Que es FNAL?
Transcription
Que es FNAL?
Fermilab: Fermi National Accelerator Laboratory ¿qué hacemos? www.fnal.gov Tevatron collider in Run II • The Tevatron is a proton-antiproton s = 1.96TeV with in RunII980 (1.8TeV RunI) collider GeV/beam • 36 p and p bunches !396 ns between bunch crossing – Increased from 6x6 bunches with 3.5µs in Run I • Increased D0 MINOS MINiBOON CDF E815 Descubrimientos • Descubrimiento del quark Top (1995, D0 y CDF): – Ultimo quark de los 6 predichos por la teoría del modelo estándar. Tan pesado como el átomo de oro • Descubrimiento del quark bottom (1977, E288): – Descubrieron una nueva partícula, Upsilon, estado resonante de quark b y de su antiquark. (comienza la 3rd generación) • Determinación mas precisa de los bosones W,Z: – Permite confirmación del modelo estándar y junto con la medida de la masa del top => masa Higgs • Observación de violación CP directa (1999, Ktev) – Tiene implicaciones en el entendimiento de la asimetría materia-antimateria • Medida precisa de la vida media de las partículas con charm – Entendimiento de las fuerzas entre quarks y de cómo combinan los quarks para formar partículas Descubrimientos • Evidencia experimental del neutrino del tau (2000,DONUT) – Ultima partícula de la tercera generación. Casi sin masa. Completa el modelo estándar de partículas • Estructura del protón y del neutron usando haces de neutrino – Determinación de la división de quarks y gluones dentro de estas partículas y su energía • Medida del momento magnético de partículas con charm (hiperones) – Pequeños imanes que viven menos de un billon de segundo. • Calculo de la constante de acoplamiento fuerte, !s, usando superordenadores (grupo teórico, lattice QCD) – Describe la intensidad de la fuerza fuerte. Una medida precisa de esta constante solo se puede hacer usando cálculos numéricos de “ lattice QCD” y gran poder de calculo. • Descubrimiento de un quasar a 27 billones de años luz(2000, SDSS) – Estudian un cuarto del cielo (10000 grados2 o 200 millones de objetos celestiales). Este es el segundo quarsar mas lejano ¿Como se hace? Tools from Physics Research " Medical imaging tools – Magnetic Resonance Imaging (MRI), PET scan detectors, tracer nuclides, CAT scans are derived from techniques invented for research. " Parallel computing – the use of many computers to attack different parts of a problem simultaneously – was invented by scientists who needed faster real-time processing of data. Such techniques are now the mainstay of weather forecasting and market trend analyses. Accelerators for Society Particle accelerators were devised to produce high energy probes for studying the atom. Now they are used for medical therapy, medical diagnostics, materials research, making electronic circuits, nuclear waste disposal and food sterilization. CATEGORY OF ACCELERATORS NUCLEAR AND PARTICLE PHYSICS High energy accelerators BIOMEDICAL ACCELERATORS Radiotherapy (Biomedical) research Medical radioisotope production INDUSTRIAL ACCELERATORS Industrial electron accelerators Ion implanters Surface modification centers and research SYNCHROTRON RADIATION SOURCES Estimated total NUMBERS IN USE 112 >4000 800 ~200 ~1500 >2000 ~1000 ~50 ~10000 Introduction • Top quark was expected in the Standard Model (SM) of electroweak interactions as a partner of b-quark in SU(2) doublet of weak isospin for the third family of quarks – Evidence for top in 1994 (CDF) – Observation in 1995 (CDF&D0) • In Run I statistical uncertainties dominated: – Overall consistency with the SM picture – but…still a few loose ends • In anticipation of much increased statistics in Run II: – Rich physics menu – Increased luminosity ! increased precision – Surprises? • Preliminary results on: cross section, mass, W helicity and single top Top quark production •Difficult to produce 1 in 10000 Millions Events is a top Top Quarks at the Tevatron Pair production B(t_Wb) = 100% W’s decay modes used to classify the final states 85% 15% •Dilepton (e,m) BR=5% •Lepton (e,m) +jets BR=30% •All jets BR=44% • thad+X BR=21% Ejemplo: Masa del Top • Un suceso top: Identifying particles The quarks (and gluons) are seen as jets – sprays of particles travelling in similar directions particles in a jet quark Jets from b-quarks are of particular interest; they have some particles that live for a long time and their decays are separated from the primary interaction point by a millimeter or so, and sensed in the inner silicon tracking detector Neutrinos do not interact at all, but can be sensed by the imbalance in momentum of all the observed particles. We ‘observe’ them in the sense of Sherlock Holmes’ dog that did not bark in the night. Methodology & tools Full characterization of the chosen final state signature in terms of SM background processes (control region) – Optimize signal region for best measurement precision • How to separate signal from background: – Top events have very distinctive signatures • Decay products (leptons, neutrinos, jets) have large pT’s • Event topology: central and spherical • Heavy flavor content: always 2 b jets in the final state! • Tools (need multipurpose detectors!): – Lepton ID: detector coverage and robust tracking – Calorimetry: hermetic and well calibrated – B identification: algorithms pure and efficient – Simulation: essential to reach precision goals How to tag a high pT B-jet Soft Lepton Tag ! Exploits the b quarks semileptonic decays Silicon Vertex Tag • Signature of a b decay is a displaced vertex: – Long lifetime of b hadrons (c" ~ 450 µm)+ boost – B hadrons travel Lxy~3mm before decay with large charged track multiplicity # These leptons have a softer pT spectrum than W/Z leptons # They are less isolated B-tagging at hadron machines established: •crucial for top discovery in RunI •essential for RunII physics program Double b-tagged dilepton event @ CDF 69.7 backgrounds "= N signal # N background $•L Production cross section • Test of QCD – discrepancies from QCD might imply non SM physics Run II Summary • SUSY processes • Top-color objects – Current uncertainty is statistics dominated • Experimental handles for RunII: – Larger overall efficiency (lepton ID, trigger, btagging) w/ better background rejection – Main data driven systematics (jet energy ~ scale, ISR, $btag) scale with 1/%N RunII(2fb-1) &'tt/'tt <10% Top Mass • Top Mass: Fundamental SM parameter – needed to determine ttH coupling – important in radiative corrections: constrain (Mh/Mh to 35% in RunII • Experimental handles: – B tagging: reduce background & combinatorial – Data driven systematics scale with 1/%N (energy scale, gluon radiation) CDF/D0 2 fb-1goal! Top Mass Measurement • Template method: – Kinematic fit under the tt hypotesis – Combinatorial issues – best )2 combination chosen – Likelihood fit • Dynamical methods: – Event probability of being signal or background as a function of m(t) – Better use of event information ! increase statistical power – Well measured events contribute more Handles for a precision measurement • Jet energy scale L/L(max) A precise measurement of the top mass combines cutting edge theoretical knowledge with state of the art detector calibration L/L(max) D0 preliminary Top mass (GeV) W mass (GeV) – gamma-jet balancing: basic in situ calibration tool – – Z+jet balancing: interesting with large statistics Hadronic W mass: calibration tool in tt double tagged events – Z!bb mass: calibration line for b-jets, dedicated trigger • Theory/MC Generators: understand ISR/FSR, PDF’s • Simulation: accurate detector modeling • Fit methodology: how to optimally use event information • Event selection: large statistic will allow to pick best measured events Mass measurement •Event Selection •Background •Systematic Errors Top Mass Calculation using D0 data •Three computer-generated views of one event, Run 92704 Event 14022, that you will analyze. CAL+TKS R-Z VIEW CAL+TKS END VIEW DST LEGO •4 jets: large blasts of particles – (red and blue towers). One of the jets •Muon: green tower will often contain a low energy or "s o f t" muon (dotted green line). •Neutrino : undetected Top Mass Calculation using D0 data •Mass: The mass is determined from the magnitude of the momenta. While the momentum of the total system is zero, the momenta of the various particles are very different. 2 2 E "p =m 2 2 2 E " p = (2m t ) •Momentum conservation 2 •Transverse momentum is cero E 2 = (2m t ) 2 ! •Momentum: The data plot shows the direction of the momenta and the magnitude reported in GeV/c for all particle seen by the detector. Top Mass Calculation using D0 data •Because almost all of the energy of the collision is the result of top and antitop decay, simply add the energies of the four jets, the lepton and the neutrino before dividing by the two tops (actually a top and an antitop quark) to obtain the mass of the most recently discovered quark. •Neutrino almost does not interact with the material leaving no track in the detector •you need to infer the momentum of the neutrino • Doing this for many events, •you plot the result for each of them obtaining a Top mass distribution => improve the measurement by fitting the distribution •This is a very simplyfied version •First order to undertand the idea is OK Top Mass Calculation using D0 data Adding up all objects: 61.2 GeV + 7.3 GeV + 95.5 GeV + 58.6 GeV + 54.8 GeV + 17.0 GeV + 42 GeV = 336.3 GeV Masa del top: 336.3 GeV/2 = 168 GeV •If use the computer to calculate the momentum of neutrino P = 53.0 GeV •Top mass = 174.2 GeV • Como el ejemplo del top se hacen los analisis de datos – Produccion debil, produccion fuerte, nueva fisica, etc.. • Se necesita: – Conocimiento teórico del proceso elegido para estudiar • Probabilidad de producción, productos de desintegración, Cinemática del suceso, – Concimiento de los fondos que falsean tu señal – Aceleradores que produzcan las colisiones a la energía adecuada y suficiente luminosidad para tener estadistica – Detectores muy precisos capaces de recoger todo lo que salen de las colisiones – Triggers que selecciones solo sucesos interesantes para nuestro analisis – Medida de la eficiencia de los requisitos que piden – Un grupo de trabajo que te ayude con todo – Se hace en colaboraciones grandes