3D in de orthodontie, een nieuw tijdperk
Transcription
3D in de orthodontie, een nieuw tijdperk
• Specific radiodiagnostics in orthodontics • Prof Dr Bart Vande Vannet, VU Brussel Cone Beam 3D in de orthodontie, een nieuw tijdperk Transitie van 2D naar 3D in de Orthodontische Diagnostiek Klinisch onderzoek: Anas Fardounni – 12 jaar Anamnese - Reden van consult: initiatief van de ouders Houding ten opzichte van behandeling: matig - slecht Gezondheidsgegevens: ASA II mentaal gehandicapt & neurologische medicatie Tonsilectomie / Adenotomie: / Medicatie: Hablief Familiale orthodontische afwijkingen: / Oro-faciale functies - Ademhaling: mondademhaling Interdentaal slikken: ja Tongrustpositie: normale positie Massetercontractie bij slikken: / Mentalishabit: / Zuig- en bijtgewoonten: / Spraak: goed Logopedie: licht sigmatisme Naam practicus Maand en Jaar Erkend Orthodontist 3/xxxxx/xx/007 Tandheelkundige Kliniek – Jette Laarbeeklaan 103 – 1090 Brussel Extra-oraal onderzoek: Anas Fardounni – 12 jaar -Profiel: Klasse ll -L.A.F.H.: normaal - Nasolabiale hoek: recht - Plica mentalis: normaal - verdiept -Gelaatssymmetrie: kinpunt naar links - Lippositie: normaal - Liprelatie: vergroot & gesloten - Tandboog midden tov gelaat: rechts - Kaakgewrichten: goed Naam practicus Maand en Jaar Erkend Orthodontist 3/xxxxx/xx/007 Tandheelkundige Kliniek – Jette Laarbeeklaan 103 – 1090 Brussel Intra-oraal onderzoek: Anas Fardounni – 12 jaar - Dentitie: 2de wisselfase Mondhygiëne: matig - slecht Restauratie/Cariës: 160, 140, 63D, 260 Vroegere extractie: / Gingiva: gingivitis Tong/frenula: / Abrasie: / Verkleuringen / Leucomas / Structuur: / Naam practicus Erkend Orthodontist 3/xxxxx/xx/007 - Occlusie - Molaar RE: ½ M LI: neutro - Hoektand RE:/ LI:/ - Kruisbeet: anterieur - OB: 1 mm OJ: -1 mm - Hoektanden: ingesloten en niet palpeerbaar Maand en Jaar Tandheelkundige Kliniek – Jette Laarbeeklaan 103 – 1090 Brussel Klinisch onderzoek: Anas Fardounni – 12 jaar Groeifase - Stemverlaging: begin - Voor / Begin / Top / Einde: begin Modelanalyse - OB = mm (palatumbeet) - Midlines - Sagittale occlusie - Molaren - Hoektanden - Transversale occlusie zijdelings: RE: - Verticale occlusie zijdelings - Spee-curve: - DDM: Moyers OJ = mm RE: RE: LI: RE: OK Re OK Li LI: LI: LI: BK Re BK Li Alignatieruimte 1-2 Afstand 2-6 Voorspelde afm 3-4-5 Kans Mm te kort - Nivellering: Totaal: - DDD / BOLTON: Naam practicus Anterior ratio Oprichten incisieven: Overall ratio: Maand en Jaar Erkend Orthodontist 3/xxxxx/xx/007 Tandheelkundige Kliniek – Jette Laarbeeklaan 103 – 1090 Brussel RÖNTGEN Onderzoek: OPG (Anas Fardounni – 12 jaar) - Misvormde elementen: / Agenesieën: 35 Verstandskiezen: 18, 28, 38 en 48 zijn aangelegd Cariës: / Parodontale / Peri-apicale afwijking: / Ingesloten elementen: 15, 13, 23, 25, 45 Endo-behandeling: / Wortelresorpties: / Naam practicus Maand en Jaar Erkend Orthodontist 3/xxxxx/xx/007 Tandheelkundige Kliniek – Jette Laarbeeklaan 103 – 1090 Brussel RÖNTGEN Onderzoek: TELERADIOGRAFIE (Anas Fardounni – 12 jaar ) Cephalometrie: Naam practicus Maand en Jaar Erkend Orthodontist 3/xxxxx/xx/007 Tandheelkundige Kliniek – Jette Laarbeeklaan 103 – 1090 Brussel RÖNTGEN Onderzoek: TELERADIOGRAFIE (Anas Fardounni – 12 jaar ) Cephalometrie: Naam practicus Maand en Jaar Erkend Orthodontist 3/xxxxx/xx/007 Tandheelkundige Kliniek – Jette Laarbeeklaan 103 – 1090 Brussel RÖNTGEN Onderzoek: TELERADIOGRAFIE (Anas Fardounni – 12 jaar ) Cephalometrie: Naam practicus Maand en Jaar Erkend Orthodontist 3/xxxxx/xx/007 Tandheelkundige Kliniek – Jette Laarbeeklaan 103 – 1090 Brussel RÖNTGEN Onderzoek: CBCT(Anas Fardounni – 12 jaar) 13: Horizontaal gepositioneerd met resorptie op 12 Naam practicus Maand en Jaar Erkend Orthodontist 3/xxxxx/xx/007 Tandheelkundige Kliniek – Jette Laarbeeklaan 103 – 1090 Brussel RÖNTGEN Onderzoek: CBCT(Anas Fardounni – 12 jaar) 23: Horizontaal gepositioneerd met resorptie op 22 en kroontop B van apex 22 Naam practicus Maand en Jaar Erkend Orthodontist 3/xxxxx/xx/007 Tandheelkundige Kliniek – Jette Laarbeeklaan 103 – 1090 Brussel Today’s Objectives • Discuss the use of CBCT technology in orthodontic practice – the diagnostic value, patient exposure to radiation, liability and economics • Review some significant literature • Present a systematic approach to reviewing CBCT Interradicular insertion: maxilla buccally - Attached gingiva (otherwise ligature) - Position of the sinus Lea S 30/11/2002 Van tekening naar realiteit Brain fills in the gaps and/or alters your reality based on past expectations, surrounding information and intentions. ““Ceoinsdr the anmzaig pweor of the hmuan biran. It dseno’t metatr in what oredr the lrttees in a wrod are, the olny tihng taht is iproamtnt is the frsit and lsat ltetres are in the rghit pclae. The rset can be a tatol mses and you can sitll raed it wuhotit a plboerm. Azanimg huh?” Heidi Haavik Evidence for the use of Cone Beam computed tomography in Orthodontics introduction Introduction Introduction voxels Introduction Hardware and software improve at a fast rate and lead to better image quality. The images that are seen today may not be representative for the state of the art tomorrow. Conclusion • • • • CBCT image data is inherently different from MDCT image data generating smoother images with lower image contrast. CBCT is therefore less susceptible to metal artefacts and slightly more reliable for quantitative measurements. MDCT, however, remains superior for qualitative appraisal. Therefore, in practice, the clinician's choice over which CT device to use should depend on the intended diagnostic purpose 3D imaging • • • • • The technological developments of recent years have opened new possibilities in three-dimensional (3D) imaging of the dentition and the surrounding tissues. 3D imaging has the potential to improve diagnosis and complement treatment planning and communication. It also plays a decisive role in the customization of orthodontic appliances. These new imaging technologies, however, require that clinicians understand their nature and are aware of the shortcomings and problems. This lecture aims to present the state of the art in 3D imaging of the dentition and surrounding tissues and will discuss advantages, disadvantages and shortcomings of the main imaging methods. Moreover, it will deal with the impact of new imaging technologies in everyday clinical practice in the light of the current scientific evidence. The influence of slice orientation in 3D CBCT images on measurements of anatomical structures Jacquet, Nyssen, Politis, Vande Vannet, Bottenberg CBCT een digitale evolutie CBCT en Intra Oral Scanning Merged Voxel based vs Surface based Integratie van soft tissue Patient-specific numerical Finite Element models G. Boonena, G.Bekaert d , S. Debruyne e, JF Cuzinb and B. Vande Vannetc a Department of Orthodontics, Free University Brussels (VUB), Brussels, Belgium d KULeuven Campus Oostende Faculty of Engineering Technology , Belgium b Department of Orthodontics, Vrije Universiteit Brussel (VUB) Private Practice, Nancy, France and Luxembourg e KULeuven Campus Oostende Faculty of Engineering Technology , Belgium c Department of Orthodontics, Free University Brussels (VUB), Brussels, Belgium INTRODUCTION In the past decades finite element models have been developped to study biomechanics in orthodontics. All of these lead to definitions of a standard model to study stresses of the different materials composing teeth and jaws. However customised appliances are delivered now. Recently in many today’s Orthodontic practices Intra Oral Cameras and 3 Dimensional X-ray procedures are used. What about creating a fully customised Finite Element Model? What about creating a patient-specific numerical Finite Element model coming from patient individual records ( CBCT, Intral Oral camera ) and even including his own appliance in order to have a really customised point of view on biomechanics. Aim Creating numerical models of anatomical areas to estimate the tissues adaptation processes and dental displacements induced by mechanical stimulus in lingual orthodontic custom appliances. These models simulate and predict the behaviour of biological tissues in order to evaluate the clinical and histological effects, and to realize new dental appliances or improve existing ones. . Material and methods The general and diverse finite element (FE) method is used for analysis of coupled dental displacements. This method treats teeth, brackets, connection wire and cancellous bone as a set of structural components. Each of these is characterized by elastic properties such as Young’s modulus, shear modulus and Poisson’s ratio of its isotropically assumed material. By dividing each structural component into a coupled finite number of small elements, a numerical analysis of component stress or structural deformations. STL files obtained from intra-oral 3D Camera (Trios®, 3 shape, Denmark) and CBCT (Vatech, NJ, US) were converted to STEP files. Using Siemens NX software it was possible to convert the data to solid geometry. Non linear structures with contact points (unavoidable in that study) are defined. In a first approximation teeth are supposed to be infinitely stiff. This is allowed as teeth have a stiffness which is in orders of magnitude larger than stiffness of jaw bone. The outer surfaces of teeth are merely used to establish contact between teeth. Forces are transferred to dental root via RBE2 elements, which are of infinite stiffness. The lingual brackets were modelled with solid elements. This enabled their connection to the teeth and contact between lingual brackets and single bracket connection wire was established. The driving force which causes the teeth to move relative to jaw bone was modelled by a preload in the one-dimensional connection wire between brackets. Creep phenomenon is used to simulate growth and bone remodelling. Intra Oral CAMERA CBCT Cone Beam STL Files Results The different steps in setting up a finite element model suitable for an adequate numerical analysis of coupled dental deformations were performed. In detail important relevant numerical issues such as the optimal estimation of elastic properties of cancellous bone were incorporated. And this model is patient-specific. Three alignment experiments were conducted. DICOM Files . Recent evolutions 1. The focus was placed on the cranial base and the acoustic meatus to visualize overall growth and treatment effects. 2. The palatum was focussed to study maxillar growth, changes in dentition, and orthodontic treatment. 3. The mandibular symphysis was chosen as focus to assess mandibular growth, changes in dentition, and orthodontic treatment. This research demonstrates the possibilities of having a finite element method to be quickly created from imaging processes coming current in Orthodontic offices. In our “customised orthodontics” times, customised biomechanical studies are near to us. After alignment the images were subtracted (Figs. 4, 9, and 14). STEP Files The pixels of the subtraction image were subdivided into three gray values bins of equal size. The pixels corresponding to the lowest bin (meaning more radiodensity in test than the reference image) were represented using shades of blue. Pixels with grey value in the middle bin (small or no difference between test and reference image) were represented using shades of green. Pixels with gray value in the higher bin (lower radiodensity compared to the reference image) were represented using shades of red (Figs. 5, 10, and 15). Meshing References Junning C. , Wei L. , MIichael V. , Swain M. , Ali D. , Qing L. A periodontal ligament driven remodeling algorithm for orthodontic tooth movement J. Biomech. 47 (2014) 1689-1695 Hussein H. Ammar, Peter Ngan, Richard J. Crout, Victor H. Mucino, Osama M. Mukdadi Three dimensional modeling and finite element analysis in treatment planning for orthodontic tooth movement Am J Orthod Dentofacial Orthop 2011;139:e59-e79 Xiulin Yan, Weijun He, Tao Lin, Jun Liu, Xiaofeng Bal, Guangqi Yan, Li Lu Three dimensional finite element analysis of the craniomaxillary complex during maxillary protraction with bone anchorage vs conventional dental anchorage Am J Orthod Dentofacial Orthop 2013; 143: 197-205 FEA Studies Andrew Boryor, Ansgar Hohmann, Martin Geiger, Uwe Wolfram, Christian sander, Franz Günter Sander A downloadable meshed human canine tooth model with PDL and bone for finite element stimulation Dental Materials 25 (2009) e57-e62 Joanneke M. Plooij, Thomas J.J. Maal, Piet Haers, Wilfried A. Borstlap, Anne Marie Kuijpers-Jagtman, Stefaan J. Berge Digital three dimensional image fusion processes for planning and evaluating orthodontics and orthognatic surgery. A systematic review Int. J. Oral Maxillofac. Surg. 2011; 40 : 341-352 Cattaneo PM., Dalstra M., Melsen B., Strains in periodontal ligament and alveolar bone associated with tooth movement analyzed by finite element. Orthod. Craniofac. Res. 2009; 12: 120-8 Cattaneo PM., Dalstra M., Melsen B., The finite element method: a tool to study orthodontic tooth movement. J. Dent. Res. 2005;84:428-33 Fields C., Ichim I., Swain MV., Chan E., Darendeliler MA., Li W., et al. Mechanical responses to orthodontic loading: a 3-dimensional finite multi-tooth model. Am. J. Orthod. Dentofacial Orthop. 2009; 135:174-81 Vrije Universiteit Brussel Dr G. Boonen KHBO Geert Bekaert Laarbeeklaan 103, 1090 Brussel Belgium Tel. +32 2 477 49 08 Lecturer at KUL Campus of Technology Ostend Faculty of Industrial Sciences Orthodontie.vub.ac.be tel. +32 50 40 59 34 Geert.bekeaert@kuleuven.be KHBO Stijn Debruyne KU Leuven | Campus Oostende (@KHBO) Faculty of Engineering Technology Cluster WIT Research Group Propolis Zeedijk 101 | B-8400 Ostend tel. +32 50 40 59 34 Stijn.debruyne@kuleuven.be Dr J-F Cuzin Private offices in Nancy France and Luxembourg Tel. +33 3 83 25 22 50 Acceuil@orthodontiestanislas.fr Vrije Universiteit Brussel Prof. Dr. B. Vande Vannet Laarbeeklaan 103, 1090 Brussel, Belgium Tel. +32 2 477 49 08 Skype : bvandevannet bart.vande.vannet@vub.ac.be Orthodontie.vub.ac.be Articulatoren ? Van 2D terug naar 3D Baumrind 1983 Ericson & Kurol 1987 Mozzo 1998 Kapila 2011, Halozenetis 2012, Larson 2012 Een radiografie kan pas genomen worden als er een diagnostiek hulpmiddel in het belang van het behandelingsplan voor de patiënt ! RSP (OPG) én CBCT zijn eigenlijk uit den boze … 1. Wanneer CBCT 1. Precieze beoordeling van wortelmorfologie en wortellengte 2. Gedetailleerde informatie over alveolaire morfologie en interdentale relaties 3. Morfometrische analyse van craniofaciale anomaliëen 4. Specifieke analyse van het TMG (fysiologisch en pathologisch) 5. Beoordeling van de luchtwegen (OSAS) Kapila et al. 2011 Dentomaxillofac Radiol. 2015;44(1):20140282. doi: 10.1259/dmfr.20140282. CBCT in orthodontics: assessment of treatment outcomes and indications for its use. Kapila SD1, Nervina JM. State of the art • Since its introduction into dentistry in 1998, CBCT has become an increasingly important source of 3D volumetric information in clinical orthodontics. • Over this period, valuable CBCT data have been gathered on 3D craniofacial morphology in health and disease, treatment outcomes and the efficacy of CBCT in diagnosis and treatment planning. State of the art • Although CBCT continues to gain popularity, its use currently is recommended in cases in which clinical examination supplemented with conventional radiography cannot supply satisfactory diagnostic information. • To date, this applies to impacted teeth, CL/P and orthognathic or craniofacial surgery patients. State of the art • CBCT on other types of cases can also be performed where there is likely to be a positive benefit-to-risk outcome such as supernumerary teeth, identification of root resorption caused by unerupted teeth, evaluating boundary conditions, TMJ degeneration and progressive bite changes and for placement of TADs in complex situations. • Based on research evidence, orthodontists are advised to use their best clinical judgment when prescribing radiographs, including CBCT scans, to obtain the most relevant data using the least ionizing radiation possible. Bibimu New set of rules New set of Rules FOV Protocol bij het voorschrijven van een CBCT 2. Zal het gebruik van CBCT leiden tot verbeteringen in de behandelingsplannen en behandelingen Probleemlijst cbct Behandelplan Evaluatie van het behandelresultaat Informatie over het alveolaire bot en risico op fenestratie The role of CBCT in evaluation of alveolar bone state during orthodonticperiodontal treatment alveolar bone density decreased during orthodontic treatment and CBCT could be used in evaluation of alveolar bone state Localisatie van ectopische gebitselementen 21 jaar vrouw Wat moet er gebeuren met de derde molaren ? … Geretineerde 6.3 Bronte 24/11/1994 Conebeam en orthodontie Bronte Bronte Hussam Hussam Hussam Hussam Hussam Hussam Hussam Seher Seher, 9 jaar anamnese : 3 tanden verwijderd afwachten … Seher Seher, 9 jaar anamnese : 3 tanden verwijderd afwachten … Seher Seher, 9 jaar anamnese : 3 tanden verwijderd afwachten … Seher CBCT Zes maandelijks bij alg tandarts, nu 11 jaar... Basis : asymmetriën in doorbraak... Ik laat nu eerst CBCT maken denk ik? 3 1b 2-1 3 1 4 III 2b 2 4 III IV V IV v 6 6 De oorzaak zoeken van onverklaarbare symptomen Beoordeling van de morfologie en de positie van de condyli bij patiënten met TMG problematiek en beoordeling van asymmetriëen Beschrijving en kwantificatie van anomaliëen in het craniofaciale skelet in alle 3 vlakken met aangepaste 3D coördinaten Het gebruik van een coördinaten systeem om asymmetriën beter te kunnen beoordelen is hierbij aangewezen. Beoordeling indien Orthodontische Camouflage kan dan wel Chirurgie nodig is ? Dentale bewegingen : De krachtvectoren kunnen in 3D bepaald worden en toepassing van correcte biomechanica wordt mogelijk Chirurgie : Een performatere planning van de orthognatische chirurgie kan gebeuren. Leeftijdsbepalingen, antropologie en forensisch onderzoek … Highlights • CBCT is suggested as an alternative to conventional CT in some cases of postmortem imaging. • Practical advantages include relatively small size, portability, and low cost. • Technical advantages include good spatial resolution and metal artifact reduction. • Limitations include limited field size and limited soft tissue contrast. Opgelet Wat zie je ? Thank you for your kind attention !