efeitos neuroquímicos da administração de olanzapina e/ou
Transcription
efeitos neuroquímicos da administração de olanzapina e/ou
UNIVERSIDADE DO EXTREMO SUL CATARINENSE - UNESC UNIDADE ACADÊMICA DE CIÊNCIAS DA SAÚDE - UNASAU PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS DA SAÚDE - PPGCS EFEITOS NEUROQUÍMICOS DA ADMINISTRAÇÃO DE OLANZAPINA E/OU FLUOXETINA EM RATOS WISTAR: IMPLICAÇÕES NO ENTENDIMENTO DA TERAPÊUTICA DA DEPRESSÃO BIPOLAR FABIANO ROSA AGOSTINHO CRICIÚMA, MARÇO DE 2011 FABIANO ROSA AGOSTINHO EFEITOS NEUROQUÍMICOS DA ADMINISTRAÇÃO DE OLANZAPINA E/OU FLUOXETINA EM RATOS WISTAR: IMPLICAÇÕES NO ENTENDIMENTO DA TERAPÊUTICA DA DEPRESSÃO BIPOLAR Tese apresentada ao Programa de Pós-Graduação em Ciências da Saúde da Universidade do Extremo Sul Catarinense, para obtenção do título de Doutor em Ciências da Saúde. Orientador: Prof. Dr. João Quevedo CRICIÚMA, MARÇO DE 2011 Ao meu Pai, meu maior agradecimento. AGRADECIMENTOS À Deus sobre todas as coisas, que por intermédio de seu Filho, me acalmava e abria meus olhos para a dura, frágil e ao mesmo tempo maravilhosa realidade da vida; Aos meus pais Walter Rodrigues Agostinho e Maria Odete Rosa Rodrigues, e meu tio Antonio Adalberto Buozi Rosa que mesmo distantes me ampararam e se esforçaram muito para que eu seguisse bem e que com certeza não descansarão; Ao professor Dr. João Quevedo, amigo antes de tudo, o qual tive a sorte de poder ser orientado desde a primeira fase do curso de medicina. Portador de um dos conhecimentos mais impressionantes, resultado de uma “energia pragmática” que transforma tudo em produtividade e que, cuja presença, contagia até mesmo as mentes mais inertes; Gustavo Feier, verdadeiro amigo e prontamente Doutor, seu mérito não cabe somente nas nossas incansáveis horas de laboratório e graduação em medicina. Sua disponibilidade é incomum, tanto para a ciência quanto para a amizade; Minha colega Doutora Gislaine Zilli Réus que, diante de minhas maiores dificuldades, sacrificava momentos preciosos de seu tumultuado tempo de estudos para que esse trabalho fosse levado a termo; Á Força Área Brasileira que mesmo antes de me incorporar já havia me apoiado proporcionando condições a realizar o doutorado; Dois amigos que, nesta época da minha vida, foram meus “dois” braços direitos na amizade verdadeira, 2 Ten Brandão e 1 Ten Gustavo, colaborando respectivamente na fabricação artesanal da cerveja perfeita e na maior inspiração musical da nossa banda “Dr. Yathros”. Aos todos os pesquisadores do Laboratório de Neurociências por terem proporcionado um ambiente de colaboração no mais virtuoso sentido da palavra; Por último, mas poderia ser primeiro, ao meu verdadeiro amor, Daiane Breda, minha companheira, pelo apoio, carinho, dedicação, amor e por dar sentido a isso tudo. “Temos que acreditar em alguma coisa, e sobretudo temos de ter um sentimento de responsabilidade coletiva, segundo o qual cada um de nos será responsável sobre todos os outros.” (José Saramago) ∆ 16 de novembro de 1922 † 18 de junho de 2010 RESUMO O transtorno do humor bipolar (THB) é um transtorno com importante prejuízo na qualidade de vida. Atualmente, a depressão bipolar (DB) representa a fase de maior dificuldade de tratamento. O metabolismo energético cerebral e fatores neurotróficos estão associados ao THB. Recentemente, uma combinação fixa de um antipsicótico atípico olanzapina (OLZ) e um inibidor seletivo de serotonina fluoxetina (FLX) (SymbiaxTM) foi aprovada pela FDA para o tratamento da DB. O presente estudo avalia o efeito agudo e crônico da monoterapia e da combinação de OLZ e FLX no metabolismo energético e expressão de neurotrofinas. Para isso, foram estudadas as atividades da enzima creatina quinase (CK), citrato sintase (CS), cadeia respiratória mitocondrial e a expressão de BDNF, NGF e NT-3 em córtex prefrontal, hipocampo, cerebelo, estriado e córtex cerebral em cérebro de ratos. O tratamento agudo, ratos Wistar machos receberam uma aplicação de OLZ (3 e 6 mg/kg) e/ou FLX (12,5 e 25 mg/kg) e para o tratamento crônico por 28 dias. Os resultados mostram a atividade da CK, no tratamento agudo com OLZ (3 e 6 mg/kg), estava inibida no cerebelo e prefrontal. Tanto a combinação como a monoterapia com OLZ (3 ou 6 mg/kg) com FLX (12,5 ou 25 mg/kg) inibiu a atividade da CK no prefrontal, cerebelo, hipocampo estriado e córtex. No tratamento crônico 2 horas após a ultima administraçao, observa-se inibida tanto na monoterapia com FLX (12,5 ou 25 mg/kg) quanto na combinação com OLZ (3 ou 6 mg/kg). Neste mesmo protocolo, o tratamento com OLZ (3 ou 6 mg/kg) não alterou a atividade da CK. Porem, no tratamento crônico 24h após a ultima administração, não observaram-se alterações na atividade da CK. A CS, no tratamento agudo, a administração de OLZ (6 mg/kg) e OLZ/FLX (3/25 mg/kg) aumentou a atividade da CS no prefrontal. No hipocampo OLZ (3 mg/kg) e OLZ/FLX (3/25 mg/kg) aumentou a atividade da CS. No estriado a OLZ (3 e 6 mg/kg), FLX (25 mg/kg) e a combinação OLZ/FLX (3/25 mg/kg) também aumentou a atividade da CS. No tratamento crônico não foram observados alterações. Na cadeia respiratória, no tratamento agudo e crônico com OLZ e FLX, encontrou-se aumentada a atividade dos complexos na monoterapia e na combinação, porem na combinação observa-se maiores alterações. A expressão das neurotrofinas BDNF e NGF não esta alterada pela combinação OLZ/FLX. Porem a expressão de NT-3 esta aumentada na administração OLX/FLZ 6/25 mg/kg no prefrontal. Finalmente, este estudo apóia a hipótese do metabolismo energético e as expressões de neurotrofinas podem estar envolvidas no tratamento combinado OLZ/FLX no tratamento do THB. Palavras Chave: combinação olanzapina/fluoxetina, creatina quinase, citrato sintase, cadeia respiratória mitocondrial, NGF, BDNF, NT-3, transtorno do humor bipolar. ABSTRACT Bipolar disorder (BD) is a prevalent condition in adults determining a significant impairment in quality of life . Bipolar depression represents a difficult-to-treat and disabling form of depression. It has been hypothesized that BD is associated with mitochondrial dysfunction and neurotrophic factors. Recently, a fixed combination of the antipsychotic drug olanzapine (OLZ) and the antidepressant fluoxetine (FLX) (SymbiaxTM) has been introduced for the treatment of BD. This study evaluates the effects of OLZ alone, FLX alone, or a combination of both; in energetic metabolism and neurotrophines expression. For this, we studied the activity of the enzyme creatine kinase (CK), citrate synthase (CS), and mitochondrial respiratory chain, expression of BDNF, NGF and NT-3 in the prefrontal cortex, hippocampus, cerebellum, striatum and cerebral cortex in the rat brain. The acute treatment, male Wistar rats received an application OLZ (3 and 6 mg/kg) and / or FLX (12.5 and 25 mg/kg) and chronic treatment for 28 days. The results show CK activity in the acute treatment OLZ (3 and 6 mg/kg) was inhibited in the cerebellum and prefrontal. Both the combination and monotherapy OLZ (3 or 6 mg/kg) and FLX (12.5 or 25 mg/kg) inhibited CK activity in the prefrontal cortex, cerebellum, hippocampus, striatum and cortex. In the chronic treatment 2 hours after the last administration, there was inhibited both in monotherapy FLX (12.5 or 25 mg/kg) and in combination with OLZ (3 or 6 mg/kg). In this same protocol, treatment with OLZ (3 or 6 mg/kg) did not alter CK activity. In the present study, the activity of CS, in the acute treatment, the administration of OLZ (6 mg/kg) and OLZ/FLX (3/25 mg/kg) increased activity in prefrontal CS. OLZ hippocampus (3 mg/kg) and OLZ/FLX (3/25 mg/kg) increased the activity of CS. In the striatum OLZ (3 and 6 mg/kg), FLX (25 mg/kg) and combination OLZ/FLX (3/25 mg/kg) also increased the activity of CS. In the chronic treatment were not observed changes. Respiratory chain in acute and chronic treatment with FLX and OLZ, we found increased activity of complexes in monotherapy and in combination, but the combination was observed major changes. The expression of neurotrophins BDNF and NGF is not altered by the combination OLZ/FLX. But the expression of NT-3 increased in this administration OLX/FLZ 6/25 mg/kg in the prefrontal. Finally, this study supports the hypothesis of energy metabolism and the expression of neurotrophins may be involved in the combined treatment OLZ/FLX in the treatment of bipolar disorder. Keywords: combination olanzapine/fluoxetine, creatine kinase, mitochondrial respiratory chain, NGF, BDNF, NT-3, bipolar disorder. citrate synthase, LISTA DE ILUSTRAÇÕES Figura 1. Representação esquemática da cadeia respiratória mitocondrial. ______________________ 21 Figura 2. Representação esquemática da atividade da enzima creatina quinase. __________________ 22 Figura 3. Respresentaçao esquemática da atividade da enzima citrato sintase. ____________________ 23 Figura 4. Representação esquemática ligação das neurotrofinas com os receptores tirosina quinase. _ 24 LISTA DE ABREVIATURAS E SIGLAS 5-HTTR – Gene Transportador de Serotonina ACTH – Hormônio de Liberação de Adrenocorticotrofinas ADP – Adenosina Difosfato AMPc – Monofosfato de Adenosina Cíclico APA – American Psychiatry Association ATP – Adenosina Trifosfato BDNF – Fator Neurotrófico Derivado do Cérebro (brain-derived neurotrophic factor) CID-10 – Código Internacional de Doenças CK – Creatina Quinase COMT – Catecol – O – Metil Transferase CRH – Hormônio de Liberação de Corticotrofinas CS – Citrato Sintase DNA – Ácido Desoxirribonucléico DSM-IV-TR – Manual Diagnóstico e Estatístico dos Transtornos Mentais ECA – Epidemiologic Captation Area (Área de Captação Epidemiológica) ECT – Eletroconvulsoterapia FDA – Administração de Alimentos e Medicamentos (Food and Drug Administration) FLX – Fluoxetina fMRI – Espectroscopia por Ressonância Magnética Funcional HPA – Eixo Hipotálamo Pituitária Adrenal ISRS – Inibirdor Seletivo da Recaptaçao de Serotonina Li – Lítio MAO A – Mono Amino Oxidase A MRS – Espectroscopia por Ressonância Magnética NADH – Nicotinamida Adenina Dinucleotídeo NGF – Fator de Crescimento Neurotrófico (Nerve Grow Factor) NIMH – National Institute Mental Health (Instituto Nacional de Saúde Mental) NT – 4 – Neurotrofina 4 NT-3 – Neurotrofina 3 OLZ – Olanzapina PET – Tomografia por Emissão de Pósitrons Pi – Fósforo Inorgânico SNC – Sistema Nervoso Central SOE – Sem Outra Especificação TDHA –Transtorno do Déficit de Atenção e Hiperatividade TEHB – Transtorno do Espectro do Humor Bipolar THB – Transtorno do Humor Bipolar THB I – Transtorno do Humor Bipolar tipo I (maníaco depressivo) THB II – Transtorno do Humor Bipolar tipo II (hipomaníaco depressivo) TOC – Transtorno Obsessivo Compulsivo TrK – Receptor Tirosina Quinase VPZ – Valproato YMRS – Escala Específica para Avaliação de Mania -Young Mania Rating Scale. SUMÁRIO PARTE I ____________________________________________________________ 13 1 INTRODUÇÃO ____________________________________________________ 14 1.1 DEFINIÇÃO __________________________________________________________ 14 1.2 EPIDEMIOLOGIA ____________________________________________________ 14 1.3 ETIOLOGIA __________________________________________________________ 17 1.4 FISIOPATOLOGIA ____________________________________________________ 18 1.4.1 Áreas Cerebrais e THB _____________________________________________ 18 1.4.2 Bases Biológicas e THB ____________________________________________ 19 1.5 DIAGNÓSTICO _______________________________________________________ 25 1.6 TRATAMENTO _______________________________________________________ 26 2 JUSTIFICATIVA __________________________________________________ 29 3 OBJETIVOS_______________________________________________________ 30 3.1 OBJETIVO GERAL ___________________________________________________ 30 3.2 OBJETIVOS ESPECIFICOS ____________________________________________ 30 PARTE II ___________________________________________________________ 31 4 ARTIGOS _________________________________________________________ 32 4.1 ARTIGO I ____________________________________________________________ 32 4.2 ARTIGO II ___________________________________________________________ 48 4.3 ARTIGO III __________________________________________________________ 65 4.4 ARTIGO IV ___________________________________________________________ 89 PARTE III _________________________________________________________ 110 5 DISCUSSÃO______________________________________________________ 111 REFERÊNCIAS ____________________________________________________ 117 13 PARTE I 14 1 INTRODUÇÃO 1.1 Definição O Transtorno do Humor Bipolar (THB) é uma forma de transtorno de humor caracterizado pela variação extrema do humor entre uma fase maníaca ou hipomaníaca, (hiperatividade, euforia, inconsequência, risco a segurança financeira, problemas de relacionamentos, irritabilidade, pensamento acelerado, idéias grandiosas, grande imaginação), uma fase de depressão (humor depressivo, idéias de ruína, inibição, lentidão para conceber e realizar idéias, ansiedade ou tristeza) (Shansis & Cordioli, 2005) e uma apresentação mista (sintomas maníacos e depressivos associados) (Kapczinsky & Quevedo, 2009). Esta definição está baseada no Diagnostic and Statistical Manual of Mental Disorders – Text Revision (DSM IV-TR, 2000) publicado pela American Psychiatry Association (APA, sigla do Inglês) e classificado pelo International Statistical Classification of Diseases and Related Health Problems (CID-10, sigla do Inglês) (World Health Organization, 1992). O DSM IV-TR faz uma distinção entre as duas formas maiores do THB: Tipo I (mania e depressão) e Tipo II (hipomania e depressão), além de definir uma forma mais leve que é a ciclotimia (flutuações entre depressão subsindrômica e hipomania) e conceituar outras formas que não se encaixariam nos três subgrupos anteriores: THB SOE (sem outra especificação), dentre os quais estariam as apresentações do chamado “espectro bipolar” (DSM IV-TR, 2002; Cordioli et al., 2010). 1.2 Epidemiologia O THB é um transtorno crônico, recorrente e, muitas vezes, com remissão incompleta, potencialmente letal e que afetam um grande número de pessoas (Goodwin 15 & Jamison, 2003). Cerca de 30% dos pacientes fazem tentativas de suicídio e cerca de 20% acabam por completar este intento (Moreno & Andrade, 2005). Estes transtornos estão associados a grandes custos pessoais e sociais e pelo menos uma proporção de casos é refratária ao tratamento convencional (Schatzberg et al., 1998). A prevalência é similar entre os sexos tanto para o THB I (Weissman et al., 1991; Kessler et al., 1997; Szádóczky et al., 1998; Tem Have et al., 2002; Schaffer et al., 2006) quanto para o THB II (Moreno & Andrade, 2005; Merikangas et al., 2007), embora exista claramente uma predominância para o sexo feminino (Moreno & Dias, 2002). Vários estudos epidemiológicos foram desenvolvidos em diferentes países a partir da década de 80 (Jenkins & Meltzer, 1995; Mason & Wilkonson, 1996; Mithcell et al., 2004) . Dois destes estudos são os de maior relevância – Epidemiologic Catchment Area (ECA, sigla do inglês) (Posternak & Zimmerman, 2002) e National Comorbidity Survey (NCS, sigla do inglês) (Kessler et al., 1994). O Estudo ECA–NIMH (Área de Captação Epidemiológica do Instituto Nacional de Saúde Mental, sigla do Inglês) nos Estados Unidos encontrou prevalência durante a vida para o THB I de 0,8%, e, para o THB II 0,5% (Robbins & Regier, 1991; Weissman et al., 1996). Freeman e colaboradores (2002) demonstraram que pacientes com transtorno bipolar apresentam prevalência de 21% para transtorno do pânico e transtorno obsessivo compulsivo (TOC), comparados a 0,8% e 2,6% para a população em geral. No estudo do NCS, a prevalência de transtornos ansiosos em geral no THB foi de 92,9% contra 24,9% da população. Observa-se, entretanto, que trata-se de um transtorno com grande probabilidade de coexistência com outras comorbidades características de outros transtornos psiquiátricos, tais como, transtorno de déficit de atenção e hiperatividade (TDHA), depressão e transtorno obsessivo compulsivo (TOC) (Katzow et al., 2003; Angst et al., 2007; Mcintyre et al., 2008) o que dificulta o diagnóstico. Em media 30% dos pacientes com THB não recebem tratamento, não foram diagnosticados ou receberam tratamento equivocado (Faravelli et al., 2009). Quando o conceito de THB é ampliado para o chamado Transtorno do “Espectro” do Humor Bipolar (TEHB), a prevalência aumenta para até 6% (Goodwin & Jamison, 2003; Judd et al., 2003). Em clínicas psiquiátricas, em torno de 50% dos pacientes apresentam THB (Schatzberg et al., 2003). 16 O Estudo Multicêntrico Brasileiro de Morbidade Psiquiátrica (AlmeidaFilho et al., 1997) obteve estimativas de prevalência de transtornos mentais em três grandes centros urbanos brasileiros: Brasília, São Paulo e Porto Alegre. Neste estudo foi encontrada a prevalência de 0,3 - 1,1% para THB (Moreno & Andrade, 2005; Lima et al., 2005). Após o primeiro episódio, há um risco de aproximadamente 90% de o paciente ter outro episódio em algum momento de sua vida. Dentre os pacientes que se apresentam com um episódio depressivo, há uma chance de 5 a 15% de que estes sejam efetivamente bipolares e não unipolares (European College of Neuropsychopharmacology, 2001). Estes transtornos iniciam-se antes dos 30 anos de idade, mas podem começar em qualquer idade (inclusive na infância) o que possivelmente o início precoce aumenta o risco de piores prognósticos em geral, e particularmente de ciclagem rápida, ideação suicida e comorbidades com transtornos relacionados a substâncias (Bauer & Pfennig, 2005; Leboyer et al., 2005). Em um estudo comunitário transversal, onde mesmo com a dificuldade na estimativa da idade de início (pelo viés da memória de início), situa a idade de início entre o fim da adolescência e o começo da idade adulta (Leboyer et al., 2005). Na realidade, hoje em dia já se sabe que, muitos anos antes do surgimento de um primeiro episódio maior (seja de mania, depressão ou misto), o portador de THB já apresentava desde muito precocemente na sua vida sintomas ditos subsindrômicos. Inclusive, cada vez mais, têm sido valorizadas as apresentações mistas que se iniciariam muito precocemente na infância ou adolescência e que merecem uma abordagem psicofarmacológica diferenciada (Chengappa et al., 2003; Leboyer et al., 2005). O THB ocorre com igual frequência em homens e mulheres. Salienta-se, ainda, que o curso da doença varia de um paciente para outro e pode ocorrer, inclusive, uma grande variação de um episódio para outro em um mesmo paciente (Hirschfeld et al., 2002b); ainda que, geralmente, a forma de apresentação no mesmo paciente tende a ser mais ou menos semelhante nos vários episódios ao longo de sua vida (Schaffer et al., 2006). Indivíduos com transtorno bipolar têm uma maior probabilidade de dependerem de recursos públicos e de estarem desempregados (Ten Have et al., 2002; Kessler et al., 2007). Dados genéticos indicam fortemente que um fator significativo no desenvolvimento dos transtornos é a genética, sendo esta mais fortemente associada ao transtorno bipolar e esquizofrenia (Bass et al., 2009; Hamshere et al., 2009) do que para 17 o transtorno depressivo (Levinson et al., 2006). Ainda que não avaliada em estudos de comunidade, a história familiar deve ser incluída como importante fator de risco. A relação entre THB e história familiar está bem estabelecida e o risco é consistentemente aumentado em parentes de primeiro grau quando comparados com controles normais ou com depressão maior (Lima et al., 2005). O estado civil parece estar implicado no THB, sendo que a história de divórcio, independente do estado civil atual, tem sido associado ao transtorno (Kessler et al., 1997; Merikangas et al., 2007). Variações étnicas significativas não são encontradas nos grandes estudos populacionais (Lima et al., 2005). 1.3 Etiologia A base causal para os transtornos do humor é desconhecida, mas os fatores causais podem ser divididos em genéticos, biológicos e psicossociais. Essa divisão é didática, em razão da probabilidade de os três campos interagirem entre si (Frey et al., 2004). Os THB são vistos atualmente como transtornos predominantemente neurobiológicos com expressão psicológica nos quais há em geral, porém não necessariamente, a presença de múltiplos eventos estressores psicossociais inespecíficos agindo como desencadeadores ou mantenedores de episódios (Frey et al., 2004). O modelo de interação gene e ambiente, adotado por Caspi e Moffitt (2006) assume que eventos (estressores) ambientais podem desencadear trastornos mentais em indivíduos geneticamente suscetíveis. O termo alostase se refere ao esforço extra que o organismo emprega na adaptação dos sistemas fisiológicos às diversas situações de estresse - “estabilidade através da mudança”. Este “esforço adaptativo” atua por meio de vias neuronais, neurohormonais, metabólicas, imunológicas e de controle do metabolismo energético. A constante ativação deste mecanismo de resgate geraria um desgaste cumulativo, que é chamado de carga alostática. Assim, Kapczinsky e colaboradores (2008) mostram que existe uma complexa interação entre as alterações genéticas e ambientais que podem induzir mudanças já documentadas no eixo 18 hipotálamo-hipofise-adrenal (HPA – sigla do inglês), no sistema imunológico, o aumento do estresse oxidativo e alterações em neurotrofinas (O’Connor et al., 2000). Finalmente, as bases biológicas do THB mostram existir um quadro complexo de interação entre os múltiplos genes que causam suscetibilidade, bem como a relação destes com os fatores ambientais e suas consequências para o organismo (Fernández et al., 2006). Este conceito corresponde ao modelo da “diátese do estresse” (Eberhart & Hammen, 2010; Schnittker et al., 2010). 1.4 Fisiopatologia 1.4.1 Áreas Cerebrais e THB Como acima discutido, apesar de THB ser um transtorno psiquiátrico importante e comum, a base neuropatológica específica é desconhecida (Chen et al, 2011). Entretanto, nos últimos 15 anos os estudos post mortem e o aprimoramento de técnicas de neuroimagem - principalmente a de ressonância magnética (MRI, sigla do inglês), a tomografia por emissão de pósitrons (PET, sigla do inglês), e mais recentemente a espectroscopia por ressonância magnética (MRS, sigla do inglês) e espectroscopia por ressonância magnética funcional (fMRI, sigla do inglês) tem produzido vários estudos a fim de clarear os substratos neurais do THB (Drevets WC, 2001; Strakowski et al., 2005; Chen et al., 2011). Os principais sintomas de THB que são instabilidade afetiva, anormalidades neurovegetativas, impulsividade e psicose sugerem que o sistema límbico anterior age controlando esses comportamentos (Strakowski et al., 2005). Essa disfunção envolve as principais estruturas do sistema límbico, como a amídala que modula um sistema interativo córtex pré-frontal-estriado-hipotálamo que controlam os comportamentos sócio-emocionais (Strakowski et al., 2005; Cummings JL, 1993). Em relação à amídala, um estudo de neuroimagem mostrou uma diminuição significativa dessa área em pacientes bipolar (Pearlson et al., 1997; Drevets et al., 2001). No córtex pré-frontal, dois estudos também demonstraram diminuição em pacientes com THB (Strakowski et al., 2000; 2002). Estudos de espectroscopia têm demonstrado 19 anormalidades na membrana e no metabolismo de segundos mensageiros no estriado e no córtex pré-frontal de pacientes bipolares (Strakowski et al., 2000; Cummings et al., 1993). Adicionalmente, alterações e diminuição no hipocampo também têm sido descrito no THB (Rosokija et al., 2000; Bertolino et al., 2003). Chen e colaboradores (2006), em um estudo de neuroimagem funcional demonstraram uma ativação anormal no hipocampo durante testes de emoção, atenção e memória. Concordando com achados neurofisiológicos sobre a deficiência cognitiva nos episódios agudos do humor e uma significante diminuição da memória declarativa durante a remissão (Beardem et al., 2006a; 2006b). Esses estudos juntos sugerem fortemente que THB está associado principalmente a alterações na amídala, córtex pré-frontal, estriado e hipocampo, resultando em prejuízo cognitivo e desregulação do humor em pacientes bipolares. 1.4.2 Bases Biológicas e THB As bases biológicas do THB estão relacionados com a genética, as vias neurohormonais, de transcrição de sinal, neurotrofinas, metabolismo energético, entre outros (Frey et al., 2004). Embora o THB apresente um elevado padrão de herdabilidade, a busca por genes de suscetibilidade tem demonstrado que a maioria das pesquisas envolvendo estudos de genes únicos apresenta resultados negativos. Dados na literatura sugerem, entretando, que alguns genes funcionais apresentam modesta, mas significativa associação com aumento de suscetibilidade para THB. Estão associados com a suscetibilidade o gene transportador de serotonina (5HTTR), o gene da enzima degradadora de catecolaminas, catecol-O-metiltransferase (COMT), o gene da enzima que degrada as monoaminas, monoamine oxidase A (MAOA), e o gene do fator neurotrófico derivado do cérebro (BDNF) (Frey et al., 2004). O eixo HPA integra respostas a um estressor e sua ativação resulta na liberação de cortisol ou corticosterona do córtex da glândula adrenal. A ativação do eixo HPA, juntamente com o aumento da atividade catecolaminérgica e a integração com outros sistemas neuroedócrinos regula a função vascular e a captação de energia, 20 facilitando as respostas comportamentais adequadas e servindo para manter a homeostase (Meaney et al., 1993). Este processo ocorre com a produção e secreção do hormônio liberador de corticotrofina (CRH, sigla do Inglês) e arginina-vasopressina pelo hipotálamo, esses hormônios ativarão a hipófise anterior promovendo assim a liberação do hormônio adrenocorticotrófico (ACTH, sigla do Inglês), o qual promoverá a secreção de glicocorticóides pelo córtex da adrenal (Handa et al.,1994; Francis et al., 1996; Herman & Cullinan, 1997). Os glicocorticóides por sua vez regulam diversas funções que visam a manutenção dos processos metabólicos básicos, assim como a regulação do organismo em resposta ao estresse (Levine et al., 2001). Estudos prévios reportaram que o estresse pode causar dano e atrofia de neurônios em certas estruturas cerebrais, mais notavelmente no hipocampo (Magariños & Mcewen, 1995; Sapolsky et al., 1996; Duman RS, 2004). Entre as funções hipocampais estão incluídas controle do aprendizado e da memória e regulação do eixo HPA, as quais estão envolvidas na depressão e THB (Meaney et al., 1993; Frey et al, 2004; Machado-Vieira et al, 2005). Além disso, o hipocampo tem conexões com o córtex pré-frontal e a amigdala, regiões que estão diretamente envolvidas na emoção e na cognição, podendo estar associados a outros principais sintomas da depressão e do THB (Belmaker RH, 2004; Duman & Monteggia, 2006). A alteração do metabolismo energético mitocondrial com consequente prejuízo na produção energética da célula é uma hipótese atrativa para explicar a fisiopatologia do THB (Stork & Renshaw, 2005). Um estado energético celular anormal pode levar a perda da função e da plasticidade neuronal, e consequentemente, a alterações cognitivas e comportamentais característicos da depressão e THB (Manji & Lenox, 2000; Dzeja & Terzic, 2003). O cérebro desenvolve intensa atividade metabólica e para isso ele utiliza energia na forma de trifosfato de adenosina (ATP, sigla do inglês) (Ames A, 2000), parte dessa energia é formada na cadeia de transporte de elétrons. A cadeia de transporte de elétrons é composta por cinco complexos enzimáticos (complexos I, II, III, IV e V) e dois componentes que não fazem parte dos complexos, a coenzima Q, que transporta elétrons do complexo I e II ao complexo III, e o citocromo c, que transporta elétrons do complexo III ao complexo IV. A energia é utilizada ao permitir-se o fluxo de prótons a favor do gradiente de concentração através da enzima ATP sintase ou complexo V (Törnroth-Horsefield & Neutze, 2008). Os elétrons presentes nas coenzimas NADH e FADH2 são transferidos para o complexo I, do complexo I para coenzima Q, depois 21 para o complexo III, citocromo c, complexo IV e finalmente para o oxigênio (Wallace DC, 1999). A sequência da reação, coordenada pela presença do íon magnésio, é utilizar um ADP em presença de um fósforo inorgânico (Pi) sendo catalizada pelo complexo V em ATP (Törnroth-Horsefield & Neutze, 2008). Figura 1. Representação esquemática da cadeia respiratória mitocondrial. As mitocôndrias das células neurais e gliais são particularmente importantes para as funções cerebrais, pois fornecem a energia requerida para a atividade da sinapse e também estão ligadas às funções metabólicas (Ly & Verstreken, 2006; Ledoux et al., 2007). Alguns autores têm demonstrado uma relação entre o THB e o metabolismo energético (Konradi et al., 2004; Kato & Kato, 2000; Calabrese et al., 2001). Em estudo post mortem avaliando genes nucleares em hipocampo de pacientes bipolares, foi encontrada diminuição na expressão de inúmeros genes diretamente relacionados à atividade mitocondrial (Konradi et al., 2004). Esse estudo corrobora dados anteriores e a hipótese de Kato, da universidade de Tóquio, que sugere depleção mitocondrial e alteração no metabolismo energético de pacientes bipolares (Kato & Kato, 2000). Entretanto, os resultados que reforçam essa hipótese são ainda pouco conclusivos, justificando a necessidade de mais estudos sobre o metabolismo energético no THB. De fato, a mitocôndria esta envolvida nas comunicações intercelulares (Ly et al., 2006) e sua disfunção esta ligada ao THB (Konradi et al., 2004). Efeitos de antipsicóticos, inclusive a olanzapina (OLZ), mostraram inibir o metabolismo energético em cérebro de ratos (Streck et al., 2007). Por outro lado Bosch e 22 colaboradores (2005) mostram que os efeitos da combinação de OLZ com Fluoxetina (FLX) sustenta o nível extracelular de monoaminas no córtex prefrontal de ratos. Além da cadeia respiratória mitocondrial, a creatina quinase (CK, sigla do inglês), uma enzima com papel central no metabolismo energético, recentemente vem sendo estudada em transtornos psiquiátricos (Andres et al., 2008). No cérebro a CK é importante em funções, tais como o tamponamento energético (regenerando ATP) e a transferência do ATP dos sítios produtivos para os de consumo (Wyss et al., 1992; Kaldis et al., 1996; Wyss & Kaddurah-Daouk, 2000). Figura 2. Representação esquemática da atividade da enzima creatina quinase. Recentemente foi mostrada uma diminuição na atividade da enzima CK em cérebro de ratos submetidos ao um modelo animal de mania (Streck et al., 2008). Em humanos com transtorno do humor bipolar também foram encontrados níveis anormais da enzima CK (Meltzer HI, 2000). Além disso, Segal e colaboradores (2007) avaliaram os níveis séricos da enzima CK em uma amostra que continha indivíduos com transtorno depressivo maior em episódio depressivo psicótico e não psicótico. Adicionalmente a amostra incluiu sujeitos com transtorno esquizoafetivo e transtorno bipolar que se apresentavam em episódios depressivos. Os resultados apontaram para um aumento nos níveis de CK na depressão maior não-psicótica, comparado aos outros grupos. Recentemente, Assis e colaboradores (2007) mostram que a OLZ (10 mg/kg), em um modelo agudo, aumenta a atividade da CK no estriado de ratos. Entretanto baixas doses (2,5 e 5 mg/kg) inibe a atividade da enzima no cerebelo e prefrontal. Alguns inibidores seletivos da recaptação de serotonina (ISRS, sigla do inglês) mostam alterações na atividade da enzima CK (Assis et al., 2009). A enzima citrato sintase (CS) inicia o primeiro passo do ciclo de Krebs (Marco, et al., 1974). Esta localizada na matriz mitocondrial onde cataliza a condensação de oxaloacetato e o grupo acetil da acetil coenzima-A (acetil CoA) mais H2O gerando citrato e CoA. Esta enzima é inibida por altas concentrações de ATP, 23 acetil CoA e NADH quando o suprimento de energia celular esta alta. Esta regulação assegura que o ciclo de Krebs não oxide o piruvato e acetil CoA em excesso quando a concentração de ATP esta alta (Shepherd & Garland, 1969). Figura 3. Respresentaçao esquemática da atividade da enzima citrato sintase. Estudos demonstraram que ratos submetidos a um modelo animal de mania tiveram uma redução na atividade das enzimas CS em tecido cerebral (Correa et al., 2007) sugerindo que esta enzima esta envolvida em distúrbios do humor. Antidepressivos e estabilizadores do humor e a OLZ foram associados a modularem a atividade da enzima CS em cérebro de ratos (Hroudova et al., 2010). Scaini e colaboradores (2010) encontraram aumentada a atividade da CS na administração crônica com os ISRS no prefrontal, estriado, córtex e hipocampo de ratos. As neurotrofinas são fatores intermediários que regulam diferenciação e sobrevivência de neurônios e modulam a plasticidade e a transmissão sináptica. Além disso, agora se sabe também que a inibição da morte celular (apoptose) é outro componente importante da sua ação. Estes fatores podem ser secretados constitutivamente em um curto intervalo ou ainda dependendo da atividade neuronal. As neurotrofinas ligam-se e ativam uma família específica de receptor de tirosina quinase (TrK) promovendo uma regulação complexa no SNC. Devido a esses fatores, essenciais para funcionamento e sobrevivência neuronal supõem-se que a viabilidade neuronal pode ser afetada pela redução persistente dessas neurotrofinas no SNC (Du et al., 2003). Um peptídeo chamado de fator de crescimento neuronal (NGF, da sigla em inglês) foi o primeiro fator trófico a ser identificado. O NGF é produzido pelos alvos dos axônios na divisão sináptica do sistema nervoso (Caggiula et al., 2005). Esse peptídeo, produzido e liberado pelos tecidos-alvos, é absorvido pelos axônios sinápticos e transportado retrogradamente, promovendo a sobrevivência neuronal; entretanto, mesmo com a liberação de NGF pelos tecidos-alvos pode ocorrer morte celular se o transporte axoplasmático for interrompido (Schramm et al., 2005). As expansões neuronais em desenvolvimento projetam-se em áreas com concentrações elevadas de 24 NGF, que se liga a receptores específicos para sofrer passagem endocitótica, uma vez no citoplasma, o NGF é carreado por transporte axonal retrógado rápido para o soma, onde promove ações tróficas (Caggiula, et al., 2005). O NGF é um dos membros da família das proteínas tróficas coletivamente chamadas de neurotrofinas. Os membros dessa família incluem a neurotrofina-3 (NT-3), a neurotrofina-4 (NT-4) e o fator neurotrófico derivado do cérebro (BDNF, sigla do inglês). São requeridos para a diferenciação e a sobrevivência de subpopulações neuronais específicas, tanto no sistema nervoso periférico, como no SNC (Kalb et al., 2005). O BDNF promove a expansão dos axônios dos neurônios da dopamina e da acetilcolina. Níveis mais altos de atividade neuronal estimulam a liberação de BDNF. Em alguns estudos, foram demonstrados que os ratos que não podem produzir o BDNF morrem em poucas semanas e os animais que estão vivendo em ambientes de alto estresse produzem níveis mais baixos desse fator (Frey et al., 2006 a;b;c; Obata & Noguchi, 2006). Figura 4. Representação esquemática ligação das neurotrofinas com os receptores tirosina quinase. Recentes trabalhos demonstram que uma diminuição de plasticidade e resiliências celulares podem estar envolvidas no THB, e que antidepressivos e estabilizadores do humor exercem efeitos em vias de sinalização que regulam a plasticidade celular (Payne et al., 2003; Coyle & Duman, 2003; Duman RS, 2004; Duman & Monteggia, 2006). Vários estudos demonstram uma redução no volume de algumas regiões do cérebro acompanhada pela atrofia e perda celular em pacientes com 25 THB. Assim como estudos estruturais de imagem que demonstram um volume de massa cinzenta reduzida no córtex pré-frontal, estriado e ventrículo em transtornos do humor (Drevets WC, 2001; Goodwin, et al., 2003; Manji & Duman, 2001). Além disso, estudos neuropatológicos posmortem têm mostrado redução no volume cortical e no tamanho das células gliais no córtex pré-frontal e na amígdala (Drevets et al., 2001; Goodwin et al., 2003; Manji & Duman, 2001). Permanece ainda a duvida se esses danos promovem anormalidades em episódios do humor ou se essas sequelas são produzidas por episódios recorrentes do humor (Shaltiel et al., 2007). Em estudos recentes do nosso laboratório foi demonstrado um aumento de BDNF (Frey et al., 2006a), de NGF (Frey et al., 2006c) e de NT-3 (Walz et al., 2007) em tecido cerebral de ratos Wistar submetidos ao modelo animal de mania que foram parcialmente revertidos quando tratados com Li e VPA. Estes resultados reforçam a idéia de que os efeitos terapêuticos dos estabilizadores do humor podem estar associados com o aumento de fatores neurotróficos, implicando a possível participação dos mesmos no THB. Além disso, foram encontrados níveis reduzidos de BDNF em pacientes com recaída de esquizofrenia crônica tratados com antipsicoticos típicos ou atípicos (Rizos, et al., 2010). Também recentemente, um estudo demonstrou um aumento na transcição do gene para BDNF com olanzapina e que esta associada a vias de sinalizaçao celular. Assim, sugere que a OLZ pode exercer um efeito de proteção para células neuronais (Lee et al., 2010). 1.5 Diagnóstico O diagnóstico do THB consiste da identificação de três possíveis fases (maníaca, hipomaníaca ou mista) acompanhado ou não de episódio depressivo. Um episódio de humor deprimido consiste na diminuição do interesse ou prazer, perda ou ganho de peso significativo, insônia ou hipersonia, agitação ou retardo psicomotor, sentimento de inutilidade ou culpa excessiva, capacidade diminuída de pensar ou concentrar-se, pensamentos de morte recorrentes (DSM IV, 2004; CID-10, 2002). Uma das fases depressivas com maior dificuldade de tratamento ocorre no THB (Tohen et al., 2010). 26 O episódio maníaco consiste em um quadro psicótico grave caracterizado por grande agitação, loquacidade, euforia, insônia, perda do senso crítico, grandiosidade, prodigalidade, exaltação da sexualidade, e heteroagressividade (DSM IV-TR, 2004; CID-10, 2002). O episódio hipomaníaco consiste na alteração de humor semelhante à mania, porém com menor intensidade e que, segundo o DSM IV, pelo menos três destes sintomas deverão ser encontrados: auto-estima em alta ou grandiosidade sem delírios, pouca necessidade de sono, compulsão para falar demais; fuga de idéias e pouca concentração; prática de mais atividades dirigidas a objetivos; agitação psicomotora; excesso de atividades prazerosas com alto potencial para conseqüências danosas ou ainda episódio misto (DSM IV-TR, 2004; CID-10, 2002). Episódios mistos representam uma mistura simultânea de manifestações depressivas e maníacas ou hipomaníaca. Uma minoria de pacientes experimenta apenas um episódio maníaco e a maioria apresenta episódios que oscilam entre os dois pólos (DSM IV, 2004; CID-10, 2002). 1.6 Tratamento Desde a década de 60, até o início da década de 80, o Li, considerado o primeiro estabilizador do humor, teve um papel predominante no tratamento agudo e profilático do THB (Schou et al.,1954; Maggs R, 1963; Goodwin et al., 1969, Stokes et al.,1971). Desde então, a Carbamazepina e após, gradualmente, o ácido valpróico/valproato foram sendo usados (Okuma et al., 1979; 1981; 1990; Post et al., 1983; Pope et al., 1991; Freeman et al., 1992; Bowden et al., 1994). Estes dois anticonvulsivantes passaram a ser utilizados em função da percepção de que nem todos os pacientes respondiam ao Li (a resposta ao Li, em geral, situa-se em torno de 50 a 70%, a depender do tipo de apresentação do episódio e de outros fatores) e também passaram a ser consideradas como alternativas aos efeitos colaterais causados por esse estabilizador (o que acarretava menor aderência ao tratamento ao Li). Durante a década de 90 novas drogas anticonvulsivantes foram sendo testadas no tratamento do THB como a Gabapentina, a Lamotrigina e o Topiramato, 27 bem como um análogo da Carbamazepina, a Oxcarbamazepina (Frye et al., 2000; Pande et al., 2000; Calabrese et al., 1999; Hummel, et al., 2002). Além disso, nesta mesma época, foram comprovadas funções neuroprotetoras do Li (Chuang et al., 2002). Ainda, nesta última década foram sendo demonstradas propriedades estabilizadoras de alguns antipsicóticos atípicos como a Risperidona, a Ziprazidona, a Quetiapina e, em especial, a OLZ (Yatham et al., 2004; Keck et al., 2003; Tohen, et al., 2003; Macritchie et al., 2003). Cabe ressaltar que as antigas e já comprovadas propriedades da eletroconvulsoterapia (ECT) permanecem sendo, ao longo de todas estas décadas, medidas eficazes e de ação rápida em determinadas apresentações bipolares (Medda et al., 2010). Desde então, a definição do que é uma droga estabilizadora do humor tem sido motivo de debate na literatura especializada em função de uma variedade cada vez maior de drogas utilizadas no tratamento do THB (Licht et al., 2000; Ghaemi et al., 2001; Ghaemi SN, 2001; Perlis et al., 2002). Os antipsicóticos têm sido amplamente utilizados no tratamento do THB especialmente em combinação com o Li (Vieta et al., 2004). A clorpromazina e o haloperidol são os antipsicóticos típicos mais bem estudados no tratamento no THB. A literatura sugere que o haloperidol tem propriedades contra a mania e um início de ação mais rápido em comparação com os antipsicóticos atípicos (Yildiz et al., 2011; Chan et al., 2010). Efeitos colaterais dos típicos como sintomas extrapiramidais e discinesia tardia e a as taxas maiores de indução da depressão (Yildiz et al., 2011) levou o FDA (Food and Drug Administration, sigla do Inglês) ate 2008 a aprovar antipsicóticos atípicos para o tratamento da mania bipolar (Maloney & Sikich, 2010). A OLZ foi estudada em comparação com outros antipsicóticos típicos e atípicos, estabilizadores do humor e anticonvulsivantes no tratamento do THB. (Vieta et al., 2004; 2010; Tollefson et al., 1998; Tohen et al., 1999; 2000; 2002; 2003a;b; 2005). A superioridade da OLZ foi demonstrada a partir das taxas de remissão significativamente maiores nos pacientes bipolares que não apresentavam sintomas psicóticos com menores taxas para indução de depressão quando comparados com outros típicos e pontuação total da escala YMRS menores. Foram encontrados também menores pontuações na escala YMRS quando comparada com outros estabilizadores como o divalproato (Tohen et al., 2002) e o Li (Tohen et al., 2005). Portanto, a OLZ 28 tem se mostrado efetiva também para a depressão severa (Shelton et al., 2001) e THB (Tohen et al., 1999; 2000; 2002; 2003; 2005). Recentes estudos mostram um sinergismo entre o efeito a OLZ e a FLX (Kodama et al., 2004; Maragnoli et al., 2004; Seager et al., 2004). A combinação destes fármacos tem se mostrado eficaz no tratamento do THB (Rothschild et al., 2004; Shi et al., 2004). O mecanismo neural preciso, responsável por esta eficácia ainda não está claramente entendido (Seager et al., 2005). Sabe-se que a combinação de inibidores de recaptação seletiva de serotonina (SSRI, sigla do inglês) como a FLX, com antipsicóticos atípicos como a OLZ melhoram significantemente o tempo e a intensidade da resposta no tratamento em pacientes depressivos resistentes quando comparados com outros tratamentos sem combinações. A coadministração de OLZ e FLX têm mostrado efeitos sinérgicos ligados à transmissão noradrenérgica e dopaminérgica no córtex pré-frontal (Bosch, et al., 2005; Vieta, et al., 2010). Mais recentemente o FDA aprovou o uso da combinação fixa de OLZ e FLX (SymbyaxTM – Lilly) para o tratamento de episódios depressivos associados á depressão bipolar (Shelton RC, 2006; Tohen et al., 2010, Bobo & Shelton 2010; Vieta et al., 2010). 29 2 JUSTIFICATIVA Tratar um paciente potencialmente bipolar possui problemas especiais pelo risco de virada maníaca, alta propensão a recorrências inclusive depressivas, o risco aumentado de suicídio e a pobre resposta aos antidepressivos (Rihmer & Kiss, 2002; Katzow et al., 2003; Hawton et al., 2005; McIntyre et al., 2008). Estudos indicam que pacientes que se encontram na fase depressiva do THB permanecem mais tempo nesta fase quando comparada com a fase maníaca e, consequentemente levando mais tempo para se recuperarem, mesmo quando em tratamento com estabilizadores do humor (Angst et al., 2007). Porém, o uso de antidepressivos durante essa fase pode potencialmente levar ao suicídio (Ghaemi et al., 2001; Faravelli et al., 2009). Dois estudos estão de acordo. Os estudos conduzido por Shelton e colaboradores (2001) e Matthews e colaboradores (2002) mostraram que a combinação de OLZ com FLX obteve resultados significativamente maiores e melhora mais rápida do que a monoterapia em pacientes com depressão resistente ao tratamento. A qualidade de vida dos portadores de THB depende, portanto, em grau importante, do uso de medicações. Sabe-se que com um tratamento adequado as consequências do THB podem ser bastante controladas e reduzidas. Os efeitos positivos de um tratamento efetivo são de que muitos pacientes conseguem passar um tempo maior em condições de levarem suas vidas de forma mais adequada. Para outros, o tratamento pode, pelo menos, reduzir as consequências negativas do transtorno. O papel da combinaçao da OLZ/FLX mostra-se eficiente tanto para rápida resposta para episódios depressivos, taxas de remissão significativamente maiores associado a baixas possibilidades de virada maníaca em pacientes bipolares (Shelton et al., 2006). Porém, existe a necessidade de mais estudos para um maior entendimento deste sinergismo encontrado com a combinação da OLZ/FLX no tratamento do THB. 30 3 3.1 OBJETIVOS Objetivo Geral Avaliar as alterações neuroquímicas induzidas pela administração aguda e crônica de OLZ e/ou FLX em ratos Wistar adultos. 3.2 Objetivos Específicos Avaliar os efeitos da combinaçao de OLZ e FLX na atividade da enzima CK em cérebro de ratos Wistar adultos, Avaliar os efeitos da combinaçao de OLZ e FLX na atividade da enzima CS no cérebro de ratos Wistar adultos, Avaliar os efeitos da combinaçao de OLZ e FLX no metabolismo energético de ratos Wistar adultos, Avaliar os efeitos da combinação de OLZ e FLX na expressão de neurotrofinas (BDNF, NGF e NT-3) em cérebro de ratos Wistar adultos, 31 PARTE II 32 4 ARTIGOS 4.1 Artigo I Artigo publicado na revista Brain Research Bulletin, 2009. 33 EFFECTS OF OLANZAPINE, FLUOXETINE AND OLANZAPINE/FLUOXETINE ON CREATINE KINASE ACTIVITY IN RAT BRAIN Fabiano R. Agostinho, Giselli Scaini, Patricia M. Santos, Gabriela K. Ferreira, Isabela C. Jeremias, Gislaine T. Rezin, Alexandra I. Zugno, João Quevedo, Emilio L. Streck 1 Laboratório de Fisiopatologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, SC, Brazil; 2 Laboratório de Neurociências, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, SC, Brazil. Correspondence: Prof. Emilio L. Streck, Laboratório de Fisiopatologia Experimental, Universidade do Extremo Sul Catarinense, 88806-000, Criciúma, SC, Brazil. Fax: +55 48 3341 2644. E-mail: emiliostreck@gmail.com 34 Abstract Bipolar disorder is a devastating major mental illness associated with higher rates of suicide and work loss. Recently, a fixed combination of the atypical antipsychotic olanzapine and the serotonin selective reuptake inhibitor (SSRI) fluoxetine (SimbiaxTM) has been approved in the US for the treatment of bipolar I depression. It is well described that inhibition of creatine kinase (CK) activity has been implicated in the pathogenesis of a number of diseases like bipolar I depression, especially in the brain. In this work, we evaluated the effect of acute and chronic administration of fluoxetine, olanzapine and the association of fluoxetine/olanzapine on CK activity in the brain of rats. For acute treatment, adult male Wistar rats received one single injection of olanzapine (3 or 6 mg/kg) and/or fluoxetine (12.5 or 25 mg/kg). For chronic treatment, adult male Wistar rats received daily injections of olanzapine (3 or 6 mg/kg) and/or fluoxetine (12.5 or 25 mg/kg) for 28 days. In the present study we observed that acute administration of OLZ inhibited CK activity in cerebellum and prefrontal cortex. The acute administration of FLX inhibited creatine kinase in cerebellum, prefrontal cortex, hippocampus, striatum and cerebral cortex. In the chronic treatment, when the animals were killed 2 hours after the last injection a decrease in creatine kinase activity after FLX administration, alone or in combination with OLZ, in cerebellum, prefrontal cortex, hippocampus, striatum and cerebral cortex of rats occurred. However, when the animals were killed 24 hours after the last injection, we found no alterations in the enzyme. Although it is difficult to extrapolate our findings to the human condition, the inhibition of creatine kinase activity by these drugs may be associated to the occurrence of side effects. Keywords: creatine kinase, olanzapine, fluoxetine. 35 INTRODUCTION Bipolar disorder is a devastating major mental illness associated with higher rates of suicide and work loss [1,2], and characterized by manic, major depressive, and/or mixed episodes. The clinical hallmark in the diagnosis of bipolar disorder is the presence of manic symptoms [1,3]. On the other hand, the depressive phase of bipolar disorder has been especially difficult to treat. Most controlled clinical research on the treatment of bipolar disorder has focused on the manic phase, with relatively little research on treatment of the depressive phase [4]. A fixed combination of antipsychotic and antidepressants drugs was widely used in medicine and, at one time, was common in psychiatry. A generation ago, combinations of antidepressants with either antipsychotics (e.g., amitriptyline and perphenazine [Etrafon™, Triavil™]) or benzodiazepines (e.g., amitriptyline and chlordiazepoxide [Limbitrol™]) were widely used by both psychiatrists and other medical practitioners [5]. Recently, a fixed combination of the antipsychotic drug olanzapine (OLZ) and the antidepressant fluoxetine (FLX) (Symbyax™) has been introduced for the treatment of bipolar depression [5]. In a controlled study of Shelton et al. [6], subjects with treatment-resistant depression received OLZ alone, FLX alone, or a combination of both; the combination was associated with significantly greater and faster improvement than was either drug alone. While there is clear clinical benefit from this combination, the precise neural mechanisms responsible for its efficacy are not clearly understood. Therefore, it is important to investigate the mechanisms of action of this combination in order to not only better understand the etiology of the clinical syndromes, but also to eventually facilitate the development of improved drugs to treat them [7]. Creatine kinase (CK, EC 2.7.3.2) is a crucial enzyme for high energyconsuming tissues like brain, skeletal muscle and heart. This enzyme works as a buffering system of cellular ATP levels, playing a central role in energy metabolism. CK catalyses the reversible transfer of the phosphoryl group from phosphocreatine to ADP, regenerating ATP [8-10]. It is also known that a decrease in CK activity is associated with neurodegenerative pathways that result in neuronal death in brain ischemia [11], neurodegenerative diseases [12,13], bipolar disorder [14] and other pathological states [15,16]. 36 Recently, Assis et al. [17] found that OLZ (at 10.0 mg/kg) increased the activity of CK in striatum in rats; this drug did not affect the enzyme activity in hippocampus and cerebral cortex. However, the results showed that lower doses of OLZ (2.5 and 5.0 mg/kg) inhibited the enzyme activity, only in cerebellum and prefrontal cortex. The inhibitory effect of OLZ on CK activity in cerebellum and prefrontal cortex suggest that this drug may impair energy metabolism in these brain areas [17]. Considering that the effects of OLZ and FLX on brain energy metabolism are still poorly known, we evaluated the effects of these drugs (alone or in combination) on CK activity in rat brain. MATERIALS AND METHODS Animals Adult male Wistar rats (300 g) were obtained from the Central Animal House of University of Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil. The animals were caged in groups of five with free access to food and water and were maintained on a 12-hr light/dark cycle (lights on 7 a.m.), at a temperature of 22±1ºC. All experimental procedures were carried out in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals and the Brazilian Society for Neuroscience and Behavior (SBNeC) recommendations for animal care, with the approval of UNESC Ethics Committee. Drugs OLZ (Zyprexa™) and FLX (Prozac™) were provided from Eli Lilly do Brasil Ltda, São Paulo, Brazil. 37 Administration of antipsychotics Animals received daily intraperitoneal injections of OLZ (3 or 6 mg/kg), FLX (12 or 25 mg/kg) or combination of both drugs for 28 days in two protocols of chronic model, and, in the acute model for one day. All the drugs were dissolved in Tween 1% solution (vehicle). Control animals received vehicle (1.0 mL/kg). In the acute protocol, after the single injection, the animals were killed 2 hours after by decapitation, and the hippocampus, striatum, cerebellum, cortex and prefrontal cortex were immediately removed. Similarly, in the chronic protocols, the animals were killed 2 and 24 hours after the last injection, and the same areas are removed. After that, the activity of CK was measured. Tissue and homogenate preparation Hippocampus, striatum, cerebellum, cortex and prefrontal cortex were homogenized (1:10, w/v) in SETH (sucrose, EDTA, tris, heparin) buffer, pH 7.4 (250 mM sucrose, 2 mM ethylenediaminetetraacetic acid, 10 mM Trizma base, 50 IU/ml heparin). The homogenates were centrifuged at 800 × g for 10 min. and the supernatants kept at −70ºC until used for CK activity determination. The maximal period between homo-genate preparation and enzyme analysis was always less than 5 days. Protein content was determined by the method described by Lowry et al. [18] using bovine serum albumin as standard. Creatine kinase activity CK activity was measured in brain homogenates pre-treated with 0.625 mM lauryl maltoside. The reaction mixture consisted of 60 mM Tris-HCl, pH 7.5, containing 7 mM phosphocreatine, 9 mM MgSO 4 and approximately 0.4–1.2 µ g protein in a final volume of 100µl. After 15 min. of preincubation at 37ºC, the reaction was started by the 38 addition of 0.3 µmol of ADP plus 0.08µmol of reduced glutathione. The reaction was stopped after 10 min. by the addition of 1 µmol of hydroxymercuribenzoic acid. The creatine formed was estimated according to the colorimetric method of Hughes [19]. The colour was developed by the addition of 100 µL 2% α-naphthol and 100 µL 0.05% diacetyl in a final volume of 1 mL and read spectrophotometrically after 20 minutes at 540 nm. Results were expressed as units/min.mg protein. Statistical analysis Data were analyzed by one-way of variance (ANOVA) followed by Tukey test when F was significant and are expressed as mean ± standard deviation. All analyses were performed using the Statistical Package for the Social Science (SPSS) software version 16.0. RESULTS In the present study, we evaluated the acute (Figure 1) and chronic (Figures 2 and 3) effects of OLZ and FLX on creatine kinase activity in hippocampus, striatum, cerebellum, cortex and prefrontal cortex of rats. In the acute protocol (Figure 1), we verified that OLZ inhibited CK activity only in cerebellum and prefrontal cortex. On the other hand, hippocampus, striatum and cerebral cortex were not affected. Moreover, FLX (alone or in combination with OLZ) decreased the activity of creatine kinase in cerebellum, prefrontal cortex, hippocampus, striatum and cerebral cortex. In the chronic treatment, when the animals were killed 2 hours after the last injection (Figure 2), we observed a decrease in creatine kinase activity after FLX administration, alone or in combination with OLZ, in cerebellum, prefrontal cortex, hippocampus, striatum and cerebral cortex of rats. OLZ administered alone did not alter creatine kinase activity. Finally, in the chronic treatment (Figure 3), when the animals were killed 24 hours after the last injection, we found no alterations in creatine kinase activity caused by OLZ and FLX. 39 DISCUSSION The creatine/phosphocreatine/creatine kinase system is important for normal energy homeostasis by exerting several integrated functions, such as temporary energy buffering, metabolic capacity, energy transfer and metabolic control [20,21]. The brain of adult rats, like other tissues with high and variable rates of ATP metabolism, presents high phosphocreatine concentration and creatine kinase activity. It is well described that inhibition of creatine kinase activity has been implicated in the pathogenesis of a number of diseases, especially in the brain [20,21] including depression, bipolar disorder, and schizophrenia. The addition of an atypical antipsychotic drug to an antidepressant drug is observed in clinical practice as a strategy to treat bipolar depression [22, 23] as well as treatment-resistant depression [20, 21, 24, 25], and psychotic depression [26]. Rapid remission has been described in relation to OLZ and risperidone augmentation. In a controlled study [27], subjects with treatment-resistant depression received OLZ alone, FLX alone, or a combination of both; the combination was associated with significantly greater and faster improvement than was either drug alone. In this work, we performed the first study examining the effects of an atypical antipsychotic and a standard antidepressant association on creatine kinase activity. Some side effects of antipsychotics limit their long-term use and are probably associated with oxidative stress and/or energy impairment [4]. However, the atypical antipsychotic OLZ is associated with less occurrence of side effects than conventional drugs [17,28]. It is well known that creatine kinase is sensitive to free radicals [29]. We have already shown that clozapine administration caused oxidative injury in rat brain. However, we did not find the same effect for OLZ [30]. We also observed that chronic administration of clozapine inhibited creatine kinase activity in cerebellum and prefrontal cortex of rats [17]. In the present study we observed that acute administration of OLZ inhibited CK activity in cerebellum and prefrontal cortex. The acute administration of FLX inhibited creatine kinase in cerebellum, prefrontal cortex, hippocampus, striatum and cerebral cortex. In the chronic treatment, we observed interesting results; when the animals were killed 2 hours after the last injection a decrease in creatine kinase activity after 40 FLX administration, alone or in combination with OLZ, in cerebellum, prefrontal cortex, hippocampus, striatum and cerebral cortex of rats occurred. However, when the animals were killed 24 hours after the last injection, we found no alterations in the enzyme. With these findings, we suggest that FLX did not present a chronic effect on creatine kinase activity. Brain and other high energy tissues are more susceptible to reduction of energy metabolism. In this context, neuropsychiatry disorders, such as schizophrenia, depression and bipolar disorder, have been related to dysfunction in brain metabolism [31-33]. Metabolism impairment includes mitochondrial dysfunction [34,35], increase in reactive oxygen species production and expression of biochemical markers of cellular degeneration [36-38]. The inhibitory effect of OLZ and FLX on creatine kinase activity in the brain of rats leads us to speculate whether these drugs impair energy metabolism. Although it is difficult to extrapolate our findings to the human condition, the inhibition of creatine kinase activity by these drugs may be associated to the occurrence of side effects. Further studies are important to evaluate whether other enzymes involved in brain metabolism are also affected by these drugs. ACKNOWLEDGEMENTS This research was supported by grants from Eli Lilly, Programa de Pósgraduação em Ciências da Saúde – Universidade do Extremo Sul Catarinense (UNESC) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). REFERENCES 1 Belmaker RH. Bipolar disorder. N Engl J Med 2004;351:476-86. 2 Kupfer DJ. Dimensional models for research and diagnosis: a current dilemma. J Abnorm Psychol 2005;114:557-9. 41 3 American Psychiatric Association - Diagnostic and statistical manual of mental disorders, 4th ed., American Psychiatric Press, Washington DC, 1994. 4 Seager MA, Barth VN, Phebus LA, Rasmussen K. Chronic coadministration of olanzapine and fluoxetine activates locus coeruleus neurons in rats: implications for bipolar disorder. Psychopharmacology (Berl). 2005;181:126-33. 5 Shelton RC. The return of fixed combinations in psychiatry: fluoxetine and olanzapine combination. Ther Clin Risk Manag 2006;2:187–92. 6 Shelton RC, Tollefson GD, Tohen M, Stahl S, Gannon KS, acobs TG, Buras WR, Bymaster FP, Zhang W, Spencer KA, Feldman PD, Meltzer HY. A novel augmentation strategy for treating resistant major depression. Am J Psychiatry 2001;158:131–134. 7 Tohen M, Vieta E, Calabrese J. Efficacy of olanzapine and olanzapinefluoxetine combination in the treatment of bipolar I depression. Arch Gen Psychiatry 2003;60:1079-88. Erratum in: Arch Gen Psychiatry 2004;61:176. 8 Bessman SP, Carpenter CL. The creatine-creatine phosphate energy shuttle. Annu Rev Biochem 1985;54:831–65. 9 Schnyder T, Gross H, Winkler H, Eppenberger HM, Wallimann T. Crystallization of mitochondrial creatine kinase. Growing of large protein crystals and electron microscopic investigation of microcrystals consisting of octamers. J Biol Chem 1991;266:5318–22. 10 Wallimann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger HM. Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the ‘phosphocreatine circuit’ for cellular energy homeostasis. Biochem J 1992;281:21–40. 42 11 Tomimoto H, Yamamoto K, Homburger HA, Yanagihara T. Immunoelectron microscopic investigation of creatine kinase BB-isoenzyme after cerebral ischemia in gerbils. Acta Neuropathol 1993;86:447–55. 12 Aksenov M, Aksenov M, Butterfield DA, Markesbery WR. Oxidative modification of creatine kinase BB in Alzheimer’s disease brain. J Neurochem 2000;74:2520–7. 13 David S, Shoemaker M, Haley BE. Abnormal properties of creatine kinase in Alzheimer’s disease brain: correlation of reduced enzyme activity and active site photolabeling with aberrant cytosol-membrane partitioning. Mol Brain Res 1998;54:276–87. 14 Streck EL, Amboni G, Scaini G, Di-Pietro PB, Rezin GT, Valvassori SS, Luz G, Kapczinski F, Quevedo J. Brain creatine kinase activity in an animal model of mania. Prog Neuropsychopharmacol Biol Psychiatry 2007;31:887–91. 15 Gross WL, Bak MI, Ingwall JS, Arstall MA, Smith TW, Balligand JL, Kelly RA. Nitric oxide inhibits creatine kinase and regulates rat heart contractile reserve. Proc Natl Acad Sci 1996;93:5604–9. 16 Hamman BL, Bittl JA, Jacobus WE, Allen PD, Spencer RS, Tian R, Ingwall JS. Inhibition of the creatine kinase reaction decreases the contractile reserve of isolated rat hearts. Am J Physiol 1995;269:1030–6. 17 Assis LC, Scaini G, Di-Pietro PB, Castro AA, Comim CM, Streck EL, Quevedo J. Effect of Antipsychotics on Creatine Kinase Activity in Rat Brain. Basic Clin Pharmacol Toxicol 2007;101:315–9. 18 Lowry OH, Rosebough NG, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1951;193:265–75. 43 19 Hughes BP. A method for estimation of serum creatine kinase and its use in comparing creatine kinase and aldolase activity in normal and pathologic sera. Clin Chim Acta 1962;7:597–604. 20 Fava M. New approaches to the treatment of refractory depression. J Clin Psychiatry 2000;61:26-32. 21 Hirschfeld RM, Montgomery SA, Aguglia E. Partial response and nonresponse to antidepressant therapy: current approaches and treatment options. J Clin Psychiatry 2002;63:826-37. 22 Keck PE, McElroy SL. Bipolar disorder, obesity, and pharmacotherapyassociated weight gain. J Clin Psychiatry 2003;64:1426-35. 23 Müller-Oerlinghausen B, Roggenbach J. Bipolar disorder. Lancet. 2002;359:241-7. 24 Nelson G, Hall GB, Forchuk C. Current and preferred housing of psychiatric consumers/survivors. Can J Commun Ment Health 2003;22:5-19. 25 Shelton RC. The combination of olanzapine and fluoxetine in mood disorders. Expert Opin Pharmacother 2003;4:1175-83. 26 Schatzberg AF. New approaches to managing psychotic depression. J Clin Psychiatry 2003;64:19-23. 27 Matthews JD, Bottonari KA, Polania LM. An open study of olanzapine and fluoxetine for psychotic major depressive disorder: interim analyses. J Clin Psychiatry 2002;63:1164-70. 28 Fulton B, Goa KL. Olanzapine. A review of its pharmacological properties and therapeutic efficacy in the management of schizophrenia and related psychoses. Drugs 1997;53:281-98. 44 29 Shelton RC, Tomarken AJ. Can recovery from depression be achieved? Psychiatr Serv 2001;52:1469-78. 30 Martins MR, Petronilho FC, Gomes KM, Dal-Pizzol F, Streck EL, Quevedo J. Antipsychotic-induced oxidative stress in rat brain. Neurotox Res 2008;13:63-9. 31 Albert KA, Hemmings HC, Adamo AI, Potkin SG, Akbarian S, Sandman CA, Cotman CW, Bunney WE Jr, Greengard P. Evidence for decreased DARPP-32 in the prefrontal cortex of patients with schizophrenia. Arch Gen Psychiatry 2002;59:705– 12. 32 Prabakaran S, Swatton JE, Ryan MM, Huffaker SJ, Huang JT, Griffin JL, Wayland M, Freeman T, Dudbridge F, Lilley KS, Karp NA, Hester S, Tkachev D, Mimmack ML, Yolken RH, Webster MJ, Torrey EF, Bahn S. Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Mol Psychiatry 2004;9:684–97. 33 Rezin GT, Amboni G, Zugno AI, Quevedo J, Streck EL. Mitochondrial dysfunction and psychiatric disorders. Neurochem Res 2009;34:1021-9. 34 Kato T, Kato N. Mitochondrial dysfunction in bipolar disorder. Bipolar Disord 2000;2:180–90. 35 Konradi C, Eaton M, MacDonald ML, Walsh J, Benes FM, Heckers S. Molecular evidence for mitochondrial dysfunction in bipolar disorder. Arch Gen Psychiatry 2004;61:300–8. 36 Rothermundt M, Missler U, Arolt V, Peters M, Leadbeater J, Wiesmann M, Rudolf S, Wandinger KP, Kirchner H. Increased S100B blood levels in unmedicated and treated schizophrenic patients are correlated with negative symptomatology. Mol Psychiatry 2001;6:445–9. 45 37 Machado-Vieira R, Lara RD, Portela LV, Gonçalves CA, Soares JC, Kapczinski F, Souza DO. Elevated serum S100B protein in drug-free bipolar patients during first manic episode: a pilot study. Eur Neuropsychopharmacol 2002;12:269–72. 38 Fatemi SH, Laurence JA, Araghi-Niknam M, Stary JM, Schulz SC, Lee S, Gottesman II. Glial fibrillary acidic protein is reduced in cerebellum of subjects with major depression, but not schizophrenia. Schizophr Res 2004;69:317–23. 46 LEGENDS AND FIGURES Figure 1. Effect of acute administration of olanzapine (OLZ) and fluoxetine (FLX) on creatine kinase activity in the brain of rats. hours after the administration of the drugs. Values are expressed as mean ± S.D. for five independent experiments. Different from control (saline group), *p<0.05 (ANOVA) followed by Tukey test. Figure 2. Effect of chronic administration of olanzapine (OLZ) and fluoxetine (FLX) on creatine kinase activity in the brain of rats. The animals were killed 2 hours after the last administration of the drugs. Values are expressed as mean ± S.D. for five independent experiments. Different from control (saline group), *p<0.05 (ANOVA) followed by Tukey test. 47 Figure 3. Effect of chronic administration of olanzapine (OLZ) and fluoxetine (FLX) on creatine kinase activity in the brain of rats. The animals were killed 24 hours after the last administration of the drugs. Values are expressed as mean ± S.D. for five independent experiments. 48 4.2 ARTIGO II Artigo publicado na revista Neuroscience Letters, 2011. 49 TREATMENT WITH OLANZAPINE, FLUOXETINE AND OLANZAPINE/FLUOXETINE ALTERS CITRATE SYNTHASE ACTIVITY IN RAT BRAIN Fabiano R. Agostinhoa, Gislaine Z. Réusa, Roberto B. Stringaria, Karine F. Ribeiroa, Ana K. Ferraroa, Joana Benedetb, Natália Rochib, Giselli Scainib, Emílio L. Streckb, and João Quevedoa*. a Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000, Criciúma, SC, Brazil; b Laboratório de Fisiopatologia Experimental and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, SC, Brazil. *Corresponding author: Prof. João Quevedo, MD, PhD Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, SC, Brazil Fax: +55 48 3443 4817. E-mail: quevedo@unesc.net 50 Abstract A growing body of evidence has indicated that energy metabolism impairment may be involved in pathophysiology of some neuropsychiatric disorders. In this study, we evaluated the effect of acute and chronic administration of fluoxetine, olanzapine and the combination of fluoxetine/olanzapine on citrate synthase activity in brain of rats. For acute treatment, Wistar rats received one single injection of olanzapine (3 or 6 mg/kg) and/or fluoxetine (12.5 or 25 mg/kg). For chronic treatment, rats received daily injections of olanzapine (3 or 6 mg/kg) and/or fluoxetine (12.5 or 25 mg/kg) for 28 days. In the present study we observed that acute administration of olanzapine inhibited citrate synthase activity in cerebellum and prefrontal cortex. The acute administration of olanzapine increased citrate synthase activity in prefrontal cortex, hippocampus and striatum and fluoxetine increased citrate synthase activity in striatum. Olanzapine 3 mg/kg and fluoxetine 12.5 mg/kg in combination increased citrate synthase activity in prefrontal cortex, hippocampus and striatum. In the chronic treatment we did not observed any effect on citrate synthase activity. Our results showed that olanzapine and fluoxetine increased citrate synthase activity after acute, but not chronic treatment. Keywords: Citrate Synthase. Olanzapine. Fluoxetine. Mood disorders 51 INTRODUCTION Mood disorders are among the most prevalent forms of mental illness. Severe forms of depression affect 2%–5% of the U.S. population, and up to 20% suffer from milder forms of the illness. Another roughly 1%–2% are afflicted by bipolar disorder (also known as manic-depressive illness) or its less severe variants [32] and were associated with higher rates of suicide and work loss [3, 18, 40]. Among persons with major depression, 75–85% have recurrent episodes [29]; 10–30% recover incompletely and have persistent, residual depressive symptoms [21]. Several combinations of effective treatments have been used in the search for higher response rates or more rapid responses than monotherapy to diminish treatmentresistant depression [7, 26, 36]. One strategy is to combine of the antipsychotic drug olanzapine plus antidepressant drugs [31]. Accordingly, olanzapine plus fluoxetine is an approved therapy for treating human depression [6]. In preclinical studies in male rats, olanzapine [8] or fluoxetine [41], alone or combined [24], produce antidepressant-like effects. In addition, a fixed combination of olanzapine and fluoxetine has been introduced for the treatment of bipolar depression [3]. Evidence from the literature strongly indicates that metabolism impairment may be involved in pathophysiology of some neuropsychiatric disorders, such as bipolar disorder and major depression [5, 16, 17, 20, 33, 38, 42]. In fact, our group recently demonstrated that rats submitted to the chronic mild stress increased oxidative stress in submitochondrial particles into the brain [20]. In addition studies reported that rats submitted to the animal model of mania were reduced the creatine kinase and citrate synthase activity in brain [5, 38], suggesting that creatine kinase and citrate synthase are involved in mood disorder. Very recently, we also demonstrated that acute and chronic treatments with olanzapine and fluoxetine (alone or in combination) alter creatine kinase activity in rat brain [1]. In addition, abnormalities in respiratory complexes activity and energy production may lead to cellular degeneration [4]. Citrate synthase (EC 4.1.3.7) is localized within cells in the mitochondrial matrix and catalyzes the condensation of oxaloacetate and the acetyl group of acetyl coenzyme-A (acetyl CoA), the first step of Krebs cycle. In this step, oxaloacetate reacts with acetyl CoA and H2O to yield citrate and CoA. This enzyme is inhibited by high amounts of ATP, acetyl CoA and NADH, when the cell energy supplied is high. This 52 regulation ensures that Krebs cycle will not oxidise an excess of pyruvate and acetyl CoA when ATP concentrations in cell are high [37]. In addition, citrate synthase has been used as a quantitative enzyme marker for the presence of intact mitochondria [23]. Therefore, considering that citrate synthase plays an important role in brain energy metabolism and that mitochondrial dysfunction is probably involved in the pathophysiology of bipolar disorder and major depression, the objective of this study was to investigate the effects of olanzapine and fluoxetine (alone or in combination) on citrate synthase activity in rat brain. METHODS AND MATERIALS 2.1. Animals Male Adult Wistar rats (60 days old) were obtained from UNESC (Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil) breeding colony. They were housed five per cage with food and water available ad libitum and were maintained on a 12-h light/dark cycle (lights on at 7:00 AM). All experimental procedures involving animals were performed in accordance with the NIH Guide for the Care and Use of Laboratory Animals and the Brazilian Society for Neuroscience and Behavior (SBNeC) recommendations for animal care and with approval by local Ethics Committee under protocol number 510/2006. 2.2. Drugs and treatments Olanzapine (Zyprexa™) and Fluoxetine (Prozac™) were provided from Eli Lilly do Brasil Ltda, São Paulo, Brazil. Animals received daily intraperitoneal injections of olanzapine (3 or 6 mg/kg), fluoxetine (12.5 or 25 mg/kg) or combination of both drugs for 28 days in two protocols of chronic model, and in the acute model for one day. The doses and protocols were executed following study described by Agostinho et al. 53 [1]. All the drugs were dissolved in Tween 1% solution (vehicle). Control animals received vehicle (1.0 mL/kg). In the acute protocol, after the single injection, the animals were killed 2 hours after by decapitation, and the prefrontal cortex, hippocampus and striatum were immediately removed. Similarly, in the chronic protocols, the animals were killed 2 and 24 hours after the last injection, and the same areas are removed [1]. After that, the activity of citrate synthase was measured. 2.3. Citrate synthase activity Prefrontal cortex, hippocampus and striatum were homogenized (1:10, w/v) in SETH buffer (0.25 M sucrose, 1 mM EDTA, 10 mM Tris–HCl, pH 7.4). The homogenates were centrifuged at 800 ×g for 10 min and the supernatants were kept at −80°C until it will be used for enzyme activity determination. Protein content was determined by the method described by Lowry et al [19] using bovine serum albumin as standard. Citrate synthase activity was assayed according to the method described by Shepherd and Garland [37]. The reaction mixture contained 100 mM Tris, pH 8.0, 100 mM acetyl CoA, 100 mM 5,5′-di-thiobis-(2- nitrobenzoic acid), 0.1% triton X-100, and 2–4 µg supernatant protein and was initiated with 100 µM oxaloacetate and monitored at 412 nm for 3 min at 25°C (the final volume of reaction mixture was 0.3 mL). 2.4. Statistical analysis Data were analyzed by one-way of variance (ANOVA) followed by Tukey test when F was significant and presented as mean ± S.E.M. All analysis were performed using the Statistical Package for the Social Science (SPSS) software version 16.0. 54 RESULTS As depicted in Fig. 1A, the acute administration of olanzapine in dose of 6 mg/kg and olanzapine 3 mg/kg in combination with fluoxetine 25 mg/kg increased citrate synthase activity in prefrontal cortex of rats (ANOVA, F (8-27) = 18,08; p < 0.05; Fig.1A). Acute administration of olanzapine in dose of 3 mg/kg alone and in combination with fluoxetine 25 mg/kg increased citrate synthase activity in hippocampus of rats (ANOVA, F (8-27) = 15,51; p < 0.05; Fig.1A). Moreover, the activity of citrate synthase increased in striatum of rats after acute administration of olanzapine in doses of 3 and 6 mg/kg, fluoxetine in dose of 25 mg/kg. In addition olanzapine in dose of 3 mg/kg in combination with fluoxetine, 25 mg/kg also increased citrate synthase activity in striatum of rats compared to saline group (ANOVA, F (8-26) = 12,69; p < 0.05; Fig.1A). Acute treatment with fluoxetine in dose of 12.5 mg/kg did not alter citrate synthase activity when administrated alone or in combination with olanzapine (p > 0.05). The intraperitoneal treatment with olanzapine and flouxetine alone or in combination in all doses did not alter the activity of citrate synthase in prefrontal cortex, hippocampus and striatum in both, chronic treatments (p > 0.05; Fig.1B and C). DISCUSSION In the present study we evaluated the effects of the antipsychotic olanzapine and antidepressant fluoxetine (alone or in combination) on citrate synthase activity in rat brain. We showed that acute treatment with olanzapine and fluoxetine (alone) in some doses increased the citrate synthase activity in rat brain. Interestingly acute treatment with olanzapine 3 mg/kg and fluoxetine 12.5 mg/kg in combination increased citrate synthase activity in prefrontal cortex, hippocampus and striatum (Fig. 1A). Chronic treatment with olanzapine and fluoxetine alone or in combination did not alter the citrate synthase activity when the rats were killed 2 or 24 hours (Fig. 1B and C) after last administration. 55 Our results indicate that the effects of the olanzapine and fluoxetine might involve mitochondrial function, but this effect is treatment regime-related in some rat brain areas. In fact, we recently showed that acute and chronic treatments with olanzapine and fluoxetine (alone or in combination) alter creatine kinase activity in some rat brain areas, such as, hippocampus and prefrontal cortex [1]. The hippocampus is one of several limbic structures that has been implicated in mood disorders. In addition, the hippocampus has connections with the prefrontal cortex, region that is more directly involved in emotion and cognition and thereby contributes to other major symptoms of mood disorders [9, 13, 14]. The striatum is a dopaminergic area involved to memory [11], mood disorders [22]. Additionally, striatum also has relation to the start, stop and direction of motor movement [12]. The addition of an atypical antipsychotic drug to an antidepressant drug is observed in clinical practice as a strategy to treat bipolar depression [15, 28] as well as, treatment-resistant depression [10, 27, 30] and psychotic depression [35]. In a controlled study [25], subjects with treatment-resistant depression received olanzapine and fluoxetine alone, or a combination of both; the combination was associated with significantly greater and faster improvement than was either drug alone. Tamayo and colleagues [39] studied the effectiveness of olanzapine/fluoxetine combination treatment in Puerto Rican patients with bipolar depressive episode and showed improvements resulting from 7 weeks of acute olanzapine/fluoxetine combination treatment at a starting once-daily dose of 12/25 mg (mean modal dose was 10.8/27.8 and were maintained in responses for additional 12 weeks with olanzapine and fluoxetine in some doses, in addition fluoxetine was more effective than olanzapine at 10 mg monotherapy. One other study in patients with mixed depression in bipolar I disorder showed that olanzapine/fluoxetine combination treatment 6/25 mg (mean modal dose was 7.4/39.3 mg/d) demonstrated that olanzapine/fluoxetine was not significantly different from that of olanzapine alone, but showed a trend in favor of a possible superiority of olanzapine/fluoxetine combination [2]. It is well known that citrate synthase plays an important role in brain energy metabolism [37]. Our study showed that acute treatment with fluoxetine and olanzapine alters citrate synthase activity, suggesting that fluoxetine and olanzapine should be involved in mitochondrial function changes. In fact, treatment with fluoxetine and olanzapine alters the creatine kinase activity in rat brain [1] and mitochondrial 56 respiratory chain (I, II, III and IV) (unpublished data yet), and both creatine kinase and mitochondrial respiratory chain play a central role in energy metabolism. Moreover, mitochondrial disease results from a malfunction in biochemical cascade and the damage to the mitochondrial electron transport chain has been suggested to be an important factor in the pathogenesis of a range of neuropsychiatric disorders, such as, bipolar disorder, depression and schizophrenia [33]. In this work, we showed increased citrate synthase activity after acute treatment with olanzapine and fluoxetine in combination in prefrontal cortex, hippocampus and striatum. However, chronic treatment did not alter citrate synthase activity. The reason for this discrepancy this study is unclear but could be related to desensitization to the effects of repeated olanzapine and fluoxetine or still for adaptation mechanism. In this manner, the effects of fluoxetine and olanzapine in this study might be due to the defense mechanism. Scaini and colleagues [34] demonstrated that chronic administration of antidepressant paroxetine increased citrate synthase and succinate dehydrogenase activities in prefrontal cortex, hippocampus, striatum and cerebral cortex of rats; in contrast chronic administration of antidepressants nortriptiline and venlafaxine did not alter citrate synthase activity in rat brain. We suggest that effects under citrate synthase activity may be dependent action mechanism of different antidepressants. In conclusion we suggested an involvement of citrate synthase activity in mood disorders, as well as, olanzapine and fluoxetine effects, but these effects were regime-related in some rat brain areas. ACKNOWLEDGEMENTS This study was supported in part by grants from ‘Conselho Nacional de Desenvolvimento Científico e Tecnológico’ (CNPq-Brazil – JQ and ELS), FAPESC (JQ), and from the Instituto Cérebro e Mente (JQ) and UNESC (JQ and ELS). JQ and ELS are recipients of CNPq (Brazil) Productivity fellowships. GZR is holder of a FAPESC/CAPES studentship. 57 REFERENCES [1] F.R. Agostinho, G. Scaini, G.K. Ferreira, I.C. Jeremias, G.Z. Réus, G.T. Rezin, A.A. Castro, A.I. Zugno, J. Quevedo, E.L. Streck. Effects of olanzapine, fluoxetine and olanzapine/fluoxetine on creatine kinase activity in rat brain. Brain Res. Bull. 80 (2009) 337-340. [2] F. Benazzi, M. Berk, M.A. Frye, W. Wang, A. Barraco, M. Tohen. Olanzapine/fluoxetine combination for the treatment of mixed depression in bipolar I disorder: a post hoc analysis. J. Clin. Psychiatry. 70 (2009) 1424-1431. [3] R.H. Belmaker. Bipolar disorder. N. Eng. J. Med. 351 (2004) 476-486. [4] V. Calabrese, G. Scapagnini, A.M. Giuffrida-Stella, T.E. Bates, J.B. Clark. Mitochondrial involvement in brain function and dysfunction: relevance to aging, neurodegenerative disorders and longevity. Neurochem. Res. 26 (2001) 739-764. [5] C. Corrêa, G. Amboni, L.C. Assis, F. Kapczinski, E.L. Streck, J. Quevedo. Effects of lithium and valproate on hippocampus citrate synthase activity in an animal model of mania. Progress in Prog. Neuro-Psychopharmacol Biol. Psychiatry. 31 (2007) 887-891. [6] L. Davis, A. Bartolucci, F. Petty. Divalproex in the treatment of bipolar depression: a placebo-controlled study. J. Affectiv. Disord. 85 (2005) 259-266. [7] S. Dodd, D. Horgan, G. Malhi, M. Berk. To combine or not to combine? A literature review of antidepressant combination therapy. J. Affectiv. Disord. 89 (2005) 1-11. [8] B.O. Dubrovsky. Steroids, neuroactive steroids and neurosteroids in psychopathology. Prog. Neuro-Psychopharmacol Biol. Psychiatry. 29 (2005) 169-192. 58 [9] R.S. Duman, L.M. Monteggia. A Neurotrophic Model for Stress-Related Mood Disorders. Biol. Psychiatry. 59 (2006) 1116-1127. [10] M. Fava. New approaches to the treatment of refractory depression. J. Clin. Psychiatry. 61 (2000) 26-32. [11] V. Ferretti, P. Roullet, F. Sargolini A. Rinald, V. Perri, M. Del Fabbro, V.J. Constantini, V. Annese, G. Scesa, M.E. De Stefano, A. Oliverio, A. Mele. Ventral striatal plasticity and spatial memory. Proc. Natl. Acad. Sci. U.S.A. 107 (2010) 79457950. [12] O. Gokce, H. Runne, A. Kuhn, R. Luthi-Carter. Short-term striatal gene expression responses to brain-derived neurotrophic factor are dependent on MEK and ERK activation. PLoS ONE 4 (2009) 5292. [13] J. Hall, H.C. Whalley, K. Marwick, J. Mckirdy, J. Sussmann, L. Romaniuk, E.C. Johnstone, H.I. Wan, A.M. Mclntosh, S.M. Lawrie. Hippocampal function in schizophrenia and bipolar disorder. Psychol. Med. 7 (2009) 1-10. [14] S. Hassel, J.R. Almeida, N. Kerr, S. Naus, C.D. Ladouceur, K. Fissell, D.J. Kupfer, M.L. Phillips. Elevated striatal and decreased dorsolateral prefrontal cortical activity in response to emotional stimuli in euthymic bipolar disorder: no associations with psychotropic medication load. Bipolar Disord. 10 (2008) 916-927. [15] R.M. Hirschfeld, S.A. Montgomery, E. Aguglia. Partial response and nonresponse to antidepressant therapy: current approaches and treatment options. J. Clin. Psychiatry. 63 (2002) 826-837. [16] T. Kato, N. Kato. Mitochondrial dysfunction in bipolar disorder. Bipolar Disord. 2 (2000) 180-190. [17] C. Konradi, M. Eaton, M.L. MacDonald, J. Walsh, F.M. Benes, S. Heckers. Molecular evidence for mitochondrial dysfunction in bipolar disorder. Arch. Gen. Psychiatry. 61 (2004) 300-308. 59 [18] D.J Kupfer. The increasing medical burden in bipolar disorder. JAMA. 293 (2005) 2528-2530. [19] O.H. Lowry, N.J. Rosebrough, A.L. Farr, R.J. Randal. Protein measurement with the Folin phenol reagent. J. Biol. Chem.193 (1951) 265-267. [20] G. Lucca, C.M. Comim, S.S. Valvossori, Réus, G.Z. F. Vuolo, F. Petronilho, E.C. Gaviollo, F. Dal-Pizzol, J. Quevedo. Increased oxidative stress in submitochondrial particles into the brain of rats submitted to the chronic mild stress paradigm. J. Psychiatr. Res. 43 (2009) 864-869. [21] J.J. Mann. The medical management of depression. N. Engl. J. Med. 353 (2005) 1819-1834. [22] L. Marais, D.J. Stein, W.M. Daniels. Exercise increases BDNF levels in the striatum and decreases depressive-like behavior in chronically stressed rats. Metab. Brain Dis. 24 (2009) 587-797. [23] R. Marco, A. Pestaña, J. Sebastian A. Sols. Oxaloacetate metabolic crossroads in liver. Enzyme compartmentation and regulation of gluconeogenesis. Mol. Cell. Biochem. 3 (1974) 53-70. [24] C. Marx, L. Shampine, R. Khisti, W.T. Trost, D.W. Bradford, A.C. Grobin, M.W. Massing, R.D. Madison, M. Butterfield, J. Lieberman, L. Morrow. Olanzapine and fluoxetine administration and coadministration increase rat hippocampal pregnenolone, allopregnenolone and peripheral deoxycorticosterone: implications for therapeutic actions. Pharmacol. Biochem. Behav. 84 (2006) 609-617. [25] J.D. Matthews, K.A. Bottonari, L.M. Polania. An open study of olanzapine and fluoxetine for psychotic major depressive disorder: interim analyses. J. Clin. Psychiatry. 63 (2002) 1164-1170. 60 [26] M. Molina-Hernández, N.P. Téllez-Alcántra, J.I. Oliveira-Lopez, M.T. Jaramillo. Olanzapine plus 17-β estradiol produce antidepressant-like actions in rats forced to swim. Pharmacol. Biochem. Behav. 93 (2009) 491-497. [27] S. Morishita. Clonazepam as a therapeutic adjunct to improve the management of depression: a brief review. Hum. Psychopharmacol. 24 (2009) 191-198. [28] B. Müller-Oerlinghausen, J. Roggenbach. Bipolar disorder. Lancet. 359 (2002) 241-247 [29] T.I. Mueller, A.C. Leon, M.B. Keller, D.A. Solomon, J. Endicott, W. Coryell, M. Warshaw, J.D. Maser. Recurrence after recovery from major depressive disorder during 15 years of observational follow-up. Am. J. Psychiatry. 156 (1999) 1000-1006. [30] G. Nelson, G.B. Hall, C. Forchuk. Current and preferred housing of psychiatric consumers/survivors. Can. J. Commun. Ment. Health. 22 (2003) 5-19. [31] C.B. Nemeroff. The burden of severe depression: a review of diagnostic challenges and treatment alternatives. J. Psychiatric. Res. 41 (2007) 189-206. [32] E.J. Nestler, E. Gould, H. Manji, M. Buncan, R.S. Duman, H.K. Greshnfeld, R. Hen, S. Koester, I. Lederhendler, M. Meaney, T. Robbins, L. Winsky, S. Zalcman. Preclinical models: status of basic research in depression. Bio.l Psychiatry. 52 (2002) 503-528. [33] G.T. Rezin, G. Amboni, A.I. Zugno, J. Quevedo, E.L. Streck. Mitochondrial dysfunction and psychiatric disorders. Neurochem. Res. 34 (2009) 10211029. [34] G. Scaini, P.M. Santos, J. Benedet, N. Rochi, L.M. Gomes, L.S. Borges, G.T. Rezin, D.P. Pezente, J. Quevedo, E.L. Streck. Evaluation of Krebs cycle enzymes in the brain of rats after chronic administration of antidepressants. Brain Res. Bull. 82 (2010) 224-227. 61 [35] A.F. Schatzberg. New approaches to managing psychotic depression. J. Clin. Psychiatry. 64 (2003) 19-23. [36] R.C. Shelton, G.D. Tollefson, M. Tohen, S. Stahl, K.S. Gannon, T.G. Jacobs, W.R. Buras, F.P. Bymaster, W. Zhang, K.A. Spencer, P.D. Feldman, H.Y. Meltzer. A novel augmentation strategy for treating resistant major depression. Am. J. Psychiatry. 158 (2001) 131-134. [37] D. Shepherd, P.B. Garland. The kinetic properties of citrate synthase from rat liver mitochondria. Biochem. J.114 (1969) 597-610. [38] E.L. Streck, G. Amboni, G. Scaini, P.B. Di-Pietro, G.T. Rezin, S.S. Valvassori, G. Luz, F. Kapcinski, J. Quevedo. Brain creatine kinase activity in an animal model of mania. Life Sci. 82 (2008) 424-429. [39] J.M. Tamayo, V.K. Sutton, M.A. Mattei, B. Diaz, H.H. Jamal, E. Vieta, C.A. Zarate Jr, I. Fumero, M. Tohen. Effectiveness and safety of the combination of fluoxetine and olanzapine in outpatients with bipolar depression: an open-label, randomized, flexible-dose study in Puerto Rico. J. Clin. Psychopharmacol. 29 (2009) 358-361. [40] T.B. Ustun, J.L. Ayuso-Mateos, S. Chatterji, C. Mathers, C.J. Murray. Global burden of depressive disorders in the year 2000. Braz. J. Psych. 84 (2004) 386392. [41] D.P. Uzunov, T.B. Cooper, E. Costa, A. Guidotti. Fluoxetine elicited changes in brain neurosteroid content measured by negative ion mass fragmentography. Proc. Natl. Acad. Sci. USA. 93 (1996) 12599-12604. [42] S.S. Valvassori, F.C. Petronilho, G.Z. Réus, A.V. Steckert, V.B.M. Oliveira, C.R. Boeck, F. Kapczinski, F. Dal-Pizzol, J. Quevedo. Effect of N- acetylcysteine and/or deferoxamine on oxidative stress and hyperactivity in an animal model of mania. Prog. Neuro-Psychopharmacol Biol. Psychiatry. 32 (2008) 1064-1068. 62 FIGURES AND LEGENDS FIGURES Figure 1 A Acute Treatment Citrate synthase activity [nmol TNB/min x mg protein] 6 5 * * Saline + Saline OLZ 3 + Saline * 4 ** * * * 3 OLZ 6 + Saline FLX 12,5 + Saline FLX 25 + Saline OLZ 3 + FLX 12,5 2 OLZ 3 + FLX 25 OLZ 6 + FLX 12,5 1 OLZ 6 + FLX 25 0 Prefrontal cortex Hippocampus Striatum B Chronic treatment 2h Citrate synthase activity [nmol TNB/min x mg protein] 2,5 Saline + Saline OLZ 3 + Saline 2 OLZ 6 + Saline FLX 12,5 + Saline 1,5 FLX 25 + Saline 1 OLZ 3 + FLX 12,5 OLZ 3 + FLX 25 0,5 OLZ 6 + FLX 12,5 OLZ 6 + FLX 25 0 Prefrontal cortex Hippocampus Striatum 63 C Chronic treatment 24h Citrate synthase activity [nmol TNB/min x mg protein] 3 Saline + Saline 2,5 OLZ 3 + Saline OLZ 6 + Saline 2 FLX 12,5 + Saline FLX 25 + Saline 1,5 OLZ 3 + FLX 12,5 1 OLZ 3 + FLX 25 OLZ 6 + FLX 12,5 0,5 OLZ 6 + FLX 25 0 Prefrontal cortex Hippocampus Striatum 64 LEGEND OF FIGURE Figure 1 - Effects of the acute (A), chronic 2h (animals were killed 2 hour after the last injection; B) and chronic 24h (animals were killed 24 hour after the last injection; C) administration of fluoxetine, olanzapine or fluoxetine/olanzapine (i.p.) on the citrate synthase activity in prefrontal cortex, hippocampus and striatum of rats. Data was analyzed by one-way analysis of variance followed by Tukey test when F was significant. Values are expressed as nmol TNB formed per minute per mg proteint (mean ± S.E.M.) of 5 rats. * p <0.05 vs. saline according to ANOVA followed by Tukey post-hoc test. 65 4.3 ARTIGO III Artigo submetido na revista Acta Neuropsychiatrica, 2011. OLANZAPINE PLUS FLUOXETINE TREATMENT ALTERS MITOCHONDRIAL RESPIRATORY CHAIN ACTIVITY IN THE RAT BRAIN. Fabiano R. Agostinho, Gislaine Z. Réus, Roberto B. Stringari, Karine F. Ribeiro, Gabriela K. Ferreira, Isabela C. Jeremias, Giselli Scaini, Gislaine T. Rezin, Emílio Streck and João Quevedo. 66 OLANZAPINE PLUS FLUOXETINE TREATMENT ALTERS MITOCHONDRIAL RESPIRATORY CHAIN ACTIVITY IN THE RAT BRAIN Fabiano R. Agostinhoa, Gislaine Z. Réusa, Roberto B. Stringaria, Karine F. Ribeiroa, Gabriela K. Ferreirab, Isabela C. Jeremiasb, Giselli Scainib, Gislaine T. Rezinb, Emílio Streckb, and João Quevedoa*. a Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000, Criciúma, SC, Brazil; b Laboratório de Fisiopatologia Experimental and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, SC, Brazil. Running title: Olanzapine plus fluoxetine and energy metabolism *Corresponding author: Prof. João Quevedo, MD, PhD Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, SC, Brazil Fax: +55 48 3443 4817. E-mail: quevedo@unesc.net 67 Abstract Evidence is emerging for a role for dysfunctional mitochondria in pathophysiology and treatment of mood disorders. In this study, we evaluated the effects of acute and chronic administration of fluoxetine, olanzapine and the combination of fluoxetine/olanzapine on mitochondrial respiratory chain activity in the rat brain. For acute treatment, Wistar rats received one single injection of olanzapine (3 or 6 mg/kg) and/or fluoxetine (12 or 25 mg/kg) and for chronic treatment, rats received daily injections of olanzapine (3 or 6 mg/kg) and/or fluoxetine (12 or 25 mg/kg) for 28 days and we evaluated mitochondrial respiratory chain complexes I, II, II-III and IV activity in prefrontal cortex, hippocampus and striatum. Our results showed that both acute and chronic treatments with fluoxetine and olanzapine alone or in combination altered respiratory chain complexes activity in the rat brain, but in combination we observed larger alterations. Finally, these findings further support the hypothesis that metabolism energy could be involved in the treatment with antipsychotic and antidepressant in combination to mood disorders. Keywords: Olanzapine; Fluoxetine; Mitochondrial respiratory chain; Bipolar Disorder; Bipolar Depression. 68 INTRODUCTION Mood disorders are among the most prevalent forms of mental illness. Severe forms of depression affect 2%–5% of the U.S. population, and up to 20% suffer from milder forms of the illness. Another roughly 1%–2% are afflicted by Bipolar Disorder (BD) or its less severe variants [1, 2] and were associated with higher rates of suicide and work loss [3-5]. Tissues with high energy demands, such as the brain, contain a large number of mitochondria, and are therefore more susceptible to reduction of the aerobic metabolism [6] Mitochondrial disease results from a malfunction in biochemical cascade and the damage to the mitochondrial electron transport chain has been suggested to be an important factor in the pathogenesis of a range of neuropsychiatries disorders, such as bipolar disorder, depression and schizophrenia [7, 8]. Several studies have demonstrated that abnormalities in energy metabolism lead to cellular degeneration [9]. This effect may occur because when the mitochondrial dysfunction is severe it can lead to cell death by apoptosis or necrosis [10, 11]. In fact, mitochondria are involved in essential processes, such as apoptosis and calcium homeostasis [12-14], which are involved in cell death. Mitochondria are intracellular organelles which play a crucial role in ATP production [9]. Most cell energy is obtained through oxidative phosphorylation, a process requiring the action of various respiratory enzyme complexes located in a special structure of the inner mitochondrial membrane, the mitochondrial respiratory chain [15]. In most organisms, the mitochondrial respiratory chain is composed of four complexes, where the electron transport couples with translocation of protons from the mitochondrial matrix to the intermembrane space. The generated proton gradient is used by ATP synthase to catalyze the formation of ATP by the phosphorylation of adenosine diphosphate (ADP) [7,16]. A fixed combination of antipsychotic and antidepressant drugs was widely used in medicine and, at one time, was common in psychiatry. A generation ago, combinations of antidepressants with either antipsychotics (e.g., amitriptyline and perphenazine [EtrafonTM, TriavilTM]) or benzodiazepines (e.g., amitriptyline and chlordiazepoxide [LimbitrolTM]) were widely used by both psychiatrists and other medical practitioners [17]. Recently, a fixed combination of the antipsychotic drug 69 olanzapine (OLZ) and the antidepressant fluoxetine (FLX) (SymbyaxTM) has been introduced for the treatment of BD [3,18]. In a controlled study of Shelton and colleagues [19], subjects with treatment-resistant depression received OLZ alone, FLX alone, or a combination of both; the combination was associated with significantly greater and faster improvement than was either drug alone. While there is a clear clinical benefit from this combination, the precise neural mechanisms responsible for its efficacy are not clearly understood. Therefore, it is important to investigate the mechanisms of action of this combination in order to not only better understand the etiology of the clinical syndromes, but also to eventually facilitate the development of improved drugs to treat them [4, 20]. Considering the effects of OLZ, FLX and these combinations on brain energy metabolism is still unknown we evaluated the effects of these drugs on mitochondrial respiratory chain in the rat prefrontal cortex, hippocampus and striatum. Is important to note that we chose the prefrontal cortex, hippocampus and striatum in the current study, because these brain areas are implicated in mood disorders [21-22]. MATERIAL AND METHODS Animals Male adult Wistar rats (60 days old) were obtained from UNESC (Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil) breeding colony. They were housed five per cage with food and water available ad libitum and were maintained on a 12-h light/dark cycle (lights on at 7:00 a.m.). All experimental procedures involving animals were performed in accordance with the NIH Guide for the Care and Use of Laboratory Animals and the Brazilian Society for Neuroscience and Behavior (SBNeC) recommendations for animal care and with approval by local Ethics Committee under protocol number 510/2006. 70 Drugs and treatments Olanzapine (Zyprexa™) and Fluoxetine (Prozac™) were provided from Eli Lilly do Brasil Ltda, São Paulo, Brazil. Animals received daily intraperitoneal injections of OLZ (3 or 6 mg/kg), FLX (12 or 25 mg/kg) or combination of both drugs for 28 days in two protocols of the chronic model (A and B), and in the acute model for one day. Protocols and doses of drugs were performed in accordance with previous studies [2324]. All the drugs were dissolved in saline (NaCl 0.9%) solution (vehicle). Control animals received saline (NaCl 0.9%) (1.0 ml/kg). In the acute protocol, after the single injection, the animals were killed 2 hours later by decapitation, and the prefrontal cortex, hippocampus and striatum were immediately removed. Similarly, in the chronic protocols, the animals were killed 2 (A) and 24 (B) hours after the last injection, and the same areas are removed. The analysis were performed after different times of decapitation (2 and 24 hours) after the last injection to be sure that the effects of the studied parameters were due to a chronic effect [23-24]. After that, the activity of mitochondrial respiratory chain was measured (n = 5 each). Tissue and homogenate preparation Hippocampus, striatum, and prefrontal cortex were homogenized (1:10, w/v) in SETH (sucrose, EDTA, tris, heparin) buffer, pH 7.4 (250 mM sucrose, 2 mM ethylenediaminetetraacetic acid, 10 mM Trizma base, 50 IU/mL heparin). The homogenates were centrifuged at 800×g for 10 min and the supernatants kept at −70oC until used for mitochondrial respiratory chain activity determination. The maximal period between homogenate preparation and enzyme analysis was always less than 5 days. Protein content was determined by the method described by Lowry and colleagues [25] using bovine serum albumin as standard. 71 Respiratory chain enzyme activities NADH dehydrogenase (complex I) was evaluated by the method described by Cassina and Radi [26] by the rate of NADH-dependent ferricyanide reduction at 420 nm. The activities of succinate-2,6-dichloroindophenol (DCIP)-oxidoreductase (complex II) and succinate: cytochrome c oxidoreductase (complex II–III) were determined by the method described by Fischer and colleagues [27]. Complex II activity was measured by following the decrease in absorbance due to the reduction of 2,6-DCIP at 600 nm. Complex II-III activity was measured by cytochrome c reduction from succinate at 550 nm. The activity of cytochrome c oxidase (complex IV) was assayed according to the method described by Rustin and colleagues [28], measured by following the decrease in absorbance due to the oxidation of previously reduced cytochrome c at 550 nm. The activities of the mitochondrial respiratory chain complexes were calculated as nmol/min mg protein. Statistical analysis All data is presented as mean ± S.E.M (Standard Error of the Mean). Differences among experimental groups in the assessment of mitochondrial respiratory chain activity were determined by one-way ANOVA, followed by Tukey post-hoc test when ANOVA was significant; P < than 0.05 were considered to be statistical significant. RESULTS As depicted in Fig. 1A, complex I activity increased in the prefrontal cortex of rats treated acutely with OLZ 6 mg/kg and OLZ 3 mg/kg plus FLX 12 mg/kg (Fig. 1A; F = 35.63; p < 0.05); in the hippocampus complex I activity increased with FLX 25 mg/kg (Fig. 1A; F = 180.27; p < 0.05); in the striatum complex I activity increased with 72 OLZ 6 mg/kg (Fig. 1A; F = 3.69; p < 0.05). The complex II activity increased in prefrontal cortex (Fig. 1B; F = 2.28; p < 0.05) and hippocampus (Fig. 1B; F = 36.43; p < 0.05) after acute treatment with OLZ 6 mg/kg alone. The complex II-III activity increased in the prefrontal cortex (Fig. 1C; F = 17.03; p < 0.05) with OLZ 3 mg/kg plus FLX 25 mg/kg and OLZ 6 mg/kg plus FLX 25 mg/kg, in the hippocampus (Fig. 1C; F = 6.92; p < 0.05) with OLZ 3 mg/kg plus FLX 25 mg/kg and OLZ 6 mg/kg plus FLX 25 mg/kg and striatum (Fig. 1C; F = 15.71; p < 0.05) with OLZ 3 mg/kg plus FLX 12 or 25 mg/kg and OLZ 6 mg/kg plus FLX 25 mg/kg. After acute treatment the complex IV activity increased in the prefrontal cortex (Fig. 1D; F = 5.7; p < 0.05) with OLZ 3 mg/kg plus FLX 25 mg/kg and OLZ 6 mg/kg plus FLX 12 or 25 mg/kg and striatum (Fig. 1D; F = 8.68; p < 0.05) with OLZ 3 mg/kg plus FLX 12 or 25 mg/kg. In the chronic treatment, when the animals were killed 2 h after the last injection (Fig. 2), there was an increase in complex I activity in the striatum after OLZ 6 mg/kg and FLX 25 mg/kg in combination (Fig. 2A; F = 4.02; p < 0.05). The complex II activity decreased in the striatum after chronic treatment with OLZ 6 mg/kg plus FLX 12 mg/kg (Fig. 2B; F = 1.87; p < 0.05), and they were not altered in the prefrontal cortex (Fig. 2B; F = 0.92; p > 0.05) and hippocampus (Fig. 2B; F = 1.93; p > 0.05). The complex II-III activity increased in the striatum with OLZ 3 mg/kg alone compared to control group (Fig. 2C; F = 7.81; p < 0.05), and they were not altered in prefrontal cortex (Fig. 2C; F = 1.87; p > 0.05) and hippocampus (Fig. 2C; F = 1.91; p > 0.05). The complex IV activity did not alter in the prefrontal cortex (Fig. 2D; F = 0.36; p > 0.05) and striatum (Fig. 2D; F = 3.52; p < 0.05) compared to control group; in contrast in the hippocampus the complex IV activity increased after treatment with OLZ 6 mg/kg and FLX 25 mg/kg in combination compared to control group (Fig. 2D; F = 2.4; p < 0.05). In the chronic treatment, when the animals were killed 24 h after the last injection (Fig. 3) we showed that complex I activity decreased in the prefrontal cortex with FLX 12 mg/kg alone, compared to control group (Fig. 3A; F = 3.9; p < 0.05); however the complex I activity did not alter in hippocampus (Fig. 3A; F = 2.21; p > 0.05) and striatum (Fig. 3A; F = 1.15; p > 0.05). In the complex II activity (Fig. 2B) did not alter in the prefrontal cortex (F = 3.45), hippocampus (F = 4.83) and striatum (F = 1.39), compared to control group. Treatment with FLX 25 mg/kg alone decreased complex II-III activity in the striatum, compared to control group (Fig. 3C; F = 4.99; p < 0.05). In the hippocampus (Fig. 3C; F = 3.42; p > 0.05) and prefrontal cortex (Fig. 3C; F = 2.18; p > 0.05) did not observe alteration in the complex II-III activity. The Fig. 3D 73 shows that complex IV activity did not alter in the prefrontal cortex (F = 2.13). In the striatum the complex IV activity increased after treatment with OLZ 6 mg/kg and FLX 12 mg/kg in combination, compared to control group (F = 8.18; p < 0.05). In contrast in the hippocampus the complex IV activity decreased after treatment with OLZ 3 and 6 mg/kg alone, as with FLX 12 and 25 mg/kg alone. In addition, OLZ 3 mg/kg plus FLX 12 or 25 mg/kg also decreased the complex IV activity, compared to control group (F = 6.87; p < 0.05). DISCUSSION In the present study we evaluated the effects of the antipsychotic OLZ and of the antidepressant FLX (alone or in combination) on mitochondrial respiratory chain activity in the rat brain. We showed that both acute and chronic treatments with FLX and OLZ alone or in combination altered respiratory chain complex activity in the rat brain, but in combination we observed larger alterations. We demonstrated that these alterations were related to treatment regime, complex, brain area and drug concentration. Recent studies from our group showed that acute administration of FLX inhibited creatine kinase in the rat brain. This study also showed that chronic treatment, when the animals were killed 2 h after the last injection, showed a decrease in the creatine kinase activity after FLX administration, alone or in combination with OLZ. In contrast when the animals were killed 24 h after the last injection, we did not observe alterations in the enzyme [23]. In addition, acute, but not chronic treatment with FLX and OLZ alone or in combination increased citrate synthase activity in the rat brain [24]. The creatine kinase works as a buffering system of cellular ATP levels and the citrate synthase has been used as a quantitative enzyme marker for the presence of intact mitochondria [29] both enzymes play an important role in brain energy metabolism. In fact several studies have been appointed to mitochondrial abnormalities in a number of disorders, including depression, bipolar disorder and schizophrenia [7, 30-31]. Studies have identified that some brain regions from bipolar disorder patients presented a decrease energy metabolism and abnormalities in mitochondrial DNA [32-33]. Moreover, reductions of mitochondrial respiratory chain were found in 74 patients with depression, schizophrenia and bipolar disorder [34-35]. Additionally, animal models evaluating the molecular pharmacology of mood stabilizing drugs have implicated mitochondrial energy metabolism as a target for these drugs [36-37]. Dror and colleagues [38] showed alteration in complex I activity and in levels of mRNA and protein of the 24 and 51-kDa iron-sulfur flavoprotein subunits of the complex from platelets of schizophrenia patients, suggesting that these alterations may result in abnormal neural transmission, synaptic plasticity and connectivity, leading to abnormal behavioral symptoms in schizophrenia. Moreover, another study has shown abnormalities in energy metabolism in the basal ganglia of chronic schizophrenics [39]. In addition, Iwamoto and colleagues [32] showed mitochondrial dysfunction in postmortem brains of schizophrenic patients, however, this dysfunction was due to the patients’ medication, especially antipsychotics. Additionally, a study showed that OLZ, clozapine and haloperidol inhibited succinate dehydorgenase (SDH, an important enzyme of Krebs cycle and part of the mitochondrial respiratory chain as an electron transferring protein); however aripiprazole antipsychotic increased the enzyme in the rat brain [40]. Several studies have showed that antipsychotic drugs inhibited the respiratory electron transport chain [41-44]. In the present study we showed that OLZ alone or in combination with FLX inhibited the complex IV activity in the hippocampus when the animals were killed 24 h after the last injection, and OLZ in combination with FLX inhibited the complex II activity in the striatum when the animals were killed 2 h after the last injection; however, in most cases, OLZ alone or in combination acted to increase the complex respiratory chain in the rat brain. The effects of OLZ and FLX found in this study could be also related to oxidative stress. In fact, mitochondria can produce an excess of reactive oxygen species (ROS), which will cause oxidative damage to cellular constituents, such as membrane lipids and proteins [45]. In addition, mtDNA mutations in elevated production of ROS in turn proved to increase the number of mtDNA mutations [46]. Several studies have generally suggested a compromised oxidative stress in psychiatric disorders, such as bipolar disorder, depression and schizophrenia [47-49]. Additionally, chronic exposure to antipsychotics, haloperidol and clozapine, but not OLZ, caused changes in the activities of antioxidant enzymes and oxidative damage in the rat brain [50-51]. Researchers have reported that some side effects of antipsychotics are associated to oxidative stress [52-53] and metabolism impairment [54]. Recently, a study from our group showed that OLZ and FLX treatment inhibited creatine kinase activity [23], 75 suggesting that inhibition of enzyme may be associated to the occurrence of some side effects of OLZ and FLX. However, OLZ exerted antioxidant effects though modulating ROS levels, superoxide dismutase activity and Bax expression to provide protective effects against N-methyl-4-phenylpyridinium (MPP+) induced oxidative stress in PC12 cells [55]. FLX also have shown an antioxidant effects [56-58]. Reductions in mRNA and protein of complex I subunits NADH dehydrogenase ubiquinone flavoprotein (NDUFV1), NADH-ubiquinone oxidoreductase flavoprotein gene (NDUFV2) and NADH dehydrogenase (ubiquinone) Fe-S protein 1(NDUFS1) have been demonstrated in the cerebellum postmortem from patients with depression [30]. Many animal models of mania and depression have revealed alterations in metabolism energy. Studies from our group demonstrated reduced creatine kinase and citrate synthase activity in brain of rats submitted to the animal model of mania [36,59] Moreover, in another study from our group, it was demonstrated that antidepressants imipramine [60] and paroxetine [61] increased creatine kinase activity in the rat brain, suggesting that modulation of energy metabolism by antidepressants could be an important mechanism of action of these drugs. Nevertheless, our group also showed that mitochondrial respiratory chain complexes I, II-III and IV were inhibited after chronic mild stress in the cerebral cortex and cerebellum [62]. Madrigal and colleagues [16] also reported that complexes I–III and II–III of mitochondrial respiratory chain were inhibited in rat brains after chronic stress (immobilization for six hours during 21 days). Hroudova and Fisar [63] demonstrated that several antidepressant drugs inhibited complex I and IV of the mitochondrial respiratory chain, suggesting that in pathophysiology of mood disorders and therapeutic effects of antidepressant could have changes in energetic metabolism of cells determined by mitochondria. In clinical practice, atypical antipsychotic drugs in combination with antidepressant drugs have been used as a strategy to treat [64] treatment-resistant depression [1,65-66] and psychotic depression [67]. In an elegant controlled study, Matthews and colleagues [68] showed that subjects with treatment-resistant depression that received OLZ and FLX alone, or a combination of both; the combination was associated with significantly greater and faster improvement than was either drug alone. In the present study we also demonstrated greater effects of OLZ and FLX in combination under metabolism energy parameters, antidepressant FLX and antipsychotic OLZ alone or in combination increased or decreased mitochondrial 76 respiratory chain, dependently of treatment regime, enzymatic complex, brain area and drug concentration. The reason for this different alteration in this study is unclear but could be related to desensitization to the effects of repeated olanzapine and fluoxetine administration, or to the adaptation mechanism of mitochondria. The differences of OLZ and FLX found in the present findings could be related to brain distribution of the drugs, or differences in toxicity of its metabolites. In conclusion, taking together the present findings and evidence from the literature, we hypothesize that FLX and OLZ in combination could be involved in mitochondrial function, which is altered in several mood disorders. However, it remains to be seen if effects of the combination of drugs on the mitochondrial respiratory chain are related to the therapeutic or to side effects of pharmacotherapy. ACKNOWLEDGEMENTS This study was supported in part by grants from ‘Conselho Nacional de Desenvolvimento Científico e Tecnológico’ (CNPq-Brazil – JQ, ELS), from the Instituto Cérebro e Mente (JQ) and UNESC (JQ and ELS). JQ and ELS are recipients of CNPq (Brazil) Productivity fellowships. GZR is holder of a FAPESC/CAPES studentship. REFERENCES Agostinho FR, Scaini G, Ferreira GK, Jeremias IC, Réus GZ, Rezin GT, Castro AT, Zugno AI, Quevedo J, Streck EL (2009) Effects of olanzapine, fluoxetine and olanzapine/fluoxetine on creatine kinase activity in rat brain. Brain Res. Bull. 80: 337-340. 77 Assis IC, Rezin GT, Comim CM, Valvassori SS, Jeremias IC, Zugno AI, Quevedo J, Streck EL (2009) Effect of acute administration of ketamine and imipramine on Creatine kinase activity in the brain of rats. Rev. Bras. Psiquiatr. 31: 247-252. Belmaker RH (2004) Bipolar disorder. N. Eng. J. Med. 351: 476-486. Ben-Shachar D, Karry R (2008) Neuroanatomical pattern of mitochondrial complex I pathology varies between schizophrenia, bipolar disorder and major depression. PLoS One 3(11): e3676. Boekema EJ, Braun HP, (2007) Supramolecular structure of the mitochondrial oxidative phosphorylation system. J. Biol. Chem. 282: 1–4. Calabrese V, Scapagnini G, Giuffrida-Stella AM, Bates TE, Clark JB (2001) Mitochondrial involvement in brain function and dysfunction: relevance to aging, neurodegenerative disorders and longevity. Neurochem. Res. 26: 739–764. Corrêa C, Amboni G, Assis LC, Martins MR, Kapczinski F, Streck EL, Quevedo J (2007) Effects of lithium and valproate on hippocampus citrate synthase activity in an animal model of mania. Prog. Neuropsychopharmacol. Biol. Psychiatry 31: 887-891. Dror E, Klein R, Karry A, Sheinkman Z, Kirsh M, Tzukerman MM, BenShachar D (2002) State-dependent alterations in mitochondrial complex I activity in platelets: a potential peripheral marker for schizophrenia. Mol. Psychiatry 7: 995–1001. Fattal O, Budur K, Vaughan AJ, Franco K (2006) Review of the literature on major mental disorders in adult patients with mitochondrial diseases. Psychosomatics 47: 1–7. Fava M (2000) New approaches to the treatment of refractory depression. J. Clin. Psychiatry 61: 26-32. 78 Fischer JC, Ruitenbeek W, Berden JA, Trijbels JM, Veerkamp JH, Stadhouders AM, Sengers RC, Janssen AJ (1995) Differential investigation of the capacity of succinate oxidation in human skeletal muscle. Clin Chim Acta 153: 23–26. Gur RE, Resnick SM, Alavi A, Carrof S, Kushner M, Reivch M (1987) Regional brain function in schizophrenia II: repeated evaluation with positron emission tomography. Arch. Gen. Psychiatry 44: 126–129. Hirschfeld RM, Montgomery SA, Aguglia E (2002) Partial response and nonresponse to antidepressant therapy: current approaches and treatment options. J. Clin. Psychiatry 63: 826-837. Horn D, Barrientos A (2008) Mitochondrial copper metabolism and delivery to cytochrome c oxidase. IUBMB life 60 (7): 421-9. Iwamoto K, Bundo M, Kato T (2005) Altered expression of mitochondriarelated genes in postmortem brains of patients with bipolar disorder or schizophrenia, as revealed by large-scale DNA microarray analysis. Hum. Mol. Genet. 14: 241-253. Kato T. (2005) Mitochondrial dysfunction in bipolar disorder: from 31 Pmagnetic resonance spectroscopic findings to their molecular mechanisms. Int. Rev. Neurobiol. 63: 21-40. Kato T, Kato N (2000) Mitochondrial dysfunction in bipolar disorder. Bipolar Disord. 2: 180–190. Konradi C, Eaton M, MacDonald ML, Walsh J, Benes FM, Heckers S (2004) Molecular evidence for mitochondrial dysfunction in bipolar disorder. Arch. Gen. Psychiatry 61: 300–308. Kupfer DJ (2005) The increasing medical burden in bipolar disorder. JAMA 293: 2528-2530. 79 Lowry OH, Rosebough NG, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem. 193: 265-75. Madrigal JLM, Olivenza R, Moro MA, Lizasoain I, Lorenzo P, Rodrigo J, Leza JC (2001) Glutathione depletion, lipid peroxidation and mitochondrial dysfunction are induced by chronic stress in rat brain,. Neuropsychopharmacology 24: 420–429. Matthews JD, Bottonari KA, Polania LM (2002) An open study of olanzapine and fluoxetine for psychotic major depressive disorder: interim analyses. J. Clin. Psychiatry 63: 1164-70. Morishita S (2009) Clonazepam as a therapeutic adjunct to improve the management of depression: a brief review. Hum. Psychopharmacol 24: 191-8. Nelson G, Hall GB, Forchuk C (2003) Current and preferred housing of psychiatric consumers/survivors. Can. J. Commun. Ment. Health 22: 5-19. Prabakaran S, Swatton JE, Ryan MM, Huffaker SJ, Huang JT, Griffin JL, Wayland M, Freeman T, et al (2004) Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Mol. Psychiatry 9: 684–7. Prince JA, Blennow K, Gottfries CG, Karlsson I, Oreland L (1999) Mitochondrial function is differentially altered in the basal ganglia of chronic schizophrenics, Europsychopharmacology 21: 372-9. Quiroz JA, Gray AN, Kato T, Manji HK (2008) Mitochondrially mediated plasticity in the pathophysiology and treatment of bipolar disorder. Neuropsychopharmacology 33: 2551–65. Rezin GT, Gonçalves CL, Daufenbach JF, Fraga DB, Santos PM, Ferreira GK, Hermani FV, Comim CM, Quevedo J, Streck EL (2009) Acute administration of ketamine reverses the inhibition of mitochondrial respiratory chain induced by chronic mild stress. Brain Res. Bull. 79: 418-21. 80 Rezin GT, Cardoso MR, Gonçalves CL, Scaini G, Fraga DB, Riegel RE, Comim CM, Quevedo J, Streck EL (2008) Inhibition of mitochondrial respiratory chain in brain of rats subjected to an experimental model of depression. Neurochem. Int. 53: 395–400. Rustin P, Chretien D, Bourgeron T, Gerard B, Rotig A, Saudubray JM, Munnich A (1994) Biochemical and molecular investigations in respiratory chain deficiencies. Clin Chim Acta 228: 35–51. Santos PM, Scaini G, Rezin GT, Benedet J, Rochi N, Jeremias GC, Carvalho-Silva M, Quevedo J, Streck EL (2009) Brain creatine kinase activity is increased by chronic administration of paroxetine Brain Res. Bull. 80: 327-30. Schatzberg AF (2003) New approaches to managing psychotic depression. J. Clin. Psychiatry 64: 19-23. Shelton RC, Tollefson GD, Tohen M, Stahl S, Gannon KS, Acobs TG, Buras WR, Bymaster FP, Zhang W, Spencer KA, Feldman PD, Meltzer HY (2001) A novel augmentation strategy for treating resistant major depression. Am. J. Psychiatry 158: 131-34. Shelton RC (2006) The return of fixed combinations in psychiatry: fluoxetine and olanzapine combination, Ther. Clin. Risk. Manag. 2 (2): 187–192. Streck EL, Amboni G, Scaini G, Di-Pietro PB, Rezin GT, Valvassori SS, Luz G, Kapczinski F, Quevedo J (2008) Brain creatine kinase activity in an animal model of mania Life Sci. 82: 424-29. Tohen M, Vieta E, Calabrese J (2004) Efficacy of olanzapine and olanzapine-fluoxetine combination in the treatment of bipolar I depression Arch. Gen. Psychiatry 60: 1079–88 (erratum in: Arch. Gen. Psychiatry 61 176). Ustun TB, Ayuso-Mateos JL, Chatterji S, Mathers C, Murray CJ (2004) Global burden of depressive disorders in the year 2000, Braz. J. Psych. 84: 386-92. 81 Wang FJ, Shao L. Sun X, Young LT (2004) Glutathione S-transferase is a novel target for mood stabilizing drugs in primary cultured neurons, J. Neurochem. 88: 1477-84. Differential inhibitory action of nitric oxide and peroxynitrite on mitochondrial electron transport. Cassina A, Radi R (1996) Arch Biochem Biophys. Apr 15; 328 (2): 309-16. 82 FIGURES Figure 1: A ACUTE Complex I activity [nmol/min x mg protein] 20000 * 18000 16000 Sal+Sal Sal+OLZ 3 14000 Sal+OLZ 6 * 12000 10000 8000 6000 Sal+FLX 12 * Sal+FLX 25 * OLZ 3+FLX 12 OLZ 3+FLX 25 4000 2000 OLZ 6+FLX 12 OLZ 6+FLX 25 Prefrontal cortex Hippocampus Striatum B Complex II activity [nmol/min x mg protein] ACUTE 200 180 160 140 120 100 80 60 40 20 * Sal+Sal Sal+OLZ 3 Sal+OLZ 6 Sal+FLX 12 Sal+FLX 25 OLZ 3+FLX 12 OLZ 3+FLX 25 * OLZ 6+FLX 12 OLZ 6+FLX 25 Prefrontal cortex Hippocampus Striatum 83 C Complex II-III activity [nmol/min x mg protein] ACUTE 10,0 9,0 8,0 7,0 6,0 5,0 4,0 3,0 2,0 1,0 ,0 * * * * * Sal+OLZ 3 Sal+OLZ 6 * * Sal+Sal Sal+FLX 12 Sal+FLX 25 OLZ 3+FLX 12 OLZ 3+FLX 25 OLZ 6+FLX 12 OLZ 6+FLX 25 Prefrontal cortex Hippocampus Striatum D ACUTE Complex IV activity [nmol/min x mg protein 900 * 800 ** 700 600 300 Sal+OLZ 3 Sal+OLZ 6 Sal+FLX 12 500 400 Sal+Sal Sal+FLX 25 * * * OLZ 3+FLX 12 OLZ 3+FLX 25 200 OLZ 6+FLX 12 100 OLZ 6+FLX 25 Prefrontal cortex Hippocampus Striatum 84 Figure 2: A CHRONIC 2 h Complex I activity [nmol/min x mg protein] 2500 Sal+Sal * 2000 Sal+OLZ 3 Sal+OLZ 6 1500 Sal+FLX 12 Sal+FLX 25 1000 OLZ 3+FLX 12 OLZ 3+FLX 25 500 OLZ 6+FLX 12 OLZ 6+FLX 25 Prefrontal cortex Hippocampus Striatum B CHRONIC 2 h Complex II activity [nmol/min x mg protein] 9 Sal+Sal 8 Sal+OLZ 3 7 Sal+OLZ 6 6 Sal+FLX 12 5 Sal+FLX 25 4 OLZ 3+FLX 12 3 * 2 1 OLZ 3+FLX 25 OLZ 6+FLX 12 OLZ 6+FLX 25 Prefrontal cortex Hippocampus Striatum 85 C CHRONIC 2 h Complex II-III activity [nmol/min x mg protein] 9 * 8 Sal+Sal 7 Sal+OLZ 3 6 Sal+OLZ 6 5 Sal+FLX 12 4 Sal+FLX 25 3 OLZ 3+FLX 12 2 OLZ 3+FLX 25 1 OLZ 6+FLX 12 OLZ 6+FLX 25 Prefrontal cortex Hippocampus Striatum D CHRONIC 2 h Complex IV activity [nmol/min x mg protein] 250 Sal+Sal * 200 Sal+OLZ 3 Sal+OLZ 6 150 Sal+FLX 12 Sal+FLX 25 100 OLZ 3+FLX 12 50 OLZ 3+FLX 25 OLZ 6+FLX 12 OLZ 6+FLX 25 Prefrontal cortex Hippocampus Striatum 86 Figure 3: A CHRONIC 24 h Complex I activity [nmol/min x mg protein] 25000 Sal+Sal 20000 Sal+OLZ 3 Sal+OLZ 6 15000 Sal+FLX 12 Sal+FLX 25 10000 OLZ 3+FLX 12 OLZ 3+FLX 25 5000 OLZ 6+FLX 12 * Prefrontal cortex OLZ 6+FLX 25 Hippocampus Striatum B CHRONIC 24h Complex II activity [nmol/min x mg protein] 20 Sal+Sal 18 16 Sal+OLZ 3 Sal+OLZ 6 14 12 10 Sal+FLX 12 Sal+FLX 25 8 6 OLZ 3+FLX 12 4 2 OLZ 6+FLX 12 OLZ 3+FLX 25 OLZ 6+FLX 25 Prefrontal cortex Hippocampus Striatum 87 C CHRONIC 24 h Complex II-III activity [nmol/min x mg protein] 14 Sal+Sal 12 Sal+OLZ 3 10 Sal+OLZ 6 8 Sal+FLX 12 6 Sal+FLX 25 4 OLZ 3+FLX 12 * OLZ 3+FLX 25 2 OLZ 6+FLX 12 OLZ 6+FLX 25 Prefrontal cortex Hippocampus Striatum D CHRONIC 24 h Complex IV activity [nmol/min x mg protein] 3000 * 2500 Sal+Sal Sal+OLZ 3 Sal+OLZ 6 2000 Sal+FLX 12 1500 Sal+FLX 25 1000 OLZ 3+FLX 12 OLZ 3+FLX 25 * ** * * * 500 OLZ 6+FLX 12 OLZ 6+FLX 25 Prefrontal cortex Hippocampus Striatum 88 LEGENDS AND FIGURES Figure 1: Effects of the acute administration of OLZ and FLX on the complex I (A); II (B); II-III (C) and IV (D) activities in the rats prefrontal cortex, hippocampus and striatum. Bars represent means±S.E.M.* p <0.05 vs. saline according to ANOVA followed by Tukey post-hoc test. Figure 2: Effects of the chronic administration of OLZ and FLX on the complex I (A); II (B); II-III (C) and IV (D) activities in the rats prefrontal cortex, hippocampus and striatum. The animals were killed 2 h the last administration of the drugs. Bars represent means±S.E.M.* p <0.05 vs. saline according to ANOVA followed by Tukey post-hoc test. Figure 3: Effects of the chronic administration of OLZ and FLX on the complex I (A); II (B); II-III (C) and IV (D) activities in the rats prefrontal cortex, hippocampus and striatum. The animals were killed 24 h the last administration of the drugs. Bars represent means±S.E.M.* p <0.05 vs. saline according to ANOVA followed by Tukey post-hoc test. 89 4.4 ARTIGO IV Artigo publicado na revista Neuroscience Letters 2011. 90 OLANZAPINE PLUS FLUOXETINE TREATMENT INCREASES NT-3 PROTEIN LEVELS IN THE RAT PREFRONTAL CORTEX Fabiano R. Agostinhoa, Gislaine Z. Réusa, Roberto B. Stringaria, Karine F. Ribeiroa, Bianca Pfaffensellerb, Laura Stertzb, Bruna S. Panizzuttib, Flávio Kapczinskib and João Quevedoa*. a Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000, Criciúma, SC, Brazil; b Laboratório de Psiquiatria Molecular and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Centro de Pesquisas, Hospital de Clínicas de Porto Alegre, 90035-003 Porto Alegre, RS, Brazil. *Corresponding author: Prof. João Quevedo, MD, PhD Laboratório de Neurociências Programa de Pós-Graduação em Ciências da Saúde Unidade Acadêmica de Ciências da Saúde Universidade do Extremo Sul Catarinense 88806-000 Criciúma, SC, Brazil Fax: +55 48 3431-2736. E-mail: quevedo@unesc.net 91 Abstract Evidence is emerging for a role for neurotrophins in the treatment of mood disorders. In this study, we evaluated the effects of chronic administration of fluoxetine, olanzapine and the combination of fluoxetine/olanzapine on the brain-derivedneurotrophic factor (BDNF), nerve growth factor (NGF), and neurotrophin-3 (NT-3) in the rat brain. Wistar rats received daily injections of olanzapine (3 or 6 mg/kg) and/or fluoxetine (12.5 or 25 mg/kg) for 28 days, and we evaluated for BDNF, NGF and NT-3 protein levels in the prefrontal cortex, hippocampus and amygdala. Our results showed that treatment with fluoxetine and olanzapine alone or in combination did not alter BDNF or NGF protein levels, but NT-3 protein levels were increased by olanzapine 6 mg/kg/fluoxetine 25 mg/kg combination. Finally, these findings further support the hypothesis that NT-3 could be involved in the effect of treatment with antipsychotic and antidepressant combination in mood disorders. Keywords: Brain-derived-neurotrophic factor; Nerve growth factor; Neurotrophin-3; Fluoxetine; Olanzapine; Mood disorder. 92 INTRODUCTION Bipolar disorder (BD) is a prevalent condition in adults determining a significant impairment in quality of life [27]. Bipolar depression represents a difficultto-treat and disabling form of depression. Studies indicate that patients with BD spend more time in and take longer to recover from the depressive phase than the manic phase [33, 47]. Olanzapine (OLZ) has demonstrated efficacy in the treatment of acute bipolar mania [59, 61-63, 65] stabilizing effects [11, 60, 62, 65-66] and has been found to improve depressive symptoms in patients with schizophrenia [58, 64]. In a controlled study of Shelton et al. [53] subjects with treatment-resistant depression received OLZ alone, fluoxetine (FLX) alone, or a combination of both. The combination was associated with significantly greater and faster improvement than was either drug alone. In a critical review, Fountoulakis et al. [26] show that several practice guidelines disagree on how best to initiate treatment of bipolar depression. Neurotrophic factors, as such, brain derived neurotrophic factor (BDNF), nerve growth factor (NGF), and neurotrophin-3 (NT-3) are critical regulators of the formation, survival, differentiation, and outgrowth of select peripheral and central neurons throughout adulthood [32, 51] and plasticity of neural networks [28, 32, 51]. Thus, based on the literature findings, the present study was aimed to investigate physiological effects of the combination of OLZ and FLX on the BDNF, NT-3 and NGF protein levels in the prefrontal cortex, hippocampus and amygdala. MATERIALS AND METHODS Animals Male adult Wistar rats (60 days old) were obtained from UNESC (Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil) breeding colony. They were housed five per cage with food and water available ad libitum and were 93 maintained on a 12-h light/dark cycle (lights on at 7:00 a.m.). All experimental procedures involving animals were performed in accordance with the NIH Guide for the Care and Use of Laboratory Animals and the Brazilian Society for Neuroscience and Behavior (SBNeC) recommendations for animal care and with approval by local Ethics Committee under protocol number 510/2006. Drugs and treatments Olanzapine (Zyprexa™) and Fluoxetine (Prozac™) were provided from Eli Lilly do Brasil Ltda, São Paulo, Brazil. Animals received daily intraperitoneal injections of OLZ (3 or 6 mg/kg), FLX (12.5 or 25 mg/kg) or combination of both drugs for 28 days. All the drugs were dissolved in Tween 1% solution (vehicle). Control animals received vehicle (1.0 ml/kg). After the chronic treatment the animals were killed by decapitation 24 hours after the last injection and prefrontal cortex, hippocampus and amygdala were immediately removed and stored at −70°C for biochemical analysis. Neurotrophins measurement BDNF, NT-3 and NGF levels in prefrontal cortex, hippocampus and amygdala were measured by sandwich-ELISA, according to the manufacturer instructions (Chemicon, USA for BDNF and Millipore, USA & Canada for NT-3 and NGF). Briefly, rat prefrontal cortex, hippocampus and amygdala were homogenized in phosphate buffer solution (PBS) with protease inhibitor cocktail (Sigma). Microtiter plates (96-well flat-bottom) were coated for 24 h with the samples diluted 1:2 in sample diluent and standard curve ranged from 7.8 to 500 pg/ml of BNDF, NT-3 or NGF. The plates were then washed four times with sample diluent and a monoclonal anti-BNDF, anti-NT-3 or anti-NGF rabbit antibody (diluted 1:1000 in sample diluent) was added to each well and incubated for 3 h at room temperature. After washing, a peroxidase conjugated anti-rabbit antibody (diluted 1:1000) was added to each well and incubated at room temperature for 1 h. After addition of streptavidin-enzyme, substrate and stop 94 solution, the amount of each neurotrophin was determined by absorbance in 450 nm. The standard curve demonstrates a direct relationship between Optical Density (OD) and the concentration. Total protein was measured by Lowry's method using bovine serum albumin as a standard, as previously described by Lowry et al. [39]. Statistical analysis All data are presented as mean ± S.E.M. Differences among experimental groups in the assessment of BDNF, NGF and NT-3 protein levels were determined by one-way ANOVA, followed by Tukey post-hoc test when ANOVA was significant; P < 0.05 were considered to be statistical significant. RESULTS As depicted in Figure 1A, the NT-3 protein levels did not alter in the hippocampus (Figure 1A; F (8-42) = 0.51; p = 0.83) and amygdala (Figure 1A; F (8-43) = 0.45; p = 0.88) after treatment with olanzapine or fluoxetine alone or in combination. However treatment with olanzapine at the dose of 6 mg/kg in combination with fluoxetine at the dose of 25 mg/kg we found an increase in NT-3 protein levels in the prefrontal cortex (Figure 1A; F (8-37) = 2.4; p = 0.03); but olanzapine or fluoxetine treatment alone did alter NT-3 protein levels in the prefrontal cortex. The BDNF and NGF protein levels are illustrated in the Figure 1B and 1C, respectively. After treatment with olanzapine or fluoxetine alone or in combination, both BDNF and NGF protein levels did not alter in the prefrontal cortex (Figure 1B; F (8-46) = 1.11; p = 0.37; Figure 1C; F (8-24) = 0.65; p = 0.72), hippocampus (Figure 1B; F (8- 51) = 0.98; p = 0.45; Figure 1C; F (8-18) = 1.48; p = 0.23) and amygdala (Figure 1B; F (8- 47) = 0.57; p = 0.79; Figure 1C; F (8-18) = 0.74; p = 0.64). 95 DISCUSSION In the present study we evaluated the effects of the antipsychotic OLZ and of the antidepressant FLX (alone or in combination) on the NT-3, BDNF and NGF protein levels in the rat brain. We showed that chronic treatment with FLX and OLZ in combination increased the NT-3 protein levels in the prefrontal cortex. Treatment with FLX and OLZ alone or in combination did not alter BDNF or NGF protein levels in the rat brain. The hippocampus regulates hypothalamic-pituitary-adrenal (HPA) axis, and has connections with amygdala and prefrontal cortex. In addition, brain imaging studies have indicated volumes of the hippocampus, prefrontal cortex or amygdala in patients with major depression or bipolar disorder [14, 20]. Several studies have highlighted the role of neurotrophins in the pathophysiology and treatment of psychiatric disorders. The BDNF, NT-3 and NGF promote survival and cellular plasticity [4, 38]. Reductions of BDNF have been found in humans, as well as in animal model [22, 34], on the other hand, antidepressant treatment produces antidepressant effect [55]. In addition, patients with schizophrenia and bipolar disorder showed reduced serum BDNF levels in relation to healthy volunteers [17, 49, 50]. Moreover, antipsychotic, as well as mood stabilizers treatment seems to alter levels of BDNF [9, 29, 49, 50]. In the present findings we showed that treatment with FLX and OLZ alone or in combination did not alter BDNF protein levels in the prefrontal cortex, hippocampus or amygdala. Our investigation did not confirm a previous study showed by other authors, who reported alteration in BDNF after treatment with FLX or OLZ. Lee et al. [35] showed that OLZ treatment (10–100 µM) increased basal BDNF gene promoter activity in a dose dependent manner and increased protein levels at high dose. In addition, OLZ increased BDNF levels in the cortex and hippocampus [18] and frontal cortex [10]. In addition, FLX administration increased BDNF mRNA levels in the nucleus accumbens and hippocampus [42-43]. We cannot explain the reason for this different result, but similar discrepancies have been observed by the other author. In fact, plasma BDNF levels did not alter after 8 weeks of treatment with OLZ [31, 67]. Additionally, FLX did not alter BDNF mRNA isoforms in the rat hippocampus [5, 19]. FLX (10 mg/kg) increased BDNF protein levels in the frontal cortex, but not in the 96 hippocampus, amygdala, olfactory, and brain stem [10]. Other study showed still that FLX treatment decrease BDNF mRNA expression in the rat hippocampus [41]. Moreover, OLZ decreased BDNF in the hippocampus and frontal cortex [7]. In addition, OLZ treatment did not alleviate the decreases in RNA expression of BDNF and NGF produced by neonatal quinpirole treatment [15]. Furthermore, both BDNF and NGF seem to be activity-dependent [36]. In the present data, we did not alteration in BDNF or NGF protein levels in the rat brain, suggesting that the effects exerted by FLX or OLZ on the BDNF and NGF levels may have been manner-dependent. NGF is very important to neuronal survival, neurite outgrowth and synapse formation [4] and has shown an association between NGF and mood disorders or psychiatric diseases. In fact, plasma NGF concentrations were decreased in BD patients when compared to that seen with controls and BD individuals in mania had lower NGF levels than euthymic patients or controls [12]. Moreover, NGF has been found decreased in plasma, liquor or postmortem brains of schizophrenic patients [3, 13, 23]. In addition, the antipsychotics, haloperidol, chlorpromazine, risperidone and OLZ reduced BDNF and NGF protein levels in the striatum and hippocampus [48], in this study the authors showed that second-generation antipsychotics compared to firstgeneration antipsychotics induce less deleterious on neurotrophic factor in the brain. In contrast, Parikn et al. [46], demonstrated that OLZ, but not antipsychotic risperidone increased levels of NGF levels in the hippocampus. Additionally, administration of OLZ for 29 days water at the doses of 3 and 15 mg/kg increased BDNF in the hippocampus and occipital cortex [7]. Discrepancies between studies may be related to route of drug administration. Little is known about antidepressants and NGF. In the present we did not showed alteration on the NGF protein levels after treatment with FLX alone or in combination with OLZ. The antidepressants, amitriptyline and paroxetine also did not alter NGF serum concentrations from depressed patients [30]. However, very recently was demonstrated that intranasal NGF had significant antidepressant effects on animal models of depression [54]. On the other hand, NGF was reduced in brain regions of the Flinders Sensitive Line rat, a genetic animal model of depression [2000]. In addition, an escitalopram-dependent NGF reduction in stressed rats was detectable in the cortex, but not in the frontal cortex, cerebellum and serum [52]. Moreover, the antidepressant fluvoxamine potentiated the NGF-induced neurite outgrowth [44] and desipramine or fluoxetine for 48 h elevated the NGF mRNA expression [37] in PC12 cells. 97 NT-3 is a neurotrophin that plays key roles in neuronal survival, differentiation, connectivity and plasticity [32, 51]. Moreover, human studies have demonstrated participation of NT-3 in the pathophysiology of stress, major depression and BD [25, 34, 56]. In the present data we interestingly showed that administration of FLX and OLZ in combination increased NT-3 protein levels in the prefrontal cortex. Lesions of the prefrontal cortex are associated with development of depression or aggression [8]. Serum NT-3 levels in drug-free and medicated patients with BD during manic and depressive episodes were increased when compared with controls [25]. In a study conducted by Otsuki et al. [45] was showed reduced expression levels of NT-3 mRNAs, but not in BDNF, NGF and neurotrophin-4 mRNAs in peripheral white blood cells in patients with major depressive disorder in a current depressive state, but not in a remissive state, suggesting that the changes in the NT-3 mRNAs might be statedependent and associated with the pathophysiology of major depression. Our findings showed that FLX plus OLZ increased NT-3 protein levels, but not BDNF and NGF, suggesting that treatment with these drugs may be important to current depressive state. The gene expression for NT-3 was not affected by single or repeated administration of antidepressants drugs, including FLX [16]. Our study also showed that FLX alone did not alter NT-3 protein levels, but in combination with OLZ increased NT-3 protein levels. A study conducted by Matthews et al. [40] showed that the combination of OLZ and FLX significantly greater and faster improvement than was either drug alone in subjects with treatment-resistant depression. In addition, studies have shown an association between neurotrophins and glucocorticoids. It was shown an Increase of NGF and NT-3 mRNA in the hippocampus by glucocorticoids, probably as a compensatory response to stress-induced damage [56]. Additionally a study showed that glucocorticoids exert biphasic effects on neuronal mitochondrial dynamics, with low levels potentiating and chronic high levels attenuating various aspects of mitochondrial function [21]. Studies from our group recently demonstrated that FLX and OLZ alone or in combination altered the creatine kinase and citrate synthase activities [1-2], which are involved with energy metabolism. In conclusion, the present findings suggest that NT-3 may be involved in the therapeutic action of olanzapine/fluoxetine combination in mood disorders. 98 ACKNOWLEDGEMENTS This study was supported in part by grants from ‘Conselho Nacional de Desenvolvimento Científico e Tecnológico’ (CNPq-Brazil – JQ and FK), from the Instituto Cérebro e Mente (JQ) and UNESC (JQ). JQ and FK are recipients of CNPq (Brazil) Productivity Fellowships. GZR is holder of a FAPESC studentship. REFERENCES [1] F.R. Agostinho, G. Scaini, G.K. Ferreira, I.C. Jeremias, G.Z. Réus, G.T. Rezin, A.A. Castro, A.I. Zugno, J. Quevedo, E.L. Streck, Effects of olanzapine, fluoxetine and olanzapine/fluoxetine on creatine kinase activity in rat brain. Brain Res Bull. 80 (2009) 337-340. [2] F.R. Agostinho, G.Z. Réus, R.B. Stringari, K.F. Ribeiro, A.K. Ferraro, J. Benedet, N. Rochi, G. Scaini, E.L. Streck, J. Quevedo, Treatment with olanzapine, fluoxetine and olanzapine/fluoxetine alters citrate synthase activity in rat brain, Neurosci. Lett. 2010 in press. [3] L. Aloe, A. Iannitelli, G. Bersani, E. Alleva, F. Angelucci, P. Maselli, L. Manni, Haloperidol administration in humans lowers plasma nerve growth factor level: evidence that sedation induces opposite effects to arousal, Neuropsychobiology. 36 (1997) 65– 68. [4] C. Altar, P.S. DiStefano, Neurotrophin trafficking by anterograde transport, Trends Neurosci. 21 (1998) 433–437. [5] M. Altieri, F. Marini, R. Arban, G. Vitulli, B.O. Jansson, Expression analysis of brain-derived neurotrophic factor (BDNF) mRNA isoforms after chronic and acute antidepressant treatment, Brain Res. 1000 (2004) 148–155. 99 [6] F. Angelucci, L. Aloe, P.A. Jimenez-Vasquez, A.A. Mathe, Mapping the differences in the brain concentration of BDNF and NGF in an animal model of depression, NeuroReport 11 (2000) 69–1373. [7] F. Angelucci, L. Aloe, A. Iannitelli, S.H.M. Grubera, A.A. Mathe, Effect of chronic olanzapine treatment on nerve growth factor and brain-derived neurotrophic factor in the rat brain, Europ. Neuropsychopharmacol. 15 (2005) 311– 317 [8] V. Arango, M.D. Underwood, A.V. Gubbi, J.J. Mann, Localized alterations in pre- and postsynaptic serotonin binding sites in the ventrolateral prefrontal cortex of suicide victims, Brain Res. 688 (1995) 121– 133. [9] O. Bai, J. Chlan-Fourney, R. Bowen, D. Keegan, X.M. Li, Expression of brain-derived neurotrophic factor mRNA in rat hippocampus after treatment with antipsychotic drugs, J. Neurosci. Res. 71 (2003) 127-131. [10] D.T. Balu, B.A. Hoshaw, J.E. Malberg, S. Rosenzweig-Lipson, L.E. Schechter, I. Lucki. Differential regulation of central BDNF protein levels by antidepressant and non-antidepressant drug treatments. Brain Res, 1211 (2008) 37–43. [11] R.M. Baker, E. Brown, H.S. Akiskal, J.R. Calabrese, T.A. Ketter, L.M. Schuh, P.T. Trzepacz, J.G. Watkin, M. Tohen, Efficacy of olanzapine combined with valproate or lithium in the treatment of dysphoric mania, Br. J. Psychiatry, 185 (2004) 472–478. [12] I.G. Barbosa, R.B. Huguet, F.S. Neves, H.J. Reis, M.E. Bauer, Z. Janka, A. Palotás, A.L. Teixeira, Impaired nerve growth factor homeostasis in patients with bipolar disorder, World J. Biol. Psychiatry. (2010) in press. [13] G. Bersani, A. Iannitelli, P. Maselli, P. Pancheri, L. Aloe, F. Angelucci, E. Alleva, Low nerve growth factor plasma levels in schizophrenic patients: a preliminary study, Schizophr. Res. 37 (1999) 201–203. 100 [14] J.D. Bremner, M. Narayan, E.R. Anderson, L.H. Staib, H.L. Miller, D.S. Charney, Hippocampal volume reduction in major depression, Am. J. Psychiatry 157 (2000) 115–118. [15] R.W. Brown, K.M. Perna, A.M. Maplea, T.D. Wilson, B.E. Miller, Adulthood olanzapine treatment fails to alleviate decreases of ChAT and BDNF RNA expression in rats quinpirole-primed as neonates, Brain Res. 1200 (2008) 66 –77. [16] A.L. Coppell, Q. Pei, T.S.C. Zetterstrom, Bi-phasic change in BDNF gene expression following antidepressant drug treatment, Neuropharmacology 44 (2003) 903–910. [17] A.B. Cunha, B.N. Frey, A.C. Andreazza, J.D. Godoi, A.R. Rosa, C.A. Gonçalves, A. Santin, F. Kapczinski, Serum brain-derived neurotrophic is decreased in bipolar disorder during depressive and manic episodes, Neurosci. Lett. 398 (2006) 215– 219. [18] A. Czubak, E. Nowakowska, K. Kus, K. Burda, J. Metelska, W. BaerDubowska, M. Cichocki, Influences of chronic venlafaxine, olanzapine and nicotine on the hippocampal and cortical concentrations of brain-derived neurotrophic factor (BDNF), Pharmacol. Rep. 61 (2009) 1017-1023. [19] B.G. Dias, S.B. Banerjee, R.S. Duman, V.A. Vaidya, Differential regulation of brain derived neurotrophic factor transcripts by antidepressant treatments in the adult rat brain, Neuropharmacology 45 (2003) 553–563. [20] W.C. Drevets, J.L. Price, J.R. Simpson Jr, R.D. R.D. Todd, T. Reich, M. Vannier M.E. Raichle, Subgenual prefrontal cortex abnormalities in mood disorders, Nature. 386 (1997) 824–827. [21] J. Du, Y. Wang, R. Hunter, Y. Wei, R. Blumenthal, C. Falke, R. Khairova, R. Zhou, P. Yuan, R. Machado-Vieira, B.S. McEwen, H.K. Manji, Dynamic regulation of mitochondrial function by glucocorticoids. PNAS 106 (2009) 3543–3548. 101 [22] R.S. Duman, L.M. Monteggia, A neurotrophic model for stress related mood disorders, Biol. Psychiatry 59 (2006) 1116–1127. [23] N. Durany, T. Michel, R. Zochling, K.W. Boissl, F.F. Cruz-Sanchez, P. Riederer, J. Thome, Brain-derived neurotrophic factor and neurotrophin 3 in schizophrenic psychoses, Schizophr. Res. 52 (2001) 79– 86. [24] H. Einat, P. Yuan, T.D. Gould, J. Li, J. Du, L. Zhang, H.K. Manji, G. Chen, The role of the extracellular signal-regulated kinase pathway in mood modulation, J. Neurosci. 23 (2003) 7311–7316. [25] B.S. Fernandes, C.S. Gama, J.C. Walz, K.M. Ceresér, G.R. Fries, G. Colpo, B. Aguiar, B. Pfaffenseller, M. Kauer-Sant’Anna, F. Kapczinski, Increased neurotrophin-3 in drug-free subjects with bipolar disorder during manic and depressive episodes, J. Psych. Res. 44 (2010) 561–565. [26] K.N. Fountoulakis, E. Vieta, J. Sanchez-Moreno, S.G. Kaprinis, J.M. Goikolea, G.S. Kaprinis, Treatment guidelines for bipolar disorder: a critical review, J. Affect. Disord. 86 (2005) 1–10. [27] F.K. Gazalle, A.C. Andreazza, P.C. Hallal, M. Kauer-Sant’Anna, K.M. Ceresér, J.C. Soares, A. Santin, F. Kapczinski, Bipolar depression: the importance of being on remission, Rev. Bras. Psiquiatr. 28 (2006) 93-96. [28] J. Goldberg, B.A. Barres, The relationship between neuronal survival and regeneration, Ann. Rev. Neurosci. 23 (2000) 579–612. [29] A. González-Pinto, F. Mosquera, A. Palomino, S. Alberich, A. Gutiérrez, K. Haidar, P. Vega, S. Barbeito, A. Ortiz, C. Matute, Increase in brainderived neurotrophic factor in first episode psychotic patients after treatment with atypical antipsychotics, Int. Clin. Psychopharmacol. 25 (2010) 241-245. [30] R. Hellweg, A. Ziegenhorn, I. Heuser, M. Deuschle, Serum concentrations of nerve growth factor and brain-derived neurotrophic factor in 102 depressed patients before and after antidepressant treatment, Pharmacopsychiatry. 41 (2008) 66-71. [31] H. Hori, R. Yoshimura, Y. Yamada, A. Ikenouchi, M. Mitoma, Y. Ida, J. Nakamura, Effects of olanzapine on plasma levels of catecholamine metabolites, cytokines, and brain-derived neurotrophic factor in schizophrenic patients, Int. Clin. Psychopharmacol. 22 (2007) 21-27. [32] E.J. Huang, L.F. Reichardt, Neurotrophins: role in neuronal development and function, Annu. Rev. Neurosci. 24 (2001) 677– 736. [33] L.L. Judd, H.S. Akiskal, P.J. Schettler, J. Endicott, J. Maser, D.A. Solomon, A.C. Leon, J.A. Rice, M.B. Keller, The long-term natural history of the weekly symptomatic status of bipolar I disorder, Arch. Gen. Psychiatry. 59 (2002) 530537. [34] F. Karege, G. Perret, G. Bondolfi, M. Schwald, G. Bertschy, J.M. Aubry, Decreased serum brain-derived neurotrophic factor levels in major depressed patients. Psychiatry Res. 15 (2002) 143–148. [35] J.G. Lee, H.Y. Cho, S.W. Park, M.K. Seo, Y.H. Kim, Effects of olanzapine on brain-derived neurotrophic factor gene promoter activity in SH-SY5Y neuroblastoma cells, Progr. NeuroPsychopharmacol Biol Psychiatry 34 (2010) 1001– 1006. [36] V. Lessmann, K. Gottmann, M. Malcangio, Neurotrophin secretion: current facts and future prospects.,Prog. Neurobiol. 69 (2003) 341–374. [37] Y.F. Li, Y.Q. Liu, W.C. Huang, Z.P. Luo, Cytoprotective effect is one of common action pathways for antidepressants, Acta Pharmacol. Sin. 24 (2003) 9961000. [38] R.M. Lindsay, S.J. Wiegand, C.A. Altar, P.S. DiStefano, Neurotrophic factors: from molecule to man, Trends Neurosci. 17 (1994) 182−190. 103 [39] O.H. Lowry, N.G. Rosebough, A.L. Farr, R.J. Randall, Protein measurement with the Folin phenol reagent, J. Biol. Chem. 193 (1951) 265-275. [40] J.D. Matthews, K.A. Bottonari, L.M. Polania, An open study of olanzapine and fluoxetine for psychotic major depressive disorder: interim analyses, J. Clin. Psychiatry 63 (2002) 1164-1170. [41] X. Miro, S. Perez-Torres, F. Artigas, P. Puigdomenech, J.M. Palacios, G. Mengod, Regulation of cAMP phosphodiesterase mRNAs expression in rat brain by acute and chronic fluoxetine treatment. An in situ hybridization study, Neuropharmacology 43 (2002) 1148– 1157. [42] R. Molteni, F. Calabrese, F. Bedogni, E. Tongiorgi, F. Fumagalli, G. Racagni, M. A. Riva, Chronic treatment with fluoxetine up-regulates cellular BDNF mRNA expression in rat dopaminergic regions, Int. J. Neuropsychopharmacol 9 (2006) 307–317. [43] M. Nibuya, E.J. Nestler, R.S. Duman, Chronic antidepressant administration increases the expression of cAMP response element binding protein (CREB) in rat hippocampus, J. Neurosci. 16 (1996) 2365– 2372. [44] T. Nishimura, T. Ishima, M. Iyo, K. Hashimoto, Potentiation of nerve growth factor-induced neurite outgrowth by fluvoxamine: role of sigma-1 receptors, IP3 receptors and cellular signaling pathways, PLoS One. 3 (2008) 2558. [45] K. Otsuki, S. Uchida, T. Watanuki, Y. Wakabayashi, M. Fujimoto, T. Matsubara, H. Funato, Y. Watanabe, Altered expression of neurotrophic factors in patients with major depression, J. Psych Res 42 (2008) 1145–1153. [46] V. Parikh, A.V. Terry, M.M. Khan, S.P. Mahadik, Modulation of nerve growth factor and choline acetyltransferase expression in rat hippocampus after chronic exposure to haloperidol, risperidone, and olanzapine Psychopharmacology. 172 (2004) 365-374. 104 [47] R.H. Perlis, M.J. Ostacher, J.F. Goldberg, D.J. Miklowitz, E. Friedman, J. Calabrese, M.E. Thase, G.S. Sachs, Transition to Mania During Treatment of Bipolar Depression, Neuropsychopharmacology. 2010 in press. [48] A. Pillai, A.V. Terry Jr, S.P. Mahadik, Differential effects of long-term treatment with typical and atypical antipsychotics on NGF and BDNF levels in rat striatum and hippocampus, Schizophr. Res. 82; 95– 106. [49] E.N. Rizos, A. Papadopoulou, E. Laskos, P.G. Michalopoulou, A. Kastania, D. Vasilopoulos, K. Katsafouros, L. Lykouras, Reduced serum BDNF levels in patients with chronic schizophrenic disorder in relapse, who were treated with typical or atypical antipsychotics, World J. Biol. Psychiatry. 10 (2008) 1-5. [50] E.N. Rizos, A. Papadopoulou, E. Laskos, P.G. Michalopoulou, A. Kastania, D. Vasilopoulos, K. Katsafouros, L. Lykouras, Reduced serum BDNF levels in patients with chronic schizophrenic disorder in relapse, who were treated with typical or atypical antipsychotics. World J. Biol. Psychiatry. 11 (2010) 251-255. [51] A.F. Schinder, M. Poo, The neurotrophin hypothesis for synaptic plasticity, Trends Neurosci. 23 (2000) 639– 645. [52] O. Schulte-Herbrüggen, E. Fuchs, N. Abumaria, A. Ziegler, H. DankerHopfe, C. Hiemke, R. Hellweg, Effects of escitalopram on the regulation of brainderived neurotrophic factor and nerve growth factor protein levels in a rat model of chronic stress, J. Neurosci. Res. 87 (2009) 2551-2560. [53] R.C. Shelton, G.D. Tollefson, M. Tohen, S. Stahl, K.S. Gannon, T.G. Acobs, W.R. Buras, F.P. Bymaster, W. Zhang, K.A. Spencer, P.D. Feldman, H.Y. Meltzer, A novel augmentation strategy for treating resistant major depression, Am. J. Psychiatry 158 (2001) 131-134. 105 [54] C.G. Shi, L.M. Wang, Y. Wu, P. Wang, Z.J. Gan, K. Lin, L.X. Jiang, Z.Q. Xu, M. Fan, Intranasal administration of nerve growth factor produces antidepressant-like effects in animals, Neurochem. Res. 35 (2010) 1302-1314. [55] Y. Shirayama, A.C. Chen, S. Nakagawa, D.S. Russell, R.S. Duman, Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression, J. Neurosci. 22 (2002) 3251–3261. [56] M.A. Smith, Hippocampal vulnerability to stress and aging: possible role of neurotrophic factors, Behav. Brain Res. 78 (1996) 25-36. [57] M.A. Smith, S. Makino, R. Kvetnansky, R.M. Post, Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNA in the hippocampus, J. Neurosci. 15 (1995) 1768–1777. [58] J.M. Tamayo, K.V. Sutton, M.A. Mattei, B. Diaz, H.H. Jamal, E. Vieta, M. Tohen, Effectiveness and safety of the combination of fluoxetine and olanzapine in outpatients with bipolar depression: an open-label, randomized, flexible-dose study in Puerto Rico, J. Clin. Psychopharmacol. 29 (2009) 358–361. [59] M. Tohen, R.W. Baker, L.L. Altshuler, C.A. Zarate, T. Suppes, T.A. Ketter, D.R. Milton, R. Risser, J.A. Gilmore, A. Breier, G.A. Tollefson, Olanzapine versus divalproex in the treatment of acute mania, Am. J. Psychiatry. 159 (2002) 10111017. [60] M. Tohen, W. Greil, J.R. Calabrese, G.S. Sachs, L.N. Yatham, B.M. Oerlinghausen, A. Koukopoulos, G.B. Cassano, H. Grunze, R.W. Licht, L. Dell'Osso, A.R. Evans, R. Risser, R.W. Baker, H. Crane, M.R. Dossenbach, C.K. Bowden, Olanzapine versus lithium in the maintenance treatment of bipolar disorder: a 12-month, randomized, double-blind, controlled clinical trial, Am. J. Psychiatry. 162 (2005) 1281– 1290. [61] M. Tohen, T.G. Jacobs, S.L. Grundy, S.L. McElroy, M.C. Banov, P.G. Janicak, T.M. Sanger, R. Risser, F. Zhang, V. Toma, B.J. Francis, G.D. Tollefson, A. 106 Breier, Efficacy of olanzapine in acute bipolar mania: a double-blind, placebocontrolled study, Arch. Gen. Psychiatry. 57 (2000) 841-849. [62] M. Tohen, T.A. Ketter, C.A. Zarate, T. Suppes, M. Frye, L. Altshuler, J. Zajecka, L.M. Schuh, R.C. Risser, E. Brown R.W. Baker, Olanzapine versus divalproex sodium for the treatment of acute mania and maintenance of remission: a 47week study, Am. J. Psychiatry. 160 (2003) 1263–1271. [63] M. Tohen, T.M. Sanger, S.L. McElroy, G.D. Tollefson, K.N.R. Chengappa, D.G. Daniel, F. Petty, F. Centorrino, R. Wang, S.L. Grundy, M.G. Greaney, T.G. Jacobs, S.R. David, V. Toma, Olanzapine versus placebo in the treatment of acute mania, Am. J. Psychiatry. 156 (1999) 702-709. [64] G.D. Tollefson, T.M. Sanger, M.K. Lu, M.E. Thieme, Depressive signs and symptoms in schizophrenia: a prospective blinded trial of olanzapine and haloperidol, Arch. Gen. Psychiatry. 55 (1998) 250-258. [65] E. Vieta, J. Sanchez-Moreno, Acute and long-term treatment of mania, Dialogues Clin. Neurosci. 10 (2008) 165-179. [66] E. Vieta, Olanzapine in bipolar disorder, Exp. Opin. Pharmacother. 5 (2004) 1613-1619. [67] R. Yoshimura, N. Ueda, H. Hori, A. Ikenouchi-Sugita, W. UmeneNakano, J. Nakamura, Different patterns of longitudinal changes in plasma levels of catecholamine metabolites and brain-derived neurotrophic factor after administration of atypical antipsychotics in first episode untreated schizophrenic patients, World. J. Biol. Psychiatry. 11 (2010) 256-261. 107 FIGURES Figure 1: A ,50 * ,45 Sal+Sal NT3 pg/µg ,40 Sal+OLZ 3 ,35 Sal+OLZ 6 ,30 Sal+FLX 12.5 ,25 Sal+FLX 25 ,20 OLZ 3+FLX 12.5 ,15 OLZ 3+FLX 25 OLZ 6+FLX 12.5 ,10 OLZ 6+FLX 25 ,05 ,00 Prefrontal cortex Hippocampus Amygdala B ,25 Sal+Sal ,20 BDNF pg/µg Sal+OLZ 3 Sal+OLZ 6 ,15 Sal+FLX 12.5 Sal+FLX 25 OLZ 3+FLX 12.5 ,10 OLZ 3+FLX 25 OLZ 6+FLX 12 ,05 OLZ 6+FLX 25 ,00 Prefrontal cortex Hippocampus Amygdala 108 C 1,0 0,9 Sal+Sal NGF pg/µg 0,8 Sal+OLZ 3 0,7 Sal+OLZ 6 0,6 Sal+FLX 12.5 0,5 Sal+FLX 25 0,4 OLZ 3+FLX 12.5 0,3 OLZ 3+FLX 25 0,2 OLZ 6+FLX 12 OLZ 6+FLX 25 0,1 Prefrontal cortex Hippocampus Amygdala 109 LEGEND OF FIGURES Figures 1A, 1B e 1C: Effects of the chronic administration of OLZ and FLX on the NT-3 (A), BDNF (B) and NGF (C) protein levels in the rat prefrontal cortex, hippocampus and amygdala. Bars represent means ± S.E.M.* p <0.05 vs. saline according to ANOVA followed by Tukey post-hoc test. 110 PARTE III 111 5 DISCUSSÃO A combinação de um antipsicótico atípico a um antidepressivo é observado na prática clínica como uma estratégia para a depressão resistente ao tratamento (Fava et al., 2000; Hirschfeld et al., 2002a; Benazzi et al., 2009), depressão psicótica (Schatzberg et al., 2003; Dodd et al., 2005) e também para o tratamento da depressão bipolar (Müller-Oerlinghausen et al., 2002; Tohen et al., 2004; Shelton et al., 2006). A combinação de OLZ/FLX encontra-se associada a uma rápida e significativa melhora do quadro clínico quando comparado a monoterapia em pacientes resistentes ao tratamento para depressão (Shelton et al., 2001; Bobo & Shelton, 2010). Sabe-se que a fase mais difícil de tratamento de um paciente bipolar é a depressiva (Calabrese et al., 1999). Além disso, esta combinação está associada a eficácia, segurança e tolerabilidade no tratamento da depressão resistente (Bobo et al., 2010). Em virtude dos resultados encontrados com a combinaçao foi recentemente aprovado pelo FDA, nos Estados Unidos (EUA), a combinação de OLZ/FLX para a depressao bipolar (Shelton et al., 2006) industrializada pela Eli Lilly e comercializada pelo nome de Symbyax TM. Entende-se que, por um lado o benefício clínico da combinação OLZ/FLX para o tratamento da depressão bipolar parece ser evidente (Tohen et al., 2004; Shelton et al., 2006) porém, os mecanismos neuronais responsáveis por esta eficácia não são totalmente conhecidos (Ghaemi et al., 1999; Tamayo et al., 2009; Tohen et al., 2010). Evidências na literatura indicam que o cérebro possui um intenso metabolismo energético e que pode estar envolvido na fisiopatologia de muitos transtornos psiquiátricos como a depressão maior e o THB (Kato & Kato, 2000; Konradi et al., 2004; Corrêa et al., 2007; Lucca et al., 2009; Rezin et al., 2009; Streck et al., 2008). Efeitos colaterais de antipsicóticos e antidepressivos, que são limitantes do tratamento crônico e sua adesão, foram associados com estresse oxidativo e/ou a diminuição de energia (Hamman et al., 1995; Gross et al, 1996; Szasz et al., 2007; Martins et al., 2008). 112 Cérebro de ratos adultos, como outros tecidos com metabolismo que necessitem de altas e variadas quantidades de ATP, apresentam altas concentrações de fosfocreatina e atividade da enzima CK (Wallimann et al., 1992). A CK catalisa uma transferência reversiva do grupo fosforil (P) da fosfocreatina para a ADP regenerando ATP (Dzeja et al., 1996). Uma diminuição da atividade da enzima CK esta associado a vias neurodegenerativas que resultam e morte neuronal por isquemia, (Tomimoto et al., 1993), doenças neurodegenerativas (Akzenov et al., 2000; David et al., 1998), THB (Streck et al., 2008) e outras patologias (Gross et al., 1996; Hamman et al., 1995). A disfunção desta enzima é encontrada também na depressão resistente, esquizofrenia e no THB (Kato & Kato, 2000; Prabakan et al., 2004; Andresa et al., 2008). Alguns antidepressivos seletivos demonstram aumentar a atividade da CK em cerebros de ratos (Santos et al., 2009) Evidencias demonstram que antioxidantes, como a ketamina, podem reverter a inibição da cadeia respiratoria em cerebro de ratos induzidos por um modelo de estresse crônico moderado (Rezin et al., 2009). De fato, outros estudos recentes com o mesmo modelo, demonstram que existe um aumento do estresse oxidativo em regiões submitocondriais do cérebro. Descontroles nas atividades dos complexos respiratórios mitocondriais e produção de energia podem levar inclusive a degeneração celular (Rustin et al., 1998). Além disso, outras evidências demonstram que antipsicóticos alteram parâmetros oxidativos em cérebros de ratos (Agostinho et al., 2007; Martins et al., 2008). Em um modelo animal de mania, a atividade das enzimas CK e CS esta inibida (Streck et al., 2008; Corrêa et al., 2007). Recentemente, Assis e colaboradores (2009) encontraram que a OLZ 10mg/kg aumenta a atividade de CK no estriado de ratos sem afetar a atividade da enzima no hipocampo e no córtex. Entretanto, com baixas doses da OLZ (2,5 e 5mg/kg) a atividade da CK é inibida no cerebelo e córtex prefrontal. Antidepressivos, como a imipramina, podem inibir a atividade da CK em cérebro de ratos, provavelmente envolvendo o metabolismo energético (Assis et al., 2009). O presente estudo mostrou que após a administraçao aguda de OLZ, a atividade da CK foi inibida no cerebelo e no córtex prefrontal. Após administração aguda de FLX a atividade da CK foi inibida nas mesmas áreas e também no hipocampo, estriado e no córtex cerebral. No tratamento crônico, 2 horas após a última injeção, a atividade da CK estava diminuída após FLX monoterapia e em combinação com a OLZ 113 no cerebelo, córtex prefrontal, hipocampo, estriado e córtex cerebral. Entretanto, no tratamento crônico, 24 horas após a última injeção da monoterapia OLZ ou FLX ou em combinação, não se observaram alterações na atividade da enzima. Estes dados sugerem que a FLX não apresenta um efeito crônico na atividade da CK e podem estar associados ao período após a última administração. Em conjunto estes dados sugerem que o efeito inibitório da OLZ e FLX na atividade da CK em cérebro de ratos pode levar a especular se estas drogas influenciam no metabolismo energético. Entretanto é difícil correlacionar estes resultados com a sintomatologia clínica. Porém, a inibição da atividade da CK pode estar associada ao aparecimento de alguns efeitos colaterais destes medicamentos (Fava et al., 2000). A CS esta localizada na matriz mitocondrial e tem sido utilizada como enzima marcadora quantitativa da presença de dano mitocondrial (Marco et al., 1974). O presente estudo mostrou que o tratamento agudo com OLZ 6mg/kg em monoterapia e a combinação OLZ/FLX 3/25 mg/kg aumenta a atividade da CS no córtex prefrontal e hipocampo. O tratamento agudo com OLZ nas doses de 3 e 6 mg/kg e FLX 25mg/kg em monoterapia e a combinação OLZ/FLX 3/25mg/kg aumentou a atividade da CS no estriado. No tratamento crônico tanto a monoterapia quanto a combinação de FLX e OLZ não alteram a atividade da enzima após 2 e 24 horas da última administração. Este estudo indica que os efeitos da OLZ e FLX estão envolvidos em alterações na função mitocondrial. A razão destas alterações não estão esclarecidas, porém podem estar relacionadas com dessensibilização para os efeitos reparativos da OLZ e FLX, por mecanismo de adaptação ou mecanismo de defesa e associado ao sinegismo do mecanismo de ação da combinação. Os tecidos com alta demanda de energia como o cérebro, contém um grande número de mitocôndrias sendo, entretanto, mais suscetível a redução do metabolismo aeróbico. (Boekema et al., 2007). A mitocôndria é uma organela que promove um papel crucial na produção de ATP (Calabrese et al., 2001). A maior parte da energia celular é obtida através da fosforilação oxidativa, um processo que requer a ação de complexos enzimáticos respiratórios, localizados na membrana mitocondrial interna (Horn & Barrientos, 2008). A cadeia respiratória é denominada pelo conjunto dos complexos sendo composta por cinco complexos que transportam pares de elétrons pela translocação de prótons da matriz mitocondrial para o espaço intermembrana. O gradiente de prótons gerado é 114 utilizado pela ATP sintase para formar ATP pela fosforilação de adenosina difosfato (ADP) (Madrigal et al., 2001; Fattal et al., 2006). Distúrbios no funcionamento fisiológico da mitocôndria resultante de um malfuncionamento da cascata bioquímica e dano na cadeia trasportadora de elétrons tem sido sugerido com sendo um importante fator na patogênese de uma serie de distúrbios neuropsiquiátricos como o THB, depressão e esquizofrenia (Fattal et al., 2006; Prakaran et al., 2004). Diversos estudos tem demostrado que anormalidades no metabolismo energético pode levar a degeneraçao celular (Calabrese et al., 2001) além de estar envolvida em processos essenciais, como apoptose (Gur et al., 1987; Gigante et al., 2010). Outros estudos tem identificado regiões cerebrais especificas em pacientes bipolares uma diminuição no metabolismo energético e anormalidades no DNA mitocondrial (Iwamato et al., 2005; Kato et al., 2000; 2005). Modelos animais que avaliam a farmacologia molecular dos estabilizadores do humor tem implicado que o metabolismo energético mitocondrial como um alvo para estas drogas (Wang et al., 2004; Correa et al., 2007). O presente estudo mostra que o tratamento agudo e crônico com FLX e OLZ em monoterapia ou combinação alteram a atividade dos complexos da cadeia respiratória em cérebro de ratos. Porém na combinação pode ser observado uma grande alteração relacionada com a concentração das drogas, a área cerebral e o protocolo empregado. No tratamento agudo a atividade do complexo I apresenta-se aumentada no córtex prefrontal com OLZ 6mg/kg e a combinação OLZ/FLX 3/12,5 mg/kg, no hipocampo com FLX 25mg/kg e no estriado com OLZ 6mg/kg. A atividade do complexo II encontra-se aumentada no córtex prefrontal, hipocampo e estriado com OLZ 6 mg/kg em monoterapia. A atividade do complexo II-III também está aumentada no prefrontal, hipocampo, estriado na terapia combinada de OLZ 3 e 6 mg/kg com FLX 12,5 e 25 mg/kg. A atividade do complexo IV também apresenta-se aumentada no prefrontal estriado na terapia combinada de OLZ 3 e 6 mg/kg com FLX 12,5 e 25 mg/kg. No tratamento crônico, 2 horas após a ultima administração, houve aumento na atividade do complexo I com OLZ/FLX 6/25 mg/kg no estriado. A atividade do complexo II esta também está aumentada no estriado na dose combinada de OLZ/FLX 6/12,5 mg/kg. A atividade do complexo III encontra-se aumentada no estriado na 115 monoterapia com OLZ 3mg/kg. A atividade do complexo IV apresenta-se aumentada no hipocampo na combinação OLZ/FLX 6/25 mg/kg. Estes resultados mostram o estriado e o hipocampo com aumento na atividade da cadeia respiratória 2 horas após a última administração com o tratamento crônico em diferentes concentrações dos medicamentos. No tratamento crônico 24 horas após a última administração a atividade do complexo I encontra-se aumentada no prefrontal na monoterapia com FLX 12,5 mg/kg. Não houve alterações na atividade do complexo II. A atividade do complexo III encontra-se aumentada no estriado no tratamento com FLX 12,5 mg/kg. A atividade do complexo IV esta aumentada com a combinação de OLZ/FLX 6/12,5 mg/kg. Em contraste há uma inibição da atividade do complexo IV no hipocampo após monoterapia com OLZ 3 e 6 mg/kg, FLX 12,5 e 25 mg/kg e a combinação de OLZ 3 mg/kg com FLX 12,5 e 25 mg/kg. Em conjunto, estes resultados indicam que a atividade dos complexos da cadeia respiratória encontra-se aumentada. Este efeito pode ser considerado positivo quando comparado com estudos que indentificaram uma diminuição no metabolismo energético em cérebros de pacientes com o THB (Iwamoto et al., 2005; Kato & Kato, 2000; Kato et al., 2005). Levando em consideração que o metabolismo energético mitocondrial esta sendo considerado um alvo para novas estratégias de tratamento (Correa et al., 2007; Wang et al., 2004) a ação da combinação OLZ/FLX na cadeia respiratória pode ter uma contribuição para a resposta rápida e intensa observada nos pacientes com THB. As neurotrofinas BDNF, NGF, NT-3 promovem a sobrevivência neuronal e a plasticidade neuronal (Lindsey et al., 1994; Altar & Distefano, 1998). Além disso, Smith e colaboradores (1995) demonstram o envolvimento do estresse e o aumento nos níveis de glicocorticóides afetam a expressão de BDNF e NT-3. As reduções nos níveis de BDNF sérico são observados em pacientes com esquizofrenia e THB (Cunha et al., 2006; Rizos et al., 2010), sendo que relatos na literatura mostram que antidepressivos, antipsicóticos e estabilizadores do humor alteram os níveis de BDNF (Gonzáles-Pinto et al., 2010; Bai et al., 2003; Rizos et al., 2010; Shirayama et al., 2002). Assim, diversos estudos têm relacionado o papel das neurotrofinas na fisiopatologia e tratamento de transtornos psiquiátricos como depressão, esquizofrenia e o THB (Lindsey et al., 1994; Duman & Monteggia, 2006; Karege et al., 2002; Cunha et al., 2006; Rizos et al., 2010). A concentração sérica da NGF encontra-se diminuída em pacientes com THB. Pacientes com este transtorno em episódio maníaco apresentam níveis diminuídos 116 de NGF quando comparados com controles e pacientes THB eutímicos (Barbosa et al., 2010). Alem disso, evidencias demonstram um efeito sinérgico da combinação da OLZ/FLX na modulação do NGF (Maragnoli et al., 2006). O NT-3 é uma neurotrofina que tem um papel chave na sobre a sobrevivência, diferenciação, conexão e plasticidade neuronal (Huang & Reichardt, 2001; Schinder & Poo, 2000). Estudos em humanos têm descrito a participaçao do NT-3 na fisiopatologia do estresse, depressão maior e THB (Fernandez et al., 2010; Smith et al., 1996). No presente estudo a avaliação dos efeitos da OLZ, FLX e a sua combinação nos níveis de NT-3, BDNF e NGF no cérebro de ratos mostrou que o tratamento crônico com a combinação FLX/OLZ aumenta os níveis de NT-3 no córtex prefrontal. Lesões em neurônios do córtex prefrontal estão associados ao desenvolvimento da depressão (Arango et al., 1995). Este resultado sugere que o tratamento com a combinação OLZ/FLX pode ser importante no tratamento para THB no estado atual depressivo. Em conjunto, estes dados sugerem que o NT-3 pode estar envolvido na ação terapêutica da combinação de OLZ/FLX no THB. No presente estudo foi concluído que a administração da combinação da OLZ/FLX aumenta a expressão de NT-3 no córtex préfrontal de ratos, sugerindo que esta neurotrofina pode estar envolvida nos efeitos terapêuticos da combinação de OLZ/FLX, observados em pacientes bipolares. Além disso, foi observado que a combinação de OLZ/FLX alterou enzimas do metabolismo energético, sendo necessários maiores estudos sobre o metabolismo energético para avaliar os efeitos dessa combinação em pacientes com THB. 117 REFERÊNCIAS AGOSTINHO FR, RÉUS GZ, STRINGARI RB, RIBEIRO KF, FERRARO AK, BENEDET J, ROCHI N, SCAINI G, STRECK EL, QUEVEDO J. Treatment with olanzapine, fluoxetine and olanzapine/fluoxetine alters citrate synthase activity in rat brain. Neurosci lett 487(3): 278-281. 2011. AGOSTINHO FR; JORNADA LK; SCHRÖDER N; ROESLER R; DAL-PIZZOL F; QUEVEDO J. Effects of chronic haloperidol and/or clozapine on oxidative stress parameters in rat brain. Neurochem Res 32(8): 1343-50. 2007. AGOSTINHO FR; SCAINI G; FERREIRA GK; JEREMIAS IC; RÉUS GZ; REZIN GT; CASTRO AA; ZUGNO AI; QUEVEDO J; STRECK EL. Effects of olanzapine, fluoxetine and olanzapine/fluoxetine on creatine kinase activity in rat brain. Brain Res Bull 80(6): 337-340. 2009. AKSENOV M; BUTTERFIELD DA; MARKESBERY WR. Oxidative modification of creatine kinase bb in alzheimer’s disease brain. Journal of Neurochemistry 74: 2520– 2527. 2000. ALMEIDA-FILHO N; MARI JJ; COUTINHO E; et al. Brazilian Multicentric Study of Psychiatric Morbidity. Methodological Feature and Prevalence Estimates. The British Journal of Psychiatry 171: 524-529. 1997. ALTAR C & DISTEFANO PS. Neurotrophin trafficking by anterograde transport. Trends in Neuroscience 21: 433–437. 1998. AMERICAN PSYCHIATRY ASSOCIATION: Diagnostic and Statistic Manual of Mental Disorders (DSM IV). Ed. 4. American Psychiatry Association Whashington DC. 1994. AMES A. CNS energy metabolism as related to function. Brain Research Review 34: 42–68. 2000. 118 ANDRES RH; DUCRAYA AD; SCHLATTNER U; WALLIMANN T; WIDMER HR. Functions and effects of creatine in the central nervous system. Brain Research Bulletin 76: 329–343. 2008. ANDRESA RH; DUCRAYA ALD; SCHLATTNER, UWE; THEOWALLIMANNB C; WIDMERA HR. Functions and effects of creatine in the central nervous system. Brain Research Bulletin 76: 329–343. 2008. ANGST J. The bipolar spectrum. The British Journal of Psychiatry 190: 189-191. 2007. ARANGO V; UNDERWOOD MD; GUBBI AV; MANN JJ. Localized alterations in pre- and postsynaptic serotonin binding sites in the ventrolateral prefrontal cortex of suicide victims. Brain Research 688: 121– 133. 1995. ASSIS LC; REZIN GT; COMIM CM; VALVASSORI SS; JEREMIAS IC; ZUGNO AI; QUEVEDO J; STRECK EL. Effect of acute administration of ketamine and imipramine on creatine kinase activity in the brain of rats. Revista Brasileira de Psiquiatria 31(3): 247-52. 2009. ASSIS LC; SCAINI G; DI-PIETRO PB; CASTRO AA; COMIM CM; STRECK EL; QUEVEDO J. Effect of antipsychotics on creatine kinase activity in rat brain Basic & Clinical Pharmacology & Toxicology 101(5): 315-9. 2007. BAI O; CHLAN-FOURNEY J; BOWEN R; KEEGAN D; LI XM. Expression of brainderived neurotrophic factor mRNA in rat hippocampus after treatment with antipsychotic drugs. Journal of Neuroscience Research 71: 127-131. 2003. BARBOSA G; HUGUET RB; NEVES FS; REIS HJ; BAUER ME; JANKA A; PALOTÁS A; TEIXEIRA AL. Impaired nerve growth factor homeostasis in patients with bipolar disorder. World Journal of Biological Psychiatry 2010 in press. BASS NJ; DATTA SR; MCQUILLIN A; PURI V; CHOUDHURY K; THIRUMALAI S; LAWRENCE J; QUESTED D; PIMM J; CURTIS D; GURLING HM. Evidence for 119 the association of the DAOA (G72) gene with schizophrenia and bipolar disorder but not for the association of the DAO gene with schizophrenia Behavioral and Brain Functions 5:28. 2009. BAUER M & PFENNIG A. Epidemiology o Bipolar disorders. Epilepsia 46(4): 8-13. 2005. BEARDEN CE; GLAHN DC; MONKUL ES; BARRETT J; NAJT P; KAUR S; et al. Sources of declarative memory impairment in bipolar disorder: Mnemonic processes and clinical features. Journal Psychiatry Research 40: 47-58, 2006a. BEARDEN CE; GLAHN DC; MONKUL ES; BARRETT J; NAJT P; VILLAREAL V; et al. Patterns of memory impairment in bipolar disorder and unipolar major depression. Journal Psychiatry Research 142: 139-150. 2006b. BELMAKER RH. Bipolar disorder. The New England Journal of Medicine 351: 476486. 2004. BENAZZI F; BERK M; FRYE MA; TOHEN M; WANG W; BARRACO A TOHEN M. Olanzapine/fluoxetine combination for the treatment of mixed depression in bipolar I disorder: a post hoc analysis. Journal of Clinical Psychiatry 70: 1424-1431. 2009. BERTOLINO A; FRYE M; CALLICOTT JH; MATTAY VS; RAKOW R; SHELTONREPELLA J; et al. Neuronal pathology in the hippocampal area of patients with bipolar disorder: a study with proton magnetic resonance spectroscopic imaging. Biologycal Psychiatry 53: 906-913. 2003. BOBO WV & SHELTON RC. Efficacy, safety and tolerability of Symbyax for acutephase management of treatment-resistant depression. Expert Review of Neurotherapeutics 10(5): 651-70. 2010. BOEKEMA EJ & BRAUN HP. Supramolecular structure of the mitochondrial oxidative phosphorylation system. J. Biol. Chem. 282: 1–4. 2007. 120 BOSCH MA; ARTIGAS F; ADELL A. Effects of acute Olanzapine after sustained fluoxetina on extracellular monoamine levels in the rat medial prefrontal cortex. Europan Journal of Pharmacology 516: 235-238. 2005. BOWDEN C; BRUGGER A; SWANN A; et al. Efficacy of divalproex vs. lithium in the treatment of mania. JAMA 271: 918-24. 1994. CAGGIULA M. Neurotrophic factors and clinical recovery in relapsing-remitting multiple sclerosis. Scandinavian Journal of Immunology 62: 76-82. 2005. CALABRESE J; BOWDEN C; SACHS G; et al. A double-blind placebo-controlled study of lamotrigine monotherapy in outpatients with bipolar I depression. Journal of Clinical Psychiatry 60(2): 79-88. 1999. CALABRESE V; SCAPAGNINI G; GIUFFRIDA-STELLA AM. Mitochondrial involvement in brain function and dysfunction: relevance to aging, neurodegenerative disorders and longevity. Neurochemistry Research 26: 739-764. 2001. CAPSI A & MOFFITT TE. Gene-environment interactions in psychiatry: joining forces with neuroscience. Nature Reviews. Neuroscience 7(7): 583-590. 2006. CHAN HY; JOU SH; JUANG YY; CHANG CJ; CHEN JJ; CHEN CH; CHIU NY. A single-blind, comparative study of zotepine versus haloperidol in combination with a mood stabilizer for patients with moderate-to-severe mania. Psychiatry and Clinical Neurosciences 64(2): 162-9. 2010. CHEN CH; LENNOX B; JACOB R; CALDER A; LUPSON V; BISBROWNCHIPPENDALE R; et al. Explicit and implicit facial affect recognition in manic and depressed states of bipolar disorder: a functional magnetic resonance imaging study. Biologycal Psychiatry 59: 31-39. 2006. CHEN CH; SUCKLING J; LENNOX BR; OOI C; BULLMORE ET. A quantitative meta-analysis of fMRI studies in bipolar disorder. Bipolar Disorder 13(1): 1-15. 2011. 121 CORDIOLI AV. Psicofarmacologia: Consulta Rápida. 4ª edição. Porto Alegre, Artmed, 2010. p 211-221. CORREA C; AMBONI G; ASSIS LC; MARTINS MR; KAPCZINSKI F; STRECK EL; QUEVEDO J. Effects of lithium and valproate on hippocampus citrate synthase activity in an animal model of mania. Progress in Neuropsychopharmacology & Biological Psychiatry 31: 887-891. 2007. COYLE JT & DUMAN RS. Finding the intracellular signaling pathways affected by mood disorder treatments. Neuron 38: 157-160. 2003. CUMMINGS JL. Frontal–subcortical circuits and human behavior. Archives of Neurology 50: 873–880. 1993. CUNHA AB; FREY BN; ANDREAZZA AC; GODOI JD; ROSA AR; GONÇALVES CA; SANTIN A; KAPCZINSKI F. Serum brain-derived neurotrophic is decreased in bipolar disorder during depressive and manic episodes. Neuroscience Letters 398: 215–219. 2006. DAVID S; SHOEMAKER M; HALEY BE. Abnormal properties of creatine kinase in alzheimer’s disease brain: correlation of reduced enzyme activity and active site photolabeling with aberrant cytosol-membrane partitioning. Molecular Brain Research 54: 276–287. 1998. DODD S; HORGAN D; MALHI G; BERK M. To combine or not to combine? A literature review of antidepressant combination therapy. Journal of Affective Disorders 89: 1-11. 2005. DREVETS WC. Neuroimaging and neuropathological studies of depression: implications for the cognitive-emotional features of mood disorders. Current Opinion in Neurobiology 11: 240-249. 2001. DU J; GOULD TD; MANJI HK. Neurotrophic signaling in mood disorders. In Signal transduction and human disease. Edited by Gutkind JS; John Wiley & Sons; Inc. 352: 411-446. 2003. 122 DUMAN RS & MONTEGGIA LM. A neurotrophic model for stress-related mood disorders. Biological Psychiatry 59: 1116–1127. 2006. DUMAN RS. Role of neurotrophic factors in the etiology and treatment of mood disorders. Neuromolecular Medicine 5:11–25. 2004. DZEJA PP & TERZIC A. Phosphotransfer networks and cellular energetics. Journal of Experimental Biology 206: 2039–2047. 2003. DZEJA PP; ZELEZNIKAR RJ; GOLDBERG ND. Suppression of creatine kinase catalyzed phosphotransfer results in increased phosphoryl transfer by adenylate kinase in intact skeletal muscle. Journal of Biological Chemistry 271: 12847–12851. 1996. EBERHART NK & HAMMEN CL. Interpersonal Style, Stress, and Depression: An Examination of Transactional and Diathesis-Stress Models. Journal of Social and Clinical Psychology 29(1): 23-38. 2010. EUROPEAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY (ECNP) Consensus Meeting March 2000. NICE: Guidelines for investigating efficacy in bipolar disorder. European Neuropsychopharmacol 11: 79-88. 2001. FARAVELLI C; GORINI-AMEDEI S; SCARPATO MA; FARAVELLI L. Bipolar Disorder: an impossible diagnosis. Bipolar disorders and suicidal behaviour. Clinical Practice and Epidemology Mental Health 16: 13-14. 2009. FATTAL O; BUDUR K; VAUGHAN AJ; FRANCO K. Review of the literature on major mental disorders in adult patients with mitochondrial diseases. Psychosomatics 47: 1–7. 2006. FAVA M. New approaches to the treatment of refractory depression. Journal of Clinical Psychiatry 61: 26-32. 2000. FERNANDES BS; GAMA CS; WALZ JC; CERESÉR KM; FRIES GR; COLPO G; AGUIAR B; PFAFFENSELLER B; KAUER-SANT’ANNA M; KAPCZINSKI F. 123 Increased neurotrophin-3 in drug-free subjects with bipolar disorder during manic and depressive episodes. J Psych Res 44: 561–565. 2010. FERNÁNDEZ A; ANDREINA MM; HORNERO R; ORTIZ T; LÓPEZ-IBOR JJ. Analysis of brain complexity and mental disorders. Actas Esp Psiquiatr 38(4): 229-38. 2010. FRANCIS D; DIORIO J; LAPLANTE P; WEAVER S; SECKL JR; MEANEY MJ. The role of early environmental events in regulating neuroendocrine development. Moms, pups, stress, and glucocorticoid receptors. Annuals of the New York of Academy Science 794:136-52. 1996. FREEMAN MP, FREEMAN SA, MCELROY SL. The comorbidity of bipolar and anxiety disorders: prevalence, psychobiology and treatment issues. J. Affective Disorders 68: 1-23. 2002. FREEMAN T; CLOTHIER J; PAZZAGLIA P; et al. A double-blind comparision of valproate and lithium in the treatment of mania. American Journal of Psychiatry 149: 108-11. 1992. FREY BN; ANDREAZZA AC; CERESÉR KMM; MARTINS MR; VALVOSSORI SS; RÉUS GZ; QUEVEDO J; KAPCZINSKI F. Effects of mood stabilizers on hippocampus BDNF levels in an animal model of mania. Life Sciences 79: 281-6. 2006a. FREY BN; ANDREAZZA AC; ROSA AR; MARTINS MR; VALVASSORI SS; REUS GZ; HATCH JP; QUEVEDO J; KAPCZINSKI F. Lithium increases nerve growth factor levels in the rat hippocampus in an animal model of mania. Behavioural Pharmacology 17: 311-8. 2006c. FREY BN; RODRIGUES MMF; MACHADO-VIEIRA R; SOARES JC; KAPCZINSKI F. Anormalidades Neuropatológicas e Neuroquímicas no Transtorno Afetivo Bipolar. Revista Brasileira de Psiquiatria 26(3): 180-8. 2004. 124 FREY BN; VALVASSORI SS; RÉUS GZ; MARTINS MR; PETRONILHO FC; BARDINI KBA; DAL-PIZZOL F; KAPCZINSKI F; QUEVEDO J. Effects of lithium and valproate on amphetamineinduced oxidative stress generation in an animal model of mania. Journal Psychiatry Neurosciensce 31: 326-32. 2006b. FRYE M; KETTER T; KIMBRELL T; el al. A placebo-controlled study of lamotrigine and gabapentin monotherapy in refractory mood disorders. Journal of Clinical Psychopharmacology 20: 607-14. 2000. GHAEMI SN. On defining mood stabilizer. Bipolar Disorder 3(3): 154-8. 2001. GHAEMI SN; BOIMAN EE; GOODWIN FK. Kindling and Second Messengers: an Approach to the Neurobiology of Recurrence in Bipolar Disorder. Biology Psychiatry 45: 137-144. 1999. GHAEMI SN; KO JY; GOODWIN FK. The bipolar spectrum and the antidepressant view of the world. Journal of Psychiatry Practices 7: 287-97. 2001. GIGANTE AD, YOUNG LT, YATHAM LN, ANDREAZZA AC, NERY FG, GRINBERG LT, HEINSEN H, LAFER B. Morphometric post-mortem studies in bipolar disorder: possible association with oxidative stress and apoptosis. International Journal of Neuropsychopharmacology 23:1-15. 2010. GONZÁLEZ-PINTO A; MOSQUERA F; PALOMINO A; ALBERICH S; GUTIÉRREZ A; HAIDAR K; VEGA P; BARBEITO S; ORTIZ A; MATUTE C. Increase in brain-derived neurotrophic factor in first episode psychotic patients after treatment with atypical antipsychotics. International Clinical Psychopharmacology 25: 241-245. 2010. GOODWIN FK & JAMISON KR. Manic-Depressive Illness: Bipolar and Recurrent Unipolar Disorders, 2nd. New York: Oxford University Press. 2003. 125 GOODWIN FK; MURPHY DL; BUNNEY WE Jr. Lithium-carbonate treatment in depression and mania. A longitudinal double-blind study. Archives of General Psychiatry 21: 486-96. 1969. GROSS WL; BAK MI; INGWALL JS; ARSTALL MA; SMITH TW; BALLIGAND JL; KELLY RA. Nitric oxide inhibits creatine kinase and regulates rat heart contractile reserve. Proceedings of the National Academy of Sciences 93: 5604–5609. 1996. GUR RE; RESNICK SM; ALAVI A; CARROF S; KUSHNER M; REIVCH M. Regional brain function in schizophrenia ii: repeated evaluation with positron emission tomography. Arch. Gen. Psychiatry 44: 126–129. 1987. HAMMAN BL; BITTL JA; JACOBUS WE; ALLEN PD; SPENCE, RS; TIAN R; INGWALL JS. Inhibition of the creatine kinase reaction decreases the contractile reserve of isolated rat hearts. American Journal of Physiology 269: 1030–1036. 1995. HAMSHERE ML; GREEN EK; JONES IR; JONES L; MOSKVINA V; KIROV G; GROZEVA D; NIKOLOV I; VUKCEVIC D; CAESAR S; GORDON-SMITH K; FRASER C; RUSSELL E; BREEN G; ST CLAIR D; COLLIER DA; YOUNG AH; FERRIER IN; FARMER A; MCGUFFIN P; WELLCOME TRUST CASE CONTROL CONSORTIUM; HOLMANS PA; OWEN MJ; O'DONOVAN MC; CRADDOCK N. Genetic utility of broadly defined bipolar schizoaffective disorder as a diagnostic concept. The British Journal of Psychiatry 195: 23–29. 2009. HANDA RJ; BURGESS LH; KERR JE; O’KEEFE JA. Gonadal steroid hormone receptors and sex differences in the hypothalamo-pituitary-adrenal axis. Hormones and Behavior 28: 464-476. 1994. HAWTON K; SUTTON L; HAW C; SINCLAIR J; HARRISS L. Suicide and attempted suicide in bipolar disorder: a systematic review of risk factors. Journal of Clinical Psychiatry 66: 693-704. 2005. HERMAN JP & CULLINAN WE. Neurocircuitry of stress: central control of the hypothalamopituitary-adrenocortical axis. Trends in Neurosciences 20:78-84. 1997. 126 HIRSCHFELD RM; MONTGOMERY SA, AGUGLIA E. Partial response and nonresponse to antidepressant therapy: current approaches and treatment options. Journal of Clinical Psychiatry 63: 826-837. 2002a. HIRSCHFELD RM; WEISSMAN MM; DAVIS KL; CHARNEY D; COYLE JT. Nemeroff (Eds), Risk factors for major depression an bipolar disorder, in: The fifth Generation of Progress, Lippincott Williams and Wilkins, Philadelfia, Neuropsychopharmacology 1017-1025. 2002b. HORN D & BARRIENTOS A. Mitochondrial copper metabolism and delivery to cytochrome c oxidase. IUBMB life 60 (7): 421-9. 2008. HROUDOVA J; FISAR Z. Activities of respiratory chain complexes and citrate synthase influenced by pharmacologically different antidepressants and mood stabilizers. Neuro Endocrinology Letters 31(3): 336-42. 2010. HUANG EJ & REICHARDT LF. Neurotrophins: role in neuronal development and function. Annual Review of Neuroscience 24: 677– 736. 2001. HUMMEL B; WALDEN J; STAMPFER R; et al. Acute antimanic efficacy and safety of oxcarbamazepine in an open trial with an on-off design. Bipolar Disorders 4: 412-7. 2002. IWAMOTO K; BUNDO M; KATO T. Altered expression of mitochondria-related genes in postmortem brains of patients with bipolar disorder or schizophrenia, as revealed by large-scale DNA microarray analysis. Hum Mol Genet 14: 241-253. 2005. JENKINS R & MELTZER H. - The National Survey of Psychiatric Morbidity in Great Britain. Social Psychiatry and Psychiatric Epidemiology 30: 1-4, 1995. JUDD L; LEWIS L; AKISKAL HAGOP S. - The Prevalence and Disability of Bipolar Spectrum Disorders in the Usa Population: Re-Analysis of the ECA Database Taking into Account Subthreshold Cases. Journal of Affective Disorders 73: 123-131. 2003. 127 KALB R. The protean actions of neurotrophins and their receptors on the life and death of neurons. Trends in Neurosciences 28: 5-11. 2005. KAPCZINSKI F; VIETA E; ANDREAZZA AC; FREY BN; GOMES FA; TRAMONTINA J; KAUER-SANT'ANNA M; GRASSI-OLIVEIRA R; POST RM. Allostatic load in bipolar disorder: Implications for pathophysiology and treatment. Neuroscience and Biohavioral Reviews 32(4): 675-692. 2008. KAPCZINSKY & QUEVEDO. Transtorno Bipolar – Teoria e Clínica. Artmed 17-43. 2009. KAREGE F; PERRET G; BONDOLFI G; SCHWALD M; BERTSCHY G; AUBRY JM. Decreased serum brain-derived neurotrophic factor levels in major depressed patients. Psychiatry Research 15: 143–148. 2002. KATO T & KATO N. Mitochondrial Dysfunction in Bipolar Disorder. Bipolar Disorders 2: 80-190. 2000. KATZOW JJ; HSU DJ; NASSIR GHAEMI S. The bipolar spectrum: a clinical perspective. Bipolar Disorders 6: 436-42. 2003. KECK P; VERSIANI M; POTKIN S; et al. Ziprasidone in the treatment of acute bipolar mania: a three-week, placebo-controlled, double-blind, randomized trial. American Journal of Psychiatry 160(4):741-8. 2003. KESSLER RC; MCGONAGLE KA; ZHAO S; NELSON CB; HUGHES M; ESHLEMAN S; WITTCHEN HU; KENDLER KS. Lifetime and 12-month prevalence of DSM III-R psychiatry disorders in the United States. Results from the National Comorbidity Survey. Archives of General Psychiatry 51 (1): 8-19. 1994. KESSLER RC; MERIKANGAS KR; WANG PS. Prevalence, comorbidity, and service utilization for mood disorders in the United States at the beffinning of the Twenty-first century. Annual Review of Clinical Psychololgy 3: 137-158. 2007. 128 KESSLER RC; RUBINOW DR; HOLMES C; ABELSON JM; ZHAO S. The epidemiologic of DSM III-R bipolar disorder in a general population survey. Psychological Medicine 27(5): 1079-1089. 1997. KODAMA M; FUJIOKA T; DUMAN RS. Chronic olanzapine or fluoxetine administration increases cell proliferation in hippocampus and prefrontal cortex of adult rat. Biology Psychiatry 56(8):570-80. 2004. KONRADI C; EATON M; MACDONALD ML et al. Molecular Evidence for Mitochondrial Dysfunction in Bipolar Disorder. Archives of General Psychiatry 61: 300-308. 2004. LEBOYER M; HENRY C; PAILLERE-MARTINOT ML; BELLIVIER F. Age at onset in bipolar affective disorders: a review. Bipolar Disorder 7(2) 111-118. 2005. LEDOUX SP; DRUZHYNA NM; HOLLENSWORTH SB; HARRISON JF; WILSON GL. Mitochondrial DNA repair: a critical player in the response of cells of the CNS to genotoxic insults. Neuroscience 14: 1249-1259. 2007. LEE JG; CHO HY; PARK SW; SEO MK; KIM YH. Effects of olanzapine on brainderived neurotrophic factor gene promoter activity in SH-SY5Y neuroblastoma cells. Progress in Neuro-Psychopharmacology and Biological Psychiatry 34(6): 1001-6. 2010. LEVINE S. Primary social relationships influence the development of the hypothalamicpituitary-adrenal axis in the rat. Physiology and Behavior 73: 255-260. 2001. LEVINSON DF. The genetics of depression: a review. Biological Psychiatry 60: 8492. 2006. LICHT R. Typical and atypical antipsychotics in Neuropsychiatrica 12: 115-9. 2000 bipolar disorder. Acta 129 LIMA MS; TASSI J; NOVO IP; MARI JJ. Epidemiologia do transtorno bipolar. Revista de Psiquiatria Clínica 32(1): 15-20. 2005. LINDSAY RM; WIEGAND SJ; ALTAR CA; DISTEFANO PS. Neurotrophic factors: from molecule to man. Trends in Neuroscience 17: 182−190. 1994. LUCCA G; COMIM CM, VALVOSSORI SS; RÉUS GZ; VUOLO F; PETRONILHO F; GAVIOLLO EC; DAL-PIZZOL F; QUEVEDO J. Increased oxidative stress in submitochondrial particles into the brain of rats submitted to the chronic mild stress paradigm. J Psychiatr Res 43: 864-869. 2009. LY CV & VERSTREKEN P. Mitochondria at the synapse. The Neuroscientist 12: 291–299. 2006. MACHADO-VIEIRA R; BRESSAN RA; FREY BN; SOARES JC. As bases neurobiológicas do transtorno bipolar. Revista de Psiquiatria Clínica 32(1): 28-33. 2005. MACRITCHIE K; GEDDES JR; SCOTT J; HASLAM D; DE LIMA M; GOODWIN G. Valproate for acute mood episodes in bipolar disorder. Cochrane Database Systematic Reviews Issue 1. Art. No.: CD004052. DOI: 10.1002/14651858.CD004052. 2003. MADRIGAL JLM; OLIVENZA R; MORO MA; LIZASOAIN I; LORENZO P; RODRIGO J; LEZA JC. Glutathione depletion, lipid peroxidation and mitochondrial dysfunction are induced by chronic stress in rat brain,. Neuropsychopharmacology 24: 420–429. 2001. MAGARIÑOS AM & MCEWEN BS. Stress-induced atrophy of apical dendrites of hippocampal CA3c neurons: involvement of glucocorticoid secretion and excitatory amino acid receptors. Neuroscience 69: 89–98. 1995. MAGGS R. Treatment of manic illness with lithium carbonate. The British Journal of Psychiatry 109: 56-65. 1963. 130 MALONEY AE & SIKICH L. Olanzapine approved for the acute treatment of schizophrenia or manic/mixed episodes associated with bipolar I disorder in adolescent patients. Journal of Neuropsychiatric Disease and Treatment 10(6): 749-66. 2010. MANJI HK & DUMAN RS. Impairments of neuroplasticity and cellular resilience in severe mood disorders: implications for the development of novel therapeutics. Psychopharmacology Bulletin 35: 5-49. 2001. MANJI HK & LENOX RH. Signaling: Cellular Insights into the Pathophysiology of Bipolar Disorder. Biology and Psychiatry 48: 518-530. 2000. MARAGNOLI ME; FUMAGALLI F; GENNARELLI M; RACAGNI G; RIVA MA. Fluoxetine and olanzapine have synergistic effects in the modulation of fibroblast growth factor 2 expression within the rat brain. Biology and Psychiatry 55(11): 1095102. 2006. MARCO R; PESTAÑA A; SEBASTIAN J; SOLS A. Oxaloacetate metabolic crossroads in liver. Enzyme compartmentation and regulation of gluconeogenesis. Molecular and Cellular Biochemistry 3: 53-70. 1974. MARTINS MR; PETRONILHO FC; GOMES KM; DAL-PIZZOL F; STRECK EL; QUEVEDO J. Antipsychotic-induced oxidative stress in rat brain. Neurotoxicity Research 13: 63–69. 2008. MASON P & WILKONSON G. - The Prevalence of Psychiatric Morbidity. OPCS Survey of Psychiatric Morbidity in Great Britain. The British Journal of Psychiatry 168: 1-3. 1996. MATTHEWS JD; BOTTONARI KA; POLANIA LM. An open study of olanzapine and fluoxetine for psychotic major depressive disorder: interim analyses. Journal of Clinical Psychiatry 63: 1164-1170. 2002. MCINTYRE RS; MUZINA DJ; KEMP DE; BLANK D; WOLDEYOHANNES HO; LOFCHY J; SOCZYNSKA JK; BANIK S; KONARSKI JZ. Bipolar disorder and 131 suicide: research synthesis and clinical translation. Current Psychiatry Reports 10(1): 66-72. 2008. Review. MEANEY MJ; BHATNAGAR S; LAROCQUE S; MCCORMICK C; SHANKS N; SHARMA S; SMYTHE J; VIAU V; PLOTSKY PM. Individual differences in the hypothalamic-pituitary-adrenal stress response and the hypothalamic CRF system. Annual of the New York of Academy Science 697: 70-85. 1993. MEDDA P, PERUGI G, ZANELLO S, CIUFFA M, RIZZATO S, CASSANO GB. Comparative response to electroconvulsive therapy in medication-resistant bipolar I patients with depression and mixed state. Journal of ECT 26(2): 82-6. 2010. MELTZER HY. Massive serum creatine kinase increases with atypical antipsychotic drugs: what is the mechanism and the message? Psychopharmacology 150: 349–350. 2000. MERIKANGAS KR; AKISKAL HS; ANGST J; GREENBERG PE; HIRSCHFELD RM; PETUKHOVA M; KESSLER RC. Lifetine and 12-month prevalence of bipolar spectrum disorder in the National Comorbidity Survey replication. Archives of General Psychiatry 64(5): 543-552. 2007. MITHCELL PB; SLADE T; ANDREWS G. Twelve-month prevalence and disability of DSM-IV bipolar disorder in an Australian general population survey. Psychological Medicine 34(5): 777-785. 2004. MORENO DH & ANDRADE LH. The lifetime prevalence, health services utilization and risk of suicide of bipolar spectrum subjects, including subthreshold categories in the São Paulo ECA study. Journal of Affective Disorders 87(2-3): 231-241. 2005. MORENO DH & DIAS RS. Epidemiologia. In: Transtorno bipolar do humor. São Paulo: Lemos Editorial. 2002. MÜLLER-OERLINGHAUSEN B & ROGGENBACH J. Bipolar disorder. Lancet 359 241-247. 2002. 132 O’CONNOR TM; O’HALLORAN DJ; SHANAHAN F. The stress response and the hypothalamic–pituitary–adrenal axis: from molecule to melancholia. QJM – Monthly Journal of the Association of Psysicians 93: 323–333. 2000. OBATA K & NOGUCHI K. BDNF in sensory neurons and chronic pain. Neurosciensce Research 55: 1-10. 2006. OKUMA T; INANAGA K; OTSAKI S; et al. Comparision of the antimaniac efficacy of carbamazepine and chlorpromazine: a double-blind controlled study. Psychopharmacology 66: 211-7. 1979. OKUMA T; INANAGA K; OTSUKI S; et al. A preliminary double-blind study on the efficacy of carbamazepine in prophylaxis of manic-depressive illness. Psychopharmacology 73: 95-6. 1981. OKUMA T; YAMASHITA I; TAKAHASHI R; et al. Comparision of the antimaniac efficacy of carbamazepine and lithium carbonate by double-blind controlled study. Pharmacopsychiatry 23: 143-50. 1990. PANDE A; CROCKATT J; JANNEY C; et al. Gabapentin in bipolar disorder: a placebo-controlled trial of adjunctive thewrapy. Gabapentin Bipolar Disorder Study Group. Bipolar Disorder 2: 249-55. 2000. PAYNE JL; QUIROZ JA; GOULD TD; ZARATE CA; MANJI HK. Neurobiology of Mental Disorder. In Neurobiology of Mental Illness. Edited by Charney DS, Nestler EJ. New York: Oxford University Press USA 397-420. 2003. PEARLSON GD; BARTA PE; POWERS RE; MENON RR; RICHARDS SS; AYLWARD EH; et al. Medial and superior temporal gyral volumes and cerebral asymmetry in schizophrenia vs bipolar disorder. Biological Psychiatry 41: 1–14. 1997. PERLIS R; EVINS A; OGUTHA J; SACHS G. Atypical antipsychotics in the treatment of bipolar diosrder. Clinical Approach in Bipolar Disorders 1: 4-9. 2002. 133 POPE HG JR; MCELROY SL; KECK PE JR; HUDSON JI. Valproate in the treatment of acute mania: a placebo-controlled study. Archives of General Psychiatry 48: 62-8. 1991. POST R; UHDE T; BALLENGER J; SQUILLACE K. Prophylatic efficacy of carbamazepine in manic-depressive illness. American Journal of Psychiatry 140: 1602-4. 1983. POSTERNAK MA & ZIMMERMAN M. The prevalence of atypical features across mood, anxiety and personality disorders. Comprehensive Psychiatry 43: 253-262. 2002. PRABAKARAN S; SWATTON JE; RYAN MM; HUFFAKER SJ; HUANG JT; GRIFFIN JL; WAYLAND M; FREEMAN T; DUDBRIDGE F; LILLEY KS; KARP NA; HESTER S; TKACHEV D. Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Molecular Psychiatry 9: 684– 697. 2004. REZIN GT; GONÇALVES CL; DAUFENBACH JF; FRAGA DB; SANTOS PM; FERREIRA GK; HERMANI FV; COMIM CM; QUEVEDO J; STRECK EL. Acute administration of ketamine reverses the inhibition of mitochondrial respiratory chain induced by chronic mild stress. Brain Res. Bull. 79: 418-21. 2009. RIHMER Z & KISS K. Bipolar Disorders. 4(1): 21-5. 2002. Review. RIZOS EM; PAPADOPOULOU A; LASKOS E; MICHALOPOULOU PG; KASTANIA A; VASILOPOULOS D; KATSAFOUROS K; LYKOURAS L. Reduced serum BDNF levels in patients with chronic schizophrenic disorder in relapse, who were treated with typical or atypical antipsychotics. World Journal of Biological Psychiatry 11(2-2): 251-5. 2010. 134 ROBBINS N & REGIER DA. - Psychiatric Disorders in America: the Epidemiologic Catchment Area Study. Lybrary of Congress Cataloging-in-Publication Data. New York. 1991. ROSOKLIJA G; TOOMAYAN G; ELLIS SP; KEILP J; MANN JJ; LATOV N; HAYS AP; DWORK AJ. Structural abnormalities of subicular dendrites in subjects with schizophrenia and mood disorders: preliminary findings. Archives of General Psychiatry 57(4): 349-56. 2000. ROTHSCHILD AJ; WILLIAMSON DJ; TOHEN MF; SCHATZBERG A; ANDERSEN SW; VAN CAMPEN LE; SANGER TM; TOLLEFSON GD. A doubleblind, randomized study of olanzapine and olanzapine/fluoxetine combination for major depression with psychotic features. Journal of Clinical Psychopharmacology 24(4): 365-73. 2004. RUSTIN P; CHRETIEN D; BOURGERON T; GERARD B; ROTIG A; SAUDUBRAY JM; MUNNICH A. Biochemical and molecular investigations in respiratory chain deficiencies. Clin Chim Acta 228: 35–51. 1994. SANTOS PM; SCAINI G; REZIN GT; BENEDET J; ROCHI N; JEREMIAS GC, CARVALHO-SILVA M; QUEVEDO J; STRECK EL. Brain creatine kinase activity is increased by chronic administration of paroxetine. Brain Research Bulletin 80(6): 32730. 2009. SAPOLSKY R. Glucocorticoids and atrophy of the human hippocampus. Science 273: 749 –750. 1996. SCAINI G; SANTOS PM; BENEDET J; ROCHI N; GOMES LM; BORGES LS; REZIN GT; PEZENTE DP; QUEVEDO J; STRECK EL. Evaluation of Krebs cycle enzymes in the brain of rats after chronic administration of antidepressants. Brain Research Bulletin 82(3-4): 224-7. 2010. 135 SCHAFFER A; CAIRNEY J; CHEUNG A; VELDHUIZEN S; LEVITT A. Community survey of bipolar disorder in Canada: lifetime prevalence and illness characteristics. Canadian Journal of Psychiatry 51(1): 9-16. 2006. SCHATZBERG A. Bipolar Disorder: recent issues in diagnosis and classification. Journal of Clinical Psychiatry 59(6): 13-9. 1998. SCHATZBERG A. New approaches to managing psychotic depression. Journal of Clinical Psychiatry 64: 19-23. 2003. SCHINDER AF & POO M. The neurotrophin hypothesis for synaptic plasticity, Trends in Neuroscience 23: 639– 645. 2000. SCHNITTKER J. Gene-environment correlations in the stress-depression relationship. Journal of Health and Social Behavior 51(3): 229-43. 2010. SCHOU M; JUEL-NIELSON N; STROMGREN E; VOLDBY H. The treatment of manic psychoses by administration of lithium salts. Journal of Neurology, Neurosurgery & Psychiatry 1954; 17: 250-60. SCHRAMM A; SCHULTE JH; ASTRAHANTSEFF K; APOSTOLOV O; LIMPT V; SIEVERTS H; KUHFITTIG-KULLE S; PFEIFFER P; VERSTEEG R; EGGERT A. Biological effects of TrkA and TrkB receptor signaling in neuroblastoma. Cancer Letters 18: 143-153. 2005. SEAGER MA; BARTH VN; PHEBUS LA; RASMUSSEN K. Chronic coadministration of Olanzapine and fluoxetina activates locus coeruleus neurons in rats: implications for bipolar disorder. Psychopharmacology 181: 126-133. 2005. SEAGER MA; HUFF KD; BARTH VN; PHBUS LA; RASMUSSEN K. Fluoxetine administration potentiates the effect of olanzapine on locus coeruleus neuronal activity. Biology Psychiatry 55(11): 1103-9. 2004. 136 SEGAL M; AVITAL A; DROBOT; M; LUKANIN A; DEREVENSKI A; SANDBANK S; WEIZMAN A. Serum creatine kinase level in unmedicated nonpsychotic, psychotic, bipolar and schizoaffective depressed patients. The European Journal of Neuropsycopharmacology 17: 194-198. 2007. SHALTIEL G; GUANG C; HUSSEINI K; MANJI HK. Neurotrophic signaling cascades in the pathophysiology and treatment of bipolar disorder. Current Opinion Pharmacology 7: 22–26. 2007. SHANSIS & CORDIOLI. Psicofármacos: Consulta Rápida. Farmacoterapia dos Transtornos do Espectro do Humor Bipolar: diretrizes e algoritmo. Porto Alegre, Artmed, 2005, p. 329-339. SHELTOM RC. The return of fixed combinations in psychiatry: fluoxetine and olanzapine combination. Therapeutics and Clinical Risk Management 2(2). 2006. SHELTON RC; TOLLEFSON GD; TOHEN M; STAHL S; GANNON KS; ACOBS TG; BURAS WR; BYMASTER FP; ZHANG W; SPENCER KA; FELDMAN PD; MELTZER HY. A novel augmentation strategy for treating resistant major depression. American Journal of Psychiatry 158: 131-134. 2001. SHEPHERD D & GARLAND PB. The kinetic properties of citrate synthase from rat liver mitochondria. Biochemistry Journal 114: 597-610. 1969. SHI L; NAMJOSHI MA; SWINDLE R; YU X; RISSER R; BAKER RW; TOHEN M. Effects of olanzapine alone and olanzapine/fluoxetine combination on health-related quality of life in patients with bipolar depression: secondary analyses of a double-blind, placebo-controlled, randomized clinical trial. Clinical Therapy 26(1): 125-34. 2004. SHIRAYAMA Y; CHEN AC; NAKAGAWA S; RUSSELL DS; DUMAN RS. Brainderived neurotrophic factor produces antidepressant effects in behavioral models of depression. Journal of Neuroscience 22: 3251–3261. 2002. 137 SMITH MA. Hippocampal vulnerability to stress and aging: possible role of neurotrophic factors. Behav Brain Res 78: 25-36. 1996. SMITH MA; MAKINO S; KVETNANSKY R; POST SM. Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNA in the hippocampus. J Neurosci 15: 1768–1777. 1995. SPITZER RL. et al. The Structured Clinical Interview for DSM III-R (SCID) I: History, rationale, and description. Archives of General Psychiatry 49(8): 624-629. 1992. STOKES PE; SHAMOIAN CA; STOLL PM; PATTON MJ. Efficacy of lithium as acute treatment of manic-depressive illness. Lancet 1: 1319-25. 1971. STORK C & RENSHAW PF. Mitochondrial dysfunction in bipolar disorder: evidence from magnetic resonance spectroscopy research. Molecular Psychiatry10: 900-919. 2005. STRAKOWSKI SM & SAX KW. Secondary mania: a model of the pathophysiology of bipolar disorder? In: Soares JC, Gershon S (eds) Basic Mechanisms and Therapeutic Implications of Bipolar Disorder. Marcel Dekker Inc.: New York. 13–30. 2000. STRAKOWSKI SM; ADLER C; DELBELLO MP. Comparison of morphometric magnetic resonance imaging findings in bipolar disorder and unipolar depression. Bipolar Disorders 4: 80–88. 2002 STRAKOWSKI SM; DELBELLO MP; ADLER CM. The functional neuroanatomy of bipolar disorder: a review of neuroimaging findings. Mol Psychiatry 10(1): 105-16. 2005. Review. STRECK EL; AMBONI G; SCAINI G; DI-PIETRO PB; REZIN GT; VALVASSORI SS; LUZ G; KAPCZINSKI F; QUEVEDO J. Brain creatine kinase activity in an animal model of mania. Life Science 82: 424-429. 2008. 138 STRECK EL; REZIN GT; BARBOSA LM; ASSIS LC; GRANDI E; QUEVEDO J. Effect of antipsychotics on succinate dehydrogenase and cytochrome oxidase activities in rat brain. Naunyn Schmiedebergs Arch Pharmacol 376(1-2): 127-33. 2007. SZÁDÓCZKY E; PAPP Z; VITRAI J; et al. - The prevalence of major depressive and bipolar disorders in hungary. Journal of Affective Disorders 50: 153-162. 1998. SZASZ BK; MIKE A; KAROLY R; GEREVICH Z; ILLES P; VIZI ES; KISS JP. Direct inhibitory effect of fluoxetine on N-methyl-d-aspartate receptors in the central nervous system. Biological Psychiatry 62: 1303–1309. 2007. TAMAYO JM; SUTTON VK; MATTEI MA; DIAZ B; JAMAL HH; VIETA E; ZARATE JR CA; FUMERO I; TOHEN M. Effectiveness and safety of the combination of fluoxetine and olanzapine in outpatients with bipolar depression: an open-label, randomized, flexible-dose study in Puerto Rico. J. Clin. Psychopharmacol 29: 358361. 2009. TEN HAVE M; VOLLEBERGH W; BIJL R; NOLEN WA. Bipolar disorder in the general population in The netherland (prevalence, consequences and care utilization): results from The Netherlands Mental Health Survey and Incidence Strudy (NEMESIS). Journal of Affective Disorders 68(2-3): 203-213. 2002. TOHEN M, CASE M, TRIVEDI MH, THASE ME, BURKE SJ, DURELL TM. Olanzapine/fluoxetine combination in patients with treatment-resistant depression: rapid onset of therapeutic response and its predictive value for subsequent overall response in a pooled analysis of 5 studies. Clin Psychiatry 71(4): 451-62. 2010. TOHEN M; BAKER RW; ALTSHULER LL; ZARATE CA; SUPPES T; KETTER TA; MILTON DR; RISSER R; GILMORE JA; BREIER A; TOLLEFSON GA. Olanzapine versus divalproex in the treatment of acute mania. American Journal of Psychiatry 159: 1011-1017. 2002. TOHEN M; CHENGAPPA KN; SUPPES T; BAKER RW; ZARATE CA; BOWDEN CL; SACHS GS; KUPFER DJ; GHAEMI SN; FELDMAN PD; RISSER RC; EVANS 139 AR; CALABRESE JR. Relapse prevention in bipolar I disorder: 18-month comparison of olanzapine plus mood stabiliser v. mood stabiliser alone. Br J Psychiatry 184:33745. 2004. TOHEN M; GOLDBERG JF; GONZALEZ-PINTO ARRILLAGA AM; AZORIN JM; VIETA E; HARDY-BAYLE MC; LAWSON WB; EMSLEY RA; ZHANG F; BAKER RW; RISSER RC; NAMJOSHI MA; EVANS AR; BREIER A. A 12-week, doubleblind comparison of olanzapine vs haloperidol in the treatment of acute mania. Archives of General Psychiatry 60(12): 1218-26. 2003. TOHEN M; GREIL W; CALABRESE JR; SACHS GS; YATHAM LN; OERLINGHAUSEN BM; KOUKOPOULOS A; CASSANO GB; GRUNZE H; LICHT RW; DELL'OSSO L; EVANS AR; RISSER R; BAKER RW; CRANE H; DOSSENBACH MR; BOWDEN CK. Olanzapine versus lithium in the maintenance treatment of bipolar disorder: a 12-month, randomized, double-blind, controlled clinical trial. American Journal of Psychiatry 162: 1281–1290. 2005. TOHEN M; JACOBS TG; GRUNDY SL; MCELROY SL BANOV MC; JANICAK PG; SANGER TM; RISSER R; ZHANG F; TOMA V; FRANCIS BJ; TOLLEFSON GD; BREIER A. Efficacy of olanzapine in acute bipolar mania: a double-blind, placebo-controlled study. Archives of General Psychiatry 57: 841-849. 2000. TOHEN M; KETTER TA; ZARATE CA; SUPPES T; FRYE M; ALTSHULER L; ZAJECKA J; SCHUH LM; RISSER RC; BROWN E; BAKER RW. Olanzapine versus divalproex sodium for the treatment of acute mania and maintenance of remission: a 47week study. American Journal of Psychiatry 160: 1263–1271. 2003b. TOHEN M; SANGER TM; MCELROY SL; TOLLEFSON GD; CHENGAPPA KNR; DANIEL DG; PETTY F; CENTORRINO F; WANG R; GRUNDY SL; GREANEY MG; JACOBS TG; DAVID SR; TOMA V. Olanzapine versus placebo in the treatment of acute mania. American Journal of Psychiatry 156: 702-709. 1999. TOHEN M; VIETA E; CALABRESE J; KETTER TA; SACHS G; BOWDEN C; MITCHELL PB; CENTORRINO F; RISSER R; BAKER RW; EVANS AR; BEYMER 140 K; DUBE S; TOLLEFSON GD; BREIER A. Efficacy of olanzapine and olanzapinefluoxetine combination in the treatment of bipolar I depression. Arch Gen Psychiatry 60(11): 1079-8. 2003a. TOLLEFSON GD; SANGER TM; LU MK; THIEME ME. Depressive signs and symptoms in schizophrenia: a prospective blinded trial of olanzapine and haloperidol. Archives of General Psychiatry 55: 250-258. 1998. TOMIMOTO H; YAMAMOTO K; HOMBURGER HÁ; YANAGIHARA T. Immunoelectron microscopic investigation of creatine kinase BB-isoenzyme after cerebral ischemia in gerbils. Acta Neuropathol 86:447–55. 1993. TÖRNROTH-HORSEFIELD S & NEUTZE R. "Opening and closing the metabolite gate". Progress in Neuro-Psychopharmacology and Biological Psychiatry 105(50): 19565–6. 2008. VIETA E, LOCKLEAR J, GÜNTHER O, EKMAN M, MILTENBURGER C, CHATTERTON ML, ASTRÖM M, PAULSSON B.Treatment options for bipolar depression: a systematic review of randomized, controlled trials. J Clin Psychopharmacol. 30(5):579-90. 2010. VIETA E. Olanzapine in bipolar disorder. Experimental Opinion on Pharmacotherapy 5: 1613-1619. 2004. WALLACE DC. Mitochondrial diseases in man and mouse. Science 283. 1999. WALLIMANN T; WYSS M; BRDICZKA D; NICOLAY K; EPPENBERGER HM. Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the ‘phosphocreatine circuit’ for cellular energy homeostasis. Biochemical Journal 281(1): 21–40. 1992. WALZ JC; FREY BN; ANDREAZZA AC; CERESER KM; CACILHAS AA; VALVASSORI SS; QUEVEDO J; KAPCZINSKI F. Effects of lithium and valproate 141 on serum and hippocampal neurotrophin-3 levels in an animal model of mania. Journal Psychiatry Research 42(5): 416-21. 2008. WANG FJ; SHAO L; SUN X; YOUNG LT. Glutathione S-transferase is a novel target for mood stabilizing drugs in primary cultured neurons. J Neurochem 88: 1477-84. 2004. WEISSMAN MA; et al. Affective disorders. In: Robins LN & Regier DA. Psychiatric disorders in America: the epidemiologic carchnebt area sudy. New York: Free Press 1991. WEISSMAN MM; BLAND RC; CANINO GJ; et al. Cross-national Epidemiology of Major Depression and Bipolar Disorder. JAMA 276(4): 293-299. 1996. WORLD HEALTH ORGANIZATION: International Statistical Classification of Diseases and Related Problems. World Health Organization 10(1). 1992. WYSS M & KADDURAH-DAOUK R. Creatine and Creatinine Metabolism. Physiological Reviews 80: 1107-1213. 2000. WYSS M; SMEITINK J; WEYERS RA; WALLIMANN T. Mitocondrial creatine kinase: a key enzyme of aerobic energy metabolism. Biochimica et Biophysica Acta 25: 119-166. 1992. YATHAM LN; BINDER C; KUSUMAKAR V; RICCARDELLI R. Risperidone plus lithium versus risperidone plus valproate in acute and continuation treatment of mania. International Clinical Psychopharmacology 19(2):103-9. 2004. YILDIZ A; VIETA E; LEUCHT S; BALDESSARINI RJ. Efficacy of antimanic treatments: meta-analysis of randomized, controlled trials. Neuropsychopharmacology 36(2): 375-89. 2011.