting for for abelian of extended varieties, hypersurfaces, equal proved a)-c) by can independent big. the abelian s h o u l d be D e l i g n e has multiplication by s h o u l d be in [P]. generated K3-surfaces and Fermat . convenient Tannakian interpretations categories. For example, 2r let H 2 r (X) in u MT(H^ be a l l products H e Z § the , and 3. On thus by the fibre Then by a) b) r (X) 0 S ®(H H c) v (X) ) G(H of 2 r 0 t (X)) < G(H have similar of (X) ) 0 ® Q (1) the (X) q (X),a) M^ 2 r 2 r of 2r H (X),0) imply image the Hodge fixing U structure a l l Hodge for a l l category and , see be Q(1) the by of cycles s,t CJN Tannakian generated f o r a l l t e n s o r s we 2 r group (H ), i . e . , the q f o r a l l t e n s o r s would and fjj group" let subcategory (5.4.1) 2 r GL structures o t h e r hand, functor of "Galois Hodge MT(H and 2 Mumford-Tate subgroup the the Tannakian (with the . I t i s the generated I (X)) Q , [DMOS] " G a l o i s group" of 2r H (X) and 1(1) 2r —> G(a) GL f f l (H q (X)) have ; equality. interpretations. However, one does not 2r know i n g e n e r a l , whether conjectured by G^ Grothendieck acts and semisimply S e r r e , so one on also H^ j (X) has as to consider subquotients of the tensor any case, i s related and MT(H c) products for H 2 r to the conjecture (X) ([DMOS] that Im(G, I . 3.2). In —> \ ± 5.8. (X))(Q„ ) a I Similar new, U smooth a smooth at least R before, ( D R r^(H T (H H 2 r 2 r H D R ( U ) r f f r having ( R ) ) = (U) (r)J= H U ^ 0 2 r ( H variety r ( D R U ( U ) (r) q (H 2 r ) ( R ) k —> T A H ) N F ° < (H q 2 r H 2 r ( f o r example H 2 r U ) and to give In f a c t , l e t l e t X are cycle be a maps r c l ^ with ( R ) = W H 2 r images i n D R ( U ) " ^ " D R ^ ' (U) ( r ) ) , (CU,Q) by ( D R seem ( U ) (r)) and r (1H ( X ) ) ) 3. zero. k there 2 r (H r r CI^ ,cl^ W N over Then (U) ( r ) ) n F ° ( H (27Ti) W [ S e 2]§ of c h a r a c t e r i s t i c : CH (U) R = respectively k components W ( U ) (r) ) - W (5.8.1) for compactification. = c l see f o r non-proper v a r i e t i e s quasi-projective projective Cl as a r e commensurable, conjectures nothing be 1 GL- using 2 r ( U ) (r) 8(E) r n F H 2 r (aU,(E) , fundamental classes i n the 2r relative cohomology r then ). But r (W H ? (see W H Q Q 3.22, 2r (U)(r) 2 r r U c l ' or [D4] surjective. H ? 3.2.17, (X)(r) On f o r a prime c y c l e = r (Im i s a direct 2 r (U) z factorizes (U)(r)) H are H 2 r —> the other r 9 of codimension through (X)(r) —> f o r the l a s t factor Z of H 2 r H 2r H 2 r (U)(r)) equality), (X)(r) and by ,-so t h a t lemma 1.1, t h e maps (U)(r) hand, the r e s t r i c t i o n r CH (X) —> r CH (U) is also surjective, and the Cl^' CH (X) V and of = F H r 2 r T 2 r (H 1 the (U CE) U H W f (U) (r)) = H algebraic implied by H 9 2 r T > T H Z 9 H 9 for (U, (D) and k the those for X 2 r ( U ) (r) the = CE conjectures of k T u s h o u l d be same t i m e , Hodge 2 r (H (U) ( r ) ) = n ia f o r f i n i t e l y generated G k,(D^(r)) (U At - ( X ) ( T ) following. formulation of cycles. J V i s that 2 r > U - only possible for ' 7 T h i s shows Tate r G l r The X = CH (U) commutes. diagram these k generated by conjectures are immediately . 2r The same h o l d s and also f o r the has resolution f o r c o n j e c t u r e 5.4 Tate of Y^ (H involving conjecture i n characteristic singularities and semi-simple (U)(r)) U p > 0 action of in § 7). So , i f G^. , one on 2r H^ (X) (this will least m o r a l l y , we 5.9. However, to study the those and proper 1 H (X)(j) (5.9.1) for any d i s c u s s e d more g e n e r a l l y obtain nothing f o r smooth again, at new. non-proper varieties U/k i t makes sense space r and be 1 A f / (H (U) (j) ) d e f i n e d i n 5.8.1 over T(H) mixed 1 k, i s pure TfH (X)(j)) of = for arbitrary weight fj realization H 2 i s zero unless i-2j T(W H) <^> i , j€ and . For i = 2j X , smooth because i n general T(Gr H) 0 . But otherwise the space above can be non-zero for i ^ 2j , and i s indeed connected with interesting questions. For example, x * y are two U = X^{x,y} X is a smooth p r o j e c t i v e c u r v e k - r a t i o n a l p o i n t s , we 1 0 —> i f H (X) 1 —> H (U) —> get an exact H ° ( { x , y } ) (-1) which 6(1) factorizes we get exact sequence an 1 0 —> H (X) through 1 —> H (U) the 2 — > H (X) —> c y c l e map 1(-1) —> k sequence 1 in over for —>0 , X cl ' 0 and . Therefore , (5.9.2) weight where 1(-1) whether Galois Hodge and by this a sequence s t r u c t u r e of H non-trivial if shall (x)-(y) This 1 K-theory. is a , and First described or i n the (U) by the extension and of Hodge r e a l i z a t i o n . weights, a 1 there point look recall, of realization = Hom(1,H (U)(1)) there Chern think question s e c t i o n of the Since 5.9.2 of is mixed kernel given in torsion to not: i n the 2 * It is a non-trivial 1-adic show i n § 9 t h a t suggests T(H (U)(j)) be splits element 1 we 1 ^x~ y have d i f f e r e n t Hom(1(-1),H (U)) and weight "basis" representations cokernel a has 1 for are that = 1 T(H (U)(1)) i s such i n the a , s e c t i o n i f and Jacobian of X " a l g e b r a i c elements" indeed the characters some, g i v e n rational by . in higher c y c l e maps only c l algebraic r can also Ch.: on the K (U) > Q Grothendieck group of 2 j T (H ? (U) (j) ) locally free (^-modules, v i a the isomorphism K (U) ® N Q s of Y KQ(U) [Sou (5.9.3) on [Sche] 1] above. there ch. Quillen's ® N Y Q = U and : K In the c i t e d CH (U) [SGA Gillet are higher higher 1 © 0 Q , i>0 i s t h e y-filtration Schechtman Soule Gr K (U) i>0 1 where 1 © U (U) K-grouos exp. 0. [Gi] g e n e r a l i z i n g Chern characters > 1 Now by earlier results work of T (H (U)(j)) 9 such references 6] that ch- . . coincides with O i 3 ch. . a r e d e f i n e d f o r t h e r3 the ch. 3 1 singular, into are the e t a l e the group of and absolute c o m p a t i b l e under characters so by i , j reducing principle one : K Hodge by cycles 2j-1 ( U has ) > to V H Chern 1 class already used For propose j ch a to . First can be for each 2 in -J=Ch 1 = c l t o check that ( U ) ( J ) ) classes : Pic(U) —> the these Chern , and using r (H the splitting f o r the first 2 (U)(D) ? , which we 5.8. study the by realization of image investigate non-zero, morphism classes show t h e c o m p a t i b i l i t y generalization we has to get a isomorphisms. But 1 Chern one means o f C h e r n to universal only Rham c o h o m o l o g y ; the comparison are defined c t h e de of t h e maps f o r which studying H t h e Hodge a n d - i 5.9.3 and the weights i n the sense the Tate conjecture of f o r general j of § the target i and groups the r e a l i z a t i o n s . 3, o r an we £-adic Namely, one, or a Hodge structure, filtration, W Gr^H 5.10. Then Proof 5.11. o r a d e Rham r e a l i z a t i o n - we h a v e a and say t h a t Lemma Let U be a smooth v a r i e t y occuring in 1 f o rthe weights w i-2j < w < 2i-2j , i f 0 < i < d i-2j < w < 2d-2j , i f d ^ i ^ 2d . occurs in H , of dimension H (U)(J) we d i f over have S e e [D4] 3.2.15 b) a n d [D9] 3.3.8. Corollary I n view i-2j or w € TL * 0 . One h a s 0 < j S d Proof the weight weight 1 T(H (U)(j)) and * 0 a t most f o r j ^ i < 2j . o f 5.9.1 we m u s t have < 0 < 2i-2j and 0 ^ i ^ d i - 2 j < 0 < 2d-2j and d ^ i < 2d . (5.11.1) N / 1 d 2d k 5.12. For the study consider o f t h e maps the a c t i o n K-groups K^(U) 5.9.3 i t i s convenient o f t h e Adams o p e r a t o r s ( s e e [ S o u 3] for this ip , k and ^ 1 to ,on the t h e f o l l o w i n g ) . I f we set K (U) m ( j ) {x = € K (U) ® _ ( D | Y k ( x ) a m (U) ® (D = S K (U) ^ m j*0 isomorphic to the graded term then ( K and = kj-x K m t ( U ) for a l l ^ k CH} , i s canonically m Gr^K^(U) ® Q f o r the y-filtration. k i S i n c e c h . . (ty (x) ) = k c h . . (x) , t h e map c h . . v a n i s h e s o n /J i / l i / l K . .(U) ^ for v * j and i t s u f f i c e s t o c o n s i d e r the r e s t r i c t i o n zj— i J 1 9 c Following of U h : i , j K 2 j - 1 Beilinson ) ( J ) > V define H 1 ( U ) ( J ) ) • the "motivic cohomology" by := f (denoted "absolute study K 2 j ( ^ (U) j ) i cohomology" H^(U QHj)) i n [ B e i 1 ] ) , so f that t h e morphisms C h from U [ B e i 2] we HjJ(U OMj)) we ( u 1 : HjJj(U,Q(j)) j the motivic > T (H (U)(j)) ? cohomology t o the v a r i o u s other cohomology theories. We 5.13. the can d e s c r i b e Theorem Chern C Let class 1 U be induces X 1 their : 0(U) /(E X S1 - -> image a i n the following smooth an connected case. v a r i e t y over (E , t h e n isomorphism r ( H g ( U , X ) (1) ) H = 27Ti-W H 2 1 (U Z) f n 1 1 F H (U CE) f in particular, ch is : K (U) ( 1 ) > 1 r ( H g ( U ) (1)) H surjective. Proof We shall get two proofs of t h i s fact. The one 1 uses the B e i l i n s o n - D e l i g n e cohomology H (U Zfj)) [Bei 1], one g i v e n i n S .11, the [EV]); theorem It the of Abel-Jacobi, i s shown i n 0(U) so the claim O —> second X — follows and that > Hp(U,Z(D) from t h e r e i s an j X i s based with (D) —> x x > o(u) /a: x O > o and J a v > Hp(U KD) f I '1,1 r (H^(u,KD)) H together with the K 1 (U) fact M ) — > that det 0(U) X i n d u c e s an 0 Q , isomorphism on (5.9.2). diagrams H here (see A > o(u) — U isomorphism r (Hg(U,I) —> f of , the commutative Hp(U Zd)) A be shows t h e r e l a t i o n [EV] 1/1(1) — > o —> a: will r given compare 5.14. the [Sou 3]. Remark The proof Hodge c o n j e c t u r e which can for smooth p r o p e r a this use be i s very s i m i l a r to f o r d i v i s o r s by r e i n t e r p r e t e d as a using holds Beilinson-Deligne the the true proof of exponential quasi-isomorphism v a r i e t y . However, quasi-isomorphism the above Z(1)p f o r non-proper no longer, so we cohomology instead of the U sequence, — ® [~1] as above really m have to exponential sequence. The Prop. Theorem over a # generalizes a result of Friedlander Let finitely char k U be generated . Then a smooth, g e o m e t r i c a l l y field k the connecting y —> . and let morphism £ induce n (E m —> -> (Em O isomorphisms < — <— n £ n and in (0(U) /k ) X X particular, A = the (0(U) /k ) X first : K is surjective. 1 (U) X Chern 0 I 1 0 Z — 1 class —> H (U,» £ connected be f o r the n O —> b) [Fr] 3.6. 5.15. 1 following (1) ) a variety prime, Kummer sequences Proof a) f o l l o w s b y p a s s i n g to theinverse limit over the exact sequences 0 —> 0(\J) /i X since Weil b) — > Pic(U) 1 (U, p t for finitely we u s e c o n t i n u o u s H H i sf i n i t e l y theorem - cont«vV 0 n 1 ) ) - H n generated generated cohomology Lt ( U ) —> 'V 1 ) ) n Pic(U) — > 0 , by t h e g e n e r a l i z e d M o r d e l l k , cf. and the five [La] I I 7.6. term exact H — > H V V D > ^ "* For sequence cont W ( 1 ) ) TT* V H induced TT by the i s induced k-rational general, we have Hochschild-Serre by the morphism TT : U p o i n t , TT h a s a s e c t i o n let K/k H (G,Z (1) G k £ ) sequence Spec k and hence exact ( U 'V [J1] . I f U 1 ) ) 3.5. Here hasa TT* i s i n j e c t i v e . I n be a G a l o i s e x t e n s i o n w i t h a commutative 2 spectral ccnt G a l o i s group G . Then diagram = O A H c o n t ( U x K ' V 1 ) ) — G > ( H 1 ( U f V D ) V - > H l < G ' H c o n t ( G K ' V 1 ) ) Q H ( c o n t U ' V 1 ) ) - j z ^ H 1 ( U , V 1 ) ) k A H 1 (G,Z (1) Since Kummer £ *) = O . 1 H .(G cont R v theory, f I (D) = x, ^ H 0 n 1 (G ,y x ) = I^m K V ( K ) * n a n d K /(K"®ZZ . ) i s u n i q u e l y p divisible, =: K x by ) 1 H (G,H 1 . ( G COnt surjective. We 0 —> H V T Z F 1 (1 ) ) ) = H (G,K* )®ZZ 0 Ja 36 g e t a commutative 1 cont (G, , Z ^ ( 1 ) ) —> exact HL . (U X cont l f k > k which be restrictions are — > (D) 0 H 1 (U Z I f k (D) 0 —> 0 6 0 can so both diagram (5.15.1) in =0, x- A seen -> O ( U ) ' = O(U) from /k -> A is finitely g e n e r a t e d and t o r s i o n This the diagram 0 —> k —> O(U) —> x€X 0 free. —> k ( 1 ) — > k(u) x€X ^U ( 1 ) (D Pr ® Z = (D x€U for a normal field of of U compactification (and o f codimension differential d(f) 1 in X ), U U and of the Quillen = Iv (f) where x ( v x 1 x€U X ) of and X U X (D . Here ( 1 ) k(U) are the sets , r e s p e c t i v e l y , and spectral i s the function sequence i s the valuation at d of i sthe ([Q1] 5 . 4 ) , x points 1 € X* * i.e., or 1 U* * A Hence pletion A = A ® Z^ , a n d we i n 5.14.1. The r e s t 1 ' 1 g e t b) b y p a s s i n g follows ^ H 1 ( U r I from i H ) t o the t h e commutative x>comdiagram . note however, isomorphism 5.16. a) § 9, related b) F o r smooth remains k finite f o r 5.13 we f o r the proof to extension U true is a Like theory in X A > (O(U) ) 1 unless Remark cohomology O ( U ) * ® TL that i n n o t be w field. used above a suitable and shall "absolute" get another proof classes. , not necessarily geometrically without an change, and instead o f b) connected, we 5.15 a) have G X (0(U) / 9 k V X = (0(U) / 9 ( x where k^ assume of k a Ind ^ k that p q H (U U q x k g^f2 Corollary embeddable in d , we U in tc (x) . For this k k be H q the separabel x (u o n t p,q (G ,H (U closure J ^,(J)) * k,S (j))) k > 0 we c q H^ 1 H (U,E,(D) ( 0 ) . Since have for a l l U be . Then : K (U) 1 of — > k , s o we £ may replace k ( 1 a smooth the map ) > 1 T v a r i e t y over A H (H 1 a field k which 5.13, the (U) (1) ) surjective. Proof map First assume ch^., : K a fixed x € K 1 of ® X, considerations. Let Ch^ K field (j)) ) £ i n the above 5.17. closure i s irreducible; l e t x~k,z^(j)) s H (G^,H (u is X6U i n the function c is u °' i s the separabel may by e k*) 1 (U x 1 (U (C) embedding (U x R) R (C) —> that 1 ) Jc —> c lies K ( (U x k —> i s algebraically closed. r ( E . On 1 A H ( H (U X R ( E ) ( I ) ) the other i n t h e image of the hand, By i s surjective for every element restriction ( C ) f o r some f i n i t e l y generated k-algebra k R/ k c R c I , s e e [ Q 1 ] § I f Choosing a closed 2.2. point connected component as the "generic image o f x ( H (U x^CC) ( 1 ) ) —> K (U) 1 since = a* : r Kiinneth k 5.18. i n tlio 1 A H (H (U we s e e t h a t image o f X (E)(D) , k X (E)(D) k , i n t h e £-adic r e a l i z a t i o n v i a the extension U the trace with K/k . and discuss If we may a p p l y the following i s a smooth v a r i e t y over a number field f o r every i , j h i , j : K 2 j - i ( U ) ® ® > r A H ( H l ( U M j ) } surjective. I also true, 5.19. i,j f o r example, to state Conjecture C U T a^ :R c (C r^lH^U R t o some f i n i t e , then be x R ) (D ) —> (H (U i snot algebraically closed, I want is lies —> (U) (D) 1 point" i n t h e same formula. respect k (H A W 1 A H c a n be checked, If r k ^ — > (C we h a v e a* as 1 in c : R —>> think replacing Conjecture that T If the following a ^ k by t h e map version" of i t should . i sa finite i s a smooth v a r i e t y o v e r "Tate k , then field or a global f o r every £ * f i e l d and char(k) and c is view state for it a K = 2 ( - i j of 5.15 conjecture finitely becomes The u «A - > 9 ) k be = <E - [Bei 2], but arguments as the H it ( u x 5.19 discussion (like the field k in general, said obvious for and generated false same c a n The be i , j K k k '«i<3)) surjective. In to h for i f in Tate we of 5.18 in a conjecture we that this I too more tempting generally show in § 9 that many parameters. 5.18. i s contained above. shall contains " Hodge v e r s i o n " shall i t i s very conjecture) , but k 5.8 see think that - stated is false the T^ replacing by Beilinson i n general following Y by U by U in the s p e c i a l case same should true. 5.20. Conjecture defined over a Let number U be field a smooth v a r i e t y over k . Then for a l l CC that i , j EZ the can be Chern character c is h : i , j 2 j - i ( u ) ® "* ® (27TI) J 1 W H (U Q) n F 2I j F 1 H (U, (E) = T (HB(U)(J)) H surjective. The to K the next cases statement k = (D shows or k that = F we (t) may or restrict k = F P 5.21. Lemma conjecture only Let 5.18 K/k (resp. i f i t i s true Proof closure Galois By applying of group be K/k G finite 5.19, resp. K this to , we . For may a for a attention prime p . P a for our separabel 5.20) extension. i s true for k Then i f and . N/K and consider variety the U N/k where case that over k let N K/k U i s the normal i s Galois x K be the with base extension, dieck restriction 5.18 K K follows 2 j - i ( 2j-i ( V R R K / uses K -> K/k 1 H V —> from ) following = and f o r a v a r i e t y V ) -> from Spec over K —> t h e commutative r r V A H AH (H (v) ( H ( ( j ) l W K Spec 1 f c f K._.(U ) j n K 2j-i and X H ( U x K)(j) x k k / f f l j l For over (j)) k = ( l e t V t h e number 1 H T K field K such 6 that ff-morphism c y : V — > V = U R 0 the inclusion X K ff ' 0 o f t h e component r A H ^K o x K)(j): k i . For y K (H (u)(j)) 5.19 r 0 one , G G ) . CC , l e t V X A = q R K / v k ff X f f , K F O be a q variety f o r some K , OQ • 0 T n e n K t n ® canonical <E , w h i c h i s R r ( v 0 u l 1 = M V . x 6:K<^->ff ' 6 V > (H U V = V U A H k over : K ^—> (C , a n d l e t Q r H (R --V)(J) K/K U embedding -> 1 ? be a v a r i e t y Q r e p l a c e d by G "^,QI (J)) and A ( U x K x k (jj^(j)) K the claim f o r (D H (U)(J) K 5.20 ( U ) k 1 = K G X H (U x K) 2 diagrams with G ^ , ( j ) ) = H ^ t R ^ V V . Then 2 . 1 9 , 2.20 a n d t h e r e l a t i o n s ( V ) ( j ) H k be t h e G r o t h e n - diagrams the corresponding since l e t R K/K 6 induces a commutative 0 diagram K with V 2 J . ± ( V ) = i d . Hence, . The c o n c l u s i o n The that from conjectures properties -> ^ ( H ^ ( U )( j ) ) -> r (H (v)(j)) 1 H i f5.20 i s true k to above have K for U , i ti s true f o r i s trivial. some r e m a r k a b l e c o n s e q u e n c e s , i n o f t h e K - t h e o r y would imply s i m i l a r ones f o r the , realizations. [Bei The following 1]; i t i s based 5.22. Theorem a HjJj(F,QKj) ) = 0 b) H (F Qd)) 1 for = K f M M l l n o r 3]3) i > (F) scheme that X f o r any the 1 presheaf = by U Suslin: field, then K-theory). x these terms, 1 Suslin S Corollary HjJj(U,Q(j)) j spectral U f o r the i s defined Ker(G(X) —> > be f sequence of G(U)) topology on by . i theorem = HjJj(U QKj)) a result Zariski coniveau a implies: smooth v a r i e t y has s u p p o r t i n c o d i m e n s i o n N ~ H^(U,Q(j)) By Let G open COdim (X^U) Proof is a 0 Q} ( M i l n o r U c X 1 F of j , filtration N G(X) 5.23. If result Beilinson L Recall In i s c o p i e d from fundamental ([Su 2][Sou a) a on argument Soule over a field k ,then i - j , i.e., . ([Sou i n K-theory 3] ([Q1] theoreme 5.4) 4) induces the a Quillen spectral sequence (5.23.1) P q E ' (U)(j) 6 1 where K(X) i s the for p U ^ K ( p ) i s the , For of -p-q < i - j , i . e . , the p a r t of ( j - p ) => K -p-q set of points residue f i e l d j - p > -p-q (K(x)) x . By 5.23.1 ( j ) , -p-q of codimension = 2j-i (U) we 5.22 see a) we p of p have that E contributing to P , U and q E ' (U)(j) q = 0 for 1 H (U C(J))Iives 7 M in codimension 5.24. ^ i - j. C o n j e c t u r e s 5.18 to 5.20 predict the same b e h a v i o u r for T 1 a h ( H ( U ) ( J ) ) which is a ( H for and of (5.24.1) H ( e t £ highly property Tate r 7 U Q ' ( £ j ) ) } A non-trivial T^ and Hodge, T N y * J H ( B U In consider v 2i > H (X)(j) * J y ( H Q ' ( j > H ) ) fact, equivalent to respectively: 2i (X)(j) R question. is u D the 21 J } ' respectively, for i = 2j this the conjectures exact sequence of (U)(j) v c for M : Y —> for the X c l o s e d of considered canonical codimension cohomology theory. 2 isomorphism H ^(X) (j) = y object: Hodge with structure 5.24.1 Q induces (5.24.2) Hence, with trivial f o r the exact Betti sequence D T(HY (X)(J)) i f Tv* support For an G^-action = 0 on Y general > j By @ y 1 ( 0 U purity, = X\Y there (where —> X , is a 1 i s the trivial ) e i n the £-adic case, the trivial cohomology) . T h i s shows (T = respectively) T^ (X) T (H 2 , then and HH ^(X)(j)) or T , u (j) ) T ( H ° > i s generated that by (U) (j ) ) cycles . i and j the situation i s more complicated, since i T(H U)(J)) is not necessarily picture that Y 1 H (X J) 7 diagram where we i s smooth, 1 s H " 2 ( l > exact. write of Tv* ± 1 (5.24.3) 1 HH (X)(J)) Nevertheless 1 H (X J) f "^ (Y,j-(i-j)) get 1 for codimension we H (X)(j) i - j , then 2 1 1 > = H ^" (Y,2j-i) the HH (U)(J)) following . Assume we have and a rough for a an moment isomorphism commutative F y 2i-i - i cb ch. i/j/X 2j-i 2j-i Y f K with f 2 j (2j-i) ^(Y) the usual Gysin Gysin morphism involves "> morphism y, f o r the motivic t h e Riemann-Roch surjectivity of of chu . . to Milnor . . 9 y, ch. . . By K-theory, 2 j ^ ( X ) (j) i n the cohomology cohomology t h e o r e m , c f . 7.1 reduces v K 5.22 0 i n any case (whose below). By to the s u r j e c t i v i t y b), K . we .(Y) ( 2 ^ _ l ) and a construction 5.23 of Ty i s strongly can c o n s t r u c t certain the and f related some e l e m e n t s i n (1) this K-group = 0(-) X by using ® (D . T h e c generic Km m Y v : K m f is related for any symbols and f surjectivity Y J m* — to the theorem of field F and / T n an this in isomorphism f o r should be true m S 2 for a l l the f o l l o w i n g drawing TH (Y In) f m H c h a r (F) f TT m E T ' m > n K^(-) of Merkurjev-Suslin integer _.Milnor v , K (F)/n — > is elements i n [MS \ n 1] s a y i n g , the Galois that symbol ,,-,„./ / * v (F,Z/n(m)) , and to the conjecture m .We I O can of Kato incorporate a l l that this 1 H (X J) 7 (2i-j,2 1 where the Of above. triangle course, First of surjectivity of singular, to be and non-exactness p the next study of TH (X J) 7 i s not really vanishing of the a r g u e by Tv* Gysin Hom(1,-) , i . e . , the p > 0 t r u e as we does not morphisms. varieties for (possibly). subvariety will singular T * O as remarked imply i n general Hence well, the and be i t turns also out the derivatives . This w i l l be discussed in chapters. Twisted Poincare suitable "twisted [BO] just T= 1 with . Secondly, cannot 7 A not lf p = Ext CI -) Ogus Fp^ area picture a l l , the of R T §6. this we u s e f u l to i s the setting Poincare 1.3 duality f o r our duality . We need in abelian theories theory" purposes as i s the n o t i o n of i n t r o d u c e d by a version with values in a Bloch tensor Definition Let over a c o n t a i n i n g a l l q u a s i - p r o j e c t i v e ones, k and category, groups. 6.1. field a I/ be a category of schemes o f finite and type let T be an a b e l i a n identity 1) category i n t h e sense Poincare duality by a c o l l e c t i o n theory of objects every in I/ (homology) a (X,b) X \J of c Y ^ > X the f o l l o w i n g ones; c) Z e Y c X - H (X J) functorial d) immersion in c Y -—> Y ) X that respect to cartesian precise description of this concentrate with here rather squares there i s a. l o n g 1 exact on t h e n e c e s s a r y - with respect to the contravariance for 1 H (X J) F i f the diagram Z e X H^ (XN.Z,J) Z c l o s e d and 1 H (U J) F below i s an on t h e l e f t - morphisms I/ , sequence H (X J) F p r o p e r t y and T ) , - F (excision) morphism e) we f o rworking 1 ... closed support (X,b) i s c o n t r a v a r i a n t w i t h r e s p e c t t o e t a l e a c o v a r i a n t w i t h r e s p e c t t o proper morphisms i n for is 1 V ( s e e [BO] f o r a m o r e and T V 1 in modifications in > X I H such i s c o n t r a v a r i a n t with F Y b) and every € TL i,j,a,b values T H and every H (X J) with (cohomology w i t h object 1 f H (X J) F for on of 1 a) o f [DMOS] I I 1.15, w i t h o b j e c t 1_. A twisted given tensor H L + 1 U c X (X j) f -> ... , in a), open w i t h Z c U the isomorphism, i sc a r t e s i a n , with proper f ,g and etale a,3 / t h e n Y'- f) i f Y -> H ( X ,n) -> Y H (Y M) -> H c i > X i s a closed open immersion, > H with i compatible h) Y c for H ^(Y Iti-Ii) on t h e r i g h t i ,m) v c : X -Y —> X H ,(Y,b) a—i a i s the sequence —> ... , Y c > X closed , f f o ra cartesian H (X' f morphisms, diagram on t h e l e f t with i s commutative D -> H 1 H , ( X ,n) i ^ (Y 1 ,m-n) v c Y = i) formula) (Y n ) , morphisms, (cap-product) i 1 i i s a long exact the contravariance f o r etale > X' v there a (X Y,b) — > to proper D with and a respect of the diagram c > H 0 H ( X , n ) -Q-> (projection proper then (X,b) i s a morphism H (X,m) f immersion a functorial 1 i i (Y,b) there commutes H (Xjn) a g) on t h e r i g h t -> X corresponding -> H the diagram > X H (X In) i (fundamental irreducible ri which x class) f ® f o r each of dimension d D H (X,n) variety i s functorial f 2 d f with j X in I/ , w h i c h i s , there i s a canonical € H o m ( 1 _ H ( X d ) ) =: r ( H T -> H ^ ( Y , m - n ) respect 2 d (X d)) f to etale morphism , morphisms, , j) (Poincare dimension duality) d i f X c and Y —> 6 ob(l/) X is a n closed the of morphism H (Y i ) f n by 1 H^ " (X,d-n) s 1 ®Hy is an k) i n the (X d-n) — f > H 2 d ( X d ) ® H^ (Xjd-n) f \ H (y, ± isomorphism, •-H^ - 1 situation > H of j ) , for Z c Y i closed d the j diagram i O N Z f d - J ) - H ^ ( X j d - J ) - H ^ " ( X d - j ) -> H ^ ( X S Z j d - J ) f Vz is immersion, smooth n .2d-i,„ , , X (X,d-n) — - — > given is irreducible, i + 1 n ^x (Y--Z J) > H (Z J) f commutative i (this /|Vz > H (Y J) f i s not n i > H (INZ J) f postulated n i in [BO], —>. f but will be needed below). 2) A morphism morphism the of 6.2. definition, Since abstract, we a) cases a category the b) the tensor If T Poincare duality i s compatible theories with the is a pair axioms of a)-k) in sense. Remark In twisted f u n c t o r s which obvious By of like of we the to i s an 1 let H (X J) f definition remind are "vector law we the of 1 = H (X J) X f tensor reader of i n t e r e s t e d i n , the spaces i s given by with the categories the i s quite following. category T is usually some a d d i t i o n a l s t r u c t u r e " tensor abelian category . with product tensor of vector product, and spaces. i . e . , where for each C I—*—> is two o b j e c t s Bil(A B C) 7 the functor = {bilinear f representable A,B by an o b j e c t morphisms f (A B)I f ~> A 0 B f with f f the obvious associativity constraints i sa tensor [SR] s o i t o n l y needs an i d e n t i t y I 2.1.1, C } A 0 B : Horn(A 0 B C ) = B i l ( A B C ) then f : A © B —> commutativity law with object and constraints t 1_ o obtain AC a tensor category. 6.3. Definition tensor W m a) is o f exact T be a f i e l d . has a weight subfunctors of An F - l i n e a r , filtration, i d : T -> T rigid i fthere f o r m € TL abelian i sa such sequence that W cz W , and f o r every o b j e c t A i n T the f i l t r a t i o n W A u J m m+1 m f i n i t e , exhausting, and separated, i . e . , WA = 0 f o r m << 0 and b) category Let F W A = A m f o r m >> 0 , ' f o r objects W (note that m A,B of (A® B ) = T one h a s V W A 0 W B . P Q p+q=m * M t h e sum i s f i n i t e by a ) ) . W G r A = W A/W .A , s a y t h a t m m m-1 Letting t h eweight m € Z occurs W in A the only 6.4. , i f G r A m weight Lemma * 0 / a n ^ that occuring A i spure o f weight m , i f m i n A . The f o l l o w i n g p r o p e r t i e s f o l l o w from t h e axioms. i s i) Horn(A,B) e.g., =O i f A and i i ) j_ i s p u r e W iii) Gr (A W__ (A ) a r e pure o f weight s m Proof B 0 B) s V iv) i fthe weights W for C = A (A/W^A^ and B and 0 Gr B (where B V W > W C I m > Gr C m i tsuffices o f weights m * n ii) B y 6.3 a) a n d d e c o m p o s i n g W f = Gr A m iii) iv) we may s u p p o s e This This = A follows follows 1 ® from from , hence that B ([DM0S]II 1.6)). > 0 the case that f : A —> B A W Gr m that f = 0 . 1_ a n d T l i s pure 1 - 1 of , say.Since the functors f = Gr Ker m the isomorphism are distinct, weights, to consider Ker and B sequences e x a c t , t o o , we g e t f o r a m o r p h i s m II.1.17) and i s the dual are W A , on t h e e x a c t C = B a r e pure of different W © Gr A p+q=n ^ > W ,C m- in 0, i ) By i n d u c t i o n 0 occuring i f necessary o f weight we c o n c l u d e m ( c f . [DMOS] , s a y . B y 6.3 b) m = 0 . 6.3 b) a n d t h e e x a c t n e s s o f t h e t e n s o r the exactness of A h~~~> A v product. and t h e f a c t that v A i s pure case of weight we h a v e W -A -m-1 V = 0 , and m let field category V morphism V Hom(X ,X ) = Hom(X l e t R be an a b e l i a n , T 0 F sets Hom(W = 0 , since m of fractions i s pure V the following T , i f A = 0 , since := A /W_ A and hence For and X -m v of , which R V X o f weight v -A ,A ) -m-1 V V c A 0 X,1) = 0 , we o b t a i n m = Hom(W = A V „ A ® A,1) -m-1 i s pure o f weight . q.e.d. ring (with category. I f a new a b e l i a n , h a s t h e same o b j e c t s : i n this V be a commutative R-Iinear tensor a r e defined by V as F F-Iinear unit) i s the tensor T , a n d where t h e H O X I where that 6.5. T and a) A i s the object p T WW has a weight Definition = i f of The w e i g h t s w m T (A B) T ® F filtration T ® F i f the following o R T ® F occuring in H (X,b)_ r a 2b-a < w ^ 2b-2(a-d) for a > d . w ^ d occuring in < i-2j for i < d = dim X , 2(i-d)-2j ^ w S i-2j for i < d . smooth in filtration, = dim X , < w X/k values satisfy -2j For with hold. for the weights ob(T) . Say has. and has a weight < 2b 6.6. C o r o l l a r y A G i s rigid conditions proper to d u a l i t y theory < w X/k f Poincare 2b-a For F associated i f a b) ® f A twisted has weights, H the weights w 1 H (X^) r t occuring satisfy in H 1 (X, satisfy i-2j < w < 2i~2j for i < d = dim X , i-2j < w < 2d-2j for i < d . In particular, of weight This 6.1 j ) . We for i-2j X smooth a n d p r o p e r over 1 k, H ( X J ) r f i s pure . i s c l e a r from 6.5 now examples. give some and the P o i n c a r e duality isomorphisms 6.7. Example finite G^. type a different be from generated over operation; TL^ note category k with i t s absolute char(k) , and the t h a t we We get a = Hom c by K 1 H (X J) the , let g let c £ be (G^. ,2 action tensor object k is a of of law of G^ is i s the with tensor trivial k by duality cp I > on cp(1) with . values in closed , letting = H F Rep continuous identity =M* A twisted Poincare Rep (G ,Z^) and schemes have (1 ,M) c closure category category: G T(M) a l l separated G a l o i s group, . The tensor of separabel Z^-modules w i t h abelian, Z^-Iinear product the field be g finitely I/ over = Gal(k /k) prime an Let -(X,Z^(J)) 1 t c for Z -> X (6.7.1) H (X,b) = H a t a U,Z (b)) J L ! = H7^(X,Rf Z^(-b)) (£-adic etale cohomology V I I I ) , where the X = X x^k algebraic closure equivalent and the to the finite and ——> k generation Spec k of of X homology, of category for k Spec cf. [BO] denotes . The constructible the 2.1 the category k and base Rep c exp. extension (G^.,Z^) %^-sheaves above Z^-modules [DV] on to is Spec follows k , from i Deligne's (complexes Rep C result of) (G, ,Z ) ® K Jc that i n the constructible QB can be above sheaves, identified Q^-vector G (equivalent to category k ) and with [SGA the 4^] and Rf" the is rigid: the spaces of with category continuous constructible internal Horn Rep by (G, K action Q^-sheaves i s given respect [finitude] C finite-dimensional Spec see Rf* x. of k situation on 2.9. ,Q ) x, 0 of Hom(V W) = Horn 7 with the 6.8. Example V £ G,-action ob ( R e p c Now (V W) 7 ( g f ) (u) let ( G ^ , G}^) ) k = gf ( a be has ^v) finitely a weight generated. filtration, Say that i f there exists an 1 integral domain fractions F k over U A of such = Spec finite that A V type over extends , which has an to Z[-] a with field constructible increasing of (D^-sheaf exhausting and separating f i l t r a t i o n WF by G r F = W F/W .F i s pointwise m m m-1 c o n s t r u c t i b l e subsheaves such t h a t pure of weight m s e e [D9] 1.2.2. Since tordue") on U amounts m W F generic i) i s smooth point there or IF n is a ("constant = Spec k connected, (char k = p > of smooth 0) 7 c such , this scheme a U' t h a t the neighbourhood to over 2 saying z ^ J factorizes ii) there i s an ...cW — m-1 point x i V G U i c ... — the on f absolute 1 r e p r e s e n t a t i o n of 2 , Nx every in Gal(K(x)/K(x)) Nx I = TT ^ ( K (x) ,K (x) ) — > conjugacy. a = archimedean a for of W V = W m m Tr^(U',n), exhausting G 1 n and V/W of .V m-1 = Spec such that a geometric are k separating -submodules k eigenvalues Gr for global >> = G, K 0) on , filtration f o r each Frobenius algebraic that Fr numbers closed at x a x with value I ct I = N x > a G^ increasing c W V — m TT (U Ti) 1 in through the (char k P V of , and For field finite a k valuation i s the i t s image field ring of primes S the the via = TT^(U Ti) we have integers including Frobenius Frobenius , G a l (« (x) / K ( X ) ) i s w e l l - d e f i n e d up 7 k geometric arithmetic •^(U',^ in 1 with || . H e r e inverse of Tr (U, «(x) ) finite set of , #K(X) O U' jc we = Spec have a l l primes k U , and 1 to for a = Spec above % O^yS . Then 1 Tr^(U Jn) i s the G a l o i s group extension of A k a) A w e i g h t WRep (G^,Q^) filtration, Let be t h e f u l l by the representations having c o n WRep (G^,Q^) weight of Rep c filtrations, (G^. ,QJ^) and , closed weight filtration i fi texists, a weight of for V . i s unique. formed c compatible Then every ( [ D 4 ] 1.1.5) i s an a b e l i a n c S . Rep (G^,Q^) filtration. WRep (G^,Q^) with S-ramified i s unramified outside subcategory i s strictly c the V as i n i i ) i s c a l l e d b) morphism o f t h e maximal , a n d i ) means t h a t filtration 6 . 8 . 1 . Lemma G^ with subcategory respect t o taking subobjects or quotients. c) WRep (G^,Q^) c i s a rigid, abelian, Q^-linear tensor category with weights. Proof no I t f o l l o w s immediately non-trivial hence that filtrations and every c k isomorphism obtain functors remark i s an a b e l i a n after Horn(V,W) \ filtration ~> W V m i t ) . The c l a i m s From the given weights, t h i s one weight map). Subobjects and t h e hence Rep (G^,Q^) . Since c on V ® W every o b j e c t s by t h e above, This i n turn ( c f . [D4] 1.1.11 i n c) a r e now c l e a r : the implies c W. W — l+m f o ra l l we that and t h e filtration i s g i v e n by the f i l t r a t i o n 6.3 b) . with of morphism. W Hom(V,W) = { f : V - W l f ( W . V ) m i and of different ( c f . [D4] 1 . 1 . 8 ) , are exact there i s by t h e i n d u c e d of filtered f o r every that sets of weights. subcategory i s an isomorphism V modules (look a t the i d e n t i t y respectively the strictness pure i s compatible and t h e u n i c i t y WRep (G ,Q^) on morphism filtration, the definitions f o rdistinct q u o t i e n t s o b t a i n a weight quotient the G^-morphism between t h e same s t a t e m e n t deduces from i } , i s g i v e n by t h e formula i n 6 . 8 . 2 . Lemma Rep Denote by (G Z ) w weigth formed 0 filtration. WRep ( G Z ^ ) c Then the f u l l c by those and form w WRep (G^,Z^) objects M subcategory o f f o r which t h e f u n c t o r s 6.7.1 h a v e a twisted Poincare M ®_ QJ has a 0 image i n duality theory with weights. Proof For a closed there Fp i s a smooth (if closed of char UQ By U -schemes v by base k-schemes ( i f char k = 0 ) o r over generic point Deligne's change arbitrary n = Spec 1 1 F = H (Rh*Rv Z constructible associated This every the base Spec change sheaf complexes, S — > U change UQ . I n p a r t i c u l a r , bounds such k , and a (j)) a G = H Q^-sheaves , and i mixed sheaf change H X H ( X X K case follow p r o p e r t y we = C char(k) ( X from ) ' on V b ) ) U U . Moreover, t h e result [D9] 6 . 1 . 1 1 . has a weight loc.cit. have with to the = p > 0 , since also and subscheme extends £ by Deligne's for open 1 to the constructible ( X , Z (b) ) I i n this on t h e w e i g h t s and a r e compatible (Rf*Rf Z^(-b)) a r e mixed shows t h e c l a i m A i s ( c f . [SGA 4^] Rf*/ Rf,/ R f , Rv extends H C k . f o ra suitable H|(X,Z^(J)) Z —> X that theorem 1.5 a n d 2.9) t h e o p e r a t i o n s base The type to g e n e r i c base respect constructible 3.4.1 of algebraic over of finite q from [finitude] sheaf —> X dimension obtained of scheme Z k = p > 0 ), with separated Rv* immersion 3.3.8, by loc.cit. filtration. since by (cohomology x of U t Hj U Q 7 (Q^-dual) char k = 0 concepts o f mixed 6.11 t o g e t h e r g = TT^ ( S p e c of H we c a n n o t i V ^ below). including Instead r^ ( for G and s ,Rf Q ^) s j 2 1 .(G Q (m)) cont S a o f extensions (6.8.5) 0 0 we s h a l l are different g e t the weight and t h i s f o r absolute will be p r o v e d Hodge c y c l e s as b e i n g reduced by t h e a l l primes < 2 n + 1 above one e a s i l y ) ) field, (note topological >= r i + r 2 ' lemma S be a finite at infinity i s computes 1 a r e t h e numbers o f r e a l ( c f . [J3] let I , and l e t (ramification 1 s E x t ^ (Q„,Q„(m)) Gg x, x and complex places 2 ) , so by t h e isomorphism there exist non-trivial of continuous Gg-representations 0 —> Q way, s i n c e t h e filtrations b e a number n € TL ' ^ r i n this of singularities, a s above k , respectively Since 1 s Rf *RHom(Q cohomology). Oy^S,n) t argue and weight i) Let k a l l o w e d ) . Then where B ) ) V j with the result of etale o f primes d point t we may a s s u m e a l l s h e a v e s 6.8.4. R e m a r k s G ( ^ ,c *'V RHom(Rf ,Q^,Q J by r e s o l u t i o n invariance set H = sheaves (see t h e remark filtration that and every . j l For in (b)) j l by t h e d u a l i t y 1 here support) f o r H = R f X , and since (6.8.3) Rf^Rf Q a w i t h compact and Q (2n+1) — > 0 Q.(2n+1) E —> a r e pure Q 0 —> of weights 0 . 0 and -2(2n+1) , respectively, E corresponds n<0 , however, give a splitting ii) Let of k E for , then a l l there E s M n are exact passing Spec O ^S . For v since WQE would s ( G -> n ^ Cl n by D i r i c h l e t ' s C l cont and C l is finite, g 1 ) ) S'V a over E S 8 n % s -> 1 ) ) k'V group 0 , theorem we E finitely l ' . On t h e o t h e r s is a g conclude A A ( G cont be t h e S - c l a s s g sequences H (G ,^ ) t o the l i m i t H on a weight f i l t r a t i o n 1 _> g r o u p and H sheaf o f 6.8.5. n ^ 1 . Since generated by cannot have be t h e group o f S - u n i t s G 0 _> E t o a mixed x = Iim k /k hand we have n X . n Since k z> k * ® X n & = I i m E_ ® X „ S I ,we conclude that > S (6.8.6) Iim ( G , Q ( I ) ) c: S £ * Q cont cont (G,,Q.(1)) K x, (non-trivial) extension 0 . S This shows t h a t there is a of continuous G^-representations (6.8.7) which does 0 —> E' —> Q (1) — > £ n o t come j from a G - e x t e n s i o n g corresponds t o a Q ^-Sheaf Spec(O^S) f o r any The i s t h e same a s S e r r e ' s example Q^ — > j S on , this 0 , f o r any S Spec k which does answers the question example . Hence n o t come E 1 from i n [D9] 6.1.1 i n [ S e 1] I I I 2.2. 6.9. Example A-Hodge A = Z structures weights; (pure Let the of 1 I (H) i s an identity weight (E the the Q zero), and Betti I/ cohomology 1 H (Xo) = category tensor trivial A-MH category Hodge 0 = W H n F H , =: Q of mixed with strcuture A T (K) fl > f(1) u . a l l separated and the have i of , then i s the we M K category 3R A-Iinear abelian = Hom _ (A,H) A or object f For 7 schemes of finite type over homology (X«E) ,A) ( j ) (6.9.1) H with a a (X,b) the mixed twisted has the a Hodge 8.3.8), (X(C) ,A ) (-b) A-Hodge Poincare a mixed ([D5] = H structure f o r the as with to i t by weights. relative Borel-Moore H Deligne Note forms 1 that H (X A) f 1 cohomology (or B e t t i ) a (X«E) Q) = H ( X ( ( E ) Q) C f H (X X^Z A) f homology we f may use (Q-dual of the mixed compact support) and compactification [J2] § 2 for a direct Hodge t h e o r y Hodge [D5] structures 8.1.25 a n d proved in Q-Hodge the X c X [D4] with structure with f The 2.1.13, and exact H (X A) closed approach. sign the 8.2.4, t h e on bounds by the a f (m) Z the = X\X products weights f o r homology of ; see the the Tate as proper follow also twist mixed follows for a with for a f denotes compatibility and cohomology = H (X Z A) complement sequences bounds given a relation 8 . 3 . 9 . The [D5] V f cL are associated d u a l i t y theory structure homology) isomorphism (6.9.2) in (Borel-Moore via in scheme 6.7.9 from are in and corresponding f o r cohomology m e n t i o n e d i n [D7] 8 a n d f o l l o w f r o m question i s t h e cohomology proper c o m p o n e n t s , and t h a t variety 6.10. \J bounds of pure dimension Example Let k be t h e c a t e g o r y finite type) H Z ( X '^> = H k compact the fact of a simplicial K^(U Z) = 0 f support, which t h a t t h e cohomology scheme w i t h smooth f o r a smooth affine d > i . be a f i e l d of varieties over with of characteristic (i.e., reduced zero, separated and l e t schemes o f . Then ( X DR,Z k / > (6.10.1) H (x,b) = a (de K *r (x/k) a Rham c o h o m o l o g y w i t h twisted finite Poincare duality dimensional vector support theory a n d d e Rham h o m o l o g y ) with spaces values over k gives i n the category . If X i s smooth a Vec^ of o n e may set H and N DR i f Z ^ X (e.g., x ' = H Z^ the i f general above components 6.11. ^x/k^ i s embeddable X (Zariski i n a smooth i s quasi-projective), H f ( X A ) In X , a = H^ (MZk) ( s e e 6.11 Example M o f pure dimension o n e may s e t of singularities simplicial below, b u t a l s o The f o l l o w i n g scheme . one has t o use r e s o l u t i o n groups f o r s u i t a b l e hypercohomology) schemes the approach with in and c a l c u l a t e smooth [Harts]). g e n e r a l i z e s t h e c o n s t r u c t i o n sf o r absolute Hodge c y c l e s finitely generated category cycles JMR^ over following W. by objects of 2.1 b) H like SL Z -^—> TL7 I0 should defining in of Theorem is a twisted that the the Betti replace generated a the the Poincare —> result of d u a l i t y theory A H , Z de ( X ' * ) ' H * H ( X Rham c o m p o n e n t s components H H for q : k —> c smooth q u a s i - p r o j e c t i v e Proof coincides after tensoring We define with with functors the 6.9.1 a that for a and , the and 3.19 isomorphisms Finally, Gr^ m H^ , with 3.19. over weights € TL ® 3R category varieties there k and . Then values ' * > 6.7.1 H of structures generalizes with in 6.10.1, H^ (U,0) of sense i . e . , as tensor functors such the comparison structures category Hodge 1_^(-m) f o r a l l W ^-linear the filtration Q-Hodge the a define i n the mixed Hodge following be be for the TL , - m o d u l e s . I W G r ^ H^ real JMR^ we except that defined, the k Q^-representations integrally ® then filtration we H^ Let V on K filtered 2, that W Gr^ \J § and p o s t u l a t e finitely Let in , requiring w are and MR^ a weight morphisms H and e) filtration, IMR such I 2.1 part. r e a l i z a t i o n s for absolute the Furthermore, i s clear that 6.11.1. there 0 mixed (G Z^) p o l a r i z a t i o n s of It weight c structures of H exist Rep first c h a r a c t e r i s t i c zero, replace W i n the category is in fact m i x e d Hodge or the We of above. isomorphisms of integral changes: e x a m p l e b) by field of k c a r r i e d out mixed Q i H^ for ax Ji-adic components (E are = X >< k given a (E variety realization N H (U) by H the , respectively, U over defined . U _(X) and H AH (X) and 0 then let k in H A H li (X,b) = H ^ ( X ) (-b) . a The £-adic 3L and the B e t t i H et,Z ( X realizations a 'V n H d f ( X i H „ (X) An , L of ' V and 7vtj A H H (X) a < (6.11 .2) H respectively, are as clear. 1 z (OX Z) then M and f H^ (aX,Z) the claimed The comparison , compatibilities isomorphisms between i n § 3, b y t h e c a n o n i c a l c o m p a r i s o n H ( X aZ * ' Z ) Z • * — > H with 6.7 a n d 6.9 them a r e d e f i n e d isomorphisms J t , a z ( a X ' V ' (6.11.3) M H^ (aX,Z) which i n fact ® TL -^-> 1 are integrally E K ^(OX TL ) t d e f i n e d and a l s o cohomology and homology as i n d i c a t e d VI For defining t h e d e Rham 2.8.4). isomorphisms, comparison and t h e weight i t suffices simplicial varieties cohomology f o rarbitrary variety) of this. f . : X. — > variety U. Cone(f) for relative compatible comparison with the resolutions" as i n [D5]. t o d e f i n e homology f o r varieties, maps a n d s i n c e homology o f of the associated constant support a n d [DV] the other f a c e and d e g e n e r a t i o n simplicial and cohomology w i t h simplicial filtrations proper (as t h e homology a morphism realizations, a n d i s more g e n e r a l with exist ( c f . [SGA4] X V I 4.1 i s o m o r p h i s m s we u s e " s i m p l i c i a l First varieties , 9 (as r e l a t i v e simplicial cohomology f o r and hence as cohomology of the , s e e [D5] 6.3) a r e s p e c i a l cases For and a simplicial the B e t t i simplicial by realizations versions the s i m p l i c i a l the is H „(Z.) o f 6.11.3 and H define AH a (for their F o r a morphism this (Z.) the by 5,-adic the existence —> TT : U. i s functorial functorial there exists Z. compare o f two i n a contravariant i n a covariant a proper morphism isomorphism i n the etale hypercoverings, ment Y. a s a b o v e we way f o r homology such way f o r i f TT proper. Now an of versions varieties cohomology, and Z. i o f 6.11.2, a n d t h e c o m p a r i s o n i s o m o r p h i s m s arguments below). simplicial variety c f . [D5] 6.2 i n a smooth with cohomology and and p r o p e r 8.3) simplicial normal c r o s s i n g s . B a s i c a l l y , simplicial suffices version o f § 3. N a m l e y , i H^ to define by —> TT : U. and homology such that U. variety X. everthing Z. inducing (e.g., proper i s the compleof a reduces t h e arguments by divisor to a i n [D5] i t AH and H f u n c t o r i a l l y f o r U. , s i n c e b y a J r J c o m p a r i s o n i s o m o r p h i s m s a morphism w i l l i n d u c e an i s o m o r p h i s m i f i t induces an tt AH the of a l l groups, isomorphism i n etale i homology. for In f a c t , pairs those (6.11 (X.,Y.) a s above to define such that H^ FI and H^ functorially realizations i n [ B e i 1] § are 1. .4) a R ( Z '> : = H DR ( Z / C ' ) V ( k " d U t h e de Rham c o h o m o l o g y w i t h relative (6.11.5) a l ) compact support cohomology H DR,c (Z.) := H A DR,c (U.) := H A and AH the B e t t i of U. , c f . B e i l i n s o n ' s c o n s t r u c t i o n s T h u s we d e f i n e H where i t suffices cohomology (X.,Y.) i s defined as by the these remark groups above; by isomorphisms computing H one a similar i n the 1 gets quite approach smooth as complexes i n [ J 2 ] 2 . 9 . By case, generalized a (aU . , Q j ^ / k ^ n explicit n d 1 H (OU Z) to the , we w computing the comparison complexes obtain the comparison isomorphisms i (6.11.6) I ^ If we the weight in [D5] 8.1.12 define comparison in 4ar § for X F F" W. on filtration, by •>> z <E > H^ see that formula 1 (U. , Jl * _ r filtrations : 1 1 ( Q U e m term , we M obtaining Q £ the % I i n the is a with > H § ( s e n s e o f b) " ' 2 ) £ ffl of d e f i n i t i o n 6.1 (n m)) + exact sequences b). in loc.cit. above [ B e i 2 ] , Namely, by in fact and ' the as groups weight since t h e Hodge cohomology results ascending above, for § 4 one the subquotient of , c f . [D5] 8.1.19 long G T the capproduct i t i s convenient t o proceed l i k e in by isomorphisms and theory the formulae t o put a get a G^-equivariant \ X ) H ^ - ^ f T ^ ' , tensoring formulae isomorphisms the mentioned filtration graded and <C . a ^ a r use H the respected [D5] 7.1.6.5 compatible with the comparison I- S^ by they are the comparison V o also ® t h e Hodge we t i s a weight For and H^ (U.,Z^) (6.11.7) after < Y . I f we (i+n)-th Z) 8.1.15, , and ^ X ./k filtration It and l f isomorphisms - by 3 for < : H (OU 0 the g e t s much more the comparison Beilinson same than arguments just isomorphisms the between them. By D e l i g n e ' s to theetale each and thea l g e b r a i c object (X.,Y.) (6.11.8) Tf l constructions K * d e Rham c o h o m o l o g y , a s above = K^ (X.,Y.) i n [D5] 8 . 1 , now a l s o : H TT <'K^ ,w) a k ^->C a < : 6 = TT 6 y - TT Y TT Tf(K-,W) a mixed following TL^-modules f K ^ without iii) but iv) A, with finitely ii) a continuous , f o r each of (MAH-complex), of the below, G^-action filtered such that A and each i k <^—> I , i s a s i n i ) , 0 'K* ) , f o r each o : k VL , 0 r e p l a c e d b y TL ( r e s p . (E ) , i s a bounded homology, filtration F , f o r each f but below complex an ascending -> (E , i s a s i n i i ) , of k-vector spaces, filtration W o : k <=—> (E , ol t h e homology groups ffi^-modules. (resp. Z^ complex o f G^. , dimensional v) Hodge c o m p l e x i s a bounded generated action K' 0 with (K£,W,F) , u kind: F o reach are absolute r (K-,W) c a :k ^ - X E i) one g e t s f o r a diagram B = T T f 'A,a l,o called applied 1,0 A . K C > ( E / A ^ = A with finite and a descending is a family of f i l t e r e d a 1 i,-a with vi) a ( K - P ^ a 0 f o r each ^' - Jt O : a vii) filtered is a ( ; K ( K o' a' ix) o W O a filtered H c for p e G > ( , v 9 % z i — k w) ' ;, ' 0 CC , * — > \ ) f o r each i W ) ( K ' i,o' W ) quasi-isomorphism, 6 is w ) : k —> a filtered viii) K ' A,o' quasi-isomorphism, f o r each ^0 ( ~* , 1 is W ) (homotopic) io,l) e quasi-isomorphisms : k —> c a : T K k' W ) (C , \,o 1 ~> ( K ' i,o' W ) quasi-isomorphism, W ( G r K m ^) i s pure of weight m+i , and f o r each : k — > CC c defines a mixed Hodge c o m p l e x i n the sense of [D5] 8 . 1 . 5 . The topology actually better G^-modules instead then The c o m p a r i s o n must be i n t e r p r e t e d L n TLfl has proved a structure. Hodge cohomology in ^MRfc the graded . We d e f i n e pieces ® H 9 compatible zations notion that the From complex inii) in vi) letting o f pro-£-systems are quasi-isomorphic to i t i s obvious that the by r e q u i r i n g ® Q i n each 9 the comparison Hodge f o rthe weight i n t h e sense isomorphisms TL , a n d T a t e H^ homotopy, and quasi-isomorphisms we h a v e and d e f i n e Following Hodge c o m p l e x e s category that bilinear polari- i s an o b v i o u s of tensor f o rp o l a r i z e d object which a r e 2] § 3 ) , o n e h a s a n o t i o n a triangulated an i - t h f i l t r a t i o n of . There twists. f o rp o l a r i z e d mixed by him i n [Bei that realization structures complexes obtains W[i] i s MAH-complexes o f morphisms between MAH-complexes, constructions and polarized W i > Q (-m) MAH-complex F defines are polarizable under this by Hodge c o m p l e x m 9 induced o f a mixed absolute H = Gr H of the real trivial thus way, b y i - t h cohomology the f i l t r a t i o n s o f a mixed objects H groups quasi-isomorphism (in t h e pro-36-direction) with forms filtered 6.9) o f d i s c r e t e of abelian i n an a p p r o p r i a t e be a c a n o n i c a l Hodge c o m p l e x these ([J1] one; i t i s . Deligne mixed pro-36-systems - and pro-I-systems o f Z^-modules. whose components ® t o i n i ) i s t h e £-adic to consider instead (K",W) ® % O ch 36 Kj referred products, Beilinson's (called p-Hodge of cones, MAH-complexes, and o f MAH-complexes up t o quasi-isomorphism. For and a simplicial proper normal crossings MAH-complex (6.11.9) simplicial object (X.,Y.) v a r i e t y and - and K * (X.,Y.) U. = X.^Y. as above Y. c X. as the diagram - X. a divisor one o b t a i n s a a smooth with the polarized JJ(Rr l ( u . ,Z ) ,w) et TT(Rr 0 jl where W and F are the maps come f r o m the comparison extending their the to comparison derived in the wrong complexes By upper working one copy the H and u AH H^ = U. giving H 1 [Bei whose Z. of a (Z.) f i ——> 1 H with £ canonical 1.6.5). H in canonical cohomology compact as above of support, i s computed complexes (Z.) varieties, (cf. Y.. [J2] W ' ' F ) and a n ^ ones of notice that defined morphisms 2] p. 55, the (X.,Y.) in [Bei gives of by ones. complexes . Starting 2] the § 4 to from get previously by one f i i s computed by and coskeleton ~ AY.. of may i s the proceed —> AH K. (Z.) = R HomIK^ j (Z.),I) H , properties as K' version in [Bei (AY.. AH a (Z.) Y 1] ))[-1] An normalization diagonal. or for sophisticated Cone(K:„(X.) the varieties, required Hxl i s the 2.9) the K^(X.,Y.) ( f o r a more K^ (Z.) simplicial by (6.11.10) ) i will obtains with An, C where > quasi-isomorphic in arguments , quasi-isomorphisms Beilinson then Y 8.1, naturally honest one < computation as sites [D5] latter only involve * '^x TL —> U., standard are x of them by ( j^pj example, X.^Y. r a c a r e f u l reader they define as the (contravariant) MAH-complexes versions For big r Z — — > 6.11.9 Beilinson's i defined in complexes functorial may polarized on R procedure oU. The since proceed ( r e s p e c t i v e l y , the 5.2.7). category, the the schemes by d i r e c t i o n . To K^(X,,Y.) this, ([D5] may by morphisms isomorphisms one replacing the isomorphisms, cohomology the ( a u . , % ) ,w) defined simplicial in a n Y. —> . is computed where K* ^(Z.) i s a complex computing previous take the internal Horn long carefully by one w i t h map f o r open sequences suffices assures a r e morphisms K ^ ( X ) resolutions that JMR^ A H the mentioned t r i a n g l e s K A H ( X ) K ® i ( C a ( Z c) and f ) , and e x a c t ( Z ( X " and now including come from triangles of i n the exact . For defining cohomology a capproduct i t pairing ) -> K ^ c ( X ) . and t h e f o l l o w i n g A H , C Horn a s i n [ B e i 1] 1.8, c f . a l s o t h e maps in «£ K i n 6.1 immersions i n homology b y 6.11.10 t o d e f i n e (6.11.11) internal complex). b y t h e same a r g u m e n t s 1.19. T h i s derived i n j e c t i v e components sequences r e q u i r e d chosen s i m p l i c i a l MAH-complexes By TL i s the obvious f o r each s i n g l e exact restriction [J2] R Horn t h e complex The ^(Z.) - e.g., the An , C one, and (replace 1 H Arl, C ) K AH,C ( X AH,c < X lemma, a p p l i e d to > (6.11.12) K we see that functorial By AH ( X ^ Z ) K • i AH,C K ^ > " Z a pairing ) ' \p a s indicated i n t h e s e n s e o f 6.11.12 f o r a n a r b i t r a r y v a r i e t y X simplicial case that [Bei 2] 4.2; e v e r y t h i n g 6.11 .13. Lemma i s smooth, Given G^-modules, canonical ) i t suffices to define ( c a r e f u l l y chosen) groups, Z pairing and then carries making o n e may over compatible . . . ) , ip tp resolutions and 1 proceed to the as B e i l i n s o n i n t o MAH-complexes. pairings y one r e d u c e s X . o f complexes , a s indicated, the following (of abelian there i s a diagram commutative 'A[-1] 0 1 -> B *[1] C o n e ( a ) [-1] ® C o n e (3) A 0 B 1 C• - -> C -> c* Y A' f Here p •A " \jJ 1 0 Proof on 'B q + 1 Let cp((a',a) 1 is in 1 H A K = \p (a 0 b) p = \p' : o n ('A " 1 + P © A ) P 1 q © (-1 " y 0 (B ip'(a* 'B q + 1 0 b') ) i t i s s t r a i g h t f o r w a r d t o check (X)(-b) have form a twisted Poincare . that duality immersions i n v o l v e d , we can be o b t a i n e d and then restriction i n the sequel, give of Bloch holds the fundamental i n the A-adic to hold of remark checked i n the etale apply. d e f i n e d by t h e i s an isomorphism realization. a s i n [BO] 2.1, b y r e d u c i n g t a k i n g the preimage c a n be in loc.cit. morphism, class, i s only L e t us j u s t (this a n d Ogus duality map map f o r and s i n c e i t s c o n s t r u c t i o n i t here. a n d i s known the Poincare an i s o m o r p h i s m this o f [BO] 1.4.2 a l l results with Since don't any o f t h e r e a l i z a t i o n s Similarly, not defined the r e s t r i c t i o n i n homology. the c o m p a t i b i l i t y capproduct q by • (b.b )) definition t h a t we f o r open theory),hence is 0 induced a except somewhat that -> • c " (-1) "V 0 Cone(3) and morphisms needed P these „(X)(j) Aii i L etale 1 P i t i s Cone(a)[-1] theory, B i s the canonical pairing With H 0 since i t The f u n d a m e n t a l t o t h e smooth 1 E r (H^ ( X O ) ) f = TL class case under O ^ ™ H Y< ' X d i H., , . 2dim All other case properties o f the A-adic 6.12. Example theoreme over x 0 > 0 ® H (X O) > H (X O) 7 f „ ( X , d i m X) . X f required i n 6.1 realizations, easily follow from the v i a the comparison isomorphisms. I t i s i n d i c a t e d i n [ B e i 1] a n d p r o v e d 9, t h a t a regular universally m on t h e c a t e g o r y noetherian catenaire) I/ X <Z< '<»<i>> o f schemes q u a s i - p r o j e c t i v e irreducible the motivic = K 2 j - 1 ( X base S cohomology ) l i n [ S o u 3] J ) ( i t should a l s o be and homology ' (6.12.1) H form H^j Z a twisted (X,(D(j)) (In for with without coherent K with m r ( 2 b (x) - duality Z c X i s perhaps weights). sheaves, fora l l k b ) theory, with to the previous ( X ) ® ffl i w h e r e k = K;_ Poincare the contrast theory, in J(x,ffl(b)) Here K (X) m defined examples, K 1 and only 1 the r e s t r i c t i o n this denotes (r) f o r smooth i s an X "absolute" Quillen's i s defined that K-theory as t h e subspace fc the Adamsoperators (cf. the d e f i n i t i o n ' of a c t by K (X) multiplication ( r ) i n 5.12). m k For the d e f i n i t i o n the reader into t o the c i t e d a scheme W smooth X operators on K 1 Q„\ Wj b of c Actually, k (called papers, over <j> i n [ S o u 3] ) we i t involves S and then t h e embedding changing 1 K (X) m by m u l t i p l i c a t i o n t o make e v e r y t h i n g Soule i n h i s paper independent defines motivic h o m o l o g y b y means o f t h e d e s c e n d i n g y f i l t r a t i o n a s c e n d i n g y f i l t r c i t i - c m on K' ® Q , s e t t i n g - refer of X t h e Adams ~ (W) < m classes 1 of the with of cannibalistic W . cohomology and on K m and an H M,Z ( X '® ( j ) ) = G r K y 2 j - i ( X ) 0 ® ' (6.12.2) H^(X,Q(b)) Both approaches K m = Gr^(K _ a are equivalent, ( X ) ( r ) ~ S 1 - > G r 2 b (X) 0 (D) . by t h e c a n o n i c a l K ( y m X ) 0 isomorphisms « ' (6.12.3) ( K (X) r ) — - — > Gr^ (K (X) m r induced by the i n c l u s i o n s K E ( m has X ^- K ( x ) m r t obe c a r e f u l discussion In lower 1 es a) H the Chow " h o m o l o g y " (X,Q(b)) by Fulton b) H 2 b u 2 this * 8 a n d 7 - 2 * However, o n e identification, c f . the - one h a s t h e f o l l o w i n g © K xOC, (P) to r f + points field of sequence ([Q1]§ 7, 5.4) K ( x ) ) => K ' ( X ) , q p of X + q with dimension x € X , induces p and isomorphisms 2 M + 1 = E f a (b+2) b ( X ) 0 Q = CH (X) b group ofcycles 0 Q , where o f dimension CH (X) b i s b , as defined [Fu], (X,Q(b) ) s E © X € X e i s the residue 2 b o niveau spectral p n S (co-)homology. (X) = t s [ - f o r t h e K-groups q ( p ) -^ * 3.7. Quillen's E P' f with using o fm o t i v i c (6.12.5) K(X) c ® ' degrees 6 . 1 2 . 4 . Lemma X 0 i n [J2] calculation where Z (r) r K (X) c y K (X) 0 Q a n d m — m u ) 0 Q) , m K 2 (K(X)) ^ + bn _ (X) b > 0 Q , with © x € X (b 1) + K ( X ) X E + b1 b ( X ) = homology o f ^ A Y _ > © x € X (b) Z , where c) H "tame" d e n o t e s t h e tame s y m b o l ^ (X,Q(d-2)) 2 d s 2 E d 2-d ( X ) = K e r ( 6 a particular, field k for X ( x = HP f ) o r d = a r d i x E X smooth spectral w ' i t K(X) ) X h . (d-1) of dimension d over sequence =, K _ _ ( X ) q sheaf X © S ^ -> (X,K_ ) m map, p , q associated to U I—> K m (U) , isomorphisms ,2j H (X,Q(j) ) s H ( X , K e) H^ " 3 3 3 ) ® (B = C H ( X ) j u 1 (X,(D( j ) ) 3 1 s H ~ (X,K.) 2 3 xex' " ' xex s H°(X,K ) K ( 3 - ® Q , Q ® homology e 2 Hjjj(X,ffl(2)) 3 ® Q K ( K f x ) ) £22«> 0 f) ) Q irreducible, d) 3 k 0 " d i v " the d i v i s o r (d) i s the Z a r i s k i m induces G X Ef^(X) K ( ) t h e Brown-Gersten (6.12.6) where k X 2 x In ( -d 2 and ( X X ) ® K-(MX)) © xex ® (D = flj ® k e r n e l 2 ^iX> 1 ) of z, ( 3 ) of K(X) , X (1 xex > where k(X) Proof The i s the f u n c t i o n first three f r o m 6.12.5 b y of that (6.12.7) 0 = Gr K (F) K (F) = Gr K (F) = F K (F) = Gr^K (F) = K 1 2 X 0 1 1 2 . from the s p e c t r a l S o u l e i n [ S o u 3] K (F) 0 of statements follow constructed the f a c t field theoreme 8 i v ) , i n view = Z , X , l l n 2 r ° (F) (Milnor sequence K-theory) for a field since 5.6). F (cf. also 1 d . P it~P = div + and = Coker ( fa © x € X view 4 and remarque), and i n 6.12.5 +0 K (x) X resolution P © x € X (b+1) of the construction Gersten o f 6.12.6 Z) = E b _ q = E * , (X) , X d-p,a-q irreducible = dim X of X the class X , i s defined in CH^(X) . = X^ . , (d-p) a reformulation. the fundamental as the element v i a 6.12.4 of (X) f r o m 6.12.5 b y means o f t h e ( P ) s t a t e m e n t s d ) , e) a n d f ) a r e j u s t For b (b) M d ( c f . [Q1]§ 7 ( s e e [Q1] § 7, 5 . 8 ) , i . e . , b y t h e f o r m u l a e E ' (X) r the theoreme 2 d = tame P ^/-p F o r t h e saiae r e a s o n o n e h a s CH (X) In loc.cit. in class n x M E H 2 d (X QHd)) 7 corresponding to the class a ) . In Soule's d e s c r i p t i o n Gr^(K^(X) ® Q) , however, this i s i n general the (-d) class §7. in K'(X) corresponding to this The c o n j e c t u r e s For a twisted tensor category (7.1.1) 5" different. varieties Poincar^ d u a l i t y theory with values t h e fundamental c l a s s e s » TH 2 i from t h e group o f c y c l e s induce a c y c l e map f 17 z (Z,i) under -» TH of dimension i 2 i in a (X I) •—» image o f rH sections" be o f Hodge a n d T a t e f o r s i n g u l a r c l . : Z.(X) [Z] will o f t h e homology group 2 i H-.(X,i). (X,i) i n t o t h e "group o f Here is identified closed with the free subvarieties x •—• Z = { x } . F o r 7.1.1 reads 2 i f on t h e i r r e d u c i b l e i , irreducible v i a of dimension d ( c f . 6.1 j ) ) 2d-2i (X,d = H' (X I) c l ^ : Z^(X) where j = d - i plained image - i) 2 : i claim maps 7 . 1 . 1 . consists cycle T 7 (X,d - i) o f Hodge a n d T a t e f o r an a r b i t r a r y v a r i e t y Note t h a t reasonable of the cycles. As ex- concern the map. that generalization (X,j) i s now t h e c o d i m e n s i o n of the last 2d-2i >TH i n §5, t h e c o n j e c t u r e s I H o f dimension smooth, duality group as (7.2.2) a X by Poincare H Z C X abelian into the correct similar conjectures f o r singular map X i n stating X varieties there cohomology, since f o r the i s n o t even t h e morphism 0 •H 2 i (X,i) i s n o t an isomorphism i n general. 7.2. X Conjecture (Hodge conjecture i s a variety (i.e., a separated, over C, t h e n Cl i fora l l i £ 0 f o rsingular reduced varieties) I f algebraic scheme) t h e map r^(H .(X,Q)(i))) 0 Q : Z (X) 0 Q 2 i = 1 (2TrV^l)" W H - 2 X Q i 2i( ' ) 0 F 1 H 2 i CX,C) is surjective 7.3, k (the homology b e i n g Conjecture (Tate i s a finitely then f o r each conjecture for singular generated a prime the Borel-Moore one). field * char and (k) X varieties) i s a variety and e v e r y If over i I 0 the k, map G C l is surjective notations We want this we schemes pal divisor which inducing cl. cf„ a [BO] p . k, weights through If \ , map reduce varieties. 7.1.1 the to the For f o r a twisted on a c a t e g o r y duality i : D —> theory X, X H of i n addition then i s a smooth i * 7 ^ i n t h e examples o f §6, t h e n rational equivalence map 197, z a s d e f i n e d i n 6.5. i n a smooth v a r i e t y 1 (b) ) * basically the cycle with triviality) : CH (X) ft we 1.5): i s satisfied factorizes a n d 7.3 I f f o r our Poincare (principal (X,Z f o r smooth p r o j e c t i v e theory a field ( c f . [BO] a o f 6.7). conjectures over et . k H^V(X,Q (i)) > a those duality a (X,Q (b)) = t o show t h a t 7.2 Remark assume : Z.(X) 0 Q more g e n e r a l l y s t u d y Poincare 7.4. a (where being classical Q.) * Q i • TH step 1. 2 i (X,i), - princi- O r the cycle map as d e f i n e d by F u l t o n , 7.5. Lemma Let U -^-» X be an open immersion. Then t h e restriction W is H X b 2b-a a( ' >F W ^ H U b 2b-a a< ' >F surjective. Proof. then Let Z C X be a c l o s e d subscheme b y 6.1 f ) a n d t h e e x a c t n e s s of W with U = X - Z , we h a v e a n e x a c t sequence W W since H X b W 2b-a a< ' >F H 2b-a a ( Z ' b ) F = 0 b y 6 H ' 5 I n t h e f o l l o w i n g we a s s u m e Poincare m) If duality f : X >Y same d i m e n s i o n , Also F = H is we a s s u m e 0 satisfied theory 7.6. 11 (Spec theory that a i s a proper = J b ) — °' ' the following property (compare then U 2b-a a< ' >F [BO] 7.1.2) map b e t w e e n v a r i e t i e s Tj (cteg f ) y ofthe . i s an F - I i n e a r c a t e g o r y k,0), which i s o f c h a r a c t e r i s t i c f o r t h e Hodge t h e o r y f o r our ( F = Q) for the f i e l d zero. A l l this and t h e a-adic (F = Q ^ ) . Lemma Assume t h a t a r e reduced. If k TT : X' i s p e r f e c t a n d t h a t a l l schemes i n •X i s proper then W H X b 2b-a a( '' > — W X b 2b-aV ' > and s u r j e c t i v e , is surjective for a l l Proof. in a,b € Z. T h e r e e x i s t s a smooth s u b v a r i e t y e v e r y i r r e d u c i b l e component, TT : U' = ^ (U) 1 —•U such t h a t t h e r e s t r i c t i o n o f is faithfully c o n n e c t e d components flat. s e p a r a t e l y we may c o n n e c t e d . Then t h e r e U C X, open and dense By t r e a t i n g t h e assume t h a t U is i s a commutative diagram g with h faithfully flat, q u a s i - f i n i t e separated ( c f . [Mi] I 2.25). By Z a r i s k i ' s Main Theorem and p o s s i b l y making U') s m a l l e r we may by assumption Tj (note that image o f h is flat and f i n i t e . (and Then, m), = u assume t h a t U (deg g h)" 1 h^,, = 1 (deg h) " T r ^ i s n e c e s s a r i l y proper), (g^v ) xjn i . e . , n^ i s i n the T T ^ . By t h e commutative diagram . (deg h) X H (U',J) g*T7 „n y lT H > 2d-i ( U , d ' ~ j ) Tr , d = dim it U, A H (U,j) we see t h a t H W IT U d 2d-i< ' - 3 ) has a r i g h t i n v e r s e , so t h e c l a i m i s t r u e f o r For case X we dim X = O Otherwise = Tr^ (Z) U be exact H z b ,2Hb - a* a( ' ' > Z TT^ left the right in the 7.7. b 2b-aV ' > The the considerations as above, - - H Z = X\U 6.1 x , h 2 b-- A a <a ' - W H 5 The above. and f ) and X b ) b h2b -aa <a ' < > 7.5 by W — W — a i s surjective TT^ we obtain a H U H 2 b 2b-a a< '' > U b b2-b - a* (a '' ' > a assumption of the i s S O by t h e f i r s t step, induction, hence the surjectivity middle. Remark proper by on t h e d i m e n s i o n . diagram a W induction = X'\U'. T h e n b y commutative w by i s covered let 1 Z' proceed and Let X' X' — smooth X be p r o p e r and p r o p e r . and Then surjective by the with X above ** Im In H a (H (X',b) particular, (-,b) H^(-,b), one _ H (X,b) . a a and 6.9, with f t -> H£ (X',Q )> t where compact -W^ H f t 1 1 f The second property i t to etale = W^H i s [D5] cohomolgy the assumption of r e s o l u t i o n 1 1 ( H (X (C) ,Q) — • H ( X f ( C ) Q ) generalizes without 2 b suport obtain t respectively. o f 6.8 of the cohomology Ker(H* (X,Q ) Ker = W Q i n the s i t u a t i o n s i s the dual we >H (X,b)) a and of t (X Q 1 8.2.5, f f t ) f (X ( C ) , Q ) , and t h e arbitrary first fields, singularities. 7.8, Now c o n s i d e r a diagram o f X 7 varieties X" TT j (7.8.1) X TT with p r o p e r and s u r j e c t i v e , a smooth and p r o p e r . Then by 7.5 (7.8.2) H 2 I ( X is surjective, T H 2 I C l M ) - L £ L -> n o Ta 0 H 2 1 the ( X M ) composition -> W T W 0 H 2 1 ( X M ) • H 2 I ( X ( 1 ) 0 2 = T H . ( X , i ) 2 C l . 1T x Z (X ) ® F • Z (X) i is still the l e f t c y c l e map Q TW H .(X,i) C l . i Tirit W 7.6 X" g e t a commutative diagram 1 * Z ( X ) ® F -2—> If •-» and we ( X M ) (7.8.3) 1 and an open immersion and ® F i surjective, t h e n the s u r j e c t i v i t y i m p l i e s t h a t o f t h e r i g h t one. not e x a c t , i t i s i n g e n e r a l d i f f i c u l t Since of r t o d e c i d e when t h i s is will be the case, but i t i s o b i o u s l y t r u e , i f a) H 2 W H (X,i) Q 1 2 i is ( v i a TT^ o a*) a direct f a c t o r of ( X M ) . In t h i s case we proper c o v e r o f say t h a t 7.8.1 (or X", f o r s h o r t ) i s a good X ( f o r t h e c o n s i d e r e d homology t h e o r y In p a r t i c u l a r t h i s h o l d s t r u e , i f b) H (X",i) 2 i i s a semi-simple o b j e c t of 3. H) . ie 7.9. Theorem The Hodge c o n j e c t u r e varieties, i f i t i s true Proof. Chow's lemma a n d By given X/C jective d there X". = dim X", simple. 7.8.3 Similarly, we p r o j e c t i v e ones. singularities, 7.8.1 H 2 d with " 2 1 the Hodge c o n j e c t u r e smooth and (X"(C),Q(d for for for a X" pro- - i ) ) , semi- implies the X. have: T h e o r e m a) characteristic for a diagram arbitrary i s a p u r e p o l a r i z e d Hodge s t r u c t u r e , h e n c e By varieties for r e s o l u t i o n of H ^ ( X " ( C ) , Q (i) ) = Hodge c o n j e c t u r e 7.10. f o r smooth and exists Then i s true For zero i s true a finitely the Tate i f the generated conjecture original Tate field 7.3 for k of arbitrary conjecture 5.1 i s true smooth p r o j e c i t v e v a r i e t i e s . b) For the a finitely Tate proper generated conjecture cover X" 7.3 field i s true such that the k of characteristic for X, i f X has Tate conjecture a p > 0 good i s true for have t o show ,f X . Proof the k = 2 i 0. by By As a b o v e , we (XSQ U)) = a lemma 2 d H we " 2 1 (XSQ can the map so still in characteristic 1.1, get a diagram conjecture G^-module, knowing t h i s , cycles above arguments, singularities, a general semi-simple the o f good p r o j e c t i v e c o v e r s r e s o l u t i o n of tive. H is clear existence char and b) 7.8.2 a with zero. has 7.8 7.8.1 b) a) Namely, a right lemma projec- Grothendieck, X", should as Chow's s m o o t h and and by case by d - dim t h a t 7.8 get i n the X" of Serre (d-i)) , s o we apply. using we inverse should seen f o r the a Not absolute have be Hodge in corres- ponding realizations ticular f o r the So f a r we conjecture, 7.11. the the cycle A) cl-*8 Q B) A-* (X) j A (X) * Q := j + is = in par- f i r s t part of following three X field be k smooth, and Tate's parts. projective let > H (X,Q (J)) 2j a 0. ? for char k. then surjective, cl-* H dim generated map, Im of the [Tl]) Let j a rk A (X) = (Tate : Z (X) ft j C) s 3 discussed the consists finitely so realizations. have o n l y which cl be Q.-adic Conjecture over f o r a b s o l u t e Hodge c y c l e s and 2 j is finitely generated and G (X,Q (j)) \ a order of pole of L(H 2 j ( X , Q ) , s) at a k. a 7.12. Here dim arithmetical L-function = H x e (or Kronecker) L(V,s) t( /Q&) scheme t r . deg(k) (+1 i f char dimension of a s s o c i a t e d to the k, S k = p extends 0) and ft-adic is the "the" representation 1 S over d e f l n e d a s follows: there Z[ir] ( i f c h a r k = 0) exists or F to > 0) a smooth (if P M char k = — 2i V k = a with generic point a pure Q -Sheaf a 3 r\ = Spec k of weight 2j sucht on S and let L(V,s) = TT ye|SI 1 ZT 1 , 1 det(I-Fr (Ny) y s |? ) y s € that C, we where y € |s| i s the set of c l o s e d Ny i s the cardinality S, >c(y) of y, Frobenius, fibre with and € y ? the extends may action fact, i s the y fibre t o a smooth, S as projective 2 = R -^f^Q change theorem of ? for residue field (geometric) at y S (meaning the over y together that X —• S p e c G a l (tc ( y ) / K (y) ) ) . of ? is a and, f finite S p e c K (y) —> point t h e r e i s an take of the G a l (K (y)/*c (y) ) at a geometric In we Fr S points of : By ft ( c f . [Mi] VI above such morphism the proper 3 4.2) f : 9t — • and smooth i s smooth and S, and k then base one has a G a l (*c (y) /K (y) ) - i s o m o r p h i s m ? This i s pure conjectures L(V,s) [D9] ( 9 C x S 'V of weight [ D 8 ] . The 2j • by Deligne's proof property of the weights for Re(s) > dim d e p e n d s on S + j = dim doesn't, the choice of because argument Part varieties, 7.13. B) of the Weil assures that k + a j , cf. X be for but i n the C) can also following choices the Re(s) be generalized S - 1 + j (cf. to arbitrary form. over the finitely generated let G i > dim at quotient of (Tate c o n j e c t u r e s f o r s i n g u l a r a variety Cl the pole order loc. cit.). and Conjecture S, f o r two L-functions i s convergent Tate's Let 6t 1.4.6. + diin k a the H converges This j = y : Z.(X) > et k H^V(X,Q (i)) a varieties). field k and be t h e c y c l e map, f o r Q, * c h a r k. Then A) c l ^ftQ i s surjective, B) A ( X ) = Im c l ^ a i s f i n i t e l y g e n e r a t e d and i A.(X) ft Q H .(X,Q (i)) a 2 , a 2 1 C) r k A ( X ) = o r d e r o f p o l e o f L(H (X,Q ),s) i a at s = i + dim k. a 7.14. 21 L(V,s) f o r V = H (X,Q ) w i t h a mixed sheaf S 9 o f weights R e ( s ) > i + dim k a choice of : 3t — • U S. The e x i s t e n c e o f such a extending = U L(V,s) V over an convergent 9 of the f o l l o w s as i n t h e X —> Spec k t o a morphism and u s i n g D e l i g n e ' s g e n e r i c base change theorem q and h i s r e s u l t t h a t f o r a f i n i t e weights as above, b u t now and t h e p o l e o r d e r independent p r o o f o f 6.8.2, by e x t e n d i n g S i 2i a s b e f o r e . A g a i n t h i s s u f f i c e s t o make for f i s formed ft field H* i s mixed o f i a. I n f a c t , w i t h t h e n o t a t i o n s t h e r e we may t a k e and For 9 = R 2 1 ^ Z Q J U . smooth and p r o j e c t i v e e q u i v a l e n t : we may assume t h a t X, 7.11 and 7.13 a r e X i s connected, o f dimension d, t h e n we have j A (X) and 2 j =A ^ (X), d H (X,Q (J)) = H j a 2 d - 2 j (X,Q (d-j)), Q furthermore 2 i H (X,Q ) = H 2 1 a (X Q ) £ H f a 2 d " 2 i (X,Q (d - 2i)) a by h a r d L e f s c h e t z , hence 2 l L(H (X,Q ),s) - L ( H a case we show: 2 ( d _ l ) (X,Q ),s a + d - 2 i ) . For the singular 7.15. Theorem t Assume t h a t let has a good 0). If for H^ i) Tate B) i s true for X" and ii) Tate A) i s true for X" x X" then Tate B) i s true for X and Proof (e.g., X Consider the char k = proper dimension and cover i , and d" = dimension dim X", i . diagram G £ : G H 2 l (X",B f t X" (i))' K *' * • ». H 2 i (X,Q (i)) f t 1 k "X G By A i ( x "> assumption, End. (H 0 there . (X" ,Q End ^(H G 2 i H a e H H^ 2 ( d "" Ker _ l ) cycle on X" By the a k morphism - i))) (Poincare d u a l i t y (Kunneth a ) (X»,Q (d' a H to a Tate " x in (X",Q )(d")] (X xX ,Q (d")) corresponds 2 ( d ( TT a * . Ker G l ) i e e = = End ^(H a 2 l idempotent with (X»,Q (i))) =[H (X",Q ) 0 C i s an (i) )) n A ' ) formula), x X", so by i i ) i s the algebraic correspon- d" image o f dence a cycle E on X" construction cular, E E € z operates compatible operates 11 (X" x X ) . The u on with CH (X ) e u on (cf. [Kl] §4), i A (X ), i v i a the and we v cycle map. In have a * Ker E = Ker e fl A 1 ( X H ) = Ker(A (X 1 L F ) * A 1 ( X ) ) . Since by parti- A 1 ( X N — ) X » A^(X ) is obviously surjective, and * — X A (X ) 1 the is X > A (X ) proof an of 7.6, we isomorphism, E) ft Q (Im 7.16. = F T Remark assures i s surjective 1 that get Im E = e = H In short 2 L (X,Q F T terms, similar TT^a* Im i t i n d u c e s an Im by = r e a s o n i n g as A (X). If 1 in Q ft F T isomorphism (i)) , which shows t h e the Tate conjecture the decomposition of H 2 L (X") into claim. for W H Q 2 1 X" x X (X) F L and * K e r Tr^a i s algebraic. et 7.17. If i) Theorem T a t e C) Let X i s true have a good for X" and proper cover dimension f o r no L-function composition factor of W has a of W zero at s = H C for H it . i , and 2i ii) X" — (X",Q i + dim F T k ) the (e.g., i f a char k = p iii) > 0), and Tate B) i s true for X and then Tate C) i s true for X and Proof First jectured weight tive and we remark t h a t for the 2i characteristic p. by . y€|s| for i . i i ) i s generally of motives conj. i , which ( a ) ) , and D e l i g n e ' s fundamental are pure conof holds for posiresult in [D9] Grothendieck's formula . TT 319, f o r dimension dimension condition L-functions ( c f . [D6] X", 2 dims 1 ZZ- det(l-Fr Ny y s = TT |? ) a constructible y . , J=O Q^-sheaf 1 1 N det(l - Fr p ^ l H . f S , ? ) ) * - ' $ on S (see [SGA 4 j+l [rapport] 3.1). Here S = S x F to S mixed of and f Fr most for eigenvalue most a for Y = t h e n by [D9] 3.3.4 det(l Re(s) = m € Z o f weight m ? of Fr F . If H (S,J) - Fr P with m £ w + j IH CS,?)) has a t c one h a s ap is i s mixed c - s s ? ( f o r an = 1 at Re(s) = | ) . Instead iii') £ w, £ w + j , so t h a t zeroes i s the pull-back of i s the absolute Frobenius over of weights weights , ? P P o f i i i ) we A (Y) ® Q i > H ft shall only assume (Y,Q (i)) 2 i * a i s injective for X,X". For pole a subquotient order of L(W,s) W of at 2 1 H (X",Q )(i) l e t q C(W) be t h e s = d i m k. T h e n a s s u m p t i o n i i ) a implies c(W) ± dinu W , ^k where W^ G K i s t h e module 1 a = K e r Tr^a* C H . ( X S Q 3 n K = Ker(A CX ) sum decomposition 2 a by d u a l i z i n g , a i a By t h e a s s u m p t i o n and and by assumption of we have a G^-modules = W H Q 2 i (X,Q (i)) a © K , a decomposition Hj (XSQ U)) equalities (i) ) i H .(X",Q (i)) and, a •> A ( X ) ) , t h e n i direct of coinvariants. l e t k = H 2 i ( X i i ) and i i i ) ' inequalities: f Q we a ( I ) ) ^ 1 e K^. get the following system of c ( H 2 I ( X , \ « ( A I ) ) ) c(H = 2 I (X,Q (i)/W_ ) A V/ dim H ^ ( X + x 1 Q 1 ( I ) ) = dim G ( H 2 1 ( X F Q A ( I ) ) ^ 1 ) (X*\Q (i) I Q If lt = 1 on t h e r i g h t . c(H (X,Q (i) ) = C ( H a product F T (i)) k formula G K + dim K fi V/ + 1 and dimension rk K i , the l e f t i n e q u a l i t i e s , hence we a l s o have e q u a l i - 2 1 ( X Q ( I ) ) ^ ) , since the L-function of f a has no z e r o o r p o l e a t —i (X,Q 1 Finally, 2 l W 2 rk A (X) T a t e C) i s t r u e f o r X" i n e q u a l i t i e s are both ties k V/ A (X ) G H G = dim W H k a V/ rk a II G 2 +dim(K ) E k II H a V/ k dim C(K ) V/ i n this 1 s = dim k by t h e c o n v e r g e n t a Euler range. 7.18 Remark I f i s perhaps no s u r p r i s e t h a t homology i s t h e right setting f o r c y c l e s on s i n g u l a r v a r i e t i e s , F u l t o n Chow groups form since the a homology t h e o r y . One way wonder whether o t h e r t h e o r i e s c o u l d work f o r cohomology, e.g., t h e groups H-J^ fX,K.)- However, i n a note t o t h e a u t h o r zar 3 (2/11/87), B l o c h has g i v e n an argument t h a t t h e r e i s no c o n t r a v a r i a n t Chow t h e o r y c o i n c i d i n g w i t h CH*(X) f o r smooth X and g e n e r a t i n g a l l Hodge o r T a t e c y c l e s i n t h e cohomology of singular varieties §8. 8.1. Homology tic and K - t h e o r y We now p r o c e e d category K (see appendix A) . of singular varieties t o h i g h e r K-groups. We f i x a f i e l d o f v a r i e t i e s over k, a f i e l d z e r o , an F - I i n e a r t e n s o r c a t e g o r y F k, a of characteris- y, and a P o i n c a r e dua- Iity theory In (H*( the the : CH (X) d, then the map general, we can have K ^ (X)^ classes by f o r our a kind ded suring [Bei down a the 1] There theorem 2 ( d [SGA l " ) Grothendieck is a of pure XIV 4, c h a r a c t e r s on K cohomology group theory, c h a r a c t e r " on set of C l K^, K'-groups. axioms of and q . In for a i , coherent reasonable following (cf. also theory again and can this Namely, Poincare Chern be expressed be [Gi] duality Schechtman's paper ch Z relative Z : K (X) m compatible with (X',Z') — » (X,Z) the as Chern » c h a r a c t e r on © j>0 rH 2 j a). m " (X,j), Z contravariance i n 6.1 higher f o r morphisms on of can Gillet sheaves extenhas theory [Sche], 2.3): is a 3". (X,Q ( d - i ) ) 6] = H^.(X,Q(i)) Q I f there Chern 1 0 K (X) to Quillen's higher written a) n of map i s smooth K (X)^ "* ' = H f = i s the c f . 6.12.4 a ) . cycle in isomorphism d = values isomorphism Q i X d e f i n e d v i a Chern an CH (X) 0 X, i s an 1 be If i CH ^ (X)GQ and (X,i) Grothendieck-Riemann-Roch cycle where^ 2 i weights studied the CH (X). there d = i with we > rH i Ch (X)SiQ the section F u l t o n Chow g r o u p dimension by ,*)) it previous cl. on ,*) ,H I K-groups asand b) I f sion X i s embeddable i n a smooth v a r i e t y N (e.g., i f X i s quasi-projective), f i n e d by t h e commutative o f pure dimen- t h e map T de- diagram X K-(X) (8.1.1) M b ™ -2b< ' > m / J [ Td(M) n X K m ( M ) ** 9 rH "" (M, j ) 8 ~ 2j m jez i s independent o f (resp. e © K TH (M,u) = © X K'(X) m = K (M) m [Ql], i tcoincides ch and M i s t h e one proved by Q u i l l e n w i t h t h e cappropduct w i t h [0^] € K^(M). o f Baum, F u l t o n K-theory and Mac Pherson, g e n e r a l i z e d f T ) functors : (K*( ),KJ( )) > (rH*( ,*),rH„( ,*)) i s compatible with a l l the f u n c t o r i a l i t i e s of twisted duality theories, K-theory, This except t h a t t h e fundamental class i s c l o s e l y r e l a t e d t o t h e Riemann-Roch theorem f o r smooth A compatibility, X which one has T([0^]) T] . X w i t h de- = Td(X). i s not e x p l i c i t l y s t a t e d but which w i l l be o f some importance Poincare class of [ 0 ^ ] , i s n o t mapped t o t h e fundamental nominators; to (see [Gi] 4 . 1 ) . f a c t , t h e morphisms o f ( C h 2u s a t i s f y t h e c o m p a t i b i l i t i e s as i n t h e Riemann- higher algebraic In 2N TH " (M,N-u) M [SGA 6 ] , and t h e isomorphism f o r smooth T Roch theorem e t a l e mor- and homology. Here ro i s t h e Todd c l a s s o f c) and c o m p a t i b l e w i t h t h e c o v a r i a n c e c o n t r a v a r i a n c e ) f o r p r o p e r morphisms ( r e s p . phisms) o f Td(M) M i n [Gi], f o r us, i s t h e commuting of t h e Chern and character f o r cohomology immersions K the relative (6.1 c ) ) . Namely, one has a commutative 2j-l< > X (8.1.2) Z |ch 2J-i< > K - X (1) |ch 1 for Z C Y C X 2j-i< - > X (2) Y K Z (3) Z Jch ~ 1 f closed 2j-i-l( > X | 1 ^-rH Z of (2) i sthe functoriality commuting f o r K-theory diagram K - Y sequence T H (X, j ) — • T H ^ ( X - Z , j ) TH (X J) The with + 1 (X,j) 8 . 1 a) a b o v e , a n d 2 the o f (1) a n d ( 3 ) f o l l o w s commuting is induced long b y a map b e t w e e n exact homotopy Similarly, plement, ••• ( -* ; (8.1.3) T y ) — rH Y b r •••" ,n-2b< ' >- The k J ( I ) ' T Y commuting and a commutative > rise ; ( x ) t o t h e t o p and bottom — * V2b< X ' b >- ( u ) m J (2)' X T r H t h e open U — > — J K m-i (3)' U b m-2b< ' > ^ T r H ( Y i K J Z Y K > ° > from 8.1b), 2 1u LI I J 9 • T T HH J€Z Y ;-I< > k ,(M°,j) W c h Y ^ f f i rH?^ n + 1 (M,j) u D I" u Td(M ) r H b€Z U b m-2b< ' > • b€Z r H b m-l-2b< ' >- /1 /I com- ) o f ( 3 ) ' i s the commutativity o f U whose diagram K K (U) ch ch fibrations, U = X - Y C X o f ( 1 ) 'and ( 2 ) ' f o l l o w s commutativity that c f . [Gi] 2 . 3 4i i ) . for Y C X we h a v e k t h e two homotopy sequences give i n 8.1.2, sequences from t h e f a c t Td(M) m-l-2b ( Y ' b ) ' and t h e which f o l l o w s from t h e c o m p a t i b i l i t y o f t h e capproduct with (this Td(M) i s i m p l i e d by r e s t r i c t s to variety 8.2. M vii)) T d ( M ° ) . Here we and f [Gi] 1.2 Remark let M 0 and t h e f a c t t h a t have embedded X i n a smooth = M H U = M X Y . Our g e n e r a l s e t t i n g f o r c e s us t o a p p l y o b t a i n i n g a b e l i a n groups from t h e o b j e c t s o f u s u a l l y not e x a c t so t h a t (TH* (, *) r T is 9", and ,THie ( ,*)) for w i l l not form t w i s t e d P o i n c a r e d u a l i t y t h e o r y . However, i n t h e c a s e s we interested : 2T > Vec i n t o the category of (vH F ( f i n i t e - d i m e n s i o n a l ) v e c t o r spaces (compare remark 6.2a)) * ( ,*),vH ( and, A since t i o n , we (the are i n t h e r e i s an e x a c t , f a i t h f u l t e n s o r - f u n c t o r v F 6 ,*)) T(A) may with over v ( l ) = F. Then . . . . i s a t w i s t e d Poincare d u a l i t y = Hom (1,A) C Hom (F,vA) = vA y F r e g a r d a l l elements i n T(A) theory, i s an injec- as elements i n vA " u n d e r l y i n g F - v e c t o r space") which happen t o l i e i n t h e subspace TA. In p a r t i c u l a r , we may regard (ch,T) as mor- * phisms i n t o (vH ( ,*),vH^( , * ) ) , and t h e y a r e morphisms o f t w i s t e d P o i n c a r e d u a l i t y t h e o r i e s , except t h a t t h e l i t y between t h e fundamental c l a s s e s [# ] x and r/ compatibii s mis- x sing. 8.3. Examples, where t h e s e "Riemann-Roch t r a n s f o r m a t i o n s " exist, are a) the d - a d i c t h e o r y (6.7 and b) the Hodge t h e o r y (6.9, c) The (6.10, [Gi] 1.4 deRham t h e o r y 6.8, [Gi] 1.4 iii)), [Gi] 1.4 i v ) ) , i ) , no weights), d) r e a l i z a t i o n s f o r a b s o l u t e Hodge c y c l e s (6.11, by combining a a) - c)). The fact T-subspaces phisms t h e images 2i under and a r e c o m p a t i b l e c a n be c h e c k e d C. € H i, n and that under theories k ) , Deligne the geometric theories. cohomology,...) I n t h e above morphisms examples, of twisted Poincare l i e i nthe isomor- classes from the construction c l a s s . One may of X over k and T give also use (instead and t h e r e s t r i c t i o n ch maps rise into to actual dualities 1 r Chern ( e t a l e cohomology r Chern . where i t i s c l e a r of 8.4. and the comparison f o r the universal . (B.GL / k , i ) , iv ' t h e known c a s e o f t h e f i r s t absolute ch 1 : H ^(X QCj)) » VH (X J), f F (8.4.1) r' tfJ(X,Q(b)) : > vH (X,b), a Z since, by t h e p r o p e r t i e s o f Chern Z to characters, ch restricted ( : i ) H^ „ ( X Q ( j ) ) = K .(X) has t h e only non-trivial Jk , L Zj —1 component i n V H ( X J ) and s i m i l a r l y T ( H ( X , Q ( b ) ) ) C vH (X b), tt a a c f . [ J 2 ] 3.6b). M o r e o v e r , s i n c e f o r smooth X we h a v e f 1 i F Td(X) and = T ([0]) since there f = n + terms in © v>dim i s a commutative vH (X u) f diagram © CH-(X)H x i*o (8.4.2) f x Cl K£(X) VH 2 i (X I) , f i>0 we have r'(TJ ) 71 - € CH X Here W TJ X d i m t h e upper X T X f o r the motivic (X)» « = KJ(X) - i n 8.4.2 ( d i B 1 X fundamental ) S H^ d i f f l i s Riemann-Roch x class (X,«(dim X ) ) . transformation for Chow t h e o r y induce generalization t o study (8.4.3) 8.5. an is the r^ <8> algebraic A,b \ 8 surjective, over a number r : a,b then Hf(X,«(b)) If field, If in i s known to 6.12.4a). and § 7 we pro- ® Q F —» T H ( X , b ) . a for • Q Il * X a,b — a or char finite € Z the t field X is map Hj (X Q Cb)) f and G ) C a k. i s a variety over C that i s defined then for a l l Conjecture i i ) ) , which o f t h e maps i s a global —» r j ( H ( X ( C ) , Q ( b ) ) ) H^(X,Q(b)) surjective 8.7. k provided Conjecture 1.4 o f t h e c o n j e c t u r e s i n §5 : H^(X,Q(b)) If : and isomorphisms images k-scheme, 8.6. is F b Conjecture r [ G i ] 4.1 inverses f o r the In pose ([Fu] and a a,b X e Z. i s a variety over a number field k, then r is a,b surjective 8.8 lent Remark As : x b <( '«>( >> for a l l a,b x — € Z. e x p l a i n e d above, to the s u r j e c t i v i t y of b ( < >> these conjectures are equiva- G 6t k ~* *V (X,<B (b)) a T a,b 8 « : K b-2a< > X 8 « T a,b 8 « : K b-2a< > X 8 « b — (2ir>/=T)" W_ H (X(C) ,Q) fl F - r 2b r f 3 f ( H f a (X,b)). The next r e s u l t shows, t h a t a t l e a s t forprojective X t h e s e c o n j e c t u r e s a r e i m p l i e d by t h e c o n j e c t u r e s 5.18, 5.19 and 5.2 0 ( f o r smooth schemes). S i n c e we a r e i n t e r e s t e d i n the g e n e r a l p r i n c i p l e , we j u s t assume t h a t we have morphisms o f t w i s t e d P o i n c a r e d u a l i t y t h e o r i e s as i n 8.4.1, and c o n s i d e r the s u r j e c t i v i t y of o f pure dimension r ' . as i n 8.4.3, which f o r smooth X a, D d by P o i n c a r e d u a l i t y agrees w i t h t h e map 2d a 2d a (r = ch) ® F : H ~ (X,<Q(d-b) )®F — * TH "" (X,d-b) s t u d i e d i n §5. C o n s i d e r t h e f o l l o w i n g p r o p e r t i e s f o r o u r Poincare d u a l i t y n) theory. ( p r o j e c t i v e bundle isomorphism) The c a p p r o d u c t i n d u c e s an isomorphism © P nf n © H u=0 for 2 n a " " 2 u u ( S p e c k,n-b-u) — • H (PJ\b) a ~ a,b e TL 1 where f u € TH (ip!\n-u) ^ n~ct\) x 0 i s the cycle class m v of H the projection. f o r a hyperplane H of I P ^ and p : P £ —• Spec k is o) i 1 ( g e o m e t r i c chomology) One has for 0 * 0, and Usually H (Spec k,j) = 0 T H ( S p e c k,0) = F. n) i s one o f t h e c o n d i t i o n s needed t o o b t a i n o f Chern c l a s s e s as above, and b o t h n) and o) a theory hold f o r the examples i n 8.3. 8.9. Lemma Assume t h a t X —-—> be a c l o s e d U = IP^NX, and l e t surjective for Proof Step 1 r 2b b ® the F (D>£,b) = 0 x 1 S a n fact that 0,..,,n Step 2 ^ s o m r' ,8 a, D F o for odd for a * 2b, r Phi s m f w i t h open r a complement + o r a n d a 1 1 F is n a= * H ~ 2c, b for b = as b a s i s . a £ 2d, d = dim X, t h e morphisms n » H (PJJ,b) a are s u r j e c t i v e . I n f a c t , by n) e v e r y element o f H a i s of t h e form X. Here we used fa i H (X,b) ® a, b F o r even 1 b i s surjective for H^ (Ip£,<Q (b) ) = CH (D>£) ® Q = Q with the c l a s s of a are s a t i s f i e d . Let n ) , o) and 6.6 we g e t : a a o) be i n t e g e r s . I f U, t h e n From and subvariety a,b H (Pwb) = 0 a x TH n) n (P£,b) x c a n f ~ , and by t h e p r o j e c t i o n formula i t s u f f i c e s t o prove t h a t f has a commutative diagram n ~ c i s i n t h e image o f i^. But one n TH (X C) 2 c TH (P k,c) l 2 c I r'j Hj (X Q(c)) c r' » H^ (IP^Q(c)) f c / so we o n l y have t o prove t h a t t h e c l a s s o f image o f t h e map has = T I^ J x d e < 3 Let n c i s i n the below, which i s w e l l known ( f o r c = d x * [ H N ~ C ] * 0, and f o r use t h e p r o j e c t i o n formula Step 3 H a be even, 0 £ c £ d one one may again). 0 £ a £ 2d, t h e n by s t e p 1 we have an e x a c t sequence 0 - H a + 1 ( U , b ) - H (X,b) —> H (D>£,b) a a and hence a commutative e x a c t diagram 0 > TH a + 1 (U,b) TH (P^,b) > TH (X,b) a Q F®r' F®r ' T F®r' IP 1 F * J f J ( U , Q ( b ) ) -+ F 8 H^(X,Q(b)) F • H^ (tf>£,Q (b) ) , +1 where e i t h e r TH ( I P b ) = 0, o r e l s e a x an isomorphism and Step 4 If .(U,b) a+j. of r'. a H We ~ w and F ® r' jpfi is i ^ i s s u r j e c t i v e . This implies the claim. i s odd, 0 < a < 2d, we g e t an isomorphism • H (Z,b), so t h e c l a i m i s c l e a r by a q.e.d can extend t h e theorems 5.13, arbitrary varieties dimension a = 2b d, and l e t X. L e t X 5.15 functoriality and 5.17 t o be o f (not n e c e s s a r i l y pure) E 2 d -d-nW d x = K e r 9 < x i c A W (d) i v e > z > (d-1) x 2 be t h e E -term o f t h e Q u i l l e n s p e c t r a l sequence 6.12.5 f o r If E X i s smooth o f pure dimension 2 d -d+l^ ^ G = x ' ^ u t i n e 9 n e r a l d, we have there i s only a homomorphism ° W X E — x d,-d i< > + which might be n e i t h e r i n j e c t i v e nor s u r j e c t i v e . 8.10 Theorem Let X be a v a r i e t y o f dimension then t h e r e i s a c a n o n i c a l * where : E x d,-d i< > ^ + H 25 d over C isomorphisim H ^ 1 ( X K d - I ) ) , f i s t h e D e l i g n e homology [ B e i 1 ] , [ J 2 ] . I n p a r t i c u l a r , there i s a surjection r : KJ(X) r a f (H 2 d - 1 (X Z(d-l))) # = (2irv^l) ^ i n d u c i n g t h e map r 2 d-i d i n c o n j e c t u r e 8.6 i s t r u e f o r 8 + 1 * H 1 - 2 d 1 f .! o r (a,b) = n B e t t ^ F~ d + 1 H 2 d - 1 (X,C) homology, and (0,0),(2d-2,d-1), ( 2 d - l , d - l ) and (2d,d), hence i n g e n e r a l f o r c u r v e s . Proof If isomorphism X i s smooth o f pure dimensin d, < * > i s the a = C : l , l HJ(X,2(1)) = H ^ _ ( X Z ( d - l ) ) {X)X ° d used i n 5.13. F o r g e n e r a l subvariety ment U C X o f pure d i m e n s i o n Y = X X U tain (reduced) X f t h e r e i s a smooth open f d such t h a t t h e comple- f has d i m e n s i o n s t r i c t l y a commutative 1 l e s s than diagram 0 -> H ^ _ ( X , Z ( d - U ) - H^ 2d-l ' d-1)) - H ^ ( U Z C l ) ) (8.10.1) J / I a d 1 v v 1 0 - *l (X) d,d l^ ' H + d. We ob- f - H^ (Y Kd-U) / I Cl 2 •2 _ (U) ~d -d l< 1 *H E + f f + x € x6Y inducing the dotted second c l a i m isomorphism we needed, see [ J 2 ] 3.1. The f o l l o w s from t h e diagrams d+ 0 ^ H ( X , C ) / H ( X , Z (d-1) )+F ^H^^j.j^CX,Z (d-1) J - T 2d 2d (8.10.2) 0 J / » x / J V * 9 C A (d) ,2 (X) E The upper sequence 2 1 2 •E _ d + 1 (X)/ H^ d - 1 x • C -O (d) (X Z(d-l)) f X d,-dfl< > i n 8.10.2 i s t h e c a n o n i c a l e x a c t D e l i g n e homology sequence (see, e.g., [ J 2] 1.18 b ) ) , and t h e f a c t o r i z a t i o n and b i j e c t i v i t y o f t h e l e f t be seen by r e s t r i c t i n g do n o t change, H ^ C X , Z (d-1) )- / [ I E easily j f X (8.10.3) for ( d _ 1 ) to vertical map can U, whereby s o u r c e and t a r g e t and u s i n g 5.13. The v e r t i c a l induced by t h e Q u i l l e n s p e c t r a l sequence, map i n 8.10.3 i s since 1 E _(X) = 0 P/4 for p > d = dim X. i f we define T with T I t i s s u r j e c t i v e by lemma 8.11 by c o m m u t a t i v i t y s 2 d - i d-1 "*" P r o v e d l n t J 2 o f 8.10.3, t h e J compatibility r c f 2 d - i d-1 ^ * and t h e r e m a i n i n g c l a i m s a r e o b v i o u s : t h e (a,b) = (0,0), (2d-2,d-l) and (2d,d) remark cases amount t o t h e Hodge c o n j e c t u r e f o r t h e known c a s e s o f d i m e n s i o n d d-1 c f . theorem ( L e f s c h e t z ' theorem), Finally, (a,b) = 8.11. X f o r c u r v e s we (0,0), (1,0) Lemma o f dimension E d d have 0 (trivial), (trivial), 7.9. (X,b) ^ 0 a t most f o r a (2,1) by lemma 8.12 below. and (compare 2 and and 3.4. T h i s shows t h e s u r j e c t i v i t y o f 8.8), below, TH [Sou 3] theoreme 4 i v ) ) F o r a v a r i e t y over a f i e l d k one has Co -d+l^ = E d i -d+1^ n t n e ^ u i l 6.12.5, so t h a t t h e edge morphism l e n spectral KJ(X)-* sequence _ x d + 1 i ( ) s surjective. P r o o f We know t h a t a l l d i f f e r e n t i a l s r d from t h e line P^q p + q = 1 t o the l i n e tensoring with Q p + q = 0 ( S o u l e ' s r e s u l t used 6.12.4 a ) ) . On t h e o t h e r hand we T - <-d i<*>> + - x € ; x t A where k x i s t h e group r I 2 after f o r the proof of have -vex) = x e x x (d) >x (d) < of r o o t s of u n i t y i n a f i e l d i s the a l g e b r a i c c l o s u r e of normalization of vanish for k in X, t h e n t h e commutative K ( X ) . Let diagram L X and be the © X K (Ic ) 1 > KJ(X) x > KJ(X) (d) 1 x s • <l< *(d) P e c k I > 5,-d l<*> E x> E > d,-d+lW + o b t a i n e d from t h e c o v a r i a n c e o f Q u i l l e n ' s s p e c t r a l for sequence f i n i t e morphisms and i t s c o n t r a v a r i a n c e f o r f l a t mor- phisms, shows t h a t 8 jx x€X,, x (d) lies i n t h e image o f t h e r i g h t x v e r t i c a l map, hence t h e d i f f e r e n t i a l s a l s o v a n i s h on t h e t o r s i o n subgroup o f 8.12. Lemma weights Proof d + 1 (X) f o r r > 2. F o r a t w i s t e d Poincare d u a l i t y t h e o r y w i t h one has b 2 a - d, _ FH (X,b) a * 0 a t most f o r a I 2b I 0 and d = dim X, hence i n t h e t r i a n g l e i n d i c a t e d below: (compare 5.11) I n view o f 6.5 we must have 2b - a 0 £ 2b 2b - a < 0 £ 2b - 2 ( a - d) £ Note, t h a t f o r smooth 8.12.1 i s t r a n s f o r m e d by u s i n g P o i n c a r e and X a £ d, o r and a I o f pure dimension d. d t h e diagram i n t o 5.11.1 v i a (a,b) •—» (2d - a,d - b) duality. 8.13. Theorem L e t X be a v a r i e t y o f dimension generated a) There a r e c a n o n i c a l homomorphisms f o r a l l * 1 E field k, and l e t a * finitely ( x ) / a n d,-d+i — ' H^ char k n - 1 d (X,Z/a (d over a be a prime, n 2 1 - 1) ) , c o m p a t i b l e w i t h t h e t r a n s i t i o n maps f o r d i f f e r e n t n, such that t h e i n d u c e d map * i s an : E x 1 d,-d i< >~ = ^ m E + x d,-d i( >/ a n + - H^ (X Z Cd-I)) 1 f a isomorphism. b) The r e s t r i c t i o n H is 2d-i ( x d 'V ~ 1 ) ) H — * 2d-i ( x z ( d ' a ~ 1 ) ) G ) C surjective. c) The i n d u c e d map K x i< > — E x d,-d+i( > coincides with In particular, (2d-l,d-l) — * SS-I < ' V - ^ H x d i 6 f c T_,, o , • 2a-l,a-1 c o n j e c t u r e 8.5 i s t r u e f o r and (a,b) = (0,0), (2d,d), hence f o r c u r v e s i n g e n e r a l . Proof T h i s f o l l o w s as i n 8.10: Choosing a r e d e f i n e d by t h e commutative e x a c t U diagram as t h e r e , t h e <p o^H^ n - 1 (x,z/a (d-i)) - H ^ E — j n X d,-d l< > + E — n u j <f (8.13.1) 0 n (u, z / a ( d - i ) ) ^ H * _ ( Y , z / a ( d - i ) ) 1 j Cl 5.15 U d,-d l< > 'v€ Y + x t where we have used t h a t 2 n H^ (Y Z/Jl (b)) = O a Z < *(d-1) for f a > 2d - 2 > 2 dim Y ( c f . 8.13.3 below). P a s s i n g t o t h e inverse l i m i t over n i n t h e t o p row and t h e pro-Q.-com- p l e t i o n s i n t h e bottom row, we o b t a i n a commutative diagram 0^5_ (X,Z (d-l) 1 I O-Hj^ G ) c a 1 r e s - H^ - : L 1 (X,Z (d-1) - H*^ a E - d f r e s (U Z f / -> G k a X (8.13.2)| <p 0 (U,Z (d-l)) - d j + — H^_ (Y,Z (d-l)) 2 I I U ft (d-1)) - H^_ u i ( f / 5.15a) ^ —> r e s Y (Y Z 2 G k a ft (d-1)) j Cl • \ (d-1) w i t h e x a c t tows: t h e t o p row i s e x a c t by t h e l e f t - e x a c t n e s s o f t a k i n g f i x e d modules, t h e middle one by t h e l e f t - e x a c t n e s s o f passing to the inverse l i m i t , and t h e e x a c t n e s s o f t h e bottom row f o l l o w s from 8.13.1 and t h e f a c t t h a t © XE Z f i n i t e l y g e n e r a t e d t o r s i o n - f r e e . The b i j e c t i v i t y f o l l o w s from t h e f a c t t h a t e t is V-U of res y n H (Y,Z/a (b)) = 0 for a a > 2 dim Y, v i a t h e H o c h s c h i l d - S e r r e s p e c t r a l sequence (8.13.3) n = H (G ,H^(Y,Z/a (b))) q P fiP' * H^_ (Y Z/a (b) ) n k q f The isomorphism (8.13.4) © v€Y Y Z/a (a) n — n > H^(Y,Z/a (a) ) , ~ a 1 dim Y, i s well-known; v i a t h e r e l a t i v e homology sequence and P o i n c a r e d u a l i t y that canoincally i t can e a s i l y be reduced t o t h e statement Z/a Puttirg this together reSy ( c f . 6.1 f ) ) n ——> H^ (Y,Z/Q. ) n for Y t smooth and connected. we o b t a i n t h e statements a) and b) , s i n c e i s surjective, as we have seen i n t h e p r o o f o f 5.15 ( t o g e t h e r w i t h 5.16 b ) ) . lity The first of T c l a i m i n c) f o l l o w s as i n 8.10: by c o m p a t i b i - and t h e o t h e r maps i n v o l v e d w i t h r e s t r i c t i o n t o and w i t h P o i n c a r e d u a l i t y , x K (U) is 5 - 1 5 a 1 o(u) the f i r s t Chern c l a s s U i t s u f f i c e s t o remark t h a t 1 )—> n 1 n H (u,z/a (i) — » H (u,z/a (i)) C 1 «. . F o r t h e f o l l o w i n g , k diagram 8.10.2 i s r e p l a c e d by t h e diagram 0 1 "* c o n t V 2 d H ( (8.13.5) 0 H G ( X Z ' a ( d " 1 ) ) j / ( X 2 ' a ( d " 1 , ) "* 2 d - l H j * E ~ " v,V (d) x H "* 2d-l X ' d,-d.l( )^ "" E - X ( d,-d l( )/® (d) + H " cont«V k 'V l j 1 i x t x ( G V ** (d) 9 > ^ (d) i n d u c e d by Kummer t h e o r y ( c f . 5.16 b ) ; n o t a t i o n s as i n t h e p r o o f o f 8.11). The e x a c t n e s s o f t h e lower sequence f o l l o w s from t h e f a c t h a t 2 E, , k 1 } ) v e r t i c a l map comes form t h e isomorphisms 1 H ( d x e x Hjont^k'^d^'V*- ))) • cont (d) Z ' a / I x i n which t h e l e f t = ( X x k (X)/ ® X t X (d) i n 8.13.5 isa finitely "> °> g e n e r a t e d , t o r s i o n - f r e e group, 0 — E d -d+l ( X ) / 9 k x e x x (d) E — d which v i a t h e e x a c t sequence ( U -d+l >/ 9 k x t u f o l l o w s from t h e c o r r e s p o n d i n g s t a t e m e n t proof of 9 x -» (d) for x t Y (d-l) U, p r o v e d i n the 5.15. Hence the c o m p o s i t i o n K (X) • Z i - ~ a is surjective, # d + 1 (X) • Z (0,0) for or (a,b) = — ~ (2d,d) Q H ft 2 d _ (X,Z (d-l)) we again are t r i v i a l t i o n s o f s i n g u l a r i t i e s , we i n s t e a d . The case 1 G k a o b t a i n the ( 2 d - l , d - l ) . The o f t h e T a t e c o n j e c t u r e . S i n c e we directly a and by t e n s o r i n g w i t h o f c o n j e c t u r e 8.5 (a,b) = Ej _ claim cases cases, t h i s time do not want t o assume r e s o l u - cannot a p p l y 7.10 (2d,d) but proceed f o l l o w s from t h e isomor- phism • X € X \ (0,0) we know the c l a i m f o r p r o c e e d by d > 1, choose UCX i n d u c t i o n on d = 0 (above) and have r e s o l u t i o n o f s i n g u l a r i t i e s and exact G k a (d) used above. For We > H^(X,Z (d)) 7.8 d = 1 b) as above, and a f f i n e . for d = dim X. (by 7.10; we i = 0). For Then we have an sequence H 1 C U f I A ( O ) ) - H (Y, Q Z (O)) a H (X, Q Z ( O ) ) -> H (U,Z (0) ) a I/ H 2 d ft q I/ 1 " (U,Z (d)) =0 a 0 = H 2 d (U,Z (d)) a 1 since H (U Z f reduces §9. (J)) = O Extension classes, interesting non-trivial weight 9.0. affine and i > d i m U. and hence t o s m a l l e r algebraic cycles, f e a t u r e o f mixed extensions F o r example, Poincare let closed p) Y U This dimension. and t h e c a s e i = 2j - 1 structures i s the existence - i n particular those belonging to the filtration. twisted and for the question to The of f t z l e tas b e f o r e duality be a c y c l e subvariety Z theory ( H * ( ,*) , H*( with of dimension H (Z,b) = 0 be a weights, let X i , supported on X o f t h e same d i m e n s i o n . ( c f . [BO] 7.1.1) ,*)) for I f we be a T-valued variety, on a assume a > 2 dim Z a (by 6.5 in a) t h i s the d e f i n i t i o n then we with 2 i *H U = X\Z (Z,i) valent case 0 i + 1 ^H . The c y c l e f on X 2 i (Z D) , then 0 —> and d e f i n e s an e l e m e n t thus the f i e l d f o r t h e examples (X,i) i + 1 (U,i) > H c l ( z ) on , and i f f (9.0.2) 2 i + 1 2 class z F i n § 6), —> rise t o an E —> i Ci (z) 1 —> in Z 2 j .(Z i) f 6(c£(z)) extension 0 , H ( X f I ) i s an e l e m e n t i n i s homologically by d e f i n i t i o n v i a pull-back gives H tensoring with sequence (X,i) = Hom^d H to zero z 2 true after 6.5, a n d i t i s t r u e g e t an e x a c t (9.0.1) TH i s always equi- = 0 . In this , Ext}(1fH Let (X)Q are (9.0.3) while oV : Z (X) i the c y c l e (9.0.4) 9.1. ci map H 2 j where " 1 2 j 1 V H i s now map on a space the cycles which prescription 2 j " , rH 2 i (X,i) of pure dimension corresponds to the 1 (U,j) — ^ H 2 j (X,j) d , then diagram — ^ H 2 j (X,j) 0. l (X,j) Abel-Jacobi In view by 2 class b) formed homomorphism t h e above U j = d - i c£' (X,i) t h e n t h e above (X,i) i s smooth Il H 2 i + 1 > 0 X (X,j) — > fundamental (9.1.2) If duality (9.1.1) 0 —> i a) Poincare 0 —> 1 R rH : Z (X)ZZ (X) Remarks Z^(X) to zero, induces a i 2 i + 1 map —> Q = : R TH of equivalent an A b e l - J a c o b i 1 (X,i)) the subgroup homologically defines by be 2 i + 1 of z i s an element c a n be w r i t t e n 3 : Z (X) of the (site the codimension of the c y c l e 1 0 ^R TH formula ...) H ( T , A ) : = E x t i l ( 1 , A) T of the , and the as 2 j 1 (X,j) V H (T,F) = E x t ^ ( Z,F) , i t i s sometimes f o r an 2 TH -Mx,j) and object A of f o r a sheaf suggestive T , while to F write V RY reminds of taking If by T the has v-th enough right derivative i n f e c t i v e s , one injective resolutions; can otherwise of T( in fact we have ) = Horned, compute to take ) = H°(T, Ext^d -) f the Yoneda Ext groups. c) The above can already For 9.2. r e l a t i o n between be found Hodge Lemma in theory For [D6] we cycles extensions (or torsons) 4.3. recover a mixed and Hodge the classical structure H Abel-Jacobi there is a map. canonical isomorphism (9.2.1) and for Ext J J a J W ( Z,H) smooth j of coincides means t h e Q 9.2.1 or i s to by We it also can First preimage be note be that assume t h a t (9.2.3) side Ext J J H =O f hand W by to of ( Z,H) 1 " 1 of W H Q in the —>• H this from a ® Q , the homomorphism Abel-Jacobi H sense (C) from H / T o r (H) , and that the H results of papers , and Then, i f we ( E W ' Q ) — * J( on for H in ® (C 9.2.2) . Carlson H' write a morphism H 1 [Ca], [Bei 2]. E x t ^ ( 2Z,H') lattice. MH " quotient [ B e i 1] , structure E x t 2 j (Here acts ; similarly Hodge obtain +F H map. torsion 9.2.1, we j Z(2TT/=T) ) Beilinson's © G Z CC in ® ® J (X, classical = Tor(H) —> 2 j over the deduce is a Q X (X,(C)/H Im(H for H Q either obtained = Ext^k( Z H ) right H show how 1 may taken replacing Proof with 0 (C/W H + F W H Z variety H "" 0 ® Q 2j Z (X) W H W H proper (9.2.2) 9.1.2 s W Q of H) , hence J(H) functors = J(H) for we the by sending an extension 0 —> to the serving W H the 0 is split the be > H' > E' W E' the of 9.0.3 classical 9.3. Remarks exact E x t 0 > and an MH ( [EV] first left map , map in to (C ^ » 9.2.3 n = Q 9.2.3 0 class (E , iso- any extension , i s an isomorphism l o c . c i t . 2d 7.11, where E l Zein a n d Zucker, and 9.2.3, a n d [J2] map mixed is § ; a the Abel-Jacobi which 1, complete amounts where the to 8 (A,B) proof structures A and B Ext Jj (A B) j w E x t ^ (A,B) 7 Q > Horn (A,B) of Ext^_ and a > E M W (A ® maps > TL ©/B an ® (B) . extension > 0 can map is the com- one >• 0 has , de- with shown. Hodge i s obvious, 0 push-out ® by agreement isomorphism iw pre- of i s an Z,H/W H) : W H' the inverse in w 0 ® n Ext^ ( of 7 morphism the W E is a z =0= compare ^Hom(A B)) j to of then [Ca]. claim For and sequence Ext J The in Abel-Jacobi a) > second combining v i a a method the an as second by > TL TL — 0 r The w . The Q obtained position 4). Hom ^ ( Z , H / W Q H ) same a r g u m e n t s fined lemma 0 inverse and since by For right filtration, j —> Q is a T ( c f . [Ca] Q morphism S^ Hodge W E Q —>• W E Q , where TL — > E 0 —* W H extension r_os„ of H O > Hpm(AzB) ® A via the evaluation b) One h a s map = O f also is c l e a r from t h e e x p l i c i t smooth; for i ^ 2 . This from t h e r i g h t - e x a c t n e s s now t u r n to the t h e n we o b t a i n > O B . f it We follows > A Hom(A B) ® A — > ExtjJj (A B) w > E ® A description £-adic of i s proved i n [Bei Ext J (A B) j w 2]; , which f above. realizations. First let X be a homomorphism Z (X) -^Ext I j c 0 ( Z H £ f 2 j " 1 ~ 1 (X, Z j l X ( (J))) (9.4.1) = 9.4. Lemma T h e map a b o v e z j ( x (see K e r ( H (cf. P'<3 = H P E ( G o n f c cont ( G k' H^ n t spectral k H ( X ' V J ) ) i the discussion This will A ' V ( Z ' * j ) ) ) map Z (J)) i J ) ) . H ^ f X , Z (J)) 4 morphism * H Iont ( G i n [ J 1 ] 6.15). follow • sequence , ( X , Tl (J))) ^ J by t h e c y c l e (X, [ J 1 ] 3.5 b ) ) , i . e . , b y t h e e d g e cont 2 i s induced _> ) and t h e H o c h s c h i l d - S e r r e (9.4.1) H from t h e next general fact. k' H 2 J " 1 ( ^' V J ) ) ) 9.5. Lemma Let A be an a b e l i a n c a t e g o r y with enough injectives and l e t 0 —> be f an e x a c t : A — > and sequence 8 o f bounded be a l e f t d e n o t e by terms A" •—>• B" — ^ - C" — > F 1 exact P q (9.5. 1 ) = R fH (K') for below homology of K* Fix an n G % exact at the P + q K* q-th i n another filtration spectral =>IR complex complexes functor into the decreasing by t h e h y p e r c o h o m o l o g y a bounded below 0 A . Let abelian induced category on t h e l i m i t sequence fK- i n A (here q H (K*) i s the place) . and l e t X = K e r d and Y = Im 3 i n the long seguence Let Y' = p 1 n (fY) 1 = a * ( F 3R fB') n i n t h e commutative diagram F 1 n F >nR fB* n > fH (B*) /T A (9.5.3) n IR fB' — • > IR f A IR f A \ ^ fH (A ) Ul \ Y' with a* exact , and from rows. let As :F the spectral Then indicated, 1 n ]R fB* sequence let 1 —> > fY T n R fH ~ 1 be the arrow (B*) be induced t h e edge morphii 9.5.1. the diagram fY (9.5.4) ^ W f X 1 Y' R f (TT) ^ commutes, where 5 F 1 n 3R fB' i s the connecting — ^ - T >f VH u R morphism n - 1 /u'(B") f o r the exact quence (9.5.5 ) Proof We by 0 —> X —> may assume components. Consider n H " 1 that (C') — > A" , Y —> B* the commutative and 0 . C" have diagram with injective exact rows se .n+1 (9.5.6) d A d n-1 This induces n-1 a commutative C n-1 diagram with exact a"' n 1 Im d 1 0 - H " (B-) rows B Ul Ul (9.5.7) n 0 + Ker d V i m d B B n 2 B + (d* S + We o b t a i n a commutative film 1 Im a/Im d " n _ 1 2 B Ker d / I m d " " C C ^ Im a fl Ini d " 1 ^ R 1 n f H _ 1 ( B - ) JD j (9.5.8) Il 1 f ( l m a n Im d £ ~ ) 1 n 1 R f H " (B*) JD 1 R f (TT) V fY V 1 -^- R fx 1 B ^ 0 2 diagram f o r the connecting d!T > n-1 morphisms By the assumption 0 + 1 F 1 g e t a commutative e x a c t n -> 1 = f (a)" d < B~ one + 1 ) for we have seen 1 f(dg)/Im f(dg~ ) + f(Ker , g i v i n g a canonical n 1 = f (Im a 9.5.4 d£/Im isomorphism fl Im d £ ~ ) / f ( a ) (Im f ( d ~ 1 n A JD i s obtained from 1 dg~ ) 9.5.8 via factorization, once that is commutative. B" , then 1 n }R fB- Let n 1 n n - 1 B # 1 # (B ) increasing filtration by t h e i s o m o r p h i s m = Im ( l R f T .B' n-1 nR "" f(B'/T n R fH " n ]R fB' n 1 -^U be t h e c a n o n i c a l i s given nR fx Il A F by r 1 the diagram (note t h a t e (f Im d J T ) / l m f ( d ~ ) So 1 K A' B F -> f H ( B ' ) M f diagram n IR fB* ^ a similar induced we n 0 + f Im d g ' V l m Y B* 3R fB* (9.5.9) and on -B*) n-1 —J^IR f(H " n n = 0) 1 - n *!R fB') n s 3R f T B* n-i 1 and t h e morphism ( B ) [-n+1]) = 1 n 1 R fH ~ (B') of T ^. ,B n-1 ^n-3 : ... B ^n-2 —>- B v —> v ,n-1 Ker d fcs _ O D v v v v n H " 1 (B* ) [ - n + 1 3 : ... O Diagram (9.5.10) i s now diagram i n the derived —> O obtained by n H " 1 (B * ) n applying 3R f O to the category n-1 T B* n-1 Im obtained Im T d dg 1 9.6. -n] diagram Im .n-2 a (B ) [ - n + where [ (B') [ - n + 1 ] [ - n] B B n 1 from the commutative n-1 * H H 1 —^> To stands obtain _ n-1 B /Ker -,n-1 d R f o r a quasiisomorphism. 9.4, we apply 9.5 n-1 B n-1 Im d: B .n-1 1] d to the exact n-1 Im d: B q.e.d. triangle commutative (9.6.1) Rg*v*Rv associated ! TL (J) Rg* Z ( j ) — ^ — ^ i Rg*RP*P* Z £ j l (J) to the diagram v y Z X U = x\z Speck If Z ( j ) <—> etale I* i s a resolution s h e a v e s on [J1] 6.9), X 9.6.1 (i.e., by injective injective i s represented by objects pro-£-systems in S(X the short exact ) g t of , see sequence of complexes (9.6.2) ! 0 —> g*v*v I* —> g*I* —> g ^ y * I ' —> 0 TL 1 whose c o m p o n e n t s fying are i n j e c t i v e noetherian R e p ( G ^ , TL ) c , the long ... E ' (X, TL (j)) N £-adic 1 —^H N V/ 1 objects sheaves on exact JL H J g t 9.5.2 ) e t . Identi- with objects i n then is H"(X, 2Z ^( j ) ) — > K (X , % (j) ) — 5 - ... % S the continuous . (X, Z „ ( j ) ) cont x, S(Speck V R while Speck sequence CU, B (J)) — > in and cohomology groups over H* . (U, Z ( J ) ) cont x, r t , and k , their H c o n t z (X relative r , cohomology sequence, 9.6.1 i s obtained by R H applying G t C > cont* k'~* 0 f = I^m H ( G , - ) t o the sequence n a s s o c i a t e d long exact cohomology sequence. the (i.e., Now 0 — > an e l e m e n t n R —> G via the pull-back H " (U, Z 1 of the h e t r i a n 9.6.2) a n d k by d e f i n i t i o n t l S e taking extension S — > (j) ) — > 0 k z f. S l = Hom_ ( Z S) G l morphism corresponds nf to the image k of z under the c o n n e c t i n g k S and by 9.5 this sequence (which sequence for 9.7. ( 9 7 - * image by Remarks definition a) 2Z/£ (j) H cont ( G k' R n ( and u s u a l Z ' r £ ( j , ) , 0 k v i a the Hochschild-Serre i n the claimed from t h i s X = E x t I ( 2Z ,R) G £ i s the hypercohomology Similar results r c a n be d e d u c e d 1 ) i s obtained Rg^ Z^ ( j ) ) coefficients above > HL. (G,,R) cont K hold spectral way. of course for finite e t a l e cohomology, s i n c e one = spectral and the result has 1 n r H (G ,H (X, 2Z/* (j))) k r (because 1 1 I^m r 1 n r H ° ( G , H ( X , Z/£ (j)) k n r H " ( G , H ( X , Z/£ (j))) is infinite k this is formula cohomology of H 1 passing 9.5, limit). H = Ijm H r , c f . [J1 ] 2 . 1 ) . I f (e.g., G cont* k'~^ sequence 1 limit f o r number ' 1 > f o r the r (X, 2 Z / £ ( j ) ) F o r t h e same r e a s o n , to the inverse so I have for spectral (X, Z ( j ) ) £ the inverse with of becomes f a l s e no H o c h s c h i l d - S e r r e = 0 one 9.4.1. ' a n d t "naive" n e r e £-adic (by t h e n o n - e x a c t n e s s i n the various p r e f e r r e d t o work w i t h 1 fields), has t o be exact careful sequences b) For possibly for homology, (9.7.2) and the E?^ = P H finite Q n t a similar o n t <G ,H k 2 i+ 1 (X, spectral r Z/£ (i) defined as h y p e r c o h o m o l o g y - H°°^(X, Z,(i)) , etale dualizing complex is as above, proved Rg* is TL/1 (- i) defined by H (X,Rg* TLfl the sequence H . R TLfl (I)) (X, r theory i n 9.6 ; the spectral homology 1 duality replacing map sequence" q coefficients holds £ <G ,H_ (X, I , ( i ) > > k i n 9.4 Z (i))> —a is s t a t e m e n t as of the Abel-Jacobi Hj 0 X "Hochschild-Serre (9.7.3) For i n terms .(X) Z singular ( - i) ) of the ( c f . 6.7). sheaf 9.7.3 twisted Everything Z^ (j) by (for finite coefficients) by d e f i n i t i o n the hypercohomology s p e c t r a l sequence f o r r O TL/l ( - i ) and ( t h e d e r i v a t i v e s o f ) t h e f u n c t o r H (Gj '"") t i i one u s e s t h e r e l a t i o n s Rg*v*Rv*Rg" = R(g )*Rg^* and 1 R R g* g* and c 1 Rg*Ry*y*Rg For ! = R(g )*Rg2 2 TL ^ - c o e f f i c i e n t s o n e h in D • (S(X complexes e t ^ P ) ) Rg* uses a certain complex b , whose components TL/1 ( - i) above, in and D Rg" Z^(-i) )) are the r (S (X fifc , TL/1 i t s continuous etale hyper- a cycle map i cohomology. Cl = Z (X) 1 we refer c) The G Z H I IX, Hodge of has fits shown i s associated n t (X,Rf and ! J 4 I - D I paper [ J 5 ] . into that a Z^ ( - i ) - H-2 1 to a future also Rg* Z U)) 2 theory [ B e i 2] there nt 0 — the reader Beilinson j For the existence t h e scheme o f t o each v a r i e t y complex 9.5. X Namely, over (C and i b RT(X, Z ( j ) ) of mixed is just Hodge s t r u c t u r e s such the singular structures (9.7.4) and such that cohomology that the H r 1 f o N the exact 1 r i = coming 2 N - H£(X,Z(J)) spectral r ^ H ( X , TL(J)) sequence ( c f . 9.3 b ) ) c o i n c i d e w i t h from the usual d e f i n i t i o n - O and t h e v a n i s h i n g the exact se- of Deligne cohomology (*) a n d [ E V ] 2.10 a)) , v i a t h e i s o m o r p h i s m s 9.2.1 a n d relation (9.7.6) T H = Hom H a mixed There Hodge M H ( TL(O) ,H) s W H Q structure RT 2 are versions with b D (MH) = r^H^(X, (X, TL(J) ) > RT (X n F ° H 0 CC H . support, H o d g e v e r s i o n o f 9.1.1 i s i n d u c e d in Z ( j ) ) f o r n ^ 2j . sequences t h e hypercohomology 1.6 of cohomology H ( [ B e i 1] for case 1 quences the the Deligne O + R r H ~ ( X , TL(J)) T ^ Hodge D i n this from i t s mixed n D (MH) with (9.7.5) with H ( TL (o) ,RT (X , TL ( j ) ) ) w Moreover n - t h homology (X, TL) ( j ) R r R T (X, S ( j ) ) : = RHom . coincides of n i t s n - t h homology " coming € D (MH) f and by t h e c y c l e Z ( j ) ) . The l a t t e r by an e x a c t TL(J)) class f o r homology e t c . , andt h e triangle > RT ( U Z ( J ) f of z in defines a cycle H^ z map (X, ZZ ( j ) ) Cl whose c o m p o s i t i o n mology discussed commutative O d with Hp (X, Z(J)) e before. i s t h e c y c l e map By 9.5 compare 2 j 1 We 1 hold cont ( X map f into a j f o r homology 2 j -> T H w If X (X, Z(J)) i s no ( l o c . c i t . and (compare 1 Cl Z(J)) [ B e i 2] 5.2. with [ B e i 4] G^-action longer O , smooth, similar [J2]). 3.0): H 1 (X(CC) , Z ( j ) ) w i t h theories J) H ' V > P ( X ' a ^ ) ) connection short Hochschild-Serre spectral fits theories (X, 2 L ^ ( j ) ) absolute H 1.9, •+ HpiX get the analogy geometric H ( X , Z(J)) [Bei1] statements s i n g u l a r coho- Z (X)/Z (X) Cl 1 w j + j Cl 1 the Abel-Jacobi Z (X) Z (X), O + R T H into diagram j + j Z (X) : v sequence 9.4.1 exact sequence 9.7.5 Hodge s t r u c t u r e with 1 the difference that R T. Vj k = . (G, , -) conu. 1 vanish to for this i ^ 2 , e.g.,i f k point later Now we w a n t and on with setting weights i s a global field. of the previous o f an (F F-Iinear a field does n o t We s h a l l return i n 11.4 c ) o r 1 2 . 1 9 ) . t o show t h e c o n n e c t i o n the conjectures general (e.g., i n general between chapters. twisted extension We g o b a c k Poincare of characteristic classes t o the duality zero) theory and t r a n s f o r - mations r = r' as c h : H i , j = T f a M,Z ( X ' Q ( j ) ) r -+ z : H^(X,Q(b)) ( X ' j ) TH (X,b) a i n 8.4, a n d we s u p p o s e t h a t map H these a r e compatible with the cycle a s i n 8.4.2. 9.8. Lemma Let X be smooth and proper let Z c X be o f c o d i m e n s i o n ^ j , then o f pure there dimension d and i s a commutative diagram TH 2 j 1 (U,j) rH 2 j (x,j) ci (9.8.1) 1 R rH (3) CH^(X) (1) ^ 0 0 2 j 1 " (X,j) ci ' ® F CH j (X) Q ® F 2D-1 ch (2) ch 2j,j 2 j H " where 1 (U (DCj) ) ® F -> H f c i ' i s induced 2j,j 2 J z (X,Q(j) ) Q ® F by t h e A b e l - J a c o b i H 2 j (X,(D(j) ) map 9.0.3, Q ® F , A^ r and TH ( X , j ) ) f o rthe various t h e t o p e x a c t sequence sequence (Note - 1) ch associated 2j 0 — > H "" that TH 2 j 1 i s part to the short (X,j) — > 1 " (X,j) H 2 j = 0 " o f the long exact 1 groups 2 j H f H i n t h e diagram, exact Ext^(1,-)- sequence (U J) since A 2 j (X,j) 1 " (X j) — ^ Q 0 . i s pure f o f weight . Proof T h e c o m m u t a t i v i t y o f (1) f o l l o w s with the relative = ch by J = K e r (A — > . 0 by a s s u m p t i o n . definition = CH .(Z) n Hence © F = Similarly, / M the compatibility of ci ° ^ 2 j j i s commutative, map 9.0.3 o n (explicit n c since CH^(X) n and 6 o ci © F description of the con- ( 6 i n the long (3) i s c o m m u t a t i v e sequence (2) ( Q » ) 0 F x€X 3»nZ ° morphism factorizes sequences, i s the Abel-Jacobi 0 necting cohomology from once through r a t i o n a l we h a v e seen that the Abel-Jacobi e q u i v a l e n c e . B u t by t h e b o t t o m 2j a n d (2) t h e i m a g e o f ( ®/-\ Z) © F X€X J'DZ e x a c t E x t - s e q u e n c e , compare 3.$ a b o v e ) H *" i s t h e subgroup 1 (U ,(D ( j ) ) © F map exact in g e n e r a t e d by c y c l e s linearly v equivalent Since Z cycles in 9.9. to zero, i s arbitrary, Z^(X) Lemma the examples 8 . 3 ) . q) For irreducible " 1 — * shows t h e f a c t o r i z a t i o n The m i d d l e v e r t i c a l assumption Z this H for a l l map i n 9.8.1 i s a n i s o m o r p h i s m p) a n d t h e f o l l o w i n g Z 6 ° ci . . n the n a n d b y (2) i t i s mapped t o z e r o u n d e r e 2e^ ' ^ Z i s a one (which o f dimension n i s o m o r P n i s m ' e a n d i s satisfied for t h e fundamental r (1) = F . class under Proof We have TH 2 j (X J) = TH f ..(Z,d- j) = 2(d- ) © 0 D -^- ( xEX reduces j © TL) % F = C H ( X ) ( j ) ® F (by u s i n g x e z 6.1 F ( Q ) f ) a n d p) one OZ t o the case that Z i s disjoint union of i t s irreducible components). 9.10. let Corollary Z cz X be o f p u r e c h is Assume 2 surjective j _ n . :H on injective : CH j and q ) . L e t codimension " 1 j X be s m o o t h , and l e t 2j (U ,Q(J) ) ® F — > i f and o n l y C^ is 2 j p) (X) 1 ® F on t h e subgroup > R TH generated 2 j proper, = X-Z . Then 1 TH "* ( U J ) f i f the Abel-Jacobi 0 U and " 1 map (X j) f by t h e c y c l e s with support Z . Proof This jectivity follows immediately of the middle from vertical diagram map 9.8.1 (without and t h e b i - restriction X is connected). 9.11. C o r o l l a r y F o r smooth v a r i e t i e s U over (E the Chern character C h 2j-1 j : H f is i n general jecture Proof J M " 1 ( U ( '® J>> not s u r j e c t i v e of Beilinson, The complex — ^ for T (H h j ^ 2 2 j " 1 (U Q(J))) f (This disproves a con- [ B e i 2] C o n j e c t u r e 6 ) . A b e l - J a c o b i map i s known t o be injective for j = but 1 (this Mumford gives h a s shown codimension and be proper j ^ 2 (9.11.1) For AQ(X) e k = CC i t i s i n general CHQ(X) 1 2 j = H j-th intermediate of the Abel-Jacobi (9.11.2) p (X) (in T(X) O => : For a k let smooth Alb(X) 1 T(X) j for ® of c y c l e s of degree (X, Z ( J ) )+ F H Jacobian. and , zero. J ^ ( X ) , where (X,CC)/H ~ map, > ([Mu]) a field Alb(X)(k)) i s the subgroup J (X) the over A l b ( X ) (CC) " not i n j e c t i v e f o r to torsion d —> Q is up Q-rationally), and l e t = Ker(A (X) 2 j for 5.13, at least of dimension one has J that variety T(X) proof , n o t even variety the Albanese where a new (B * d Hence = 2 2 j " 1 (X,(C) T(X) Mumford i s the kernel shows O 9 fact, is the geometric by Roitman i s huge [Ro 1 ] (9.11.3) H°(X,^) * should 1 Mumford s fined fields and i t i s expected number fields. conjectured fields O k X p that > 5 . 2 0 be counterexample of higher the following . This ( X ) = dim.H g (C was 2 T(X) ® true? transcendence The Q and B e i l i n s o n have ) f x and zero: * O . answer i s t h e ("generic i s completely ([Bei4] 5 . 6 ) : d c y c l e s which degree (X O generalized for arbitrary involves the s i t u a t i o n Namely, B l o c h p of characteristic f o r some conjecture following. over where to the following result uncountable why case), genus o f t h e s u r f a c e arbitrary Now i n this a r e decycles") different independently over 9.12. Conjecture complex For Abel-Jacobi a injective up to proper variety X over Q the map CH is smooth, j (X) > 0 torsion J j (XX CC) Q 1 (here CH- (X) i s the Chow g r o u p over Q) . Since and Z i n the are jecture d e f i n e d over 5.20 Actually, for Bloch algebraically be no Let (X) k > = Q 2j - 1 fields the i s defined zero, 5.21 consider but from i t i s the Q i f see the our 9.18 con- below. subgroups approach same t o X of cycles there should consider . £-adic theory Q i s i m p l i e d by converse instead of Hodge 9.12 over case. and Bloch has remarked L e f s c h e t z ' theorem on that 1- equivalence 2 H (X CC) F NS(X) only c o n s i d e r the situation U , for a Beilinson A l s o , by 9.10 , conjecture e q u i v a l e n t to now 0 of i s the * H 1 , 1 « NS(X) Neron-Severi following generalization of ® 2 CC * group H (X,CC) of Mumford's X , and theorem to he has proved arbitrary fields . 9.13 Theorem surface I us give where the and number Mumford's cycles p i difference. arbitrary in situation * over char T(Xx K) v ( [ B l 1] k ® a field be Q) * a 0 1.24) k prime. . Let , with If X be function NS(X) ® (D £ a connected, field * H 2 f c K smooth, , and (X ,Q) (1) ) £ let , then proper This the i s not stated p r o o f . We £-adic now i n v e s t i g a t e Lemma T(X) lies Let X i n l o c . c i t . , but follows the relations be smooth i n the kernel A (X) = CH (X) 0 * char(k) 0 injective, Proof and p r o p e r of the between T(X) - £ * ^ *4 0 TL i observe —+ H n t that (G ,H from and t h e N T d 1 - (X, 2 (G ,H D K " = K e r cl , then £ (X, , the natural map Z (d))) £ 0 ZS £ D = CH (X) q Z (d))) then 2 1 £ A (X) g i v e n by t h e &-adic 2 generated, O d A b e l - J a c o b i map k 1 T ( X )® 2 of dimension &-adic i s finitely so t h a t First eguivalence 0 . I f k A l b ( X ) (k) is form A b e l - J a c o b i map. 9.14. I i n this N f o rthe homological cohomology, by t h e commutative diagram H 2 d (X,Z (d)) £ D CH (X) where t r i s the canonical groups A (X x theorem o f Roitman q commutative k k) and trace map. I t i s w e l l - k n o w n Alb(X)(k) ( [ R o 2] 3.1 are d i v i s i b l e , ) the f i r s t that the and by a vertical map i n the diagram -> A q (X) ( X ) -> O A l b ( X ) (k) > O -> A Q (9.14.1) O > n A l b ( X ) (k) > A l b ( X ) (k) - — > is an to isomorphism. Pic^(X) , one Alb(X)(Jc) by Poincare Since has Alb(X) dual abelian variety isomorphisms 1 s Hom(H (X,y duality, i s the and ),y one ) easily s H 2 d shows 1 " ( X ,Z/£ (see n (d) ) [J5]) that the map Q A (X) > Alb(X)(K) Q = Alb(X)(Ic) k > Iim H 1 (G ,H k ' ~ induced shows by the the Kummer statement Alb(X) ( k ) A := for Iim K If k is finitely generated and is up (9.12) the Alb(X) ( k ) / S generated, by ® Z ^-divisible to on shows global that torsion, the other (implying following 9.15. n <= an > H c (X,Z/£ n (d))) I! c o i n c i d e s with gives then the c l f . This injection o n (G t k ,H 2 d " 1 (X ,Z Alb(X)(k) is a (d) ) ) % finitely generalized Mordell-Weil -^-> £ by > Alb(X)(k) while, and 1 Alb(X)(k) 1 Roitman s A . We theorem, remark in theorem, that T(X) particular, k This even 9,14.1 " n Alb(X)(k) uniquely G T(X) a b e l i a n group hence AQ(X) sequences 2 d the k £-adic for fields hand, T(X) 0 conjecture Conjecture field is surjective Let , then the Q Abel-Jacobi k of for a for a number for be smooth I * char tensoring with map higher conjecture = O X after of Bloch and k and X/k k and proper over the map £ be n o n - i n j e c t i v e , transcendence variety field can Z degree, Beilinson ) would j a = d imply : finite or ci' 9 QJ : CH^(X) 4 » ^ 0 — > i n d u c e d by the A b e l - J a c o b i map H^ 2 n f c 9.4.1 fc i s injective. B e f o r e we d i s c u s s some examples, we s h i p between closely. j c o n j e c t u r e 9.15 I f i n 9.1 i n v e s t i g a t e the r e l a t i o n - and the s u r j e c t i v i t y o f we drop the assumption t h a t , we g e t the f o l l o w i n g r e f i n e d We z e r o ) , which ). Let . 1 more i s of c o d i m e n s i o n X condition be a smooth, p r o p e r v a r i e t y of pure dimension 1 1 N H (X J) f r d r . Let > H (X J)) , f N CH (X) = Im(CH _ (Z) U = X^Z d ,let 1 = IiMH (X J) r 2 ( F a f i e l d of c h a r a c - r e c e i v e s Chern c l a s s e s and s a t i s f i e s be a c l o s e d subscheme and l e t 2 9 p l a c e o u r s e l v e s a g a i n i n the s i t u a t i o n o f a g e n e r a l weighted teristic Z c X Z Ch . version. F-Iinear twisted Poincare d u a l i t y theory p 1 (G , H ^ " (X ,Q, (j) ) ) r > C H ^ ( X ) = CH (X)) n , r cl where now z CH (Z) = Ker(CH n of c o d i m e n s i o n commutative O —> H 2 j 1 on -> H " 1 (X,j) Z 2 j —> with support -> T H 2 j 1 2 j -> H " Z n c Z we have a 1 H (X J) ( X ^ Z , j ) -> H (X J) 2 j C 2 j —> 2 j H (X,j) 2 j -> H ( X J ) f f 1 -> R T ( H 0 2 j " H (X) / C H _ . ( Z J ) Q d 1 , Z (X j ) / N ) f cl' cl j ( (X J) f 2j-1,j (3 ) _ > f 0 -> T H f ( U ) 1 2 j —> e x a c t diagram (U J) ch 1 H " (U,j) we o b t a i n a commutative K X TH~2nT(Z,m)) . S i n c e f o r a c y c l e diagram (X,j)/N 2 j j (Z) -=—> 0 j ffl Z > (CH (X) /N ) Q ffl 9.16. Corollary (9.16.1) is c l ® still c l ' ® injective on F If on ch 9 . is surjective (CH (X) ZCH ^ (Z) ) 0 d j ® F 0 and > TH 2 j (X J) f n then F j : the Z (CH (X) /N ) ® Q subgroup F 1 > generated by R T(H the 2 j 1 Z ~ (X,j)/N ) cycles supported Z . b) Conversely, on Z and For i f 9.16.2 9.16.1 the following v is injective is surjective, 1 N H (X J) we observe = f ZcX is the coniveau v j {z £ CH-^(X) 13 supported is can the global a) map Let Z state a Z e X of k be zero by version X and let a closed be I supported „ is 0 that by codimension described Let subgroup ch . . ® F surjective. definition 2 1 N H (X J) f v 2 U codimension of maps t o refined Conjecture field X and filtration now 9.17. on Z c then the while = ZeX on U codimension of filtration, N CH (X) = . ® F j : injective, (9.16.2) is a) in v Ogus conjecture smooth * char such that z is T H ^ ^ ^ ^ (Z,d-j)} B l o c h and of j N CH (X) v and k subscheme, be proper a then in [BO] (7.2) . We a finite or j Z O 9.15. over prime. for a l l the j (9.17.1) induced b) Z (CH (X) /N ) Q v (9.17.2) j ^ O Lemma Conjecture c) I f Tate's X, t h e n of X d) If i fchar cycles 9.15 for Proof 1 ~ that finite j := space. for subquotient every mutative proper $£-^H over f o r t h e £-adic 1 diagram H j 1 2 (X,Q (j))/N ) £ 2j 1 " R (X ,Q ( j )) ) £ 2 j Since ~ 1 c and open factor o n t subvarieties j and (e.g., of H conjecture X x Z r 2 j (G ,H 2 k j ~ 1 X . i f char " 1 (X,$ ) £ A i s true then conjecture and the i n j e c t i v i t y a l lZ e X £ j subscheme o f 9.17 a) f o r X (X, $ ( j ) ) 2 i-1 f o rcycles of J, -> Z on 9.17 b ) . 9.15. closed cover cohomology H V conjecture 9.17 a ; f o r 9.17 a) i m p l i e s to the limit 2 j (G , Gr^H t i = 2j - 1 conjecture y H 2 k maps conjecture d = dim X Q $ -vector £ n k = 0 ) , and i f T a t e ' s (CH ( X ) / N ) ® since o (X,<& ) i s a d i r e c t a) C o n j e c t u r e by p a s s i n g c to conjecture implies (G ,H ( s e e 7.13) i s t r u e 5.19 f o r o f dimension X (9.18.3) note 2 j t 9.17 a) i m p l i e s B Z c X has a good 2 n injective (possibly singular) conjecture o O < v i j . conjecture d - j on c i s injective. > H £ 9.17 b) i m p l i e s i s equivalent (e.g., * d} and a l l k = 0) , i f N H for j a) C o n j e c t u r e b) dimension map map i n d u c e s Gr CH (X) a l l 9.18. > H by t h e A b e l - J a c o b i The A b e l - J a c o b i for ® Z . of y (X, <£ ( j ) ) / N ) £ o f codimension this limit y - i s actually i s a finite-dimensional G i s pure o f weight o f i t ; hence -1, V k =0 t h e t o p r o w i n t h e com- ° - H c o n t ^ ' G 2 ^ J " 1 ) - c o n t ^ ' H 2 J 1 - / V + 1 ) ^ H ; N o n ( G t k , H ^ - V N - , (9.18.4) v ® CD j O^Gr CH (X) j •(CH (X) /N £ 0 V + 1 Q ) j ® <& ® (fe^-O V >(CH (X) /N ) £ Q v is exact, 1.5), and b) Using v by c) Tate's d and t h e map injective 9.18.4, o n e conjecture Z, we Z which B for for by (2j - o f 9.17.1. a r e done Z and the b i j e c t i v i t y £ injectivity for the i n j e c t i v i t y (F = $ ) . T h u s 5.19 is injective v + [ B i 3] 1. o f 9.18.3 for a l l v . assures realization on shows conjecture just i s w e l l - d e f i n e d (compare i f 9.18.3 i n d u c t i o n on - j a by 9.16 1,j) and Let 9.16. a e cycles of o f 9.16.1 we only a l l CH^(X) Otherwise f o r the have let a £-adic t o show U c X . I f q dimension implies the a is supported be supported 1 Then i s of codimension j in X, a n d l e t Z = Z U Z i Z' i o b v i o u s l y we h a v e N CH (X) = N C H ( X ) , a n d we may 9.16 to q j d) If 2 N H = I m 2 j that Z' and Z-Ix U' has = X Z' the good Z j on . Q apply . proper cover Z 1 Z, we have 1 ' (X,$ (j)) £ ( H 2(d-j)+1 (Z'V ~" d the assumptions the target this \ if of + + j ) ) — ! L J i s a direct ( f o r char polarizations for absolute are sections s The composition formula - be H ^ 2(d-j)+1 and t ts can interpreted d of both k = 0 the l a t t e r Hodge as factor ^'V -J)) ' cycles as a n d b y the source and follows v i a i n § 7 ) . Thus there indicated, - v i a Poincare a s an e l e m e n t i n duality and Kunneth H By Tate's of dimension Z i t just it also posing ^ d exact ( k ' G so j N Z 9.19. we W' ^ C H we d o n ' t with vertical tions, class of a cycle . As a c o r r e s p o n d e n c e ts i n t h e £-adic g e t t h e maps w and from X W to cohomology, b u t o f t h e c o r r e s p o n d i n g Chow j ( 0 H 2 J " ^ 1 H groups. w' and c o n t Com- i n t h e com- from ' G k H 2 Z " / J >(CH ( X ) / N C H 1 j Q w' i s compatible w' Z with of ) - - 0 w . i t s com- the i n j e c t i v i t y the i n j e c t i v i t y s i m i l a r r e s u l t holds N (X) )® ( D ^ ^ O i s a section, s u f f i c e s t o deduce map ( j ® know w h e t h e r w course,a k ' G ( X ) i s a section patibility Of X ) ^ C n t (X) QQ w Although right Z be t h e c y c l e diagram 1 that . A t h e map I*TT* . z k on induces with O-N CH x X,<6 (d)) c o n j e c t u r e i t would c o n t H (Z g i v e s u s a map mutative 0 2 d of the c l ' ® fl> . £ f o r t h e Hodge realiza- a n d we g e t Corollary mension d over Let X be a smooth a n d p r o p e r a number f i e l d . The f o l l o w i n g variety of d i - statements are equivalent. i) Conjecture 5.19 (resp. and a l l open ii) T h e A b e l - J a c o b i map tive iii) subvarieties f o r zero cycles T(X) « 4 = 0 . on 5.20) i s t r u e U of ( i , j )= (2d - 1,d) X . c l ' 6 (t) £ X . for (resp. c l ' ® (D) i s injec- Moreover, open subvarieties jective Proof true j conjecture of X . We D CH (X) cycles, have d t o show 1 d Q 1. T h e n we d ) , s i n c e we i) conclude i s true Z o f t h e A b e l - J a c o b i map conjecture for O 9.20 Examples in chapter nerated field to the Hodge a) f o r curve, cases N E T(X) ^ A S T C I O and (the proof of a f i n i t e field be- i s the A c) and t h e f a c t plus and the For the equivalence Q(X) * ^ o f 9.18 analogue of 1 ^ M fol- that the (trivial o f ) 7.9). k k and l e t Kummer variety 0 A = Pic (X) over i s discussed a finitely be t h e P i c a r d sequences I 0 —> for are case a be a smooth a n d p r o p e r . The e x a c t (& * c h a r B) reduces f o r codimension The c a s e i n - 12. X X a) is i i ) . Since t o be a smooth on and L e f s c h e t z ' theorem b) L e t of i s true ® (I) conjecture that i n both t h e Hodge a n a l o g u e c l and a l l i s i m p l i e d by for divisors. kernel 1 X . by t h e a b s o l u t e i i ) and i i i ) o b s e r v e Hodge i f (3,2) i s e q u i v a l e n t t o 9.17 one e a s i l y tween from 2 on that this can choose Hodge c o n j e c t u r e (i,j)= and t h e T a t e hence = N " CH (X) , 0 Z = lows for i f and o n l y The Hodge c o n j e c t u r e = d 9.18 U i s true f o r c y c l e s o f codimension f o r zero dim 5.20 A —» A k) i n d u c e A(k) — ^ a l l n € ]N A—»0 the exact 1 A(k)-^H (k, and hence A) cohomology > H the exact 1 sequences (k,A) >0 sequence ge- variety a 0—>lim n where T B A(k)/£ -^H = (G c o n t k / T A)--^ T H £ 1 (k,A)^ 0 £ , Ijm B i s the T a t e module o f a group B . By t h e n £ o f M o r d e l l - W e i l A(k) i s a f i n i t e l y generated abelian £ n n theorem group, hence A(k) TZ^ 0 + Iim A(k)/£ n canonical isomorphism isomorphism of exact 0 A(k) T A = and v i a these Abel-Jacobi Cl' see © ZZ i 0—>H identifications, (X ZZ, : CH 1 (X) 0 © the ZZ „ l< z—+ A(k) > 0 6 agrees (U,ZZ (1)) £ G k 0 = i Pic (X) © latter (compare with , the &-adic 2Z —> H £ is injective, c o n and t (G^ ,H the 1 (X,ffi (1))) £ commutative 9.8.1) —>H|(X,ZZ £ k (D) H > cont 0 ( G k' H l { X f 2 Z l j c l '€> O-^(O(U) A ) x x 1 © ffi ->( © zz ) —>CH (X) £ i xex Z c X b) , a t c) a (1)) v i a t h e f '1 ,1 for have map diagram 1 1 H we sequences 1 A(k) [ J 5 ] . Hence exact . Furthermore Pic(X) = T If » n Let closed least X projective) be a rational over torsion-free, case the that ® 0 Z, U variety global finitely Q s £ , *nz U = X \ and i n the ( 1 field gives has a another proof of smooth compactification. of dimension d k (X) . Then generated abelian Pic group 5.15 and (smooth, is a hence H ( 1 ) ) = 0 . Byduality (X,(D/E tures 9 . 1 5 and 9 . 1 7 a r e t r u e A (X) = CH (X) D q Thelene [C] i n f a c t possibly for i s a torsion 0 proved for p-torsion H £ j = d group. that f o r the case X ) conjec- i f and o n l y i f For Q ( a = 0 , so (X,ffi (d)) i 2 d = s that Colliot- finite, char except k = p > O . 2 d) in X over Birch [ B i 3 ] Bloch a number where and a t t h e same 2 modulo prove H which those (tensored H (see 9 . 2 0 . 1 0 of there 0 3 below). cycle E in homologous are algebraically equivalent Bloch (X,<D ( 2 ) ) ) £ t o zero to zero 1 . 1 and below. i n f a c t proves under 0 s = 3 at £ c i t . Lemma of He e x h i b i t s c a - 3 of cycles threefold conjecture G r H ( X , fl) ) h a s a z e r o Q), see l o c . . (G, , G r H cont k IS) for a certain i s a non-zero i s non-zero 1 (X) the generalized i s t h e group which with that time CH to test the L-function Gr CH (X)^, in field and Swinnerton-Dyer ses 0 considers that the Abel-Jacobi To i t s image map i s non-zero. e) Bloch the following over and cycles the field Swinnerton-Dyer Bloch of conjecture a number 9 . 2 0 . 1 . the [ B i 4] a n d B e i l i n s o n Conjecture proves that f o r a smooth k, g e n e r a l i z i n g Birch case v j rk Gr CH (X) j 1 j Gr ~ CH (X) i s strongly D. projective proposed variety the conjecture With = ord _jL(Gr^H j 1 j = N ~ CH (X) to zero X of Birch ( X , ( J ) ) ,s) . £ i s the group o f and t h a t for this to the o r i g i n a l for abelian t h e same 2 j g related and Swinnerton-Dyer j = independently : algebraically equivalent conjecture [ B e i 4] arguments varieties we part conjecture (which i s can prove 9.20.2. Lemma Assume that the B i r c h and Swinnerton-Dyer con- jecture (9.20.3) for r k A(k) abelian Then conjecture jecture the varieties 9.17 £-adic A 9.20.1 b) f o r = Proof In [ B i 4 ] 1.4 Bloch gether from with L(T (A) module a surjection j 1 1 CH (X) is commutative, 6 i s induced (see b) a b o v e ; out, under for v = j - 1 vertical §10. ® constructs T W ® £ Gr^" 1 CH sions . D i s true. t o con- c l ' comes o f 9.20.3 i s equivalent extend " 1 2 H J ~ 1 ( X , ( j ) ) to. I t follows . (G T W cont k' l ® (DJ V 1 1 2 1 H! . (G, , G r r H ^ cont k' N '<X,VJ>)> ( G from G r and hence see [ J 5 ] ) . f o r W, H the Abel-Jacobi for B f o rthe commutativity map, s o t h e c l a i m j W the diagram b y Kummer s e q u e n c e assumption on t h e subgroup o f —»W(k)^ (X) ^ > where us f i r s t k i s equivalent = G r £ On t h e n o n - i n j e c t i v i t y Let field an a b e l i a n v a r i e t y H Q £ t o zero. t Gr Q ,s) F F I t h e number c ® O £ equivalent the construction that W(k) over 1 map up t o t o r s i o n algebraically Tate = v = j - 1, i . e . , t o t h e i n j e c t i v i t y o f Abel-Jacobi rational g for v = j - 1 cycles with ord map a n d i s injective As B l o c h conjecture to the b i j e c t i v i t y points 9.20.1 of the l e f t follows. of the Abel-Jacobi ! Bloch s theorem (9.13) map t o higher dimen- 10.1, Theorem dimension field d 2 V N (£ Proof We be d closely First we follow d fact, 1 CH (U X U) does for some N supported that this U' would + [ r XxD, £ be d of non-empty, = 0 smooth , since surjective, by Y Z we f = TT^ (Y ), 1 on and that A Y 3 d = ^ and X to zero i n , hence 2 D xX D,D' by on } V ' 3 H d = -> see V Y " 3 Y 2' 2 t o see to £ D' l o c . c i t . . Now l e t of . L e t D" , let let (X ,Q X > . I t i s easy be the 1 as b e f o r e 1 X T2 a cycle maps H ( X , Q ) 2 d and and d T Tr : Z 3 that ) a c D" = D"\V^ ([Mi] 7.2). I f £ Y 1 on i n the support affine, ( U c £ (X ,<£ ) / N 2 of under restricts open 1 < d H c f . also k T ^ : Z -* D'xX 1 1, made, t h e c l a s s to zero (d) ) ) c N H ( X , Q ) , jl can conclude i s zero 1 2 dim V lecture . induced (X Q under co- . i n [B11] supported irreducible Z by 1 Pr image * 0 function (U x K) ®Q f o r some d i v i s o r s I m ( H ( D , $ ( d ) ) -> H Q of ] 2 £ ]N , a c y c l e on D'xx X imply the correspondence d c d f o r some n o n - e m p t y [T1] N-[A]= open ® variety filtration the assumption CH the f o r the not r e s t r i c t k ® Q k under proper l e t K be (X, Q^) k d non-empty d and T(Xx K) - CH (Xx K) k k, smooth, the arguments show t h a t , d In * N H then k any 1 (X,^) diagonal A c Xx X for a connected, the f i e l d * char(k)), CH (Xx X) Z c X over . If H niveau the > of X [BS]. Let d V 2 . Then pr D'xX -+X open, d H (V ,Q^) 1 i s not the correspondence . If n be IT i s surjective, l e t 2 = given U ' V { V 3 ) ' Since dim jection in the Z = d, we formula, have dim the commutative Y < d 3 correspondence , hence V g i v e n by * 0 3 Z . By i s the the pro- bottom way diagram (V ,Q ) 0 "> 0 H (V ,Q (d)) d 2 £ H (V ,Q ) d d H (Z,<£ d T £ d H (X,Q (d)) d d H (X,$ ) d as the to the that T d with £ would prove the such theorem choose that is surjective, to the the -> A w and n - f (c) such c 1 = N H £ d (X ,Q ) acts , contrary £ the to element K. n € CH (Xx^K) o K -» X to z e r o i n CH (U*x image may everything curve and a morphism the O-cycle is a c z e r o i n A £ b ( X ) (k)®Q T(XxJ)I K)< for U' is corresponding G Pic(C) , and for non-zero, = X^f(c) such any since , but f*(c) n does not, K of Remarks on e be . Then t h e r e n-f*(c) £ O the a smooth p r o p e r (Xx K ) 8 Q -» AilL(X) (K) ®Q O let i s mapped + restricts and d H (X,Q ) A composition g e n e r i c p o i n t Spec that then too. Since £ conclude zero. assumption. C -* X 10.2. is £ d to N H (X,Q ), £ we 3 1 maps H ( X , Q ) 1 P i c ( C ) (K)( as d H ( X , Q ) -> H ( \ ? , Q ) d identity, To f: £ i t s composition find £ H (X,Q ) £ We £ H (Z,Q (d) 0 H (D",$„ hence 3 fin? a) If k i s uncountable * replace "T(Xx^K)®Q t o a model X using the inclusion q of X 0" over T(X X^ by a K )®Q£-> Q Q and algebraically "T(X)®Q finitely T(X)®fl) * 0", by generated induced by closed, applying field an k Q em- 0 bedding K ^— b) a For q k field of the function field k of c h a r a c t e r i s t i c of X q z e r o one into has k (cf. [Bi1 ] ) . (10.2.1) Iar argument consider we 1 H° ( X , ^ ) as the f i n a) case There as k i s embeddable that a Grothendieck 1 N H (X Q) case defines a of N V effective 1 C N lized the c) In [D.E.JVI conjecture finitely of weight F call to 10.3 an w on a object such follows from l = N over v claim k has 3.3.2) a n d over follows from for f V entire f inclusion states the of which W(v) (see the [D6] effective i f and as as imply , pure Q^-sheaf 3.3.8 that For or e f f e c t i v e , For thm. I i f i t X/k subrepresentation W +char Y only parts of a pure smooth, 1 ) , and we for H (Y,$^(e))= a f o r the H (Y $^) c f H a (X Q (Cl)) F j l = H 2 d a (-e) are G a l (IF ^ / I F ^) Hence ~ (X,Q^)) e v occuring p-adic d e f i n e d i n I o c . c i t . 3.3.7). Im(H (Y,Q (d) ) - dimension — a ^ - r e p r e s e n t a t i o n of i f r , s _> 0 of (d-e) is Hodge for Y c X k extends i f effective for a variety F effective i s entire. of Tate extended ZZ [1] [J3], proof converse be G^-representation £ the genera- a generalized a model U o f k as i n 6.8. union f o r the shows t h e T h i s can over F ^(W) _> 0 f = (note t h a t a k = <X, w h e r e W p q constructive i f i n Rep (G^ Q^) c with fields. type the weight-graded (r,s) to , formulated finite effective types simi- i n [Gr]. structures — over then - which would finite is effective f ) v scheme S o f V 1 N a ([D9] H (X G)^) (X,Q a setting - and . Call a Q^-sheaf 1 by then fields . _ V H V those 10.2.1 Grothendieck generated is entire jective It are (p,q). Grothendieck for varieties to the by i t suffices investigations i f effective structures Hodge c o n j e c t u r e t h a t 10.2.1. the sub-Hodge - which o b v i o u s l y proves of if Hodge Hodge t y p e s v of f i l t r a t i o n *N w h i c h W(v) occuring Then f special cycles i n <I, a n d H (X(CJ) Q). fact, 0 = f where of 1 by union 1 f specialization r e p l a c e H ^X,Q^) Hodge t h e o r y , 1 * H ( X Q ) . In 0 and 3 may 1 * 0 =* N H ( X Q ) the prolet is f o r d = dim X , which effective, The g e n e r a l i z e d Tate 10.3 f By R o i t m a n s conjecture n o n - i n j e c t i v e complex on varieties states the e q u a l i t y N (9.11.3) theorem of shows t h e i n c l u s i o n of arbitrary dimension v l l c N = N v v maps . . 1 0 . 1 one g e t s and theorem o r £-adic A b e l - J a c o b i v N examples f o r O-cycles d. S e v e r a l questions naturally arise. The fields examples provided of higher transcendence degree X , a n d o n e may a s k w h e t h e r for [ S c h o e ] has produced a cycles As for a finite f a r a s I know t h e r e but I think injective Hodge c y c l e s . injective higher 10.4. transcendence 2 intersection q Z ^ Let i t turns X E 2 However, o f ®(t) Schoen and t h e ( see appendix B ) . f o r cycles of higher below. the Abel-Jacobi map j > 2 c o u l d be of absolute the Abel-Jacobi i n codimension degree), of definition the variety examples i n 10.4 out that (over map i s non- fields of i n view o f the f o l l o w i n g c o n s t r u c t i o n . be a smooth p r o j e c t i v e v a r i e t y . are c y c l e s which Z where b o t h over be p o s s i b l e t o c o n s t r u c t t h e s e , t o o , described quite principally Z GCH^(X) the f i e l d t h e o r i e s , e.g., f o r the theory However, Principle cycles defined i s essential. extension o n e may w o n d e r w h e t h e r f o r other used than do n o t e x i s t i t should example by t h e method Finally, this counterexample, a r e defined over dimension, and so f a r always 1 CH *-* ( X ) q a r e homologous lies to zero, If then 1 Z ^ C H ( X ) their i n the kernel of the Abel-Jacobi map. We cases, can turn the f i r s t applying this principle into a theorem i n t h e f o l l o w i n g two one e x p l a i n i n g t h e i d e a b e h i n d f o ra l l theories of interest. 10.4 a n d probably O 10.5. Assume homology T of (not that the cohomology some c o m p l e x (10.5.1) through f some RT RT(X J) r with "absolute =RHom, D f H*(X,j) b RT(X J) n e c e s s a r i l y equipped factorizes theory i s obtained i n D (T) f o r our weights), and cohomology" (1,RT(X J)) tensor that - the the is fulfilled 9.6) and the the f o r the Hodge cycle homology Abel-Jacobi map (T map of ; f (T) £-adic theory the category 721 this as theory (T = = MH , c f . 9.7 i s induced by the S((Spec c)) I k)^ ) cf. t . Then by hypercohomology 9.5 spectral se- quence q (10.5.2) E?' where by If there quence, e.g., (10.5.3) one the the F V r for F H^(X I) the these. deduce a = i - t h homology with this of spectral se- pairing RT(X,i+j) 2] r e 1 cl(z^) to € F H using and the [J1] absolute the a on , 2 1 1 T r H and method, cl(z ) 2 cupproduct 2 j implies ' ~ 1 such complexes also valid of for H*(X,*) 1 € F H 2 j + j 6.11; ^ (X,i+j) , definition cupproduct 10.4 proceed for with 2 2 a f f c l (z ^ • Z ) € F H ^ by to (X j) 2 principle could associated i s compatible ( X , i + j ) hence c y c l e s one Hodge terms equivalent theory and (X,i+j) limit (X,i) £-adic §6), + n Hy the 10.5.4 in R Hodge absolute different v r + S If the then zero Hodge and F F homologically 2 product, 4.2 - f cycle classes. For i t by F H^(X J) a f i t i s mapped by + filtration Z-J Z definition [Bei way, from compatible s ® f . For (see , Ext (1,RT(X,j)) cupproduct L ( X , j) 1 = f ® RT(X,j) intersection hence r P + q has absolute the H (X J) i f i t comes I f now by => H r is a descending 10.5.2. then r RT(X,i) (10.5.4) for q R T H (X J) definition 10.5.1. then p = of exists is a in a theorem similar i n s t e a d we f o r more g e n e r a l shall coho- mology t h e o r i e s . 10.6. To prove 10.4 without using an absolute cohomology theory I need the following compatibility duality r) twisted Poincare theory. For maps for the considered Y c X c l o s e d a n d U = X^Y the f o l l o w i n g diagram of natural commutes H (X,b) a 1 * H (X J) H _ f a (Y,b-j) ± V6 H (U,b) a s) For X ® H 1 1 - smooth the Z^ a n d Z >H _ f map i s c o m p a t i b l e cycles -(U J) — a and p r o j e c t i v e with dimension d the cycle i n t h e f o l l o w i n g sense: F o r i and j on X i n t e r s e c t i n g properly diagram r H ( d 2(d-i) ^r - i ) ® ™^(X,j) tcl 0 (Here H^(X,j) -> H ^ For 6.11: Let n z example, this checked the upper 2 (Z 1 f j) both z v = 1,2. A s s u m i n g true, e.g., i f a s V 2 map i s induced hold true we g e t a c o m m u t a t i v e 1 2 0 Z (Z OZ ) 1 2 by t h e r e s t r i c t i o n for the absolute i n any o f t h e r e a l i z a t i o n s , Hodge theory and i s e a s i l y theory. n a n c -^ I O * ^ / ^ ^ e t r ) a n d s ) , and t h a t T (Z OZ , d-i-j) 2 toterse0ti0t Z (Z ) things c a n be c h e c k e d i' 2 TH ^ , . j and t h e c a p p r o d u c t ) . f o rt h e £-adic z » t c l 0 9 1 commutes — icl Z (Z ) is f o f pure t h e capproduct o f dimension 2 (U b-j) ± + 1 i sa rigid diagram with z v he t h e s u p p o r t ® i s an e x a c t tensor exact category rows o f z^, functor (this [DMOS] I I 1 . 1 6 ) , 0 H 2(d-i) - 2 (d-i) 0 H ( V ( Z ® ) 1 h 2 J ' ( ^ 1 ( X ) H j ^ 2 ( d - i ) (^ W - 1 Z 1 ^ H 2 2 (d-i) ^ l ) ® ^ " H 2(d-i) ( Z X 1 Z ) i d (XXZ ) 1 e 1 H Z l NZ ( 1 > 2 J " 1 ( Z 1 6 S H d 1 j (X) e S <d-i) 1 5 2 ^(Z ) H 2 ( Z ) € H ( Z ) ? X Z ) in °- > H 2(d-i-j) 1 ( Z + 1 H ) (Z -Z) > 1 2(d-i-j)+1 H 2 w ^ j j Il + 0 - H 2 ( d ^ j ) + ( X ) 1 w h e r e we h a v e get H omitted a commutative z j ^ ( d - i ) ( I) ^ " 1 ( X ) (10.6.1) - t h e t w i s t s and s e t Z = Z diagram with 0 (X-Z) 2(d-i-j)+1 exact z -*2(d-i) ( I ) ^ 2 j ' 0 1( X ( Z ) "> H 2(d-i-j) n Z 1 2 ( Z ) . Hence ' we rows H ^2)- 2(d-i) ( Z l ) o ^ ( X ) o-° O V ^(d-i-j)+! where of ( ( X ) ) means the l e f t pull-back But in Hom 7 "homologous t o z e r o 2(d-i-j) ( Z )o o f the bottom (1,H t h e same i s t r u e 2 t d - i _j^ the pull-back E x t 1j-( 1 , H exact 2 i + 2 j (Z,d-i-j) ) Q sequence via D , s i n c e by (X,i+j)) under Thus, t h e i s trivial, f o r the pull-back s) by c l ( z ^ • Z ^ ) by d e f i n i t i o n 1 0 ^ o n X" a n d t h e v a n i s h i n g maps f o l l o w s v i a t h e p r o j e c t i o n f o r m u l a . consequently, € H ^(d-i-jHl*^ via and, cl(z^•Z^) i t factorizes i s t h e image o f the Abel-Jacobi map, through n . z which ^ z 2 proves 10.4. 10.7. To deduce 10.4 i t r e m a i n s is non-zero iomologous the non-injectivity to find in C H 1 t o zero, ^ j elements ( X ) . i fthis z First ^ of the Abel-Jacobi z a 2 note i s true s there that map z such t h a t cycles from ^ z 2 0 i n Pic (X) are f o r a l l smooth, p r o j e c t i v e C=X curves via (use algebraic metric" that 0 elements in Pic (X) correspondences). theories; i n any case This will i t i s true come f r o m P i c be the under case 0 of curves for a l l each of the "geo- following 2 conditions: a) H (U,1) 2 rational, for the and an for (A^,1) = O of = absolut 5 Pic (X) abelian 0 a f f i n e curves, b) H*(-,*) is Q- 1 0 Assuming for H theory = 1 H ( S p e c k,0) Hodge 1 CH (X) surface X over course, i t is true cycles. , we q . Of may use Bloch's result an algebraically closed - T(X) that field k the map 0 (10.7.1) 0 Pic (X) x Pic (X) induced by one has T(Xx^K)®Q * 0 theorem (9.11.3), since in i n t e r s e c t i o n i s s u r j e c t i v e , see for suitable H (X O ) = p o s i t i v e c h a r a c t e r i s t i c one has (9.13) f o r X = xE 2 r * E^ 2 yi field [ B i 4] extensions A H^(X O ) 2 r * 0 x T(Xx^K)®Q = elliptic . For curves char(k) 0 Roitman S by 1 . As an example 0 by Bloch's 3F , not over = theorem both of 2 them s u p e r s i n g u l a r , and K t h e f u n c t i o n f i e l d G H (X,Q (1)) = N H (X Q^d)) , I * p . 2 * k 1 Remarks a) p > 0 Fano In are [Bi Mumford's since H (X,Q (1)) f 10.8. (X) X, 2 £ g b) of 1] or Other surfaces, lecture his examples where 1 Bloch theorem (see see [Bi 10.7.1 1] conjectures 9.11.2 a n d is surjective and 1.7. that the 9.13) converse i s true, or, of equi- 2 valently, that only and is torsion-free c) It i s quite d) Using of abelian of a i f A (X) if reasonable H Roitman's likely Abel-Jacobi Zarchin's X i s generated i s representable Q by surface theorem that T(X) map, but proof of the lies following: If k p O i s an is a I h a v e no finitely ] note cycles that T(X) ). i n the kernel proof conjecture varieties in characteristic p the algebraic (by A l b (X); [Ro2 Tate by > O for of every this. on endomorphisms , i t i s easy generated field to show of c h a r a c t e r i s t i c 2 > and X abelian surface over k , then H (X Q f (1)) = - 2 H G k (X -A)^(I)) i f and o n l y F singular i f X i s isogenous e l l i p t i c curves d e f i n e d over T .Hence only to a product of super- i n this one e x - case P pects representability §11. Chow g r o u p s over In this section pected over fields smooth, Gr? r CH (X) Gr^ CH (X) Gr and we = CH 2 2 = A 2 X 2 = F CH (X) would recalled be t r u e , C C, B l o c h F v 2 i H (X,2Z (2)) ~ V H 3 (X,(C) /H degree. such For a 1) that , ( X , 2Z ( 2 ) ) 3 ex- ( [ B l 1] L e c t u r e on C H ( X ) 4 (X) ( X ) A ( X ) + F 2 , =T(X) , 2 2 b e t w e e n G r _ C H (X) r conjectures a relation conjecture over C O A b e l - J a c o b i map. o f Chow g r o u p s transcendence filtration ( X ) /K 2 CH (X) r Q the structure arbitrary surface 2 and an i n j e c t i v e fields discuss a descending 2 (X) arbitrary with projective considers of A i n 10.8 b) a b o v e . i f the action and H He s h o w s of algebraic that 2 , c f .also h i s the latter correspondences one on 2 Gr^CH (X) The factorized following through homological equivalence. conjecture of Beilinson i s a generalization of this. 11.1. Conjecture projective F V on varieties X over Let k k there be a f i e l d . F o r smooth, i s a descending filtration 3 CH (X) V 1 . ..CF ^ CH such ( [ B e i 4] 5.10) 1 1 V (X)CF CH 1 1 0 (X)C. . . C F C H L J 3 (X) = C H (X) , that v 3 = O 1 3 = CH (X) a) F CH (X) b) F CH (X) for v >> 3 O , 3 = {z€CH (X) I z numerically equivalent num to zero} r c) 1 s 3 F CH (X) F CH (X) l d) f: , F X v i s functorial, + Y , c F r + S CH 1 + 3 (X) under the intersection i . e . , r e s p e c t e d by f * and f + product, f o r morphisms e) (note t h a t by 1 GrpCH- (X) 1 last motive 2 j H V statement I Part H- 1 V factorizes a c t on through numerical motive (X) . factor since the existence of the o f t h e motive standard homological H*(X,Q^(*)), action i s conditional, ( X ) , as a d i r e c t equals 2 equivalence 1 A(r,s) this correspondences o n l y depends on t h e G r o t h e n d i e c k depends on G r o t h e n d i e c k s valence d) a l g e b r a i c b) Gr^CH- (X) numerical The and and t h a t by equivalence) w.r.t. c) H(X), see [ K l ] , conjectures that numerical equivalence ( f o r &-adic equi- cohomology + c h a r k, s a y ) a n d t h a t t h e K i i n n e t h c o m p o n e n t s of the cycle class of the diagonal A cXxX are algebraic. e) t h e n means t h a t id , ( r ,s) = ( 2 d - 2 j + v , 2 j - v ) , A(r,s) G where The r d F C H : ( Q O c o n d i t i o n s a)-e) 11.2. Lemma b)-d), Proof H (X) of , X otherwise (X connected, a r e n o t independent; i m p l i e s G r ^ CH^(X) t (Assuming m = O the standard , without for v >j : c o n j e c t u r e s ) Under J i s z e r o o n G r ^ CH~ (X)^ fors < j . (compare [ B i 1] 1.9) By t h e h a r d Lefschetz = H 2 d s ( X ) ( d - s ) , the correspondence = r « T 3lc + o r + / with T € CH h a s image i n CH d S + j 2 d _ S (XxX) restriction) f o r e x a m p l e , p r o p e r t y e) A(r,s) A(r,s)* then ) i s t h e dimension automatically s X A(r,s) + P and assumptions isomorphism factorizes s € CH (XxX); b u t (X) : j CH (XxX) CH 2 d " S + j (XxX) \(pr ) 2 j CH (X) and this group vanishes as ^ fors < j . + d CH " S + j (X) 11.3. of There are i n fact t h e above there and filtration should exist complexes with versions parts the derived "with forms that a) € Ob(D (MM)) := H a twisted Poincare smooth axioms ( i n s h o r t , analogues of a twisted 1 Poincare inducing a ( R T ( X J ) ) EOb(MM) z f (Rr (Xfb)) 1 —a duality X H equivalence o f Q-motives © H i>0 W W cupproduct (X O)BQ , with weights, and such holds: € Ob(MMfcQ) i n d u c e s a f c a t e g o r i e s between (w.r.t. o f semi-simple objects numerical equivalence) b) the cycle c) J ) = Horn (1,RT(X,j)[2j]), D (MM) a n d t h e ( h y p e r e x t ) s p e c t r a l s e q u e n c e ( c f . 10.5.2) J degenerates Then 5 H 2 J ( X after sequence provided the cupproduct cycles (compare 3 CH (X) we num have (11.3.1) , hence F v on CH c ) , which 10.5). , b tensoring with spectral Q . 3 (X) assures would the properties i s compatible By a) be d e f i n e d b y t h e with we h a v e 1 3 F CH (X)=Ker(CH (X)+ the formula v 3 = R V F H MM MM" V ( X ' 11.1 c ) a n d d) the intersection of 3 11.1 b ) , a n d 11.1 e) i s c l e a r ; Gr CH (X)SQ and an isomorphism F the f i l t r a t i o n i n MM 1 subcategory induces weight- Grothendieck s the CH (X) duality Ob(MM) the following k map i n m of tensor over € theory and p r o j e c t i v e The a s s o c i a t i o n category counter- so t h a t m preserving MM and h o m o l o g i c a l ® R T ( X , j ) -* R T ( X , i + j ) ^rf (Xih) a X weights i n [ G i ] a n d [ B e i 1] 2 . 3 , i n p a r t i c u l a r M for with that together z o f t h e axioms conjectures a s i n 10.5, w h i c h RT (X,j) certain ^ H J J I ( X , j ) := H X category L t h e cohomology) F tensor support" category Beilinson b RT(X,j) RT(X,i) (X Z) . Namely, a suitable c f . t h e axioms pairings v F Rr' (X,b) s a t i s f y theory, on more p r e c i s e c o n j e c t u r e s on t h e o r i g i n 3 } ® 4 ' i n fact, TH^j ( X , by c) w h i c h makes more =h^ (X,0) (part 1(1) i n MM of , cf. the G r ^ C H ( X ) ®Q r axioms [DMOS] I I depends i s the existence such t h a t RT (X J) §5, t7 V A expects MM motives a as above over k, could well and HjJj(X,0>(j) ) = for the its name. T o be motivic cohomology deduce 1 (X ZZ J M MM ® J ) F Q d e f i n e d by a l l this (J)) = M(Spec from = E x t J RT (X O) r7 Remarks of X f E ) ) and ( f f i M as of V (X) = a b) category above Beilinson A similar thus justifying < 0 ) , Z Z M over = Rf j k in E ^ ( j ) f o r f:X-^Spec k that ( J ) ) Hj (X,j) = . M interpretation mixed motives ZZ K-theory, RT(X,j) M M a) a category [D10] 2 j (j) f Beilinson's formulation Ext£ <1,Rf,ZZ (J)) = 11.4. ( k,2Z , i , j € B e i l i n s o n ' s n o t a t i o n i n l o c . c i t . , so H , let H ^ ( X with k was of also K (X) ^ m given in by terms Deligne . The f o l l o w i n g axiom a') X rv^> e j>o the standard H e r e one (like has Over , see i.e., also j would work (X,Q(j)) the t h a t the field usual Weil Over there which [ B e i 2] are a k global "no 8.5.1, and as 11.3 cohomology satisfied definition cohomology a): for which ( c f . [Kl] ) . i n an now obvious takes way values in a category. one expects field motivic is implicit equally well i s a Weil conjectures are abelian tensor finite §12. that statement so rigid a H^ to modify i n 6.1), Q-Iinear, cf. = f in generalization 4] 0 object regarded [Bei = a Tate H formula (11.3.2) c) motive . category mixed b) of the RTJ_(X,b) = RTJ_(X,0) (-b) ; i n p a r t i c u l a r H ^ ~ ( X , j ) H ^ " ( X , 0 ) (j)) of on v and of p r e c i s e how k F one 1 HjJj (X, © ( j ) ) = expects 2-extensions" up 2 F HjJj (X to in [D10] . Here (j ) ) = torsion, in Beilinson's conjectures explicit HjJj (X >Q ( j ) ) in the [Bei a 1], spectral q 0, sequence 0 11.3 s h o u l d RF 1 1 H become a s h o r t -MM^M < ' < H J > ) like f o r the Deligne mological HJ(X,«(J) ) - r - X exact cohomology, M M sequence H^(x,$(j)) -> o c f . 9.7 c ) . S i n c e d i m e n s i o n two, one h a s t o have G^. a vanishing , has coho- or a truncation 2 for H (Gj /-) here, d) As B e i l i n s o n r e m a r k s , v CH (Y) a motive = O 1 2 N* to motivic cohomology and results 11.5. Z H should 1 2 j . Here V L* " j (X)/N " i fH 2 d N" , i s the level 11.1 d ~ (X,® shows ) = N ~ V + 1 would H 2 d imply V ~ (X,$ ) 0 1 = dim X filtration V + 1 . Thus V , i n generalization of Bloch s does not exist one) o f a c a t e g o r y above, MM so one d e f i n e s be g i v e n by t e n s o r T = WRep (G^,Q^) c complexes (absolute) that for conjectures z Poincare , RT j(X,b) duality HjJj(X,ffi(j)) 5 motivic k cohomology realizations. weights generated 1 (not even a motives with the by v a r i o u s categories with forfinitely RT^ ( X , j ) a definition o f mixed and s t u d i e s approximations twisted V " (X))(j)) f o rd = 2 . conjectural K-theory 2 j by coniveau Up t o now t h e r e properties j c a n be r e f i n e d t o i n [ B e i 4]) , and one e a s i l y i s representable 2,3,...,d of V L - H ^ (X) v = and close 11.3.1 = R T((L " H v the f i l t r a t i o n (X) formula f o r dim Y < j (called j (11.4.2) for j Gr CH (X)®Q 3 since of cohomology c f . §12 and § 1 3 . (11.4.1) A t o g e t £-adic c T These (e.g., , T = MH as above by f o r k = C,...) together with morphi theories H^(X,j) (similar with supports), (11.5.1) a into be (X,©(b)) r + H^(X,b) a. the associated absolute induced b y 11.3.2 a n d f u n c t o r s transforming For (co-)homology the Rr^-complexes smooth, projective X of tensor into (Ideally, categories Rl^-complexes). the spectral r and r sequence f would <J>:MM •+ T P ( 1 1 . 5 . 2 ) should ( 1 1 . 5 . 3 ) Gr^ I ( R ) 1 F(r)* = r 1 1 . 5 . 2 . ( M X F* two s t e p s one must + Q ( X , j ) - R ^ H ^ are given Q ' ( j ) ) (X, j ) I on H ( X J ) g i v e n by F by t h e C h e r n characters T H (X J) R * o t h e maps I - F R 1 T F H T " 1 ( X ' J also consider maps" ' ) or a global 1 1 . 4c ) . For fields remark P for the filtration § 9 .Fora finite cf. H i n § 5 and § 8 , and " A b e l - J a c o b i discussed H H (X,$(j)) The f i r s t HjJj(X,fi(j)) => T a s i n 1 1 . 3 c ) , a n d we a r e l e d t o s t u d y degenerate where R r H£(X,j) Q E!?' = field o f higher this transcendence 11.5.3 t h e maps should for v > _ 2 suffice, c f . degree, however, 2 , since F i n general 2 does not vanish (e.g., Hodge theory^ and hence catch motivic F CH (X) = T(X)) Q Deligne cohomology, . I nparticular, cohomology, 0 0 since RT= u f o r k = (C i s not sufficient t o for v > _ 2 ( s e e 9 . 3 b) ) . 2 The k non-vanishing of F f o r smooth, has t h e f o l l o w i n g consequence composition reso r f o r smooth i n the (conjectural) r (11.5.4) M M H i M ( U ' ^ ( j ) R ) non-surjective cular (look jective, for geometric r the i In for certain T = MM) and absolute could T H (U J) F H ( U j ' > H^(U,j) U c X the left (and c e r t a i n restriction 11.5.2 smooth U/k. I t i s i n t h i s image o f r diagram T T fres r and the s p e c t r a l sequence general and at big fields By 9 . 1 0 t h e varieties. res f HjJj(U,ffi(j) ) is p r o j e c t i v e X over theories be i s o m o r p h i s m s ; separately. i n any case Tty a s t h e s u b s p a c e map w i l l will case i,j). n o t be s u r - not degenerate better Note to treat the that we s h o u l d of algebraic In parti- both rather Dj> regard elements i n . the rest realization of this functors s e c t i o n we d i s c u s s over arbitrary fields. £-adic Note a n d Hodge t h e o r e t i c that the existence of injective the "regulator maps" HjJj (X,® ( j ) ) 5 standard c o n j e c t u r e s f o r the would imply Beilinson's F(r)' defined 11.6. Beilinson faithful and on MM imply associated geometric c o n j e c t u r e 11.1, conjectures that - this D (M(S,Q)) would together by taking with theory the H^ ( X , j ) 1 filtration above. b on H^(X,j) the corresponds for a scheme £-adic to the S of realization functor i s i n j e c t i v i t y of f i n i t e type Vty - over E - this , see §12 for that H Jj(X O)(J) ) + H^. ( X , Q ( J ) ) j is f e injective for varieties over a finite field more p r e c i s e conjectures. For is ( e . g . , f o r k = k) , a n d too small Write X = Iim J. finte type over (11.6.1) H i e is well K and (X) this ture to = Iim a?A carries §7, the K (X m a 11.7. Remark including proceed as of over maps. schemes of Then a H^ t (X , Q (* ) £ a a ky A [EGA IV] map £ (j ) ) , t o t h e Adams e i g e n s p a c e s . r®Q^) not a treatment 11.6.2 (in fact, f o r smooth X commute w i t h Beilinson's . Note one should that inverse limits, conjec- ZZ ^ in even - contrast coefficients. extending follows. of c construction. i i n j e c t i v i t y of finite For following ) , i n j e c t i v i t y of case cohomology 2.2 Q^-cohomology does the etale (X ) . a a£A transition obtains a regulator 1] the 2 e amounts t o t h e expect or [Qui use k Iim H (X ,(JK(J)) ot?A ^ independent of the c h o i c e of r : HjJj(X,4fe(j) ) - by we fields i n v e r s e system ( X , Q , ( j ) ) := L one (11.6.2) an TL [ j ] , w i t h a f f i n e d e f i n e d and 8.13.5, a n d since , with a arbitrary k H^ t to a satisfactory o f more g e n e r a l s h e a v e s t h e n t h e o r y as Q^(J), one in 11.5, may Let R be a r i n g , q the i n d u c t i v e system FT/R type o v e r R € R , R on X/R one R I be an R - a l g e b r a , and ) L with 1 3 R^ t h e r e i s an R I X = X. x R I R«l 1 ^ f o r some r and . Let . Let q type over a scheme X^ X _ , = X.x_ R R R ^R'^R'^R € R , R 2 o 3 R 2 n t h e .By 1 i n v e of L for I R^ r s e R, F system u s i n g [ E G A IV] 8 . 8 . 2 d e f i n e s morphisms o f t h e s e as morphisms o f I n d - o b j e c t s and t = V Iim H* — o n l y depends on X o n t <X , R l F R I t and F where the l e f t the f o l l o w i n g a) C a l l for this). From sheaf F = (F are c o n s t r u c t i b l e and isomorphisms f o r 1 R F R F i 3 R -> p . i i d e n t i f i e d with a f u l l £-adic sheaves on X p , : X -* X 3 . If k K _ t 3 l on X/R constructible ^R2 R such 2 sheaves on generated X € ob(FT/k) s u b c a t e g o r y of the c a t e g o r y of i s the F that p: Spec R " -+ Spec R' to i t s l i m i t are field, can be constructible Iim p*,F g, R , , R projection. i s a morphism i n FT/R £-adic sheaf on X/R = P q H (Y/R;R ,R f*F) O =* H P + Q Q i s a Dedekind If ring, R = k and F , then there i s a s p e c t r a l (X/R;R ,F) q with c e r t a i n c a n o n i c a l R - p o t e n t i a l sheaves. e a s i l y obtains K f : X -> Y Q ) is a finitely , by s e n d i n g , D E^' have does not (R t h e r e i s an R^ for then t h e c o n s t r u c t i b l e p o t e n t i a l If n l K K the t r a n s i t i o n maps P * where 11.6.1 [ E G A IV] § 8 one O R and o b v i o u s = 2Z [ j ] Q properties. an R - p o t e n t i a l allF , For R , hand s i d e i s d e f i n e d as i n have t o be a f i e l d that ) , i n a f u n c t o r i a l way. = H^. (X/R;E £ , such ob- 2 s i m p l y t a l k o f p o t e n t i a l £-adic sheaves H^ (X,Q (j)) b) be Q Hj (X/R; F) if type over R R , and d e f i n e an R - p o t e n t i a l £-adic sheaf as an £-adic sheaf r € R 1 t a i n s an a b e l i a n c a t e g o r y , f i b r e d over F T / R we let Q be the c a t e g o r y o f s e p a r a t e d schemes o f f i n i t e finite ( X R of i t s s u b r i n g s o f f i n i t e then f o r X € o b ( F T / R ) R' let q R f* i s an , £-adic sheaves generated Q sequence respects constructible is a finitely R -potential on Y/R. If R Q R -potential field, Q q R f Q^(j) + can be identified neric c) base the usual change theorem (-/R;R ,CD ^ (*) ) H| FT/R with . (Define t H^ homology (X/R; R , ^ [SGA = f D , : X transition [SGA 4 ge- ] [finitude]) . Poincare duality on R H~* ( X ^ R f (-b) ) , ^ 1 i s the s t r u c t u r a l maps a r e i n d u c e d obtaining complexes by the Spec k one (11.7.1) f r o m b) the Poincare in a suitable 11.5.2 w i l l may "base be E^' q = H (k/k R ? above, for Y= L e t us above, Deligne mology for varieties parameters. briefly = R in k , R morphism and the change" morphisms of , and a filtration motive H 1 v = Q X ,/R' F' on Q 11.6 R ) would for X we may q (X/k ; R sheaves sequence ,Q a good (j ) ) V As we remarked absolute k coho- with many with G r ^ H p (X ,<£ ( j ) ) T finite type such only depends on the that (X)(J)) H* theory f o r variations projective R (f^,) .Q £ but i t remains the q u e s t i o n f o r from a s u i t a b l e 5 4 q over the Q-algebras of such that q £-adic , Q Hodge c o h o m o l o g y ) such that + t r y t o work x C,Q(j)) running and P , but not f o r f i e l d s geometric r e a l i z a t i o n smooth RT- spectral t h e Hodge r e a l i z a t i o n s . =Ext^d,H^" follow . The by . ( X ) , or even a c a t e g o r y (or a b s o l u t e as above H^ [J4] £ a s i n 11.7, R of of p o t e n t i a l i s e x p e c t e d t o be over , R' the a s s o c i a t e d Namely, Spec k Iim H ( X R Gr^H*(X,Q(j)) This category (X $ (j))) - H f 1 = o f c) a s i n 11.5, sequence discuss In view of Q q o / H cohomology Hp(X,Q(j)) X/k derived the s p e c t r a l q duality use the t e c h n i q u e s 11.8. for 4 (Use t h e ] 3.1.14.2 ) . For on -> S p e c 1 v i a a) + of a twisted Iim R where R f Q^(j) by (b)) o of i s part j Q q sheaf . of a Deligne o f Hodge over k there i s a variation cohomology structures. i s a n R' = o f Hodge R^ structures d for 1 R => R^ (C (over a spectral E which for P' 1 Q) q of H P " ,: X R S , R R | -+ S p e c R provide t h e wanted by p a s s i n g = S , . The t h e o r y R C spectral sequence to the l i m i t s i t i n a short exact q (S T over R should give q R that + there c i s a canonical (t s (t groups H (S R (f i)*(b(j)) K K full generality). and f i l t r a t i o n 1 . The initial sequence ,R (f ,) Q(j)^(S^,R (f^), Q(j)) R assuming 1 extension to Hp(X«,,a(j,) , q 1 i s the base R S should H , : X , R = HP( J,,R (fJ,),Q(j)) Hp(X,Q(j)) T f f (C sequence would terms R , where (C mixed -» T F F H P (sj, ,»P(f ,) *Q(j)) R Hodge structure , on t h e r T 5 L F 11.9, L e t us p o i n t spectral (this D sequence has not y e t been out the analogy with 11.7.1 i s obtained t h e £-adic as the l i m i t established i n c a s e . The over the spectral sequences E 2' Instead q q q = 3? <s ,,R (f ,)^ (j)) -S£ (x t R R o f t h e above £ short exact sequence R 1 ,e <j>) . £ there i s a spectral se- quence E 2 ' but S S = base e c H ( «' et ^' R q ( 5 too ( c f . of f R D , to Q (over etale (11.9.1) R 1 K(TT,1) H| (S t I t Q ) . apparent consider has k i s c o n n e c t e d and an A r t i n R ' ^^ x make t h e a n a l o g y e v e n m o r e S , ( j o f H^ . should i n f a c t give short exact et remark 1 1 . 4 c ) ) . Here f : X_, + S _ i s the K K K f i n i t e l y generated, that that ) R' **£ modification extension To an p a further sequences, is S e V the case that as f i e l d o f f r a c t i o n s and n e i g h b o r h o o d o f Spec k , hence . Then R l / R^(f ,)^) R = H^ o n t (TT (S 1 r 1 ),H^Xx K O.,)) k f , while (11.9.2) where TT H 5 Q (sj, ,R (F^ ) 1 denotes 3 t c Q) S P q = H (7T ° (S^,),H (Xx cr,Q)) the algebraic 1 and Tr^ k o p , the topological funda- k mental point group Spec profinite the (with k respect Spec 1 R ) . Note completion of actions on H g to the TT^ (Xx^,Q^) O P base that (S , ) and H TT ( S and R q points o l that (X x^C! ,$) ) i n d u c e d by the generic i s isomorphic to this the i s compatible with v i a the comparison isomorphism. Thus and the produces structures dence Of over potential " o v e r Q" between course the and treatment of the $ . latter as ( v i a the G^-representations 11.9.2, solution 11.9.2 a p p e a r parameters of and two, this 11.9.1 the mystery i . e . , i n the mystery realizations of lies be i s quite and mixed parallel Hodge i n the correspon- crucial should the S_,) K case k that same m i x e d = 11.9.1 motive Q . PART I I I K-THEORY §12. AND Finite Let fields k a prime 4-ADIC COHOMOLOGY and g l o b a l be a f i n i t e different v a r i e t y over function field fields of c h a r a c t e r i s t i c from p , and l e t X p , let £ be be a smooth, p r o j e c t i v e k. Then one c o n j e c t u r e s (see[Bei 4] 1.0) 12.1. C o n j e c t u r e The c y c l e map i n d u c e s an isomorphism Q J CH (X) for a l l ® Q ^ H £ 2 J k (X,Q (j)) £ j > 0 . Obviously t h i s conjecture B) i s e q u i v a l e n t t o the conjunction of the Tate and t h e c o n j e c t u r e t h a t , t h e subgroup 3 CH (X) q g e n e r a t e d by t h e c y c l e s homologous t o z e r o , i s a t o r s i o n In f a c t , one s h o u l d expect t h a t i s known t o be t r u e f o r j = 1 Pic° t h e group / k points i s finite) q (since f o r the a b e l i a n Pic° (k) = P i c ( X ) 0 / k and f o r i s a f i n i t e group. T h i s 3 CH (X) group. 1 = CH (X) j = d , i f X q variety of k - r a t i o n a l has pure dimension d (see [CSS] theoreme 5 ) . By G r o t h e n d i e c k ' s K Q (X) conjecture ( j ) isomorphism 3 = CH ( X ) 0 $ , 12.1 can a l s o be r e f o r m u l a t e d i n terms o f o r t h e m o t i v i c cohomology K-groups 3 Hjjj ( X (j ) ) = K ( X ) ^ Q K-theory, . For the other one has (see [ B e i 1] 2.4.2.3) 12.2. C o n j e c t u r e (Parshin) A g a i n , these groups K m ( x ) i s a t o r s i o n group f o r m * 0. a r e i n f a c t expected t o be f i n i t e , since by a general This of finiteness Quilien One 12.3 conjecture o f Bass they i s known t o b e t r u e [Q2] a n d H a r d e r c a n combine Conjecture be finitely f o r dim X < 1 ,by generated. results [Har 1 ] . conjectures For a l l should i, j 12.1 a n d 12.2 G S into one has G Hj|j(X,<fe(j) ) 0 Q Here t h e map character 12.1 G 1 the Weil K(X)OQ or given by t h e C h e r n To s e e t h e e q u i v a l e n c e with k = O for i * 2 j c o n j e c t u r e s , and t h a t = m 8 K j>0 (X) ( j ) = j © j>0 m Hf! ~ (X,Q(j) ) , [ B e i 1] 2.2. As i n previous varieties Z over Friedlander chapters and B e i l i n s o n Conjecture Let U a) f H e r e t h e map suggest to extend ( s e e [ B e i 2] Let Z £ this S H^ (Z,© (b)) k £ variety over this to arbitrary goes back t o 8.3.4b)). be a v a r i e t y t be a smooth i H^U Q(J)) we k; f o r s m o o t h v a r i e t i e s H^(Z,Q(b))®Q b) t h e z e r o map that £ 12.4 f i s either a n d 12.2 n o t e see S on t h e a l g e b r a i c K-group. i H (X,Q (j)) by £ • v H (X Q^Cj)) 1 over k , then . k , then G ~ i k - H (U Q^j)) ® e t i n b) f . i s g i v e n by t h e C h e r n c h a r a c t e r and i n a) by t h e "Riemann-Roch t r a n s f o r m a t i o n " as c o n s t r u c t e d by cf. 8.3. O f c o u r s e , f o l l o w s from cf. 8.1 clusion known b) b ) , a n d b) t r i v i a l l y i n the converse a) b y P o i n c a r e implies conjecture direction we recall Gillet duality, 12.3. F o r a con- the following well- f 12.5. of Semisimplicity Conjecture 1 G, on H ( X C ) f i s semi-simple p More g e n e r a l l y , 12.6. (Grothendieck/Serre) one The f o r X/k s m o o t h a n d p r o p e r . expects Semisimplicity Conjecture forarbitrary varieties ( c f . [D7]) W a) For a variety is semi-simple b) Z over k, t h e a c t i o n f o r a l l a,m In particular, Theorem f o r a , b € ZZ jectures a) + CH*(X) ®$ = O ties b) U of dimension Z = Z\Z' 12.4 (that also c) I f 12.4 a n d 12.6 b) h o l d b) X) , Z 1 c Z In the following we L a the a closed varie- b s u b v a r i e t y , and £ TL , c o n j e c t u r e s f o r two o f t h e v a r i e t i e s f o r a l l smooth v a r i e t i e s o f dimension s e t T = G, = Im a / Y a , H Z,Z' a n d U, t l of dimension <d . (Y) = H a = Im 3 •§ H ( U ) H-H a -,a ra (Y,$ (b)) 0 a f o r s h o r t . In the exact . . .+H (U)H-H ( Z ) 2 H (Z) a+1 a a o + Parshin A s s u m e 12.4 a n d 12.6 b) f o r Z' a n d U, t h e o t h e r c a s e s a r e f a con- a r e e q u i v a l e n t t o con- I f , f o r a fixed hold f o r a l l varieties M M H' (Y) = H (Y,Q(b) )®<&, a a x. X + Tate i f one o n l y c o n s i d e r s K let holds, then f o r t h e t h i r d one. k, t h e y similar. k t h e open complement. are Proof of singularities i s , Grothendieck/Serre over a) a n d 12.6 b) a r e t r u e <d o v e r 1 of the Frobenius <d . be a v a r i e t y true a i s semi-simple. 12.4 a n d 1 2 . 6 . T h e same h o l d s Let m f o r smooth, p r o j e c t i v e o jectures o f G^ o n G r H ( Z , © ^ ) the eigenvalue I f resolution 12.3 a n d 12.5 - E ZZ . e n d o m o r p h i s m o n H^(Z,$^(b)) 12.7. action , and JC sequence , ( Z » ) -v ... a— I a as i n d i c a t e d . t o p row i n t h e c o m m u t a t i v e diagram By 12.6 b) f o r U a n d Z 1 0 y * I H + H^(Z) a i s exact. By H a D ) r 12.4 H * HNU) a - (Z) + H a - 1 + - a i f o r U and U — p U the map ( a (Z) a Z' ( F , r X " a-1 0 * (Z') and e x a c t n e s s o f the bottom row p •> Y i s s u r j e c t i v e . T h i s shows the a exact- ness of (12.7.1) 0 + X r + H (Z) F + Y F -> 0 . a a a Hence the top row i n the commutative -> H . (U) 4 r a. i I H^, -(U) a> I - H + T (Z ) 1 , + a H H^(Z') + a i s exact, and we 3 T (Z) diagram -* H^ (U) a T + a H^(Z) a - 12.6 b) , (Z ) for H (Z) F - a— i (U) a deduce the isomorphism H 5-lemma. C o n j e c t u r e r H H^ M a .(Z') a— i ~ (Z) -> H -1 a (Z) f o l l o w s from with 12.7.1 the with the a lemma below. c) now f o l l o w s by i n d u c t i o n on the d i m e n s i o n , zero being t r i v i a l . Given a v a r i e t y the case o f Z , the i n d u c t i o n s t e p i n a p p l y i n g b) t o a smooth, open, dense s u b v a r i e t y U e Z ZMJ . Note t h a t we may a) I f one has take U dimension consists and Z f resolution o f s i n g u l a r i t i e s , 0 one may use simplicial to 0 H ^(Y,Q^ (v) ) for suitable v a r i e t y Y o f dimension even assume t h a t simplicity for Conjectures Y Z y, v G 2Z < dim and i s p r o j e c t i v e . Thus one 12.6 b) may can deduce the and 12.6 b) and semiSerre. U, be f o r smooth, p r o - a g a i n by i n d u c t i o n on t h e dimension. First we by a p p l y i n g b) t o a smooth ( r e s o l u t i o n of s i n g u l a r i t i e s ) get the r e s u l t proper f o r a r b i t r a r y v a r i e t i e s can t r e a t the c a s e of a smooth v a r i e t y compactification X smooth and from the c o n j e c t u r e o f G r o t h e n d i e c k 12.4 and jective varieties, a certain Z . By u s i n g Chow's lemma one deduced from t h e c o n j u n c t i o n of 12.4 Then we = a f f i n e , hence q u a s i - p r o j e c t i v e . v a r i e t i e s as i n [ J 2 ] §2 t o get a s p e c t r a l sequence c o n v e r g i n g W H (Z Q ) and i d e n t i f y i n g Gr H (Z,Q ) w i t h a s u b q u o t i e n t of X/ m a Jo 5lc 1 and f o r a r b i t r a r y v a r i e t i e s by c ) . Z' = XMJ . 12.8. Lemma Let k be a f i n i t e (^-representation V of eigenvalue 0 T = 1-semi-simple, 1 i s semi-simple +A + B f i e l d . Call a (finite-dimensional) i f the Frobenius on V . L e t C+ O + be an e x a c t sequence o f ^ - r e p r e s e n t a t i o n s o f T a) B i s 1-semi-simple i f and o n l y i f A and C a r e 1-semi-simple and t h e sequence O H- A (12.8.1) r H- c R B H- o r i s exact. In p a r t i c u l a r , i f ...H-B^ H-B H-B 1 m+1 m m-1 i s a l o n g e x a c t sequence o f Q^-T-representations, w i t h B^ 1-semi- simple f o r a l l m € TL , t h e n r . . . H-B H-Bmr H-Brm-1 H- . . . m+1 i s exact. „ b) If B „ has a weight filtration (i.e., i s a mixed (j^-sheaf on W Spec k) and Gr B Proof a) i s semi-simple, then exact 1-semi-simple. Fr € T i s the F r o b e n i u s f we have sequence O H- v for is I t i s c l e a r t h a t 1 - s e m i - s i m p l i c i t y c a r r i e s over t o quo- t i e n t s and s u b r e p r e s e n t a t i o n s . I f an B F H- v F 5*" V H- V 1 P H- O any r e p r e s e n t a t i o n V, so t h e snake lemma shows t h a t O H- A P H- B P H- Cp H- o i s exact i f and o n l y i f 12.8.1 i s . The c l a i m now e a s i l y f o l l o w s from t h e commutative e x a c t A r fa A r * B - B diagram r r + c r r and t h e f a c t t h a t an isomorphism. V i s 1-semi-simple i f and o n l y i f V H- Vp is b) One has a T-isomorphism 1 o n l y appears i n G r B (note Q 12.9 Remark W B = © that G r B , and t h e e i g e n v a l u e E x t J (B,B 1 1 1 ) = Horn (B B ) f r ) . L e t us s i n g l e out t h e two p r i n c i p l e s u n d e r l y i n g theorem 12.7: a) The s e m i - s i m p l i c i t y c o n j e c t u r e implies that G i k (X Z) h->H|(X,Q^(J)) f x r v ^ H (X Q a forms a t w i s t e d b) f jl (b)) Poincare k duality theory. A morphism between t w i s t e d P o i n c a r e duality theories i s an isomorphism i n homology i f i t i s an isomorphism f o r smooth v a r i e t i e s . I f one has r e s o l u t i o n o f s i n g u l a r i t i e s , reduced t o smooth and p r o p e r In b) the l a s t question can be varieties. i tactually sufficies t o have a weak form o f r e s o l u t i o n of s i n g u l a r i t i e s : every smooth v a r i e t y dense s u b v a r i e t y V U has t o c o n t a i n an open, which has a smooth c o m p a c t i f i c a t i o n . Homology i s b e t t e r behaved t h a n cohomology, s i n c e by t h e r e l a t i v e sequence 6.1 f ) one can c u t any v a r i e t y i n t o p i e c e s exact t o study i t s homology. F o r cohomology one e n c o u n t e r s t h e problem t h a t H^(X,j) i n general i s singular (besides depends on the embedding o f t h e problem t h a t HjJj z (X,Q(j))has Z in X i f X not y e t been defined for singular X). For t h e a p p l i c a t i o n o f the 5-lemma i t i s v e r y important t o have an isomorphism f o r smooth and p r o p e r v a r i e t i e s ; has an i n j e c t i o n o r a s u r j e c t i o n i t i s not a t a l l c l e a r how extends t o a r b i t r a r y v a r i e t i e s . One e n c o u n t e r s t h i s if i f one j u s t 1 one t r i e s t o extend B e i l i n s o n s c o n j e c t u r e s varieties, this problem, to a r b i t r a r y 1 s i n c e i t i s not c l e a r how t o extend B e i l i n s o n s groups HjJj(X/E ,Q(j)) to arbitrary varieties. From theorem 12.7 we can deduce t h e f o l l o w i n g 12.10. Theorem C o n j e c t u r e s for rational Proof surfaces 12.4 and 12.6 are t r u e f o r dim (not n e c e s s a r i l y p r o p e r or For a smooth and and 3 the f i n i t e n e s s o f CH (X) conjecture , j = 0,1, and smooth). p r o p e r v a r i e t y X o f dimension <1 j e c t u r e i s t r u e as remarked above, T a t e ' s true, Z<1 Parshin's is con- trivially i s a l s o known. F u r t h e r - o more, the H 2 conjecture (trivial) The of G r o t h e n d i e c k and f o r H (X,Q ) = T P i c ( X ) ^ £ 5 case o f a r b i t r a r y c u r v e s More e x p l i c i t e l y , the i s t r u e f o r H° 1 and now r e s o l u t i o n of s i n g u l a r i t i e s be Serre follows with f o r dim M Z let b f f i be Z<1 the 12.7, T a t e T 2 ^ ^ • s i n c e one has . normalization r e g u l a r l o c u s of Z, T = ZMJ, Y and v and T = Z -U. o f Z, let U=Z Then the recr ^ exaxt sequences ...-H (T) - H (Z) - H (U) - H .(T) a a a a-i ...-H (T) - H (?) - H (U) - H .(T) a ci a a— 1 (12.10.1) a where we have s e t H Gr^ H (Z) =Gr^ 1 Gr Now W 1 H (Z) O l 1 a (Y) = H ( Y Q ) a Xy o f H (U) 1 c GrJV(U) c H 0 0 — w Gr H (Z) = 0 m 1 — H (Z) (T) f o r m * 0,-1 i £ H (Y Q ) a f Q £ c ji a v a r i e t y Y , where C(Y) ... , . C (Y) ' K C <*> 0 for - and Q (d) (12.10.2) . , 1 O ... f o r s h o r t , show 0 = 1 - , a=d:= dim Y , , a - 0 , , a>2d or a < 0 , ( r e s p . C ( Y ) ) i s the c set of ( r e s p . compact connected) components o f dimension d o f Y the G a l o i s a c t i o n on t h e s e ! ) . T h i s shows the for 12.4 and 12.6b) one A rational 3P 2 all by surface may the first t w i c e . For the 12.7b) t o obtain Z; 12.10.1. to a v a r i e t y P = 3 i s some dense open s u b v a r i e t y are known f o r P (see s t e p , we (regarding semi-simplicity for Z i s b i r a t i o n a l l y equivalent 2 1L. . . IL IP ^ , i . e . , t h e r e conjectures j u s t apply irreducible 12.4 14.1), and and 12.6 b) v Zz>UcP . S i n c e f o r Y=Z -U and 1 f o r Z by a p p l y i n g s e m i - s i m p l i c i t y l o o k a t the exact sequences v Y =P -U 12.7 b) ... - H (Y) -> H (Z) -> H (U) ... -* Ha.a (P) 1* HSia (U) -•H da-1,(Y ) . . . f We may since choose U a f f i n e and H Then H 2,3,; 2 2 ^ k ' ^ £ ^ ^ a 1 S (U) = 0 f o r a<1 3 W GrmH (Y) a , and = 0 note t h a t H(P) t ^ H a . We ^ l e (U) + H Gr H (Z) a W W W Grm H 2(Z) 9 f .(Y ) a I f W is injective for for a = m € TL , f o r m = 0,-1 f 9 W a=2, obtain W 0 for c l a s s of a hyperplane s e c t i o n . Grm H-(U)^ Grm H20 (Y ) 3 G rm HZ ( U ) W G r H (Y ) ml W Grm H 3(Z) <^ j * i s zero f o r a = 0 , 1 , m € ZZ , W m ... such t h a t the map e n e r a t e 9 -+ 1 , W Gr H (Y) -~ Gr H (Z) , 2 2 2 Gr H (Z) = 0 2 using 2 for m * 0,-1,-2 W the bounds f o r the weights g i v e n by the g e t h e r w i t h 1 2 . 1 0 . 2 we of Y and Y f over 12.4 or k b)) have reduced the q u e s t i o n For a v a r i e t y To- t o the known cases , the ( r e s p . a smooth v a r i e t y ) of dimension r i g h t hand s i d e i n c o n j e c t u r e v a n i s h e s f o r a < 2b i < j formulae i n 6.5a). . 12.11 . Remark d , or j > d ) , see or 8.12 i s known f o r (resp. i > 2j or j < 0 and S o u l e , see [Sou has t o be replaced For any field a > 2d (resp. 3] by or a) b < 0 a < 2b i > j+d), or b > d (resp. ( r e s p . i > 2j ( r e s p . 5.11). For the s i d e the v a n i s h i n g or a > b+d 12.4 left or B e i l i n s o n and i < 0), see (resp. I o c 3] 2.9 and "j<-n" c i t . proposition Soule c o n j e c t u r e [Sou b > a by r e s u l t s of S u s l i n Theoreme 8 - where the c o n d i t i o n " j > n" hand a vanishing for [ B e i 1] 2.2.2. 5). 12.12. Theorem For a v a r i e t y d o v e r the f i n i t e field i s t r u e f o r (a,b) = = k , c o n j e c t u r e 12.4 (2d,d) , (2d-1,d-1) (0,0), (1,1), (2d,d)) Proof We ( r e s p . a smooth v a r i e t y ) o f f a c t , the c y c l e c l a s s i n d u c e s an d case we 0 0 f f i Z^ =CH (Z)S ZZ d (2d-1,d-1) H + ( ( G H k' 2d k • xez > f f ( 2 i ' f f l (0,0) b)) (resp. ( i , j ) case 12.4 a ) , the o t h e r (2d,d) i s clear, i n isomorphism =H j l for 2 d (Z E Id)) ~ H l i (Z , ZZ 2 d (d) ) ^ . % f o l l o w s from 8.13.5: w i t h the n o t a t i o n s t h e r e diagram * ( d - i 1 ) ) ) * H E - 2 d (Z, ZZ ^ d - D ) d , - d + i i - - ( E H 2 d oU+i . ] ( ( z ) / ?,^(d-1))^ l ® Q xez ( d ) s i n c e the groups an 2 2 have a commutative * cont ( r e s p . 12.4 . case f o l l o w s by P o i n c a r e d u a l i t y . The The or have o n l y t o show the statement Z (Z)S a) dimension are f i n i t e . For the same r e a s o n t h i s m C induces Q 2d-1 ( Z '® ( d - 1 ) ) V£ 3 E d,-d+1 ( Z ) 9 ZZ^ Z H 2d-1 ( g '°£ ( d - 1 ) ) k c o i n c i d i n g w i t h the t r a n s f o r m a t i o n T The case of B l o c h and (a,b) = Ogus (0,0) f o l l o w s w i t h the s p e c t r a l ' ( d ) isomorphism H 0 sequence E ( 0 ) p,q = where by X ( ' ^ 0 ) ) " V q ( ' ' ^ ( 0 ) ) ' (P) definition H (x,2Z (b)) a the ( V q X 1 limit m = ^ £ running H (U,2Z (b)) a £ over a l l open for q subvarieties U c: ( x ) . Now one has E (b) = 0 2 < 0 2 as follows (cf. easily from [ G i ] § 8 ) , where ciated the i t holds Ur^>H (U,ffi q to smooth case by since (ffi^(j)) j)) , vanishes f o r the E excision for q , the > d by sheaf -terms asso- ([Mi] VI 7.1). 2 E Therefore hand, E Bloch o,o ( 0 q q R 0 = P Supp(a) 1 Z {a € Supp(Z) c to H ( Z , ZZ^(O)) i s isomorphic the other P o (Z)| and there exists c l (a) = O torsion. Obviously a But then this has t o be i t follows, Y in of P + R ( Z ) such (see that [BO] ( 7 . 2 . 2 ) h a s t o be r e p l a c e d N„Z (Z) i n C H (Z) is I o o checked e.g., £ Z (Y, TZ ^(p) ) } in 7.2, w h e r e i n f a c t t h e i n d e x p+r by p + r - 1 ) . I c l a i m t h a t t h e image curve. . On Q a n d Ogus show t h a t = Z (Z)ZN Z (Z) ) N Z (Z) with (0) from for 12.10. d = We 1 , i.e., obtain an for iso- morphism CH (Z) Q which 0 implies ® 5 £ H (Z,<£ ) Q , £ the claim, since G CH (Z) (CH (Z) Q 12.13 Now function Q let field k 0 Q) k * £ . be a global function i n one variable over a field, finite that field i s , an IF algebraic . Without q restriction we may assume that IF i s algebraically closed in q k . Then there C over curve If variety Z exists JF^ a with i s a variety W c c and smooth, a function over flat projective, k model field , then Z geometrically k . there of connected Z exists over an open sub- W (that i s f: Z^-W models [EGA flat, of f i n i t e become i s o m o r p h i c IV] over Z^x^Spec a suitable • F . Call I Let a * p = char k (finite-dimensional, q V of arithmetic, W as a b o v e In t h i s (that such 1 W (see and l e t k^ = continuous) Q -representation x, 0 a smooth G^ - A u t ( V ) Q^-sheaf over factorizes through some TT^ (W,Spec k) ) . case l e t V where subvariety be a prime i f i t comes f r o m i s ,i f H (k,V) = I i m H open k = Z ) . Two 8.8.2.5). 12.14. D e f i n i t i o n k type, with v U o o , V) H^ H = Iim the inductive ( T i (U, S p e c k) ,V) , 1 o n t cont limit (TT ( 1 ^ , S p e C i s over k o o ) ' V ) ' a l l open U c W a n d U = Ux f IF 12.15. Remark sheaf In the notation V v H (K o o f = V) (Spec V H = H 12.16. T h e o r e m v k/k;3F Vk (Spec Let Z c o ,V) Jff potential I f c o n j e c t u r e 12.4 cofinal system i s true o f open ; over k , and f o r U c W open, with 1 T7 U a a ,V) . be smooth n o t a t i o n s o f 12.13, l e t Z a) V i s just o n S p e c k, a n d H (k,V) the o f 11.7, = Z x U = f ~ (U) . WW T7 T7 f o r ( i , j ) and Z , f o r U r u n n i n g jj subvarieties o f W, then through t h e r e i s an e x a c t sequence r 0 - with b) H 1 (K 1 H "" a j f 1 F ( Z G ( J ) ) ) ->HjJj(Z, Q ( J ) ) © $ £ f Let U c W over be open U - u f surjective x U IF G i H (Z,Q (j)) £ k , % ' t such that Z 1 rj i s smooth and R fQ + is . If Hj(z c(j)) ® 2 e T = G a l ( k /k) = G a l (3F /JF ) . «>' q q smooth is . q q and H| fc h e n H it ( z u'V ( Z ,Q, (j )) y j j > ) r i s 1-semi-simple (12.8), for Z u = r is : i , j h i M ( Z ( ' Q 3 ) ) ® ®l ~* i ^ ( G ' Z t Q £ ( j ) k ) surjective. c) I f f o r some U as i n (Hi(Z ,«(j))/Hj(Z x is = H injective, N R q r if j «(j)) )^ - 0 closed point x € U H* <Z ,« <j)) t Z x <(x) U U the fibre , then t h e same i s true f o r TT TT x £ of f over x and Z x . (H^(Z, Q(J) S a n d some Z = x J Z X , w x IF q x / b) )/HjJj (Z,<D(j) ) ) - H^. ( Z G ( J ) ) ® ^ Q f e , G q similarly In p a r t i c u l a r , one Z i j Z^ , x € U closed, Q Hj(Z,4(j)) : isomorphisms true K ) 5 9 ^ 0 S £ 1 H (k f o r a l l i , j € TL then H ^ . (Z , $ G, (j ) ) K £ ,H^ (Z,G (j))) 1 T O and r £ , and a l l T a t e conjectures are for Z . Proof (see a),b ) : We may assume [ M i ] V I 7.2) a n d h e n c e gives an e x a c t 1 1 O-HH We f H ^ . (Z ,(I^ ( j ) ) 12.4 a n d 12.6 b) a r e t r u e f o r (H^j(Z,G(j))/H^j(Z,Q(j) ) ) ® G r ^ . : are i f conjectures and a l l f i b r e s ? : HjJj (Z , Q ( j ) ) ± f o r Z^ . d) u = Ker ( r ^ s e t HjJj (Z , Q ( j ) ) w h e r e we (U R "^ 1 i i s affine; Leray spectral then cd^(U) sequence 1 1 ) - n H ( Z , ^ ( j ) ) - H° ( U R ^ Q 1 o b t a i n an e x a c t OH-H the U for <1 f sequence I^ (J) f that u f e (j) ) ^ O . sequence 1 R i (U,R " f^ (j)) H-H (Z ,Q (j) ) £ u (12.16.1) R £ i H- H ° ( U , R f ^ ( j ) ) F + |ch H^(Z S)(J)) u f with map By the Chern c h a r a c t e r as i n d i c a t e d , i s surjective Deligne's i fH generic 1 ( Z , Q^ ( j ) ) base y change where the right vertical i s T-semi-.simple . theorem ([SGA 4 •^][finitude]) V the sheaves R f * Q^ a r e smooth i f U i s s m a l l enough; then they can be i d e n t i f i e d w i t h t h e TT (u,Spec k) = : TT^ ( U ) - r e p r e s e n t a t i o n s 1 V (R f Q^) + one V £ = H ( Z , Q ) and t h e diagram 12.16.1 w i t h t h e f o l l o w i n g S p e c £ ( c f . [Mi] V 2.17) 1 O-H^ O N (TT T i-1 T (U) ,H ' ( Z Q ^ ( J ) ) ) 1 i 1 H f 1 1 U (12.16.2) - T T , Q (J))' J i *1 -H (Z Q ^j)) ( U ) 1 f i j Ich Hj(Z ,«(j)) 0 By p a s s i n g t o t h e l i m i t over the U we g e t a commutative exact diagram Q 1 O-H ( K 1 cof 1 r H " " (Z Q (J) t (12.16.3) 1 )) -lim l H (Z ,Q (j)) T J K1 0+H 1 (Z Q(J) ) m f using o r / £ k £ I J 9 f f 1 i A 1 - ( H ( Z , Q ( j ) )/H (Z,©(j) ) J ® Q HjJj (Z,CB - z ®Q 1 - H (Z,Q (j)) £ - 0 , that K (12.16.4) cf. Ch r £ 2 j - i ( Z ) ( J ) s s l J m K 2j-i ( Z U ) ( J ) [Q1] §7, 2.2. The assumption o f a) i m p l i e s t h a t ch ®Q^ i s an isomorphism, For so t h e statements o f a) and b) a r e c l e a r . c) we use t h e commutative H^Z x f Q(J)) diagram -fi-U SPJ (Z x f Q^j)) fsp M Hjjj(Z Q(j)) i / j f sp t v (12.16.5) where 1 H y Hj (Z,Q (j)) , t £ i s t h e s p e c i a l i z a t i o n map i n e t a l e cohomology - which can be o b t a i n e d a s t h e d u a l o f t h e g e n e r i z a t i o n map f o r cohomology w i t h compact s u p p o r t , c f . [DV] exp. 0 , 4.4 - and where sp^ i s the s p e c i a z a t i o n map i n m o t i v i c cohomology. The l a t t e r one can be d e f i n e d as follows for ( c f . G i l l e t ' s c o n s t r u c t i o n and remark on K V c U open, 1 x s u f f i c i e n t l y s m a l l , l e t t € 0(V) meter a t x € U , and a l s o denote by t i n [ G i ] 8.6 ff.): be a l o c a l p a r a - t h e c o r r e s p o n d i n g element i n 1 H (V Qd)) M class 0(V) = f X $ Q o f x under ... 6 i n the - H J (U Qd)) i v Z = U -V ... one j Hj(Z ,Q(j)) 6 comes U f v HjJj + 1 f f defines a t - exact - H J (V Qd)) f and f sp : where f ( c f . 6.12.4 e ) ) . T h e n from * $ Hj^ (U Qd)) z - f J (Z ,4(j+1)) fundamental H^(U Qd)) f -Hj(Z v exact Q(j)) x f f sequence +1 HJ (^^(J + DJ^HJ^ - u the sequence + 1 H (Z ,<J(j + U ) maps t o map ( t ) the t ( Z u ^ ( J t D ) - ... IIZ This depends on the H JjU Q(J)) = j does not. with for f t the The c h o i c e of t , but i Iim HJ(Z induced map ,4(j)) sp on H (Z ,Q(j)) M v same c o n s t r u c t i o n r e p l a c e d by the e its first commutativity of 6 H ^ t y V J ) ) can be Chern 12.16.5 carried class t ^ i t remains out in etale cohomology, € H^ (V Q^(I)) t t to show f and f that H^,^), * ' - " * ' " * * : " H| (Z Q^(J)) t commutes. T h i s f o l l o w s from cupproducts, Now c) with similar i s clear from compatibility arguments the Hi<Z ,<fi(j)>/Hj<Z <B(j)) x the f x f as i n [DV] commutative c_ o e t Hj(Z Q(j))/Hj(Z Q(j)) f d) that the f sp i s an i s now x phism i f the clear from 12.16.3 c h right 12.17. Remarks £ ( j a) and a)-c) ®Q„ Q J '£ by and the VI 3.6. f )) (J)) similar is b ) : by for a l l is bijective, map ' smoothness o f 12.7 12.6b) h o l d vertical A (5 T Q isomorphism c o n j e c t u r e s 12.4 diagram exp. with i+sp H which specialization diagram H (Z ,g> J- in of then I^f^Q^ induction , V c r*. . ® Q „ U . i t follows , and i s an i f in isomor- injective. theorem h o l d s for arbitrary varieties and homology. The s p e c i a l i z a t i o n the generization motivic one h a s t o u s e t h e p u l l - b a c k 14.4 b e l o w ) . H U,®(b)) i = Iim a and follows homology map f o r c o h o m o l o g y w i t h c o m p a c t homology map f ( c f . map f o r e t a l e from Formula H a + 12.16.4 i s the dual o f s u p p o r t , and f o r t h e morphism f* f o r the f l a t becomes (Z QCb-M ) ) ir 2 [Q1] § 7 ( 2 . 4 ) , and e v e r y t h i n g c a n be p r o v e d by c o n s i d e r i n g cohomology with s u p p o r t s , b) If Z i s smooth and p r o p e r , then G i k (Z,<S.,(j)) H =O f o r i * 2j , ' 1 cont k' H • ^1 i-1 V H (^,H (Z Q^(J))) l 1 1 ( G H i-1 < '<Vi>> 1 Z i ' < 2 j _ 1 . _ ,. or 2. Zj 1 7 H 1 (k,H l _ 1 (Z,Q (j))) , £ 0 In fact, O-H 1 one h a s a H o c h s c h i l d - S e r r e s p e c t r a l (Z,Q^(j)) H the vanishing of for H i-1 - o , i s pure o f weight r-2j G c (T,H " (Z,Q (j)) * 2 j . T h e map 1 o n 1 t i 1 1 1 f injective, Finally, k o £ H (k,H - U Q^(J))) H S which global 1 1 (Z Q (J) ) ) 1 oo The f H (H " 1 above f r j l = 0 function and extends field k). the f i r s t G (Z,Q^(j)) ~ ) c l a i m and k r (G ,H " (Z,Q (j))) 1 k £ f o r i * 2 j - 1 , s e e [ J 3 ] lemma 4 . 1 o n t of weights investigations sharpens 1 , implying 1 o n t f o r U a s i n 12.16 b) , H Ck ,H "" 1 1 °) = and an isomorphism ( U , R " f * Q „ (j) ) i s m i x e d l _ H sequence — and 1 i > 2j . ( ^ " ^ , ^ ( j ) , ^ o n t r is i = 2j-1 , (Tr (U) 1 , H " 1 >i-2j 1 (Z , Q ^ ( j ) ) ) = ([D9] 3.3.5), f o ri > 2j . suggest the following the conjectures conjecture, 8.5 a n d 9.15 (for a 12.18. C o n j e c t u r e € TZ a,b let ( c f . 9.4). a) Let H^(Z,Q(b)) a Z be H a ( Z isomorphisms. b) In p a r t i c u l a r , ® V H M for (X ' <C( ^ 1 j Cl ^CH (X) Remark )) 8 > < C saying Formally, (k^ " , and k , (X Q (J) ) ) f j l the A b e l - J a c o b i 2j c o n t 1 (G , H " r 1 p r o p e r over 1 £ - H^ CZ,^ (b))) 1 map (X,C (j))) k A part b) can be e x p r e s s e d f o r a l l i,j€22 0 Q Q £ - H 1 1 (k,W^ H " 1 1 (X Q (J) f l ) ) t should be an isomorphism f o r a l l i , j G Z . I f H semi-simple, one H o o f that HjJj(X,fl(j) ) is (K isomorphism f o r j _> 0 . 12.19 by 1 £ smooth and » C, - H o a H X k - H (Z,Q (b)) £ « 0 i s an isomorphism f o r i < 2j i s an for k b <®< >> are h , and Then a,b®V ^ i,j k = K e r ( r ' . : H ^ (Z ,Q (b) ) - H (Z ,Q (b) ) ) a ,o a a u (H^(Z,(J)(b) )/H"(Z,(|>(b)) )® « ? a v a r i e t y over 1 where 1 (k,W 1 .H " 1 1 (X,Q^(j)) has (X QAj))) = r S , S S (k,Q ) a 36 0 i s the Ext 1 1 (©,,H " category 1 (X QAj))) , r of a r i t h m e t i c a l Q - S h e a v e s 0 X- W F w i t h weight f i l t r a t i o n on simple. be The motivic t h a t the 12.20. Theorem b) and = Conjecture Proof By (a,b) 12.12 a) Conjecture (2d-1,d-1) 12.18 or (up t o 12.18 are semi- (compare §-]-j ) would functor i s f a i t h f u l 2-extensions over k a) f o r which the Gr^F i n t e r p r e t a t i o n of t h i s £.-adic r e a l i z a t i o n are no m o t i v i c X Spec k, and that there torsion). i s t r u e f o r smooth v a r i e t i e s (2d,d) , d = dim X . i s t r u e f o r X = Spec k . T h i s f o l l o w s from 12.16.3 f o r the middle v e r t i c a l map i s an (i,j) = (1,1), ( 0 , 0 ) : isomorphism, and for (i,j) = (1,1) the b) This again t h e r e we is an r i g h t v e r t i c a l map may follows take Z^ = U isomorphism. I f all groups v a n i s h . For i = 1 from , and case isomorphism by 12.16.3. With the by i * 0,1 The 12.10 , or i f (i,j) = i = 0 (0,0) have H ( S p e c k , Q ^ ( J ) ) = 0 M ) and the claim 5.16. notations the m i d d l e v e r t i c a l 1 we = Hl(Spec k,$(j)) and has j * 0 , then been t r e a t e d , hence H^(Spec map above. k,$(j)) follows. O §13. Number fields In a n a l o g y w i t h the f i e l d s we 13.1. be i s an conjecture Conjecture conjecture the Let 12.18b) f o r g l o b a l following. k be a finite extension a smooth p r o j e c t i v e v a r i e t y o v e r k Then the r i f j : Hj<X,«(j))» 8 fi the - H £ i s an (0,0) f u r t h e r d i s c u s s i o n and [J3] §2, where t h i s with 12.14 we (G c o n f c Chern c h a r a c t e r for i = j , ( i , j ) * For , and of Q let f I let be X a prime. map i n d u c e d by jective function 1 k 7 1 H " (X,Q) (j))) £ isomorphism f o r i < j in- . motivation conjecture and we i s stated r e f e r the for i < j reader to . I f i n analogy define V 1 V i H ( k , H ( X , Q ( j ) ) = H (k/k;2Z , H ( X Q ( j ) ) ) £ / (13.1.1) where U =Iim r i n g o f i n t e g e r s and all those above I 1 f [J3] i lemma 4. S a finite o r where H (k,E (X Q (J))) see Q N T (TT runs over a l l open subschemes o f the 1 H^ 1 S f H^ X o n t has (G In t h a t paper we £ i 1 (U) , H ( X , Q ( j ) ) ) £ Spec O^S reduction, 1 k f , with s e t o f primes o f k bad H (X Q (J))) f i also discuss , containing then we have f o r i * 2j-1 the following , 13.2. Conjecture 2 For X/k as above 1 H ( k , H ( X Q ^ j ) )) = O for 7 In view P E ' q of the spectral P q q H (X,Q (j)) K = O £ conjecture 1 7 , ( i , j) H (X Q(J)) 7 induced for dimension 2 q * 2j , a <d 13.1 a n d 13.2 t o X a s above / then (X,Q (b))) & <d, then £ to arbitrary 13.2 i s t r u e = d+b . i s an isomorphism = 0 for varieties. f o r smooth, f o r any v a r i e t y X a > d+b+1 f o r smooth, p r o j e c t i v e X of dimension + H ( X / k , $ ( b ) ) =: a ( c f . 11.7.c)) i s a n i s o m o r p h i s m a ( c f . 11.6.2) fori = j . this f o r any v a r i e t y H (X,Q(b))®^ £ character If I f 13.3 i s t r u e t h e map -> H ( X G ( j ) ) l 0 ( X , < ^ ( j ) )) 1 Q Jb a) l _ 1 one has 7 For q as above (k,H combine b) a (J)) j l (O O) . t o extend Theorem H (k,H 1 X and i n j e c t i v e We w a n t of * by t h e Chern i < j 13.4. may Conjecture 1 for ^ H j H e n c e we 13.3. (X,G that For H (X G ^j)) i < j P + q 13.2 i s e q u i v a l e n t t o 13.2'. C o n j e c t u r e for => H £ and t h e f a c t G i+1 < j . sequence = H (k,H (X,Q 'j))) (cf.11.7.1) one has £ projective of dimension d varieties over . varieties d over of dimension k t h e map H (X,G (b)) a f o r a > d+b k £ and i n j e c t i v e f o r For 13.5 be Lemma If we u s e t h e f o l l o w i n g Let X a closed a) of theproof be a v a r i e t y subvariety such a thev a r i e t i e s f X U = XMT = 0 £ and of dimension d over that H (k,Gr^H (Z Q (b))) lemma. i s dense f o r a > d+b+1 U , then this and Z = Y vanishing also other one. b) I f t h e map i n 13.4 b) h a s t h e p r o p e r t y stated and one o f t h e v a r i e t i e s property for t h e other one. Proof a) Gr We h a v e H { ( b ) this belongs • • -+ m a * > ® l and since a long Gr exact ( ^ m a *'®* absolute Hodge c y c l e s of short split H and exact ( b ) U , this Y c X i nX . the X k, l e t a n d one holds f o r there for Y also holds sequence Gr H ( b ) >^ ma t o a sequence ( c f . 6.11.10/ sequences. Gr H >+ m a-1 V b ) > ' of p o l a r i z a b l e motives f o r i t c a n be s p l i t This shows t h a t into a series t h e sequence remains 2 ~ exact after applying since a > d+b+1 b) We h a v e the functor implies H diagram of exact . . . - H ( Y / k , Q ( b ) ) ^ H ( X / k , £ ( b ) )-*H £ a £ + f a (UA Q f i f a so theclaim I. 3.1) a n d t h e f a c t dim Y + b Proof 13.4 easily e (b) ) - H ^ a) b e i n g 2 H (k Gr^H f f follows that with (resp. that f t h e weak a > d+b induction (X Q,(b))) 1 = 0 (resp. £ d f -> H ^ 1 four-lemma a = d+b) a > dim Y + b on (Y/k,$ (b) )+ . . . £ t f f a n d a-1 > d+b o f 13.4: W i t h the claim, sequences . . .->H (Y Q(b) ) ® Q ^ H ( X Q ( b ) ) ® Q ^ H ^ ( U Q ( b ) ) ® Q a implies a-1 > d i m Y +b+1 . a commutative a (k -) . This (Y , Q (b) ) O Q ^ (see [ML] implies a-1 > a n d a-1 > d i m Y+b) . theinduction claim f o r for every and for d > 0 varieties and m € 71 p r o v i d e d a > d+b+1 we f i r s t U . Choosing . The case d = 0 is trivial, show t h e c l a i m s f o r smooth q u a s i - p r o j e c t i v e a smooth, p r o j e c t i v e c o m p a c t i f i c a t i o n X z> U l e t t i n g Y = X^U, t h e i n d u c t i o n s t e p i s g i v e n by 13.5, s i n c e the claims coincide with 13.2 and 13.3, r e s p e c t i v e l y , d u a l i t y and p u r i t y . F o r an a r b i t r a r y v a r i e t y X f o r X , by P o i n c a r e we choose a dense, open smooth q u a s i - p r o j e c t i v e s u b v a r i e t y U f o r which we getthe T by t h e f i r s t s t e p . The i n d u c t i o n from Y = X\ J to X result now a g a i n f o l l o w s w i t h 13.5. 13.6. Remark statements By t h e H o c h s c h i l d - S e r r e s p e c t r a l sequence f o r homology, a) and b) o f theorem 13.4 t o g e t h e r would imply t h a t the map H^(X,Q(b)) ® Q Q 1 £ - H (*,H a + 1 i s an isomorphism f o r a > d+b *(2d,d) . Conjecture function f i e l d 13.7. (X,Q (b))) £ and i n j e c t i v e f o r a = d+b, (a,b) 12.18 a) would imply e x a c t l y the same i n t h e case. A t t h e end o f t h i s section, l e t us d i s c u s s the r e l a t i o n a g e n e r a l c o n j e c t u r e o f B e i l i n s o n on K-theory ([Bei H ^ j and £-adic cohomology 4] 5.10 D ) v i ) , b u t note t h e m i s p r i n t i n t h e d e f i n i t i o n o f (S, ZZ/ Z (i) ) N ine be r e p l a c e d i n the l a s t by x ^R'n^7Z / Z N < For a r e g u l a r scheme (i) ) X r e f e r e n c e , where which i s i n v e r t i b l e on Zariski AA (J) n n RTr Z Z / £ ( i ) + should . l e t a: X> -> x et & ar map from t h e e t a l e t o t h e Z a r i s k i s i t e o f of with be t h e c a n o n i c a l X, and l e t X . B e i l i n s o n notes Z be a prime t h a t the complexes sheaves := T Ra E A jlt n (J) s a t i s f y G i l l e t ' s axioms f o r a t w i s t e d P o i n c a r e d u a l i t y 1 provided Grothendieck s purity conjecture theory ( s . [SGA 5] I 3.1.4) i s t r u e . Assuming t h i s one H j (X, S /I (J)) n i n e factorizing canonical x := H ^ map induced R a ffi A ( J ) N i n t o H^ (X,TL /I (j)) that H* N i n e ( X , T L /I (*)) n expressed i n three Gillet's ones) such t h a t v i a the i.e., H H 1 ar mology. The "motivic coho statement of complexes o f s a t i s f y i n g c e r t a i n axioms can Chern Zariski (including characters ( X , Z Z ( j ) ) * Q = Hjjj(X,Q(j) ) M {X TL Aj)) t meaning of t h i s existence ffi^(j) (13.7.1) X the sheaves 1 i s the ( r e l a t e d ) ways. B e i l i n s o n conjectures on the . n mology w i t h ZS / £ - c o e f f i c i e n t s " . The 1) via t by B e i l i n s o n conjectures be into 34t n - Ra*2Z A ( J ) + from K (X) (X,AA (J) ) ar the Chern c l a s s e s n <:j g e t s Chern c l a s s e s can i be r e g a r d e d as an above c o n j e c t u r e then claims i n t e g r a l motivic that there are coho- canonical q u a s i - i somorphi sms AA (J) n S (j)) ~Cone(2Z (j) £ M In p a r t i c u l a r t h i s would g i v e (13.7.2) 2) For higher ...^H ar M X a r (X,2Z sequences (j)) ^ M over a f i e l d k B l o c h Chow groups CK*(X,*) (13.7.3) long exact (X,2Z ( j ) ) ^ H j a variety dence f o r the i s the 1 . M conjecture , and that i n [B15] (X, SA (J))^... n i n e and Landsburg Bloch defined g i v e s much e v i - f o r a smooth v a r i e t y j HjJj(X,ZZ ( j ) ) : = C H ( X , 2 j - i ) c o r r e c t v e r s i o n of i n t e g r a l m o t i v i c cohomology. B l o c h in p a r t i c u l a r proves that (13.7.4) and HjJj (X,ZZ that there (j)) $ i s a c y c l e map r e a s o n a b l e cohomology t h e o r y in [Bi 6] one n t h a t t h i s map (j ) ) from the [ B i 6] groups 13.7.3 i n t o . By the for regular i s an be as X n can any same arguments (X;2Z A ; 2 j - i ) - H ^ j Beilinson's conjecture conjecture HjJj (X,Q gets a c y c l e map Hjjj(X,2Z A ( J ) ) := CH and = U i n e (X, TL/ l (j ) ) s t a t e d more c o n c r e t e l y as isomorphism f o r a l l n , i , j € TL the and a l l smooth v a r i e t i e s 3) One c a n show t h a t n ( K . . (X TZ /l ) 23-1 ' ' 0 and up j one a c t u a l l y ) 1 + H f standard gets Chern (X,ffi/J6 (j)) ' ' n fine Beilinson's conjecture t o "small i n [MS 2 ] X, c f . t h e s t a t e m e n t s V claims J that factorials" classes , ' M this (those . map i s a n i s o m o r p h i s m necessary to define the Chern c h a r a c t e r ) . can Grothendieck's purity conjecture u s e Thomason's result that true X f o rreasonable of finite H type ( f i n e X schemes i s unproved the purity yet, conjecture [Th] . I t i m p l i e s t h a t part Chern ' V 3 ' > : U i * = 4 (x,2Z A ( J ) ) ) ® n i n e 2j-i ( X ) H K-groups or similar Bass' motivic three imply 9 and t h a t ffl ) ) there are • 0 on t h e f i n i t e t would - H i i generation on t h e f i n i t e generation Beilinson's conjecture n e f o ra l l imply that of the of inte- ( i n any o f the induced map (X,^(j)) i , j £ ZZ a n d X r e g u l a r , o f TZ . F o r a s m o o t h S f i n e variety n Ra ZZ / £ ( j ) jlt rise - Hj ( X , X = Iim X a a Now t h e e x a c t gives theory X over a field finite k this would isomorphisms where T j ' V conjectures HJ(X,«(J)> for duality conjecture formulations) an isomorphism over X cohomology, Hjj(X,(B(j)) type ( * f i n e with is £ of a twisted Poincare Together the f o r schemes characters K gral i s "almost" o v e r ZZ n is b u t one Q (J)) X ( X Q (J)) f , l i s d e f i n e d a s i n 11.6 JL with i n e of finite a type over triangle + Ra 5 Z / £ ( j ) to a long n + exact -> T > sequence N Ra 2Z /I + (j , as I i m H a TL . 1 ± n e (X , Q (j)) a £ ... - H ^ n (X,T Ra 2Z / S ( J ) ) + H ^ ar >j J|c Il i f i < j + 1 1 (X Ra a r f E /I (J)) n jlt Ra„ZS /I - H fine H Zar ( X ( X ' f f i / T ' >j * R c t n H (X,ffi /£ (j)) H 1 ( X , S / £ ( j ) ) - H ( X f f i /I (J) 1 Beilinson S char k If X - H and injective 1 and injective N 1 i n e (X , ZZ /I f o r i = j+1 n (j ) ) and H N 1 fc (X, 2Z /I (j ) ) spectral i s j u s t the s p e c t r a l sequence f o r the f i l t r a t i o n N*([BO]6.4 and f o o t n o t e ) , the t r u n c a t i o n x ^ means t o f o r c e the 1 and . f o r i > j . S i n c e the hypercohomology + 1 k, 13.3. e sequence f o r Ra ffi/£ (j) i n a c e r t a i n way sharpening ( X , Q (J) ) r e l a t i o n between H (13.9.1) for i = j + 1 . Concluding, then for i < j is highly n o n - t r i v i a l coniveau ) i s a smooth v a r i e t y over a f i e l d i s a prime, i s an isomorphism The n / f o r i <_ j HjJj(X,Q(j)) 13.9. i<j c o n j e c t u r e suggests the f o l l o w i n g one, Conjecture if 1 t i s an isomorphism 13.8. S map n i n e * >> O t Hence the n ( j H if Il 1 (j ) ) - Il O - H n (X , x ar j < condition 1 H (X,j) = N " H (X,j) upon the c o n s i d e r e d t w i s t e d P o i n c a r e d u a l i t y t h e o r y . T h i s s h o u l d be compared w i t h the remarks i n 5.24: condition 13.9.1 i s a n e c e s s a r y c o n d i t i o n t o g e t a cohomology t h e o r y c l o s e t o m o t i v i c cohomology. The v a r i o u s c o n j e c t u r e s I made f o r f i n i t e o r g l o b a l f i e l d s t r y to c a l c u l a t e H* , i . e . , the c o n i v e a u s p e c t r a l sequence, i n terms of the £-adic r e a l i z a t i o n s - compare the Tate g e n e r a l i z a t i o n due and no i = 2j and i t s In f a c t , the case of c y c l e s i s the extreme case, where B e i l i n s o n ' s c o n j e c t u r e gives information at a l l . To to to Grothendieck. conjecture see U I-* H^ H P l e t H (2Z A ( J ) ) (U , TZ/ I t (X, H n 1 this, (j) ) N be the , then we q (ZZ A ( J ) ) ) P (ZZ A ( p ) )) = CH n = O have , Zariksi sheaf associated (assuming p u r i t y ) p > q , O CL I. H P ^ (X, H Zi a r by(the H proof n of) [BO] 7.7, {X TZ A ( J ) ) n 1 i n e jecture the mystery l i e s H J 13.10 (X,SA (J)) Remarks spectral a) quence one - H?J(X, TZ/ I (J)) n I f one conjecture for H^ n FA ( F , ZZ /I (j)) 1 (F, TZ/ £ for i > j) "arithmetic"nature, while - H (X,ZZ/I (j)) 1 t i o n - i s of N for of sheaves T ( j ) b r a i c K-theory n .In this CH nature, (formulation N (F; TZ/ I 2)) j) T of H 1 i n e ( X , TZ t o the c o n i v e a u = with filtra- complexes c e r t a i n r e l a t i o n s to a l g e - constructed candidates the N /I (j)) 5.24. the e x i s t e n c e of c e r t a i n ( l o c . c i t . ) and =O sense, the c o n j e c t u r e i s c f . the p i c t u r e i n f o r the etale t o p o l o g y [ L i 1] and 1 the d e t e r m i n a t i o n conjectured By the t r i a n g l e axiom s p e c t r a l se- (j ) ) , i < j , j < i < 2j - r e l a t e d "geometric" Lichtenbaum has a Bloch-Ogus ( t h i s i s sometimes r e f e r r e d t o (Note t h a t t r i v i a l l y of b) has ( c f . [MS2]) (F;ZZ/ £ ,2j-i) ~ H N i n e assumes p u r i t y , then one e a s i l y deduces t h a t B e i l i n s o n ' s c o n j e c t u r e a l l fields here . f o r e t a l e cohomology). From t h i s i s e q u i v a l e n t t o having j t r u e f o r i = 2 j , and map sequence f o r etalecohomology as G e r s t e n ' s CH 1 . C o n s e q u e n t l y , B e i l i n s o n s con- is "trivially" i n the n n e n B e i l i n s o n i n [ B e i 4] ( f o r m u l a t i o n 2)) 2 f o r i > 2j , j n e n hence =CH (X)A n H ^ ( X , f f i /£ (j) ) as remarked by (X)/I and =O t P for j < 2 i m p l i e d sequence [ L i 2]. ...-H 1 t (x,r(j)) the groups can be H 1 f c H quite different and ( J ) « (x,r(j)) are a l c (i.e., and i n c o m p a t i b i l i t y with Lichtenbaum c o n j e c t u r e s quasi-isomorphisms T(J) his imply B e i l i n s o n ' s c o n j e c t u r e The ... TL - c o e f f i c i e n t s " ) cohomology. But showsthat this together with 13.11. Theorem (x,E/i6 (j))-. n t r a t h e r r e l a t e d t o e t a l e cohomology from m o t i v i c T^Ra 1 - H " e t a l e cohomology w i t h Beilinson's conjecture M t (X,T(j)) thought of as S 1 " H i l b e r t 90" (formulation conjectures axiom would i n f a c t 1)). s t a t e d i n t h i s chapter are true f o r X = Spec k . Proof One has H (k,$ (n)) = O for i > 3 , 0 Q (J) , i = ji 1 O , 4 H ( S p e c k,CB (J)) = jl , i * O , and i t f o l l o w s from r e s u l t s of B o r e l and K- Zn Soule that n > 1 , (k) 6 Q = O ch. K 2 n - 1 ( k ) ( n ) K V ^ 2 n - 1 ( k 2 H (k,$ (n)) = O £ cf. [J3] , example 3. ) ^ Q £ ^ e 1 ( k ' ^ ( n ) ) ' n 13.2 i s true r H JtSpec k , 4 ( j ) ) j H° (Spec k , ^ ) 1 * Q 1 H^(Spec k , $ ( j ) ) = O showing c o n j e c t u r e G, 2'° 13.8. ' f o r Spec and £ 1 for n > 1 , Hence c o n j e c t u r e H^J (Spec k,Q(0))<8>(D ^ H (k,Q (j)) £ , otherwise, , , j > 1 , k, are §14. Linear varieties In t h i s s e c t i o n we study c e r t a i n v a r i e t i e s , whose cohomology groups are s u c c e s s i v e e x t e n s i o n s of Tate o b j e c t s , and prove most of the c o n j e c t u r e s s t a t e d i n t h i s paper f o r them. We general 14.1. s t a r t with observations. Lemma For every c o n j e c t u r e s t a t e d i n t h i s paper the f o l l o w i n g p r i n c i p l e h o l d s : I f the c o n j e c t u r e i s t r u e f o r a smooth v a r i e t y i t a l s o holds f o r every a f f i n e or p r o j e c t i v e f i b r e bundle over 14.2. T h i s i s due theory s a t i s f i e s the f o l l o w i n g axioms f o r a smooth v a r i e t y [Gi] 1.2 t) two t o the f a c t t h a t every ( i x ) , ( x ) , and 8.9 (homotopy i n v a r i a n c e ) p: V(E) -> X considered Poincare X, X. duality X (cf. above): If E i s a v e c t o r bundle on X and i s the a s s o c i a t e d a f f i n e f i b r e bundle, then the mor- phisms i p*: i H (X J) - H (VfE),j) f are isomorphism f o r a l l i , j € TL . n') ( p r o j e c t i v e bundle isomorphism) of rank n on X and bundle, • p: P(E) X If E i s a v e c t o r bundle i s the a s s o c i a t e d p r o j e c t i v e f i b r e then H a 2v-2n + ( X ' b + V " n ) H ft (P(E) ,b) V=O 2 i s an isomorphism f o r a l l a,b E TL , where £ € TH Chern c l a s s of the c a n o n i c a l l i n e bundle 0(1) 14.3. i.e., Here the p u l l - b a c k p* (X,1) on P = P(E) i s defined v i a Poincare as the arrow making the diagram i s the . duality, H _ (X,b-n) a nH TT f n /v commutative, and £ V —* p* . ^ T T H n ' d=dim X , 2d+2n-a, , (P,d+n-a) x i s the v - f o l d cupproduct of £ , where the i s d e f i n e d by P o i n c a r e d u a l i t y , too, by commutativity 1 H CX^) 9 H f (X J ) f t Qlf IX J ) i P r o o f of 14.1. l l t H _ (X,d-j) 2 d a ^ P 2d+2n-a , , ,. (X,d+n-b) cupproduct H (P b) ^ x H > 2n r —- > H — > H 1 + i 2 ' d of (X, j+j • ) ^ i , (X,d-j-j') . The axioms t) and n') iirmediately give the claim for the semi- simplicity conjectures i n §12 and for Tate's conjecture C), since L(V(r) ,s)=L(V,r+s) . A l l other conjectures concerned morphisms between twisted Poincare duality theories, their bijectivity, i n j e c t i v i t y or s u r j e c t i v i t y , and o b v i o u s l y morphisms r e s p e c t the above isomorphisms. The axioms t ' are well-known f o r the £-adic t h e o r y and follow for absolute Hodge t h e o r y , and then i n p a r t i c u l a r the Hodge and n') f o l l o w from Q u i l l e n ' s c o r r e s p o n d i n g Remark The f*: H a (Y,b) of f i b r e dimension ii) a cupproduct <n t') If E -> H i) eigenspaces. by a p u l l - b a c k morphism i n , (X,b+n) for f l a t morphisms f : X -> Y a~r ZTX 0 , i n cohomology, both compatible d u a l i t y as i n 14.3. these e x i s t , and K-theory above can be extended t o s i n g u l a r v a r i e t i e s i n t r o d u c i n g the f o l l o w i n g c o n c e p t s : homology (co -)homology t ) r e s u l t s f o r the ([Qui 1] § 7 , 4 ) , s i n c e the maps r e s p e c t the Adams 14.4. n') the deRham t h e o r y , by the comparison isomorphisms. For the m o t i v i c and and these with Poincare F o r the c o n s i d e r e d P o i n c a r e d u a l i t y t h e o r i e s i n s t e a d of t) on has: i s a v e c t o r bundle of rank n on a v a r i e t y X and p: V(E) -+ X p*: i s the a s s o c i a t e d f i b r e bundle, then H (X,b) - H . - ( V ( E ) , b + n ) i s an isomorphism f o r a l l a,b €ffi. Axiom n') h o l d s l i t e r a l l y back and cupproduct f o r a r b i t r a r y v a r i e t i e s X, w i t h t h e p u l l - mentioned above t h e o r y , which c a r r i e s over t o m o t i v i c homology by t h e methods o f 3 ] , and [DV] V I I I 5 f o r £-adic [Sou The rieties, 14.5. with t h i s , for XX^K, X Proof i.e., X over a field k, t h e c o n j e c t u r e G a l o i s e x t e n s i o n K / k , then i t holds for a finite itself. A l l conjectures involved functors with rational Galois descent, we have c a n o n i c a l l y (14.5.1) H (X^)O a G = Gal(K/k) 2 2 Q= (H (Xx ^b)O a k f f i Q) . Here we r e g a r d X x ^ K t h a t we have an a c t i o n o f G on Xx^K o v e r the homology. The p r o p e r t y for i n terms o f homology. F o r e v e r y c o n j e c t u r e s t a t e d i n t h i s paper t h e f o l l o w i n g p r i n c i p l e holds. I f , f o r a variety for 1 4 . 1 f o r a r b i t r a r y va- hence one o b t a i n s s i n c e a l l c o n j e c t u r e s were f o r m u l a t e d Lemma holds homology)-. c o n s i d e r e d Chern c h a r a c t e r s and Riemann-Roch t r a n s f o r m a t i o n s a r e compatible for (See [Qui 1 ] I o c . c i t . f o r K - 14.5.1 then G , as a v a r i e t y over k so k and an induced f o l l o w s from t h e f a c t the functors P* H (Xx ,K,b) J H (X,b) a k ^ a induced by t h e e t a l e p r o j e c t i o n p: X x ^ K -> X we have p p* = [K:k] • i d, + (14.5.2) P *p + = I a€G a We make t h e f o l l o w i n g i n d u c t i v e d e f i n i t i o n . one on that 14.6. Definition O-Iinear, for . {U,X,Y} immersion and is Call of be Z flat U c X (n-1)-linear, linear, S i f i t i s empty or some N > 0 tripel Let n-linear, S-scheme affine f o r n •> 1 Z and o t h e r member i n f o r some n>0 (and S-space i s a closed open complement, Y i s the Z , i f there i s a S-schemes such t h a t Y c X i f i t i s n-linear implies i s o m o r p h i c t o the i s the and a scheme. C a l l a f l a t one {U,X} of S- {U,X} . Call Z note t h a t n-linear (n+1)-linear). Examples are S-schemes t h a t are s t r a t i f i e d by affine S-spaces, N e.g., Z = IP . Over a f i e l d s N N complements i n JP^ (or A^) k, examples of of a u n i o n of linear k-varieties linear are subspaces, or sue-' N c e s s i v e blow-ups of P ^ in linear v a r i e t i e s , and varieties 14.7. a) Theorem nerated f i e l d k and If s t r a t i f i e d by X I subspaces, Grassmannians, f l a g such i s a linear variety *char(k), et a G^-module, f o r a l l m,a , m of Q A H Gr H m a v a,m linear c) r a,b : H , of 1 (-v) 's , m = 2v r e a l i z a t i o n f o r a b s o l u t e Hodge c y c l e s the ( c f . 6.11) for a l l c o r r e s p o n d i n g statement h o l d s f o r (X ($),(&) , i f Hodge c o n j e c t u r e and , v 6 TL , the X i s a linear variety Tate c o n j e c t u r e s are over true varieties. If X a ( X is a linear variety '^ e 2z , f77 € TL . In p a r t i c u l a r , The odd v , then (X) O Q ffi Hodge s t r u c t u r e s H b) 2v m € ZZ . I f c h a r ( k ) = 0 sum f o r the odd (-v)'s, 0 m W ge- sum as over a f i n i t e l y then 0 W varieties. ( b ) ] ® \ ~ over a f i n i t e H (X,<^(b)) a k field k, then for the i s an isomorphism a) and 12.4 I for +char (k) € 7L . Hence i n view and a l l a,b b ) , a l l stated conjectures are true f o r X . and 12.6 b) a r e more g e n e r a l l y t r u e f o r l i n e a r Conjectures C-varieties. C a curve over k . d) If X i s a l i n e a r v a r i e t y over a g l o b a l function f i e l d k , then r ? a,b : a,b : ( H ( X ^ C b ) )/H^(X,Q(b) ) )®<^ a 0 Hj(X,«(b)) 0 » Q £ H Z Z jl 1 *V (k^H^ ( n o t a t i o n s as i n 12.18) a r e isomorphisms (X Q Cb)) f (X K (b))) r 4 j l I for * c h a r ( k ) and a l l a,b € ZZ . Hence a l l s t a t e d c o n j e c t u r e s a r e t r u e f o r e) If X : H a,b a ( X ' Q ( b ) ) Q ® i i s an isomorphism + b-1 ~* 2 £ t f a) r namely, H^(X,Q (b)) f o r a > dim X + b , and H ( k H ^ ( X Q (b))) = 0 a )L Proof X . i s a l i n e a r v a r i e t y over a number f i e l d k, t h e n a l l con j e c t u r e s s t a t e d i n §13 are t r u e f o r X, r and jt 0 and injective f o r a = dim X f o r a > dim X + b + 1 I t f o l l o w s from t h e r e l a t i v e homology sequence (6.1 f ) ) W et and the i n d u c t i v e d e f i n i t i o n o f l i n e a r v a r i e t i e s t h a t Gr H (X Q ) m a *l W AH or Gr H (X)^ f o r c h a r ( k ) = 0 , have a f i l t r a t i o n such t h a t ma Q r f the graded terms have the wanted p r o p e r t y . For c h a r ( k ) = 0 use the p o l a r i z a t i o n s f o r a b s o l u t e Hodge c y c l e s , l i k e to A H see t h a t G r ^ H ( X ) ^ i s i n fact a direct sum rt we may i n lemma 1.1 of t h e s e graded terms, and hence g e t the r e s u l t . For c h a r ( k ) = p > 0 we have t o W et proceed d i f f e r e n t l y . A g a i n i t s u f f i c e s t o show t h a t Gr H (X, Q ) ma X/ 0 i s semi-simple. [FW] For t h i s we t r a n s p o r t F a l t i n g ' s arguments i n VI §3 t o our s e t t i n g . There e x i s t s a smooth, g e o m e t r i c a l l y irreducible variety U over a f i n i t e field IF , with generic Si point i) n = Spec k, such t h a t X/k extends t o a l i n e a r U-scheme from t h e i n d u c t i v e d e f i n i t i o n and ii) a i R~ f Rf Q * v. A 0 i s smooth over [EGA f: X U (this follows IV] § 8 ) , U, commutes w i t h a r b i t r a r y base change, and has a weight f i l t r a t i o n (compare t h e p r o o f of 6.8.2). One g e t s an e x a c t sequence o f fundamental groups 1 + TT (Ux 1 Jt ^ JF ) + TT (U) + G a l (3F 1 q 1 ( o m i t t i n g t h e base p o i n t s q /W ) + 1 q i n t h e n o t a t i o n ) , and by F a l t i n g s ' a r g u - ments i n I o c . c i t . i t s u f f i c e s t o show t h a t TT ( U X JF ) and the I lb Q d e c o m p o s i t i o n group of a closed point x o f U a c t semis i m p l y on Gr^H ma e t (X,Qx,) 0 . For Tr (Ux JF ) I lb q fundamental r e s u l t o f D e l i g n e the D base change p r o p e r t y i n = G a l (IF where [D9] 3.4.1 X^/ (x) of the f i n i t e t h e case o f a f i n i t e over x € U K(X), field, of and x . By I CH (X) i is surjective OQ-* which i s t r e a t e d in 0 2I f 0 2i tel. Y e X definition - that e x a c t diagram 1 CH (U) i - O t C l . 1 CH (X) c l o s e d and U = X\Y O , i (compare 7.5), and t h e i n d u c t i v e N space Jh^, which 15.6, we r e d u c e t o t h e case o f an a f f i n e i s known by 14.1. The T a t e c o n j e c t u r e A) i s s i m i l a r , c generation of A. (X) i) f t e l . 1 i = c) . - W 0 H 2 i ( X f Q d ) ) - W Q H 2 i (U,Q(i)) CH (Y) x W H (X Qd)) f o r a l l i > O . By t h e commutative W H (Y Qd)) X so we have reduced t h e q u e s t i o n a) t h e Hodge c o n j e c t u r e i n t h i s case means Cl OQ: for X/U residue f i e l d i s a l i n e a r v a r i e t y over By hand, i i ) above g i v e s an isomorphism o f i s the f i b r e K x b) i i i ) . On t h e o t h e r /K (x) ) - r e p r e s e n t a t i o n s X x , JF , K,(X) x K(X) q to t h i s i s known by a i and i n j e c t i v i t y of 1 f o l l o w s from t h e case o f a f i n i t e field A2(X)OQ . ~ 1 0 l and t h e f i n i t e i®^ et H . (XFQ ( D ) 9 1 v i a t h e commutative A, dia- gram A (X) > C i A (X ) i where X x i s as i n a) c H|^ r jt H§t(X , i)) > and (X C (I)) x sp V i s t h e s p e c i a l i z a t i o n map (compare the p r o o f of 12.16). For a f i n i t e N k i n d u c t i o n s t a r t i n g from field k one , t h a t the groups K (X) m (from Q u i l l e n ' s s p e c t r a l sequence 6.12.5) are for a linear variety of a P o i n c a r e shows i n f a c t 1 X/k and finitely by 2 E (X) p, q generated (use t h a t t h e s e are the homology groups d u a l i t y theory, c f . [Gi] f o r the E 2 ). In p a r t i c u l a r , P tI c this The i s true f o r E injectivity 2 _ (X) = CH (X), and ± jl of cl^fcQ^ o r d C), i n view of a) and s=dim (k) L ( <V s ) 1 " the Tate c o n j e c t u r e (X) f o r X = Spec k i s well-known f o r f i n i t e we L(Q^,s) replace . the proved by the or g l o b a l f i e l d s , zeta function Cj (s) c of proof F of 7.17. If i s the prime f i e l d of L($£,s) = f ( s ) • C p ( s - t r . d e g ( k ) ) with f(s) k the holomorphic and non- s= c) the £-adic cohomology of a l i n e a r v a r i e t y dim^k . extension b) , and that at 12.6 k , i t implies vanishing and where r from G r o t h e n d i e c k s formula r e c a l l e d i n successive con- (Note t h a t L ( V ( i ) , s ) = follows i n general Since . ' C) L(V,i+s)). This can ± have to show t h a t a i.e., for A i s a s p e c i a l case o f c) For T a t e ' s c o n j e c t u r e j e c t u r e B), we a fortiori of r e p r e s e n t a t i o n s are e q u i v a l e n t X/k is a Q^(n), c o n j e c t u r e s i n t h i s case. I f C 12.6 a) i s a v a r i e t y over N k w i t h dim by 12.10 and C <A 14.1 C - v a r i e t i e s by d) (14.3 12.7 b) l i n e a r scheme above, U now being 12.4 and 12. 6b) hold for A c f o r s i n g u l a r C ) , hence f o r a r b i t r a r y l i n e a r and f o l l o w s from t h i s by t o the an , then c o n j e c t u r e s induction. applying X/u theorem 12.16 and satisfying properties a curve over a f i n i t e remark 12.17 i) a) and i i ) f i e l d . Note t h a t we have isomorphism H a ( X x' Q ( b ) ) ® ®l ~ for every c l o s e d x G U e) By we get 13.11, 14.1 that and H a by t ( X x'^ c) ( b ) )T . i n d u c t i o n w i t h the 5-lemma (cf remark 12.9) r a,b : f H^ (X CKb)) r ® Q^ H z f o r a l l a,b 6 ZZ , where to H ^ j , and H ine f i n e X (X,Q (b)) £ H f i n e i s t h e homology t h e o r y a s s o c i a t e d j _ o b t a i n e d from i t as i n 11.7. F o r a q u a s i s p r o j e c t i v e scheme bedding f i n e X over Spec 2Z , i n t o a smooth scheme M H f i n e may be d e f i n e d by em- o f pure f i b r e dimension N over Spec 72> and s e t t i n g Hf for n e (X, b)) V a: M, -» M 6u H^ l n e zar =H^ (M,T x . The Q - p u r i t y 0 36 (X Q (b))) r a b M t (N-b)) [Th] then , shows: e t r r 0 £ for a > _ d+b r e l a t i v e dimension of H (k,H . R (X Q^(b)) - H (X Q (b)) i s an isomorphism 2 i N X and i n j e c t i v e f o r a = d+b-1 , d t h e o v e rffi. The c l a i m e d v a n i s h i n g o f f o l l o w s from 13.11, 14.1 and i n d u c t i o n w i t h 36 13.5 a ) , o r from 13.11, 6.5 a ) , and a) above. M ~et One may deduce t h e statement on t h e map from H to H a a a l s o without r e f e r i n g to £ f ^ by u s i n g 13.11, 14.1 and i n d u c t i o n a as i n t h e p r o o f o f 13.5 b ) , r e p l a c i n g d by d-1 i n t h e argument. o i n e f ra Appendix A: A letter from Bloch to the author 2/11/87 Dear Jannsen, The homological formulation of the Hodge conjecture for singular varieties which you gave in your talk is the only one possible. In fact, some years ago Mumford suggested to me that one should look for a counterexample to the corresponding cohomological conjecture. Here is one. Let SQ C P be a smooth hypersurface of degree d > 4 defined over Q . Let x e So(C) 3 be Q-generic and let S/C be the blowup of So at x. Let P = BLps(x), so S C P. Let z W = P lis P > Since H (S) = (0), we have an exact sequence of Hodge structures 4 0 -+ H (W,Q(2)) 2 4 -> H\P,Q(2))® tf (S,Q(2)) -> 0. 2 Note H (P, Q(I)) has generators e = class of exceptional divisor and h = pullback of hyperplane from P . We have 3 2 CH (P) A q 2 H\P, 2 Ql(2)) S Q • h © Q • e 2 (e • h = 0). 2 4 Also H\S, Q(2)) S Q with Zi • 5 = <f, e • 5 = - 1 . It follows that # (V/,Q(2)) ^ Q 2 2 2 4 (as a Hodge structure). In particular ((d - l)/i , d(h + e )) G # (P, Q(2)) from a Hodge class on W. comes But on the level of Chow groups, this class restricts to 2 d(x) — h • S € CHo(S) = CHo(So )' Because x is Q-generic and P (So) > 0, this c 9 2 class is of infinite order. Thus Ker(Ctf (P)| Remarks 02 e 3 2 2 CH (S)) SQ e 2 . 1. This discussion shows that no contravariant Chow group can provide the extra element needed. 2. I guess the Hodge conjecture is true for divisors on complex projective varieties because one has the exponential. This presupposes, however, that ^ j j 2 o d g e 2 H ( X , C) <—• H (X, Ox) always. Is this o.k. ? 3. Note the counterexample is for curves on a 3-fold, where the classical Hodge conjecture is true! 4. With a bit more work, one can get a hypersurface example. Namely take So = P H T C P where T is a smooth 3-dim. hypersurface defined over Q. Let 3 4 0 0 Q = BL <({x}\ P T = BL ({x}), To P = BL ,({x}), P so we have a cartesian square of strict transforms i I S = BL ({x}) So Take W — P U T . To show this works, the key point is to show the image of 2 2 CH (To )^CH (So ) c c is "small". One can do this by using cycle classes in 2 CH (T ) I®?/Q) 2 H( : 2 • 0c CH (S ) 0c 1 1 i (0) = I 2 2 ff (T ,OTo )®cft 0c c c/5 Mumford's differential techniques for showing 2 2 • prove that the image of d(x) — h in H (So Os ) i 0c 0 Soc c/li is large can be reinterpreted to 2 CH (SQ ) 2 2 H (S ,0 )®n ). C <8> ft* r is non-zero for x Q-generic. Best, Spencer Bloch / ? Appendix B : An example by C. Schoen An example is given of the following phenomenon: A smooth projective surface V over a field k satisfying: i) rank (Ker: C H ( V ) ii) V cannot be obtained by base changing a variety V ' / k ' for a field k' C k with trans, 0 — Alb (k)) = a> . deg Q y deg. (k/k') > O . 2 3 13 Begin with the elliptic curve E/(f with equation zy = x + ^ ^ origin e = (0 : 1 : 0) . The group of cube roots of unity, , acts on E via multiplication on the 3 3 3 x—coordinate. Thus (/^) acts on E . The largest subgroup H < (/^) which acts trivially on z a n c 0 3 3 0 1 ®3 3 H (E ,fl ) 2 H (E,fl ) contains the diagonal ^ ^ A < ^ as an index 3 subgroup. In fact, if M < H is the largest subgroup which operates trivially on thefirstfactor, then H = M x A . 3 Projection on thefirstfactor pr^ : E > E induces a commutative diagram of morphisms E P R I > 3 j 3 P E > E /A R 3 Pr I >E//i E /H ~ P 3 1 E//* 3 a IP 1 , 1 in which f is the canonical quotient map. Let k = ^(IP ) £ $(t) . Write Fj (respectively Tj ) t for the generic fiber of Tj Fj /(H/A) t is a singular c ^k^sing ' ^ e t pr^ (respectively t K3 p T^) . Then Fj t t is an abelian surface, and surface whose singularities are resolved by blowing up ie ^k denote ^ resulting non-singular K3 surface. Thus Alby = 0 . To check that (ii) is satisfied it suffices to show that Vj is not the base change of a variety t V . If such V ' were to exist, Gal(I/k) would act trivially on H (V ,Q ) ~ H ( V Q ) . 2 7 2 p j We claim however that Gal(k"/k) does not even act trivially on the quotient H (F ,Q 2 p p . E Since the base change of Fj by the field extension ^(E)/k yields the constant abelian surface t ExE over If(E) , the Galois action factors through Gal($(E)/k) . The natural action of this group on Fj X^jf(E) is induced by an isomorphism Gal(^(E)/k) £ A C Aut(E^ ) . Since A acts t non-trivially on H (F ,Q ) / . H 2 p A [A H (e x E x E , Q ) ] 2 2 p M , Gal($(E)/k) acts non-trivially on For any variety W / ^ write B (W) for the group of 1 modulo algebraic 1—cycles Q equivalence. Let 7 : U 07 p:= > E / H be a resolution of singularities such that the genericfiberof is isomorphic to Vj . It is possible to deduce (i) if one knows that c rank B^U^) = 00 . In fact, CH (V ) = IimCH ( U - p - ^ D ) ) k as D ranges over reduced effective divisors on P . Hence, by the commutative diagram with exact row 1 Iim CH (U -P^ (D)) D Ji 1 1 1 Iim B (P- JD))D 1 A B iV I i m B (U -p-^D)) D $ ( 1 1 one need only to show that the image of c hasfiniterank. This is true because an open subset of U is dominated by a constant family of surfaces. More precisely, there are birational morphisms of non-singular projective varieties f : Z >E and a : Y (a) the exceptional locus of a maps to afinitesubset of E , (P) there is a commutative diagram of morphisms (id x £) 0 Let IP C IP be a > E x Z where a non-empty Zariski open subset over which and q := f 0 Pr 0 (id * () 0 a = p 0 f are smooth. Denote the base change to IP of an object over 1 I o 0 0 0 IP by adding to the notation. Thus Y ~ E x Z , and restriction B (U) > B (U) is surjective withfinitelygenerated kernel. The vertical maps in the following commutative diagram 1 are surjective 1 O 1 Iim B Cq- ID))® O 4 1 B (E x Z) 8 Q 1 o DCIP o C 1 lira B Cp- CD))® « 1 o B (U) ®Q 1 DCP o (note that (?)° is proper and surjective). Because E xZ/E is a constant family, c' has finite dimensional image: by the definition of algebraic equivalence, corresponding cycles in different o o o fibers of E x Z/E have the same image in B ^ E x Z) , and the Neron-Severi group of Z is finitely generated. Thus c hasfiniterank image as desired. Finally, the fact that rank B^U^) = OD may be deduced from a similar statement for the elliptic modular 3-fold W(3) [1, p. 778]. The correspondence between constructed in [2, § 1] (where Q e CBL(W(3) x U ) such that W(3) is called Q*:H°(U ,n ) 3 W(3) and E° W ) gives rise to a correspondence » H°(W(3) ,n ) 3 is an isomorphism. Since these vector spaces are not zero (in fact they are one dimensional) [1, Thm. 4.7] implies that rank B J U ) = OD . [1] C. Schoen: Complex multiplication cycles on elliptic modular threefolds, Duke Math. J. 53 (1986), 771-794. [2] C Schoen: Zero cycles modulo rational equivalence for some varieties over fields of transcendence degree one, Proc Symp. Pure Math. 46 (Algebraic Geometry, Bowdoin 1985), Part 2, A.M.S., p. 463-473. Appendix C: Complements and problems Cl. I was asked to add some clarifying words on the weightfiltrationon i-adic cohomology. Let U be a smooth variety over afinitelygenerated field k of characteristic zero. It was not mentioned but is true that thefiltrationon (TT,^) constructed in 3.14 is a weight filtration in the sense of 6.8. Namely, with the notation of § 3, H? n—m m n (Y^ "" \<)^(n — m) y(n—m) . g s m o o t n n G r ^ H (TT,^) t is a subquotient of as a G^—module by 3.20, and this is pure of weight m , since p per. r0 1 That H (XC)^) is pure of weight i , for X smooth and proper over k , follows as in 7.12: j Choose a smooth and proper extension f : <% > S over a model S of k (an integral scheme of finite type over TL [1/t] , with function field k) . Smooth and proper base change gives a Gal(/c(y)/«(y))—isomorphism for every y e S . If x e S is closed, then Deligne's proof of the Weil conjectures for the smooth and proper variety K(X) over the finite field /c(x) ([D 8] (1.6), as amplified by [D 9] (3.3.9)) shows that the eigenvalues of F r on the above cohomology group are pure of weight i . x By 6.8.2 there are weight filtrations with the correct weights (i.e., those of 6.5) on 1 H (X,Qp) and H (X,Q ) for arbitrary varieties X and closed subvarieties Z C X over any et,Z * a IL finitely generated field k of characteristic ^ I . These weightfiltrationsare unique and functorial by 6.8.1. In particular, they coincide with the one in 3.14 in the case above. This also follows from the construction in 6.11. p C2. It is a problem what realizations one has to take to get the good category of mixed motives. Probably it is not enough to consider smooth varieties as in 4.1. Perhaps one also needs singular varieties (see C3 below) or other "geometric" realizations like those constructed by Deligne in [Dll]. The construction of 6.11 attaches "cohomological" and "homological" realizations to arbitrary varieties, morphisms of varieties and, most generally (as noted in 6.11), to simplicial varieties. The technique of § 4 always gives Tannakian categories and associated "Galois" groups with the properties stated in 4.4 and 4.7, provided one takes a Tannakian subcategory of MR^ generated by a class of mixed realizations with the following two properties: n a) It contains all H (X) for X smooth and projective, b) The pure quotients are in Mu (and hence polarizable). This is still the case for the realizations attached to simplicial varieties. Recall from 11.3 that for any field k one would like to define a ^-linear tensor category with weights JCJC= JCJC^ such that i) the pure objects are semi-simple, and the subcategory of semi-simple objects is equivalent to Grothendick's category JC= JC^ of (pure) motives with respect to numerical equivalence over k, ii) there is a twisted Poincare duality theory with weights (H2(X,j),H (X,b)) with values in a JCJC , and iii) there is a spectral sequence (1 = identity object) q E§'9 = Ext ^ ( L H ( X j ) ) 4 Hy-I(X QU)) 1 converging to the motivic cohomology defined via K—theory and degenerating for a smooth and projective variety. We can add here that iv) for a field k of arithmetical dimension d the cohomological dimension of JCJC should be d , i.e., one should have Ext O for p > d . For afinitefield this would mean that JCJC coincides with Grothendieck's category of motives. For a global field this would imply the short exact sequence i 1 i O - 4 Ext ^ ( ! , H - C X J ) ) - * H ^(X,<}(j)) Horn ^ ( I H ( X j ) ) - » O l mentioned in 11.4 c). In contrast to this, for a smooth projective surface X over C one expects a non—trivial group Ext^ 2 (i H (x,2)) = f T W for p (X) ^ O . To deduce this formula from the spectral sequence iii) note that O 2 E x t ^ ( l , H ° ( X , 2 ) ) = Ext ^(1,1(2)) C H ^(Spec C,Q(2)) = CH (Spec and ExtJ 1 r<<(r 1 1 2 (l,H (X 2)) C Ext ^ ( ! , H ^ ) ) C CH (C)^ = O , I 1 using a curve C with H (X) <=—» H (C) . = O For a field k of characteristic zero, the category constructed by absolute Hodge cycles coincides with JC^ if (and only if) every absolute Hodge cycle is algebraic (and this would follow from either the Hodge or the Tate conjecture, cf. 5.4). Therefore the category MMj of 4.1 is exc pected to satisfy i) , but I don't know if it satisfies ii). Certainly it satisfies ii) (and still i)) after suitable enlargement, e.g., by adding all mixed realizations in the image of the twisted Poincare duality theory of 6.11.1, but it seems hard to guess which enlargement should satisfy iii) and iv). Of course it would be desirable to have a purely algebraic description of JCJC^ , even a conjectural one, and perhaps this is not out of reach: the idea would be to use Beilinson'sfiltrationon the Chow groups (cf. § 11) to construct JCJC^ as the heart of a certain triangulated category. In any case one conjectures that the realization functor H to Mfij is fully faithful and identifies c JCJC^ with a Tannakian subcategory of MR^ , which makes the construction of § 4 reasonable. For a characterization of the image of H , i.e., of the motivic realizations, it will be useful to consider further realization functors (e.g., crystalline ones as in Grothendieck's original approach to motives) and further comparison isomorphisms (e.g., those conjectured in [Fo] and partly proved in [FM] and [Fa]). While it seems a complete mystery how to characterize the pure motivic realizations it may be easier to predict those extensions of given pure motives which are motivic, cf. [Bei 1] and [BK]. C3. The spectral sequence iii) of the previous section arises the question for the relation between motivic cohomology and motivic extensions, i.e., extensions in the category MMj of 4.1 (or simic lar ones). First consider zero—extensions, i.e., motivic morphisms. The Chern characters give maps C h : H ^ ( X , < K J ) ) —-» r H | ( X j ) = H o ij H m M f i k (l,H| (X,j)) , H and by definition the target group is Hom^j^ (1,H^g(XJ)) if H ^ g ( X J ) is in MMj (e.g., if c X is smooth). Hence ch. . can be regarded as the first edge morphism in iii), and the degeneration of iii) for smooth and projective X is related to the surjectivity of ch. . for i = 2j (the only case where TH^g(XJ) ^ 0) , which was discussed in 5.4. Now let = ker cL j . The constructions of 6.11 give maps H^(X,Q(J))Q c Mj : V M)) E X 0 — 1 Brtia OHil (Xj)) • k I have not shown that these have image in art 1 x 1 MM C^AH ( J)) G ^ M B k ^ i i ^ J ) ) ' k at least not in general. Only for smooth X and i = 2j the results in § 9 show that one gets motivic extensions: for the considered Poincare duality theory the object E in 9.1.1 is in MMj as a c 2 i —1 subobject of (UJ) (cf. 4.2). It is possible to extend this somewhat to the case i > j . For example, let X be smooth of dimension d , and let z be an element of H (X J^ ) . It 1 j 2 is represented by a finite family (f.) , with f• ^ O in the function field of an irreducible divisor Y C X and E div(f) = O on X (cf. 6.12.4 e)). If Y = U Y. , then (f) defines an element in i E i h e n c e d-1 d + 2 M > ' a n e l e m e n t i n H 2d-3( Y > 2 ? £( d H " = ^ X 2 2 ( > £.( )) et, Y cf (- 8 1 3 )- I f H i s 3 2 Y mapped to zero in H^(X,2?^(2)) , one obtains a motivic extension of TL^ by H^(X,ff^(2))/N t via pull—back from the exact sequence O H2 (X,2 (2))/N t Y 3 Hj (X=T I P)) — H (X,B (2)), et ,Y t Y t 1 t t 2 where N is the image of H (X,ZL(2)) as in 9.16. This construction amounts to the one et,Y * communicated to me by A. Scholl in a letter from September 1985 (cf. the introduction). One can O show that the element in H^(X,Q^(2)) associated to z by the above prescription is ch^ (z) t via the 2 1 identfication H ( X ^ ) ® Q = H^(X,Q(2)) j of 2 6.12.4 e) and that, for 2 z e H^(X,t)(2)) , ch^ (z) e Ext^ (d)^,H (X,Q^(2))) induces the above extension via push0 2 2 out to H (X,<} (2))/N Y (e.g., by using 9.5). t More generally, for X z ' e H W( ><KJ)) for s o m i>j e every ze H^(X,(|(j)) Y C X of codimension > i - j TH^ (XJ) , then the image of ch^ j(z) in E x t ^ fl comes from an element (cf. 5.23). If ch. .(z) = O in Y R (!,H^g^X j)ZN ) is the class of the pull- back extension 0 1 y — * HIH (XJ)ZN — H I 1 CX-Yj) — 4 H | U| 0 1 'Hlg (Xj)ZN Y i (where N = Im(H^ X Z > ( J) Y ( X , j) —-> H^ (XJ) h j z' E i 1 H V H > 1 > 0 , 1 > H ^ (Xj)) as in 9.16) and hence motivic. The class ob- viously vanishes if z is in Y N H ^(X,«Kj)) = Im(H ^ ( X ( K J ) ) Y I 0 0 — - H ^(X O(J))) , 1 where H^ (X Q(J)) Y 1 = Ker(H^X O(J)) — , T H ^ ^ X J ) ) . 0 0 J We thus obtain maps (for v > 0) ^(X-O(J))0/ H r a.HAi1(X,j)/NI/) , > E x t M M k where N* is the coniveau filtration and S f = U f t v varieties of codimension v in X , cf. 9.16 (where , with Y running through all closed subN V and W were also denoted N V and 17 N , with ariskof confusion). If k is a numberfieldand X is smooth and proper, then one expects injectivity of Hi (XJ(J)) / N 0 r and the above 1 Hj^ (XJ) = N Y maps by similar 1 Y — Y Ext^LHji-!(X J)ZN ) 1 arguments as in 9.16. By using a splitting v e H ^ g ( X J ) Z N one then has to study if c : Mj H V x E x t ' ^ ) ) — MR ( 1 k H x ' ii!Y( ^)) has image in the motivic extensions, but here the above method will not apply in general: For example, if (i,j) = (4,3) and Y is a smooth irreducible division, then by Poincare duality isomorphism we study H i( Y 2 -<K ))— 1 E x t ^ l . H ^Y )), l 2 i.e., a situation with i < j . Concerning the case i = j = 1 one has H^(X,Q(1))Q <-£- H ^(Spec k,^(l)) for a smooth geometrically connected variety Spec k , and one may use 1—motives to construct geox 1 metric extensions associated to elements in H ^(Spec k,Q(l)) = k ® <) : One can show that for xek x the 1-motive ([D5] 10.1) I M: ><G m givesriseto an extension of realizations 0 »1(1) >T(M) »0, »1 Q whose class in Ext^j^ (1,1(1)) is ch^ ^(x) . T ( M ) ^ is also obtained as relative cohomology of smooth varieties or as cohomology of a singular, non—proper variety, by the isomorphism 1 T(M)Q ™ H (G (X) I) and the commutative exact diagram j m diag^ 1 ( 1 ) 1 2 > 1 H (G Od(I X) I) mm 1 , H (G I) i » 0 ml (a,b) I a-b 0 1 > 1(1) ,H (G (X) I) , 1 m 1 • O 1 1 where ^ M is G = Spec(k [M" ]) with 1 and x glued together. The isomorphism follows m m with the methods of [ D 5] 10.3.1 don't know if T(M)Q is an object of MMjc as defined in 4.1. Concerning i < j , I do not even know if the extensions of 1 by l(j) attached to elements in 1 7 H ^(Speck IKj)) by ch . appear in some kind of cohomological realization for j > 1 . In j [D 11] Deligne has shown that certain canonical extensions appear in the realizations attached to ?r (IP^\{0,l,aD}) , but it is unknown, if they come from some elements in K—theory . It may be 1 possible to use Bloch's description of ch. . via cycle maps on higher Chow groups [Bi 6] and a construction analogous to the one in § 9 to produce geometric extensions from elements in H^(X,<Kj)) for arbitrary i and j . Of course, it is as important to study the relation between motivic cohomology and extensions in the single realizations. For example, for a smooth, projective variety X over a number field k one expects that the map c h i,j®^ : H i r ( - ^ J ) ) o * ' 4 — " ^ G ^ i ' ^ ^ W ) ) = ( k- a ( '^<L(J)) Hl x G H 1 X is injective and that its image can be described by explicit local conditions (see [BK] (5.3), and [J3] § 6 as well as a forthcoming paper; this extends the conjectures in § 13 to all i,j e I) . This in turn would imply that the map E x t iM^' H i X ( 'J)) — E x t H X G mot^- L( ^(J)) k l obtained by "passing to the t—adic realizations" is an isomorphism, where the "motivic G^-extensions" forming the target group are characterized by local properties related to Fontaine's theory of p—adic representations. C4. It may be useful to recall how one can calculate the Yoneda-Ext-groups in a neutral Tannakian category in terms of group cohomology of the associated "Galois" group: Let G be a linear algebraic group over afieldof characteristic zero, let U be its unipotent radical, and let Rep G be the category offinitedimensional algebraic representations of G (these are the rational modules of [Ho 1] ). Then for objects V , W in Rerj G one has Ext V W Rej) G ( ' ) = ^ , H o j n ^ W ) ) , 1 where H (G,—) is the cohomology theory defined in [Ho 1] , and isomorphisms i i C U H (G V)^H (U V) Z , 1 1 1 i H (U V)^H (U V) 1 j 1 where u = Lie U is the Lie algebra of U and H^u,—) denotes Lie algebra cohomology ([Ho 2]). All this extends to pro—algebraic groups and continuous representations by passing to the limit. Putting this together we obtain the isomorphisms EXI (1,M) MM H"(Iae MG{ff) V{a)M ) ff , where M^. is a MG(a)—module by definition. Let me also mention that one may use injectives to calculate the Yoneda—Ext-groups, even MMj does not have enough injectives. But for any neutral Tannakian category Rep G the if c ind-category has enough injectives and these may be used to calculate H^G,—). In fact, these are the rationally injective modules of [Ho 1] . C5. Let MMj be defined as in 4.1 or as a suitable enlargement. While it seems out of reach to c describe this category, completely, i.e., to determine the whole group MG(a) for one a : k « — • C , it may be possible to describe certain subcategories, i.e., to calculate certain quotients of MG(a) . By Deligne's result that every Hodge cycle on an abelian variety A is absolute Hodge ([DMOS] I 2.11), one can in principle determine the Tannakian subcategory of 1 Mj generated by H (A) in terms of the Mumford-Tate group of A . In any case, one has a nice c description of the category P C M c of motives of potential CM—type over f) (generated by Artin motives and abelian varieties of potential CM-type) , in terms of Hecke characters and the Taniyama group ( [DMOS] IV). In the mixed case, Bryhnski has proved an analogue of Dehgne's theorem for a 1—motive M ([Br] 2.2.5). However, it is not clear to me whether his theorem is sufficient for the determination of the quotient of MG(cr) corresponding to the Tannakian category generated by T(M)^ and 1(1) . Bryhnski only considers Hodge and absolute Hodge cycles in tensor products T(M)JP • T ( M ) J ^ • K r ) whereas for non—reductive groups one a priori has to consider cycles in subquotients of such spaces, too ([DMOS] I 3.2 (a)). j j Another object of interest is the category JCJ= JCJ^ of mixed Tate motives over k : these ! are mixed motives whose pure quotients are sums of pure Tate motives l(r) , r e TL . There are now several proposals for an algebraic description of such a category ( [BMS] , [BGSV] ). It may be interesting to compare them with other candidates MT^ constructed in MR^ by the techniques of § 4. I don't know how close the category Lj generated by realizations of linear c varieties (see § 14) comes to such a category MT^ . Suppose JCJC and JCJ exist. What are the properties of the maps Ext ^jOi(J)) — * Ext I (Lm) fcjc for j > 1 ? Will the expected maps H ^(Spec k,Q(j)) factorize through Ext > Ext^(UQ)) for i > 1 ? In particular, can one associate successive extensions of Tate realizations (e.g., t—adic ones) to elements in K-groups of k ? Bibliography [BFM] P. Baum, W. F u l t o n , R. MacPherson: Riemann-Roch f o r s i n g u l a r v a r i e t i e s , P u b l . Math. I.H.E.S. 45 (1975) , 101-145. [Bei 1] A. B e i l i n s o n : Higher r e g u l a t o r s and v a l u e s J . S o v i e t M a t h . 30 (1985), 2036-2070. [Bei 2] A. B e i l i n s o n : Notes on a b s o l u t e Hodge cohomology; A p p l i c a t i o n s of A l g e b r a i c K-Theory t o A l g e b r a i c Geometry and Number Theory, Contemporary Mathematics 55 I, A.M.S., P r o v i d e n c e 1986, p. 35-68. [Bei 3] A. [Bei 4] A. B e i l i n s o n : Height p a i r i n g s between a l g e b r a i c c y c l e s , S p r i n g e r L e c t u r e Notes 1289 (1987), p. 1-26. [BGSV] A. B e i l i n s o n , A. Goncharov, V. Schechtman, A. Varchenko: Aomoto d i l o g a r i t h m s , mixed Hodge s t r u c t u r e s and m o t i v i c cohomology o f p a i r s of t r i a n g l e s on the p l a n e , p r e p r i n t 1989. [Ber] P. B e r t h e l o t , Cohomologie C r i s t a l l i n e des Schemas de C a r a c t e r i s t i q u e p>0, S p r i n g e r L e c t u r e Notes 407 (1974). [BMS] A. B e i l i n s o n , R. MacPherson, V. Schechtman: Notes on m o t i v i c cohomology, Duke Math. J . 54 (1987), 679-710. [ B i 1] S. B l o c h : L e c t u r e s on A l g e b r a i c C y c l e s , Math. S e r i e s IV, Durham 19 80. [ B i 2] S. B l o c h : Some elementary theorems about c y c l e s on v a r i e t i e s , Invent. Math. 37 (1976), 215-228. [Bi 3] S. B l o c h : A l g e b r a i c c y c l e s and v a l u e s of L - f u n c t i o n s , J . r e i n e angew. Math. 350 (1984), 94-108. [ B i 4] S. B l o c h : A l g e b r a i c c y c l e s and v a l u e s Duke Math. J . 52 (1985), 379-397. of L - f u n c t i o n s [Bi 5] S. B l o c h : A l g e b r a i c c y c l e s and i n Math. 61 (1986), 267-304. K-theory, Advances [ B i 6] S. B l o c h : A l g e b r a i c c y c l e s and the B e i l i n s o n c o n j e c t u r e s ; The L e f s c h e t z C e n t e n n i a l Conference, Contemporary Mathem a t i c s 58 I, A.M.S., P r o v i d e n c e 1986, p. 65-79. [BK] S. B l o c h , K. Kato: L - f u n c t i o n s motives, p r e p r i n t 1988. [BO] S. B l o c h , A. Ogus: Gersten's c o n j e c t u r e and the homology o f schemes, Ann. S c i . ENS (4) 7 (1979), 181-202. of L-functions, B e i l i n s o n : L e t t e r to Soule, 1/11/82. higher and Duke U n i v e r s i t y abelian II, Tamagawa numbers of [BS] S. B l o c h , V. S r i n i v a s : Remarks on correspondences and a l g e b r a i c c y c l e s , Amer. J . Math. 105 (1983), 1235-1253. [Br] J.-L. B r y l i n s k i : " 1 - M o t i f s " e t formes automorphes ( T h e o r i e a r i t h m e t i q u e des domaines de S i e g e l ) ; Jovirnees Automorphes, P u b l . Math, de I U n i v . P a r i s V I I , 15 (1983), 43-106. 1 [Ca] J . C a r l s o n : E x t e n s i o n s o f mixed Hodge s t r u c t u r e s ; Journees de geometrie a l g e b r i q u e d'Angers 1979, S i j t h o f f & Noordhoff 1980, p. 107-127. [C] J.-L. C o l l i o t - T h e l e n e : H i l b e r t ' s theorem 90 f o r K , w i t h a p p l i c a t i o n t o t h e Chow groups o f r a t i o n a l s u r f a c e s , Invent. Math. 71 (1983), 1-20. [CR] J.-L. C o l l i o t - T h e l e n e , W. R a s k i n d : K -Cohomology and t h e second Chow group, Math. Ann. 270 (1985), 165-199. [CSS] J.-L. C o l l i o t - T h e l e n e , J . - J . Sansuc, C S o u l e : T o r s i o n dans Ie groupe de Chow de codimension deux, Duke Math. J . 50 (1983), 763-801. [D 1] P. D e l i g n e : Formes modulaires e t r e p r e s e n t a t i o n s £-adiques; Sem. Bourbaki 1968/69 exp. 355, S p r i n g e r L e c t u r e Notes 179 (1971), p. 139-172. [D 2] P. D e l i g n e : T h e o r i e de Hodge I , A c t e s ICM N i c e 1970, G a u t h i e r - V i l l a r s 1971, I, p. 425-430. [D 3] P. D e l i g n e : E q u a t i o n s D i f f e r e n t i e l l e s a P o i n t s S i n g u l i e r s Reguliers, S p r i n g e r L e c t u r e Notes 163 (1970). [D 4] P. D e l i g n e : T h e o r i e de Hodge I I , P u b l . Math. I.H.E.S. 40 (1972), 5-57. [D 5] P. D e l i g n e : T h e o r i e de Hodge I I I , P u b l . Math. I.H.E.S. 44 (1974), 5-78. [D 6] P. D e l i g n e : V a l e u r s de f o n c t i o n s L e t p e r i o d e s J ' i n t e g r a l e s , P r o c Symp. P u r e M a t h . 33, 2 (1979), 313-342. [D 7] P. D e l i g n e : Poids dans l a cohomologie des v a r i e t e s a l g e b r i q u e s , A c t e s ICM Vancouver 1974, I, p. 79-85. [D 8] P. D e l i g n e : La c o n j e c t u r e de W e i l 43 (1974), 273-308. I, P u b l . Math. I.H.E.S. [D 9] P. D e l i g n e : La c o n j e c t u r e de Weil 52 (1981), 313-428. I I , P u b l . Math. I.H.E.S. [D 10] P. D e l i g n e : L e t t e r t o Soule, [D 11] P. D e l i g n e : Le groupe fondamental de l a d r o i t e p r o j e c t i v e moins t r o i s p o i n t s , G a l o i s groups over $, MSRI P u b l i c a t i o n s , S p r i n g e r 1989, 79-297. [DMOS] P. D e l i g n e , J . M i l n e , A. Ogus, K. S h i h : Hodge C y c l e s , Motives and Shimura V a r i e t i e s , S p r i n g e r L e c t u r e Notes 900 (1982). 2 2 January 20, 1985. [DV] A. Douady, J . - L . V e r d i e r , e t a l . : Seminaire de Geometrie A n a l y t i q u e , a s t e r i s q u e 36-37 (1976). [EV] H. E s n a u l t , E. Viehweg: D e l i g n e - B e i l i n s o n cohomology; B e i l i n s o n ' s C o n j e c t u r e s on S p e c i a l V a l u e s o f L - F u n c t i o n s , P e r s p e c t i v e s i n Mathematics 4, Academic P r e s s 1988, 43-91 . [Fa] G. F a l t i n g s : C r y s t a l l i n e cohomology and p - a d i c G a l o i s r e p r e s e n t a t i o n s , p r e p r i n t 1988. [FW] G. F a l t i n g s , G. Wustholz, e t a l . : R a t i o n a l P o i n t s , Sem. Bonn/Wuppertal 1983/84, Vieweg, Braunschweig/Wiesbaden 1984. [Fo] J.-M. F o n t a i n e : Sur c e r t a i n s types de r e p r e s e n t a t i o n s p-adiques du groupe de G a l o i s d'un c o r p s l o c a l ; c o n s t r u c t i o n d'un anneau de B a r s o t t i - T a t e , Ann. o f Math. 115 (1982), 529-577. [FM] J.-M. F o n t a i n e , W. Messing: p - a d i c p e r i o d s and p - a d i c e t a l e cohomology; C u r r e n t Trends i n A r i t h m e t i c a l A l g e b r a i c Geometry, Contemporary Mathematics 67, A.M.S., P r o v i d e n c e 1987, 179-207. [Fr] E. F r i e d l a n d e r : E t a l e K-theory I I . Connections w i t h a l g e b r a i c K - t h e o r y , Ann. S c i . ENS (4) 15 (1982), 231-256. [Fu] W. F u l t o n : R a t i o n a l e q u i v a l e n c e on s i n g u l a r P u b l . Math. I.H.E.S. 45 (1975), 147-167. [Gi] H. G i l l e t : Riemann-Roch theorems f o r h i g h e r a l g e b r a i c K-theory, Advances i n Math. 40 (1981), 203-289. [Gr] A. G r o t h e n d i e c k : Hodge's g e n e r a l c o n j e c t u r e i s f a l s e f o r t r i v i a l r e a s o n s , Topology 8 (1969), 299-303. [Har 1] G. Harder: D i e Kohomologie S - a r i t h m e t i s c h e r Gruppen uber F u n k t i o n e n k o r p e r n , Invent. Math. 42 (1977), 135-175. [Harts] R. H a r t s h o r n e : On the de Rham cohomology o f a l g e b r a i c v a r i e t i e s , P u b l . Math. I.HiE.S. 45 (1976), 5-99. [HL] M. H e r r e r a , D. Lieberman: D u a l i t y and the de Rham c o homology o f i n f i n i t e s i m a l neighborhoods, I n v e n t . Math. 13 (1971),97-124. [Hir] H. H i r o n a k a : R e s o l u t i o n o f s i n g u l a r i t i e s o f an a l g e b r a i c v a r i e t v over a f i e l d o f c h a r a c t e r i s t i c z e r o , Ann. o f Math. 79 (1964) , 109-326. [Ho 1] G. H o c h s c h i l d : Cohomology o f a l q e b r a i c l i n e a r I l l i n o i s J . Math. 5 (1961), 492-519. [Ho 2] G. H o c h s c h i l d : L i e a l g e b r a cohomology and a f f i n e groups, I l l i n o i s J . Math. 18 (1974), 170-176. [J U. Jannsen: Continuous e t a l e cohomology, Math. Ann. 280 (1988) , 207-245. 1] varieties, groups, algebraic [J 2] U. Jannsen: D e l i g n e homology, Hodge-D-conjecture, and m o t i v e s ; B e i l i n s o n ' s C o n j e c t u r e s on S p e c i a l V a l u e s o f L - F u n c t i o n s , P e r s p e c t i v e s i n Mathematics 4, Acadamic P r e s s 1988, 305-372. [J 3] U. Jannsen: On t h e £-adic cohomology o f v a r i e t i e s over number f i e l d s and i t s G a l o i s cohomology; G a l o i s groups over Q, MSRI P u b l i c a t i o n s , S p r i n g e r 1989, 315-360. [J 4] U. Jannsen: The d e r i v e d c a t e g o r y o f Q^-sheaves, i n preparation. [J 5] U. Jannsen: On t o r s i o n i n h i g h e r Chow groups, i n p r e paration . [Kl] S. Kleiman: M o t i v e s ; A l g e b r a i c Geometry Oslo 1970, WoltersNoordhoff, Groningen 1972, 53-82. [La] S. Lang: Fundamentals o f D i o p h a n t i n e Geometry, S p r i n g e r V e r l a g , New York 1983. [Li 1] S. Lichtenbaum: V a l u e s o f z e t a - f u n c t i o n s a t n o n - n e g a t i v e i n t e g e r s , S p r i n g e r L e c t u r e Notes 1068 (1984), p. 127-138. [Li 2] S. Lichtenbaum: The c o n s t r u c t i o n o f weight-two a r i t h m e t i c cohomology, Invent. Math. 88 (1987), 183-215. [MacL] S. Mac Lane: Homology, H e i d e l b e r g 1963. Springer Berlin-Gottingen- [Ma] Y. Manin: Correspondences, m o t i v e s , and monoidal t r a n s f o r m a t i o n s , Mat. Sb. 77 no. 4 (1968), 475-507 ( r u s s i a n ) . [Mi] J . M i l n e : E t a l e Cohomology, P r i n c e t o n Mathematical 33, P r i n c e t o n Univ. Press 1980. Series [MS 1] A. Merkurjev, A. S u s l i n : K-cohomology o f S e v e r i - B r a u e r v a r i e t i e s and norm r e s i d u e morphism, Math. USSR I z v . 21 (1983), 307-340. [MS 2] A. Merkurjev, A. S u s l i n : On the K-, o f a f i e l d , L e n i n g r a d 1987. preprint [Mu] D. Mumford: R a t i o n a l e q u i v a l e n c e o f 0 - c y c l e s on s u r f a c e s , J . Math. Kyoto Univ. 9 (1968), 195-204. [N] M. Nagata: Imbedding o f an a b s t r a c t v a r i e t y i n a complete v a r i e t y , J . Math. Kyoto Univ. 2 (1962), 1-10. [P] H. Pohlmann: A l g e b r a i c c y c l e s on a b e l i a n v a r i e t i e s o f complex m u l t i p l i c a t i o n type, Ann. o f Math. 88 (1968), 161-180. [Q 1] D. Q u i l l e n : Higher a l g e b r a i c K-theory I, S p r i n g e r L e c t u r e Notes 341 (1973), p. 85-147. [Q 2] D. Q u i l l e n (notes by D. G r a y s o n ) : F i n i t e g e n e r a t i o n of K-groups o f a curve o v e r a f i n i t e f i e l d , S p r i n g e r L e c t u r e Notes 966 (1982), p. 69-90. [RZ] M. Rapoport, Th. Zink: Uber d i e l o k a l e Z e t a f u n k t i o n von Shimuravarietaten. M o n o d r o m i e f i l t r a t i o n und verschwindende Zyklen i n u n g l e i c h e r C h a r a k t e r i s t i k , Invent. Math. 68, (1982), 21-101. [Ro 1] A. Roitman: R a t i o n a l e q u i v a l e n c e s USSR Sb. 18 (1974), 571-588. o f z e r o - c y c l e s , Math. [Ro 2] A. Roitman: The t o r s i o n i n t h e group o f zero c y c l e s modulo r a t i o n a l e q u i v a l e n c e , Ann. Math. 111 (1980), 553-569. [SR] N. Saavedra Rivano: C a t e g o r i e s Tannakiennes, L e c t u r e Notes 265 (1972). Springer [Scha] N. Schappacher: P e r i o d s o f Hecke C h a r a c t e r s , L e c t u r e Notes 1301 (1988). Springer [Sche] V. Schechtman: A l g e b r a i c K-theory and c h a r a c t e r i s t i c c l a s s e s , Trudy MMO (Moscow Math. S o c ) 45 (1983), 237264 ( r u s s i a n ) . [Schoe] C [Sch A. S c h o l l : Motives 1] Schoen: L e t t e r t o t h e author, April 30, 19 87. f o r modular forms, p r e p r i n t Durham 1987. [Sch 2] A. S c h o l l : Remarks o n ' s p e c i a l v a l u e s o f L - f u n c t i o n s , p r e p r i n t 1988. [Se 1] J.-P. S e r r e : A b e l i a n £-adic r e p r e s e n t a t i o n s and e l l i p t i c c u r v e s , Benjamin, New York 1968. [Se 2] J.-P. S e r r e : R e p r e s e n t a t i o n s £-adiques, Kyoto I n t . Symp. on A l g e b r a i c Number Theory, Japan S o c f o r t h e Promotion o f S c i e n c e 1977, 177-193. [Sou 1] C. S o u l e : K - t h e o r i e des anneaux d ' e n t i e r s de corps de nombres e t cohomologie e t a l e , Invent. Math. 55 (1979), 251-295. [Sou 2] C. S o u l e : On h i g h e r p - a d i c r e g u l a t o r s , S p r i n g e r Notes 854 (1981), p. 372-401. [Sou 3] C. S o u l e : Operations en K - t h e o r i e a l g e b r i q u e , Canad. J . Math. 37 (1985), 488-550. [Sou 4] C. S o u l e : Groupes de Chow e t K - t h e o r i e de v a r i e t e s s u r un corps f i n i , Math. Ann. 268 (1984), 317-345. Lecture [Su 1] A. S u s l i n : S t a b i l i t y i n a l g e b r a i c K-theory, L e c t u r e Notes 966 (1982), p. 304-333. Springer [Su 2] A. S u s l i n : Homology o f G L , c h a r a c t e r i s t i c c l a s s e s and M i l n o r K-theory, S p r i n g e r L e c t u r e Notes 1046 (1984), p. 357-375. [Su 3] A. S u s l i n : T o r s i o n i n K 1982 (compare MS 1 ). [T 1] J . T a t e : A l g e b r a i c c y c l e s and p o l e s o f z e t a f u n c t i o n s ; A r i t h m e t i c a l A l g e b r a i c Geometry, ed. O.F.G. S c h i l l i n g , Harper and Row, New York 1965, p. 93-100. n 2 o f f i e l d s , p r e p r i n t Leningrad [T 2] J . T a t e : Endomorphisms o f a b e l i a n v a r i e t i e s over f i e l d s , Invent. Math. 2 (1966), 134-144. finite [Th] R. Thomason: A b s o l u t e c o h o m o l o g i c a l p u r i t y , B u l l . Math. France 112 (1984), 397-406. Soc [D.E.] J . G i r a u d e t a l . : Dix exposes s u r l a cohomologie des schemas, N o r t h - H o l l a n d P u b l i s h . Co., Amsterdam 1968. [SGA M. A r t i n , A. G r o t h e n d i e c k , J.L. V e r d i e r , e t a l . : T h e o r i e des Topos e t Cohomologie E t a l e des Schemas, S p r i n g e r L e c t u r e Notes 269, 270, 305 (1972/73). 4] [ SGA 4^-] 2 [SGA 5] P. D e l i g n e e t a l . : Cohomologie E t a l e , S p r i n g e r L e c t u r e Notes 569 (1977) . A. Grothendieck e t a l . : Cohomologie £-adique e t F o n c t i o n s L, S p r i n g e r L e c t u r e Notes 589 (1977). [EGAIV] A. G r o t h e n d i e c k , J . Dieudonne: Elements de Geometrie A l g e b r i q u e IV, Etude L o c a l e des schemas e t de morphismes de schemas, P u b l . Math. I.H.E.S. 28 (1966). [SGA P. B e r t h e l o t , A. G r o t h e n d i e c k , L. I l l u s i e e t a l . : T h e o r i e des I n t e r s e c t i o n s e t Theoreme de Riemann-Roch, S p r i n g e r L e c t u r e Notes 225 (1971). 6] Notations 1 and TL^ are theringsof rational and t-adic integers, respectively. ^ , R, C, F R are thefieldsof rational, real, complex, and £,-adic numbers, respectively. is thefieldwith q elements. x is the multiplicative group of a ring R . A , for a group G and a G—module A , is thefixedmodule: A = {a e A | ga = a for all geG}. If X is a variety over a field k , then X(k) is the set of k—rational points, X *^ k' (or X x ^ k ' ) is the base extension via afieldextension a : k «—• k' , and Pic(X) is the Picard 0 0 group of X . If X is smooth, Pk (X) is the Picard variety, and Pic (X) = Pic°(X)(k) . 1 1 H (XjA) = H (X(C) A) , for an abelian group A and a variety X over C , is the singular (Betti) j cohomology of the topological space X(C) with coefficients in A . If F is a sheaf for the analytic topology on 1 X 1 an H (X F) = H (X F) j j (i.e., a sheaf on the associated complex analytic space is the analytic sheaf cohomology. Since canonically a n X ) , then 1 an H (X A) = 5 1 H (X(C) A) for the constant sheaf A associated to A , we mostly write A again for A without j risk of confusion. Hg(X,2)(j) = H (X ZZO)) 1 J Hodge structure given by 1 H (X ZZ) J is the j—fold Tate twist of the integral (mixed) . H^(X F) denotes etale cohomology of an etale sheaf F on a scheme X (see, e.g., [Mi]). If L j is a prime invertible on X , we let as usual HL(X,ZZA(J)) ei 'L n = 1 im FL^AX fj^l) , where fi _ is the ex Qn «n y sheaf of £ - t h roots of unity, and put Hl (X,fy(j)) = H^(X,^(j)) ® ^ t . For these groups we often omit the index "et" . Similar notions apply for more general Zf^— or — "sheaves", for which we refer to loc. cit. or [SGA 5] . *JU TJ) , for a scheme U and a geometric point rj i > U , is the algebraic fundamental group (cf. [Mi] I § 5). Cone (a) is the cone of a morphism a : A * > B" of complexes, A * [r] is the r—fold shift of A* (cf. [Mi] p. 167, 174). As usual, D^(A) is the derived category of bounded complexes in an abelian category A . We also use other standard notations connected with derived categories (like Rf* , Rf' , ®^ , RHom , ...) , which can be found, e.g., in [SGA 4] XVII and XVIII. tr. deg(k) is the degree of transcendence of afieldk over its prime field. Other notations are introduced at the following places: H DR( )> S R ( ) x U h 1,25 Hj(X) , Hj(U) 1,32 Hj(X) , Hj(U) 1,32 1,10,33 25 ^k 0 X'°X < Y 25,26 > (two meanings) (TU 27,76 32 an I L,a aX , aV 1,10,34 H (U) 35 2,32 ME 9 UX MM , M 43,46 10 G(<T) , MG(ff) , RgE G 49 H 10,43,46 U(<r) , sp^ , Msp^ 50 W 10,83,87 CH (X) 12 c H d k ,H ,H r t 7 m G r m •% H « H ' , Hom(H,H') 12,13 1 (identity object) 13,80 r 14,81,125 n k H Vec F Hx k' , R / k k / k 57 *t 'l ' D R ' < # R T R 57,62 58,59,62 V 65 ) - i,j X ch ( ) ' !*( 'W>) 67 i 68 K U 15 H 15,125 H cont 16,75 k r m v 36,57 1 a ) H U i 70 A = Iim A / i n 70,71 n G k Indp k' l(n) , H(n) lc 17 i NH n 76,162 G 17 76 RPr r, sr BtyXj) , H (X,b) A * U ,a , I H (X J) n , ?7 1 A X F K 79 80 N H 2 I , , WRep (G Q ) 157 p (X) G 2 , N CH J I , N CHJ 161,162 81 167 82 172 85 174 178 J CH (X) ^ T I I T Y I JU ^ TT 86 t 157 0 I Hf(X,I (b)) G A ( X ) , Alb(X) T(X) 86 Rep (G -) C 79 I TTMM 180 H V f o r J= JCJtj 180 , H (X,-) 184,206 88 H WRep (G B ) 89 H K-JlJf 92 H^X/RIRQ.F) 94 H"(k,V) , H^k V) 199 94 r. . IJ 200,205 s c c H A H kl H ' kj t t a J= (X-) E T a 185 ffll 204 98 r 101 V^ (J) , H , K (X)W 104 Z^(J) CH (XJ) H^X,«(b)) X / x , div , tame 104 K A H A H K (X.,Y.) (Z.) K^(X) , K A H C (Z.) A 105 105,107 P Ch (X) B 106 m 107,108 Z (X) , ZJ(X) I A (X) , A (X) 115,117 dim k , L(V,s) a 115 J I Z K (X),ch , ch , Td(X) 122 Z 123 T 126,154,182 r,r' r 127,128 r a,b ' a,b k 133 X Z (X) , I ct ZJ(X) 0 140 0 , c£,j CHJ(X) 0 140,156 , CH (Z) I 0 155 a,b N I J 208,209 1 F J N E 209 Index Abel-Jacobi map 140-143, 151, 153-178, 183, 204 absolute Hodge cycle 3, 14, 59-65, 72, 73, 127 absolute (co)homology theory 153, 174, 182, 183 Albanese variety 157-160, 177 Chowgroup 57-59, 105-107, 109, 118, 121, 122, 154-182, 189, 204, 212, 220 comparison isomorphism 1—5, 11, 14, 33, 34, 40, 41, 58, 59, 65, 97, 126 continuous etale cohomology 70, 149-151, 153 Adams operators 67, 104 cycle: see algebraic cycle algebraic cycle 57, 107, 108, 115-121, cycle map 57-59, 107-109, 113, 115, 117, 139-141, 155, 165, 168, 170, 173-180 arithmetical dimension 115-117 arithmetic C)^—representation,—sheaf 199, 204 Artin motives 49, 53 base change 41, 89, 116, 117, 186, 200, 218 base extension 16, 75 Beilinson complexes 209 122, 126, 140, 143, 151-154, 162, 174, 175, 189, 219 Dehgne (co)homology 68, 69, 131, 132, 152, 153, 182, 183, 186 de Rham (co)homology 1, 8, 25, 30, 58, 93, 96, 125 de Rham complex 25-31, 96, 97, 101 effective (Hodge structures or £-adic representations) 172 extension class 139-143, 150, 176, 180-183, 204 /Bloch conjecture 158, 168 fibre functor 14, 49, 125 conjecture on Chow groups 178-182 filtration Betti (co)homology 92 Bloch's conjecture on zero cycles 177 Bloch's theorem on zero cycles 158 generalizations 170, 182 Bloch—Ogus theory: see Poincare duality theory by coniveau 76, 162-164, 168-173, 182, 211 on Chow groups 178-182 fundamental class 81, 107, 110, 123, 126 Galois descent 74, 75, 216 geometric cohomology 129, 153, 177, 183 Birch and Swinnerton-Dyer 168, 169 good proper cover 113, 114, 118, 119, 163 canonicalfiltration28 Grothendieck Chern class, character 65, 67-75, motive 180 122-126, 154, 190, 200, 205, 206, - Riemann- Roch 122 209, 210, 216 / Serre conjecture 5, 61, 191 higher Chow groups 209, 212 mixed realization (for absolute Hodge homologous to zero/homological cycles) equivalence 139, 140, 168, 176, abstract 9-24, 43, 94 179 of a smooth variety 35, 55 Hodge conjecture classical 58, 77 for arbitrary varieties 63, 108, 114 generalized (Grothendieck) 172 Hodge of an arbitrary variety 94—104, 115, 125, 175, 177, 217 motive as defined by Grothendieck 180 attached to a modular form 5—9 for absolute Hodge cycles 1-4, 46-49, cycle 60, 61, 121 filtration 10, 18, 30, 32, 33, 97 structure 1, 58, 172 identity object 13, 80, 83 intermediate Jacobian 141, 157 internal Horn 13 intersection of cycles 174—178 K-cohomology 106, 121 K-theory, K'-theory 65,67-79, 56 motivic (co)homology 67, 104-107, 181, 182, 189, 209-213, 215, 216 and t-adic (co)homology 127, 184, 189-221 and other (co)homology theories 126-130, 154-156, 182-184 Mumford's counterexample 157 Mumford-Tate group 61, 62 104-107, 121-128, 131-138, 181, numerical equivalence 178—180 189, 190, 210, 220 one—semi-simple 193, 199 t-adic Parshin's conjecture 189 Chern character 69, 74, 190, 200, 205, 210 (co)homology 1, 4, 32, 36-40, 69, Poincare duality 3, 8, 45, 82, 108, 118, 128, 134, 140, 190, 215 Poincare duality theory (twisted) 86, 89-90, 97, 101, 115-117, 126, 79-107, 121-126, 173-176, 182, 186, 149-151, 172, 184-186, 191, 194, 208, 210, 214-216 215-219 £-adic (co)homology and motivic (co)homology 127, 184, 189-221 with weights 85, 89, 92, 94, 109-113, 129, 130, 139, 154-156, 161, 180 potential adic sheaf 185, 199 level filtration 182 projection formula 19, 81, 111, 130, 171 L-function 115-121, 168, 169, 220 pull back morphism (in homology) 215 Lichtenbaum complexes 212 pure (of weight m) linear varieties 217-221 Hodge structure 10 mixed t—adic representation/sheaf 87, 116 absolute Hodge complex 98—102 object 83-85 Hodge structure 10-13, 32, 34, 64, realization 12,15,46,63,64 92, 93, 100, 141-143, 152, 186-188 t-adic sheaf 89-91, 117, 120 motive 43-S6, 181-184, 188 purity 38, 77, 208, 210 realizations smooth t-adic sheaf 87, 116, 199, 201, attached to a modular form 5—9 218 Betti (Hodge), de Rham, £-adic and standard conjectures 179, 181 others 1, 12, 73, 95, 96, 103, Tannakian category 115, 182-184, 186 Tate conjecture 14, 15, 4 3 - 5 6 , 61 for absolute Hodge cycles (cf. mixed classical 57, 77, 115 realization) 12, 15, 16, 46, 55 for arbitrary varieties 63, 109, 114, regulator map 184 116-121 representable A ( X ) 177, 182 generalized (Grothendieck) 172 Q resolution of singularities 25, 56, Tate 93, 95, 112, 114, 191, 192, 194, realization, object 17, 181 195 twist 2, 17, 18, 58, 92 restriction 16, 75 tensor category 14, 80, 82, 83, 86 Riemann-Roch with weights theorem 122, 123 transformations 83^85, 88, 92, 94, 180-183 (see also Poincare duality theory) 123-128, 154, 190, Toddclass 204, 206 j RoitmanS theorems on zero cycles 157, 123-126 twisted Poincare duality theory: see Poincare duality theory 159, 160 semi—simplicity (see also Grothendieck/ variety 93 Serre conjecture) 50, 51, 63, weight: see pure of weight m 113, 180, 191-195, 199, 204, 218 weight filtration simplicial variety on a mixed realization 10, 12, 94 93, 9 5 - 9 7 , 100-102, on an I—adic representation 87-91 192 specialization map on a tensor category 83, 84 201—203, 219 spectral sequence on (co)homology associated to afiltration29 3 0 - 3 2 , 89, 92, 97 weights occurring Bloch-Ogus 197 in an object 66, 83 Brown--Gersten 106 in (co)homology 66, 85, 89, 92, 116, Hochschild-Serre 70, 143, 150, 151, 117 weight spectral sequence 153, 203, 206 hyper cohomology/ext 144, 151, 152, Weil cohomology 181 180-183, 211 Leray 32, 41, 185-187 QuiUen 71, 76, 105, 131, 133, 220 Ftegensburg j 30-43 X , HlO v NOTES X K T iyrATM H i I V I i ^ T E d i t e d by A. Dold and B. Eckmann X X J R J E l X 3 Some g e n e r a l remarks on the p u b l i c a t i o n o f monographs and seminars In what f o l l o w s a l l references t o monographs, are a p p l i c a b l e a l s o t o m u l t i a u t h o r s h i p volumes such as seminar notes. §1, Lecture Notes aim t o r e p o r t new developments - q u i c k l y , i n f o r mally, and a t a high l e v e l . Monograph manuscripts should be r e a sonably s e l f - c o n t a i n e d and rounded o f f . Thus they may, and o f t e n will, p r e s e n t not only r e s u l t s of the author but a l s o r e l a t e d work by other people. Furthermore, the manuscripts should prov i d e s u f f i c i e n t m o t i v a t i o n , examples and a p p l i c a t i o n s . This c l e a r l y d i s t i n g u i s h e s Lecture Notes manuscripts from j o u r n a l a r t i c l e s which normally are very c o n c i s e . A r t i c l e s intended f o r a j o u r n a l but too long t o be accepted by most j o u r n a l s , u s u a l l y do not have t h i s " l e c t u r e notes" c h a r a c t e r . For s i m i l a r reasons i t i s unusual f o r Ph.D. theses t o be accepted f o r the Lecture Notes series. Experience has shown that E n g l i s h language manuscripts much wider d i s t r i b u t i o n . achieve a §2. Manuscripts o r plans f o r Lecture Notes volumes should be submitted e i t h e r t o one o f the s e r i e s e d i t o r s or t o SpringerV e r l a g , H e i d e l b e r g . These proposals are then r e f e r e e d . A final d e c i s i o n concerning p u b l i c a t i o n can only be made on the b a s i s of the complete manuscripts, but a p r e l i m i n a r y d e c i s i o n can u s u a l l y be based on p a r t i a l information: a f a i r l y detailed outline d e s c r i b i n g the planned contents of each chapter, and an i n d i c a tion o f the estimated length, a b i b l i o g r a p h y , and one o r two sample chapters - or a f i r s t d r a f t of the manuscript. The e d i t o r s w i l l t r y t o make the p r e l i m i n a r y d e c i s i o n as d e f i n i t e as they can on the b a s i s o f the a v a i l a b l e i n f o r m a t i o n . §3. Lecture Notes are p r i n t e d by p h o t o - o f f s e t from typed copy d e l i vered i n camera-ready form by the authors. S p r i n g e r - V e r l a g provides t e c h n i c a l i n s t r u c t i o n s f o r the p r e p a r a t i o n of manuscripts, and w i l l a l s o , on request, supply s p e c i a l s t a i o n e r y on which the prescribed t y p i n g area i s o u t l i n e d . C a r e f u l p r e p a r a t i o n of the manuscripts w i l l help keep production time s h o r t and ensure s a t i s f a c t o r y appearance o f the f i n i s h e d book. Running t i t l e s are not r e q u i r e d ; i f however they are considered necessary, they should be uniform i n appearance. We g e n e r a l l y advise authors not to s t a r t having t h e i r f i n a l manuscripts s p e c i a l l y tpyed b e f o r e hand. F o r p r o f e s s i o n a l l y typed manuscripts, prepared on the spec i a l s t a t i o n e r y according t o our i n s t r u c t i o n s , Springer-Verlag w i l l , i f necessary, c o n t r i b u t e towards the t y p i n g c o s t s a t a fixed rate. The a c t u a l p r o d u c t i o n of a Lecture Notes volume takes 6-8 weeks. ./. §4. F i n a l manuscripts should c o n t a i n a t l e a s t 100 pages of mathemat i c a l t e x t and should i n c l u d e a t a b l e of contents an i n f o r m a t i v e i n t r o d u c t i o n , perhaps with some h i s t o r i c a l r e marks. I t should be a c c e s s i b l e t o a reader not p a r t i c u l a r l y f a m i l i a r with the t o p i c t r e a t e d . a s u b j e c t index; t h i s i s almost always genuinely h e l p f u l f o r the reader. §5. Authors r e c e i v e a t o t a l of 50 f r e e copies of t h e i r volume, but no royalties. They are e n t i t l e d to purchase f u r t h e r c o p i e s of t h e i r book f o r t h e i r p e r s o n a l use a t a d i s c o u n t of 33.3 %, other Springer mathematics books at a discount of 20 % d i r e c t l y from S p r i n g e r - V e r l a g . Commitment t o p u b l i s h i s made by l e t t e r of i n t e n t r a t h e r than by s i g n i n g a formal c o n t r a c t . S p r i n g e r - V e r l a g secures the c o p y r i g h t f o r each volume. Vol. 1250: F. Cano Torres, Desingularization Strategies for ThreeDimensional Vector Fields. IX 189 pages. 1987. Vol. 1290: G. Wustholz (Ed.), Diophantine Approximation and Transcendence Theory. Seminar, 1985. V 243 pages. 1987. Vol. 1260: N.H. Pavel, Nonlinear Evolution Operators and Semigroups. VI, 285 pages. 1987. Vol. 1291: C Moeglin M.-F. Vigneras J.-L. Waldspurger Correspondances de Howe sur un Corps p-adique. VII, 163 pages. 1987 Vol. 1261: H. Abels, Finite Presentability of S-Arithmetic Groups. Compact Presentability of Solvable Groups. Vl 178 pages. 1987. Vol. 1292: J.T. Baldwin (Ed.), Classification Theory. Proceedings, 1985. VI, 500 pages. 1987. Vol. 1262: E. Hlawka (Hrsg.), Zahlentheoretische Analysis II. Seminar, 1984-86. V, 158Seiten. 1987. Vol. 1293: W. Ebeling, The Monodromy Groups of Isolated Singularities of Complete Intersections. XIV, 153 pages. 1987. Vol. 1263: V.L. Hansen (Ed.), Differential Geometry. Proceedings, 1985. XI, 288 pages. 1987. Vol. 1294: M. Queffelec, Substitution Dynamical Systems - Spectral Analysis. Xlll 240 pages. 1987. Vol. 1264: Wu Wen-tsun, Rational Homotopy Type. VIII, 219 pages. 1987. Vol. 1295: P. Lelong P. Dolbeault H. Skoda (Red.), Seminaire d'Analyse P. Lelong - P. Dolbeault - H. Skoda. Seminar, 1985/1986. Vll 283 pages. 1987. 1 1 1 1 1 1 1 Vol. 1265: W. Van Assche, Asymptotics for Orthogonal Polynomials. Vl 201 pages. 1987. 1 1 1 1 Vol. 1266: F. Ghione, C Peskine E. Sernesi (Eds.), Space Curves. Proceedings, 1985. VI, 272 pages. 1987. 1 Vol. 1267: J. Lindenstrauss, V.D. Milman (Eds.), Geometrical Aspects of Functional Analysis. Seminar. VII, 212 pages. 1987. Vol. 1268: S.G. Krantz (Ed.), Complex Analysis. Seminar, 1986. VII, 195 pages. 1987. Vol. 1269: M. Shiota, Nash Manifolds. VI, 223 pages. 1987. Vol. 1270: C Carasso P.-A. Raviart, D. Serre (Eds.), Nonlinear Hyperbolic Problems. Proceedings, 1986. XV, 341 pages. 1987. 1 Vol. 1296: M.-R Malliavin (Ed.), Seminaire d'Algebre Paul Dubreil et Marie-Paule Malliavin. Proceedings, 1986. IV 324 pages. 1987. 1 Vol. 1297: Zhu Y-I., Guo B.-y. (Eds.), Numerical Methods for Partial Differential Equations. Proceedings. XI, 244 pages. 1987. Vol. 1298: J. Aguade, R. Kane (Eds.), Algebraic Topology, Barcelona 1986. Proceedings. X 255 pages. 1987. 1 Vol. 1299: S. Watanabe Yu.V. Prokhorov (Eds.), Probability Theory and Mathematical Statistics. Proceedings, 1986. VIII, 589 pages. 1988. 1 Vol. 1300: G.B. Seligman Constructions of Lie Algebras and their Modules. Vl 190 pages. 1988. 1 1 Vol. 1271: A.M. Cohen, W.H. Hesselink, W L J . van der Kallen, J.R. Strooker (Eds.), Algebraic Groups Utrecht 1986. Proceedings. XII, 284 pages. 1987. Vol. 1301: N. Schappacher Periods of Hecke Characters. XV, 160 pages. 1988. Vol. 1272: M.S. Livsic, L.L. Waksman Commuting NonseKadjoint Operators in Hilbert Space. Ill, 115 pages. 1987. Vol. 1302: M. Cwikel, J. Peetre Y. Sagher, H. Wallin (Eds.), Function Spaces and Applications. Proceedings, 1986. VI, 445 pages. 1988. 1 Vol. 1273: G.-M. Greuel, G. Trautmann (Eds.), Singularities, Representation of Algebras, and Vector Bundles. Proceedings, 1985. XIV, 383 pages. 1987. Vol. 1274: N. C Phillips, Equivariant K-Theory and Freeness of Group Actions on C*-Algebras. VIII, 371 page6. 1987. Vol. 1275: C A . Berenstein (Ed.), Complex Analysis I. Proceedings, 1985- 86. XV, 331 pages. 1987. Vol. 1276: C A . Berenstein (Ed.), Complex Analysis II. Proceedings, 1985-86. IX, 320 pages. 1987. Vol. 1277: C A . Berenstein (Ed.), Complex Analysis III. Proceedings, 1985-86. X, 350 pages. 1987. Vol. 1278: S.S. Koh (Ed.), Invariant Theory. Proceedings, 1985. V, 102 pages. 1987. Vol. 1279: D. Iesan Saint-Venant's Problem. VIII, 162 Seiten. 1987. 1 Vol. 1280: E. Neher Jordan Triple Systems by the Grid Approach. Xll 193 pages. 1987. 1 1 1 Vol. 1303: L. Accardi W. von Waldenfels (Eds.), Quantum Probabilrty and Applications III. Proceedings, 1987. VI, 373 pages. 1988. 1 Vol. 1304: F.Q. Gouvea, Arithmetic of p-adic Modular Forms. VIII, 121 pages. 1988. Vol. 1305: D.S. Lubinsky, E.B. Saff, Strong Asymptotics for Extremal Polynomials Associated with Weights on 1R. VII, 153 pages. 1988. Vol. 1306: S.S. Chern (Ed.), Partial Differential Equations. Proceedings, 1986. VI, 294 pages. 1988. Vol. 1307: T. Murai A Real Variable Method for the Cauchy Transform, and Analytic Capacity. VIII, 133 pages. 1988. 1 Vol. 1308: P. Imkeller, Two-Parameter Martingales and Their Quadratic Variation. IV 177 pages. 1988. 1 Vol. 1309: B. Fiedler, Global Bifurcation of Periodic Solutions with Symmetry. Vlll 144 pages. 1988. 1 1 Vol. 1310: O.A. LaudaJ G. Pfister Local Moduli and Singularities. V, 117 pages. 1988. 1 1 Vol. 12(31: O.H. Kegel, F. Menegazzo, G. Zacher (Eds.), Group Theory. Proceedings, 1986. VII, 179 pages. 1987. Vol. 1311: A. Holme, R. Speiser (Eds.), Algebraic Geometry, Sundance 1986. Proceedings. Vl 320 pages. 1988. Vol. 1282: D.E. Handelman, Positive Polynomials, Convex Integral Polytopes, and a Random Walk Problem. XI, 136 pages. 1987. Vol. 1312: N.A. Shirokov Analytic Functions Smooth up to the Boundary. Ill, 213 pages. 1988. Vol. 1283: S. Mardesic, J. Segal (Eds.), Geometric Topology and Shape Theory. Proceedings, 1986. V, 261 pages. 1987. Vol. 1284: B.H. Matzat, Konstruktive Galoistheorie. X, 286 pages. 1987. Vol. 1313: F. Colonius, Optimal Periodic Control. Vl 177 pages. 1988. Vol. 1314: A. Futaki Kahler-Einstein Metrics and Integral Invariants. IV, 140 pages. 1988. Vol. 1285: I.W. Knowles, Y. Saito (Eds.), Differential Equations and Mathematical Physics. Proceedings, 1986. XVI, 499 pages. 1987. Vol. 1315: R.A. McCoy, I. Ntantu, Topological Properties of Spaces of Continuous Functions. IV, 124 pages. 1988. Vol. 1286: H.R. Miller, D . C Ravenel (Eds.), Algebraic Topology. Proceedings, 1986. VII, 341 pages. 1987. Vol. 1316: H. Korezlioglu, A.S. Ustunel (Eds.), Stochastic Analysis and Related Topics. Proceedings, 1986. V, 371 pages. 1988. Vol. 1287: E.B. Saff (Ed.). Approximation Theory, Tampa. Proceedings, 1985-1986. V, 228 pages. 1987. Vol. 1317: J. Lindenstrauss, V.D. Milman (Eds.), Geometric Aspects of Functional Analysis. Seminar, 1986-87. VII, 289 pages. 1988. Vol. 1288: Yu. L. Rodin, Generalized Analytic Functions on Riemann Surfaces. V 128 pages, 1987. Vol. 1318: Y Felix (Ed.), Algebraic Topology - Rational Homotopy. Proceedings, 1986. Vlll 245 pages. 1988 Vol. 1289: Yu. I. Manin (Ed.), K-Theory Arithmetic and Geometry. Seminar, 1984-1986. V, 399 pages. 1987. Vol. 1319: M. Vuorinen, Conformal Geometry and Quasiregular Mappings. XIX, 209 pages. 1988. 1 1 1 1 1 1 1 Vol. 1320: H. Jurgensen G. Lallement, H.J. Weinert (Eds.), Semigroups, Theory and Applications. Proceedings, 1986. X 416 pages. 1988. 1 1 Vol. 1321: J. Azema P.A. Meyer, M. Yor (Eds.), Seminaire de Probabilites XXII. Proceedings. IV 600 pages. 1988. 1 1 Vol. 1322: M. Metivier, S. Watanabe (Eds.), Stochastic Analysis. Proceedings, 1987. VII, 197 pages. 1988. Vol. 1323: D.R. Anderson, H J . Munkholm, Boundedly Controlled Topology. XII, 309 pages. 1988. Vol. 1324: F. Cardoso, D.G. de Figueiredo R. Iorio, O. Lopes (Eds.), Partial Differential Equations. Proceedings, 1986. Vlll 433 pages. 1988. 1 1 Vol. 1325: A. Truman, I.M. Davies (Eds.), Stochastic Mechanics and Stochastic Processes. Proceedings, 1986. V 220 pages. 1988. 1 Vol. 1326: P.S. Landweber (Ed.), Elliptic Curves and Modular Forms in Algebraic Topology. Proceedings, 1986. V 224 pages. 1988. 1 Vol. 1327: W. Bruns, U. Vetter, Determinantal Rings. Vll,236 pages. 1988. Vol, 1350: U. Koschorke (Ed.), Differential Topology. Proceedings, 1967. VI, 269 pages. 1988. Vol. 1351: I. Laine, S. Rickman, T. Sorvali, (Eds.), Complex Analysis, Joensuu 1987. Proceedings. XV, 378 pages. 1988. Vol. 1352: L.L. Avramov, K.B. Tchakerian (Eds.), Algebra - Some Current Trends. Proceedings, 1986. IX, 240Seiten. 1988. Vol. 1353: R.S. Palais, Ch.-I. Terng, Critical Point Theory and Submanifold Geometry. X, 272 pages. 1988. Vol. 1354: A. Gomez, F. Guerra, M.A. Jimenez, G. Lopez (Eds.), Approximation and Optimization. Proceedings, 1987. Vl 280 pages. 1988. 1 Vol. 1355: J. Bokowski, B. Sturmfels Computational Synthetic Geometry. V 168 pages. 1989. 1 1 Vol. 1356: H. Volkmer Multiparameter Eigenvalue Problems and Expansion Theorems. VI, 157 pages. 1988. 1 Vol. 1357: S. Hildebrandt, R. Leis (Eds.), Partial Differential Equations and Calculus of Variations. VI, 423 pages. 1988. Vol. 1328: J.L. Bueso, P. Jara B. Torrecillas (Eds.), Ring Theory. Proceedings, 1986. IX 331 pages. 1988. Vol. 1358: D. Mumford, The Red Book of Varieties and Schemes. V, 309 pages. 1988. Vol. 1329: M. Alfaro J.S. Dehesa F.J. Marcellan, J.L. Rubio de Francia, J. Vinuesa (Eds.): Orthogonal Polynomials and their Applications. Proceedings, 1986. XV, 334 pages. 1988. Vol. 1359: P. Eymard J.-P. Pier (Eds.), Harmonic Analysis. Proceedings, 1987. Vlll 287 pages. 1988. 1 1 1 1 Vol. 1330: A. Ambrosetti F. Gori, R. Lucchetti (Eds.), Mathematical Economics. Montecatini Terme 1986. Seminar. Vll 137 pages. 1988. 1 1 Vol. 1331: R. Bamon, R. Labarca, J. Palis Jr. (Eds.), Dynamical Systems, Valparaiso 1986. Proceedings. VI, 250 pages. 1988. Vol. 1332: E. Odell, H. Rosenthal (Eds.), Functional Analysis. Proceedings, 1986-87. V, 202 pages. 1988. Vol. 1333: A.S. Kechris D.A. Martin, J.R. Steel (Eds.), Cabal Seminar 81-85. Proceedings, 1981-85. V 224 pages. 1988. 1 1 Vol. 1360: G. Anderson, C. Greengard (Eds.), Vortex Methods. Proceedings, 1987. V, 141 pages. 1988. Vol. 1361: T. torn Dieck (Ed.), Algebraic Topology and Transformation Groups. Proceedings, 1987. VI 298 pages. 1988. 1 Vol. 1362: P. Diaconis, D. Elworthy, H. Folimer, E. Nelson, G.C. Papanicolaou, S.R.S. Varadhan. Ecole d'Ete de Probabilites de SaintFlour XV-XVII, 1985-87. Editor: P.L. Hennequin. V, 459 pages. 1988. 1 1 Vol. 1334: Yu. G. Borisovich Yu. E. Gliklikh (Eds.), Global Analysis - Studies and Applications III. V, 331 pages. 1988. Vol. 1363: P.G. Casazza, T.J. Shura. Tsirelson's Space. VIII 204 pages. 1988. 1 1 Vol. 1335: F. Guillen, V. Navarro Aznar, P. Pascual-Gainza, F. Puerta, Hyperr^solutions cubiques et descente cohomologique. XII, 192 pages. 1988. Vol. 1364: R.R. Phelps, Convex Functions, Monotone Operators and Differentiability. IX, 115 pages. 1989. Vol. 1365: M. Giaquinta (Ed.), Topics in Calculus of Variations. Seminar, 1987. X, 196 pages. 1989. Vol. 1336: B. Helffer, Se mi-Classical Analysis for the Schrodinger Operator and Applications. V, 107 pages. 1988. Vol. 1366: N. Levitt, Grassmannians and Gauss Maps in PL-Topology. V 203 pages. 1989. Vol. 1337: E. Sernesi (Ed.), Theory of Moduli. Seminar, 1985. VIII 232 pages. 1988. Vol. 1367: M. Knebusch, Weakly Semialgebraic Spaces. XX, 376 pages. 1989. Vol. 1338: A.B. Mingarelli, S.G. Halvorsen, Non-Oscillation Domains of Differential Equations with Two Parameters. XI, 109 pages. 1988. Vol. 1368: R. Hubl, Traces of Differential Forms and Hochschild Homology. Ill, 111 pages. 1989. Vol. 1339: T Sunada (Ed.), Geometry and Analysis of Manifolds. Procedings, 1987. IX, 277 pages. 1988. Vol. 1369: B. Jiang, Ch.-K. Peng, Z. Hou (Eds.), Differential Geometry and Topology. Proceedings, 1986-87. VI, 366 pages. 1989. Vol. 1340: S. Hildebrandt, D.S. Kinderlehrer, M. Miranda (Eds.), Calculus of Variations and Partial Differential Equations. Proceedings, 1986. IX 301 pages. 1988. Vol. 1370: G. Carlsson, R.L. Cohen, H.R. Miller, D.C. Ravenel (Eds.), Algebraic Topology. Proceedings, 1986. IX 456 pages. 1989. 1 1 Vol. 1341: M. Dauge, Elliptic Boundary Value Problems on Corner Domains. VIII, 259 pages. 1988. 1 1 Vol. 1371: S. Glaz, Commutative Coherent Rings. XI, 347 pages. 1989. Vol. 1372: J. Azema PA. Meyer, M. Yor (Eds.), Seminaire de Probabilites XXIII. Proceedings. IV, 583 pages. 1989. 1 Vol. 1342: J . C Alexander (Ed.), Dynamical Systems. Proceedings, 1986-87. Vlll 726 pages. 1988. 1 Vol. 1343: H. Ulrich, Fixed Point Theory of Parametrized Equivariant Maps. Vll 147 pages. 1988. 1 Vol. 1344: J. Kral J. Lukes, J. Netuka J. Vesely (Eds.), Potential Theory - Surveys and Problems. Proceedings, 1987. Vlll 271 pages. 1988. 1 1 1 Vol. 1345: X. Gomez-Mont, J. Seade, A. Verjovski (Eds.), Holomorphic Dynamics. Proceedings, 1986. VII, 321 pages. 1988. Vol. 1346: O. Ya. Viro (Ed.), Topology and Geometry - Rohlin Seminar. XI, 581 pages. 1988. Vol. 1347: C Preston, Iterates of Piecewise Monotone Mappings on an Interval. V, 166 pages. 1988. Vol. 1348: F. Borceux (Ed.), Categorical Algebra and its Applications. Proceedings, 1987. Vlll 375 pages. 1988. Vol. 1349: E. Novak, Deterministic and Stochastic Error Bounds in Numerical Analysis. V, 113 pages. 1988. Vol. 1373: G. Benkart, J.M. Osborn (Eds.), Lie Algebras, Madison 1987. Proceedings. V, 145 pages. 1989. Vol. 1374: R.C. Kirby, The Topology of 4-Manifolds. VI, 108 pages. 1989. Vol. 1375: K. Kawakubo (Ed.), Transformation Groups. Proceedings, 1987. VIII, 394 pages, 1989. Vol. 1376: J. Lindenstrauss, V.D. Milman (Eds.), Geometric Aspects of Functional Analysis. Seminar (GAFA) 1987-88. VII, 288 pages. 1989. Vol. 1377: J.F. Pierce, Singularity Theory, Rod Theory, and SymmetryBreaking Loads. IV, 177 pages. 1989. Vol. 1378: R.S. Rumely Capacity Theory on Algebraic Curves. Ill, 437 pages. 1989. 1 1 Vol. 1379: H. Heyer (Ed.), Probability Measures on Groups IX. Proceedings, 1988. VIII, 437 pages. 1989 Vol. 1380: H. P. Schlickewei. E. Wirsing (Eds.), Number Theory, Ulm 1987. Proceedings. V, 266 pages. 1989. Vol. 1381: J.-O. Strdmberg, A. Torchinsky. Weighted Hardy Spaces. V. 193 pages. 1989. Vol. 1382: H. Reiter, Metaplectic Groups and Segal Algebras. XI, 128 pages. 1989. Vo!. 1383: D. V. Chudnovsky, G . V. Chudnovsky, H. C o h n M. B. Nathanson (Eds.), NumberTheory, NewYork 1 9 8 5 - 8 8 . Seminar. V, 256 pages. 1989. 1 Vol. 1384: J. Garcia-Cuerva (Ed.), Harmonic Analysis and Partial Differential Equations. Proceedings, 1987. V l l 213 pages. 1989. 1 Vol. 1385: A . M . Anile, Y. Choquet-Bruhat (Eds.), Relativistic Fluid Dynamics. Seminar, 1987. V 3 0 8 pages. 1989. 1 Vol. 1386: A. Bellen, C W. Gear, E. Russo (Eds.), Numerical Methods for OrdinaryDifferentiaI Equations. Proceedings, 1987. VII, 136 pages. 1989. Vol. 1387: M. Petkovic, Iterative Methods for Simultaneous Inclusion of Polynomial Zeros. X, 263 pages. 1989. Vol. 1388: J. Shinoda T.A. Slaman T. Tugue (Eds.), Mathematical Logic 1 1 and Applications. Proceedings, 1987. V, 223 pages. 1989. Vol. 1000: Second Edition. H. Hopf, Differential Geometry in the Large. VII, 184 pages. 1989. Vol. 1389: E. Ballico C. Ciliberto (Eds.), Algebraic Curves and Projective Geometry. Proceedings, 1988. V 2 8 8 pages. 1989. 1 1 Vol. 1390: G . Da Prato L. Tubaro (Eds.), Stochastic Partial Differential Equations and Applications II. Proceedings, 1988. VI, 2 5 8 pages. 1989. 1 Vol. 1391: S. Cambanis A. Weron (Eds.), Probability Theory on Vector Spaces IV. Proceedings, 1987. Vlll 4 2 4 pages. 1989. 1 1 Vol. 1392: R. Silhol, Real Algebraic Surfaces. X, 215 pages. 1989. Vol. 1393: N. Bouleau, D. Feyel R Hirsch G . Mokobodzki (Eds.), Seminaire de Theorie du Potentiel Paris, No. 9. Proceedings. VI, 265 pages. 1989. 1 1 Vol. 1394: T. L. Gill W. W. Zachary (Eds.), Nonlinear Semigroups, Partial 1 Differential Equations and Attractors. Proceedings, 1987. IX, 233 pages. 1989. Vol. 1395: K. Alladi (Ed.), NumberTheory Madras 1987. Proceedings. VII, 1 234 pages. 1989. Vol. 1396: L. Accardi, W. von Waldenfels (Eds.), Quantum Probability and Applications IV. Proceedings, 1987. V l 3 5 5 pages. 1989. 1 Vol. 1397: P R . Turner (Ed.), Numerical Analysis and Paratle) Processing. Seminar, 1987. VI, 264 pages. 1989. Vol. 1398: A . C . Kim, B . H . Neumann (Eds.), Groups - Korea 1988. Proceedings. V, 189 pages. 1989. Vol. 1399: W.-P. Barth, H. Lange (Eds.), Arithmetic of Complex Manifolds. Proceedings, 1988. V, 171 pages. 1989. Vol. 1400: U. Jannsen. Mixed Motives and Algebraic K-Theory. XIII, 246 pages. 1990.