cobra - JePPIX
Transcription
cobra - JePPIX
JePPIX Course Processing Introduction Huub Ambrosius COBRA/NanoLab@TU/e Photonic Integration: Motivation • Greatly reduced component cost • • Monolithic interconnection of device elements Simpler packaging and assembly, standard processes • High reliability • Less interfaces • High functionality • Many more functional elements per chip, higher creativity in design • High phase stability, excellent device matching • Permits interferometric structures • Robust • Single chip designs with minimal optical interfaces are ideal for demanding environments • Better power efficiency • Minimize optical power loss at interfaces between device elements On the other hand, the capital and R&D investment needed to play at the top level in this field is very large (More that 100M€) JePPIX course 2014 Introduction 2 COBRA COBRA Communication Technologies: Basic Research and Applications COBRA staff ~25 scientific staff & technicians ~25 postdocs ~50 PhD Core Materials (PSN) Components (PhI) Systems (ECO) 800 m2 cleanroom JePPIX course 2014 Introduction 3 COBRA NanoLab@TU/e • NanoLab@TU/e is the name of the clean-room facility and COBRA is using this clean-room • 800m2 clean-room + 800 m2 subfab (service area with pumps etc) • Facilities are open for external institutes and companies. JePPIX course 2014 Introduction 4 COBRA Generic Integration Philosophy Basic Building Blocks A Optical Amplifier Transistor j Resistor Phase Modulator P Capacitor Polarisation Converter Electrical connection Waveguide Electronic integration Photonic integration JePPIX course 2014 Introduction 5 COBRA All kinds of passive devices … MMI-couplers and filters MMI-reflectors AWG-demux ring filters polarization splitters polarization combiners polarization independent differential delay lines JePPIX course 2014 Introduction 6 COBRA All kinds of lasers … Fabry-Perot lasers tunable DBR lasers multiwavelength lasers picosecond pulse laser ring lasers JePPIX course 2014 Introduction 7 > 25 mW output power < 100 kHz line width < 1 ps pulse width … COBRA switches and modulators … phase modulator > 40 GHz bandwidth > 50deg/V.mm amplitude modulator fast space switch polarization independent 2x2 switch ultrafast switch WDM crossconnect WDM add-drop JePPIX course 2014 Introduction 8 COBRA Examples of Photonic ICs by COBRA multiwavelength laser WDM TX Tunable WDM-TTD switch WDM laser optical crossconnect JePPIX course 2014 Introduction wavelength converter 9 picosecond pulse laser COBRA 1x16 AWG Switch Multi Project Waferruns in InP • With a Generic Process you can do Multi Project Wafer runs • Several users on one wafer batch, making the initial development costs relative low!! • Different applications of ASPICs (Application Specific Photonic Integrated Circuit) • Up to 12 users on a full 2”wafer • 56 chips of 4 x 4 mm2 • Sofar MPWs have been done at OCLARO, Fraunhofer HHI and COBRA JePPIX course 2014 Introduction 10 COBRA Recent ASPICs EuroPIC, PARADIGM, MEMPHIS WDM receiver for FTTH (user Genexis, fab HHI) Filtered Feedback MW laser (user ASTRON, fab Oclaro) 4x4 space and l-selective switch (user TU/e, fab COBRA) hybrid TDM-WDM transmitters (user Genexis, fab Oclaro) Pulse serialiser for KM3NeT neutrino detector (user NIKHEF, fab Oclaro) Pulse regenerator (user U Pisa, fab COBRA) non-telecom telecom JePPIX course 2014 Introduction 11 COBRA FBG-readout (user Fibresensing, fab HHI) Pulse shaper for bio-imaging (user UTwente, fab Oclaro) MPW run at COBRA 14 different designs: - 2 x TU/e ECO - 3 x TU/e PhI - 3 x WUT (Poland) - 1 x UEST (China) - 2 x University of Bristol - 1 x Scuola Superiore Sant'Anna - 1 x Bright Photonics - 1 x NIKHEF • Full 2” Processing Processed wafer Mask Design JePPIX course 2014 Introduction 12 COBRA The General COBRA flow 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) Epi 1 (active structure) Litho 1 (active-passive) Etch 1 (wet etch) Epi 2 (passive strucure) Removal mask and epi 3 (contact structure) Removal protecting layer Deposition 50 nm SiNx Positive resist for waveguide definition Waveguide litho Nitride etch Resist removal Resist for deep area definition JePPIX course 2014 Introduction PAGE 13 COBRA The general COBRA flow (2) 13) 14) 15) 16) 17) 18) 19) 20) 21) 22) 23) 24) Lithography for deep area’s Etching difference between shallow and deep area’s Resist removal Etching of all waveguides Resist for definiton isolation etch Lithography for isolation area SiNx from isolation section Resist removal Etching isolation cladding Mask contact areas (PHM’s and SOA’s) SiNx removal Resist removal JePPIX course 2014 Introduction PAGE 14 COBRA The General COBRA flow (3) 25) 26) 27) 28) 29) 30) 31) 32) 33) Etching InGaAs and InP SiNx removal from contact area’s Planarization with Polyimide or BCB Etch back of polyimide or BCB Photoresist for metal lift off Lithography for contact metallization Ti/Pt/Au metallization Lift off process Plating (thicker contact metal) and back side metallization JePPIX course 2014 Introduction PAGE 15 COBRA Active/Passive Integration: Epi 1 SixNy p-InP i-Q1.25 i-Q1.55 n--Q1.25 n-InP InP substrate JePPIX course 2014 Introduction 16 COBRA Active/Passive Integration: Epi 2 SixNy p-InP i-InP i-Q1.25 i-Q1.55 n--Q1.25 n--Q1.25 n-InP InP substrate JePPIX course 2014 Introduction 17 COBRA Active/Passive Integration: Epi 3 p+-Qtop surface p+-InP p-InP p-InP i-InP i-Q1.25 i-Q1.55 n--Q1.25 n--Q1.25 active n-InP InP substrate JePPIX course 2014 Introduction 18 COBRA passive Basic building blocks in the COBRA process SOA Shallow etched waveguide JePPIX course 2014 Introduction Deep etched waveguide 19 Phase Modulator Polarisation converter COBRA Tunable DBR grating Definition waveguides JePPIX course 2014 Introduction 20 COBRA Definition waveguides: Silicon Nitride Mask JePPIX course 2014 Introduction 21 COBRA Definition waveguides: Etching difference between shallow and deep area’s JePPIX course 2014 Introduction 22 COBRA Definition waveguides: Etching all waveguides JePPIX course 2014 Introduction 23 COBRA Definition waveguides: Mask removal from isolation sections JePPIX course 2014 Introduction 24 COBRA Definition waveguides: Etching Isolation sections JePPIX course 2014 Introduction 25 COBRA Definition waveguides: Mask removal from passive waveguides JePPIX course 2014 Introduction 26 COBRA Definition waveguides: Etching InGaAs from passive waveguides JePPIX course 2014 Introduction 27 COBRA Definition waveguides: Mask removal from contact area’s JePPIX course 2014 Introduction 28 COBRA Metallization: Planarization by Polyimide or BCB JePPIX course 2014 Introduction 29 COBRA Metallization: n- and p-side (via lift off technique) JePPIX course 2014 Introduction 30 COBRA Further processing • Further processing needs the following steps: • • • • Separation by scribe and break method AR and/or HR coating if needed Testing test structures Testing ASPIC’s if asked by customer • Packaging is not included in COBRA platform and has to outsourced. JePPIX course 2014 Introduction 31 COBRA MPW run at COBRA • Last COBRA run: Full 2” Processing Processed wafer Mask Design JePPIX course 2014 Introduction 32 COBRA Band Gap vs Lattice Parameter 3.0 5.868Å 6 AlN Diamond bandgap [eV] 5 2.5 bandgap [eV] 2.0 4 GaN 3 2 1 InN Al2O3 0 2,0 1.5 GaAs 3,0 GaAs InAs InSb 4,0 5,0 lattice constant [Å] InP 1.30mm 1.55mm 1.0 GaSb 0.5 6,0 direct indirect 0.0 5.2 JePPIX course 2014 Introduction 5.6 InAs 6.0 lattice constant [Å] PAGE 33 InSb 6.4 COBRA 6.8 Energy Bandgap JePPIX course 2014 Introduction PAGE 34 COBRA Energy Bandgap l (µm) = 1.24/Eg (eV) Energy Band Gap of Ternary Alloys AxB(1-x)C E ( x) = xE AC + (1 - x) E BC - cx(1 - x) Energy Band Gap of Quaternary Alloys AxB(1-x)CyD(1-y) E ( x, y ) = xyE AC + x(1 - y ) E AD + (1 - x) yE BC + (1 - x)(1 - y ) E BD - c ABC x(1 - x) y - c ABD x(1 - x)(1 - y ) - c ACD xy (1 - y ) - c BCD (1 - x) y (1 - y ) JePPIX course 2014 Introduction PAGE 35 COBRA Clean Room Environment FED STD 209E classification maximum particles/ft³ Class ≥0.1 µm ≥0.2 µm ≥0.3 µm ≥0.5 µm 1 35 7 3 1 ISO 3 10 350 75 30 10 ISO 4 750 300 100 ISO 5 100 ≥5 µm ISO equivalent 1,000 1,000 7 ISO 6 10,000 10,000 70 ISO 7 100,000 100,000 700 ISO 8 JePPIX course 2014 Introduction PAGE 36 COBRA ISO classification of clean rooms maximum particles/m³ Class ≥0.1 µm ≥0.2 µm ≥0.3 µm ≥0.5 µm ≥1 µm ≥5 µm FED STD 209E equivalent ISO 1 10 2 ISO 2 100 24 10 4 ISO 3 1,000 237 102 35 8 Class 1 ISO 4 10,000 2,370 1,020 352 83 Class 10 ISO 5 100,000 23,700 10,200 3,520 832 29 Class 100 ISO 6 1,000,000 237,000 102,000 35,200 8,320 293 Class 1000 ISO 7 352,000 83,200 2,930 Class 10,000 ISO 8 3,520,000 832,000 29,300 Class 100,000 ISO 9 35,200,00 8,320,000 293,000 Room air 0 JePPIX course 2014 Introduction PAGE 37 COBRA JePPIX Course Processing Vacuum Technology Huub Ambrosius COBRA/NanoLab@TU/e Vacuum Notions From Latin: “vacuus” means empty At very low artificial pressure: still have hundreds of molecules Wet Etching JePPIX course 2014 PAGE 39 COBRA Vacuum • There’s nothing in it! Particles m-3 2.5 x 1025 Atmosphere 2 x 1025 Vacuum Cleaner Wet Etching JePPIX course 2014 Freeze dryer 1022 Light bulb 1020 Thermos flask 1019 TV Tube 1014 Low earth orbit (300km) 1014 SRS/Diamond 1013 Surface of Moon 1011 Interstellar space 105 PAGE 40 COBRA Vacuum Units • Vacuum – sub atmospheric pressure • SI Unit – Pascal (1Nm-2) • Atmosphere ~105 Pa • In Europe – mbar (100 Pa) • In USA/Asia – Torr (133 Pa) Wet Etching JePPIX course 2014 PAGE 41 COBRA Vacuum • Much ado about nothing! • Nature abhors a vacuum • We have to work quite hard to get low pressures − Understand limitations − Outgassing − “Pumping” − Careful design and operation of vacuum systems − Performance (specification) − Economics Wet Etching JePPIX course 2014 PAGE 42 COBRA Vacuum Notions • Molecular density, n : is the average number of molecules per unit volume • Mean free path, l : is the average distance that a molecule travels in a gas between two successive collisions with other molecules of that gas • Time constant to form a monolayer, t : is the time required for a freshly cleaved surface to be covered by a layer of the gas of one molecule thickness. This time is given by the ratio between the number of molecules required to form a compact monolayer (about 8x1014 molecules/cm2) and the molecular incidence rate f (at which molecules strike a surface). Wet Etching JePPIX course 2014 PAGE 43 COBRA Vacuum P (Torr) n (molec/cm3) f (molec l (cm) t (sec) /cm2.sec) 760 2,46 x 1019 2,88 x 1023 6,7 x 10-6 2,9 x 10-9 1 3,25 x 1016 3,78 x 1020 5,1 x 10-3 2,2 x 10-6 10-3 3,25 x 1013 3,78 x 1017 5,1 2,2 x 10-3 10-6 3,25 x 1010 3,78 x 1014 5,1 x 103 2,2 10-9 3,25 x 107 3,78 x 1011 5,1 x 106 2,2 x 103 10-12 3,25 x 104 3,78 x 108 5,1 x 109 2,2 x 106 10-15 3,25 x 10 3,78 x 105 5,1 x 1012 2,2 x 109 Values of molecular density n, molecular incidence rate f, mean free path l, and time to form a monolayer t, as a function of pressure P, for air at 25°C. Wet Etching JePPIX course 2014 PAGE 44 COBRA Vacuum Ideal (perfect) Gas Theory pV = nRT (Boyle equation) p = pressure, V = volume of enclosed space, n = number of molecules in enclosure, R = universal gas constant, T = temperature in °K. At standard conditions of pressure and temperature (760 Torr and 273,16 °K) R = 8,314 Joule/°K.mole (~2 cal/°K.mole) 1 Pa = 7.6 mTorr Wet Etching JePPIX course 2014 PAGE 45 COBRA Vacuum Avogadro demonstrated that at standard conditions one mole (molecular weight) of any gas occupies a volume of 22,415 liter. One mole = Avogadro number NA of molecules NA = 6,023 x 1023 The mean free path is given by: l= kT 2pd 2 p K=Boltzmann’s constant, d is the gas molecule diameter Wet Etching JePPIX course 2014 PAGE 46 COBRA Vacuum Gas f (molec/cm2.sec) l (cm) t (sec) H2 14,4 x 1017 9,3 1 x 10-3 He 10,4 x 1017 14,7 2,3 x 10-3 N2 3,85 x 1017 5,0 2,1 x 10-3 O2 3,60 x 1017 5,4 2,4 x 10-3 Ar 3,22 x 1017 5,3 2,6 x 10-3 Air 3,78 x 1017 5,1 2,2 x 10-3 H2O 4,80 x 1017 3,4 1,1 x 10-3 CO2 3,07 x 1017 3,3 1,7 x 10-3 Values of f, l and t for various gases at 25°C and 10-3 Torr Wet Etching JePPIX course 2014 PAGE 47 COBRA Vacuum Vacuum ranges and their physical characteristics • Low (and medium) vacuum – P extends from atmosphere to 10-2 Torr. Main content is Air • High vacuum – P ranges from 10-3 to 10-7 Torr (mean free path). Main content is water vapour and as pressure decreases it becomes CO. • Ultra high vacuum – P extends from 10-7 to 10-16 Torr (t is equal or large). Main content is H2 Wet Etching JePPIX course 2014 PAGE 48 COBRA Vacuum in Space Temperature 1,00E+07 1600 1,00E+05 1400 1,00E+03 1200 1000 1,00E+01 800 1,00E-01 600 1,00E-03 400 1,00E-05 200 1,00E-07 0 -5 0 2,5 7 20 60 200 Altitude (km) Wet Etching JePPIX course 2014 PAGE 49 COBRA 600 Temperature (°K) Pressure (P) Pressure Vacuum In semiconductor industry vacuum is used: • Epitaxial Growth (MBE and MOVPE) • for plasma processes (etching or deposition) • for coating processes by means of evaporation or sputtering (metals or dielectrics). The coating processes operate at a rather low pressure, which mean rather large mean free paths that help avoiding collisions between the metal/dielectric molecules. Wet Etching JePPIX course 2014 PAGE 50 COBRA Vacuum The gas molecules are assumed to be: 1. hard spheres 2. their volume is very small compared with the volume occupied by the gas 3. the molecules do not exert forces upon each other 4. moves randomly in rectilinear paths between collisions 5. make perfectly elastic collisions. Wet Etching JePPIX course 2014 PAGE 51 COBRA Boiling Temperature in Vacuum At lower pressure: introduction of vapour pressure 800 700 Pressure (Torr) The normal boiling point of a given substance is the liquefaction temperature at one atmospheric pressure. Vapour pressure of water vs Temperature 600 500 400 300 Liquid 200 Vapour 100 0 0 40 60 80 Temperature (°C) Wet Etching JePPIX course 2014 PAGE 52 COBRA 100