Actes du Colloque international du RESUP : Les inégalités
Transcription
Actes du Colloque international du RESUP : Les inégalités
Actes du Colloque international du RESUP : Les inégalités dans l’enseignement supérieur et la recherche Université de Lausanne, 18 au 20 Juin 2009 Tome 5: Inégalités de genre / Gender inequalitie Inequalities and knowledge production Different patterns of inequality Gender Inequalities in senior management: A comparative study from Portugal and Turkey Teresa Carvalho, Özlem Özkanl and Maria de Lourdes Machado ABSTRACT This paper examines the inequalities in women’s position in senior management in higher education in Portugal and Turkey and also examines the potential role Rectors/VCs may have in institutional policies developed to eliminate these inequalities. While Portugal and Turkey have different HE systems, it found that women now comprised the majority of undergraduates in both countries, but inequalities persist with women underrepresented in senior academia especially as full professors and senior academic managers. A qualitative study was developed with 22 interviews made in Portugal and 24 in Turkey with senior academic managers. The results are based on the content analysis of these interviews in both countries. The paper then explores the reasons for gender inequalities in top positions in academia and the link between the low proportions of women in the professoriate and their representations as senior managers in Portugal and Turkey. It focuses on the role of Rectors and Vice Chancellors in HE and the impact of female Rectors/VCs on both senior management teams and the organisational culture. It concludes that different obstacles for women ascending to top positions persist in both countries and that female Rectors/VCs both influence and are influenced by the institutional contexts in which they perform these roles. Introduction Despite the ideal of universities, where the equality and merit are endorsed as the main values, gender inequality still persists as a ubiquitous and omnipresent problem within it (Pritchard, 2007) as revealed by studies developed in different contexts (Bagilhole, 2000; Rees, 2001; Sagaria and Agans, 2006; Krais, 2002; Leathwood and Read, 2009). Even if the persistence of gender inequality in universities has been gradually assumed as an important research topic within Higher Education studies, the literature in the field of gender and higher education is, as Morley noticed (2005), mainly concentrated on the west and, more precisely, on the Anglo-Saxon world. The exclusion of other national realities is an important gap that needs to be overtaken in order to develop more knowledge on the way gender and gender relations are also politically and socially constructed. Following this logic, it is our conviction that the potential barriers to gender equality in South European countries have not been scientifically mapped, with an absence of comparative studies. As so, the main objective of this paper is to contribute to fill a gap on this research field by studying two South European countries: Portugal and Turkey. The results of this study proceed from a multi-country research project (Australia, Finland, Ireland, New Zealand, Portugal, South Africa, Sweden, Turkey, and the United Kingdom) aiming at analysing cross cultural perspectives on gender and management in Higher Education Institutions (HEIs). The rationale of the comparison between Portugal and Turkey is based on the fact that even without similar academic structures, both countries have higher levels of women participation in senior leadership positions when compared with other developed countries (Özlem et al, 2008). Both countries have been assisting to the expansion of HE translated in the increasing number of students and of public and private institutions. At the same time, increasing participation of women – along with the presence of horizontal and vertical segregation – has also been reported in the two countries in spite of none has developed affirmative actions policies at the organisational level. More recently, both countries have also been submitted to the same market, or market-like pressures, connected with globalisation, internationalisation, financial constrains and pressures to produce research outcomes valuable for the knowledge economy. This paper starts with a contextual analysis presenting the social and economic general profile of the two countries and the analysis of the HE systems in each one. The analysis of HE system includes issues related with their structure and management and a brief description of the career pattern within them. Then, a brief explanation of the empirical work is exposed. Finally, the results are discussed and the main conclusions are presented. Overview of the Two Countries The two countries vary in population and in GDP rate. Turkey had 73,888 and Portugal 10,608 thousands of persons in 2007 with a GDP rate of 657,091 in Turkey and 220,241 in Portugal (millions of US dollars) (WB, 2009). The historical route for equality development in society is also different. In Portugal it was with the 1974 democratic revolution that political efforts started to be developed towards the promotion of gender equality in society. The situation improved especially in what concerns the legal rights with women obtaining the same social and political status as men. Women have received the right to vote without any condition in 1976. In Turkey attempts to promote gender equality started earlier. In 1923 Mustafa Kemal Atatürk started a series of reforms aimed at giving women equal status with men. His reforms enabled Turkish women to participate in the first municipality elections in 1930 and gain the right of representation in the parliament in the 1934 elections. As a result of this political effort to promote equality but also due to other factors (as the social, cultural and economic development, and, in the Portuguese case, its integration in the EU in 1986) the situation of women in society changed, being their growing participation in the labour force an important precedent of the new gender dynamics crossing the two societies. In Portugal women’s participation has increased steadily since the mid-1980s, rising from 32.5 per cent in 1985 to almost 40 per cent ten years later (Cardoso, 2004). In 2006 the employment rate was 62% for women (superior to the medium of the EU25 – 57,3% ) and 73,9% for men, nevertheless the unemployment rate is always higher for women than for men. In 2006, 6,5% of men and 9% of women were unemployed (MTSS, 2009). However, even with a greater participation in the labour market women’s presence in top positions is still low. For instance, the proportion of women on boards of the top 50 enterprises in Portugal was just 6% and Turkey 4% (Eurostat, 2008). In Turkey the representation of women in management in public companies is low. In Turkey women comprise just 3.9% of general managers, 6.6% of assistant general managers, 14.1% of head of departments, 16% of managers and 27.3% of assistant managers in public sector (Tusiad-Kagider, 2008). In our days the different situation of women in society in the two countries can be analysed based on data from the World Economic Forum. The global gender gap index (Table 1) shows some differences between the two countries, with relatively large gender gap in Turkey. Large variations between the two countries are found in labour force participation by gender, as well as, it is observed in the political representation of women’s in parliament. Fertility rates are also distinct with Portugal closer to the EU average. Among other factors national work life balance policies can be an important variable to understand this difference. In Portugal, female workers are entitled to 120 days paid maternity leave or up to five months on partial pay, that can be shared with a partner. In Turkey the length of paid maternity leave is 16 weeks with recent changes in labour laws introducing paternity leave for workers. However the ratio of wage equality for similar work is similar between the two countries. The percentage of women in parliament in Turkey had increased to 9% in 2008. Table 1 Gender Profiles of Portugal and Turkey Labour Force Participation Ratio Wage Equality for the same work Women in parliament Fertility rates Global Gender Gap Index Portugal 0.86 0.65 0.39 1.50 39 Turkey 0.36 0.61 0.10 2.20 123 Source: World Economic Forum Global Gender Gap Report 2008 http://www.weforum.org/pdf/gendergap/report2008.pdf After this brief description of women’s participation in the two societies, it is important now to reflect upon women’s presence in the HE system of each country under analysis. Women Participation in Higher Education In Portuguese HE system 1974 is an unavoidable data. It was with the democratic revolution, at this time, that a binary system was created and new public universities and polytechnics emerged in the Portuguese HE, opening the pathways to a mass system. From the mid-1980s, Portuguese HE experienced a rapid expansion with the growing number of numerus clausus in public institutions and with the proliferation of private institutions (Amaral and Teixeira, 2000). At the present time there are 118 higher education institutions: 47 universities (14 public; 31 private and cooperative universities; 1 non integrated university institution; the Catholic university); 65 polytechnics (15 public; 46 private and 4 non-integrated schools of polytechnic institutions) and 6 military and police higher education institutions (4 military and police university institutions and 2 military and police polytechnic institutions) (MSTHE, 2009). Turkey, like Portugal, has experienced rapid growth in higher education, with the number of universities increasing from 29 to 77 between 1990 and 2006 (YOK, 2006). Approximately three quarters of these are public universities with the remainder mostly private foundation universities. In Turkey there are currently 132 universities (94 public universities and 38 foundation universities). In both countries the massification of the system has been accompanied be its feminisation. In Portugal, the substantive increase of students’ enrolments includes high rates of women participation. In fact, the extraordinary increase in the number of students is mainly due to women. Out of the 269,989 students enrolled in 1993, 53.4%, were women and in 2003/2004 this percentage raised to 56.2% (OCES, 2004) and, even if in 2007/2008 it decreases to 54%, they are still the majority of enrolled students in HE (GPEARI, 2009). In Turkish universities women comprised, in 2006, 45% of students in undergraduate and graduate programmes. This phenomenon is also a trend identified in Europe as well as in other developed countries (Bagilhole, 2000; Rees, 2001; Sagaria and Agans, 2006; Krais, 2002; Leathwood and Read, 2009). HE in both countries has also been changing under the influence of the introduction of market and managerialism devices at the system and institutional levels: system steering from distance; evaluation and quality assurance; competition pressures to increase teaching and research productivity and to link it to the entrepreneurial world. The presence of market and managerialism has been noticed in Portuguese higher education since the 1990s (Amaral, Magalhães and Santiago, 2003). In a first phase its presence was mitigated and mainly translated at a rhetorical level (Santiago and Carvalho, 2004; Santiago, Carvalho, Amaral and Meek, 2006). However, in the last years legal changes in the system (Law 62/2007) express clearly its election as the main frame of reference driven HE policies and imposing narrow and coercive practices that induce the substitution of HEIs from academic communities to managerial organisations. Women have increased their presence not only as students but also in the academic staff. However, before we can reflect upon the presence of women in the professorate differences between the career structures in the two countries must be highlighted. In Portugal, in accordance with the existence of a binary system, there are also two different careers: one for the university and other for the polytechnic sector. The academic career is highly hierarchical, with five categories, both in the universities – trainee assistant, assistant, auxiliary professor, associated professor and full professor (“catedrático”); and in the polytechnics – assistant (1st triennial), assistant (2nd triennial), adjunct professor, coordinator professor, coordinator professor with “agregação”i. There are two career paths – with the existence of the legal figure of invited professor – with only one carrying security of tenure. The system is collegial and based on a Humboldtian perspective, meaning that public HEIs are dependent on the state but have institutional autonomy and that academic roles comprise, at all levels, the development of teaching, research and administrative/managerial roles. Promotion is dependent on credentialism (in the university sector and on a tenure track, promotion is automatic by obtaining a master or a PhD) but also on academic merit (assessed mainly by the number of publications). To be a full professor it is necessary to have a post-doctoral degree (agregação) and to wait for vacancies determined by the state (in each step up to the next rank) and to apply in a national concurs where the Curriculum Vitae is evaluated. The rector is elected, from the full professors, by all academic staff with a PhD and by students’ and administrative staff representants. In this sense, being a full professor is a prerequisite for the typical academic career path into senior management. In public HEIs the payment categories are equal for each level. Based on this, and contrarily to what happens in other countries (Sagaria and Agans, 2006; Bagilhole, 2000; Saunderson, 2002), there are no differences in academic criteria for promotion or even in the salaries of women and of men in the same career position in the public HEIs. In Turkey both academic and administrative staff in state universities has civil servant status and, except for research assistants and assistant professors, have tenure. The numbers of academic and administrative staff posts allocated to each state university are determined by YOK (Turkish Council of Higher Education). Staff appointments at all levels are made exclusively by the universities themselves. The Higher Education Law No: 2547 only sets forth the minimum requirements for academic promotions and procedures to be followed in making appointments. For example, the average number of articles published in prominent academic journals recognized by an evaluation committee appointed by the Turkish Council of Higher Education (YOK, 2007). In Turkey YOK regulations on professional appointments are similar for both women and men academics, for that reason there is no formal gender discrimination at academic promotion (Ozkanli and Korkmaz, 2000b, 2000c). Candidates are asked to provide a portfolio including their curriculum vitas, details of their scientific publications, their educational and training activities, supervision of research degrees and their overall contribution to their current institution. In Portugal, in 2007 the total number of academics in public higher education institutions was 24,831. From these, 14,220 were men and 10,621 were women meaning that the majority of academics in public HEIs in Portugal were men (57,3%). The presence of women is higher in the polytechnic sector when compared with the university (39% in universities and 48% in polytechnics) (GPEARI, 2009). This is due to the fact that polytechnics have lower status being concentrated in low cost and more vocational and professional oriented degrees and doing very little or no research. This data is in line with the tendency, detected also in other contexts, for women having more difficulties to access the most prestigious and oldest higher education institutions (Machado-Taylor et.al., 2007; Rees, 2001; Stromquist et al, 2007; Bagilhole and White, 2005; Morley, 2005). In higher education in Turkey, there has been also a relatively high participation of women. According to the 2006-2007 data of the Center for Student Selection and Placement (OSYM) in Turkey, approximately 40% of all professionals working in the higher education are women. Nowadays, in Turkey 41.24% of all academics, 28% of all professors, 10% of all Rectors and 23% of all Vice Rectors are women (T.C. Prime Ministry of Turkey, 2009; YOK,2009). Even if these data show that the presence of women in HE is greater in these countries than in other European countries (Rees, 2001), it has to be read in light of the high participation of women in the labour market (referred above) and of their high participation as students. In fact, in Portugal, when we look to other educational levels, the presence of women as teachers seems less relevant in higher education. According with the World Economic Forum Global Gender Gap Report (2008) the percentage of female teachers in primary education is of 81; in secondary 66 and in the tertiary 43. Like in almost all HE systems all over the world (Machado-Taylor et.al., 2007; Leathwood and Read, 2009; Morley, 2005) the analysis of the women situation in HE in Portugal and Turkey also reveal the persistence of both horizontal and vertical segregation. Women are mainly concentrated on soft areas as humanities and arts and least present in hard sciences or engineering. In Portugal, women were, in 2005, 62.9% in education; 54.1% in arts and humanities and only 23% in engineering (Carvalho and Santiago, 2008). In Turkey women are best represented in language based studies at almost every grade and least represented in engineering and technology. For example, in medical sciences and literature women are over 40% of academics, but in engineering and architecture they are only 30% (Salamer, 2005). In Portugal, the percentage of women in early and middle careers is between 39% (trainee assistant) and 45% (assistant). But at the top this percentage decreases to 32% (associate professor) and 22% (full professor) (Carvalho and Santiago, 2008). In Turkey the representation of women in professoriate is significantly higher than Portugal (28 % for full professors and 32% for associate professors) (YOK, 2009). Despite the fact that women have increased their participation as students and also in the academic staff, the top management positions are mostly taken by men. However the percentage of women in top position in both countries is higher than in the majority of the other European countries (Rees, 2001; Özlem et al, 2008; Machado-Taylor et al, 2007). Taking this general context as background this paper intends to contribute to the development of knowledge on women in higher education management by taking the case of two South European countries that have considerable rates of women participation in higher education staff. Methodology This paper is part of a cross cultural project being undertaken by the Women in Higher Education Management Network of women in senior higher education management (WHEM) in Australia, Finland, Ireland, New Zealand, Portugal, South Africa, Sweden, Turkey, and the United Kingdom. The aim of this research project is to analyse gendered organisational cultures and their impact on the representation of women in university senior management. In a more precise way, one can describe the research objectives as: to gain an understanding of women’s representation in and experience of senior management in the nine countries in this study. The first phase of this research analysed women’s representation in senior management in HEIs in the participating countries (see Table 3). The research found that representation was consistently low across most countries, especially at Rector/VC/President level. Sweden was exceptional in having higher percentages of women at all levels in senior Management (Özhlem et al, 2008). When comparing data from Portugal and Turkey it is relevant to notice that even if these countries have a considerable presence of women in higher education staff, they are also amongst the group of those who have lower women participation in management positions. Comparative analysis between the two countries make possible to verify that the percentage of women in HEIs management is lower in Turkey than in Portugal in all categories expect for Rector/VC/President. In order to turn these differences more comprehensive a qualitative study was also developed. Open-ended interviews were conducted with a sample of rectors and vice-rectors in public universities (in Portugal private universities and all the polytechnics were excluded). The interview schedule, that was the same for the two countries, was divided into three parts. The first cluster of questions were about getting into and on in senior management. The second cluster focussed on “doing” senior management and explored perceptions of how colleagues regarded them, how they worked with men and women in their management team, and if women had a different management style. The final cluster focussed on the broader management culture. In Portugal, 22 interviews were made (9 men and 13 women) and 24 in Turkey (16 men and 8 women) with rectors and vice-rectors (Table 3). Eight of the 24 Turkish senior managers were women. Turkish interviewees comprised 6 Rectors, 9 Vice-Rectors and 9 former Vice-Rectors. Eleven of the Turkish senior managers were from regional universities and thirteen of the Turkish senior managers were from metropolitan universities. Twenty-two Turkish senior managers were from public universities, only two rectors (one female and one male) were from foundation universities. All interviews in Portugal were tape recorded with notes being made by the interviewers during the meeting. The interviews in Turkey were mostly face to face and ranged from one hour to two hours in length. There was only one phone interview. All interviews, except the phone interview, were tape recorded and summaries were made of each interview. Men Women TOTAL PORTUGAL Rector Vice-Rector 8 5 1 8 9 13 TURKEY Rector Vice-Rector 4 12 2 6 6 18 The interviews ranged from 30 minutes to over two hours and provided a wealth of indepth data which were submitted to content analysis based on which major findings were extracted and will be presented next. Findings Focusing on the Portuguese and Turkish rectors and vice chancellors the content analysis of their discourses on gender differences in academic senior management were structured around two main issues: the reasons for gender inequalities in top positions and the impact of female Rectors/VCs on both senior management teams and the organisational culture. Institutional role of rectors and vice-rectors By interviewing women and men in higher education governance and management top positions in the two countries, we were able to detect and analyse in their discourses a set of beliefs, assumptions and perceptions about their institutional roles. When asked about the role as rectors, the major tendencies on the Portuguese discourses were to identify skills related with the accomplishment of a specific project designed for their university, the coordination of activities and the management of resources. Vice-rectors identified mainly the capacity to coadjutant the rector or to coordinate specific activities like, for instance, building up and supervise global projects on universities teaching/learning activities and students supports. In this context, influencing the strategic direction of the university, to set the direction for the institution and making a significant contribution to its development were frequently cited by Portuguese interviewees as one of the advantages of their tasks. In addition to these ‘institutional’ advantages others, more linked with personal rewards, were also referred as the increase in learning opportunities and the improvement of individual networking. In Turkey, however, emphasise was more on individual rewards. The most cited advantages were: prestige, financial rewards, being respected and being first among equals. It seems that rectors and VC self-perceptions are still in line with the tradition of assuming rectors as ‘primus inter pares’. It seems also relevant to reflect upon the perception senior managers have over the characteristics needed to develop these roles. Senior managers’ discourses identify as indispensable to develop their roles, characteristics that can be classified as gender neutral. The broad consensus from interviewees in both countries was that a rector or vice rector had to have a strong academic research record and provide strong leadership both internally and externally. These data reveal that in spite of recent changes in HEIs, academics seem to sustain their attitudes based on a traditional Humboldtian notion of the academy and of their work (Santiago, Carvalho, Amaral and Meek, 2006). In Portugal as vice rectors are appointed by rectors, most women referred the importance of having worked previously in managerial duties with the rector. In sum, to have developed previously managerial roles, to be respectable in research domain by their peers and to be ‘inside’ the right networks are all factors mentioned as important to get into the top by women and men. Like a male rector expressed: “During my academic life-time I have performed many managerial roles. I was president of diverse national institutions with regulation responsibilities in research. Previously, I was a vice-rector and to be a rector is the natural consequence of this. Nevertheless, I usually say that it is fundamental to work hard to ascend into top positions but, it is also true that it is essential to have the support of the right person when is needed and I also had that.” (Int. n.15) These analyses reveal the importance of distinct factors to ascend to senior positions that have been identified in the literature as disadvantageous for women. To have a valuable research career is not a neutral concept. It is recognised by different authors that what is valuable in knowledge production is also identifiable with hegemonic masculinity (O’ Connor, 2007; Bagilhole and Goode, 2001). The relevance of engagement in research and managerial activities is also a discussed issue in gender in higher education studies even if without consensual results. Some classical studies emphasise gender differences in professional roles and academic work with women giving priority to teaching and men to management and research (Poole and LanganFox, 1997; Poole, Bornholt and Summers, 1997; Sax, Hagerdon, Arredondo and Dicrisi, 2002; Nakhaie, 2002). More recent ones, however, (Carvalho and Santiago, 2008) confirm that there are no significant differences in time women and men allocate to these activities. Nevertheless to be a prestigious researcher and to have full professorship is, in our interviewees’ opinion, indispensable to ascend to senior positions. In this context, a great number of women in academia are kept away from it. Beside these two factors, to take part in networking emerged also as equally relevant. Taking the words of a Portuguese vice-rector: “To be in senior positions you need two different things: the merit, or personal value, and being recognised by your colleagues. You can have merit but if you are not able to make it visible (…) you are never seen by the others. However, I think this is the same for women and men.” (Int. n.22). The problem for women to enter into ‘old boys network’ has been recognised as an obstacle for women in management in general (Oakley, 2000). It seems that higher education is not different and, in this context, women also have more difficulties in entering the circles of academic power (Kyvick and Teigen, 1996; Webster, 2001; Vázquez-Cupeiro and Elston, 2006; Perna, 2005; Conley, 2005). After identifying these obstacles the analysis proceed with senior managers’ perceptions over it. Reasons for gender inequalities in top positions Under the same logic as the majority did not identify gender differences on the necessary personal traits to develop academic senior management roles, the dominant discourse is also one of a lack of barriers for women to ascend to the top. The dominant discourses emphasise the gender-neutral nature of procedures for recruitment and promotion and the importance of HEIs being ruled by the meritocratic culture. Most senior managers in Turkey and in Portugal stated that they had no difficulty in moving into leadership roles and had been encouraged to apply by their Rector/Vice-Chancellor. When explicitly asked to identify potential barriers keeping women away from top positions in HEIs, the majority put the emphasise on external factors related with the dominant stereotypes on society and the need women have to develop a multi-focus on career and family responsibilities. The obstacles most frequently cited for women to ascend to the top in HE careers are identified, in both countries, outside academia, such as marriage, domestic responsibilities, role conflict, and the country culture. I think discrimination does not exist in universities. I think the problems are related with women dual roles: the familiar and the professional. The familiar roles withdraw opportunities for women to advance in career when compared with their male colleagues. (Int. nº.21). The work-family relation has been strongly developed in the literature as a reason that keep women in low grades in organisations (Kossek et al., 1999; Acker and Armenti, 2004; Jacobs and Winslow, 2004; Greenhaus and Beutell, 1985). Empirical studies previously made in Turkey and in Portugal emphasise the importance of it in academia. Özkanli and Korkmaz (2000a) argue that the reason for low participation in academic management in Turkey is mostly the increased family responsibilities of academic women. In their studies, some academic women pointed out gender discrimination, while others said that they were not willing to take administrative responsibility because they accepted, internalized and reproduced the traditional social roles of women and therefore prioritized housewife and mother roles. Moreover, other researchers confirm these findings, sustaining that women avoid responsibilities that involve business trips and increased work load due to fear of unfulfilling their traditional roles (Acar, 1986; Köker, 1988; Ersöz 1998). Santos and Cardoso (2008) found in an empirical study developed within Portuguese universities that both men and women faced difficulties in reconciling work and family. Nevertheless, these were primarily felt by women, particularly mothers of dependent children due to distinct factors as the preservation of traditional gender roles in the family, an ineffective legislation, and a work-family culture classified as familyunfriendly. However if it is true that a work-family conflict exists, felted particularly by women, one can not ignore that there are other studies emphasizing that family variables contribute little or nothing to the prediction of women research productivity (Toren, 1993; Perna, 2005; Sax et al., 2002) based on which promotion is made on both countries. The political and social construction of a discourse highlighting the differences in family roles can also be interpreted as a way to deny, or turn more invisible, the importance of organisational variables (Asmar, 1999; Ruth, 2005; Lafferty and Fleming, 2000). Authors as Toren (1993); Perna, (2005); Conley, (2005) or Webster, (2001) identified such professional variables as academic rank, salary, access to economic resources, orientation to research, research assistants’ availability and desire for recognition as more important and influential over women research productivity. Harley (2003) emphasise, in the new higher education market and managerialism context, the institutional insecurity, which concentrates women on the HE organizational ‘periphery’ and in the less secure lower grades. In fact, some of these organisational variables have also been highlighted in the interviews, even if in minority discourses, with a special emphasise given to informal processes. Knowing what I known today and thinking back, I must say that in deed there was some gender discrimination translated in some envy and discomfort from male colleagues. Obviously these are not reflected positions, and sometimes even not perceived by themselves, but there is no doubt that it exists. I think that in situations with competition between us, it is not the same if you are a woman or a man. And it is worst as you go further in career; our male colleagues turn more unwilling, jealousy and discomforted (Int. nº8). These discourses seem to confirm Morley analysis that there are a “myriad ways in which women are undermined and excluded from access to resources, influence, career opportunities and academic authority” (1999, p.4). The impact of women on senior management teams and organisational culture A key research focus in this paper was how Rectors/VCs influenced or shaped organisational culture and their impact on women in senior academic management. In line with previous results, most interviewees considered also that gender had no impact on senior management. Expressions like: “for me it is completely different being a man or a woman in top positions” were very frequent in Portuguese senior managers discourses. In both countries when respondents talked about gender differences in the management style they argued that differences related to personality rather than gender, however it was possible to find different opinions. In Portugal it was possible to identify, in some discourses, the persistence and reproduction of the traditional stereotypes identifying women with a more transformational style of leadership and men with a more transactional one (Manfredi and Doherty, 2006; Barker and Monks, 2003). Women were identified as stronger on collaboration, consultation and people skills: “Some time ago a colleague of mine told me: ‘your office is like a confessional’. And I said: ‘no. what happens is that we, women, have a different understanding, we are more sensitive’ ” (Int. nº10). However, there were also some references (although less frequent) to the fact that they were firm, obstinate and aggressive. “I think women and men are different in management. Women are more persistent and determined. They always accomplish their tasks” (Int.nº22) On the contrary, men were identified as more political and less firm on their ideas with a lack of single-mindedness and not working out the details of how things should be done. In Turkey, one female respondent argued that women were more task oriented, while men communicated poorly and were more interested in asserting power. At the same time, in Portugal, they also didn’t acknowledge any difference on the way male and female colleagues perceived them as in Turkey even if a few female respondents argued that female colleagues judged them more harshly. Different opinions concerning rectors and vice-rectors power inside institutions were also revealed. While Turkish interviewees considered that Rectors were very powerful, almost ‘omnipotent’, often comparing their status to that of kings with only the Board of Trustees in foundation universities mitigating this power, in Portugal discourses emphasise that rectors have a limited power (although consider as adequate) highlighting, instead the symbolic power dependent on communication and persuasion skills. The rectors’ power is more frequently compared with politicians than with managers’ power. “The rectors’ power is based on what can be classified as the ‘magistracy of influences’. I mean is more or like the power of the President of the Republic” (Int. nº.15). When explicitly asked about the way a person in top positions could help to improve women presence in senior HEIs management rectors and vice-rectors, in Portugal, were reluctant and absolutely against the introduction of effective formal gender equality programmes or even to any initiative in this domain. The reasons for rejecting affirmative actions have to do with a set of social beliefs: the pipeline theory; the gender neutral processes of promotion in academic career and the meritocratic ideology. The first set of beliefs is related with dominant views emerging in the actors discourses that it is just a question of time for women to get into senior management in HEIs. And, as it was not necessary to develop these initiatives for women being in majority in universities it wouldn’t also be for ascending in the career; “We do not need quotas system or something like that. Women are capable of getting there on their own” (Int.nº.11). “(…) is just to be patient and to wait 5, 10 or 15 more years ahead and we will assist to a inverse situation” (Int. nº.12). The second set of beliefs translate the conviction that discrimination does not exist in academia and, thus, affirmative actions could mean, in the opinion of some of the interviewed that some women would take advantage of it; Finally, the third set of beliefs encloses ascending to senior positions in a kind of ‘social Darwinism’ logic. To get into senior management is interpreted as the finish line in academic competition and introduction other mechanisms could mean that selection would not be made based on meritocratic principles; “Ascending to the top is like the evolution of species – only the best can get there, and this could interfere with this principle” (Int. nº.14) Generally Portuguese rectors and vice rectors considered that they could influence the gender profile of senior management only by taking symbolic measures. Among them the most cited was to appoint women to their teams. However it is important to highlight that one rector referred more pragmatic reasons to have women in his team: it was a way to conquer more votes from academic women in his institution. With the exception of one woman, who was in favour of affirmative actions policies in their institution, all the other referred only to symbolic initiatives like serving as role models or talk about the importance of gender issues in public discourses. The woman vice rector who manifest a positive attitude to affirmative actions putted a special emphasise on women’ presence on committees for promotion, because she believed that having only men could damage for women. In fact, recruitment and selection procedures were already identified in previous studies as important obstacles to women progression in academic career (Benshop and Brouns, 2003; Carvalho and Santiago, 2006; Husu, 2000; Rees, 2005). These empirical results are in line with the tradition of south countries “where traditional attitudes and reluctance to introduce effective formal gender equality programmes have often prevailed” (Vázquez-Cupeiro and Elston, 2006) in contrast with those from the north of Europe. Conclusion Despite the improvements in the last years women participation in higher education in Portugal and Turkey can not be defined as equal. Women increased their participation in academic staff but are underrepresented in same areas (as technology and engineering) and in top management positions. The analysis of these two countries is particularly relevant since in these HE systems women have almost reached the parity in teaching but, at the same time, they belong to the group of countries where women are more under-represented in higher education management. Since there is no formal discrimination in career progress one can expect that discrimination against women is taking relatively sophisticated, “veiled” forms (Bagilhole and Goode, 2001; Husu, 2001). The dominant perception of universities is one that considers these institutions as gender neutrals and based on meritocratic principles. Universities are conceived as neutral organisations where men and women can succeed on their merits. The majority stated that the obstacles for women to ascend in the academic career are only related with external factors. The dominance of neutral assumptions on gender along with the presence of a meritocratic ideology turns the ‘veiled’ forms of discrimination even more invisible. This may demonstrate that “many people working in universities are in a state of denial about how women are treated in most universities in the world” (Currie, Thiele and Harris, 2002, p. 4) and also that actor with managerial responsibilities still look at universities as ivory tower (Benschop and Brouns, 2003). Bibliography Acar, F. (1986), “Working Women in a Changing Society: The Case of Jordanian Academics”, METU Studies in Development, V.10, p.p. 307-324. Acker, S., Armenti, C. (2004), "Sleepless in academia", Gender and Education, Vol. 16 No.1, pp.3-24 Amaral, A. and Teixeira, P. (2000), “The rise and fall of the private sector in Portuguese higher education?” Higher Education Policy, Vol. 13, nº 3, 245-266. Amaral, A., Magalhães, A. and Santiago, R. (2003). The rise of academic managerialism in Portugal. In Amaral, A., Meek, L. and Larsen, I.M. (eds.), The Hihger Education Managerial Revolution? Dordrecht: Kluwer Academic Publishers, pp. 101-123. Asmar, C. (1999). Is there a gendered agenda in academia? The research experience of female and male PhD graduates in Australian universities. Higher Education, 38, 255-273. Bagilhole, B. (2000), The myth of superman: A feminist investigation of academic careers., Paper presented to the 2th. European Conference on Gender Equality in HE, Zurich. Bagilhole, B. and Goode, J. (2001), “The contradiction of the myth of individual merit, and the reality of a patriarchal support system in academic careers; a feminist investigation”, The European Journal of Women’s Studies, Vol.8, Nº2, pp.161-80. Bagilhole, B. and White, K. (2005), Benign Burden: Gender and senior management in the UK and Australia. Paper presented to the 4th. European Conference on Gender Equality in HE, Zurich. Barker, P. and Monks, K. (2003), Women in senior academic positions: Two case studies, Paper presented to the 3th. European Conference on Gender Equality in HE, Genoa. Benschop, Y. and Brows, M. (2003) Cumbling ivory tower: Academic organizing and its gender effects. Gender, Work and Organisation, 10,2 194-212., Cabral-Cardoso, Carlos, (2004) Women in Management in Portugal, in Davidson, M. and Burke, R. (Eds) Women in Management Worldwide, Aldershot, Ashgate. Carvalho, T. and Santiago, R. (2006). “Academics in a new work environment: The impact of New Public Management on work conditions”, Society for Research into Higher Education Annual Conference 2006, 12-14 December, Brighton, Sussex. Carvalho, T. and Santiago, R. (2008) Gender differences on research: Perceptions and use of academic time, Tertiary Education and Management, 14(4), pp. 317-330. Conley, V. (2005). Career paths for women faculty: Evidence from NSOPF: 99. New Direction for Higher Education, 130, 25-39. Currie, J. Thiele, B. and Harris, P. (2002), Gendered universities in globalised economies: power, careers and sacrifices, Lexington Books. Ersoz, A., (1998), “Kamu Yönetiminde Yönetici Olarak Çalıan Kadınların Geleneksel ve Çalıan Kadın Rollerine likin Beklentileri”, in Oya Çitçi (Ed), 20. Yüzyılın Sonunda Kadınlar ve Gelecek, TODAIE Publication, Ankara, pp. 255-264. GPEARI, (2009) Gabinete de Planeamento, Estratégia, Avaliação e Relações Internacionais, Retrieved on 10.5.2009 at: http://www.gpeari.mctes.pt/index.php Greenhaus, J., and Beutell, N. (1985), "Sources of conflict between work and family roles", Academy of Management Review, Vol. 10 No.1, pp.76-88. Harley, S. (2003). Research selectivity and female academics in UK universities: From gentleman’s club and barrack yard to smart macho? Gender and Education, 15(4), 377-392. Husu, L. (2001), Sexism, support and survival in academia: Academic women and hidden discrimination in Finland. Helsinki. University of Helsinqui. Husu, L. (2000). Gender Discrimination in the Promised Land of Gender Equality, Higher Education in Europe, XXV:2, 221-228. Jacobs, J., and Winslow, S. (2004), "Overworked faculty: job stress and family demands", Annals of the American Academy of Political and Social Sciences, Vol. 596 No.1, pp.104-29. Köker, E. (1988), ‘Turkiye’de Kadın, Eitim ve Siyaset: Yüksek Örenim Kurumlarında Kadının Durumu Üzerine Bir nceleme’, Ph.D Thesis, Ankara University, Ankara. Kossek, E, Noe, R, and DeMarr, B. (1999), "Work-family role synthesis: individual and organizational determinants", International Journal of Conflict Management, Vol. 10 No.2, pp.102-29. Krais, B. (2002) Academia as a profession and the hierarchy of the sexes: Paths out of research in German universities. Higher Education Quarterly, 56,4, 407-418. Kyvik, S. and Teigen, M. (1996). Child care, research collaboration and gender differences in scientific productivity. Science, Technology & Human Values, 21(1), 54-71 Lafferty, G. and Fleming, J. (2000). The restructuring of academic work in Australia: Power, management and gender. British Journal of Sociology of Education, 21(2), 257-267. Leathwood, C. and Read, B. (2009), Gender and the changing face of higher education. A feminized future?, Berkshire, Society for Research into Higher Education and Open University Press. Machado-Taylor, M., Özkanlı, Ö. White, K. and Bagilhole, B. (2007). Breaking the Barriers to women achieving seniority in Universities, paper presented to EAIR Forum, Innsbruck. Manfredi, L. and Doherty, S. (2006). Women’s progression to senior positions in English universities, Employee Relations, Vol. 28, Nº 6, pp. 553-572. Morley, L. (2005) Gender equity in commonwealth higher education. Women's Studies International Forum, 28 (2-3). pp. 209-221. Morley, L. (1999), Organising Feminisms: The Micropolitics of the Academy, Macmillan, Basingstoke. MSTHE, (2009), Ministry of Work and Social Security, Retrieved on 10.5.2009 at: http://www.mtss.gov.pt/ Nakhaie, (2002), Gender differences in publication among university professors in Canada. Canadian Review of Sociology and Anthropology, 39(2), 151-179. O’ Connor, P. (2007), The elephant in the corner. Gender and policies related to higher education, paper presented at the conference on Women in Higher Education, Queen’s University, Belfast, 19-20 April. Oakley, J. (2000), Gender-based barriers to senior management positions: Understanding the sacrcity off emale CEO’s, Journal of Business Ethics, Vol. 27, nº 4, pp. 321-334. OCES – Observatório da Ciência e do Ensino Superior (2004), O Sistema de Ensino Superior em Portugal. 1993-2003. OSYM (Center for Student Selection and Placement) (2008), Data of the Center for 2006-2007, Ankara. Özkanli and Korkmaz (2000a) Academic women in Turkey: The structure of attitudes towards role conflict. In the Global Awareness Society International Ninth Annual International Conference Proceedings Book. New York. USA, pp.26-28 May (pp. 314-322). New York: Bloomsburg University. Özkanli and Korkmaz, (2000b), Kodin Akademisyenter [Academic Women], Nº 586. Ankara: Ankara University. Özkanli and Korkmaz, (2000c), Turkish women in academic life: Attitude measurement towards gender discrimination in academic promotion and administration. In Emerging economies: Academy of Business Administrative Sciences International Proceedings Book. Prague. St. Bonaventure University. Özkanli, O.; Machado, M.; White, K.; O’Connor, P.; Roirdan, S. and Neale, J. (2008). Gender and management in HEIs: changing organisational and management structures, EAIR Conference, Helsínquia. Perna, L. (2005). Sex differences in faculty tenure and promotion: The contribution of family ties. Research in Higher Education, 46 (3), 277-307. Poole, M. and Langan-Fox, J. (1997). Australian women and careers: Psychological and contextual influences over the life course. Cambridge: Cambridge University Press. Poole, M.; Bronholt, L. and Summers, F. (1997). An international study of the gendered nature of academic work: Some cross-cultural explorations. Higher Education, 34, 373-396. Pritchard, R. (2007). Gender inequality in British and German universities, Compare, vol. 37 (5), pp. 651-669. Rees, T. (2001) Mainstreaming gender equality in science in the European union: The ‘ETAN report’. Gender and Education, 13,3, 243-260. Rees, T. (2005). Keynote address to 4th European Conference on Gender Equality in Higher Ruth, D. (2005). Gender and perceptions of academic work in South Africa. Journal of Higher Education in Africa, 3(3), 57-85. Sagaria, M. and Agans, L. (2006). Gender equality in US higher education: International framing and institutional realities. Research Institute for Higher Education. Japan: Hiroshima University. Salamer, G 2005 ‘Enhancing Access of Women in Higher Education’, IAUP XIV Triennial Conference the Challenge of Globalisation and the Role of Higher Education, Bangkok Santiago, R. and Carvalho, T. (2004) “Effects of Managerialism on the perceptions of Higher Education in Portugal”, Higher Education Policy, 17(4): 427-444. Santiago, R. and Carvalho, T. (2008) Academics in a new work environment: The impact of New Public Management on work conditions. Higher Education Quarterly, 62(3), pp.204-223. Santiago, R.; Carvalho, T; Amaral, A. and Meek, L. (2006) Changing patterns in the middle management of higher education institutions: the case of Portugal. Higher Education, 52(2), pp. 215-250. Santos, G. and Cardoso, C. (2008) Work-family culture in academia: a gendered view of workfamily conflict and coping strategies, Gender in Management: An International Journal, Vol. 26, nº 6, 442-457. Saunderson, W. (2002) Women, academia and identity: Constructions of equal opportunities in the ‘New Managerialism’ – A case of lipstick on the gorilla?. Higher Education Quarterly, 56,4, 376-406. Sax, L, Hagerdon, L.; Arredondo, M. and Dicrisi III, F. (2002). Faculty research productivity: Exploring the role of gender and family related factors. Research in Higher Education, 43(4), 423-632. Stromquist, N.; Gil-Antón, M; Balbachevsky, E; Mabokela, R; Smolentseva, A.; and Colatrella, C. (2007) The academic profession in the globalisation age: Key trends, challenges, and possibilities, In Altbach, P. and Peterson, P. (eds) Higher Education In the New Century. Global Challenges and Innovative Ideas, Massachusetts: Center for International Higher Education: Boston College. T.C. (2009) Prime Ministry of Turkey, Directorate General (DG) for the Women Status (Kadının Statüsü Genel Müdürlüü), Reports: Turkish Women Case (Türkiye’de Kadının Durumu), Mayıs 2009 ANKARA Toren, N. (1993). The temporal dimension of gender inequality in academia. Higher Education, 25, 439-455. Tusiad-Kagider (2008). Türkiye’de Toplumsal Cinsiyet Eitsizlii: Sorunlar, Öncelikler ve Çözüm Önerileri, TUSAD Publications, Graphis Publication Company, stanbul. Vázquez-Cupeiro and Elston, (2006), Gender and academic career trajectories in Spain, Employee Relations, Vol. 28, Nº6, pp. 588-603. World Bank, (WB) (2009). Economy Report. Accessed on:http://siteresources.worldbank.org/DATASTATISTICS/Resources/wdi09introch4. pdf Webster, B. (2001). Polish women in science: A bibliometric analysis of Polish science and its publications, 1980-1999. Research Evaluation, 10(3), 185-194. YOK, (2007) (Turkish Council of Higher Education), Retrieved on 15.5.2009 at: http:// www.yok.gov.tr YOK, (2006), Higher Education Statistics. Retrieved August 29 2006 from: http://www.yok.gov.tr i The “agregação” refers to an academic degree similar to the German habitur. INEQUALITIES IN HIGHER EDUCATION AND RESEARCH 2nd International RESUP Conference Lausanne 18-20 June 2009 Patterns of gender discrimination in the S&T European countries 1 Luísa Oliveira & Helena Carvalho 1. Introduction In the first part of this paper we examine the relationship between Science and Technology (S&T) development and gender discrimination patterns in the EU, using statistical data.2 The aim is to explore EU heterogeneity both in S&T development and gender discrimination3 in order to obtain a greater understanding of the differences between European countries in these fields. In the second part, we focus on analysing the gender gaps in education (ISCED 6) and access to research and academic professions, as well as the gender discrimination in academic careers in EU. Historically, differences are found both in countries’ S&T development and in their technological trajectories (Dosi, 1982, 1983; Perez, 1988). The development level of European countries and their technological dependence relations sustain the presupposition of a stratified European S&T space4 (Oliveira and Carvalho, 2002). Our hypothesis is that European regions with the most developed S&T systems should be distinct from others by having a more equalitarian gender situation. This may occur in spite of the changes that are taking place to mitigate differences, such as the attempt to build a European higher education system in the Bologna Declaration. Other 1 2 Professors at the Lisbon University Institute and researchers in CIES/ISCTE. For a discussion on the problems of cross-national comparisons see, among others, M. Maurice et al. (1986) and M.L. Kohn (1989). 3 In this text, we use the BIT definition for gender discrimination as “any distinction, exclusion or preference made on the basis … of sex…, which has the effect of nullifying or impairing equality of opportunity of treatment in employment or occupation…” (BIT, 2007: 9). 4 The European Science and Technology (S&T) space is firstly a knowledge-embedded and occupational space that is constructed in interaction with the actors who constitute it, including its institutions, culture, rules and policies. Thus the S&T space is not synonymous with the S&T system, because it is a “social construct” that emerges out of the subtlest interactions between collective actors (men and women) and their professional activities, interactions which are then structured and diffused within organisations and institutions (Oliveira, 2008). structural change factors are being implemented in the European S&T space, inspired by the well-known triple-helix formula (Etzkowitz and Leysdorf, 1997), largely due to budgeting pressures and the financial crises of the welfare state. With companies co-financing research, academia has opened up to the business world, which will contribute in time to change in both the academic and business cultures in each country. As this is a relatively recent process in Europe, and the conditions of implementation vary from country to country, the inheritance of the culture of the Humboldt University model (Oliveira, 2000) and career procedures postulated by Merton’s (1973) regulation of science may continue to be present and to a certain extent may explain the possible gender differences in S&T nowadays. This is particularly relevant if we consider that even universities in the oldest European democracies are extremely closed institutions, metaphorically comparable to an ivory tower, thus contributing to the maintenance of a certain conservatism (Caplan, 1994; Rhode, 2006). Given that gender discrimination is found across Europe in the most varied areas (Cockburn, 1983; Charles, 1993; Maruani, 2005; McGrayne, 2001), and that there are multiple explanations for this phenomenon, our starting point is that the nature of the political regimes governing post-war Europe and their more or less conservative approach to science has affected the development of their Science and Technology (S&T) systems. As these effects are long-lasting, they have produced a culture that tends to neutralise the effects of social policies against gender discrimination (CCE, 2007; Ruest-Archambault, 2008). In addition, the timing of countries’ integration into the EU construction process contributes also to the European heterogeneity. Our first analysis explored the hypothesis of EU S&T space stratification, identifying the configuration of each of these strata and the countries associated with each of them. The second analysis evaluated to what extent these strata are distinct from each other in relation to gender discrimination indicators, including academic careers. In addition, European S&T patterns of gender discrimination were identified and described. Finally, the articulation between the S&T strata and these gender discrimination patterns were mapped. 2. Method 2.1. Data For cross-country comparison at the EU level, we examined statistical information derived from data in Eurostat science and technology (S&T) statistics and in the She figures 2006 report: Women and science statistics and indicators. The data relate to the active population, aged between 15 and 64 for 2003 and 2004. 2.2. Measurement 2 Three main indictors were used to analyse the segmentation of the S&T European space (EU 27) from a cross-national perspective: − the proportion of researchers per thousand labour force (2003);5 − the proportion of scientists and engineers in the total labour force (2004); − the proportion of R&D expenditure in Purchasing Power Standards (PPS) per capita researcher (2003).6 The following indicators were used to analyse gender discrimination: − the proportion of PhD (ISCED 6) graduates by sex (2003); − the proportion of researchers by sex (2003); − the proportion of academic staff total by sex (2004); − the proportion of women in grade A7 positions among all women in academic staff (2004); − the proportion of men in grade A positions among all men in academic staff (2004); − the difference in research funding success rates between women and men (2004); − the proportion of women and men on scientific boards (2004); − the Glass Ceiling Index (2004).8 For four indicators (the proportion of PhD (ISCED 6) graduates, the proportion of researchers, the proportion of the academic staff total, and the proportion on scientific boards), we constructed a new measure – the gap – by computing the difference between the male/female proportions. Using gaps we are able to include simultaneously both female and male rates and solve the problem of multicollinearity. 2.3. Analytical approach The first stage of our examination of the indicators systematised above involved a vertical analysis within each set of indicators: S&T segmentation and gender discrimination. This then led to the mapping of countries. The other vector of analysis was centred on identifying pattern types among the countries for S&T segmentation and then for gender discrimination. Assuming the 5 The labour force includes both employed and unemployed people. Purchasing Power Standard (PPS) is the artificial common currency into which national currencies are converted (Eurostat, 2004). 7 Grade A is “the single highest grade/post at which research is normally conducted” (EC, 2006: 100). 8 The Glass Ceiling Index (GCI) is a ratio between the proportion of women in grade A+B+C and the proportion of women in grade A. The GCI is an indicator that measures “the relative chance for women compared to men of reaching a top position” (EC, 2006: 52). Grade B includes “researchers working in positions not as a senior as top position[s] (A) but more senior than newly qualified PhD holders”, and Grade C includes “the first grade/post into which a newly qualified PhD (ISCED 6) graduate would normally be recruited” (EC, 2006: 100). 6 3 multidimensionality of these pattern types, we explored the relationships within each set of indicators using a multivariate method of data analysis: Principal Components Analysis for Categorical Data (CATPCA). This is a non-linear analysis of principal components that allows quantitative variables (S&T segmentation indicators and gender discrimination indicators) to be combined with qualitative variables, in this case, the country (Van de Geer, 1993a; Van de Geer, 1993b; Gifi 1996; Meulman et al., 2004). By applying CATPCA, profile types were identified that distinguish groups of countries from each other, revealing the existence of different situations among EU countries. A clustering analysis was also performed using a hierarchical algorithm (Hair et al., 2006) in order to validate the configuration of the European S&T space exhibited by CATPCA. Finally, a Correspondence Analysis (CA) (Greenacre and Blasius, 2006; Greenacre, 2008) was implemented to graphically show the contours between S&T segments and gender discrimination patterns. 3. Results 3.1. S&T European space segmentation Historically, differences are found both in the countries’ S&T systems and in their technological trajectories (Dosi, 1982; Perez, 1988). The development level of European countries and their technological dependence relations sustain the hypothesis of a stratified European S&T space (Oliveira and Carvalho, 2002; Oliveira, 2008). Using the above-mentioned indicators as development indicators in this field (the proportion of researchers per thousand labour force, the proportion of scientists and engineers in the total labour force, and the proportion of R&D expenditure in Purchasing Power Standards (PPS) per capita researcher), the data show (Figures 1, 2 and 3) an extremely unequal distribution of human resources and materials in S&T across the different countries. Using the EU average as a reference, European countries can be divided into at least two groups: countries below the overall mean and countries above this mean. This shows that the S&T European space is a dualised space of rich (Central and Northern European countries) and less developed S&T countries (Eastern and Southern European countries, namely Portugal and Greece). Spain, Italy and Estonia are special cases. Spain is closer to the Northern European countries with a high level of researchers, scientists and engineers, but low S&T research expenditure per capita. Italy, on the other hand, has low levels of human resources working in S&T but high S&T expenditure. Estonia is above the overall mean for research per thousand labour force, but presents very low rates in the two other indicators. 4 Figure 1. Proportion of researchers per thousand labour force by country (2003) 20.0 18.0 16.0 14.0 12.0 10.0 8.0 Mean = 7.77 6.0 4.0 2.0 0.0 Figure 2. Proportion of scientists and engineers in the total labour force by country (2004) 9.0 8.0 7.0 6.0 5.0 Mean = 4.72 4.0 3.0 2.0 1.0 0.0 5 Figure 3. Proportion of R&D expenditure in purchasing power standards (PPS) per capita researcher by country (2003) 200.0 180.0 160.0 140.0 120.0 100.0 80.0 60.0 Mean = 74.75 40.0 20.0 0.0 In order to identify stratification segments in the European S&T space, a Principal Components Analysis for Categorical Data (CATPCA) was carried out, exploring the relationships between the three indicators and matching the countries through their position. This analysis confirms the dualisation of the S&T space (Figure 4). Countries with lower rates, i.e. Eastern and Southern European countries (Dimension 1 < 0), contrast with those which have higher rates in every indicator, i.e. Central and Northern European countries (Dimension 1 > 0). 6 Figure 4. The segmentation of the European S&T space Netherlands Italy 2 Luxembourg [+] R&D expenditure in PPS per capita researcher France [-] % of researchers per thousand labour force Austria [-] % of scientists and engineers Cyprus Slovenia in the total labour force Romania Czech Republic 0 Bulgaria Greece Poland Spain Latvia Portugal Hungary Slovakia [-] R&D expenditure in PPS per capita researcher Lithuania Germany Belgium Ireland Dimension 1 [+] % of scientists and engineers in the total labour force Denmark Sweden Estonia [+] % of researchers per thousand labour force -2 Finland -2 0 2 Dimension 2 However, another feature of Central and Northern European countries is that they have a greater spread than the other group of countries due to the fact that this group is divided into two different segments: − one is characterised by having both a larger number of scientists and engineers in the total labour force and also researchers per thousand labour force. This segment is a development pattern based on the extent of the high level of qualifications in the labour force, which is typical of northern countries, Ireland and Belgium;9 9 The United Kingdom and Malta are not included in this multivariate analysis because data is missing for them in at least one indicator. 7 − the other stands out for its higher rates of R&D expenditure in PPS per capita researcher, which is typical of Central European countries (Luxembourg, France, Austria and Germany). The Netherlands and Italy also belong to this group. Despite this segmentation of the European S&T space, the three strata cannot be definitively ranked (Figure 5) because the two segments with the best performance in S&T development (Northern and Central European countries) exchange their top positions in S&T indicators. Figure 5. Hierarchy of European countries according to S&T development indicators Finland Finland Sweden 2 Denmark Belgium Ireland Germany Luxembourg France Sweden Luxembourg Belgium Denmark Ireland Luxembourg Germany Italy Belgium France Germany Sweden France Netherlands Austria Spain Austria 0 Hungary Estonia Lithuania Slovenia Greece Portugal Czech Republic Slovakia Latvia Poland Cyprus Italy Bulgaria Romania Netherlands Spain Hungary Italy Lithuania Greece Czech Republic Estonia Cyprus Latvia Slovakia Poland Malta Bulgaria Romania Austria Ireland Denmark Finland Spain Slovenia Czech Republic Cyprus Hungary Greece Lithuania Poland Portugal Bulgaria Latvia Romania Estonia -2 % of researchers per thousand labour force % of scientists and engineers in the total labour force R&D expenditure in PPS per capita researcher 8 The results of a Hierarchical Cluster Analysis fit well with the threefold nature of European S&T space segmentation. In accordance with this classification, we have redrawn the segments linking the countries to their cluster (Figure 6). Figure 6. Segmentation of the European S&T space: clustering the countries Italy (B) Netherlands (B ) 2 Luxembourg (B) France (B) Austria (B) Germany (B) Slovenia (A) Cyrus (A) Bulgaria (A) Czech Republic (A) Greece (A) Spain (A) Poland (A) Portugal (A) Latvia (A) Slovakia (A) Hungary (A) Belgium (C) Romania (A) 0 Dimension 1 Ireland (C) Denmark (C) Sweden (C) Lithuania (A) Estonia (A) -2 Finland (C) -2 0 2 Dimension 2 Table 1 shows that the average of S&T development measures by segment reproduces the profiles found by multivariate analysis. Segment A has the lowest mean in every indicator. Segment B presents the highest mean for R&D expenditure in PPS per capita researcher and Segment C has the highest mean for indicators concerning the high level of S&T qualifications of the labour force. It is precisely because of the above-mentioned inversion of the mean in segments B and C that a hierarchy between them is out of the question. Table 1. Measures of S&T segments S&T segment % of researchers per thousand labour force Segment A Mean 6.07 Segment B 8.27 % of scientists and engineers in the total labour force R&D expenditure in PPS per capita researcher Mean 3.73 Mean 36.54 5.02 144.68 9 Segment C Overall mean 13.25 7.16 100.86 8.12 4.77 76.98 A hierarchy exists when the S&T space is approached as a dual space, and therefore the performance of segments B and C is better, but when these two are compared it is found that despite being included in the group of countries with more developed S&T systems, they have different profiles and their most important S&T indicators are inverted. 3.2. Trends in gender discrimination by S&T segment According to the profiles of the three segments in the S&T European space, and if our main hypothesis holds true, most gender discrimination would be found in segment A (eastern/southern countries) and there would also be some differences in segments B and C, as their S&T development models are based on different principles: higher rates in R&D expenditure and scientific professions. The question that must be answered is whether and how these different development models are associated with gender discrimination in Science and Technology. Two analytical dimensions were defined (Table 2) based on gender discrimination indicators. The first refers to the preconditions needed to improve equal gender opportunities in S&T, and the second refers to the academic conditions for men’s/women’s career pathways. Table 2. S&T systems and organisational academic culture in gender discrimination Dimensions Preconditions for improving equal gender opportunities in S&T Academic conditions to promote women’s career pathways Indicators Variables Education Gap %M-%W PhD (ISCED 6) Equal access to research and academic professions Gap %M-%W researchers Gap %M-%W academic staff Access to control and power positions Percentage of women in grade A Percentage of men in grade A Gap %M-%W on scientific boards Research funding success rate Glass Ceiling Index 10 These dimensions were defined in accordance with the above observations on the closed and conservative academic culture, which is an ideal environment in which to analyse gender equality in S&T. Will there be relevant differences in men’s/women’s career pathways among S&T segments or, despite S&T segmentation, does academia continue to have basically the same cultural gender pattern all over Europe? Despite the differences between countries regarding the level of university autonomy from the State and also recruitment rules and career management, as Musselin (2005) concludes in a comparison of France, Germany and the United States, this question makes sense in that gender discrimination appears to be transversal across organisational models and other national specificities in different fields. In fact, a vertical analysis per indicator shows gender discrimination throughout EU countries, detailing differences in the distribution of indicators (Annex 1). In order to find out how far S&T segmentation could explain the range in the rates, a cross-relation between the segments (A, B and C) and gender discrimination indicators was performed (Figure 710). The major differences between segments (Figure 7) are found in the male/female researcher gap, in the male/female academic staff gap, and in the gap on scientific boards. But despite these differences, and with the exception of PhD degrees, for which the gap has a negative mean in segment A,11 the three groups of countries on average have common features, as all the gender gaps have positive values, which means women are discriminated against in all of them. In fact, more women have a PhD than men in these countries (Annex 1). There is no proportional expression of this feature of women’s emancipation (EspingAndersen, 2002 and 2008), which some authors call the women’s silent revolution (Ferreira, 1988), in terms of access to scientific professions. Further research would be necessary to determine whether this is due to a discriminative attitude from these institutions or to other professional strategies taken by women who do not wish to enter the academic world or who even leave it because they are dissatisfied (Preston, 1994; Ledin et al., 2007; West, 2007). On the basis of this data, it appears that women have difficulty in accessing academic and research professions even in countries where there are more women than men with a PhD. Access to these scientific professions seems to be a powerful gender discrimination factor all over Europe, with segment B (predominantly Central European countries) presenting the highest figures. 10 For this analysis, comparisons are made using the mean of the variables (indicators of gender discrimination) within each segment, because the exploratory analysis reveals a symmetrical distribution for each of them, which means that the representativeness of this statistical measure is guaranteed. 11 The gap in this indicator is negative in almost all Eastern European countries, except for the Czech Republic and Poland, and Portugal. 11 Figure 7. Indicators of gender discrimination by S&T segment 70.0 65.0 60.0 55.0 50.0 45.0 40.0 35.0 30.0 25.0 20.0 15.0 10.0 5.0 0.0 -5.0 -10.0 Gap M-W Phd (ISCED 6) Gap M-W Researchers Gap M-W Academic Staff % of women in Grade A % of men in Grade A Gap M-W in Scientific Boards Research funding success rate Glass Ceiling Index As far as academic careers are concerned, the results show the percentage of women in grade A is on average lower than the percentage of men in the same position. This gender discrimination feature is particularly high in segment B. As Side and Robbins (2007) point out with regard to the American case, women faculty members continue to encounter a glass ceiling when it comes to achieving the position of full professor.12 For EU countries, the Glass Ceiling Index has a narrow range, with Malta as an outlier (Annex 2). On average, the gap on scientific boards is also very high in each segment, above all in segments A and B. Moreover, segment C (almost all northern countries) is the least discriminative in the dimension of academic conditions to promote women’s career pathways. We can also conclude that the widest gap in the dimension of preconditions for improving equal gender opportunities in S&T is found in segment B, in contrast to segment A. This analysis leads to the conclusion that only a part of the total variation of these indicators could be explained by intersegment differences. In order to reinforce this conclusion, 12 For the Canadian case, see Side and Robbins (2007). 12 a measurement of association using the eta coefficient and derived effect size13 was applied (Table 3). As already emphasised, only three indicators (the male/female researcher gap, the male/female academic staff gap, and the scientific board gap) exhibited at least medium coefficients of association (an approximate eta of over 0.5) with S&T segmentation. All the others have lower association coefficients and consequently a weak effect size which ranges from 5.5% to 21.3% (Table 3). Hence, with the exception of the research funding rate and the Glass Ceiling Index, which have essentially equal means for all three segments (Figure 7), we have differences in intragender discrimination indicators that cannot be explained by S&T segmentation alone. Table 3. Associations between S&T segmentation and gender discrimination indicators Gender discrimination indicators S&T segmentation 2 Gap M-W PhD (ISCED 6) 0.462 0.213 Gap M-W researchers 0.796 0.633 Gap M-W academic staff 0.494 0.244 % of women in grade A 0.303 0.092 % of men in grade A 0.247 0.061 Gap M-W on scientific boards 0.597 0.357 Research funding success rate 0.236 0.055 Glass Ceiling Index 0.358 0.128 In short, it can be said that there is an overall coherence in the most marked features defining EU S&T segmentation, which gives rise to a certain geographic logic for the configuration of segments A, B and C. There is, however, a certain heterogeneity within these segments/geographic areas in terms of gender discrimination. Going a step further in this explorative approach, and in order to analyse the heterogeneity within S&T segments, a new analytical strategy was developed consisting of: 1) 13 Eta measures the association between S&T segmentation and gender discrimination indicators, and eta squared – the effect size – quantifies the proportion of variance in the dependent variable (gender discrimination indicators) explained by differences among groups (each S&T segment). 13 the identification of gender discrimination patterns in the EU; 2) an interaction analysis between these gender discrimination patterns and the S&T segments previously identified. 14 3.3. Patterns of S&T gender discrimination in the European Union To identify and describe gender discrimination patterns in the EU, a Principal Components Analysis for Categorical Data (CATPCA) was applied to the gender discrimination indicators, as described above. Three main patterns were found concerning gender discrimination (Figure 8).14 The first (1) includes some of the countries which have a less developed S&T system, which corresponds with segment A (Portugal, Slovakia, Bulgaria, Estonia, Latvia and Lithuania15), and which is differentiated from the others because the countries are less gender discriminative in terms of the preconditions for improving gender equality in S&T systems. That is, they present the smallest gap for the level of PhDs, undertaking research, and entering academic professions. It should be noted that PhD gaps in these countries are all negative, which means that women advance further and successfully obtain their PhDs, as mentioned above. These countries also have the smallest gaps for researchers and academic staff. But while these countries record this configuration in these indicators, with the exception of Portugal and Bulgaria, their proportions in the Glass Ceiling Index are high (even though this indicator has the narrowest range) and the proportion of women in grade A and of men in grade A is low. It is important to stress that a high proportion of women is always accompanied by a high proportion of men with a huge and positive correlation coefficient (R=0.942). This means that, generally speaking, these countries have a lower proportion of people in grade A, which is explained by the career constraints that men and women are both subject to as a result of national human resource management policies in S&T. However, within these constraints, there are differences in every country between men and women that demonstrate women’s segregation from grade A. 14 15 Luxemburg, Malta and Romania are not included in this multivariate analysis because of missing data. The letter in brackets on the right of the label is the cluster (segment) identification. 15 Figure 8. Patterns of gender discrimination in the European S&T space [+] % of women in Grade A [+] % of men in Grade A Italy (B) 2 France (B) Finland (C) [-] Gap M-W Phd (ISCED 6) [-] Gap M-W Researchers [-] Research funding success [-] Gap M-W Scientific board Estonia (A) [-] Gap M-W Academic Staff 0 Latvia (A) Slovenia (A) [-] Glass Ceiling Index Poland (A) Ireland (C) Greece (A) Hungary (A) Portugal (A) Slovakia (A) Dimension 1 Bulgaria(A) [+] Gap M-W Academic Staff Lithuania (A) Sweden (C) Belgium (C) Denmark(C) [+] Gap M-W Researchers Spain(A) [+] Gap M-W Phd (ISCED 6) United [-] % of men in Grade A Netherlands(B) Kingdom [-] % of women in Grade A [+] Research funding success [+] Glass Ceiling Index Germany (B) Czech Republic (A) Cyprus (A) -2 -2 Austria (B) 0 2 Dimension 2 The main problem in these countries seems to be women’s career pathways (high proportions for the Glass Ceiling Index16) within S&T professions, as Caplan (1994) noted when he stated that academia is traditionally elitist, male and patriarchal in its workplace culture, structure and values. This is also seen, for example, in the astonishing disparity in the number of Nobel Prizes awarded to women (McGrayne, 2001). The organisational culture and rules of academia is the dimension in this discriminative pattern that has the greatest influence on gender discrimination. A second pattern (2) associates countries like Hungary, Poland, Greece and Slovenia (also with less developed S&T systems) which join some countries in segment B (the Central 16 There is an association between the Glass Ceiling Index and the proportion of women in grade A and the proportion of men in grade A indicators. As expected, it is a negative correlation: the higher figures for the Glass Ceiling Index (women are underrepresented in Grade A positions) are close to the lowest values for the proportion of women and men in grade A. Another strong association occurs between Gap M-W in PhD (ISCED 6) graduates, Gap M-W in researchers and Gap M-W in academic staff. In this case, they are positively correlated. 16 European segment) like France and Italy, and also others from the northern model (Finland and Ireland) in forming a group of countries which is distinct because they display relatively little discriminative behaviour towards women’s career pathways. However, they tend to be more discriminative in terms of the preconditions for improving equal gender opportunities in S&T because they exhibit a trend towards higher values for PhD, researcher and academic staff gaps. The results indicate that this group is extremely heterogeneous in relation to S&T development, as it includes countries from the three S&T segments. A third pattern (3), in which most of the countries are concentrated, is differentiated from the others because these countries are simultaneously the most discriminative in relation to the preconditions for improving gender equality in S&T (like pattern 2) and women’s career pathways. That is, there are lower percentages of women with PhDs in these countries and wider gaps within the researcher and academic professions. These are what could be called barriers to entering S&T professions. If women are able to overcome these barriers to entry in these countries, they will encounter the worst conditions for career development, particularly reaching higher positions within organisations. Despite the smaller range of the research funding success indicator, some of the higher rates approach this pattern. This group (Belgium, the Netherlands, Germany, Denmark, Austria, Sweden, the Czech Republic, the United Kingdom, Spain and Cyprus) is also extremely heterogeneous in terms of S&T development. This is another pattern that covers countries from the three S&T segments. 3.4. Segmentation of the S&T space and gender discrimination patterns in the EU Having concluded the segmentation of the European S&T space with the identification and description of its three main constitutive segments and also three S&T gender discrimination patterns, we move to the question of how far these segments are related to the identified gender discrimination patterns. In addition, how do they relate to each other? A Correspondence Analysis was carried out to answer these questions. The results show (Figure 9) a close relationship between segment A (less developed S&T countries) and gender discrimination pattern (1), which shows a polarised situation for less segregation in preconditions for improving equal gender opportunities in S&T and greater segregation for academic conditions to promote women’s career pathways. For the two other groups, we find a mix between countries belonging to different segments. Though starting with a situation of generalised S&T development, segments B and C acquire different patterns for gender discrimination indicators, which means our main hypothesis has only been partially confirmed. 17 Figure 9. Correspondence Analysis Map for S&T segments and patterns of gender discrimination in the European Space However the dualisation feature of S&T space still remains across countries, as Eastern and Southern European countries are still on the less developed side of the S&T divide space (Dimension >1) and Central and Northern European countries are on the opposite side (Dimension <1), irrespective of the women’s discrimination pattern with which they are associated. This graph demonstrates clearly that all S&T segments, including segment A, have links with patterns 2 and 3. However, no rich countries are linked to pattern 1. When this is combined with the middle-low degree of association (Cramer’s V = 0.382) between the S&T segmentation and patterns of gender discrimination, the need to include other qualitative factors (historical, organisational and cultural) to explain the specificities of these patterns becomes evident. 4. Discussion and conclusions 18 The first conclusion is that the European S&T space is dualised into two opposing strata: S&T poor (Eastern and Southern European countries) and S&T rich countries (Central and Northern ones). Further analysis reveals, however, that the group of S&T rich countries is also marked by a certain heterogeneity, suggesting there is also a division within these countries. This differentiation expresses two different models of S&T development. One favours the qualifications of S&T human resources (northern countries, Ireland and Belgium) while the other is based on high rates of S&T expenditure (Central European countries – Luxembourg, France, Austria and Germany – and also the Netherlands and Italy). Given this differentiation, it is preferable to talk of the segmentation of the EU S&T space rather than its stratification. These three different segments are associated with specific kinds of gender discrimination in S&T. Thus, the major differences between segments occur in the proportion of male/female researchers, proportion of male/female with PhD and academic staff. Nevertheless, there are common features to the three segments, as women are discriminated against in all analysed indicators with the exception of PhDs, where there are more women than men in certain countries. This is found in the poor segment (A), namely in Portugal and Eastern European countries, with the exception of the Czech Republic and Poland. This does not mean that this segment is less gender discriminative than a first reading of data might suggest. In fact, women’s access to the top levels of education may be explained by very different factors ranging from a more democratic and culturally open society, women’s will and determination, to labour market needs, i.e. there are not enough highly-qualified men. Only further extensive analysis, at least in some EU countries, can clarify this issue. The fact that there are more women with PhDs than men in these countries does not mean that men and women enter academic careers in equal proportions. However, it could be interpreted as a discriminative factor in recruitment for these professions, as pointed out by West in the case of California University (West, 2007) or be indicative of women’s rejection of such a discriminatory career, as noted by Preston (1994) and Shiffbenker (2008). While these are both situations of gender discrimination, their sociological meaning is quite different. Although our main hypothesis was not completely confirmed, since the data show that there is a relationship between developed S&T regions and gender discrimination patterns, it also reveals a much more complex situation as intragender discrimination indicators were detected that cannot be explained simply by S&T segmentation in the EU space. Three patterns of gender discrimination in the European S&T space were found. The first includes Portugal, Slovakia, Bulgaria, Estonia, Latvia and Lithuania and coincides with segment 19 A, described above. In spite of fewer discriminative conditions in the preconditions for improving gender equality in the S&T professions in this segment, it is very discriminative in relation to women’s academic careers (a high Glass Ceiling Index and segregation of women from Grade A). A second pattern (2) is a mix of rich and poor countries from the three S&T segments: Hungary, Poland, Greece, Slovenia, France, Italy, Finland and Ireland. This group of countries is differentiated from other groups because it has relatively less discriminative behaviour towards women’s career pathways and, simultaneously, is more discriminative in relation to the preconditions for improving gender equality in S&T. A third pattern (3) is formed by a concentration of the majority of countries: Belgium, the Netherlands, Germany, Denmark, Austria, Sweden, the Czech Republic, the United Kingdom, Spain and Cyprus. It is differentiated from the others because it is the most discriminative in relation both to the preconditions for improving gender equality in S&T systems and women’s career pathways. inally, we can conclude that there is in fact a relationship between gender discrimination and the differentiated development of S&T regions in Europe, and that to some extent this differentiation has a geographic coherence in which countries in the south and east of Europe contrast with those of Central and Northern Europe. Meanwhile, the three patterns identified for female discrimination in S&T professions are more complex when it comes to the typical behaviour of the countries, suggesting the inclusion of other explanatory factors in the analytical model that require further comparative research, including historical and qualitative data, for a deeper understanding of gender discrimination factors in the European S&T space. References ANERUD, Rebeca, MORRISON, Emory, HOMER, Lori, RUDD, Elizabeth, NERAD, Maresi, & CERNY, Joseph (2007). Widening the lens on gender and tenure: Looking beyond the academic labour market. NWSA Journal, 19(3), 105-122. AMÂNCIO, Lígia (2005). Reflections on science as a gendered endeavour: Changes and continuities. Social Science Information, 44(1), 65-83. 20 BROWNE, Jude (2006). Sex, segregation and inequality in the modern labor market. Policy Press: University of Bristol. CAPLAN, Paula (1993). Lifting a ton of feathers: A women’s guide to surviving in the academic world. Toronto: Toronto University Press. CASACA, Sara Falcão (2005). Flexibilidades de emprego, novas temporalidades e relações de género, PhD. dissertation. Lisbon: School of Economics and Management Administration (ISEG). CCE (2007). Relatório da Comissão ao Conselho, ao Parlamento Europeu, ao Comité Económico e Social Europeu e ao Comité das Regiões, sobre a Igualdade entre Homens e Mulheres, Bruxelas. CHARLES, Nickie (1993). Gender divisions and social change. Hemel Hempstead: Harvest Wheatsheaf. COCKBURN, Cynthia (1983). Brothers: Male dominance and technological change. London: Pluto Press. DOSI, Giovanni (1983). Technological paradigms and technological trajectories. In C. Freeman (Ed.), Long waves in the world economy (pp. 78-101). London: Pinter Publishers. EC (2006). She figures 2006. Retrieved March 2008 from <http://www.kif.nbi.dk/She_Figures_2006.pdf.> ESPING-ANDERSEN, Gosta (2002). A new gender contract. In G. Esping-Andersen & G. Duncan (Eds.), Why we need a new welfare state (pp. 124-148). Oxford: Oxford University Press. ESPING-ANDERSEN, Gosta (2008). Famille et révolution du rôle des femmes. In G. Esping-Andersen & B. Palier (Eds.), Trois leçons sur l’État-providence (pp. 19-58). Paris: Ed. Seuil. ETZKOWITZ, Henri, & LEYDESDORF, Leit (Eds.) (1997). Universities and the global knowledge economy, a triple-helix of university-industry-government relations. London: Pinter Publishers. EUROSTAT (2004). Science & technology. Retrieved March 2008 from <http://epp.eurostat.ec.europa.eu/> FERNÉ, Georges (1993). Science, pouvoir et argent, la recherche entre marché et politique. Paris: Ed. Autrement. FERREIRA, Virgínia (1988). O feminismo na pós-modernidade. Revista Crítica de Ciências Sociais, 24, 93-106. GEISLER, Cheryl, KANINSKI, Debbie, & BERKLEY, Robyn (2007). The 13+ club: An index for understanding, documenting and resisting patterns of non promotion to full professor. NWSA Journal, 19(3), 145-162. GIFI, Albert (1996). Nonlinear multivariate analysis. London: John Wiley & Sons. GREENACRE, Michael, & BLASIUS, Jörgen (Eds.) (2006). Multiple correspondence analysis and related methods. London: Chapman & Hall/CRC. GREENACRE, Michael (2007). Correspondence analysis in practice (2nd ed.). London: Chapman & Hall/CRC. 21 HAIR, Joseph, ANDERSON, Rolph, TATHAM, Ronald, & BLACK, William (2006). Multivariate data analysis with readings (4th ed.). New Jersey: Prentice-Hall International. KOHN, Melvin (Ed.) (1989). Cross-national research in sociology. Newbury Park: Sage. LEDIN, Anna, BORNMANN, Lutz, GANNON, Frank, & WALLON, Gerlind (2007). A persistent problem. Traditional gender roles hold back female scientists. EMBO report 8. Retrieved 1 March 2008 from <www.emboreports.org> MARUANI, Margaret (Ed.) (2005). Femmes, genre et sociétés, l’état des savoirs. Paris: La Découverte. MAURICE, Marc, SELLIER, François, & SILVESTRE, Jean-Jacques (1986). The social foundations of industrial power. Cambridge, Mass: MIT Press. MERTON, Robert (1973). The sociology of science: Theoretical and empirical investigation. Chicago: University Press. McGRAYNE, Sharon Bertsch (2001). Nobel prize women in science: Their lives, struggles and momentous discoveries. National Academy of Sciences. Washington, DC: Joseph Henry Press. MEULMAN, Jacqueline, KOOIJ, Anita, & HEISER, Willem (2004). Principal components analysis with nonlinear optimal scaling transformations for ordinal and nominal data. In D. Kaplan (Ed.), The Sage handbook of quantitative methodology for the social sciences (pp. 49-70). London: Sage Publications. MUSSELIN, Christine (2005). Les marchés des universitaires, France, Allemagne, États-Unis. Paris: Presses de la Fondation Nationale des Sciences Politiques. OLIVEIRA, Luísa (2008). Sociologia da inovação. Lisboa: Celta Editora. OLIVEIRA, Luísa (2000). Commoditization of science and paradoxes in universities. Science Studies, 13(2), 23-36. OLIVEIRA, Luísa, & CARVALHO, Helena (2002). A Segmentação do espaço de inovação na indústria Portuguesa. Sociologia Problemas e Práticas, 39, 39-56. PALERMO, Simona, GIUFFRA, Elisabetta, ARZENTON, Valeria, & BUCCHI, Massimilano (2008). Gender and science. EMBO report 9. Science & Society. Retrieved 1 March 2008 from <www.emboreports.org.> PEREZ, Carlota (1988). New technologies and development. In C. Freeman & B. Lundvall (Eds.), Small countries facing the Technological Revolution (pp. 85-97). London: Pinter publishers. PERISTA, Heloisa, & SILVA, Alexandra (2004). Science careers in Portugal. Working paper 13. Centre for the Study of Law and Policy in Europe, University of Leeds, 27-42. PRESTON, A. E. (1994). Why have all the women gone? A study of exit of women from science and engineering professions. America Economic Review, 85, 1146-1462. RENAUT, Alain (1995). Les révolutions de l’université: Essai sur la modernisation de la culture. CalmannLévy: Paris. 22 RUEST-ARCHAMBAULT, Elyse (2008). Benchmarking policy measures for gender equality in science. European Commission Report. Brussels. RHODE, Deborah (1989). Justice and gender. Harvard: University Press. RHODE, Deborah (2006). In pursuit of knowledge: Scholars, status and academic culture. Stanford: University Press. SALOMON, Jean Jacques, SAGASTI, Francisco, & SACHS-JEANTET, Céline (Eds.) (1994). La quête incertaine, science, technologie, développement. United Nations: University Press. SIDE, Katherine, & ROBBINS, Wendy (2007). Institutionalizing inequalities in Canadian universities: The Canada Research Chairs Program. In NWSA Journal, 19(3), 163-181. STARK, David, & BRUSZT, László (1998). Postsocialist pathways: Transforming politics and property in East Central Europe. New York and Cambridge: Cambridge University Press. STOUT, Patricia, STAIGER, Janet, & JENNINGS, Nancy (2007). Affective stories: Understanding the lack of progress of women faculty. NWSA Journal, 19 (3), 124-144. VAN DE GEER, John (1993a). Multivariate analysis of categorical data: Theory. USA: Sage. VAN DE GEER, John (1993b). Multivariate analysis of categorical data: Applications. USA: Sage. VERNET, Jean Pierre, & BUTERA, Fabrizio (2004). Emancipation féminine et discrimination des féministes: Quelques paradoxes dans les pays démocratiques. In A. Dorna & P. Georget (Eds.), La démocratie peut-elle survivre au XXI siècle? (pp. 269-285). Paris: Editions Minuit. WEST, Martha (2007). Unprecedented urgency: Gender discrimination in faculty hiring at the University of California. NWSA Journal, 19(3), 199-211. 23 Annex 1 – Countries within gender discrimination indicators 24 25 26 27 !"#$%"&'(")&%*")+$(',-./*,.,$0*"1'('"0'$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$+)-,)""'$!223$ $ 4'"#'($ %"$ ,*0%*+*456$ )")+57%"4$ 4'"#'($ %"'8-)+%&%',$ )"#$ 4'"#'($ ,&-#%',$ %"$ )$ ,*-&9'("$'-(*.')"$0*-"&(5$ $ $ $ !"#$%&'(')*+,-#./'$)012!342315!62789) :%.,%);#<+)012!342315!62789) :%-.%-#,%)=%--+$+)012!342315!62789) $ $ $ %"&(*#-0&%*"$ $ 5>#$)?%?'-),#$</$$'$).'@,'-)#@'A/%"#(#'$)#@)(>')%<%,'B#<)C#'",)+C)$+<#+"+.#<%")-'$'%-<>D)$(-'$$#@.) .'@,'-)@+()+@"E)%$)%)$+<#+"+.#<%")$/&F'<()(>%()>%$)&''@)>#.>"E),'G'"+?',)#@)-'<'@()E'%-$D)&/()%"$+)%$) %@)'"'B'@()(>%()$(-/<(/-'$)(>'),#$(-#&/(#+@)+C)$+<#%")%<(+-$)#@)(>')C#'",H) I+-)(>#$),#$</$$#+@)%@,)%$)%)$(%-(#@.)?+#@()C+-)(>'),'&%('D)(>')<%$')+C)3+<#+"+.E)#@)J+-(/.%")K#"")&') ?/()#@)?'-$?'<(#G'H)5>#$)<+/@(-E)#$)B%-L',)&E)$(-/<(/-%")$?'<#C#<#(#'$)(>%(),#CC'-)C-+B)+(>'-$)$+/(>'-@) !/-+?'%@)<+/@(-#'$)K#(>)K>#<>)(>')<+B?%-#$+@$)%-')/$/%""E)B%,'D)?-'$'@(#@.)+@')+C)(>')>#.>'$()C/""4 (#B') C'B%"') %<(#G#(E) -%('$) #@) !/-+?') %@,) +@') +C) (>') >#.>'$() ,#CC'-'@<'$) &'(K''@) B%"') %@,) C'B%"') >#.>'-) ',/<%(#+@H) ;+@'(>'"'$$D) J+-(/.%") #$) $(#"") ?'-?'(/%(#@.) .'@,'-) ,#CC'-'@<'$) <+@<'-@#@.) .'@,'-) ?%E).%?)%@,)<%-''-$M)?-+.-'$$#+@H) J+-(/./'$') "%&+/-) B%-L'() >%$) &''@) <>%-%<('-#N',) $#@<') '%-"E) OPM$) &E) %) >#.>) ?%-(#<#?%(#+@) +C) K+B'@H) 2@) QPPRD) (>') (+(%") 'B?"+EB'@() -%(') C+-) J+-(/.%") K%$) OSDTUD) %&+G') (>') 8#$&+@) (%-.'(D) %@,) >#.>'-)(>%@)(>')!/-+?'%@)%G'-%.')%@,)(>%@)+(>'-)$+/(>'-@)!/-+?'%@)<+/@(-#'$H)2()#$)#B?+-(%@()(+)$%E) (>%()B+$()+C)(>'$')K+B'@) %-') 'B?"+E',) #@) %) C/""4(#B') &%$#$H) V>'@) %@%"EN#@.) C'B%"') 'B?"+EB'@(D) J+-(/.%")?-'$'@($)+@')+C)(>')"+K'$()?%-(4(#B')-%('$)0SQDSU9)0I#./-')S)%@,)Q9H) ) ) $ $ $ $ $ $ $ $ 1:;<=>$?@$1>ABC>$>ADCEFA>GH$=BH>$:G$'<=ED>I$!22J$ ) 3+/-<'W)!/-+$(%() ) 1:;<=>$!@$1>ABC>$DB=H/H:A>$>ADCEFA>GH$=BH>$:G$'<=ED>I$!22J$ )3+/-<'W)!/-+$(%() ) 1+@<'-@#@.)',/<%(#+@D)'$?'<#%""E)K>'@)%@%"EN#@.)(>'),#$(-#&/(#+@)+C)?+?/"%(#+@)(>%()>%$)%((%#@',) (>')('-(#%-E)',/<%(#+@D)J+-(/.%")?-'$'@($)#@)%"")%.').-+/?$)%)$#.@#C#<%@()?-+?+-(#+@)+C)K+B'@)>#.>'-) ',/<%(',)(>%@)B'@H))5>#$),#CC'-'@<')&'(K''@)B'@)%@,)K+B'@)#$)%.%#@)"%-.'-)(>%@)#@)+(>'-)$+/(>'-@) !/-+?'%@)<+/@(-#'$)%@,)>#.>'-)(>%@)(>')X!1Y)%@,)!7)%G'-%.')0I#./-')Z9H) ) ) Q) 1:;<=>$K@$.>=L>GHB;>$EM$DED<CBH:EG$N:HO$H>=H:B=F$>P<LBH:EGI$QF$R>S$BGP$B;>$;=E<DI$!22T$ ) ) 3+/-<'W)!/-+$(%() ![%B#@#@.)(>'),#$(-#&/(#+@)+C)K+B'@)%@,)B'@)#@)(>')"%&+/-)B%-L'(D)#()<%@)&')G'-#C#',)(>%()(>') .'@,'-) ?%E) .%?) ('@,$) (+) &') '"'G%(',) #@) >#.>4A/%"#C#',) +<</?%(#+@$) %@,) %B+@.) (>') ?+?/"%(#+@) K#(>) >#.>'-)',/<%(#+@)0QPDZU9)02;!D)QPP\9H)X@)(>')+(>'-)>%@,D)K>'@)'[?"+-#@.).'@,'-)?%E).%?),#CC'-'@<'$) #@) .'@'-%"D) C+-) %"") ',/<%(#+@%") "'G'"$) %@,) %B+@.) (>') !/-+?'%@) <+/@(-#'$D) J+-(/./'$') .%?) #$) <+B?%-%(#G'"E) "+K) 0]DZU9) 0!/-+$(%(D) QPPR9H) 5>#$) <%@) #""/$(-%(') J+-(/./'$') "%&+/-) B%-L'() .'@,'-) $'.-'.%(#+@D)K#(>)K+B'@)'[?'-#'@<#@.)+&$(%<"'$)K>'@)(-E#@.)(+)-'%<>)(+?)+-)>#.>4A/%"#C#',)?+$#(#+@$H) I+</$#@.D)C+-)'[%B?"'D)+@)>#.>'-)',/<%(#+@)?-+C'$$#+@%"$D)K')<%@)+&$'-G')(>%(),'$?#(')(>')&-+%,'-) ,#$(-#&/(#+@)+C)A/%"#C#<%(#+@$)#@)J+-(/.%"D)%B+@.)?-+C'$$+-$D)B'@)%-')$(#"")(>')+@'$)K>+)>%G')>#.>'-) "'G'"$) +C) A/%"#C#<%(#+@$) %@,) <+@$'A/'@("E) (>'E) >+",) (>') B+$() A/%"#C#',) ?+$#(#+@$) #@) (>') %<%,'B#<) <%-''-)0C#./-')^)%@,)\9H) $ ) Z) 1:;<=>$U@$.=EM>RRE=R$EM$H>=H:B=F$>P<LBH:EGI$QF$BLBP>A:L$P>;=>>I$!22J$ )))))))))))))))))))))))))))))))))))))))))))))))))3+/-<'W)J+-(/./'$')X&$'-G%(+-E)+C)3<#'@<')%@,)_#.>'-)!,/<%(#+@) ) 1:;<=>$V@$.=EM>RRE=R$EM$H>=H:B=F$>P<LBH:EGI$QF$D=EM>RR:EGBC$LBH>;E=FI$!22J$$ ) $ )))))))))))))))))))))))))))))))))))))))))))))))))))3+/-<'W)J+-(/./'$')X&$'-G%(+-E)+C)3<#'@<')%@,)_#.>'-)!,/<%(#+@) 5>#$) ?%?'-) K#"") C+</$) (>') ,#$</$$#+@) +C) .'@,'-) #@'A/%"#(#'$) #@) $+<#+"+.EH) ='#@.) %) $'"C4-'C"'[#G') $<#'@<'D)(>')@/B&'-)+C)$+<#+"+.#<%").'@,'-)$(/,#'$)>%$)#@<-'%$',)$#.@#C#<%@("E)#@)-'<'@()E'%-$H)2()#$)+/-) %#B) (+) ,#$</$$) (>#$) 'G+"/(#+@) #@) %$$+<#%(#+@) K#(>) (>') ,'G'"+?B'@() +C) (>#$) +<</?%(#+@%") C#'",H) ) ^) 3+<#+"+.#<%") -'$'%-<>) -'C"'<($) $+B') .'@,'-) $(-/<(/-%") ,#CC'-'@<'$) #@) K>%() <+@<'-@$) $?'<#C#<%""E) (>') ?-+.-'$$#+@)+C)<%-''-$D)(>'),'G'"+?B'@()+C)%$$+<#%(#G')+<</?%(#+@%")%<(#G#(#'$D)(>')C#'",$)+C)$(/,E)%@,) (>')?/&"#<)G#$#&#"#(ED)%$)(>')<+""'<(',)%@,)%@%"EN',),%(%)K#"")%""+K$)/$)(+)%-./'H) 5>') C+""+K#@.) %@%"E$#$) K#"") &') $(-/<(/-',) #@) (>-'') $?'<#C#<) ,#B'@$#+@$W) .'@,'-) %$) %) $+<#+"+.#<%") $/&F'<()0'G+"/(#+@)%@,)<>%-%<('-#$(#<$)+C)(>'$')$(/,#'$)#@)J+-(/.%"9`).'@,'-)%$)%)$(-/<(/-#@.)'"'B'@() +C)(>'),#$(-#&/(#+@)+C)$+<#+"+.#<%")%<(+-$)#@)(>')C#'",)0%<<+-,#@.)(+)C#'",$)+C)$(/,ED)%.'D)>#.>)',/<%(#+@) #@$(#(/(#+@$D) B'B&'-$>#?) ?-%<(#<'$) %@,) ?/&"#<) G#$#&#"#(E9`) %@,) C#@%""ED) (>') <+B&#@%(#+@) +C) (>'$') (K+) ?-'G#+/$) $?>'-'$D) K#(>) (>-'') ?-+C'$$#+@%") &#+.-%?>#'$) +C) K+B'@) $+<#+"+.#$($) #@) (>') 3+<#+"+.E) +C) a'@,'-H) ) #)&)$)"#$W'&9*#*+*45$ ) 5>') ?-+?+$',) %@%"E$#$) K%$) $/??+-(',) &E) (>-'') ,#CC'-'@() B'(>+,+"+.#<%") %??-+%<>'$) %@,) ,%(%) $+/-<'$H) I#-$("ED) (>') <+@<"/,',) %@,) +@.+#@.) J>Y) 3+<#+"+.E) ?-+F'<($) K'-') (%L'@) %$) #""/$(-%(#G') +C) (>') -'$'%-<>)%@,)%,G%@<',)(-%#@#@.)&'#@.),'G'"+?',)#@)J+-(/.%"H)5>#$),%(%)K%$)<+""'<(',)(>-+/.>)!"#$%"&# %@,)+CC#<#%")#@C+-B%(#+@)C-+B)(>')J+-(/./'$')X&$'-G%(+-E)+C)3<#'@<')%@,)_#.>'-)!,/<%(#+@)%@,)K%$) +-.%@#N',)#@)%)$(%(#$(#<%"),%(%&%$'H)5>#$)+CC#<#%")$#(')<+@(%#@',)#@C+-B%(#+@)+@)(>')#@,#G#,/%")"'G'")0$'[) %@,) %.') +C) (>') ,+<(+-) +C) ?>#"+$+?>E) +-) ,+<(+-%(') $(/,'@(9) %@,) +@) (>') ?-+F'<() "'G'") 0(#("') b) "%('-) -'<+,',) &E) B%#@) %@,) $'<+@,%-E) $/&) C#'",) #@) 3+<#+"+.E`) #@$(#(/(#+@`) $/?'-G#$+-) b) "%('-) <+,',) &E) $'[`) %@,),%('$)+C)&'.#@@#@.)%@,)('-B#@/$)+C)(>')J>Y9)C+-)%"")J>Y)?-+F'<($D)<+@<"/,',)%@,)+@.+#@.D)$#@<') STR\) (+) QPP\H) 5>') %@%"E$#$) K%$) B%,') $+"'"E) <+@<'-@#@.) 3+<#+"+.EM$) J>Y) ?-+F'<($) %@,) K%$) B%#@"E) &%$',)+@),'$<-#?(#G')%@%"E$#$H)) 5>#$),%(%)%""+K',)/$D)+@)+@')>%@,D)(+)%@%"E$')(>')-'"%(#G')?"%<')+C).'@,'-)%$)%)$+<#+"+.#<%")$/&) C#'",) (+?#<D) #($) 'G+"/(#+@) %@,) #@$(#(/(#+@%") (-%,#(#+@$) %@,) C#"#%(#+@$) %@,D) +@) (>') +(>'-D) (+) %@%"E$') (>') -'"%(#G') A/%@(#(%(#G') '[?-'$$#+@) +C) K+B'@) %@,) B'@) 0J>Y$D) ,+<(+-%(') $(/,'@($D) %@,) $/?'-G#$+-$9) #@) $+<#+"+.E)#@).'@'-%")%@,)#@)$+<#+"+.E)+C).'@,'-)#@)?%-(#</"%-"EH)) 3'<+@,"ED) #() K%$) <+@$#,'-',) (>') %@%"E$#$) +C) (>') 1+@.-'$$'$) +C) (>') J+-(/./'$') c$$+<#%(#+@) +C) 3+<#+"+.EH) ) 5>#$) @%(#+@%") 'G'@() K%$) >'-') /@,'-$(++,) %$) %) ?-#G#"'.',) 'B?#-#<%") $/&F'<() @+() +@"E) (+) %@%"E$')(>')$<#'@(#C#<)'G+"/(#+@)+C)(>')$+<#+"+.#<%")C#'",D)&/()%"$+)(+)#""/$(-%(')>+K)?/&"#<)G#$#&#"#(E)#@) $+<#+"+.E)#$),#$(-#&/(',)%B+@.)B'@)%@,)K+B'@H)) c()%)C#-$()$(%.'D)(+)B%L')(>')?+-(-%#()+C)$+<#+"+.E)+C).'@,'-)%$)%@)%/(+@+B+/$)C#'",)+@)@%(#+@%") $<#'@(#C#<) ?-+,/<(#+@D) (>') 'G+"/(#+@) +C) (>') (>'B'$) -'"%(',) (+) .'@,'-) (>%() K'-') ?-'$'@(',) %() (>') ) \) <+@.-'$$'$)C-+B)STT])(+)QPP])K%$)%@%"EN',H)5>#$)'G+"/(#+@)K%$)C+</$',)@+()+@"E)+@)(>')<+@('@($)+C) (>')?%?'-$D)&/()%"$+)+@)(>')@/B&'-)+C)?%?'-$)+CC'-',)#@)'%<>)<+@.-'$$)K#(>)-'C'-'@<')(+).'@,'-H)) cC('-K%-,$D)(+)/@,'-$(%@,)>+K).'@,'-)#$)%)$(-/<(/-#@.)'"'B'@()C+-)(>'),#$(-#&/(#+@)+C)(>')%.'@($) #@) (>') C#'",D) #() K%$) %@%"EN',) (>') ,#CC'-'@() -+"'$) (>%() K+B'@) %@,) B'@) >%G') %$$/B',) '#(>'-) #@) (>') <+@.-'$$'$M)+-.%@#N%(#+@D)%$)#@)(>')%$$+<#%(#G')%<(#G#(#'$)+C)(>')J+-(/./'$')c$$+<#%(#+@)+C)3+<#+"+.E)4) %@)#@$(#(/(#+@)(>%()<+B?-#$'$)B+$()+C)(>')$+<#+"+.#$($)%@,)$+<#+"+.E)$(/,'@($)#@)J+-(/.%"D)%@,)(>%()#$) %"$+)(>')+-.%@#N%(#+@)(>%()?-+B+('$)(>')<+@.-'$$'$)%@,)+(>'-)-'"'G%@()B''(#@.$)K#(>)?/&"#<)G#$#&#"#(EH) _'-'D) $+<#%") #@,#<%(+-$) $/<>) %$) (>') $'[/%") <+B?+$#(#+@) +C) (>') <+BB/@#<%(#+@$M) %/(>+-$D) (>') $'[/%") <+B?+$#(#+@) +C) (>') %$$+<#%('$) %@,) B'B&'-$) +C) (>') +-.%@#N%(#+@%") &+%-,$) +C) (>') %$$+<#%(#+@) 0Y#-'<(#+@D) c$$'B&"ED) I#$<%") &+%-,D) Y'+@(+"+.E) &+%-,) %@,) 1+@$/"(#G') &+%-,9) %@,) %"$+) (>') $'[/%") <+B?+$#(#+@)+C)(>')J%@'")=+%-,$)(>%()$/??+-(',)'%<>)<+@.-'$$SD)K'-')<+@$#,'-',)C+-)(>')-'C"'<(#+@H) I#@%""ED) %#B#@.) (+) #""/$(-%(') (>#$) &-+%,'-) $(/,E) %() %) B#<-+) "'G'"D) (>') '[#$(#@.) ,%(%) K%$) <+B?"'B'@(',)&E)(>-'')?-+C'$$#+@%")&#+.-%?>#'$)+C)J+-(/./'$')K+B'@)$+<#+"+.#$($)K#(>)-'<+.@#N',) $<#'@(#C#<) ?-+,/<(#+@) #@) (>') C#'",) +C) .'@,'-H) 2@) (>') +@') >%@,D) #() K%$) %@%"EN',) (>') </--#</"/B) +C) (>') %/(>+-$D) K#(>) -'C'-'@<') (+) (>') B%#@) ?-+,/<($) +C) (>') $+<#+"+.#<%") -'$'%-<>) +@) (>') (>'B'D) #@<"/,#@.) ?/&"#<%(#+@$D) ?%-(#<#?%(#+@) #@) .'@,'-) -'$'%-<>) ?-+F'<($) %@,) @'(K+-L$D) %@,) <#G#<) ?%-(#<#?%(#+@) <+@<'-@#@.).'@,'-)#@'A/%"#(#'$H)5>#$),+</B'@(%")'[%B#@%(#+@)K%$)$/??+-(',)&E)K#(>)%@)#@('-G#'K)(+) '%<>) $+<#+"+.#$() -'.%-,#@.) >#$) +-) >'-) %<%,'B#<D) ?-+C'$$#+@%") %@,) $<#'@(#C#<) "#C'H) 5>'$') #@('-G#'K$) -'G'"',)(+)&')'$$'@(#%")(+)'G#@<')(>')$(/,E)+C).'@,'-)#@)J+-(/./'$')$+<#+"+.ED)&E)?-+B+(#@.)B/"(#?"') -'C"'<(#+@$)+@).'@,'-)#@'A/%"#(#'$D)'#(>'-)&E)%)$+<#+"+.#$()?+#@()+C)G#'KD)%@,)%"$+)<+@$#,'-#@.)(>'#-)-'%") "#G'$)('$(#B+@#'$)%$)L'E)%.'@($)#@)(>')C#'",H)) ) 4'"#'($),$(',')(09$,-XY'0&$%"$,*0%*+*45$ $ c$) K%$) %"-'%,E) B'@(#+@',) %&+G'D) .'@,'-D) %$) %) $/&) -'$'%-<>) C#'",) #@) 3+<#+"+.E) #@) J+-(/.%"D) >%$) #($'"C) $/CC'-',) %@) 'G+"/(#+@D) K>#<>) <%@) &') +&$'-G',) $?'<#%""E) (>-+/.>) <+B?%-%(#G') 0K#(>) +(>'-) $/&) C#'",$)K#(>#@)$+<#+"+.E9)%@,),#%<>-+@#<)%@%"E$#$H)) 5>'$') (K+) L#@,$) +C) %@%"E$#$) K#"") &') B%,') (>-+/.>) (>') $+/-<'$) %"-'%,E) B'@(#+@',W) C#-$("ED) (>') <+@<"/,',)%@,)+@.+#@.)J>Y$D)K>#<>)-'?-'$'@()(>')(+?#<$)#@)K>#<>)#@,#G#,/%")$?'<#%"#N%(#+@)#@)(>')C#'",) +C) $+<#+"+.E) #$) ,'G'"+?',D) %@,) $'<+@,"ED) (>') $/&F'<() (+?#<$) +C) (>') +-%") <+BB/@#<%(#+@$) #@) ;%(#+@%") )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) S ) 5>') J%@'") =+%-,$) +C) '%<>) <+@.-'$$) %-') <+@$(#(/(',) &E) (>') B'B&'-$) +C) (>') 1+@$/"(#G') =+%-,) +C) (>') %$$+<#%(#+@D) &E) (>') ?-'$#,'@($)+C)%"")(>')+(>'-)+-.%@#N%(#+@%")&+%-,$)%@,)&E)-'"'G%@()$+<#+"+.#$($)#@)(>')@%(#+@%")<+@('[(H)5>')C/@<(#+@)+C)(>') ?%@'")#$)(+)<>++$')(>')L'E)(>'B')+C)(>')<+@.-'$$D)%$)K'"")%$)#($)"+<%(#+@)%@,)>+$(#@.)#@$(#(/(#+@)%@,)(>'),'C#@#(#+@)+C)(>') (>'B%(#<)?%@'"$)(+)#@<"/,')#@)(>')?-+.-%BH)) ) O) 3+<#+"+.E)1+@.-'$$'$D)K>#<>)-'?-'$'@()(>')#@,#G#,/%")+-)<+""'<(#G')?-+F'<($)K#(>)G#$#&#"#(E)K#(>#@)(>') ?''-$H)) ) BZ$XBL[RHB;>$EM$REL:ECE;F$EM$;>GP>=6$HO>$.O#$HO>R:R$ ) 5>') -'$'%-<>) ,+@') %$) %@) %,G%@<',) (-%#@#@.D) (>%() #$D) (>') J>Y) (>'$#$D) -'?-'$'@($) %@) #""/$(-%(#G') %-'@%) (+) %@%"EN') (>#$) ,#%<>-+@#<) %@,) <+B?'(#(#+@) ,E@%B#<$) #@) (>') $<#'@(#C#<) C#'",) +C) 3+<#+"+.EH) 5>-+/.>) (>') ,%(%) %@,) B'(>+,+"+.E) ?-'$'@(',D) #() #$) (>/$) ?+$$#&"') (+) %@%"EN') (>') -'"%(#G') ?"%<') +C) .'@,'-)#@)K>%()<%@)&')<%""',)(>')&%<L$(%.')+C)$+<#+"+.ED)(>%()#$D)(>')$+"+)K+-L)+C)(>')J>Y)</--'@()%@,) C+-B'-)-'$'%-<>'-$H)) 3+<#+"+.E) +<</?#'$D) #@) (>#$) B%(('-D) %) $?'<#C#<) ?"%<') K#(>#@) (>') K>+"') ?%@+-%B%) +C) $<#'@<'$) #@) J+-(/.%"H) c@%"E$#@.) (>') @/B&'-) +C) J>Y$) 0<+@<"/,',) %@,) +@.+#@.9D) K') <+/",) $(%(') (>%() 3+<#+"+.E) #$) $(#"")%@)'G+"G#@.)$<#'@<'D)C+-)#()>%$)%@)#@('-B',#%(')?"%<'B'@()&'(K''@D)+@)(>')+@')>%@,D)(>')<+-')+C) '[%<()$<#'@<'$)0"#L')_'%"(>)$<#'@<'$D)!"'<(-+@#<)%@,)#@C+-B%(#<$M)!@.#@''-#@.D)1>'B#$(-ED)J>E$#<$)%@,) :%(>'B%(#<$9) %@,D) +@) (>') +(>'-D) B+$() +C) (>') -'$() +C) (>') $+<#%") $<#'@<'$) %@,) >/B%@#(#'$) 0"#L') Y'B+.-%?>ED)J+"#(#<%")$<#'@<'$D)1+BB/@#<%(#+@)$<#'@<'$D)c-(#$(#<)$(/,#'$D)c-<>#('<(/-')%@,)/-&%@#$BD) a'+.-%?>E)%@,)%"$+)c@(>-+?+"+.E9H)5>%()#$)(+)$%E)(>%()3+<#+"+.E)>%$)%)?-#G#"'.',)?+$#(#+@D)-'.%-,#@.) (>') ?-+,/<(#+@) +C) %<%,'B#<) (>'$#$) $/<>) %$) (>') J>Y$D) K#(>#@) +(>'-) $+<#%") $<#'@<'$) &/() (>') (E?#<%") /@?-#G#"'.',)?+$#(#+@)K>'@)<+B?%-#@.)K#(>)(>')'[%<()$<#'@<'$H)) ) 1:;<=>$T@$"<AQ>=$EM$0EGLC<P>P$BGP$*G;E:G;$.O#$&O>R:RI$QF$RL:>GH:M:L$B=>B$ 3+/-<'W)J+-(/./'$')X&$'-G%(+-E)+C)3<#'@<')%@,)_#.>'-)!,/<%(#+@) ) ) R) I+-) %) G'-E) A/#<L) ."%@<') %() (>') <+B?+$#(#+@) +C) (>') /@#G'-$') +C) (>') 3+<#+"+.E) J>Y) (>'$#$) %@,) ?-+F'<($D) %@,) &'C+-') ?-'$'@(#@.) (>') ,%(%) '&(# .'@,'-) #($'"CD) (>') C+""+K#@.) ,%(%) $>+/",) &') (%L'@) #@(+) %<<+/@(W)) • 5>'-') %-') ORR) J>Y) 5>'$#$) %((-#&/(',) +-) -'<+.@#N',) &E) (>') J+-(/./'$') _#.>'-) !,/<%(#+@) 2@$(#(/(#+@$D)C-+B)K>#<>)ZZT)%-')$(#"")+@.+#@.)%@,)ZZ])%-')%"-'%,E)<+B?"'(',`)) • \PD^U)+C)(>'),+<(+-$)%@,),+<(+-%(')$(/,'@($)%-')B'@D)%@,)^TDOU)%-')K+B'@`)) • 5>') B+$() C-'A/'@() $/&F'<() (+?#<$) #@) J+-(/./'$') 3+<#+"+.E) %-'W) V+-LD) +-.%@#N%(#+@$) %@,) J-+C'$$#+@$)0SQD\U9D)3(%(')%@,)?+"#(#<$)0TDRU9D)!,/<%(#+@)0]D]U9D)I%B#"E)0ODSU9D).'@,'-)0^D]U9D)_'%"(>) 0^D]U9H)) c$)#()K#"")&')#""/$(-%(',)#@)(>')@'[()?+#@(D)%@,)#@)(>')?-'$'@(%(#+@)+C)(>')?-+C'$$#+@%")&#+.-%?>#'$) +C)K+B'@)$+<#+"+.#$($)#@)J+-(/.%")0?%.')Q\9D).'@,'-)%$)%)-'$'%-<>)(+?#<)>%$)&''@)-'"%(',)#@#(#%""E)K#(>) K+B'@)$(/,#'$)%@,)K#(>)(>').'@,'-',),#$?%-#(#'$)#@)(>')C%B#"E)%@,6+-)(>')"%&+/-)B%-L'(D)&'#@.)+@"E) -'<'@("E) -'"%(',) K#(>) (>') $(/,E) +C) B%$</"#@#(EH) I+-) (>%() -'%$+@D) .'@,'-) %@,) K+B'@) $(/,#'$) K'-') <+,',)#@)(>')$%B')<%('.+-EH)2C)K')%@%"EN')?-#B%-E)%@,)$'<+@,%-E)$/&F'<()(+?#<)$'?%-%('"ED)K')-'%"#N') (>%())&"*&(#+"*#,!-&"#./0*%&.)#$)(>')+@'D)(+.'(>'-)K#(>)1!2%+$#./(+/%3%2+/%!"D)(>%()#$)G'-E)C-'A/'@()%$) %)$'<+@,%-E)$/&F'<()(+?#<)&/()@+()%$)%)?-#B%-E)+@'H)5>%()#$)(+)$%E)(>%())&"*&()%$)%)-'$'%-<>)(+?#<)#$) B+-')+C)%@)%@%"E(#<%")?'-$?'<(#G')-%(>'-)(>%@)%)$/&F'<()(+?#<D)&'<%/$')+C)(>'#-)(-%@$G'-$%")<>%-%<('-H)) ='#@.)$+D)4!(56#!(7+"%8+/%!".#+"*#'(!3&..%!".D)1/+/&#+"*#'!$%/%2.D)9*02+/%!"D):+-%$;D)<&+$/=D)>&((%/!(;# +"*#0(?+"%.-D)1'!(/.#.!2%!$!7;D)@!--0"%2+/%!"#+"*#-&*%+)%-')(>')B+$()C-'A/'@()?-#B%-E)$/&)C#'",$) +C)$+<#+"+.E),'G'"+?',)#@)(>')J>Y)(>'$#$D)K>#"')%$)%)$'<+@,%-E)$/&)C#'",)0B+$()+C)(>')<%$'$)%@%"E(#<%") ?'-$?'<(#G')+-)#@$(-/B'@(9)(>')B+$()C-'A/'@()-'C'-'@<'$)%-'W)V+-LD)+-.%@#N%(#+@$)%@,)J-+C'$$#+@$`) )&"*&(A# 4!-&"# ./0*%&.D) 1/+/&# +"*# '!$%/%2.D) 9*02+/%!"6) :+-%$;D) 1!2%+$# 1/(+/%3%2+/%!"H) a'@,'-) #$) (>'-'C+-'),#$$'B#@%(',)(+)+(>'-)-'$'%-<>)C#'",$D)%$)%@)#B?+-(%@()%@%"E(#<%")?'-$?'<(#G')(-%@$G'-$%")(+) %"")C#'",$)+C)3+<#+"+.ED)$?'<#%""E)(>')+@'$)B'@(#+@',)%&+G'H)) X@)+(>'-)?'-$?'<(#G'D)#C)K')+&$'-G')(>'),#$(-#&/(#+@)+C)(>')?-#B%-E)$/&)C#'",$)+C)(>')(>'$#$)&E)#($) $(%.') +C) ,'G'"+?B'@() 0<+B?"'(',) +-) +@.+#@.9D) K') <%@) .-%$?) (>%() K#(>#@) (>') 'B'-.'@() $/&) C#'",$D) 7&"*&()%@,)K+B'@)$(/,#'$)#$@M()+@')+C)(>'BD)/@"#L')B--%7(+/%!"#+"*#9/="%2%/;D)C!0/=)+-)12%&"2&H)5>') -'"%(#G') ?-+?+-(#+@) +C) %"") +(>'-) $/&) C#'",$) 0%"-'%,E) B'@(#+@',9) %-') %??-+[#B%('"E) <+@$(%@() #@) (>') $+<#+"+.E) -'$'%-<>'$) ,'G'"+?',) %() (>') J>Y) "'G'"H) 5>'$') (K+) <+@<"/$#+@$) %""+K$) /$) (+) <+@C#-B) (>%() .'@,'-D) #@) $+<#+"+.E) J>Y$) (>'$#$) #@) J+-(/.%"D) #$) B+-') C-'A/'@("E) %@) +?'-%(#+@%") <%('.+-E) 0+-) #@,'?'@,'@()G%-#%&"'9)-%(>'-)(>%@)%)(>'+-'(#<%")<+@<'?(H) ) ]) &BQC>$?@$$0EGLC<P>P$BGP$*G;E:G;$.O#$&O>R:RI$QF$D=:AB=F$REL:ECE;F$M:>CP$\D>=L>GHB;>Z$ $ c.#@.)) 1>#",>++,) 1+BB/@#<%(#+@)%@,):',#%)) 1+@$/B?(#+@) 1-#B#@%"#(E)) 1/"(/-')?/&"#<$)%@,)?+"#<#'$)) 0EGLC<P>P$ QD^) SDQ) QDS) PDZ) PDP) ZDO) *G;E:G;$ QDS) PDZ) \DT) PDO) PDT) ODQ) Y'B+.-%?>E) PDZ) PDP) Y-/.$)/$') SD\) PDO) !<+@+B#<)3+<#+"+.E)) PDO) PDZ) !,/<%(#+@) RDQ) SPDP) !B#.-%(#+@) SD\) SDQ) !@G#-+@B'@() PDT) QDS) !?#$('B+"+.#<%")-'C"'<(#+@) QD^) PDP) I%B#"E) \DR) \DO) a'@,'-6K+B'@)$(/,#'$) ZDP) QDT) _'%"(>)) ZDZ) \DT) _#$(+-#<%")3+<#+"+.E)) QDR) QDS) 2""#('-%<E) PDP) PDO) 2BB#.-%(#+@)%@,)!(>@#<#(E)) SD]) ^D^) 8%K)%@,)d/$(#<')) PDO) SD\) J+?/"%-)</"(/-')) ^D\) QD^) *'"#.#+@) QD^) SD\) 3<#'@<') PDT) ZDQ) 3+<#%")'[<"/$#+@)%@,)?+G'-(E)) SDQ) SD\) 3+<#%")1"%$$'$) ZDO) PDO) 3?+-($)3+<#+"+.E) ^DQ) ^DS) 3(%(')%@,)?+"#(#<$) SPD^) ]DO) 3(-/<(/-')%@,)3+<#%")1>%@.')) ZDZ) SD\) 5'--#(+-E)%@,)7-&%@#$B) ZDO) \DP) e%"/'$) PDZ) SDQ) V+-LDD)+-.%@#N%(#+@$)%@,)?-+C'$$#+@$) SZD^) SPDT) f+/(>) QDS) ZD]) 5+(%") SPPDP) SPPDP) )))))))))))))))))))3+/-<'W))J+-(/./'$')X&$'-G%(+-E)+C)3<#'@<')%@,)_#.>'-)!,/<%(#+@)) ) V')<%@)$'')#@)(>')@'[().-%?>)(>%()7&"*&(D)&'(K''@)(>')-'"%(#G')#@<-'%$'$)%@,),'<-'%$'$)+C)+(>'-) 0?-#B%-E9)$/&)C#'",$)+C),+<(+-%(')-'$'%-<>)#@)$+<#+"+.ED)>%$)B%#@(%#@',)#($)#--'"'G%@(D)A/%@(#(%(#G'"E) $?'%L#@.D)?+$#(#+@H)5>')-'"%(#G')#@<-'%$'$)K'-')B+$()@+(#<'%&"')#@)(>')<%$'$)+C)@!--0"%2+/%!"#+"*# D&*%+D) 9*02+/%!"D) B--%7(+/%!"# +"*# 9/="%2%/;D) <&+$/=D) @0$/0(&D) 12%&"2&) %@,) C!0/=H) X@) (>') <+@(-%-ED) (>') B+$() -'"'G%@() ,'<-'%$'$) %-') 1!2%+$# 1/(+/%3%2+/%!"D) 4!(56# !(7+"%8+/%!".# +"*# '(!3&..%!".D) 9'%./&-!$!7%2+$# (&3$&2/%!"D) @0$/0(&D) 1/+/&# +"*# E!$%/%2.D) 1/(02/0(&# +"*# 1!2%+$# @=+"7&D) F(07# G.&) %@,) H&$%7%!"H)) ) ) T) 1:;<=>$J@$$.>=L>GH<BC$:GL=>BR>$Q>HN>>G$0EGLC<P>P$BGP$*G;E:G;$.O#$&O>R:RI$QF$D=:AB=F$REL:ECE;F$M:>CP$ ) ))))))))))))))))))))3+/-<'W)J+-(/./'$')X&$'-G%(+-E)+C)3<#'@<')%@,)_#.>'-)!,/<%(#+@)) ) V>#"')3+<#+"+.E)+C).'@,'-)#$)%),+B#@%(',)C#'",)K#(>#@)+(>'-)$/&C#'",$)#@)J+-(/./'$')3+<#+"+.ED)#() #$) %"$+D) #@) (>') <+B?+$#(#+@) +C) #($) B'B&'-$D) .'@,'-',H) ) 3+B') $/&C#'",$) +C) $+<#+"+.E) %-') (>'-'C+-') .'@,'-',)#@)(>'#-)%<%,'B#<)<+B?+$#(#+@D)#@<"/,#@.)7&"*&(H)='#@.)$+D)7&"*&()#$)+@')+C)(>')$/&)C#'",$) (>%() %-') +G'-4-'?-'$'@(',) &E) K+B'@D) (+.'(>'-) K#(>) !B#.-%(#+@D) I%B#"ED) _'%"(>) %@,) V+-LD) +-.%@#N%(#+@$) %@,) ?-+C'$$#+@$H) X@) (>') <+@(-%-ED) $/&C#'",$) (-%,#(#+@%""E) %((-#&/(',) (+) B%$</"#@') $?>'-'$D)"#L')3+<#%")3(-%(#C#<%(#+@D)3(%(')%@,)J+"#(#<$D)_#$(+-#<%")3+<#+"+.ED)3(-/<(/-')%@,)3+<#%")1>%@.'D) %-') +G'-4-'?-'$'@(',) &E) B'@H) XG'-%""D) (>'$') %-') (>') $/&) C#'",$) (>%(D) +@) +@') B'%@$) +-) %@+(>'-D) -'?-'$'@()(>')$'[/%"),#G#$#+@)+C)$+<#+"+.#<%")-'$'%-<>H)) ) SP) 2()B/$()&')/@,'-"#@',D)>+K'G'-D)(>%()-'.%-,"'$$)+C)(>')#,'@(#<%")?-+?+-(#+@)+C)B'@)%@,)K+B'@) #@)(>')?-'$'@("E)%@%"EN',)/@#G'-$'D)(>'-')%-')B+-')%-'%$)K>'-')B'@)%-')+G'-4-'?-'$'@(',)(>%@)%-'%$) K>'-')K+B'@)%-'H);+@'(>'"'$$D)(>')$/&)C#'",$)(>%()('@,)(+)&')"'$$).'@,'-',)%-')f+/(>D)Y'B+.-%?>ED) e%"/'$D)J+G'-(ED)c.#@.D)1/"(/-')?/&"#<$D)2BB#.-%(#+@D)1>#",>++,)%@,)!<+@+B#<)3+<#+"+.EH) $ 1:;<=>$]@$$.>=L>GH<BC$:GL=>BR>$Q>HN>>G$0EGLC<P>P$BGP$*G;E:G;$.O#$&O>R:R$QF$A>G$BGP$0EGLC<P>P$BGP$ *G;E:G;$.O#$&O>R:R$QF$NEA>GI$QF$D=:AB=F$REL:ECE;F$M:>CP$ $ ))3+/-<'W)J+-(/./'$')X&$'-G%(+-E)+C)3<#'@<')%@,)_#.>'-)!,/<%(#+@)) $ QZ$&O>$D<QC:L$^:R:Q:C:HF$EM$!"#$"%$:G$HO>$RL:>GH:M:L$D=EP<LH:EG$$ ) cC('-) '[?"+-#@.) (>') #$$/'$) <+@<'-@#@.) (>') #@,#G#,/%") -'$'%-<>) ?-+F'<($) #@) (>') C#'",) +C) $+<#+"+.E) 0$/<>)%$)(>')J>Y)(>'$#$9D)@+K)K')%-').+#@.)(+)gN++BM)(+)%)B+-'),'(%#"',)%@%"E$#$)+C)(>')<+@C#./-%(#+@$) ) SS) +C) $+<#+"+.E) +C) .'@,'-H) c$) K%$) %"-'%,E) B'@(#+@',D) (>#$) ?+-(-%#() K%$) .#G'@) &E) (>') <+BB/@#<%(#+@$) ?-'$'@(',)+@)(>')J+-(/./'$')1+@.-'$$'$)+C)3+<#+"+.EH)5>')?-+.-%B$)+C)(>')<+@.-'$$'$)0<+@('@($)%@,) ?-+(%.+@#$($9) K#"") &') B+&#"#N',) %$) #""/$(-%(#+@$) +C) (>') $<#'@(#C#<) @%(#+@%") ?-+,/<(#+@H) 5>'-'C+-'D) K') $>+/",)<+@$#,'-)(>%()B+$()+C)(>')<+BB/@#<%(#+@$)%-')%$$+<#%(',)&+(>)(+)#@,#G#,/%")-'$'%-<>)?-+F'<($) %@,)(+)#@$(#(/(#+@%")?-+F'<($D)K>#<>)<+/",)>%G')#@G+"G',)$'G'-%")-'$'%-<>'-$)%@,)$'G'-%")/@#G'-$#(#'$) %@,6+-)-'$'%-<>)<'@('-$H)) ='(K''@) ST]]) %@,) QPP]D) %@,) K#(>) %) A/%,-'@@#%") -'./"%-#(ED) (>'-') K'-') <%--#',) +/() $#[) J+-(/./'$') <+@.-'$$'$) +C) $+<#+"+.ED) ?-+B+(',) &E) (>') J+-(/./'$') c$$+<#%(#+@) +C) 3+<#+"+.E) 0cJ39H) Y%(%)-'.%-,#@.)(>')@/B&'-)+C)<+BB/@#<%(#+@$D)%/(>+-$)%@,)@/B&'-)+C)?%-(#<#?%@($)#@G+"G',)#@)'%<>) <+@.-'$$) 05%&"') Q9) $>+K$) (>') '[?+@'@(#%") %@,) $+"#,) .-+K(>) +C) (>') ,#$<#?"#@') #@) J+-(/.%"H) 5>') @'[() (%&"')$>+K$)(>')#@<-'%$')+C)?-+C'$$#+@%"$)K#(>)$+<#+"+.#<%")%<%,'B#<)',/<%(#+@D)(>'),'G'"+?B'@()+C) (>')-'$'%-<>)%<(#G#(E)%@,)(>'),#G'-$#C#<%(#+@)+C)(>')-'$'%-<>)(+?#<$H)5>')B/"(#?"#<%(#+@)+C)(>')(>'B%(#<) ?%@'"$D)R)#@)2)1+@.-'$$D)(+)QQ)#@)e)1+@.-'$$D)+-)QS)#@)e2)1+@.-'$$D)<+@C#-B$)#(H)) ) &BQC>$!@$"<AQ>=$EM$DB=H:L:DBGHRI$LEAA<G:LBH:EGR!$BGP$B<HOE=R_LE/B<HOE=R$D>=$0EG;=>RR$ 0EG;=>RR$ .B=H:L:DBGHR$ 0EAA<G:LBH:EGR$ )<HOE=R_$0E/B<HOE=RK$ 2)0ST]]9) OPP) RZ) ]\) 22)0STTQ9) ROO) SQT) SZ]) 222)0STTO9) RTT) QPQ) Q^O) 2e)0QPPP9) SPOP) QQ^) Q^Q) e)0QPP^9) SQZ^) ZTQ) ^\R) e2)0QPP]9) SS]]) \RO) ]^R) )))))3+/-<'W)J+-(/./'$')c$$+<#%(#+@)+C)3+<#+"+.E) ) V') %-') @+K) .+#@.) (+) '[%B#@') (>') <+@.-'$$'$D) +@') &E) +@'D) -'.%-,#@.) (>') 7&"*&() C#'",) <+@C#./-%(#+@$)%@,)(>')$'[)+C)(>')%/(>+-$)+C)(>')<+BB/@#<%(#+@$H)) 5>') C#-$() J+-(/./'$') 1+@.-'$$) +C) 3+<#+"+.E) 08#$&+@D) ST]]9D) h5>') 3+<#+"+.E) %@,) (>') J+-(/./'$') 3+<#'(E)#@)(>')5/-@)+C)(>')1'@(/-EiD),#,@M()#@<"/,')%@E)?%@'"),'G+(',)(+)7&"*&(H)_+K'G'-D)(>#$)#$)@+() %@)#@,#<%(#G')+C)#($)%&$'@<')%B+@.)(>')?-'$'@(',)K+-L$H)5>')<+BB/@#<%(#+@$)(>%()'[?"+-')(>')(>'B') K'-')#@<"/,',)#@)(>')?%@'"),'G+(',)(+)h3+<#+"+.E)+C)I%B#"EiD)-'G'%"#@.)(>')/@,'-,'G'"+?',)?>%$')+C) (>#$)C#'",)+C)$(/,#'$)#@)<+B?%-#$+@)(+)+(>'-$)$/<>)%$)3+<#+"+.E)+C)L@+K"',.')%@,)</"(/-'D)*/-%")%@,) /-&%@)$+<#+"+.E)+-)3+<#+"+.E)+C)K+-L)%@,)+-.%@#N%(#+@$H)5>#$)<+@.-'$$)%"$+)#""/$(-%('$)(>')'B'-.'@<') +C) (>#$) C#'",) #@) (>') #@('-#+-) +C) (>') 3+<#+"+.E) +C) C%B#"E`) %@,) (>') 'B'-.'@<') +C) V+B'@M$) $(/,#'$) )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) Q Z )5>'-')K'-')<+/@(',)<+BB/@#<%(#+@$)#@<"/,',)#@)(>')(>'B%(#<)?%@'"$H)J"'@%-E)$'$$#+@$)K'-')'[<"/,',)+C)(>')%@%"E$#$H) ) c"")(>')%/(>+-$)0+-)<+4%/(>+-$9)+C)(>')?-'$'@(',)<+BB/@#<%(#+@$)K'-')(%L'@)#@(+)%<<+/@()K>'@)+@')?'-$+@)#$)%$$+<#%(',) (+)B+-')(>%@)+@')<+BB/@#<%(#+@D)%"")>#$)?%-(#<#?%(#+@$)K'-')<+@$#,'-',H))) ) ) SQ) %??-+%<>'$H);'G'-(>'"'$$D)#@)(>')@%(#+@%")<+@('[(D)(>#$)$/&4C#'",)+C)K+B'@M$)$(/,#'$),#,)@+()%<A/#-') (>')G#$#&#"#(E)-'%<>',)#@)<+/@(-#'$)"#L')I-%@<'D)K>%()K%$)<'-(%#@"E)%$$+<#%(',)K#(>)(>')"+K)B%.@#(/,') +C)(>')C'B#@#$()B+G'B'@($)#@)J+-(/.%"H)1+@$#,'-#@.)(>')$'[)+C)(>')%/(>+-$)+C)(>')<+BB/@#<%(#+@$)+C) (>#$)?%@'"D)#(M$)'G#,'@()%)&%"%@<',),#$(-#&/(#+@)&'(K''@)$'['$)0\P)U)K+B'@D)5%&"')Z9H))_+K'G'-D)(>#$) %"-'%,E)<>%-.'$)#(M$)+G'-4-'?-'$'@(%(#+@)#@)(>#$)C#'",)+C)$(/,#'$D)+@<')K+B'@j$)?-+?+-(#+@)%B+@.)(>') %/(>+-$)+C)%"")<+BB/@#<%(#+@$)#$)"'$$)$#.@#C#<%@()0^^)U9H)) 5>') 22) J+-(/./'$') 1+@.-'$$) +C) 3+<#+"+.E) 08#$&+@D) STTQ9D) h3+<#%") 3(-/<(/-'$) %@,) Y'G'"+?B'@(iD) $/<>)%$)(>')C#-$()+@'D),#,@M()>%G')%@E)?%@'"),'G+(',)(+)7&"*&(D)%@,)+@<')B+-'D)(>')<+BB/@#<%(#+@$) +@)(>#$)(>'B')K'-')#@<"/,',)#@)(>')?%@'"),'G+(',)(+)(>')hI%B#"E)%@,)L#@$>#?iD)K#(>)%&+/()R])U)+C) K+B'@)%/(>+-#@.)(>')<+BB/@#<%(#+@$H)2C)K')(%L')#@(+)%<<+/@()(>')-'"%(#+@)+C)(>#$)?-+?+-(#+@)K#(>) (>')K+B'@j$)?'-<'@(%.')%B+@.)(>')(+(%")+C)(>')%/(>+-$)0+@"E)^QUD)5%&"')\9D)(>#$)G%"/')-'.#$('-$D)#@) (>#$) <+@.-'$$D) (>') &#..'$() ,#$?-+?+-(#+@) &'(K''@) $'['$) 0k) ZOU9H) ='$#,'$) (>') -'</--'@() +G'-4) -'?-'$'@(%(#+@) %B+@.) %/(>+-$D) K+B'@) <+@(#@/') (+) &') (>') '[<"/$#G') 'B?#-#<%") +&F'<() +C) (>') K+-L$) (>%() ,#$</$$) 7&"*&(H) *'.%-,#@.) <+BB/@#<%(#+@$) (>'B'$D) (>#$) <+@.-'$$) #""/$(-%('$) (>') 'B'-.'@<') +C) (>') -'$'%-<>'$) +@) 7&"*&() #@'A/%"#(#'$) #@) K+-L) <+@('[(D) K>#<>) <'-(%#@"E) -'C"'<($) (>') $+<#+4'<+@+B#<) C-%B#@.) #@) K>#<>) (>#$) C#'",) %??'%-',W) (>') ?-+.-'$$#G') %@,) B%$$#G') '@(-E) +C) K+B'@) #@) (>') "%&+/-) B%-L'(D)#@)%)<+/@(-E)K#(>)+@')+C)(>')>#.>'$()C'B%"')%<(#G#(E)-%(')#@)!/-+?'H) 5>')222)J+-(/./'$')1+@.-'$$)+C)3+<#+"+.E)08#$&+@D)STTO9D)hJ-%<(#<'$)%@,)3+<#%")1>%@.')J-+<'$$'$iD) -'?-'$'@($) %) <>%@.') -'.%-,#@.) $+<#+"+.E) +C) 7&"*&(H) 5>#$) C#'",) %??'%-$) C+-) (>') C#-$() (#B') >'%,#@.) %) <+BB/@#<%(#+@$M) ?%@'") @'[() (+) (>') 3+<#+"+.E) +C) C%B#"E) 05%&"') Z9H) 5>') <+BB/@#<%(#+@$) %-') B%#@"E) C+</$',)+@)C%B#"ED)#($),E@%B#<$)%@,)<>%@.'$D)&/()%"$+)+@).'@,'-)#@'A/%"#(#'$D).'@,'-)#,'@(#(#'$)%@,) (>') C'B#@#$() B+G'B'@(H) 8#L') (>') ?-'G#+/$) <+@.-'$$'$D) (>') @/B'-#<) $/?'-#+-#(E) +C) K+B'@) %$) ?-+(%.+@#$($)+C)(>')<+BB/@#<%(#+@$)%@,)%$)B%#@)-'$'%-<>)(+?#<)#$)+&G#+/$)0]SUD)5%&"')l9H)) 2@)(>')2e)J+-(/./'$')1+@.-'$$)+C)3+<#+"+.E)01+#B&-%D)QPPP9D)hJ+-(/./'$')3+<#'(EW)*'<'@()J%$$',D) ;'%-) I/(/-'iD) "#L') (>') ?-'G#+/$) +@'D) 7&"*&() %??'%-$) @'%-&E) hC%B#"Ei) #@) %) (>'B%(#<) ?%@'") '@(#("',) hI%B#"ED).'@,'-)%@,)"#C')<+/-$'$iD)K#(>)QO)<+BB/@#<%(#+@$D)#@)#($)B%F+-#(E)K-#(('@)&E)K+B'@)0R^U)4) 5%&"')Z9H)2@)$?#(')+C)(>')A/%@(#(%(#G')#@<-'%$')+C)(>')<+BB/@#<%(#+@$D)%@,),#G'-$#C#<%(#+@)+C)(>'B'$D) (>')<+@$(%@()%-(#</"%(#+@)+C)7&"*&()K#(>)$+<#+"+.E)+C)C%B#"E)0#@)$/&F'<($)(>%()(+/<>)(>')-','C#@#(#+@)+C) .'@,'-) -+"'$) (>%() (++L) ?"%<') #@$#,') (>') C%B#"ED) +-) K+-L4C%B#"E) -'<+@<#"#%(#+@9) K#(>) (>') %??-+%<>) +@) .'@,'-) #@'A/%"#(#'$) 0$?'<#%""E) (>%() +@'M$) +&$'-G',) #@) "%&+/-) <+@('[(9) %@,) K#(>) ,+B'$(#<) G#+"'@<') #$) $(#"")'G#,'@(H)X@<')B+-'D)B'@)%@,)B%$</"#@#(#'$)%-')%&$'@()%$)-'$'%-<>)(+?#<$H) 8++L#@.) (+) (>') e) J+-(/./'$') 1+@.-'$$) +C) 3+<#+"+.E) 0=-%.%D) QPP^9D) h1+@('B?+-%-E) 3+<#'(#'$) b) *'C"'[#G#(E) %@,) c<(#+@iD) K') $'') (>%() 7&"*&() %??'%-$D) C+-) (>') C#-$() (#B'D) >'%,#@.) %) (>'B%(#<) ?%@'") #@,'?'@,'@()+C)$+<#+"+.E)+C)C%B#"ED)K>%()?+#@()+/()(>')-'<'@()%(('@(#+@)&'#@.),',#<%(',)(+)(>#$)C#'",) +C) $(/,EH) c"(>+/.>D) (>') B+$() C-'A/'@() -'$'%-<>) $/&F'<($) -'B%#@) -'"%(#G'"E) <+@$(%@(W) .'@,'-) ) SZ) #@'A/%"#(#'$)0?%-(#</"%-"E)#@)K+-L#@.)<+@('[(9D),+B'$(#<)G#+"'@<')%@,).'@,'-)#,'@(#(#'$)#@)(>')<>%@.#@.) C%B#"ED) %@) '[<'?(#+@%") <>%-%<('-#$(#<) +C) (>#$) <+@.-'$$) #$) (>') C%<() (>%() (>#$) ?%@'") #@<"/,',) %) (%&"') ,'G+(',) (+) hB%$</"#@#(EiH) 5>#$) #$) %@) #@,#<%(#+@) +C) (>') -'<'@() #@('-'$() #@) (>#$) (>'B') &E) (>') @%(#+@%") $+<#+"+.ED) %@,) +C) (>') 'B'-.'@<') +C) B'@) %$) %) -'$'%-<>) (+?#<H) ) ;'G'-(>'"'$$D) %$) ?-+(%.+@#$($) +C) (>') ?-'$'@(',)K+-L$D)B'@)%-')$(#"")$E$('B%(#<%""E)$/&4-'?-'$'@(',H)I-+B)QQ)<+BB/@#<%(#+@$)(>%()K'-') #@('.-%(#@.)(>')?%@'"),'G+(',)(+)7&"*&(D)%-+/@,)RPU)>%$)K+B'@)%/(>+-$>#?$)05%&"')Z9H)) c() (>') e2) J+-(/./'$') 1+@.-'$$) +C) 3+<#+"+.E) 08#$&+@D) QPP]9D) h3+<#%") V+-",$W) L@+K"',.') %@,) ?-%<(#<'$iD)7&"*&()%??'%-',)+@<')%.%#@)%$$+<#%(',)K#(>)C%B#"ED)#@)(>')$%B')(>'B%(#<)?%@'")hI%B#"E) %@,) a'@,'-iH) 2@) $?#(') +C) (>') -'(/-@) (+) (>') h?-+B#$</#(Ei) #@) (>') +-.%@#N%(#+@) +C) (>') (>'B'$D) (>') @/B&'-) +C) <+BB/@#<%(#+@$) #@<-'%$',) $/&$(%@(#%""E) 0C-+B) ^R) b) ,',#<%(',) (+) 7&"*&() %@,) C%B#"E) 4) #@) QPP^D) (+) \T) <+BB/@#<%(#+@$) #@) QPP]9D) <+@C#-B#@.) (>') #@<-'%$') +C) (>') K+-L$) ,',#<%(',) (+) (>') -'$?'<(#G')+&F'<($)+C)%@%"E$#$H)X@<')%.%#@D)%"-'%,E)K#(>+/()$/-?-#$'D)K+B'@)%-')#@)<>%-.')C+-)B+$()+C) (>') %/(>+-$>#?) +C) (>') ?-'$'@(',) <+BB/@#<%(#+@$) 0%-+/@,) ]QUD) 5%&"') Z9D) ?-+G#@.) (>') .'@,'-',) +-.%@#N%(#+@)+C)(>')$(/,E)+&F'<($)'"'<(',)&E)(>')J+-(/./'$')-'$'%-<>)?-+C'$$#+@%"$)01/@>%D)QPP]9H) 5>') +&F'<($) +C) $(/,E) %-') ,#G'-$#C#',D) &/() (>') #@<#,'@<') +@) $/&F'<($) "#L') G#+"'@<') K#(>#@) .'@,'-) -'"%(#+@$>#?$)%@,)#@'A/%"#(#'$)#@)(>')"%&+-)B%-L'(D)#$)B%#@(%#@',H)5>')+-#.#@%"#(E)+C)(>#$)<+@.-'$$)#$)(>') %-(#</"%(#+@)&'(K''@)7&"*&()%@,)%.#@.D)+-D)7&"*&(D)C%B#"E)%@,)>'%"(>)4)(>'B'$)(>%()$(%@,)+/()&E)(>') B%$$#G') @/B&'-) +C) <+BB/@#<%(#+@$H) 5>'$') @'K) +&F'<($) C+</$) +@) (>') ,'B+.-%?>#<) <>%@.'$) #@) (>') ,'G'"+?',)<+/@(-#'$D)"#L')(>')?+?/"%(#+@)%.#@.D)(>')#@<-'%$')+C)"+@.'G#(E)%@,)-'"%(',)$+<#%")?+"#<#'$H)) ) &BQC>$K@$&EHBC$EM$LEAA<G:LBH:EGR$:GLC<P>P$:G$HO>ABH:L$DBG>CR$MEL<R>P$EG$!"#$"%$BGP_E=$MBA:CFU$ 0EG;=>RR$$ 0EAA<G:LBH:EGR$$\GZ$ `EA>G$a$ .BG>C$GBA>$ 2)0STT]9) SQ) \PDP) I%B#"E)) 22)0STTQ9) R) RRD]) I%B#"E)%@,)L#@$>#?))) 222)0STTO9) SO) ]PD]) I%B#"ED).'@,'-)%@,)%CC'<(#+@$) 2e)0QPPP9) QO) R^D^) I%B#"ED).'@,'-)%@,)"#C')<+/-$'$) e)0QPP^9) QQ)) OTDR)) a'@,'-) Q\) R\DR) I%B#"E) \T) ]QDS) I%B#"E)%@,).'@,'-) e2)0QPP]9) ))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))3+/-<'W)J+-(/./'$')c$$+<#%(#+@)+C)3+<#+"+.E) ) 1+@<"/,#@.D) K') G'-#CE) #@) (>') 2) %@,) 22) <+@.-'$$'$D) (>%() (>') K+-L$) (>%() <%@) &') .-+/?',) /@,'-) 7&"*&(),'@+B#@%(#+@D)&'<+B')G#$#&"')C-+B)?%@'"$),'G+(',)(+)(>')$+<#+"+.E)+C)C%B#"ED),'@+/@<#@.)+@) )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) 4 a#G'@) (>') m?-+B#$</#(Em) #@) (>') +-.%@#N%(#+@) +C) (>') (>'B'$D) K') +?(',) (+) <+/@() <+BB/@#<%(#+@$) #@<"/,',) #@) ?%@'"$) (>%() K'-'),',#<%(',)(+)$+<#+"+.E)+C).'@,'-D)%@,)%"$+)?%@'"$)(>%()K'-'),',#<%(',)(+)(>')$+<#+"+.E)+C)C%B#"EH))V')(%L')(>#$)+?(#+@) &'<%/$'D)G'-E)+C('@D)#$)#@)(>#$)"%$()?%@'")(>%()(>')<+BB/@#<%(#+@$)+@).'@,'-)#$$/'$)%-')#@<"/,',H ) S^) +@') $#,') (>') -'</--'@("E) %-(#</"%(#+@) (>%() #$) ,+@') &'(K''@) (>') (>'B'$D) %@,) +@) (>') +(>'-) $#,') (>') 'B&-E+@#<)$(%(')#@)K>#<>)(>#$)C#'",)+C)$(/,#'$)K%$H) X@"E)#@)STTO)(>')$+<#+"+.E)+C).'@,'-)%<>#'G',)G#$#&#"#(E)0#@)(>')eM$)%@,)e2M$)<+@.-'$$'$)#$)+@')+C) (>') B+$() -'C'--',9) %@,) $+B') %@%"E(#<%") %/(+@+BED) %??'%-#@.) %"-'%,E) %@@+/@<',) #@) (>') (>'B%(#<) ?%@'"$D)'G'@)#CD)%$)>%??'@',)G'-E)+C('@D)$(#"")$>%-#@.)(>')$?%<')K#(>)$+<#+"+.E)+C)C%B#"EH)1+#@<#,'@("ED) #()#$)%"$+)$#@<')(>#$)E'%-)(>%()K+B'@j$)?-'$'@(%(#+@$)'[<'',)B'@j$H))5>#$)?+#@($)+/()(>')%$$+<#%(#+@) &'(K''@)(>').-+K#@.)+C)K+B'@M$)@/B&'-)%B+@.)(>')$<#'@(#C#<)<+BB/@#(E)%@,)(>')#@('@$#C#<%(#+@)+C) (>'),#$</$$#+@)%&+/()(>'),#CC'-'@<'$)%@,)#@'A/%"#(#'$)&'(K''@)B'@)%@,)K+B'@H)2@)%,,#(#+@D)B+$()+C) (>') <+BB/@#<%(#+@$) (>%() <+@$(#(/(') (>'$') ?%@'"$) 0(>'B'$) (-%,#(#+@%""E) %$$+<#%(',) (+) (>') C'B#@#@') #B%.#@%-E9)<+/@()B%#@"E)K#(>)K+B'@)%$)%/(>+-$)%@,D)$#B/"(%@'+/$"ED)%$)$(/,E)+&F'<(H)2()$>+K$)/?)%) ,#CC'-'@(#%(#+@)&'(K''@)(>')(>'B'$)K>#<>)/@,'-)(>')%(('@(#+@)&E)K+B'@)%@,)B'@)$+<#+"+.#$($H)) 3/BB%-#N#@.D) (>') L'E) (>'B'$) '[?"+-',) #@) (>#$) <+BB/@#<%(#+@$D) %"+@.) (K+) ,'<%,'$) +C) <+@.-'$$'$D)%-'W)%9)-'</--'@()%-(#</"%(#+@)&'(K''@) 7&"*&()%@,)C%B#"ED)L'E)?"%<')+C)-','C#@#(#+@)%@,) @'.+(#%(#+@)+C).'@,'-)-+"'$`)&9).'@,'-)#@'A/%"#(#'$D)?%-(#</"%-"E)(>+$')(>%()%-')?-+,/<',)#@)(>')K+-L) <+@('[(D)-'C"'[)+C)(>')B%$$#G')'@(-E)+C)K+B'@)#@)(>')"%&+-)B%-L'()%@,)<+@$'A/'@()#@(-#<%<E)+C)(>') -'"%(#+@$)&'(K''@)B'@)%@,)K+B'@)#@)(>'$')<+@('[($`)<9)G#+"'@<')?-+,/<(#+@)#@).'@,'-)-'"%(#+@$>#?$H) V>'@)(>')B'@)%-')(%L'@)+@)%$)$(/,E)+&F'<(D)(>')%@%"E$#$)K%$)C+</$',)+@)(>')?-+,/<(#+@)+C).'@,'-) #,'@(#(#'$)%@,)?%-'@(>++,W)+@"E)#@)e)1+@.-'$$)0QPP^9)-'$'%-<>'$)+@)B%$</"#@#(E)K'-')C#-$()?-'$'@(',H) 5>')-'<+.@#(#+@)%@,)$+<#%")<>%""'@.')+C)(>')-#.>($)#@'A/%"#(#'$)&'(K''@)B'@)%@,)K+B'@D)%$)K'"")%$) (>')%??'%-%@<')+C)?/&"#<)#@$(#(/(#+@$)(+)%@$K'-)(>#$)$+<#%")?-+&"'B)%-')<'-(%#@"E)<+@@'<(',)K#(>D)+@) (>')+@')>%@,D)(>')(>'B'$)B+-')C-'A/'@("E),'G'"+?',)#@)(>')$<+?')+C)$+<#+"+.E)+C).'@,'-D)%@,)+@)(>') +(>'-D)(>'),/-%&"')%&$'@<')+C)B'@)%@,)B%$</"#@#(E)%$)$(/,E)+&F'<(H)) ) ,*0%*+*456$)$4'"#'('#$(',')(09$1%'+#$$ ) 2@)(>#$)$'<(+-)+C)(>')('[()K')K#""),'B+@$(-%('D)C#-$("ED)>+K).'@,'-)#$)%)-'"'G%@()%$?'<()#@)$(-/<(/-#@.) (>') ,#$(-#&/(#+@) +C) (>') J>Y) $(/,'@($) #@) (>') $+<#+"+.#<%") %<%,'B#<) C#"',D) #@) K>%() <+@<'-@$) (>') #@$(#(/(#+@%")C#"#%(#+@$D)(>')$/&F'<()(+?#<$)%@,)(>')<+G'-%.')+C)(>')$(/,EH)3'<+@,"ED)K')K#"")?-+G')>+KD) $#B/"(%@'+/$"ED)G#$#&#"#(E)%@,)%<L@+K"',.B'@()%-')%"$+)$(-/<(/-',)&E).'@,'-D)&E)(%L#@.)#@(+)%<<+/@() (>')+-%")<+BB/@#<%(#+@)#@)(>')J+-(/./'$')1+@.-'$$'$D)C+-B%")B'B&'-$>#?D)%@,)?%-(#<#?%(#+@)#@)(>') G%-#+/$)#@$(#(/(#+@$)+C)(>')J+-(/./'$')+C)3+<#+"+.EH)) ) BZ$4>GP>=>P$B<HOE=RO:D$:G$,EL:ECE;F$.O#R6$:G^:R:Q:C:HFb$ ) ) S\) 5+)$(%-()K#(>D)K')+&$'-G')(>%()(>'),#$(-#&/(#+@)+C)(>')<+@<"/,',)%@,)+@.+#@.)J>Y$)&'(K''@)B'@) %@,) K+B'@) #$) G'-E) 'G'@H) 5>/$D) \PD^U) +C) (>') /@#G'-$') #$) B%"') %@,) ^TDOU) #$) C'B%"'H) ;+@'(>'"'$$D) K>'@)K'),#CC'-'@(#%(')<+@<"/,',)C-+B)+@.+#@.)J>Y$)K')$'')(>%()K>#"')(>'-')%-')-'"%(#G'"E)B+-')B'@) #@) (>') %"-'%,E) <+@<"/,',) J>Y$D) (>') ('@,'@<E) #$) $>#C(#@.) &'<%/$') (>'-') %-') -'"%(#G'"E) B+-') K+B'@) ,'G'"+?#@.)J>Y$)#@)3+<#+"+.E)@+K%,%E$)(>%@)B'@H)5>#$)B%E)&')%)-'$/"()+C)(>')<+@$(%@()#@<-'%$')+C) K+B'@)#@)>#.>'-)',/<%(#+@)$E$('BH)) ) $&BQC>$U@$.O#$L<==>GH$E=$ME=A>=$RH<P>GHR$\D>=L>GHB;>Z$ $ 0EGLC<P>P$ *G;E:G;$$$ :%"')) \\DT) ^^D]) I'B%"')) ^^DS) \\DQ) 5+(%") SPPDP) SPPDP) 3+/-<'W)J+-(/./'$')X&$'-G%(+-E)+C)3<#'@<')%@,)_#.>'-)!,/<%(#+@)) $ 5>'-'C+-'D)%"(>+/.>)(>#$)('@,'@<E)$''B$)(+)#""/$(-%(')%@)%??%-'@()A/%@(#(%(#G')'A/#(E)&'(K''@) B'@)%@,)K+B'@)#@)(>')%,G%@<',)C+-B%(#+@),'.-''D)(>')C%<()#$)(>%(D)C%<#@.)(>')B%F+-#(E)?'-<'@(%.') +C) K+B'@) #@) (>') >#.>'-) ',/<%(#+@%") $E$('B) #@) .'@'-%") 0$'') (>') @'[() C#./-'9) %@,) $+<#%") $<#'@<'$) #@) $?'<#C#<D)(>')?'-<'@(%.')+C)K+B'@)K#(>)<+@<"/,',)+-)+@.+#@.)J>Y$)#$)-'"%(#G'"E)$B%""D)(>%()#$D)(>'E) %-') $(#"") /@,'-4-'?-'$'@(',) #@) (>#$) %,G%@<',) C+-B%(#+@) ,'.-''H) 5>') ,#$(-#&/(#+@) +C) (>') J>YM$) $/?'-G#$+-)&E)$'[)K#"")#""/$(-%(')#(H)) ) 1:;<=>$3@$"<AQ>=$EM$4=BP<BH>P$:GP:^:P<BCR$:G$.E=H<;BCI$QF$R>S$ ) )))))))))))))))))))3+/-<'W)J+-(/./'$')X&$'-G%(+-E)+C)3<#'@<')%@,)_#.>'-)!,/<%(#+@) )) 2@)C%<(D)%"(>+/.>)(>'),#$<-'?%@<E)&'(K''@)B'@)%@,)K+B'@),'G'"+?#@.)+-)>%G#@.),'G'"+?',)J>Y) (>'$#$) #$) @+() "%-.'D) (>#$) %??%-'@() 'A/#(E) -'G'%"$) %) -'%") /@,'-4-'?-'$'@(%(#+@) +C) K+B'@) #@) >#.>'-) ',/<%(#+@) $E$('B) 0%$) ?-+C'$$+-$) %@,) $/?'-G#$+-$) +C) ,+<(+-%(') -'$'%-<>) ?-+F'<($9H) 2@) (>%() $'@$'D) K+B'@) ?-+C'$$+-$) $/?'-G#$') +@"E) QZU) +C) (>') J>Y) (>'$#$) #@) (>') $%B?"'H) 5>'-'C+-'D) (>') 'A/#(E) &'(K''@) B'@) %@,) K+B'@) ,+<(+-$) +-) J>Y) $(/,'@($) ,+'$@M() (-%@$"%(') #@(+) %) <"'%-) 'G+"/(#+@) #@) (>') %<%,'B#<)%@,)('%<>#@.)<%-''-$)#@)(>#$)C#'",H)5>').-+K(>)#@)(>')-'?-'$'@(%(#+@)+C)K+B'@)K#(>)+-)$++@) ) SO) K#(>)J>Y$)#$)@+()%()%"")<+>'-'@()K#(>)K+B'@M$)-'?-'$'@(%(#+@)#@)$/?'-G#$#@.)J>Y$)(>'$#$)0#@,#<%(+-)+C) %)K'"")'$(%&"#$>',)('%<>#@.)<%-''-$9H)) ) 1:;<=>$?2@$"<AQ>=$EM$.O#$,<D>=^:RE=RI$QF$R>S$EM$HO>$R<D>=^:RE=R$ ) )))))))3+/-<'W)J+-(/./'$')X&$'-G%(+-E)+C)3<#'@<')%@,)_#.>'-)!,/<%(#+@)) ) 5>') @'[() ,%(%) -'?-'$'@($) +@"E) \PU) +C) (>') /@#G'-$'D) C+-) #() K%$@M() ?+$$#&"') (+) <+,') %"") (>') J>Y) (>'$#$)&E)<+G'-%.')+C)(>')-'$'%-<>)0+@"E)(>-+/.>)(>')(#("'M$)#@C+-B%(#+@9H)V#(>#@)(>'$')-'<+,',)J>Y$D) K') +&$'-G',) (>%() C+-) >%"C) +C) (>') $%B?"'D) (>') <+G'-%.') +C) (>') $(/,E) K%$) @%(#+@%"D) K>#"') C+-) %-+/@,) QZU) (>') <+G'-%.') K%$) %) $?'<#C#<) -'.#+@) +C) J+-(/.%"D) %@,) #@) SZU) +C) (>') <%$'$) (>') <+G'-%.') K%$) #@('-@%(#+@%"H) 5>') B+$() #B?+-(%@() C%<(+-) #@) ,#$(#@./#$>#@.) (>') %"-'%,E) <+@<"/,',) J>Y$) %@,) (>') +@.+#@.)+@'$)#$)(>')C%<()(>%()(>')?'-<'@(%.')K'#.>()+C)(>')<+B?%-%(#G')$(/,#'$)%"B+$()(-#?"#<%('$)#@) (>')+@.+#@.)J>Y)?-+F'<($)0#@)-'"%(#+@)(+)(>')%"-'%,E)<+@<"/,',)+@'$9)%@,)(>')'B'-.'@()#B?+-(%@<') +C) (>') !/-+?'%@) $(/,#'$H) =/() (>'$') ('@,'@<#'$) %-') .'@,'-',H) :'@D) B+-') (>%@) K+B'@D) >%G') (>') ('@,'@<E) (+) ,'G'"+?) -'$'%-<>'$) %() %@) !/-+?'%@) $<%"') K>#"') K+B'@D) B+-') (>%@) B'@D) >%G') (>') ('@,'@<E) (+) ,'G'"+?) -'$'%-<>'$) %() %) @%(#+@%") $<%"'H) :'@) %"$+) $>+K) (>') ('@,'@<E) (+D) K#(>) (#B'D) %&%@,+@)-'$'%-<>'$)K#(>)%)@%(#+@%")<+G'-%.'H) ) ) SR) 1:;<=>$??@$"<AQ>=$EM$.O#$&O>R>RI$QF$RHB;>$EM$P>^>CEDA>GH$BGP$R>S$EM$HO>$.O#$RH<P>GH$E=$OECP>=$ ) )))))))))))))))))))))))))))3+/-<'W)J+-(/./'$')X&$'-G%(+-E)+C)3<#'@<')%@,)_#.>'-)!,/<%(#+@)) $ QZ$#:MM>=>GH:BH>P$=EC>R$ME=$A>G$BGP$NEA>G6$A>AQ>=RO:D$BGP$D<QC:L$^:R:Q:C:HF$ ) J'-$#$(#@.) (>') %#B) +C) /@,'-$(%@,#@.) >+K) .'@,'-) #$) %) $(-/<(/-%") '"'B'@() #@) (>') ,#$(-#&/(#+@) +C) %<(+-$)K#(>#@) (>') ,#$<#?"#@%-E) C#'",D) K') %-') @+K) .+#@.) (+) C+</$) +/-) %(('@(#+@) +@) (>') -+"'$) (>%() B'@) %@,) K+B'@) -'?-'$'@() #@$#,') (>') $(-/<(/-') +C) (>') J+-(/./'$') c$$+<#%(#+@) +C) 3+<#+"+.E) 0cJ3) +-.%@#$B$D) J%@'") =+%-,$) %@,) B'B&'-$>#?$9`) %@,) +@) (>') ;%(#+@%") 1+@.-'$$'$) 'G'@($) 0<+BB/@#<%(#+@$)%/(>+-$>#?9H)) 8++L#@.)(+)(>')<+BB/@#<%(#+@$)%/(>+-$>#?$)%@,)(%L#@.)#@(+)%<<+/@()(>')$'[)+C)(>')#@('-G'@#'@($D) K')<%@)G'-#CE)(>%()K+B'@)#@)(>')"%$()<+@.-'$$)0OQDOU9)%@,)C-+B)STTO)0\\DZ)U9)-'?-'$'@()(>')B%F+-#(E) +C) (>') ?-+C'$$#+@%"$) #@G+"G',) #@) (>') '['</(#+@) +C) (>') 'G'@() 05%&"') \9H) 5>'$') G%"/'$) '<>+',) (>') ?-+?+-(#+@) +C) cJ3) B'B&'-$>#?$D) K>'-') (>') @/B'-#<) $/?'-#+-#(E) +C) (>') K+B'@) #$) 'G#,'@() %@,) <+@$(%@() $#@<') STTQ) 0\O) U) #@) STTQ) %@,) O]) U) #@) QPP^9H) _+K'G'-D) %<(#G#(#'$) "#L') (>') ?-'$'@(%(#+@) +C) <+BB/@#<%(#+@$) 0(>%() .#G'$) B+-') ?/&"#<) G#$#&#"#(E) (+) $+<#+"+.E) ?-+C'$$#+@%"$9) $''B) (+) '@<"+$') B+-') -'$#$(%@<'),E@%B#<$)(+)C'B#@#@')?-+(%.+@#$B)(>%@)(>')B'B&'-$>#?)C#'",H)Y%(%)$>+K$)(>%()(>')+G'-) -'?-'$'@(%(#+@) +C) K+B'@) %B+@.) (>') cJ3) B'B&'-$>#?$) #$) +@"E) G#$#&"') ^) E'%-$) "%('-) +@) (>') <+BB/@#<%(#+@$D) %@,) (>#$) ?-+?+-(#+@) #$) $E$('B%(#<%""E) "'$$) (>%@) (>') +@') C+/@,',) %B+@.) (>') cJ3) %$$+<#%('$H) ) ) ) S]) &BQC>$V@$"<AQ>=$EM$).,$)RREL:BH>RI$LEAA<G:LBH:EGR$BGP$.BG>C$XEB=PR$LEADER:H:EGI$D>=$LEG;=>RR$BGP$R>SV$ 0EG;=>RR$ )RREL:BH>R$).,T$ 0EAA<G:LBH:EGR$ .BG>C$XEB=PR$ @) U)V+B'@) @) U)V+B'@) @) U)V+B'@) 2)0ST]]9) STR) ^^) RZ) ^ZD\) SO) ODZ) 22)0STTQ9) \P\) \O) SQT) ^QDP) QR) QODT) 222)0STTO9) TSO) OZ) QPQ) \\DZ) QS) STDP) 2e)0QPPP9) SOOP) OR) QQ^) OZDO) QZ) QODS) e)0QPP^9) STOO) O]) ZTQ) O^D]) ZP) ZPDP) 4) 4) \RO) OQDO) ZO) Q\DP) e2)0QPP]9) ))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))3+/-<'W)J+-(/./'$')c$$+<#%(#+@)+C)3+<#+"+.E) ) 2C)K')C+</$)+/-)%(('@(#+@)+@)(>')cJ3)+-.%@#N%(#+@D)$?'<#%""ED)+@)(>')J%@'")=+%-,$D)(>')?-'G#+/$) -'./"%-#(#'$) ,+@M() -'4'B'-.'`) +@) (>') <+@(-%-ED) (>') ,#-'<(#+@) +C) (>') ?%(('-@) #@G'-($H) ) 7@(#") @+KD) cJ3) K%$) ?-'$#,',) &E) $#[) $+<#+"+.#$($) K#(>) (K+) K+B'@) %B+@.) (>'B) 05%&"') O9H) 2C) K') %@%"EN') (>') <+@$(#(/(#+@)+C)(>')cJ3)+-.%@#$B$D)K')$'')(>%()(>')?-+?+-(#+@)+C)K+B'@)#$)#@G%-#%&"E)$B%""'-)(>%@) B'@M$)0ZOU)#@)QPPO4QPP]9H)1+B?%-#@.)(>%()K#(>)(>')@/B&'-)+C)K+B'@)%$$+<#%('$)0O]U)#@)QPP^9D)+-) <+BB/@#<%(#+@) $?'%L'-$) 0OZU) #@) QPP]9D) K') %-') C%<#@.) %) $'-#+/$) "%<L) +C) K+B'@) -'?-'$'@(%(#+@) %B+@.$()%<(#G#(#'$)(>%()#B?"#'$)B%@%.'B'@()%@,),'<#$#+@)-'$?+@$#&#"#(#'$)#@)cJ3H)) 2@)-'"%(#+@)(+)(>')J%@'")=+%-,$)<+B?+$#(#+@)05%&"')O9D)(>'),#$<-'?%@<E)&'(K''@)B'@)%@,)K+B'@) #$)'G'@)&#..'-H)2@)$?#(')+C)(>')$B%"")#@<-'%$'D)(>+/.>)@+()"#@'%-D)+C)(>')K+B'@j$)?%-(#<#?%(#+@)#@)(>#$) &+%-,D)(>#$)?-+?+-(#+@)0Q\)U)#@)QPP]9)<+@(#@/'$)<"'%-"E)#@$#.@#C#<%@()#@)-'"%(#+@)(+)(>'#-)<+@(-#&/(#+@) %$)%/(>+-$)+C)(>')<+BB/@#<%(#+@$)0K>#<>)<+@$(#(/(')(>')?-+.-%B$)+C)(>')<+@.-'$$'$9H) ) &BQC>$T@$#>RL=:DH:EG$EM$HO>$).,$E=;BG:RAR6$D=>R:P>GHI$HEHBC$EM$A>AQ>=R$BGP$D>=L>GHB;>$EM$NEA>G$ .>=:EP$$ .=>R:P>GH$$ &EHBC$$ a$`EA>G$ ST]O4ST]]) d+n+)I'--'#-%),')c"B'#,%)) \) QPDP) ST]]4STTP) d+n+)I'--'#-%),')c"B'#,%) QS) QZD]) STTP4STTQ) d+$o):%,/-'#-%)J#@(+)) QZ) QSDR) STTQ4STT^) d+$o):%,/-'#-%)J#@(+) Q\) Q]DP) STT^4STTO) c@%);/@'$),')c"B'#,%p) QT) Q^DS) STTO4STT]) c@%);/@'$),')c"B'#,%p) ZS) QTDP) STT]4QPPP) 1%-"+$)I+-(/@%) QR) ZRDP) QPPP4QPPQ) 1%-"+$)I+-(/@%) Q]) ZQDS) )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) \ )5>'),%(%)-'"%(',)(+)(>')@/B&'-)+C)%/(>+-$)%@,)<+BB/@#<%(#+@$)+C)(>')2D)22)%@,)222)1+@.-'$$'$)(%L'$)1-#$(#@%) 8+&+)K+-L$)0STTO9)%$)%)&%$'`)+(>'-),%(%)K%$)<+""'<(',)C-+B)(>')-'$?'<(#G')%G%#"%&"')+@"#@')%<<()%G%#"%&"')+@)(>') cJ3)$#(')0(>')'[<'?(#+@)<+@<'-@$)(+),%(%)+C)(>')e2)1+@.-'$$D)+&(%#@',)C-+B)(>')cJ3)?/&"#<%(#+@D).#G'@)(+)(>') ?%-(#<#?%@($)#@)(>')-'$?'<(#G')'G'@(9H)5>'),%(%)%&+/()J%@'")=+%-,)%@,)@/B&'-)+C)?%-(#<#?%@($)'&()1+@.-'$$)K%$) %G%#"%&"')(>-+/.>)cJ3H) O )5>')B'B&'-$>#?M$),%(%)K%$)-'.#$('-',)%()(>')(#B')+C)(>')-'$?'<(#G')<+@.-'$$'$),%('H)3+/-<'W)cJ3H)cG%#"%&"') %(W)>((?W)66)KKKH%?$H?(6q)c-'%rPPSpB%-'%rPPSp$%-'%rPP^)0ST6PS6QPPR9H) ) ) ST) QPPQ4QPP^) c@s"#%)5+--'$p) Z\) ^PDP) QPP^4QPPO) c@s"#%)5+--'$p) Z\) Z^DZ) QPPO4QPP]) 8/t$)=%?(#$(%) ZT) Z\DT) ))))))))))))))))))))))))))))))))))))))))))))3+/-<'W)J+-(/./'$')c$$+<#%(#+@)+C)3+<#+"+.E`)p)V+B'@) ) 5>') ,%(%) ?-'$'@(',) #@) (>') ?-'G#+/$) $'<(#+@) ?+#@(',) +/() $+B') ,#$?%-#(#'$D) $?'<#%""E) %) >#.>) ,#$<-'?%@<E)&'(K''@)B'@)%@,)K+B'@)#@)cJ3)$(-/<(/-'H)='$#,'$)(>%(D)#C)K')"++L)(+)(>')?-+C#"')+C)(>') .-%,/%('$) +@) $+<#%") $<#'@<') %@,) &'>%G#+-) %-'%$D) #(M$) (>') @/B'-#<) $/?'-#+-#(E) +C) K+B'@) %B+@.) (>') <+@C'-'@<')$?'%L'-$)%@,)%B+@.)(>')cJ3)%$$+<#%('$)(>%()K+/",)B%L')B+-')$'@$'H)_+K'G'-D),'$?#(') K+B'@)+G'-4-'?-'$'@(%(#+@)%B+@.)(>')C+-B'-)$(/,'@($)0O]DTU)#@)QPP\R9D)#C)K')-'.%-,)(>')?-'$'@(',) ,%(%)%&+/()<+@<"/,',)%@,)+@.+#@.)J>Y$)(>'$#$D)+-)J_Y)$/?'-G#$+-$D)(>#$)?'-<'@(%.')#$)A/#(')#@C'-#+-H)) 5>#$),%(%)$''B$)(+)-'G'%")(>')'[#$('@<')+C)B'<>%@#$B$)(>%(),#CC#</"()(>')?-+$'</(#+@)+C)>#.>'-) "'G'"$)+C)',/<%(#+@)&E)K+B'@H)2@)$?#(')+C)(>')&#..'$()K+B'@j$)?-+?+-(#+@)K#(>)$+<#+"+.E).-%,/%(#+@D) B'@)%-')$(#""D)@+K%,%E$D)(>')?-+(%.+@#$($)+C)(>')B+-')A/%"#C#',)$(%(/$)%@,)B+-')?-+B#@'@()<%-''-$) 0*/#G+D)ST]O`)cBu@<#+D)vG#"%D)STT\`)3%@(+$D)QPPP`)c-%wF+D)QPP]9H) _+K'G'-D) &'$#,'$) (>') /(('-',) <+@$(-%#@$D) K') B/$(@M() @'."#.'@<') C%<(+-$) -'"%(',) K#(>) (>') -'A/#-',) (#B#@.$) (+) (>') ?-+C'$$#+@%") ?-+.-'$$#+@H) 5>') ,'"%E) +C) K+B'@) K>'@) '@('-#@.) #@) (>#$) C#'",) <'-(%#@"E) <+@(-#&/('$) (+) '[?"%#@) #($) </--'@() /@,'-) -'?-'$'@(%(#+@) #@) (>') B+$() ?-'$(#.#+/$) ?+$#(#+@$) 0"#L') (>') J%@'") =+%-,9H) ) 5>') #@,#G#,/%") (-%F'<(+-#'$) +C) (>'$') K+B'@) #@) $+<#+"+.#<%") -'$'%-<>) %-') @+() "+@.)'@+/.>)(+)%""+K)(>'B)(+)%<>#'G')(>'),+B#@%@()?+$#(#+@$)#@)(>')C#'",)+C)(>')$+<#+"+.E)#@)J+-(/.%"H) X@)(>')+(>'-)$#,'D)K>#"')(>')K+B'@)$+<#+"+.#$($)-'%<>)(>')B+$()'"'G%(',)?+$#(#+@$)+C)>#$)?-+C'$$#+@%") <%-''-$D)(>'E)%-')<+@C-+@(',)K#(>)(>')C/""@'$$)+C)%).++,)@/B&'-)+C)(>'$')?"%<'$D)K>#<>).#G'$)$(%(/$) %@,)@+(+-#'(EH):%"')-'$'%-<>'-$)K>+)?-'<',',)K+B'@)%"-'%,E)(++L)%"B+$()%"")+C)(>'$')?"%<'$H) ) ,*0%*+*45$)"#$4'"#'(6$+%c%"4$)"#$&'++%"4$ $ 3+) C%-D) K') >%G') '[%B#@',) $+B') B%<-+) (-'@,$) <+@<'-@#@.) .'@,'-) #@) $+<#+"+.EH) 2() #$) @+K) #B?+-(%@()(+)$'')>+K)(>'$')(-'@,$D)@%B'"E)(>')C%<()(>%()7&"*&()%$)%)-'$'%-<>)C#'",)#$)B+-')?-'C'--',) &E)K+B'@)(>%@)&E)B'@D)%@,)(>')C%<()(>%()7&"*&()>%$)&'<+B')%)(-%@$G'-$%")?'-$?'<(#G')#@)$+<#+"+.E) -'$'%-<>'$D) <%@) -'C"'<() #@,#G#,/%") <%-''-$H) 2@) (>#$) ?%-() +C) +/-) %@%"E$#$) K') K#"") &-#'C"E) ,'$<-#&') (>') %<%,'B#<)(-%F'<(+-#'$)+C)(>-'')J+-(/./'$')K+B'@)$+<#+"+.#$($D)L@+K@)&E)(>'#-)$E$('B%(#<)-'$'%-<>) +@) 7&"*&(D) '$?'<#%""E) #@) K>%() <+@<'-@$) (>') ?+$#(#+@) +C) K+B'@) #@) (>') "%&+/-) B%-L'(H) 5>'$') (>-'') )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) R )cG%#"%&"')%(W) >((?W66KKKH#@'H?(6[?+-(%"6[B%#@q[?#,r2;!x[?.#,r#@'y#@,#<%,+-'$x#@,X<+--1+,rPPPSSPPx1+@('[(+r&,x$'" 5%&r(%&Q)0ST6PS6QPPR9 ) QP) (-%F'<(+-#'$) %-') (>/$) #""/$(-%(#G') +C) (>') ,#G'-$#(E) +C) K>%() K') #,'@(#C#',) %$) %@) +G'-4-'?-'$'@(',) &/() #@('-@%""E) >'('-+.'@'+/$) <+B&#@%(#+@W) K+B'@) $(/,#'$) B%,') &E) K+B'@H) I+-) ,'$#.@#@.) (>') ?-+C'$$#+@%")(-%F'<(+-#'$D)#()K%$),+@')%@)%@%"E$#$)+C)(>')</--#</"/B)+C)%"")(>')$+<#+"+.#$($D)%$)K'"")%$)%) <+""'<(#+@) +C) (>'#-) B+$() #B?+-(%@() ?/&"#<%(#+@$H) 5>#$) ,%(%) K%$) (>+/.>) <+B?"'B'@(',) K#(>) %@) #@('-G#'K)(+)'%<>)+@')+C)(>')%/(>+-$)K#(>)-'C'-'@<')(+)(>'#-)<%-''-$)%@,)<+@(-#&/('$)(+)(>')$(/,E)+C) 7&"*&(H) 5>'$') #@('-G#'K$) '@,',) /?) >%G#@.) %) <'@(-%") -+"'D) %$) (>'E) %""+K',) /$) (+) <+@('[(/%"#N') (>') %??-+%<>'$)%@,)#,'@(#CE)(>')B%#@)<+@G'-.'@()%@,),#G'-.'@()'"'B'@($)#@)(>')(>-'')<%$'$H) 2() K#"") &') $>+K@) >+K) ,#G'-$') %@,) <+B?"'B'@(%-E) <%@) 7&"*&() %??-+%<>'$) &') %@,) >+K) (>#$) #$) -'C"'<(',) #@) (>') ?-+C'$$#+@%") (-%F'<(+-#'$) (>%() K') %-') >'-') ?-'$'@(#@.H) V') K#"") C+</$) %(('@(#+@) +@) :%-#%) a+@z%"G'$D) c@%) 5'#['#-%) ') e#({-#%) I+@$'<%) 0C#<(#(#+/$) @%B'$9D) $>+K#@.) (>'#-) ,#CC'-'@() K%E$) +C) #@.+#@.) +@) (>') $+<#+"+.#<%") %@%"E$#$) +C) 7&"*&(D) %@,) (>'#-) %<(/%") #@('-'$($) %@,) C#'",$) +C) $(/,EH) :%-#%) a+@z%"G'$)%@,)c@%)5'#['#-%)%-')&+(>)?-+C'$$+-$)%()(>')8#$&+@)7@#G'-$#(E)2@$(#(/(')%@,)-'$'%-<>'-$)%() 12!3H) e#({-#%) I+@$'<%) #$) %) ?-+C'$$+-) %() (>') 1+#B&-%) 7@#G'-$#(E) %@,) -'$'%-<>'-) %() 1!3D) %) -'$'%-<>) <'@(-')C-+B)(>')$%B')#@$(#(/(#+@H) V>'@) K') %@%"EN') (>') ?-+C'$$#+@%") <+/-$'$) +C) (>') (>-'') ?-+(%.+@#$($) +C) (>') J+-(/./'$') $+<#+"+.#<%") $(/,#'$) +@) (>') ?+$#(#+@) +C) K+B'@) %@,) B'@) #@) (>') "%&+/-) B%-L'(D) K') <%@) #,'@(#CE) ,#CC'-'@()(>'B%(#<)$(%-(#@.)?+#@($)%@,),#CC'-'@()C#'",$)+C)$(/,EH)) I+</$#@.)+@)',/<%(#+@D)#()#$)#B?+-(%@()(+)%$$'-()(>%()$+<#+"+.E)%-#$'$)#@)J+-(/.%")#@)STR^D)%C('-)%) ,#<(%(+-#%") ?'-#+,) K>'@) (>#$) ,#$<#?"#@') K%$) C+-&#,,'@D) %$) K'"") %$) B+$() +C) #($) C+/@,#@.) %/(>+-$) %@,) &++L$H)) c"(>+/.>)e#({-#%)I+@$'<%)K%$)(>')C#-$()+@')+C)(>'$')$+<#+"+.#$($)(+)+&(%#@)(>')C+-B%")=c),#?"+B%D) :%-#%)a+@z%"G'$)K%$)(>')C#-$()+@')(+)%<>#'G')%@)+CC#<#%")',/<%(#+@)#@)$+<#+"+.ED)'@('-#@.)(>')C#-$()=c) ?-+.-%B)#@)$+<#+"+.E)#@)(>')<+/@(-EH)3>')K%$)%"$+)(>')C#-$()+@')(+),+<(+-%('D)#@)STT\D)K#(>)%)(>'$#$)+@) C%B#"E) &/$#@'$$D) &'#@.) C+""+K',) &E) c@%) 5'#['#-%) #@) QPPSD) K#(>) %) (>'$#$) +@) ,#G+-<'D) %@,) &E) e#({-#%) I+@$'<%)#@)QPP^D)K#(>)%)(>'$#$)+@)(>')#@<-'%$')?-'$'@<')+C)K+B'@)#@)(>')$'-G#<')$'<(+-)#@)J+-(/.%"H) 5>') C#-$() $+<#+"+.#<%") %??-+[#B%(#+@) (+) (>') $(/,E) +C) .'@,'-) K%$D) #@) (>') (>-'') (-%F'<(+-#'$D) G'-E) ?%-(#</"%-H) :%-#%)a+@z%"G'$)$(%-(',)>'-)-'$'%-<>)%&+/()(>')-'"%(#+@)+C)K+-L)%@,)7&"*&()+@)>'-)J>Y)K+-LD) %"(>+/.>) $>') >%,) %"-'%,E) ,+@') #(D) %/(+@+B+/$"ED) #@) >'-) ?-#B%-#"E) -'$'%-<>) K+-L$) %$) %) .-%,/%(') $(/,'@() K>'-') $>') $(/,#',D) &+(>D) K+-L'-$) #,'@(#(#'$D) %@,) K+B'@) #,'@(#(#'$H) 5>') $(/,E) +@) C%B#"E) &/$#@'$$) #@(-+,/<',) 7&"*&() +@) (>') %@%"E$#$) +C) K+-L) -'"%(#+@$) #@) %) B+-') $?'<#C#<) ,#B'@$#+@D) &E) C+</$#@.)(>')<'@(-%"#(E)+C)7&"*&()+@)(>')$(-/<(/-')+C)C%B#"E)%@,)&/$#@'$$H) c@%) 5'#['#-%) %"$+) $(%-(',) >'-) $(/,#'$) +@) K+-L) %@,) 7&"*&() +@) >'-) C#-$() -'$'%-<>) K+-L$) %$) %) $(/,'@(H) I-+B) (>') %@%"E$#$) +C) ,#G+-<') %@,) B%--#%.'D) $>') $(-'$$',) (>') #B?+-(%@<') +C) K+-L) #@) C%B#"E) ) QS) "#C'D) .#G#@.) $?'<#%") %(('@(#+@) (+) (>') #@('.-%(#+@) +C) K+B'@) #@) (>') "%&+/-) B%-L'() %@,) #($) #B?%<($) +@) C%B#"E),E@%B#<$H) e#({-#%) I+@$'<%) %"$+) #@#(#%(',) >'-) K+-L) +@) 7&"*&() %() (>') &'.#@@#@.) +C) >'-) %<%,'B#<) (-%F'<(+-EH) 5>')%@%"E$#$)+C)(>')?+$#(#+@)+C)K+B'@)%@,)B'@)#@)(>')"%&+/-)B%-L'()+<</--',)#@)>'-)#@#(#%")$(/,#'$)+@) K+B'@D) ?-'<#$'"ED) (>') +<</?%(#+@%") #@('.-%(#+@) +C) K+B'@) %@,) .'@,'-) $'.-'.%(#+@) ?%(('-@$) #@) (>') 'B?"+EB'@()$E$('BH) V')<%@)#,'@(#CE)(>-''),#$(#@<(#G')K%E$)+C)'@('-#@.)(>')%@%"E$#$)+C)K+B'@)%@,)B'@)?+$#(#+@)#@)(>') "%&+/-)B%-L'()%$)%)$+<#+"+.#<%")$/&F'<()#@)(>'$')%<%,'B#<)<%-''-$W)V+-LD)I%B#"E)%@,)V+B'@H)c"")(>') (-%F'<(+-#'$)?-#G#"'.',)V+-L)%@,)V+B'@D)&/()(>')>#'-%-<>E)+C)(>')(>'B'$)-'G'%"',)(+)&')%),#$(#@<(#G') '"'B'@(H) ) 1:;<=>$?!@$.=:^:C>;>P$RHB=H:G;$DE:GHR$ME=$HO>$RH<PF$EM$!"#$"%$$ )) ) :a) c5) eI) `E=[$ 1BA:CF$ `EA>G$ 1+B?%@#'$) V+B'@) V+-L) V+B'@) V+-L) !B?"+EB'@() ) ) ) ) ) ) 4>GP>=$:G$HO>$CBQE<=$AB=[>H$ ) V>'@) K') %@%"E$') (>') 'G+"/(#+@) +C) (>') -'$'%-<>) (>'B'$) +C) (>'$') $+<#+"+.#$($D) K') <%@) %"$+) $'') ,#CC'-'@()K%E$)+C)C+</$#@.)%)&-+%,'-)<+BB+@)?-+&"'B%(#<H) 2@) e#({-#%) I+@$'<%) (-%F'<(+-ED) K') <%@) #,'@(#CE) +@') C#-$() .-+/?) +C) $(/,#'$) B%-L',) &E) %) I-'@<>) (>'+-'(#<%")#@C"/'@<')(>%()C+</$'$)(>')'$$'@<')+C)(>')$'[/%"),#G#$#+@)+C)"%&+/-H)2@)%$$+<#%(#+@)K#(>)(>#$) (>'B'D)K')C#@,)%@+(>'-).-+/?)+C)$+<#+"+.#<%")%@%"E$#$)(>%()$?'<#C#<%""E)<+@<'-@)K+B'@)$'.-'.%(#+@)#@) (>')"%&+/-)B%-L'(D).+#@.)&'E+@,)(>')$(/,E)+C)(>')$'[/%"),#G#$#+@)+C)"%&+/-D)%@,)%,,-'$$#@.)(>')$(/,E) +C)(>')'B?"+EB'@()$E$('B)+-.%@#N%(#+@)%@,).'@,'-)$'.-'.%(#+@H)2()#$)#@)(>#$).-+/?)+C)$(/,#'$)(>%()K') <%@)#@('.-%(')>'-)J>Y)(>'$#$H)V+B'@)$(/,#'$)%-')%"$+)%@)#B?+-(%@()-'$'%-<>)(>'B')#@)(>#$)(-%F'<(+-ED) &'#@.)%),#$(#@<(#G')B%-L)#@)>'-)<%-''-D)'$?'<#%""E)#B?+-(%@()%()(>')&'.#@@#@.)+C)>'-)%<%,'B#<)"#C'H)X@') +C)(>')<>%-%<('-#$(#<$)+C)(>')e#({-#%)I+@$'<%)%??-+%<>)#$)(>')$+"#,#C#<%(#+@)+C)K+B'@)%$)%)$+<#%")/@#(E) %@,)(>')>%-B+@#N%(#+@)+C)</"(/-%")%@,)$+<#%")'"'B'@($)#@)(>')<+@$(-/<(#+@)+C)K+B'@)#,'@(#(#'$H)5>#$) %??-+%<>)%""+K',)(>'),'G'"+?B'@()+C)%)(>#-,).-+/?)+C)$(/,#'$)&%$',)+@)(>')&#+"+.#<%")<>%-%<('-#$(#<$) +C)K+B'@D)$+)#()#$)?+$$#&"')(+)#,'@(#CE)#@)>'-)K+-L)%)C-'A/'@()-'C'-'@<')(+)C'B%"')&+,ED)(+)?-'.@%@<ED) B%('-@#(ED) B'@$(-/%(#+@H) X@') "%$() .-+/?) <%@) &') C+/@,) #@) >'-) $(/,#'$) +@) ."+&%"#N%(#+@) %@,) (>') ) QQ) #@('.-%(#+@) +C) J+-(/./'$') -'%"#(E) #@) %) ."+&%") <+@('[(D) %@,) (>') #B?%<() +C) ."+&%"#N%(#+@) +@) 'A/%"#(E) ?+"#<#'$H) V>'@) K') %@%"E$') :%-#%) a+@z%"G'$) %<%,'B#<) <%-''-D) K') C#@,) <+@$#,'-%&"E) ,#CC'-'@() K%E$) +C) $(/,E#@.) 7&"*&() %@,) ,#$(#@<() -'$'%-<>) +-#'@(%(#+@$H) X@') C#-$() (>'B%(#<) .-+/?) +C) $(/,#'$) %@%"E$'$) 7&"*&()(>-+/.>)(>')$(/,E)+C)K+-L4"#C')#@('.-%(#+@H)_'-'D)K')<%@)"+<%(')$(/,#'$)+@)(>')-'<+@<#"#%(#+@) +C) K+-L) %@,) C%B#"ED) (>') -+"') +C) K+B'@) %@,) B'@) #@) (>'$') (K+) $?>'-'$D) %@,) #($) $+<#%") #B?%<($) %() %) B%<-+)%@,)B#<-+)"'G'"H)5>')$'<+@,)(>'B%(#<).-+/?)$(-'$$'$)7&"*&()C-+B)(>')$?'<#C#<)?'-$?'<(#G')+C) K+-L) +-.%@#N%(#+@D) C+</$#@.) +@) +-.%@#N%(#+@%") ?+"#<#'$) %@,) ?-%<(#<'$) %@,) #@) <+-?+-%(') $+<#%") -'$?+@$#&#"#(EH)X(>'-).-+/?)+C)$(/,#'$)<+B?-#$'$)E+/(>)%@,)(>')(-%@$#(#+@)(+)?%-'@(>++,D)C+</$#@.)+@) >+K)K+B'@)%@,)B'@)'CC'<(/%(')(>'#-)<+/-$'$H)I#@%""ED)(>'-')#$)%)C+/-(>).-+/?)+C)$(/,#'$)(>%()C+</$) A/%"#(E)+C)"#C')%@,)A/%"#(E)+C)K+-L)%@,)>+K)(>'$')%-')%CC'<(',)&E).'@,'-),#CC'-'@<'$H) I#@%""ED)#@)c@%)5'#['#-%)%<%,'B#<)<%-''-D)(>'-')%-')%"$+),#CC'-'@().-+/?$)+C)$(/,#'$)%@,)$?'<#C#<) K%E$)+C)%,,-'$$#@.)7&"*&()$+<#+"+.#<%")-'$'%-<>H)X@')C#-$().-+/?)+C)$(/,#'$)%@%"E$'$)(>')<+@<'?()+C) $'[/%")%@,)C%B#"#%-),#G#$#+@)+C)"%&+/-D)C+</$#@.)+@)?%#,)%@,)/@?%#,)K+-L)%@,)#($)%$$+<#%(#+@)@+()+@"E) (+).'@,'-),#CC'-'@<'$D)&/()%"$+)(+)$+<#%")<"%$$D)A/%"#C#<%(#+@$)%@,)G%"/'$H)2@)<+@@'<(#+@)(+)(>#$)-'$'%-<>) +-#'@(%(#+@D)K')C#@,)%)$'<+@,).-+/?)+C)$(/,#'$)-'"%(',)(+)(>')'[%B#@%(#+@)+C)>+K)K+B'@)%@,)B'@) #@('.-%(') K+-L) %@,) C%B#"ED) '$?'<#%""E) #@) K>%() <+@<'-@$) <>#",<%-'D) %@,) %) (>#-,) .-+/?) +C) $(/,#'$) (>%() C+</$) K+-L4"#C') #@('.-%(#+@) C-+B) (>') ?'-$?'<(#G') +C) <+@F/.%") ,E@%B#<$H) _'-'D) K') C#@,) $+B') <+@G'-.'@<')K#(>)(>')K+-L)+C):%-#%)a+@z%"G'$D)%"(>+/.>)K#(>),#CC'-'@()C+</$H)I#@%""ED)(>'-')#$)%)"%$() .-+/?)+C)$(/,#'$)(>%()<'@('-)$+<#%")?+"#<E)C-+B)%)!/-+?'%@)<+B?%-%(#G')?'-$?'<(#G'H) 2()#$)(-/')(>%()(>'-')#$)%)C%#@()"#@')(>%()$'?%-%('$)%"")(>'$')C#'",$)+C)$(/,E)&'<%/$')(>'E)-'$/"()C-+B) %)<+BB+@)(>'B')%@,)$/&F'<()+C)$+<#+"+.#<%")%@%"E$#$H)2()#$)#B?+-(%@(D)(>+/.>D)(+)$%E)(>%()&'$#,'$)(>#$) /@#CE#@.) .'@,'-) "'@$D) K') <%@) C#@,) <+@$#,'-%&"') (>'B%(#<) ,#G'-$#(EH) )&"*&() >%$) &'<+B') B+-') %) B%@,%(+-E)%@%"E(#<%")?'-$?'<(#G')#@)(>')$(/,E)+C)G%-#+/$)%$?'<($)%@,)B+B'@($)+C)"#C')0K+-LD)C%B#"ED) E+/(>D)'(<H9)(>%@)%@)%/(+@+B+/$)C#'",)#($'"CH))5>%(),#$$'B#@%(#+@)(+)+(>'-)$/&F'<()C#'",$)#$)%"$+)G#$#&"') #@(+)-'$'%-<>)C#'",)(-%,#(#+@%""E)+<</?#',)&E)B'@H)) 5>'$')?-+<'$$'$D)#@)+/-)+?#@#+@D)>%$)+@"E)'B?+K'-',)7&"*&()%$)%)-'$'%-<>)C#'",)%@,)"'.#(#B%(',) (>')$(/,E)+C).'@,'-).%?$)#@)(>')<+@('B?+-%-E)$+<#'(EH) ) 1:;<=>$?K@$$)LH<BC$HO>ABH:L$:GH>=>RHR$$$ ) ) ) a'@,'-)#@)(>')"%&+/-)B%-L'() ) ) QZ) ) ) eI) :a) c5) 3'[/%"),#G#$#+@)+C)"%&+/-) V+-L4"#C')-'<+@<#"#%(#+@) 3'[/%")%@,)C%B#"#%-),#G#$#+@)+C) "%&+/-) ) ) V+B'@)$(/,#'$D)B%('-@#(ED) )-'?-+,/<(#+@) ) a"+&%"#N%(#+@D)3+<#%")?+"#<E) $ !B?"+EB'@(D)a'@,'-) $ $'.-'.%(#+@) V+-LD)+-.%@#N%(#+@$D)<+-?+-%(') -'$?+@$#&#"#(E)) f+/(>D)a'@'-%(#+@$D)5-%@$#(#+@$) (+)%,/"(>++,) }/%"#(E)+C)"#C'D)}/%"#(E)+C)K+-L) V+-L4"#C')-'<+@<#"#%(#+@)%@,) <>#",<%-'))) V+-L4"#C')-'<+@<#"#%(#+@)%@,) <+@F/.%"#(E)) 3+<#%")?+"#<ED)!/-+?') $ 0*"0+-,%*",$ ) I-+B)(>')%@%"E$#$)+C)(>#$),%(%)#()#$)?+$$#&"')(+)-'(%#@)$+B')<+@<"/,#@.)@+('$H)2@)K>%()<+@<'-@$)(>') 'G+"/(#+@)+C).'@,'-)$(/,#'$)#@)J+-(/.%"D)K')<%@)$%E)(>%()#()>%$)%<<+B?%@#',)(>')#@<-'%$#@.)?-'$'@<') +C).'@,'-)#@)(>')?+"#(#<%")%@,)?/&"#<)%.'@,%H)V')>%G')%$$#$(',)#@)"%$()E'%-$)(+)(>')#@<-'%$')+C)-'$'%-<>) ?-+F'<($)K>#<>)B%#@)$/&F'<()#$).'@,'-D)&/()%"$+)(+)(>')$?-'%,)+C)$(/,#'$)(>%(D)@+()>%G#@.).'@,'-)%$)%) <'@(-%") (+?#<D) #@<"/,') .'@,'-) %$) %@) %@%"E(#<%") ,#B'@$#+@D) #@) %@) 'CC'<(#G') .'@,'-) B%#@$(-'%B) #@) $+<#+"+.#<%")-'$'%-<>H) 5>-+/.>)(>')E'%-$)#()K%$)%"$+)?+$$#&"')(+)%$$#$()(+)(>')-'<+@C#./-%(#+@)+C)(>#$)C#'",)+C)$(/,EH):'@M$) $(/,#'$) >%G') .%#@',) B+-') $?%<') %@,) .'@,'-) #$) @+) "+@.'-) %$$/B',) (+) &') '[<"/$#G') (+) K+B'@) +-) (+) C%B#"E),E@%B#<$H) V>'@) K') +&$'-G') (>') $'[/%") <+B?+$#(#+@) +C) (>'$') -'$'%-<>'-$D) #() #$) @+(',) %) ?-+B#@'@<') +C) K+B'@) $(/,E#@.) .'@,'-D) (>%() <+@C#-B$) (>%() $+<#+"+.#<%") -'$'%-<>D) %$) +(>'-) +<</?%(#+@%") %-'%$D) #$) $(-/<(/-%""E)B%-L',)&E).'@,'-H)c"$+D)K')<%@)$%E)(>%()(>')?+$#(#+@)+C)K+B'@)$+<#+"+.#$($)#@)(>')"%&+/-) B%-L'()$+B'>+K)%<<+B?%@#'$)(>').'@'-%")(-'@,$)+&$'-G',)#@)+(>'-)%-'%$)K#(>)B+-')B'@)+<</?E#@.) -'$?+@$#&#"#(E)?+$#(#+@$)(>%@)K+B'@H)2@)(>#$)$?'<#C#<)<%$'D)K+B'@M$)?+$#(#+@)#@)%<%,'B#%)K%$)"%('"E) <+@$+"#,%(',D)K>#<>)>'"?$)(+)'[?"%#@)K>E)B+-')B'@)>+",)(+?)?+$#(#+@$)(>%@)K+B'@H)='#@.)%)-'<'@() ,#$<#?"#@')#@)J+-(/.%"D)%@,)>%G#@.)K+B'@)%)$#.@#C#<%@()K'#.>()#@)$+<#+"+.E)$(/,'@($)%@,)-'$'%-<>'-$D) #()#$)'[?'<(',)$+B')$(-/<(/-%")<>%@.'$)C+-)(>')C/(/-'D)%"(>+/.>)#B?+$$#&"')(+),'C#@')(>')-%@.')+C)(#B') @'',',H)) $ ('1'('"0',$$$$$$ ))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) cBu@<#+D) 8t.#%D) ') J%(-t<#%) vG#"%) 0STT\9D) hX) .o@'-+) @%) <#|@<#%iD) #@) d+-.') 1+--'#%) d'$/t@+) 0<++-,H9D) I# @!-0"%*+*&#@%&"/J3%2+#E!(/070&.+#"!.#:%"+%.#*!#1K20$!#LLD)X'#-%$D)1'"(%)!,#(+-%H) ) Q^) cJ3) 0STTP9D) I# 1!2%!$!7%+# &# +# 1!2%&*+*&# E!(/070&.+# "+# M%(+7&-# *!# 1K20$!N# I2/+.# *!# B# @!"7(&..!# E!(/070O.#*!2%!$!7%+#PQ!$R#STD)8#$&+@D)!,#(+-#%")I-%.B'@(+$H) cJ3)0STTZ9D)9./(0/0(+.#1!2%+%.#&#F&.&"Q!$Q%-&"/!N#I2/+.#*!#BB#@!"7(&..!#E!(/070O.#*!2%!$!7%+#PQ!$R# UTD)8#$&+@D)!,#(+-#%")I-%.B'@(+$H) cJ3)0STTO9D)E(V/%2+.#&#E(!2&..!.#*+#D0*+"W+#1!2%+$N#I2/+.#*!#BBB#@!"7(&..!#E!(/070O.#*!2%!$!7%+D) X'#-%$D)1'"(%)!,#(+-%)01Y4*X:9H) cJ3) 0QPPP9D) 1!2%&*+*&# E!(/070&.+# X# E+..+*!.# H&2&"/&.# :0/0(!.# E(YZ%-!.N# I2/+.# *!# BM# @!"7(&..!# E!(/070O.# *&# 1!2%!$!7%+D) 7@#G'-$#(E) +C) 1+#B&-%D) cJ3H) cG%#"%&"') %(W) >((?W66KKKH%?$H?(6#@,'[H?>?q%-'%rPPSxB%-'%rPPZx#,y?/&rJ7=^OP%\P&SO]C,S) cJ3)0QPP^9D)1!2%&*+*&.#@!"/&-'!(["&+.#X#H&3$&Z%Q%*+*&#&#I2W\!N#I2/+.#*!#M#@!"7(&..!#E!(/070O.#*&# 1!2%!$!7%+D) =-%.%D) 7@#G'-$#(E) +C) :#@>+D) cJ3H) cG%#"%&"') %(W) >((?W66KKKH%?$H?(6#@,'[H?>?q%-'%rPPSxB%-'%rPPZx#,y?/&rJ7=^OP,^QPOSC,R%) cJ3)0QPP]9D)MB#@!"7(&..!#E!(/070O.#*!2%!$!7%+N#D0"*!.#1!2%+%.#X#1+?&(&.#&#E(V/%2+.D)8#$&+@D)cJ3H) c-%wF+D)!Bt"#%)0QPP]9D)h:'$(-%,+$)'B)J+-(/.%"W)('@,|@<#%$)')B+,'"+$)+-.%@#N%(#G+$iD)#@)e2)@!"7(&..!# E!(/070O.#*!2%!$!7%+N#D0"*!.#1!2%+%.#X#1+?&(&.#&#E(V/%2+.D)8#$&+@D)cJ3H) 1/@>%D) 3%@,-%) 0QPP]9D) h}/'B) '$(/,%) +) A/|) 'B) J+-(/.%"W) /B%) %@s"#$') ,%) ?-+,/zn+) $+<#+"{.#<%) ?+-(/./'$%) @/B%) ?'-$?'<(#G%) ,') .o@'-+iD) 12!3) '4V+-L#@.) J%?'-) @~) \S6QPP]H) cG%#"%&"') %(W) >((?W66<#'$H#$<('H?(6,'$(%A/'$6,+</B'@($612!34VJ\Sy1/@>%H?,C) */#G+D) ='%(-#N) 0ST]O9D) hc) B/">'-) ') +) ?+,'-) ?-+C#$$#+@%"W) %) B/">'-) 'B) %<(#G#,%,'$) ,') #@G'$(#.%zn+) <#'@(tC#<%) 'B) J+-(/.%"iD) I"V$%.&# 1!2%+$D) G+"H) ll22D) @H~) TQ4TZD) ??H) OOT4O]PH) cG%#"%&"') %(W) >((?W66%@%"#$'$+<#%"H#<$H/"H?(6,+</B'@(+$6SQQZ\\ZPTO1^%52S$"OIBQ^2I\H?,C) 3%@(+$D)a#@%)a%#+),+$)0QPPP9D)hX).o@'-+)@%)<#|@<#%W)+)<%$+)?%-(#</"%-),%)7@#G'-$#,%,'),+):#@>+iD)#@) cJ3D)1!2%&*+*&#E!(/070&.+#X#E+..+*!.#H&2&"/&.#:0/0(!.#E(YZ%-!.N#I2/+.#*!#BM#@!"7(&..!#E!(/070O.# *&# 1!2%!$!7%+D) 7@#G'-$#(E) +C) 1+#B&-%D) cJ3H) cG%#"%&"') %(W) >((?W66KKKH%?$H?(6#@,'[H?>?q%-'%rPPSxB%-'%rPPZx#,y?/&rJ7=^OP%\P&SO]C,S) ) &"'()*+",( ( J+-(/./'$')X&$'-G%(+-E)+C)3<#'@<')%@,)_#.>'-)!,/<%(#+@D)>((?W66KKKH.?'%-#HB<('$H?()0QPPT6P^6SS9 3(%(#$(#<%")XCC#<')+C)(>')!/-+?'%@)1+BB/@#(#'$D) >((?W66'??H'/-+$(%(H'<H'/-+?%H'/)0QPPT6P^6PO9) 2;!)3(%(#$(#<$)+C)J+-(/.%"D) KKKH#@'H?()0QPPT6P^6S\9) ) ) ) ) ) Q\) DIFFERENT TYPES OF DOCTORATES? GENDER DIFFERENCES IN COMMUNICATION SCIENCES IN SWITZERLAND 2nd International RESUP Conference, Inequalities in Higher Education and Research, Lausanne, 18-20 June 2009 Carole Probst, Centre for Organisational Research CORe, Faculty of Economics, Università della Svizzera italiana, Lugano, Switzerland, carole.probst@lu.unisi.ch 1 Introduction and framework for analysis As other parts of higher education systems, the doctorate is currently confronted with changing and increasing requirements of a wide range of stakeholders. While it is generally still considered a conditio sine qua non for a researcher’s career, academia is by far no longer the only possible employer for a doctoral degree holder. The importance of knowledge for society at large, and thus also of the construction of knowledge through research processes, has been clearly recognized, as is underlined in many national and international policy documents, and manifest in initiatives as the European Research Area. There is thus an increased awareness of the importance of the doctoral degree both inside and outside academia, and there is a tendency towards more detailed regulation regarding this degree, visible for example in the increasing number of doctoral schools and other structured training offers in the field of the doctorate. But even though the doctorate is more and more under observation by its different stakeholders, and even though it is more and more organised, there are still many areas in it that are not defined by a framework set through organisational structures, rules and legislations. The doctorate varies among different national and disciplinary settings (see for example Neave 1993; Kivinen et al. 1999; Sadlak 2004; Parry 2007), but generally a certain part of the doctorate is still open to interpretation. To some extent, the doctorate can be considered as a construct that emerges through and is shaped by social interaction (Blumer 1986), and thus results as a common construct of the actors involved in the process. This process is to a large extent a process of multiple secondary socialisation (Berger and Luckmann 1977; Austin 2002), of what Lave and Wenger call legitimate peripheral participation to a community of practice (1991). In this socialisation process, not only knowledge, but also social identities are transferred and specific perspectives are acquired (Parry et al. 1994; Austin 2002; Campbell 2003; Parry 2007). In this paper, I address the topic of the doctorate in a specific field with a focus on the differences between the experiences of female and male doctoral students. In many countries and disciplines, the share of women in academia still decreases with the degree and employment levels. This is also true for the case looked at in my contribution: Communication sciences in Switzerland. As many fields of social sciences, in this field typically the majority of students are women. In Switzerland in 2007/08, 63.8% of all Bachelor, 69.9% of all Master and 57.7% of all doctoral students were female. When looking at the academic profession, however, men dominate. In social sciences and humanities in Switzerland, the share of women (2007) at the level of assistants is at 55.5%, the share of female professors is 24.5%, and among other teachers 41.6% are women (source: Swiss Statistics1). In Communication sciences, 14 out of the 67 professors listed on the universities’ websites in spring 2006 were women (see also Probst and Lepori 2007; Lepori and Probst 2009). In this study, I look thus at the process and degree that can be considered as the bridge between the role of a student and the role of a member of the academic profession, thus at the latest stage in an academic career in which, in Communication sciences, but alos in many other fields, women dominate in terms of numbers. I am interested in the way in which the construction of meaning attributed to the doctorate occurs, mainly from the point of view of the doctoral students, and to what extent gender differences are visible in this construction of meaning and the resulting doctoral process. For this contribution, I deepen the analysis of interviews with doctoral students and supervisors that I conducted in 2007/2008 for an in-depth study on the doctorate in communication sciences in Switzerland (Probst 2008 / 2009; Probst and Lepori 2008). The following analysis is illustrated by extracts from the interviews2 as well as by some data from the sample3. 2 The sample: differences between male and female doctoral students For the study on whose results this paper is based, 41 doctoral students and 14 supervisors from all three linguistic regions of Switzerland (German, French, Italian) have been interviewed regarding their experiences with and ideas about the doctorate. All eight Swiss universities in which, at the moment of the interviews, it was possible to do a doctorate in communication sciences are represented in the sample. The sample is composed of 23 female and 18 male doctoral students. This distribution among male and female doctoral students represents quite exactly the distribution in the whole population, as measured through a survey done by the Swiss Association of 1 www.statistik.admin.ch (10.12.2008) Interview extracts have been translated by the author. 3 These data refer to a sample of 41 doctoral students. While it can be considered as quite representative for the situation in Swiss communication sciences (covering around one third to half of the population), these data do not allow for generalisation beyond this context, but might indicate some tendencies that could also be found in other fields and countries. 2 Communication and Media Research in Winter 2007/08: the total population (123 doctoral students) is composed by 73 female and 49 male doctoral students4. Most of the doctoral students in the sample are employed by the university where they are enrolled for the doctorate and often report directly to their supervisor also regarding their employment duties. The age of doctoral students in the sample varies between 26 and 45 years, with an average of 31 years (female doctoral students: 32.2 years, male doctoral students: 29.3 years). The sampling reflects the linguistic diversity of Switzerland: it covers doctoral students from all three linguistic regions as well as doctoral students from foreign countries, who came to Switzerland for the doctorate. Doctoral students in the sample are in different years and stages of their doctorates: At the moment of the interview, 3 were in their first year, 11 in the second, 4 in the third, 12 in the fourth, 9 in the fifth, and 2 in the sixth year. 23 out of the 41 doctoral students in the sample have their main academic background (major of graduate degree) in communication sciences, while 8 have a minor in a field connected with communication and/or media. The remaining 10 doctoral students do not have any previous academic background in communication sciences, reflecting thus the broad disciplinary variety within the field of communication sciences. Diversity within the field of communication sciences is also reflected when looking at the research topics of doctoral students: the area with the highest number of doctoral students in the sample working on it, organisational communication, is covered by less than one third of the sample. 3 The process of the doctorate The original study was interested in understanding differentiation in the doctorate in Swiss Communication sciences, but was not particularly interested in gender differences. A closer analysis of the data, however, reveals some interesting differences, which will be presented in the following paragraphs. It is clear that these differences appear within a selected sample, and therefore can not be generalised, but they nevertheless show some interesting food for thought regarding differences between male and female doctoral students. As Switzerland is a federal country in which quite some authority on higher education is located at the cantonal level, laws and regulations regarding universities differ at the cantonal level. This includes also regulations on the doctorate – there is no common regulation at the national level. The influence of the discussions at the European level in the context of the Bologna process is visible: There seems to be a recent tendency towards the inclusion of more formal elements in the doctorate – for example the request to collect a certain amount of ECTS credit points by attending courses or actively participating in the knowledge discourse of the scientific community through publications and conference presentations, or the implementation of organised training courses covering the whole period of the doctorate. 4 As this information was not contained in the survey by the Swiss Association of Communication and Media Research, gender was deducted from the names of the doctoral students. In one case, it was not possible to identify gender. Besides a few exceptions, however, the doctorate seems to be rather under-regulated. During the interviews, a certain leeway for interpretation of the regulations emerged. Overall, it seems that the organisational setting of the doctorate, defined mostly through the regulations, does have only a limited influence on the doctoral process, while individual interpretation and expectations seem to be more important factors shaping the doctoral experience. In the following paragraphs, some aspects of the doctorate in which gender differences appear or could be expected are presented. 3.1 Starting the doctorate There are different reasons for taking the decision to start a doctorate, and different actors can influence on this decision. Reasons mentioned by doctoral students in the sample can be grouped in the following categories: • Previous experience and contacts: An employment as student assistant or previous research experience can be an entry to a doctorate. Instead of a conscious decision for doing something new, in this case the decision to take a doctorate is rather a decision to continue with previous experiences. In many cases the influence of a professor during the end of undergraduate studies is visible, as shows the following extract from an interview: Some professors told me that they could imagine me in an academic environment, because they saw that I like it to do presentations, that I am good in explaining things, and interested in scientific work, statistics, and so on. I was aware of this, but I never considered doing a doctorate as an option. • Doctoral student (f) A cognitive challenge and opportunity to learn: Several doctoral students consider the doctorate as a possibility to continue cognitive work, to deepen a topic they have discovered during their studies, or to specialise in an area they are particularly interested in. I felt that there was something missing. After my studies, I realised that there were certain things that were in suspense, things to understand. I felt like I wanted to understand more. There was something specific I always felt attracted to, I didn’t succeed to do it before, I wanted to do it. • Doctoral student (m) Possibility for reflection: Another type of cognitive reasons for doing a doctorate is the possibility to reflect previous (mainly professional) experience. Doctoral students starting a doctorate for this reason usually have already some years of professional experience and often also plan to go back to their previous activities after finishing the doctorate. My job was quite exhausting, and I somehow thought now let’s do it from the other side, I have a look at what exists, at the scientific context – well, what does it mean… I do this doctoral thesis. Doctoral student (f) • Attractiveness of the academic profession and other future career possibilities: Interestingly, career possibilities through the doctoral degree do not emerge as very important reasons for doing a doctorate. Some doctoral students mention the doctorate as a step in their professional career, and some see the possibility to become an academic as a reason for doing a doctorate, as this example shows: I always liked it to read, to learn, to do intellectual work. To think that some day they will pay me for doing it – that’s not a too bad idea. • Doctoral student (m) Emotional reasons: There are also more emotional reasons for doing a doctorate – for example the fact that one’s partner is also doing a doctorate, or the challenge provided by the doctorate (“I want to show myself that I am able to do this”). I want to have this doctoral degree. Not to write it on my doorbell panel, but I want to have it. It also allows me to prove something – if you have a doctoral degree, then they have to believe that you’re able to do something. Doctoral student (f) Several doctoral students in the sample started their doctorate rather by coincidence: at the end of their studies, they were offered the possibility of an assistant position (connected with the request to do a doctorate) without searching for it, and decided to start with it – “why not?” is often mentioned as “reason” for doing a doctorate. Another point in which the decision of doing a doctorate differs consists in the moment in which one starts a doctorate: More than half of the sample (24 doctoral students) have started their doctorate within one year from their first graduation, six more within two years. Only in six cases, the time that elapsed between the first degree and the start of the doctorate was longer than five years. Regarding these points, rather clear gender differences appear within the sample: while 8 out of the 23 female doctoral students have started their doctorate only at least four years after their first degree, all but one of the 18 male doctoral students began a doctorate within three years after graduation. As it seems that an early decision for a doctorate increases the likelihood that an individual becomes professor (Lind 2004), this might also have an influence on the future career of female and male doctoral degree holders. In fact, this is visible in the sample: Female doctoral students starting their doctorate several years after their first degree often indicate the wish to deepen a topic or to reflect their practical work as the reason for doing a doctorate – and thus often also say that after the doctorate, they plan to go back to their previous work after the doctorate or at least to wish to combine elements of their previous work with part-time work in academia. 3.2 Integration into a scientific community The doctorate as a degree is a condition for a scientific career. Also, the doctoral process is often seen as preparing for an academic career, as a socialisation process to the role of an academic. Academic work also includes participation in a scientific community, in the knowledge discourse. To what extent does this participation occur already during the doctorate? Doctoral students in the sample were asked to provide their publication list, and to indicate contacts they have with researchers within their own higher education institution, but also elsewhere. Additionally, they were asked to indicate whether they feel like belonging to a scientific community. These three dimensions showed to be linked: doctoral students with a higher publication activity often reported also intensive contacts with researchers at foreign research institutions as well as a rather high feeling of belonging to a scientific community. To be an active participant in the scientific community seems to be a very positive experience of doctoral students: [At international conferences] there are researchers in your panel that address things where you have a say in the matter, they know what you are talking about, you can discuss with them. Doctoral student (m) Supervisors, however, differ in their ideas about active participation in the scientific community. Some supervisors encourage it: I encourage them to write out things. I encourage them to develop their research in a kind of value chain, to think in a managerial, product-oriented way. First, one does a research note, then probably a working paper, a conference submission, a journal article, a book chapter and then probably even a book, or the dissertation. Supervisor (m) Others see this kind of activities as not compatible with writing a doctorate. In the following citation, it comes clear that this supervisor does not consider a doctorate as something emerging in dialogue with the scientific community, but as something that has to be finished before presenting it. Peer-reviewed articles presuppose that one has done research. Thus they cannot do it, if they don’t have another project besides their dissertation, except if they publish from their master thesis. This means that at the moment [of the doctorate], it is not possible that many publications emerge. Supervisor (m) Overall, both doctoral students and supervisors see challenges regarding publication and presentation activities during the doctorate (mainly due to time or financial constraints), but the majority of the interviewed persons consider exposure to the scientific community as beneficial, for example to get qualified feedback by other researchers than the supervisor, to get used to the ways in which the scientific community evaluates, but also to establish oneself in the field, to define one’s identity, and to connect one’s work with the field. Thus participation is not only seen as positive in order to enhance the quality of the doctoral dissertation, but also to prepare the grounds for a future career in the academic and scientific environment. However, there are also doctoral students who clearly state that they do not wish to pursue an academic career, and that therefore they prefer to invest in other things than participation in the community: I’ve made only a few publications, not connected to my doctorate. This is also connected to the fact that I always thought that I would leave the academic system. I would not even have had time. Doctoral student (m) When looking at publication activity of male and female doctoral students, clear differences appear. While among those doctoral students with a scientific output of more than two publications and/or conference presentations per year of their doctorate (“very active” in Figure 0), differences are rather small (5 out of the 23 female doctoral students and 7 out of the 18 male doctoral students belong to this group), they become more intensive when looking at less active doctoral students. 7 out of the remaining 11 male doctoral students have on average between one and two outputs per year (“active”), 2 have less than one output (“slightly active”), and 2 do not have any output at all (“inactive”). For the female doctoral students, the inverse holds true: 3 out of the remaining 18 doctoral students have on average between one and two outputs per year, 6 less than one and 9 do not have any output at all. Even though the numbers are small, some tendency can be observed (see Figure 0) Figure 0: Gender differences in publication activity Generally, more than half of all doctoral students state that they feel at least partially like being part of an international scientific community. Among male doctoral students, this share is, however, higher than among female doctoral students. Male doctoral students also seem to be more proactive when it comes to contributing to the scientific community: Female doctoral students most often write their publications and conference papers with one coauthor, while among male doctoral students single-authorship is more frequent. In multi- authored publications and presentations, male doctoral students appear more often as first author than female doctoral students, even though here the difference is less salient. Doctoral students without publications often state that they do not have time to publish, because they are so much immersed in local activities, mainly in teaching, administration and local research and service projects. Overall, it seems that the environment does have a certain influence on the publication activity: doctoral students who are highly active in the scientific community are often encouraged by their supervisor to do so, and often publish also together with their supervisor. Some supervisors also establish a local culture in favour of active participation in the scientific community: There is an internal pressure, a competition, in the culture of the institute to outdo each other. We publish this [publications, conference presentations] in our newsletter. If someone has written a paper that has received particularly positive evaluation, we mention it at the institutes’ s aperitif. Supervisor (m) 3.3 Future career plans At the moment of the interviews, 15 out of the 41 doctoral students were undecided about their plans for the future after the doctorate (8 female and 7 male doctoral students). Most of them, however, were in a rather early stage of their doctorate. The other 26 doctoral students had quite clear ideas about their future. 12 (6 female, 6 male) stated to prefer an academic career, 9 (4 female, 5 male) rather saw their future outside academia. The remaining five doctoral students – all female – stated that they wish to combine elements of an academic career with professional activity outside academia. Career plans seem, at least to a certain extent, also to be linked with the degree of active participation in a scientific community: while 9 out of the 12 doctoral students planning a career in the academic environment are very active or active participants in a scientific community and 2 more have at least some publication activity, doctoral students without active participation in the scientific community rather tend to aim at a non-academic career, or at least to combine both. When looking only at those doctoral students with a very active participation in the scientific community, thus those who at first sight seem to be most likely to pursue an academic career, an interesting gender difference appears: out of the 12 very active doctoral students, 5 are female. 4 out of them state that they plan an academic career, or wish to combine academic and non-academic elements. Out of the 7 male doctoral students in this group, only 3 state that they plan an academic career, while the remaining 4 are undecided. Thus, one could say that, in this sample, those female doctoral students who experience a doctorate that involves them strongly in a scientific community are more likely to plan an academic career than their male counterparts. An additional interesting difference appears when looking at those doctoral students wishing to combine elements of an academic and a non-academic career: there are five doctoral students in the sample with this idea about their future, and they are all female. Out of them, three already had several years of professional activity before starting the doctorate, while the other two engaged in non-academic activities during their doctorate, one of them writing her doctorate in the context of this activity: I would like… I like the work at university; if possible I would like to continue. I would like to spend some time at another university, probably not right now, non necessarily abroad, I would like to go to [the other university in Switzerland with which I collaborate] […] I would also like to keep in touch with the professional world, but I would not want to have a 50% there, but to have it rather as a complement. If tomorrow morning they would ask me whether I would like to change work… I would say no. […] But I would like to practice a little bit, yes. Doctoral student (f) The interviews show that the period of the doctorate is also a period of orientation regarding future career possibilities. Most of the doctoral students that stated to be undecided about their future career are still rather at the beginning of their doctorate. In their answers, it comes clear that they also have doubts and perplexities about a possible academic career, both about their own capacity and willingness to fulfil the requirements of an academic career as well as about the availability of jobs: What perplexes me is the path to follow after the doctorate, for doing an academic career. I don’t see it as a stable thing, I see a period full of incertitude after the doctorate, you have to be ready to abandon everything, to departure, to search for a position everywhere. It doesn’t seem to me that the offer is big enough to allow for choices, and I ask myself whether this is really what I want or not. I like academic work, it’s flexible, interesting, an ongoing improvement, nice, you do research, what I like doing, but on the other hand I don’t know whether I will be ready to go through five or six years travelling around the world, looking for a job. Doctoral student (f) Even though this is an example of a female doctoral student, similar considerations are made also by male doctoral students. Besides the rootless life of a young academic, also financial restrictions are mentioned. But also the academic profession as such is assessed critically: If you think what a professor is doing, he is not doing research himself, probably he still writes books, but that’s textbooks, not something that is really about new stuff. Thus, a professoriate is rather research management than research. (...) for me it’s not about staying at the university, it’s about doing research. In this respect, a professoriate is the thing that is associated with the highest reputation, the highest salary, but, occasionally, in terms of content, it could be more interesting to be a research associate. Doctoral student (m) From the interviews with doctoral students, it comes clear that the academic career is not the only possible future they consider. This is also reflected in the point of view of most supervisors, who often allude to the fact that jobs in academia are distributed in a pyramidlike form. Many supervisors underline that a doctorate should also train competencies that are applicable outside the academic context. My aim is that people getting out from here (...) are able to organise themselves in a manifold way and to do a variety of things. It’s not necessary that people automatically go into science. The aim is obviously to train people who potentially are able to do this. But if somebody says I now want to leave for three, five years, probably I will come back later, at a university of applied sciences – this would be my ideal, a big success. I think that evaluation that measures only who becomes a professor afterwards is truncated, also economically. The aim cannot be to produce offspring. It must be something that enhances reflexivity, with people who are able to apply their reflexive competence also elsewhere, for example in public administration. Supervisor (m) 4 Constructing the doctorate The doctorate can be considered as a situation where an actor – the doctoral student, with his own beliefs and experiences – interacts with an environment – an institutional, academic and scientific context, of which also the supervisor is part. In this environment, certain beliefs about the doctorate are manifest, for example made explicit in regulations or organisational structures. Other beliefs of the environment remain implicit, including for example the supervisor’s ideas about what a doctorate is. In the interaction between the doctoral student and the environment, the doctoral process is shaped. Beliefs of actor and environment have their influence on the process. While the environment is usually rather stable (regulations rarely change substantially within the period of a doctorate), the actor often changes during the process. In interaction with the environment, be it at the local level or beyond, the doctoral student makes experiences that shape his or her own beliefs about the doctorate, but also about the academic profession and other possible future pathways once obtained the doctoral degree. This iterative shaping of the doctorate is clearly visible in the interviews. Doctoral students often start a doctorate without clear ideas, neither about the process nor about what they want to do afterwards. It is for the first time that they embark for such an experience, and the situation is usually characterised by bounded rationality (Simon 1991). During the process, ideas get clearer, influenced by experiences and observations made during the doctorate, but also shaped by the beliefs that are encountered in the environment. Also supervisors influence – consciously or not – on the doctoral process. Even though a few doctoral students in the sample state that they prefer doing their doctorate without supervision, in most cases the crucial function of the supervision process is visible. While some supervisors expect the doctoral students to be active and contact them, others consciously co-construct the process of the doctorate, considering the needs and also plans for the future of the doctoral students. When beliefs between the actor and the environment are not compatible, conflicts both regarding content and process of the doctorate can emerge. The investment in a doctorate, however, is high both for the doctoral student and the environment (particularly the supervisor), and usually solutions to conflicts are arranged within the existing setting. Only rarely drastic changes are made in order to resolve conflicts – for example, in the whole sample of 41 doctoral students, only one reported to have changed the supervisor because of a conflict. But do the construction of beliefs and meaning and the resulting process of the doctorate differ between male and female doctoral students? The above presented extract of the analysis shows that within the sample at hand some gender differences appear. While these differences are limited, at least at first sight, regarding the declared plans for future careers, they are rather striking when looking at integration to the scientific community. However, the sample also offers a possible explanation of the differences: In the sample, male doctoral students form a more homogeneous group than female doctoral students. From the point of view of their age, they are less diverse than their female counterparts: the youngest male doctoral student in the sample had 26 years at the moment of the interview, while the oldest one was 33 years old. Among female doctoral students, age ranged between 26 and 45. This is also reflected in previous professional experiences: while several female doctoral students have had considerable professional experience before starting the doctorate, this holds true for only two male doctoral students, to a lesser extent. This indicates that, within the sample analysed for this study, male and female doctoral students have diverging starting points into their doctorate, and correspondingly have diverging ideas and expectations about their doctorate. Even though the general number of male and female doctoral students is quite equal, the number of “classical” doctoral students, starting their doctorate immediately after their first degree and without much professional background, is not equally distributed. Doctoral students with considerable previous professional experience are clearly in a different situation than their colleagues who started the doctorate immediately or soon after graduation. While the decision to start a doctorate is often connected to external factors in the case of the latter – for example a professor proposing an assistant position with the possibility to do a doctorate – this decision seems to be taken much more consciously in the case of the former. Doctoral students with professional experience often have very clear and pragmatic reasons for which they do a doctorate, they are rather targeted and also try to shape their doctorate in order to suit their needs. This does not necessarily mean that it takes them less time – they often also have (private and professional) activities outside their doctorate that are important to them, and therefore they accept that their doctorate might take longer than in the case of their younger colleagues. Also the role within the organisational unit can be different: doctoral student with previous professional experience often also perform tasks directly linked to their experience, for example a doctoral student with a professional background in public relations who takes over the responsibility for the institute’s PR, or a doctoral student with practical experience in a field that is taught by the institute taking over the responsibility for lectures or seminars. 5 Conclusions Overall, it seems indeed that there are different types of doctorates, even though officially in the Swiss context no differentiation in this degree exists. The doctorate as it is presented by this study allows for different types of outputs, and seems to be tailored to fit the needs of both doctoral students and their environments. Socialisation processes do occur, but not necessarily only to the international scientific community. Also a doctorate without many contacts to other researchers can be considered as a successful experience – most doctoral students in the sample state that they would again decide for a doctorate, even though many of them do not aim at an academic career. Even though this is a small-scale study, some differences between female and male doctoral students are visible. The results seem to confirm findings of other studies (see for example Krais and Krumpeter 1997; Leonard 1997; Fox 2001; Lind 2004): female doctoral students tend to take the decision for doing a doctorate rather because of their personal interest than because of academic aspirations, and they often experience lower levels of integration into academic and scientific contexts – as the sample shows, this varying integration might also be connected to the aims the doctoral students pursue with this degree. On the other hand, the sample shows that there are younger female doctoral students who are very active participants in the scientific community and who clearly aim at an academic career5. The main observed difference between male and female doctoral students in the study at hand is probably the fact that female doctoral students differ more among themselves than their male counterparts, thus the variety of female doctoral pathways seems broader. It is clear, however, that the presented study has its limitations. As the aim of the original study was not to look at gender differences, this aspect was not considered during the sampling procedure, and no specific questions regarding gender experiences were asked. It is also possible that the broader variety of female doctoral pathways is due to a bias in the sample, for example a lower availability of male doctoral students with previous professional experience to answer interview requests. Overall, however, the sample covers around one third of the population of doctoral students in communication sciences in Switzerland at the moment of the interviews, and represents the gender distribution of the population quite correctly. References Austin, A. E. 2002. "Preparing the Next Generation of Faculty: Graduate School as Socialization to the Academic Career." The Journal of Higher Education 73(1): 94-122. Berger, P. L. and Luckmann, T. 1977. Die gesellschaftliche Konstruktion der Wirklichkeit. Eine Theorie der Wissenssoziologie. Frankfurt am Main: Fischer Taschenbuch Verlag. Blumer, H. 1986. Symbolic Interactionism: Perspective and Method. Berkeley, Los Angeles: University of California Press. Campbell, R. A. 2003. "Preparing the Next Generation of Scientists: The Social Process of Managing Students." Social Studies of Science 33(6): 897-927. Fox, M. F. 2001. "Women, Science, and Academia: Graduate Education and Careers." Gender and Society:654-666. 5 Some of them already have finished their doctorate by now and still are on this track Kivinen, O., Ahola, S. and Kaipainen, P., editors. 1999. Towards the European Model of Postgraduate Training. Turku: Painosalama Oy: Research Unit for the Sociology of Education (RUSE), Research Report 50. University of Turku. Krais, B. and Krumpeter, T. 1997. Wissenschaftskultur und weibliche Karrieren. MPG-Spiegel 3/97, available at http://www.planck.de/pdf/frauen/beruflicheWerdegaengeMpi.pdf (11.12.2008). Lave, J. and Wenger, E. 1991. Situated learning. Legitimate peripheral participation. New York: Cambridge University Press. Leonard, D. 1997. "Gender Issues in Doctoral Studies." Pp. 152-183 in Working for a Doctorate: A Guide for the Humanities and Social Sciences, edited by Graves, N. and Varma, V. London: Routledge. Lepori, B. and Probst, C. 2009. "Using Curriculum Vitae for Mapping Scientific Fields. A small-scale experience for Swiss Communication Sciences." Research Evaluation forthcoming. Lind, I. 2004. Aufstieg oder Ausstieg? Karrierewege Forschungsüberblick. Bielefeld: Kleine Verlag. von Wissenschaftlerinnen. Ein Neave, G. 1993. "Séparation de Corps: The Training of Advanced Students and the Organization of Research in France." Pp. 159-191 in The Research Foundations of Graduate Education, edited by Clark, B. R. Berkeley, Los Angeles, Oxford: University of California Press. Parry, O., Atkinson, P. and Delamont, S. 1994. "Disciplinary Identities and Doctoral Work." Pp. 34-52 in Postgraduate Education and Training in the Social Sciences, edited by Burgess, R. G. London, Bristol, Pennsylvania: Jessica Kingsley Publishers. Parry, S. 2007. Disciplines and Doctorates. Dordrecht: Springer. Probst, C. 2008. "Der Vielfalt und den verschiedenen Bedürfnissen angepasst - das kommunikationswissenschaftliche Doktorat in der Schweiz." Studies in Communication Sciences 8(1): 133-159. Probst, C. 2009. "Serving Different Masters. The Communication Doctorate in the Knowledge Society." Doctoral dissertation at the Faculty of Communication Sciences, Università della Svizzera italiana, Lugano. Probst, C. and Lepori, B. 2007. "Für eine Kartographie der Schweizer Kommunikationswissenschaften. Methodologische Ueberlegungen und ausgewählte Resultate." Studies in Communication Sciences 7(1): 253-270. Probst, C. and Lepori, B. 2008. "What is a Doctorate? Changing Meanings and Practices in Communication Sciences in Switzerland." European Journal of Education 43(4): 477-494. Sadlak, J. 2004. Doctoral Studies and Qualifications in Europe and the United States: Status and Prospects. Bucharest: UNESCO-CEPES. Simon, H. A. 1991. "Bounded Rationality and Organizational Learning." Organization Science 2(1):125-134. Construire l’égalité The ‘Leaky Pipeline’ in Switzerland: What is causing women to drop out of academic research and careers at senior levels? Regula Julia Leemann*, Stefan Boes** and Sandra Da Rin* Paper to present at the 2nd International RESUP-OSPS Conference Lausanne Inequalities in Higher Education and Research 2nd International RESUP Conference Lausanne, 18th-20th of June 2009 Conference organised by the Study Network on Higher Education (RESUP) in partnership with the Observatory for Science, Policy and Society (OSPS) Faculty of Social and Political Sciences (SSP) University of Lausanne (UNIL) * Prof. Dr. Regula Julia Leemann * lic. phil. Sandra Da Rin University of Teacher Education Zurich email: regulaleemann@bluewin.ch, sdarin@bluewin.ch ** Dr. Stefan Boes University of Zurich, Socioeconomic Institute, email: boes@sts.uzh.ch, and Harvard University, Institute for Quantitative Social Science, email: sboes@iq.harvard.edu -1- Abstract The disproportional loss of qualified women out of research and academic work is a wellknown phenomenon and metaphorically termed ‘The Leaky Pipeline’. In this study, commissioned by the Swiss National Science Foundation, we analyze three potential factors that may lead to the gender-specific drop out rates, namely research funding, aspects of integration into the scientific community, and domestic factors. Using a supplementary module included in the second 2007 wave of the Swiss Graduate Survey, as well as in-depth interviews with a selected group of young researchers, we identify two core problems leading to the disproportional loss of women: First, female post-docs experience poorer integration into the scientific community. Second, women following academic and research career paths typically encounter more difficulties in combining scientific work and family. Our results do not indicate, however, gender-specific differences in research funding that may relate to the leaky pipeline. -2- 1 Introduction A loss of qualified people at each stage of an academic career is intended and part of an elite recruitment process. The respective losses are socially legitimate if they are based on achievement and not on ascription criteria (Merton 1973 [1942]). Contrary to this universalistic norm in modern societies, cross-sectional analyses of academic career paths indicate for all countries in Europe a disproportional loss of women on their way to a full professorship, a phenomenon that is metaphorically termed as “The Leaky Pipeline” (European Commission 2008, 16ff.). Despite having achieved a significant improvement in the equality of men and women in professional and social life over the last decades (Hausmann, Tyson, Zahidi 2008), Switzerland is still characterized by a substantial amount of gender inequality in working life in general, and in academic career trajectories in particular. The aim of this paper is to shed light on the major reasons behind the leaky pipeline as observed in Switzerland. We focus on the interrelated contexts of research funding, aspects of integration into the scientific community, as well as domestic factors in order to better understand the causes of high gender-specific drop out rates for women in academic careers. The paper is based on our study “Gender and Research Funding”, commissioned by the Swiss National Science Foundation (SNSF).1 The analysis is based, on the one hand, on records about individual educational career paths, drawn from the Swiss Higher Education Information System of the Swiss Federal Statistical Office, to obtain a clearer picture of the leaky pipeline inside the Swiss university system. On the other hand, we investigate possible reasons behind the leaky pipeline – in particular the question of access to research funding, the likelihood to get approved funding by the SNSF, the role of academic integration, and the dimension of reconciling family and research all in the perspective of gender inequalities. For this purpose, we questioned in 2007 a number of university graduates who were awarded their PhD in 2002 about the course of their academic career paths – as part of the Swiss Graduate Survey in cooperation with the Swiss Federal Statistical Office. Furthermore, the research group evaluated the first-time applications submitted to the SNSF in the researcher’s own name between 2002 and 2006 1 See http://www.snf.ch/SiteCollectionDocuments/wom_ber_gefo_synthesis_report_e.pdf for a more detailed description of the research project and an overview of the results. Project leaders: Regula Julia Leemann and Heidi Stutz. Project participants: Regula Julia Leemann, Andrea Keck, Sandra Da Rin, Susan Gürber (University of Teacher Education Zurich); Heidi Stutz, Philipp Dubach, Jürg Guggisberg, Gesine Fuchs, Silvia Strub (Centre for Labour and Social Policy Studies (BASS), Berne); Katrin Schönfisch, Sabina Schmidlin (Federal Statistical Office ), Neuchâtel); Irène Schwob, Shams Ahrenbeck, Karin Müller (Service de la recherche en éducation, (SRED), Geneva); Stefan Boes (Socioeconomic Institute, University of Zurich) -3- for project funding or an SNSF professorship, based on data from the application administration system of the SNSF. Additionally, we conducted in-depth interviews with a selected group of young researchers from various disciplines. The paper is structured as follows. After a theoretical framing and description of the empirical design and the two datasets (Sections 2 and 3), we will draw a rough sketch of the leaky pipeline inside the Swiss university system and give a brief summary of the results for research funding by the Swiss National Science Foundation (Sections 4 and 5). We then consider the two core problems leading to a disproportional loss of women in academic careers: The worse support of young female researchers by mentors (Section 6), and their greater difficulties in combining research and family duties (Section 7). The paper ends with some concluding remarks and provides an outlook for further research required in this area (Section 8). 2 The academic field and the exclusion of women: Theoretical positions In recent years, a number of studies have been carried out which usefully apply Bourdieu’s concepts of (academic) field and habitus, doxa and illusio, symbolic power and different forms of capital (Bourdieu 1986, 1990; Bourdieu and Wacquant 1992; Bourdieu, Passeron, de Saint Martin 1994) to the unequal integration of women and men into the scientific community (Krais 2000, Engler 2001, Beaufaÿs 2003). This theoretical perspective is guiding our own research and empirical analysis. Krais (2000, 2002) posits that, within the "agonal structure" in academia, which is about competition and rivalry, women are never the first to be included in the "game", the "arena of contest", or the symbolic struggles for university power and academic recognition. Since academic reputation can only be developed through social engagement with "the same" and through recognition and appreciation by "the same", women are excluded from competition (symbolic power). As a result, they withdraw from the game, in which they have never been taken seriously as players. Furthermore, the norms and values of the academic field (doxa) require and demand of academics the adherence of their whole life to academic work (academia as a form of life). As a result, all other parts, especially family life and children with their not always predictable demands, are set apart and the support of an academic career by the partner and/or the family is just taken for granted (Hochschild 1975, Krais 2008). As most of the women are still responsible for childcare duties and cannot rely on a partner who is willing to cut back on his own career in favour of her career, female academics are in a disadvantage. In order to conceptualise the dimension of reconciling family and academic career we draw on the analytic framework of linked or coupled lives by Krüger and Levy (2000, -4- 2001), which is linked to partnership and marked by gender inequalities through various connections to family and career. The authors point out that different dimensions have to be taken into account to capture the full complexity of life courses: (a) life courses are not individual projects but projects of family members and partners, (b) aspects of simultaneous social participation of the partners in different social fields are important characteristics, (c) institutionalisation has, beneath its cultural dimensions, also structural roots or organizational forms (e.g., opening hours of day-nurseries), (d) gender as a master status structures the life course unequally for men and women. 3 The data 3.1 The survey of 2002 university PhD graduates (panel 2003/2007) With the data from the Swiss Graduates Survey regularly carried out by the Swiss Federal Statistical Office we are able to examine and to explain various factors for the higher exclusion rates of female academics in the postdoctoral period. All university graduates awarded a PhD in 20022 were questioned in 2003 and 2007 on their career developments, professional training, family situation, social background and other socio-economic factors. In the wave of 2003, there was an additional module inserted in the context of evaluating the Swiss Federal Equal Opportunity at Universities Programme with questions on support at universities and on participation in different promotion programmes during the doctoral period. A supplementary module was also included in the 2007 wave in the context of our study on topics of academic career. In particular, we have collected data on academic integration (networks, mentors) and achievement (applications to research funding institutions, publications).3 Compared to the initial population of PhD graduates in 2002 (N=1689), there were 538 people in the second wave with valid entries for both surveys, which yields a total return rate of 31.9%. Since not all of the people who were surveyed filled out the 2 With the exception of a) the University of St. Gallen and the University of Basel, which did not supply the addresses of doctoral graduates to the Federal Statistical Office and b) the areas of “medicine and pharmacy”, which contributed only a few isolated subjects to the study, as the doctoral graduates from 2002 were only included if they passed the state examination at the same time (due to the different significance attributed to the doctorate in medicine). The results from this disciplinary field are therefore invalid and will not receive further comment. 3 Inserted by the authors in the context of the study “Geschlecht und Forschungsförderung (GEFO)” (Gender and Research Funding). The questionnaires of both waves are available online under: http://www.bfs.admin.ch/bfs/portal/de/index/infothek/erhebungen__quellen/blank/blank/bha/02.ht ml (Panel of the University Graduates in 2002). -5- particular supplementary module, however, the available number of observations for the analyses comes down to 470 people (total return rate: 27.8%).4 The analyses are weighted. The weighting factor provided by the Swiss Federal Statistical Office indicates the inverse probability that a particular observation based on the sampling design will be contained in the sample. Since scientific careers take different institutional forms according to discipline and language region, the multivariate analyses control for subject areas and the German as opposed to the French speaking part of Switzerland. All calculations are carried out in Stata (Version 10). 3.2 Interviews with young researchers from different disciplines In addition, we conducted 45 in-depth interviews with a selected group of researchers who either had graduated with a PhD in 2002 or had submitted their first application for a research funding to the SNF between 2002 and 2006. The aim of the interviews was to evaluate subjective experiences, motivations, and reasons for undertaking academic career paths, or for leaving the academic/university sector. The interviews were carried out across Switzerland (via personal interviews) and abroad (via telephone interviews). The interviewees were chosen to reflect as broad and comprehensive an image as possible of the various career and private life (family) realities in the different disciplines. At the current stage of our analysis, 15 interviews are subjected to more in-depth analysis using Strauss and Corbin’s Grounded Theory model. We explored the meanings of different topics in an academic career (research funding, mentoring, geographical mobility, etc.) for the self-conception of the upcoming researchers, for the process of becoming an academically recognised personality, for the formation of their own academic career trajectory, for their positioning in the academic field, or for their withdrawal from academia. 4 The leaky pipeline inside the Swiss university system An analysis of the leaky pipeline in Switzerland shows that at the relevant transition points of doctorate and habilitation, a disproportionately large number of women drops out of the academic system in comparison to men.5 Furthermore, the results indicate that we have to consider discipline-specific differences while referring to the picture of the 4 A comparative analysis of the two samples shows no significant differences in the distribution of gender, region, and disciplines. Therefore, we deem it reasonable to assume a random drop out of PhD Graduates from the survey. 5 These analyses are based on statistical data about individuals in the Swiss university system, the “Swiss Higher Education Information System”. -6- leaky pipeline. Without the academic inflow of women from abroad at the doctoral level and later, the potential pool of young female researchers in the Swiss higher education system would turn out to be even smaller, especially in those disciplines with a low proportion of women. In general, over the study period of about twenty years, a convergence can be seen in gender-specific doctoral completion rates. This, however, can predominantly be ascribed to the fact that the number of men who complete a doctorate has been decreasing over the long term, especially in law, humanities, social sciences, and natural sciences. We only provide a very brief sketch of the results here, focusing on the most relevant details for our analysis below. For more details about the leaky pipeline in Switzerland, we refer to Dubach (2009). 5 Applications for research funding to the Swiss National Science Foundation Funding for an academic career path is provided by universities and third-party sources, with the latter becoming increasingly important (Enders 1996, 105f.). In Switzerland, unlike other countries, there are relatively few alternatives to supporting one’s research through the SNSF. In our study we investigate two questions: do female upcoming researchers apply for research funding at the SNSF and at other funding institutions as often as male researchers? Do they have equal chances to get a funding approved? The analyses reveal that in the phase between the PhD graduates’ Master’s Degree up to five years after the doctorate, women submit applications for individual and project funding to the SNSF just as frequently as men do. Moreover, they participate as junior researchers in a research project funded by the SNSF as often as men do.6 Among those researchers between 2002 and 2006 who submitted applications for project funding by the SNSF or an SNSF professorship for the first time, women did not submit fewer applications than men, and they received equal amounts of money and had the same chances of success.7 Therefore, on the bases of the quantitative data, we find no indications that women have to overcome greater hurdles in order to submit a funding application, to gain access to research projects funded by the SNSF, or to get approved project funding or a SNSF professorship.8 Nevertheless, as the interviews show, women encounter subtle dimensions of gender specific exclusions and barriers in relation to 6 For more details, see Leemann, Keck and Boes (2009). 7 For more details, see Stutz, Guggisberg, Strub and Fuchs (2009). 8 For further results on the effect of research funding on academic career paths see Leemann, Keck and Boes (2009), Boes and Leemann (2009a). -7- research funding, e.g. they do have more problems to be geographically mobile and to stay abroad with a fellowship from the SNSF.9 6 Mentoring and support for emerging researchers One of the crucial factors of integration in the academic field is the support by mentors. For that reason, we explore in this chapter the topic of mentoring. First, we illustrate the importance of having a mentor for a successful academic career and show the different dimensions that constitute mentoring by referring to our interviews. Second, on the databases of the survey of PhDs we investigate if there are gender differences in the probability of being mentored in the postdoctoral phase. 6.1 Subjective importance of mentoring The in-depth interviews with emerging researchers reveal that mentoring by an established academic has a decisive influence on the academic career trajectory and serves as a kind of safety net. In numerous conversations, the extreme importance of support and promotion was emphasised, often starting with supervisors in the doctoral phase and continuing beyond that. “It’s still my good fortune to have Professor *Name* behind me, he’s a bit like my safety net, really ... My safety net. My life preserver”. (Hard and Natural Sciences, Woman) This support and promotion can take various forms, such as the offer of an assistant or senior assistant position, good working conditions that allow one to concentrate on completing a qualification, co-publications and publishing support, or concrete help with compiling applications for a fellowship or research project. In addition, other forms of support were mentioned, such as the willingness to write recommendations or to make a phone call in order to establish an important contact. Female mentors who themselves have been able to reconcile an academic career and a family can be important role models and orientation points for young female researchers. Ideally, they are also people whom emerging researchers can talk to and who can offer pointers and advice. “I primarily wanted . . . here in the hospital I have a young and dynamic mentor, but precisely what I didn’t have was a woman, 9 In detail, see Leemann and Da Rin (2009). -8- someone who could say what happens when you have a family, when you can’t work 150% of the time. And I was pregnant just then, and because of that I was interested in the topic. And there aren’t that many positive role models yet. But I had a female professor [as a mentor; authors’ note] who had just retired, but still, she had had four children at a time when it was a lot harder. That was very important to me. She looked at it from a certain distance, not in the rush of her own career anymore. She could look back a bit and she told me: ‘You have to figure out what’s more important to you. Take some time for the child, too’.” (Medicine, Woman) Mentors know the academic field, the rules of the game, its demands and practices, and they can pass this knowledge on. Support for emerging researchers takes place in daily and informal ways, and often consists of small pointers, tips and advice. The following quotation nicely shows that academic employment as a long-term career is something that has to be learned, and that it takes a long time to become professionally socialised, since “so many small things that you come across” must first be practised, refined, emulated and incorporated as part of a career-specific habitus. We can assume that in this socialisation process the complex interaction of personal dispositions, the processes of representation, attribution and recognition, as well as the circumstances specific to the situation, all have a decisive influence on an academic career. “That one can fall back on the experiences of someone who really understands how to support young researchers. And who passes all this knowledge on. Because I find it difficult, there are so many things that he provided me with over the course of these five years of working with him, which can’t be taught in a lecture or seminar. And which you can’t learn from a publication. (...) I think, it can’t happen in any other way. Because there are just so many, there are these fine points which are so hard, there are so many small things that you come across which are difficult to impart in any simple way. I would have never known how. Style issues in part, too. Or questions of ‘how do you do that?’ Sure, someone can put a model proposal in front of you, say this is what a successful proposal looks like, that could maybe be helpful, but I -9- think that this alone wouldn’t answer all the questions”. (Humanities and Social Sciences, Woman) If there is no sufficient support by a mentor, then this will often have a negative career effect. One is not made aware early enough of the important factors and strategies in an academic career; one is not integrated into social networks nor does one receive offers of positions or fellowship opportunities (abroad), as well as many other things. Sometimes the actions of supervisors aroused a certain degree of ambivalence, although the positive, supportive dimension was accentuated. Mentors require that emerging researchers orient themselves according to their expectations, behaviour and style in order to gain recognition and, furthermore, support (Krais 2002, 415). “I did have to struggle occasionally to get through. For him . . . you certainly have to work a lot. Sometimes I had to set boundaries and say . . . But he is someone who just says, ‘You can do it!’ and throws you in at the deep end: ‘Here is the lecture. You don’t know the subject. Doesn’t matter. You’ll do it next semester!’” (Law, Woman) As catalysts for attributing and recognising achievement, mentors can help people develop and demonstrate certain independence in research. They can make it possible for emerging researchers to present an independent, (lower-level) academic persona at a time when one is not yet independent but is actually reliant on the grace of mentors. The following quote shows this accurately: “In the position I am in at present, you have to prove yourself while at the same time . . . Well . . . We don’t have the means they prove ourselves yet, and yet we are expected to have proven ourselves already in order to advance. And this situation, it’s a little, it’s a bit ambiguous, you see, at the moment . . . Basically, I think that there isn’t a choice: at some point, you’re required to get a mentor to support you, to be able to do research more or less independently, to try and attain, so to speak, an intermediate position. The problem is that when you leave, for the first time, to go abroad, if you want to make a submission as someone on a fellowship when you’re abroad, you have to have had a boss who - 10 - lets you pursue your own ideas and publish as the last author10, to be able to show when you’re abroad that you’ve already taken the step of becoming independent. And the mentors who will let you do that are very rare indeed”. (Hard and Natural Sciences, Woman) Beaufaÿs and Krais, in their observations of and interviews with professors and their mentees, show how such a mentoring relationship is built on the anticipation of trust and produces long-term trust as a reciprocal investment by the mentor and the emerging researcher (Beaufaÿs 2003, 196f.; Krais and Beaufaÿs 2005). This trust, or belief of a mentor in the mentee’s capacity to produce work of a certain standard, is a central factor in the process of constructing academic careers and academic personas. This belief is not just about recognising the capabilities and achievements of the mentee, but also about attributing such capabilities to him or her. Achievements only become socially relevant and visible through this construction process, rather than being something produced “in loneliness and freedom” (Engler 2001). This is the prerequisite for being able to position oneself in the academic field as a legitimate, even if emerging, researcher (Beaufaÿs 2003, 246f). According to Beaufaÿs’s und Krais’ conclusions, it is more difficult for women to gain such trust and build on it because they receive less recognition as researchers whose work is to be taken seriously and because impending motherhood (at least as anticipated by [male] professors) puts their supportability into question. All of this often happens through very subtle actions and messages. We can conclude that mentoring is an indispensable form of support which enables access to further cultural, social, economic and symbolic resources that are important for an academic career. We thus speak of mentoring as a catalyst that triggers the process of constructing an academic career and speeds up its progress. In this construction process, mentoring is the prerequisite for achieving the status of a promising young academic within the scientific community and for advancing further on the career path. If women are less often seen to be worth supporting than their male colleagues and less frequently have adequate mentoring in the sense of recognition as well as trust (in advance), then they are crucially disadvantaged in building up an academic career and have lower chances of successfully establishing themselves. 10 In the hard and natural sciences, the senior scientists, project leaders and/or professors are the last to be listed in the publication credits. This is different in the humanities and social sciences, where their names come first. - 11 - 6.2 Mentoring in the postdoc phase In the second wave of the Swiss Graduate Survey (2007), PhDs were asked if they have received decisive support and promotion during their postdoctoral period by somebody whom they would call a mentor. Three categories of mentors were possible: (1) professors, (2) senior research associates (peers) at universities and other research organisations, and (3) academics outside of the scientific community. The respondents had to indicate the exact figure of mentors for each category (0, 1, 2, …). 67 academics did not answer this question. We assume that these respondents either did not pursue an academic career anymore after their PhD graduation (and therefore were not addressed by the question), or they had not had a mentor but did not mention it by filling in a “naught”. Because the exact reasons cannot be traced, we estimate two different models. In the first model (Model A) these 67 persons are set as missing values meaning they are not included in the analyses. In the second model (Model B), these cases are treated as if they had not had a mentor in their post-doctoral phase. If the effects of the independent variables in the two models are the same, it is reasonable to assume that the results do not depend on this 67 “unclear” cases. We will only show the estimation results of Model B (see Table 2) and report possible differences between Models A and B in the text. We constructed two different dependent variables: 1) Mentoring by professor(s): During the postdoctoral period, the respondent has had at least one mentor who is a professor at a university or at another research organisation: Yes (1)/No (0). 2) Mentoring by peer(s): During the postdoctoral period, the respondent has had at least one mentor who is a senior research associate (peer) at a university or at another research organisation: Yes (1)/No (0). The third category – academics outside of the scientific community – is deemed irrelevant for our topic because we are interested in the support obtained within the scientific community as factor contributing to a successful development of an academic career. Table 1 gives an overview of the coding and size of the different categories of the dependent variables. If the respondent had at least one mentor in the respective category, the variable is coded as 1. Otherwise, it is coded as 0. - 12 - Table 1: Coding of the variables “mentoring” % Model A Model B Count of mentors (professors at Mentoring by professor(s): Mentoring by professor(s): universities or at other research (dummy variable) (dummy variable) organisations) Missing values 13.9 0 52.3 0 0 1 21.6 1 1 2 9.8 1 1 3 and more 2.3 1 1 Mentoring by peer(s): Mentoring by peer(s): (dummy variable) (dummy variable) Total 0 100.0 Count of mentors (senior research associates at a university or at another research organisation) Missing values 13.9 0 71.8 0 0 1 8.2 1 1 2 4.5 1 1 3 and more 1.6 1 1 Total 0 100.0 Source: Swiss Graduates Survey (Federal Statistical Office), own calculations. In order to investigate the chance of being mentored after the PhD, we included several explanatory and control variables which cover sociodemografic as well as academic factors (see Table 2). First consider the likelihood of being mentored by a university professor. We observe that female upcoming researchers have a significantly smaller chance – less than half of the chance of male researchers11 –of finding a professor in the postdoc phase who will rigorously support and foster them in a mentoring relationship. This result is equally valid for models A and B. This result is consistent with a number of studies documenting that women are less likely able to count on an academically established person who will provide support and promote their careers (Siemienska 2007, 263; Zimmer, Krimmer, Stallmann 2007, 122f.; Ledin et al. 2007, 985; Allmendinger, Fuchs, von Stebut 2000; Grant and Ward 1996; Bagilhole 1993; Geenen 1994, 91). We do not find evidence that age and former academic mobility affect the likelihood of having a mentor. It seems that older academics and academics from abroad do not encounter higher barriers in finding support and promotion by mentors. Our results 11 Model B: exp(-0.964)*100% = 38%, Model A: exp(-0.901)*100% = 41%. - 13 - suggest that young researchers with an academic family background12 are less likely to report a mentor. A priori, we expected that they receive more recognition as promising future researchers due to their greater familiarity with the academic field. One reasonable explanation for the negative sign, however, could be that the support and promotion they get is taken for granted (and maybe obtained through their parents) and therefore not valued as “support”. The language region has been controlled for in order to account for potential differences in the university systems in the German speaking and the French speaking part, but it does not show any relevance. Because economics and the technical sciences are more connected to the private and public sectors (industry, financial institutes, or state departments), important and relevant mentors in these subject areas can also be found outside the academia. Career-oriented support during doctorate generates further support for young researchers by a professor. This effect, known as ‘cumulative advantage’, stems from the fact that, in the form of a self-fulfilling prophecy, those doctoral candidates who were considered to have promise and above-average academic talent by mentors also receive more recognition and support after completing their doctorate (Cole 1979; Merton 1985 [1968]). 12 It is likely that in the case of a mother who graduated from university also the father has a university degree. - 14 - Table 2: Determinants of mentoring after PhD (logistic regression models) Mentoring by professor(s) (Model B) Socio-demographic factors Woman Age Masters Degree abroad Father university degree (academic background) Mother university degree (academic background) University factors French-speaking part of Switzerland Disciplinary field (natural sciences = base category)13 Social sciences and humanities Economics Law Medicine/pharmacy Technical sciences Integration during the doctorate Subject-specific support during doctorate Career-oriented support during doctorate Integration after the doctorate Employment directly after doctorate (not in academia = base category) Position in academia Others (training, unemployed, travelling, …) Employment five years after doctorate (not in academia = base category) Position in academia Others (training, unemployed, travelling, …) Participation in a postdoctoral programme14 Mentoring programme after doctorate (only women) Constant -0.964*** (0.361) -0.0355 (0.0493) 0.437 (0.355) 0.223 (0.364) -1.033** (0.496) 0.267 (0.391) -0.0122 (0.0697) -0.129 (0.389) -0.582 (0.438) 0.645 (0.613) 0.174 (0.370) -0.368 (0.437) 0.376 (0.460) -2.020** (0.833) 0.520 (0.635) -0.729 (0.837) -0.982** (0.434) -1.163** (0.565) -1.466 (1.159) -1.149 (1.096) 0.0294 (0.416) 0.0234 (0.110) 0.678*** (0.242) -0.184 (0.142) 0.434 (0.283) 1.240*** (0.344) 0.674 (0.475) 0.463 (0.439) -0.484 (0.612) 1.142*** (0.331) 0.601 (0.711) 0.432 (0.717) 0.982 (1.142) 0.781** (0.376) 0.484 (0.743) 0.314 (0.721) 0.415 (1.032) -1.009 (1.886) 346 -170.6 58.20*** 19 Number of observations Value of the log-likelihood Model Chi-squared Degrees of freedom Effect coefficient (b), Standard errors in parentheses * p .10, ** p .05, *** p .01 Mentoring by peer(s) (Model B) -1.161 (2.714) 320 -132.9 26.04*** 18 Source: Swiss Graduates Survey (Federal Statistical Office), own calculations. As one would expect, PhD graduates who are straight after graduation and five years later still in academia (position in academia) have more often an academic mentor. The causality between these two variables – remaining in academia and being mentored – is 13 “Law” is omitted due to missing variation (i.e., cells without cases or perfect prediction). 14 In German: Graduiertenkolleg. - 15 - ambiguous, however, because not being supported by a mentor can result in withdrawing from an academic career trajectory. Noteworthy are the insignificant effects of postdoctoral and mentoring programmes15 after the doctorate on the likelihood to have a mentor in the postdoctoral phase. Our results raise the question about the efficacy and quality of the mentoring programmes of the first generation established by the Swiss Federal Equal Opportunity at Universities Programme. It can be assumed, however, that the first generation of programmes mainly attracted female academics who were poorly integrated in academia. Furthermore, it might be to early to measure the effects of the programme, and we therefore do not find the expected positive effect in our data. With regard to peer mentoring we do not find significant effects, except for the differences in fields of study and the academic position after the doctorate. Since we have no academics in the law discipline in our data who are mentored by peers, we drop this category from the analysis. Compared to the natural and technical sciences, the likelihood of having a peer as mentor in the social sciences and medicine/pharmacy is substantially smaller. Compared to mentoring by a university professor, we do not find gender differences in peer mentoring, nor differences in the other sociodemographic factors. There is also no evidence that the integration in the scientific community during the doctorate affects the likelihood of having a peer as mentor. 7 Reconciling Career and Family We now examine the gender-specific impact of having a family on the leaky pipeline phenomenon in academic careers. In the survey of PhDs, the respondents were asked about their family situation (children, domestic partnership) as well as the division of labour among couples who have children five years after the doctorate. In the interviews, we asked the respondents if they accept compromises or face any difficulties in reconciling private and professional life. Domestic Partnership In contrast to the results of other studies, which investigated the family situation of professors – some of them focused in particular on the first generation of women professors – (Onnen-Isemann and Oßwald 1991; Zimmer et al. 2007), the young female researchers we questioned have a domestic partner nearly as often as their male colleagues. 15 As our data reveals, only women took part at mentoring programmes. - 16 - Children The problem arises once children enter the picture. As we can see in Table 3, doctoral graduates who were employed in the academic field five years after the doctorate are more likely not (yet) to have children than doctoral graduates employed in other fields. Just 43% of all male academics have children, whereas the proportion of doctoral graduates who have children and are employed in other fields is 57%. Table 3: Children and field of employment five years after the doctorate (by gender) Men Women Academic field Other fields Academic field Other fields 43% 57% 32% 38% Children Yes Source: Swiss Graduates Survey (Federal Statistical Office), own calculations. The same significant difference holds for women, although less marked (32% in academia as opposed to 38% with children in other fields). These results suggest that in Switzerland reconciling a family with an academic career is impeded by institutional characteristics of the scientific field and poses problems for women as well as for men. Moreover, fewer women with doctorates have children than men with doctorates. The obstacles to start a family while pursuing an academic career therefore seem bigger for women than for men. This result is consistent with numerous other studies (e.g., Lind 2008; Zimmer et al. 2007, 147ff.; Mason and Goulden 2004; Leemann 2002). As further analysis shows, women who do not (yet) have children are also less likely to plan having them in the future than men do. The gender gap is thus set to increase further. Employment patterns amongst couples If we look at the employment patterns of couples, then we observe that the two couple households share overall similarities, as long as there are no children (see Figure 1), though the female parts tend to be employed part-time or not at all to a greater degree than the male parts. - 17 - Figure 1: Employment patterns of couples without children Female doctoral graduates without children Partners (if without children) PT PT FT FT Male doctoral graduates without children Partners (if without children) NE PT PT FT FT Source: Swiss Graduates Survey (Federal Statistical Office), own calculations. PT = part-time (white), FT = full-time (blue), NE = not employed (orange). With the arrival of children, the employment patters of the couple households change (see Figure 2), producing a known gender-specific pattern even among the group of highly qualified doctoral graduates. Female doctoral graduates with children are for the most part employed, but often part-time only. In around 30% of the cases, their partners are also employed part-time, while the remaining 70% are employed full-time. In contrast to that, if male doctoral graduates have children, then their employment pattern does not change: They continue to be full-time employed. Their partners, however, often reduce their employment to part-time or give up employment altogether. These results are also consistent with those of many other studies (Ledin et al. 2007, 985; Majcher 2007, 313; O’Laughlin and Bischoff 2005, 88 and 94; Mason and Goulden 2004). - 18 - Figure 2: Employment patterns of couples with children Female doctoral graduates with child(ren) FT Partners (if with children) NE PT FT PT Male doctoral graduates with child(ren) Partners (if with children) FT PT NE PT FT Source: The Swiss Graduates Survey (Federal Statistical Office), own calculations. PT = part-time (white), FT = full-time (blue), NE = not employed (orange). Distribution of childcare duties among couples The distribution of childcare responsibilities (see Table 4) follows the same genderspecific pattern. Half of the fathers from the survey of doctoral graduates can rely on a partner who takes care of or organises all childcare on weekdays. This is rarely the case with the mothers. They are always involved with the children in that they take over childcare duties and/or arrange the care of the child(ren) with the help of a third person or a childcare institution. Various studies provide evidence of this gender-specific pattern of labour distribution (Lind 2008; Lind and Löther 2008; Zimmer et al. 2007, 154; Probert 2005, 63; Spieler 2004; Leemann 2002, 176; Blake and La Valle 2000, 29). - 19 - Table 4: Distribution of childcare duties amongst couples Who is/was predominantly responsible for the care of your preschool children during the week (Mon-Fri)? Men Women a. I alone 1% 14% b. The other parent and/or my partner 51% 2% c. I, together with the other parent and/or my partner 7% 3% d. Other persons or institutions 10% 15% e. I, the other parent and/or my partner, 31% 55% 0% 11% 100% 100% and other persons or institutions f. I, and other persons or institutions Total Source: Swiss Graduates Survey (Federal Statistical Office), own calculations. Effects of children on career trajectories How does the birth of a child actually affect the academic career trajectory? The results of the survey of PhDs confirm that the birth of a child after the doctorate stands in a negative relation to remaining in academia and pursuing further qualifications (habilitation, postdoc).16 A small child also makes it difficult to undertake networking activities abroad and reduces the likelihood of a research period abroad, although the causality here is not clear. Whoever plans to go abroad for a research period, or is already abroad, tends to postpone the decision to have children.17 On the other hand, it is worth noting that measureable performance in the form of publication output is not curtailed by starting a family.18 This result, too, is consistent with various other studies (e.g., Leemann 2005; Romanin and Over 1993; Cole and Zuckerman 1991). Because we only have a small number of mothers, we could not statistically calculate verifiable interaction effects between birth and gender. Therefore, we do not have evidence if this result holds for both female and male academics. Daily research life and family duties As the in-depth interviews with emerging researchers show, reconciling a family with a research career is a daily challenge for the mothers we interviewed, leading to an intensification of the feeling of risk or "mad hazard" as well as to greater uncertainties. 16 For more details, see Leemann, Keck and Boes (2009). 17 For more details, see Leemann, Dubach and Boes (2010) and Leemann (2009). 18 For more details, see Boes and Leemann (2009b). - 20 - “It happens daily! It’s my everyday dilemma: is it more important to get home on time or to finish the project? And how can I organise myself to get every-thing done?” (Technical Sciences, Woman) This happens above all, as the interviews show rather clearly, because daily work and nightly rest are turned upside-down, which leads the women to fundamentally doubt whether they can deal with the increased pressure. As academics who are simultaneously mothers and thus not always available for work, they even doubt whether they can be taken seriously in the academic world. “As far as handicaps go, I have to say, honestly, that you often have the feeling, ‘Is my family a handicap?‘ If you handicap yourself, like when you’re running a race, it means that you have to achieve the same thing while carrying an extra weight, right? And so sometimes you feel, I can’t, I just can’t do the same amount, or work as long, as someone who doesn’t have a child, who doesn’t have to get up maybe two, three times in the night when the child cries, etc. Then, sure, you sometimes have the feeling, ‘Can I do it? Will I be taken seriously? Can I really establish myself?’ But that’s something that only time will tell, right?” (Law, Woman) Mothers also experience no support from the university. It is considered a private matter how the young woman professor who has just started her job organises the care of her small child; she has to find the solutions on her own. “And there, you’re actually left completely alone. So, you have the position, and then: figure it out! So, I found that very difficult” (Law, Woman) In a comparative study of different universities by Acker and Armenti (2004), accessing day care was not problematic for all women faculty. The authors conclude that the particular institutional context is important in shaping the possibilities for academic careers. Besides the supply of childcare facilities by the universities and communities, cultural norms and values on family life and gender responsibilities are part of this institutional setting. As the next excerpt shows, the ideas and expectations within the - 21 - faculty and workplace about one’s availability and flexibility are often not compatible with childcare hours and family life. This female academic who has spent time abroad points out that she did not experience the same conflicts at her former university. “Somehow the favourite time of day for a meeting is after 6:00 p.m., once the nursery is closed. I just found that difficult, ‘difficult’ being the mildest term for it (...) Thus, I actually found that my position [as a professor] in [a city in Switzerland] was in a certain way the hardest in my academic career, because I suddenly had so many conflicts between childcare and my private life and my position and my work. I hadn’t experienced problems like this before; things had gone relatively smoothly, even with a child in [abroad]”. (Humanities and Social Sciences, Woman) By contrast, male academics do not discuss the family in terms of uncertainty or constraints placed on academic work. Family and academic work seem to belong to two different spheres. Only in several interviews there are indications that male academics see themselves as family providers, which means that they cannot or do not want to find themselves in a financially precarious academic career. “Yeah, the compromises were that I have a clinical career, that I have a clinical position here which primarily puts bread and butter on the table, where I know that I can support my family (...). I could become a medical specialist, which indirectly offers career security, because I can go into practice with that too, and hence provide for my family. But where I lacked the courage and the security was to commit myself only to experimental work, only in the laboratory, where I would have been dependent on three-year positions and an uncertain future [unclear]”. (Medicine, Man). With the men, then, the central theme is the economic uncertainty connected to an academic career, while the women are concerned above all about the uncertainty of their academic habitus, and about the question of their recognition and achievement. On this basis, we can formulate the assumption that women tend to be confronted with more fundamental uncertainties than their male rivals. Male academics can for the most part count on being able to connect research with family, simultaneously ensuring that they can make the required academic commitment. - 22 - However, this does not mean that starting a family does not have problematic aspects for fathers, too, with regard to the shape of their career trajectory. But, in addition to a synchronous model (career and family at the same time), men also have the opportunity to implement a diachronic model, which means that they can start a family after reaching a certain point in their careers, particularly after having attained a permanent position (Mason and Goulden 2004). In addition, as our analyses suggest, they can rely much more heavily on their partners for childcare. For that reason, it is easier for them to put "all their eggs in one basket" and to pursue an academic career. For women, the reconciliation of family and (academic) work is more difficult. They are confronted with the problem of the clashing clocks of biology and tenure (Acker and Armenti 2004) since they cannot arbitrarily postpone childbirth and they do not have strong support for (the organisation of) childcare, especially during periods spent abroad. In the interviews with young researchers, there are several indications that women who do not want to give up having children put in question whether or not to remain in academia, or they already left it. One does hardly find this pattern among men. These findings are largely confirmed by other studies. Women academics without children are more likely to explain their childlessness on the grounds of the difficulty of reconciling an academic career with family life (Spieler 2004). If women (want to) stay in academia, then they forego having children more often than men, or they push the decision to have children ever further off, with the result that, whether they want or not, they may remain childless (see for example Zimmer et al. 2007; Majcher 2007, 313; Auferkorte-Michaelis, Metz-Göckel, Wergen, Klein 2006). As mentioned before, the reasons for the gender-specific pattern in linking life courses (Krüger and Levy 2000, 2001) can in part be found in the academic field and its culture, symbolic practices, and career constructions itself (Krais 2008). The prevailing work norms (in particular the high number of hours of availability and the high degree of temporal and geographical flexibility) make it difficult to reconcile family and career, as do career expectations ("all the eggs in one basket", the pressure to achieve, age norms) (Dressel and Langreiter 2008; Jacobs and Winslow 2004; Merz and Schumacher 2004; Beaufaÿs 2003, 146ff.), and the view of “academia as a form of life ” as a core aspect of the belief system (illusio) of an academic habitus (Krais 2008). Consequently, women academics work harder and sleep less with the result of fatigue, stress and exhaustion shaping their daily lives (Acker and Armenti 2004). Furthermore, childbearing and childrearing are tabooed subjects in academia (Acker and Armenti 2004; Hochschild 1975; Wolf-Wendel and Ward 2003) and they are traditionally not associated with reason and logic (Pillay 2008). This status can be seen, for instance, in the fact that childcare duties are not taken into consideration when - 23 - assessing career track records during professorial appointments, or that the university does not consider itself responsible for providing childcare opportunities (Rusconi and Solga 2002). An added institutional factor is that the childcare infrastructure in Switzerland is not tailored to academic careers. In view of the low salaries (except for the professor level), childcare is very costly (Spieler 2004, 64ff). Furthermore, in many cases there are too few places available, and the hours do not correspond to the needs of academics. However, even optimal childcare conditions do not fully solve the problem. Parenthood, according to the subjective assessment of female and male academics, places limits on one’s availability for academic work – frequency of attending conferences, research time, networking opportunities, geographic mobility (Lind 2008; O’Laughlin and Bischoff 2005; Romanin and Rover 1993) and leads to problems of compatibility (Spieler 2004; Blake and La Valle 2000, 29). 9 Conclusions Why do young female researchers, who already gained a foothold in the university system, drop out of academia after their PhD more often than male academics? In this paper, we discuss two core problems that women academics encounter and that have to be explained with reference to the culture and practices of academia itself. One hurdle is that women miss more often than men the support by a mentor, who fosters and promotes their academic career. In the PhD period, the relation of female to male emerging researchers with an academic mentor is about four to ten. In other words, we may presume that professors value young female researchers not equally promising as they value male researchers. Of course, nowadays no chair would say this frankly, neither in a formal nor in an informal setting. Times have changed since the 1950s, where in a survey prejudices and indignities on women’s academic abilities were mentioned without reservation (Anger 1960, cited in Krais 2008). Nevertheless, professors are less willing to give recognition, appreciation and support to female academics. As we have shown, without these little pieces of what is called “mentoring” – knowledge transfer, gate keeping, investment of trust, information giving, functioning as a role model, providing resources, introduction in relevant academic circles, etc. – an emerging researcher hardly can manage to build up an academic career by his or her own. The other problem women face more than men is the culture at universities and in academia in general that depends on a flexible, disembodied and disembedded individual whose research life is not contaminated by child-rearing, stress, and sleepless nights, or unpredictable absents due to sick children (e.g. Krais 2008; Daston 2003; Merz and - 24 - Schumacher 2004). As our data reveal, female academics do not have the same conditions in order to correspond to these values and norms as male researchers have. If women decide to start a family, then they are confronted with all these demands and cultural beliefs established over the last century in the scientific community that hardly allows to reconcile family and academic work. In particular, in order to fully concentrate on their academic career they often have to forego having children, whereas male emerging researchers can much more rely on a female partner who allows them to dedicate their life to science without giving up the idea of a family. Mentors, who are representatives of this academic culture, know about these conflicts of female upcoming researchers (Krais 2002) and – as we can conjecture on the basis of our data – decide to support women less after PhD graduation than to support men. - 25 - References Acker, Sandra and Carmen Armenti. 2004. "Sleepless in academia." Gender and Education 16:3-24. Allmendinger, Jutta, Stefan Fuchs, and Janina von Stebut. 2000. "Should I stay or should I go? Mentoring, Verankerung und Verbleib in der Wissenschaft. Empirische Ergebnisse einer Studie zu Karriereverläufen von Frauen und Männern in Instituten der Max-Planck-Gesellschaft." 33-48 in Karriere von Akademikerinnen. Bedeutung des Mentoring als Instrument der Nachwuchsförderung, Ed. J. Page and R. J. Leemann. Bern: Bundesamt für Bildung und Wissenschaft. Anger, Hans. 1960. "Probleme der deutschen Universität. Bericht über eine Erhebung unter Professoren und Dozenten". Tübingen: J. C. B. Mohr (Paul Siebeck) Verlag. Auferkorte-Michaelis, Nicole, Sigrid Metz-Göckel, Jutta Wergen, and Annette Klein. 2006. "Junge Elternschaft und Wissenschaftskarriere. Wie kinderfreundlich sind Wissenschaft und Universitäten." Zeitschrift für Frauenforschung und Geschlechterstudien 23:14-23. Bagilhole, Barbara. 1993. "Survivors in a Male Preserve: A Study of British Women Academics' Experiences and Perceptions of Discrimination in a UK University." Higher Education 26:431-447. Beaufaÿs, Sandra. 2003. Wie werden Wissenschaftler gemacht? Beobachtungen zur wechselseitigen Konstitution von Geschlecht und Wissenschaft. Bielefeld: transcript. Blake, Margaret and Ivana La Valle. 2000. "Who applies for research funding? Key factors shaping funding application behaviour among women and men in British higher education institutions." The Wellcome Trust, London. Boes, Stefan and Regula Julia Leemann. 2009a (forthcoming). "Scientific achievements of young researchers: Does funding make a difference?" in Forschungsförderung in wissenschaftlichen Laufbahnen – Zugang, Erfolg, Bedeutung und Wirkung aus Geschlechterperspektive, edited by R. J. Leemann and H. Stutz. Zürich: Rüegger Verlag. Boes, Stefan and Regula Julia Leemann. 2009b. "Keeping up scientific output: Intrafamily work share and the role of child-care institutions." Working paper. Bourdieu, Pierre. 1986. "The forms of capital." 241-258 in Handbook of Theory and Research for the Sociology of Education, edited by J. G. Richardson. Westport CT: Greenwood. —. 1990. Homo Academicus, Edited by T. P. Collier. Stanford, California: Stanford University Press. - 26 - Bourdieu, Pierre and Loïc J.D. Wacquant. 1992. An Invitation to Reflexive Sociology, Edited by t. o. R. Anthropologie". Chicago: University of Chicago Press. Bourdieu, Pierre, Jean-Claude Passeron, and Monique de Saint Martin. 1994. Academic discourse : linguistic misunderstanding and professorial power. Cambridge: Polity Press. Cole, Jonathan R. 1979. Fair Science. Women in the Scientific Community. New York: Columbia University Press. Cole, Jonathan R. and Harriet Zuckerman. 1991. "Marriage, Motherhood, and Research Performance in Science." 157-170 in The Outer Circle. Women in the Scientific Community, edited by H. Zuckerman, J. R. Cole, and J. T. Bruer. New York: W.W. Norten & Company. Daston, Lorraine. 2003. "Die wissenschaftliche Persona. Arbeit und Berufung." Pp. 109136 in Zwischen Vorderbühne und Hinterbühne. Beiträge zum Wandel der Geschlechterbeziehungen in der Wissenschaft vom 17. Jahrhundert bis zur Gegenwart, edited by T. Wobbe. Bielefeld: transcript. Dressel, Gert and Nikola Langreiter. 2008. "Wissenschaftliches Arbeiten - schneller. höher, weiter? Zum (Un-)Verhältnis von Arbeit und Freizeit in den (Kultur)Wissenschaften." Forum Qualitative Sozialforschung 9: Art. 38. Dubach, Philipp. 2009 (forthcoming). "«Leaky pipelines» im Längsschnitt: Auswertungen des Schweizerischen Hochschulinformationssystems (SHIS)." in Forschungsförderung in wissenschaftlichen Laufbahnen – Zugang, Erfolg, Bedeutung und Wirkung aus Geschlechterperspektive, edited by R. J. Leemann and H. Stutz. Zürich: Rüegger Verlag. Enders, Jürgen. 1996. Die wissenschaftlichen Mitarbeiter. Ausbildung, Beschäftigung und Karriere der Nachwuchswissenschaftler und Mittelbauangehörigen an den Universitäten. Frankfurt a/M; New York: Campus. Engler, Steffani. 2001. "In Einsamkeit und Freiheit"? Zur Konstruktion der wissenschaftlichen Persönlichkeit auf dem Weg zur Professur. Konstanz: Universitätsverlag. European Commission. 2008. "Mapping the maze: Getting more women to the top in research." Brussels. Geenen, Elke M. 1994. Blockierte Karrieren. Frauen in der Hochschule. Opladen: Leske und Budrich. Grant, Linda and Kathrin B. Ward. 1996. "The Stratification of Mentoring in Academia: Gender, Race, and Experiences of Scientists." University of Georgia, Southern Illinois University. Hausmann, Ricardo, Laura D. Tyson, and Saadia Zahidi. 2008. “The Global Gender Gap - 27 - Report 2008”. World Economic Forum. Downloaded April 9, 2009, http://www.weforum.org/pdf/gendergap/report2008.pdf. Hochschild, Arlie Russell. 1975. "Inside the clockwork of male careers." 47-88 in Women and the power of change, edited by F. Howe. New York. McGraw Hill Book Company. Jacobs, Jerry A. and Sarah E. Winslow. 2004. "Overworked Faculty: Job stresses and Family Demands." The Annals of the American Academy of Political and Social Science 596:104-129. Krais, Beate. 2008. "Wissenschaft als Lebensform. Die alltagspraktische Seite akademischer Karrieren." 177-211 in Arbeit als Lebensform? Beruflicher Erfolg, private Lebensführung und Chancengleichheit in akademischen Berufsfeldern, edited by B. Krais and Y. Haffner. Frankfurt a. M: Campus. —. 2002. "Academia and the Hierarchy of the Sexes." Higher Education Quarterly 56:407-418. —. 2000. „Das soziale Feld Wissenschaft und die Geschlechterverhältnisse. Theoretische Sondierungen.“ 31-54 in Wissenschaftskultur und Geschlechterordnung. Über die verborgenen Mechanismen männlicher Dominanz in der akademischen Welt, Ed. B. Krais. Frankfurt am Main: Campus. Krais, Beate and Sandra Beaufays. 2005. "Wissenschaftskultur und Geschlechterordnung. Verborgene Mechanismen der Macht." 29-46 in Akademische Seilschaften. Mentoring für Frauen im Spannungsfeld von individueller Förderung und Strukturveränderung, Ed. D. Nienhaus, G. Pannatier, and C. Töngi. Bern: eFeF. Krüger, Helga and René Levy. 2001. "Linking Life Courses, Work, and the Family: Theorizing a not so Visible Nexus between Women and Men." Canadian Journal of Sociology 26:145-166. Krüger, Helga and René Levy. 2000. "Masterstatus, Familie und Geschlecht. Vergessene Verknüpfungslogiken zwischen Institutionen des Lebenslaufs." Berliner Journal für Soziologie 10:379-401. Ledin, Anna, Lutz Bornmann, Frank Gannon, and Gerlind Wallon. 2007. "A persistent problem. Traditional gender roles hold back female scientists." EMBO reports 8:982-987. Leemann, Regula Julia. 2009. "Inequalities in academic career mobility: characteristics, causes and outcomes." Paper to present at The European Conference on Educational Research. Symposium: The shifting geographies of trans-national academic mobility: challenging conventional policy paradigm. Vienna. 28 - 30 September 2009. —. 2002. Chancenungleichheiten im Wissenschaftssystem. Wie Geschlecht und soziale - 28 - Herkunft Karrieren beeinflussen. Chur and Zürich: Rüegger. —. 2005. "Geschlechterungleichheiten in wissenschaftlichen Laufbahnen." 179-214 in Institutionalisierte Ungleichheiten. Wie das Bildungswesen Chancen blockiert, Ed. P. A. Berger and H. Kahlert. Weinheim and München: Juventa. Leemann, Regula Julia and Sandra Da Rin. 2009 (forthcoming). "Zum Verhältnis von Forschungsförderung, Laufbahn und Geschlecht – institutionelle und habituelle Bedingungen." in Forschungsförderung in wissenschaftlichen Laufbahnen – Zugang, Erfolg, Bedeutung und Wirkung aus Geschlechterperspektive, edited by R. J. Leemann and H. Stutz. Zürich: Rüegger. Leemann, Regula Julia, Andrea Keck, and Stefan Boes. 2009 (forthcoming)." Fünf Jahre nach dem Doktorat – Geschlechtereffekte bezüglich Antragsaktivität in der Forschungsförderung und Verbleib in der Wissenschaft." in Forschungsförderung in wissenschaftlichen Laufbahnen – Zugang, Erfolg, Bedeutung und Wirkung aus Geschlechterperspektive, edited by R. J. Leemann and H. Stutz. Leemann, Regula Julia, Philipp Dubach, and Stefan Boes. 2010 (in process). "The “Leaky Pipeline” in Academic Career Trajectories: Gender Barriers in Academic Integration." Schweizerische Zeitschrift für Soziologie Contribution for the special Issue of the Swiss Journal of Sociology: Longitudinal Analysis in Switzerland. Lind, Inken. 2008. "Aufgeschobene Kinderwünsche, eingeschränkte Perspektiven? Zur Vereinbarkeit von Wissenschaft und Elternschaft - Ergebnisse einer aktuellen Studie." Forschung & Lehre:754-756. Lind, Inken and Andrea Löther. 2008. "Juniorprofessuren in Nordrhein-Westfalen. Ein Vergleich der Qualifikationswege Juniorprofesur und C1-Assistentenstelle." Kompetenzzentrum Frauen in Wissenschaft und Forschung CEWS. Majcher, Agnieszka. 2007. "Seeking the Guilty - Academics Between Career and Family in Poland and Germany." 299-325 in Gendered Career Trajectories in Academia in Cross-National Perspective, Ed. R. Siemienska and A. Zimmer. Warsaw: Wydawnictwo Naukowe Scholar. Mason, Mary Ann and Marc Goulden. 2004. "Do Babies Matter (Part II)? Closing the Baby Gap." Academe 90. Merton, Robert K. 1973 [1942]. "The Normative Structure of Science. Theoretical and Empirical Investigations." 267-278 in The Sociology of Science, edited by R. K. Merton. Chicago: University of Chicago Press. Merton, Robert K. 1985 [1968]. "Der Matthäus-Effekt in der Wissenschaft." 147-171 in Entwicklung und Wandel von Forschungsinteressen. Aufsätze zur Wissenschaftssoziologie, Ed. ders. Frankfurt: Suhrkamp. Merz, Martina und Christina Schumacher. 2004. "Spurensuche. Geschlechtliche - 29 - Differenzierung im disziplinären Vergleich." 195-270 in Wissenschaft, die Grenzen schafft. Geschlechterkonstellationen im disziplinären Vergleich, Hrsg. B. Heintz, M. Merz, und C. Schumacher. Bielefeld: transcript Verlag. O'Laughlin, Elisabeth M. and Lisa G. Bischoff. 2005. "Balancing Parenthood and Academia: Work/Family Stress as Influenced by Gender and Tenure Status." Journal of Family Issues 26:79-106. Onnen-Isemann, Corinna and Ursula Oßwald. 1991. Aufstiegsbarrieren für Frauen im Universitätsbereich. Bonn: Bundesminister für Bildung und Wissenschaft. Pillay, Venitha. 2008. "Academic mothers finding rhyme and reason." Gender and Education 20:1-14. Probert, Belinda. 2005. "'I Just Couldn't Fit It In': Gender and Unequal Outcomes in Academic Careers." Gender Work and Organization 12:50-72. Romanin, Susanne and Ray Over. 1993. "Australien Academics: Career Patterns, Work Roles, and Family Life-Cycle Commitments of men and Women." Higher Education 26:411-429. Rusconi, Alessandra and Heike Solga. 2002. "Verflechtung von beruflichen Karrieren in Akademikerpartnerschaften." Junge Akademie, Berlin. Siemienska, Renata. 2007. "The Puzzle of Gender Research Productivity in Polish Universities." 241-266 in Gendered Career Trajectories in Academia in CrossNational Perspective, Ed. R. Siemienska and A. Zimmer. Warsaw: Wydawnictwo Naukowe Scholar. Spieler, Michèle. 2004. "Vereinbarkeit von akademischer Karriere und Elternschaft." Institut für Politikwissenschaft, Zürich. Stutz, Heidi, Jörg Guggisberg, Silvia Strub, and Gesine Fuchs. 2009 (forthcoming). "Erstantragstellende beim Schweizerischen Nationalfonds " in Forschungsförderung in wissenschaftlichen Laufbahnen – Zugang, Erfolg, Bedeutung und Wirkung aus Geschlechterperspektive, edited by R. J. Leemann and H. Stutz. Zürich: Rüegger. Wolf-Wendel, Lisa and Kelly Ward. 2003. "Future prospects for women faculty: negotiating work and family." 111–134 in Gendered futures in higher education: critical perspectives for change, edited by B. Ropers-Huilman. Albany: State University of New York Press. Zimmer, Annette, Holger Krimmer, and Freia Stallmann. 2007. Frauen an Hochschulen: Winners among Losers. Zur Feminisierung der deutschen Universität. Opladen: Budrich. - 30 - Reunil : Fassa-Kradolfer Proposition de communication pour « Les inégalités dans l’enseignement supérieur et la recherche » 2ème Conférence internationale du RESUP Lausanne, 18-20 juin 2008 LA CONSTRUCTION D’EGALITE AU RISQUE DE LA REPRODUCTION DES INEGALITES VERSION PROVISOIRE NE PAS CITER SANS AUTORISATION DES AUTRICES Equipe Reunil Farinaz Fassa, Sabine Kradolfer Université de Lausanne, ITB-SSP reunil@unil.ch ++41.21.692 32 25 Résumé : Le constat de la faible représentation des femmes aux postes les plus prestigieux des hiérarchies universitaires helvétiques (7% de femmes professeurs en 1998) donna naissance en 2001 au premier Programme fédéral « Egalité des chances ». L’objectif principal de ce programme – le doublement du nombre de professeures – a été atteint en 2006 puisqu’à l’issue du deuxième programme (2004-2007), la proportion des femmes professeures s’élevait à 14%. Actuellement un nouveau doublement de ce chiffre est souhaité pour 2012 (25% de professeures) et un troisième programme est en cours pour la période 2008-2011. Un autre des buts de ces programmes est l’institutionnalisation de la promotion de l’égalité dans toutes les universités suisses. Dans cette communication, nous nous interrogerons sur les représentations des carrières féminines qui sous-tendent la philosophie des instruments de corrections des inégalités visant à promouvoir des femmes aux postes prestigieux des hiérarchies universitaires, qu’il s’agisse des programmes fédéraux ou d’actions plus locales au sein des universités suisses. En nous appuyant sur les résultats d’une recherche quantitative et qualitative menée sur la relève académique à l’université de Lausanne (1990-2006), nous verrons que les instruments proposés pour corriger les inégalités d’accès des femmes au professorat (primes d’incitation à la nomination de femmes ; programmes de mentoring ; dispositifs de garde des enfants) relèvent parfois d’un certain « sens commun académique » qui envisage les femmes comme « en retard » dans leurs carrières du fait de leurs responsabilités au sein de la sphère domestique. Loin de nier la nécessité de structures d’accueil pour les enfants et/ou d’instruments qui permettent de faciliter la conciliation entre sphères professionnelle et familiale, nous constatons cependant que les problèmes que les femmes peuvent rencontrer dans leurs parcours académiques sont inlassablement rapportés à des problèmes de conciliation, alors même qu’une importante partie d’entre elles choisissent de privilégier leur vie professionnelle au détriment de leur vie privée. Nous montrerons comment la vision des carrières féminines rattache celles-ci au corps des femmes et notamment à la maternité (réelle ou potentielle) et renvoie inexorablement les femmes à leur nature biologique et à une assignation prioritaire au travail de reproduction et de soin. De notre point de vue, cette focalisation sur les difficultés de la conciliation travail-famille décharge les organisations professionnelles que sont les universités ainsi que les concepteurs/trices des différents programmes de promotion des carrières féminines de la responsabilité du maintien de critères qui peuvent être à la source de discriminations directes ou indirectes : le modèle normatif de la carrière universitaire n’est pas remis en questions et si un semblant d’égalité paraît reconstitué, il passe par la stabilisation d’une vision extrêmement sexuée des carrières… et de la vie. 1 Reunil : Fassa-Kradolfer Introduction Au tournant du 20ème siècle, les statistiques relatives au nombre de professeures dans les universités suisses révélaient que très peu de femmes accédaient à des postes aux plus hautes fonctions des hiérarchies académiques. Devant ce constat, tant les autorités politiques que scientifiques du pays décidèrent de prendre des mesures afin de rendre les carrières académiques plus attrayantes pour les femmes. De nombreux organismes mirent ainsi sur pied des programmes s’adressant exclusivement aux femmes de la relève ou prirent un certain nombre de mesures en faveur des femmes. Dans cette communication, nous analyserons comment les représentations des obstacles que les femmes rencontrent (ou rencontreraient) dans leurs parcours influencent la mise en place de tels programmes et comment ils conduisent, au final, au maintien de certaines inégalités. Pour ce faire, nous nous baserons principalement sur les résultats d’une recherche que nous avons menée entre 2006 et 2008 à l’Université de Lausanne (UNIL)1. Cette étude de cas (Fassa et al., 2008) visait à identifier les facteurs (structurels, organisationnels et individuels) rendant les trajectoires des membres de la relève propices à l’accomplissement d’une carrière universitaire. Nous avons mis en place un dispositif de recherche complexe qui mêlait entretiens compréhensifs (une cinquantaine) et analyses statistiques de données compilées par d’autres (bases de données fournies par le centre informatique de l’UNIL) ou construites grâce aux réponses au questionnaire (N=1008) que nous avons adressé à toutes les personnes qui, à un titre ou un autre, ont fait partie de la relève universitaire lausannoise entre 1990 et 2006. Nos conclusions montrent que la vision des carrières féminines rattache celles-ci au corps des femmes et notamment à la maternité (qu’elle soit réelle ou potentielle) et qu’elle renvoie inexorablement les femmes à leur nature biologique et à une assignation prioritaire au travail de reproduction et de soin. Ce phénomène s’inscrit parallèlement dans une vision de la carrière académique répondant à l’idéal-type du savant wébérien, soit un homme jeune, libéré de toute tâche non professionnelle et totalement dévoué à ses recherches. Les analyses que nous avons pu réaliser dans le cadre de cette étude de cas en profondeur révèlent des mécanismes et des représentations qui émergent de manière plus générale dans de nombreux instruments et programmes de soutien aux carrières académiques féminines. Il nous ainsi paru intéressant de confronter nos résultats à l’analyse des représentations des carrières féminines qui sous-tendent les Programmes Fédéraux « Egalité » de la Conférence universitaire suisse (CUS). Ce travail de comparaison montre qu’une inspiration commune aux mesures, tant locales que nationales, repose sur une vision des femmes considérées comme « en retard » sur leurs collègues masculin ou moins bien informées sur les critères des carrières académiques. Les retards de carrière des femmes seraient ainsi liés aux difficultés de la conciliation travail-famille, qui leur incomberait principalement. Cette focalisation sur les barrières que rencontrent (ou rencontreraient) les femmes du fait de leur supposée maternité ou de leur implication particulière dans la sphère privée nous semble décharger les 1 Cette recherche n’aurait pu se faire sans le soutien financier de la Direction, du Bureau de l’égalité et du Décanat de la Faculté des sciences sociales et politiques de l’UNIL. 2 Reunil : Fassa-Kradolfer organisations professionnelles que sont les universités, ainsi que les concepteurs/trices des différents programmes de promotion des carrières féminines, de la responsabilité du maintien de critères qui peuvent être à la source de discriminations directes ou indirectes : le modèle normatif de la carrière universitaire n’est pas remis en question et si un semblant d’égalité paraît reconstitué, il passe par la stabilisation d’une vision extrêmement sexuée des carrières… et de la vie. Les Programmes Fédéraux « Egalité » 2 Intitulés très exactement Programmes « Egalité des chances entre femmes et hommes dans les universités » (PFE)3, ces instruments de promotion des femmes ont été mis en place au début des années 2000 par la CUS « l’organe commun de la Confédération et des cantons pour la collaboration dans le domaine de la politique des hautes écoles universitaires ». Ils correspondent à une volonté politique visant à favoriser l’accès des femmes au professorat issue du constat particulièrement dramatique établit, de la faible proportion des femmes aux fonctions les plus élevées des hiérarchies académiques. On ne comptait en effet, en 1998, que 7% de femmes professeures occupant des postes stables à temps plein ou à temps partiel. Depuis lors, différents programmes et instruments ont été mis en place par les institutions qui composent le paysage universitaire suisse. Outre la création des PFE, sur lesquels nous reviendrons plus en détail ci-dessous, on peut citer : - La levée des limites d’âge, entre 2002 et 2008, pour les bourses de chercheuses débutantes et avancées du Fonds National Suisse (FNS), ainsi que la prise en compte d’âge académique pour tous les instruments de promotion de la relève depuis 2009. - La création en 1991 des subsides Marie Heim-Vögtlin du FNS destinés à des candidates de niveau doctorat ou post-doctorat pour effectuer un travail de recherche. Jusqu’à 2002, les femmes des sciences humaines et sociales étaient exclues de ce programme. - La création des Bureaux de l’égalité des chances entre femmes et hommes (BEC) dans la plupart des institutions liées à la recherche. - Des mesure locales liées à des volontés institutionnelles ou personnelles particulières. En automne 1999, les Chambres fédérales adoptèrent le Message du Conseil fédéral du 25 novembre 1998 relatif à l’encouragement de la formation, de la recherche et de la technologie pour les années 2000-2003. Dans ce message, une série de propositions donnèrent naissance au premier PFE dans le but de corriger les disparités entre les taux de femmes et d’hommes au sommet des hiérarchies académiques. Il était piloté par la CUS (à l’aide d’un comité élu ad hoc) et avait pour cadre légal la loi fédérale du 8 octobre 1999 sur l’aide aux universités (LAU). Les objectifs de ce programme, qui sera reconduit avec la même enveloppe budgétaire de 16 mios pour la période 2004 à 2007, 2 Les éléments présentés ci-dessous sont tirés de Bachman et al., (2004), Widmer et Lischetti, (2003) ainsi que d’informations disponibles sur les sites web de la CUS (www.cus.ch), de la CRUS (www.crus.ch) et du Bureau de l’égalité de l’UNIL (www.unil.ch/egalite/) [pages consultées entre avril 2008 et mai 2009] 3 http://www.cus.ch/wFranzoesisch/portrait/index.php?navid=2 [page consultée le 29 avril 2009] 3 Reunil : Fassa-Kradolfer étaient de parvenir à doubler la proportion des femmes pour atteindre un taux de 14% en 2006. Cet objectif paraissait particulièrement difficile à atteindre mais il a pourtant été rempli à la fin de l’année académique 2005-2006 (l’Unil se situant quant à elle seulement à 13%). Le troisième PFE 2008-2011 est géré pour des raisons stratégiques par la Conférence des recteurs des universités suisses (CRUS)4 et vise quant à lui à atteindre le chiffre de 25% de femmes professeures en 2012. D’ici-là, les responsables du projet espèrent arriver à institutionnaliser la promotion de l’égalité dans toutes les universités suisses. Chaque PFE a disposé d’une enveloppe budgétaire d’environ 16 mios et les établissements qui ont participé ou participent à un projet (modules 2 et 3, voir ci-dessous) doivent, en principe, assurer la moitié du financement. Pour la période 2000-2007, l’Unil a reçu plus de 3 mios de francs (Theurillat et Jufer, 2006 : 64), preuve de l’implication de cette dernière dans les programmes d’encouragement aux carrières féminines et de la pertinence d’une comparaison entre la vision des carrières universitaires qui émerge dans les discours des personnes de l’UNIL, que nous avons analysés dans notre recherche (Fassa et al., 2008), et celle qui est présentée dans les PFE. Chaque PFE comprend trois modules qui regroupent différentes mesures : 1. Le « système d’incitation » récompense financièrement les universités pour la nomination de femmes professeur.e.s sur des postes stabilisés. Ces fonds sont distribués aux universités en fonction du nombre de femmes nommées durant l’année écoulée. Tous les établissements, qui pouvaient utiliser ces fonds à bien plaire, ont décidé de les investir dans la promotion de l’égalité des chances et ont financé divers projets en fonction des réalités et des besoins propre à chaque institution. 2. Les programmes de « mentoring » ont pour objectif d’encourager la relève féminine à poursuivre dans les carrières universitaires par le biais de systèmes de coaching, de bourses et d’offres de conseils et de formations, ainsi que de la mise en réseaux des femmes engagées dans une carrière. Ce réseautage se fait par le biais d’un marrainage par des femmes plus expérimentées, des rencontres entre doctorantes ou encore des échanges entre les personnes intéressées par les Etudes genre et les questions d’égalité. Le financement de ce module s’est fait par le versement de montants fixes et de contributions variables (en fonction du nombre de titres de diplômes, licences ou doctorats, décernés à des femmes) aux universités (mentoring intra-universitaire) et à des projets inter-universitaires. 3. Les « structures d’encadrement pour les enfants » consistent à développer les places d’accueil pour les enfants dans les crèches universitaires puisque les possibilités de garde en 1999 ne satisfaisaient pas les besoins des étudiant.e.s, doctorant.e.s et enseignant.e.s. Ce module cherche à créer de meilleures conditions pour concilier études ou carrière académique et obligations familiales. Les montants alloués (tout comme pour ceux du deuxième module) sont composés de sommes fixes et de contributions variables en fonction du nombre de diplômes décernés aux femmes par les universités bénéficiaires. Les projets de ce module sont appelés à se poursuivre durablement dans l’avenir puisqu’il s’agit d’amélioration ou de création d’infrastructures qui devraient 4 http://www.crus.ch/information-programmes/egalite-des-chances.html?L=1 [pages consultées le 29 avril 2009] 4 Reunil : Fassa-Kradolfer avoir un effet positif à long terme sur l’égalité des chances et l’augmentation du nombre de femmes professeures. Dans le PFE pour la période 2008-2011, un quatrième module prévoit le développement et le soutien aux Etudes genre dans des filières interdisciplinaires (création de chaires, mise en place de bourses, encouragement à la recherche…). Des programmes pour aider les femmes dans leurs carrières L’un des principaux problèmes qui nous semblent émerger de la lecture détaillée des différents instruments proposés par le PFE pour permettre aux femmes d’accéder aux plus hautes sphères des hiérarchies académiques, est lié à l’utilisation d’instruments de soutien individuels et individualisés des carrières féminines. En effet, alors que de nombreuses études ont montré que les inégalités entre les femmes et les hommes étaient la conséquence de facteurs non seulement individuels mais aussi structurels (Bourdieu, 1984 ; Bourdieu et Passeron, 1964 ; Roux et al., 1997) et organisationnels (CSST, 2001 ; Felli et al., 2006 ; Palomba et Menniti, 2001 ; Rehmann, 2004), les instruments pensés dans les PFE présentés ci-dessus, s’adressent, pour la plupart d’entre eux, individuellement aux femmes5. Ils font ainsi l’impasse sur toute une réflexion au sujet des structures universitaires et ne proposent de ce fait que peu d’aménagements afin d’ancrer durablement de véritables politiques d’égalité au sein de ces institutions. Bref, ils offrent une récompense aux universités qui nomment des femmes (module 1 : primes d’incitations), proposent à certaines femmes de bénéficier de soutiens pour combler leurs retards de carrière ou leur connaissance insuffisante des rouages de l’académie (module 2 : mentoring), ou améliorent les structures de garde des enfants de certains parents (mères ?) (module 3 : crèches). Avant de nous intéresser plus en détail au mentoring et aux représentations des carrières féminines au sein des académies qui lui sont liées, nous nous arrêterons rapidement sur les deux autres modules. Les primes d’incitation du module 1, dont l’appellation en allemand est beaucoup moins euphémistique, puisqu’on y parle de « Kopfprämien » (primes par tête) nous rappellent que pour pouvoir faire circuler les femmes entre différentes familles, les sociétés patriarcales européennes avaient mis au point le système de la dot. Dot dont le prix était proportionnel à l’ascension sociale (hypergamie) que la femme allait opérer par le biais du mariage. Si ces pratiques sont maintenant tombées en désuétude dans la plupart des cercles de la vie civile, nous sommes bien obligées de constater que la dot a fait son retour dans les sphères professionnelles des académies suisses. Et que le succès n’était pas forcément au rendez-vous, comme par exemple en 2002-2003 à l’UNIL, puisque ces primes ne 5 L’augmentation du nombre de places dans les crèches, qui contribuera à une amélioration des infrastructures existantes, ne parviendra pas à répondre à toutes les demandes de la communauté universitaire. De ce fait, seules les personnes dont les enfants sont pris en charge sur leur campus verront les conditions de la conciliation entre leur vie professionnelle et leur vie privée améliorée. Pour que l’effet des crèches puisse être considéré comme un instrument structurel de promotion des femmes, il faudrait qu’il s’adresse à une large majorité des parents et plus seulement à une minorité d’élu.e.s. 5 Reunil : Fassa-Kradolfer suffirent pas à faire entrer cette année-là, des femmes au sein du sérail (ou de la tribu), aucune femme n’ayant été nommée sur un poste professoral stable. Les crèches du module 3 renvoient le plus clairement les femmes à la maternité et bien qu’il soit spécifié, dans un cahier présentant le premier PFE que « […] mères et pères assument ensemble la garde des enfants » (Widmer et Lischetti, 2003 : 28), celle-ci semble toutefois concerner avant tout les femmes : « Lorsque les places de crèches existent en nombre suffisant, les femmes envisagent plus volontiers de fonder une famille, car elles savent qu’elles pourront poursuivre en même temps leur carrière professionnelle. En mettant sur pied de telles structures d’accueil, les universités contribuent donc activement à encourager la relève féminine en évitant aux femmes de devoir interrompre leur parcours professionnel » (2003 : 28). Même si en 2003, comme le montre la première des citations ci-dessus, l’idée que les homme participent à la garde des enfants était affirmée, on peut lire sur la page web, créée en 2008 sur le site de la CRUS pour présenter le troisième PFE (2008-2011) que : « […] des structures d'accueil flexibles ont été mises sur pied (p. ex. pour répondre aux besoins des mères en cas de maladie, de participation à une séance ou à un congrès, etc.) […] »6 (nous soulignons). Ceci est d’autant plus choquant que l’on parle abondamment des problèmes rencontrés par les Dual Career Couples (DCC) dans le troisième PFE et que des injonctions fortes sont faites pour mettre sur pied des instruments permettant la poursuite des carrières des deux membres du couple. Or, le fait de considérer, en 2008, que les structures d’accueil répondent aux besoins des mères en oubliant de faire allusion aux pères révèle bien qu’une certaine vision de la famille et du couple perdure, vision qui renvoie encore et toujours les femmes à la sphère privée (même dans les programmes de soutien aux académiciennes) et les hommes au domaine public. Loin de nier la nécessité de structures d’accueil pour les enfants et/ou d’instruments qui permettent de faciliter la conciliation entre sphères professionnelle et familiale, nous constatons ainsi que les problèmes que les femmes peuvent rencontrer dans leurs parcours académiques sont ainsi inlassablement rapportés à des problèmes de conciliation, alors que cela n’est presque jamais le cas pour les hommes et/ou comme nous le verrons ci-dessous, qu’une part importante des femmes choisissent de privilégier leur vie professionnelle au détriment de leur vie privée. Le deuxième module destiné aux programmes de mentoring attirera ici particulièrement notre attention. En effet, partant du constat que pour permettre aux femmes de poursuivre dans les carrières universitaires, il faut leur offrir du coaching, des offres de conseils et de formations, et favoriser leur mise en réseau, ce module appelait à la soumission de projet de mentoring par la communauté académique. Nombre de ces projets reprennent des catégories bien connues de mentoring : - One-to-one (mentoring individuel) : constitution de paires de mentor/menta (enseignant.e-chercheur.e senior) et mentee (femme de la relève). - Some-to-one (mentoring de groupe) : un groupe de mentees est encadré par un.e mentor/menta. - Peer mentoring : mise en réseau de femmes de la relève qui mettent en commun leurs expériences. 6 http://www.crus.ch/information-programmes/egalite-des-chances.html?L=1 [page consultée le 15 mai 2009] 6 Reunil : Fassa-Kradolfer - Offre de cours et/ou de conférences pour soutenir les jeunes chercheuses à différentes étapes de leur carrière académique ou les sensibiliser aux questions liées à l'égalité. - Allocation de bourses pour des décharges pour les activités d’enseignement afin de permettre à certaines femmes de se consacrer à la rédaction de la thèse ou d’articles scientifiques et rattraper ainsi leur supposé retard. D’autres projets s’adressent aux collégiennes du secondaire II, pour leur faire connaître des disciplines où le nombre de femmes est faibles (notamment mathématiques, informatique et sciences naturelles), par le biais de journées d’information ou de stages dans des équipes de recherche. Finalement, certains projets ont permis la mise en place de banques de données ou de plateformes de communication (Femdat, une banque de données des expertes en Suisse, et le LIEGE, Laboratoire interuniversitaire en Etudes Genre), attestant ainsi d’une volonté de dépasser la logique d’un soutien individualisé à un certain nombre de femmes pour envisager la question des carrières de manière plus collective. Le retard des femmes Nous constatons ainsi, tant dans les instruments du PFE que dans la recherche que nous avons menée à l’UNIL, que les réponses aux inégalités observées au sein des universités se concentrent sur des mesures de « rattrapage » destinées aux femmes pour qu’elles puissent combler leur « retard », principalement en leur proposant de l’aide pour progresser dans leurs carrières ainsi que dans la conciliation entre vie professionnelle et vie familiale. Il est à cet égard extrêmement intéressant de noter qu’une large majorité des personnes que nous avons rencontrées s’accordent sur le fait que les limites d’âge doivent être flexibles pour les femmes, l’un.e des responsables des facultés, citant en exemple les Etats-Unis, où un enfant égale une année de « retard » sur le cursus normal. Cette référence montre en elle-même que le modèle normatif de la carrière professorale renvoie à la partition entre sphère privée et sphère publique, la première « débordant » ponctuellement, pour des raisons essentiellement liées à la maternité ou à l’éducation des enfants, sur la sphère professionnelle, et occasionnant ainsi des « retards » de carrière pour les femmes. Ces associations montrent aussi que les femmes sont considérées comme étant seules responsables du fonctionnement de la vie familiale et il s’agit dans cette optique de les rendre plus aptes à assurer la conciliation entre famille et travail. Le modèle existant, qui est celui qu’ont forgé les générations de professeurs masculins actuellement en exercice, n’est ainsi jamais fondamentalement mis en cause. Si la figure de l’excellence précoce, telle qu’elle a été mise en évidence par Goastellec et al. (2007) au sujet des postes de professeur.e.s boursiers.ières du FNS est présentée comme une solution aux carrières féminines, force est de constater que ce type de profil est relativement peu fréquent7. Il s’agit de personnes réalisant des carrières linéaires et enchaînant sans interruption le doctorat, des recherches post-doctorales et des postes de professeur.e.s d’abord précaires, puis stables au début de la trentaine. Ce type de 7 Il n’est par ailleurs que peu compatible avec les études en sciences humaines dans lesquelles la durée des thèses excède largement celle qui est le fait des sciences de la vie ou de certaines des filières de droit. 7 Reunil : Fassa-Kradolfer carrière est considéré par certain.e.s décideurs.euses comme permettant aux femmes de faire carrière à condition qu’elles acceptent d’avoir des enfants après leur nomination sur des postes stables. Or, nous avons constaté dans notre recherche sur la relève académique à l’UNIL (Fassa et al., 2008) que les femmes sont engagées plus âgées que les hommes aux postes d’assistant.e.s diplômé.e.s, de premiers.ières assistant.e.s, de MA, de MER et de professeur.e.s, les retards se cumulant au cours de la carrière. De plus, les femmes restent moins longtemps à l’Unil que les hommes et elles y accomplissent des carrières plus « basiques » c’est-à-dire qu’elles sont plus nombreuses à quitter cet environnement professionnel après quelques années d’assistanat et à se réorienter vers d’autres activités professionnelles. Il faut encore ajouter à cela que les femmes travaillant à l’Unil changent plus souvent que les hommes de taux d’activité et qu’elles sont en général moins satisfaites de leur cadre professionnel que celles qui sont employées hors de l’université, alors que les hommes qui travaillent dans l’Alma Mater se déclarent très contents, plus contents que les hommes employés hors de l’Unil. Nos résultats montrent que l’exclusion des femmes au sommet des hiérarchies n’est pas uniquement influencée par des facteurs individuels mais aussi par des facteurs d’ordre organisationnels et structurels. A vouloir « apprendre » aux femmes, par le biais de programmes de mentoring, à mieux gérer individuellement leur carrière et à mieux comprendre les ficelles du métier de chercheuse, il nous semble par conséquent que l’on passe sous silence nombre d’éléments qui les freinent dans leurs parcours et sur lesquels elles n’ont individuellement aucune prise. Femmes, maternité, carrière et conciliation Afin de mieux comprendre pourquoi des mesures individuelles n’arriveront que très difficilement à avoir des effets sur la situation d’exclusion des femmes des postes les plus élevés des hiérarchies académiques, nous allons nous revenir de manière plus détaillée sur la question de la conciliation entre sphère privée et sphère professionnelle. L’image des femmes dans l’institution universitaire reste fortement attachée à un modèle normatif qui associe les femmes, même professeures, à la sphère privée (et les décrit prioritairement comme des mères actives ou potentielles), et les hommes (même s’ils sont pères) à la sphère publique. Parallèlement au rattachement des femmes à la sphère privée, la forte implication de la charge de professeur.e ordinaire dans la sphère publique est affirmée avec les obligations de participer à de nombreuses séances, d’appartenir à des réseaux ou encore de fournir des activités de service. Ces éléments sont relevés à plusieurs reprises comme pouvant poser problème dès lors que des enfants doivent être pris en charge. Cette vision du monde fait reposer tout entière la question de la conciliation vie professionnelle – vie familiale sur les femmes, exigeant de celles qui visent une carrière académique qu’en plus des autres compétences liées à la carrière professorale, elles soient des gestionnaires hors pair de leur temps et exigeant des compagnes des hommes dans la même situation qu’elles organisent leur vie et leur carrière en fonction de celle de leur compagnon. Cette vision du monde renvoie aussi les femmes à leurs corps et associe leur appartenance biologique à un inévitable et évident projet de procréation. Cette explication a ceci de particulier qu’elle considère finalement les inégalités dans l’accès aux postes professoraux comme l’effet des 8 Reunil : Fassa-Kradolfer potentialités ou des limites qu’impliquerait le sexe des femmes. Les autorités décanales font ainsi très largement référence aux femmes du personnel académique en les décrivant avant tout comme des mères potentielles (la question de la paternité potentielle des hommes n’est que très rarement évoquée – une seule occasion), les difficultés de la carrière académique étant envisagées en partant de cette vision. Dans cette logique, il semble évident : • premièrement, que toute femme est mère, même si ce n’est que virtuellement ; • deuxièmement, que la maternité réelle ou supposée engendre toute une série de difficultés qui se traduisent principalement par le fait que les femmes sont moins disponibles que les hommes pour leur métier, puisqu’elles sont par ailleurs chargées de gérer la sphère familiale ; • troisièmement, que cet état de fait implique à son tour des retards de carrières qui ne peuvent être vraiment comblés, si ce n’est grâce à des « mesures correctives » (Fraser, 2005), telles que celles prônées par les programmes de mentoring. La récurrence et la convergence de tels propos sont extrêmement importantes et ils semblent s’appuyer sur une logique rigoureuse qui ne souffrirait pas d’exceptions. Cette logique est par ailleurs assez unanimement partagée par les membres de la relève en ce qui concerne la source principale des inégalités pour ne pas être questionnée en tant que telle. Ses soubassements ne sont que rarement discutés même si, dans les faits, ils ne correspondent pas à la situation des femmes travaillant à l’Unil et sur lesquels nous reviendrons ci-dessous. Ils sont particulièrement bien illustrés par la citation cidessous : « Je dis que pour un prof, je vois que les femmes sont moins disponibles, je le vois comme homme, les femmes sont moins disponibles pour les services, alors qu’elles ont des tas de raisons d’être plus ouvertes à l’aspect ‘services’. Elles sont moins disponibles quand elles ont des enfants en particulier, mais peut-être simplement parce que le modèle que j’ai dans la tête du service c’est un homme à 120 pourcent qui est tout le temps là, qui est au bureau, et [pour qui] la vie de famille passera après les services » (B1). Les associations faites ici montrent que pour être « professorable », il faudrait organiser l’ensemble de sa vie autour de ses obligations professionnelles. Or la qualité de mère qui s’attache à toutes les femmes – et ceci qu’elles aient ou non des enfants, qu’elles envisagent ou non cette éventualité – rend cette qualification impossible. Un tel discours a des effets sur le déroulement des carrières des femmes, d’autant plus qu’il est produit par des personnes susceptibles de faire partie des commissions évaluant les dossiers. Si nous nous penchons en détail sur la situation des femmes à l’UNIL, à l’aide des réponses que nous avons obtenues à notre questionnaire (N=1008), nous constatons que les femmes travaillant à l’Université ne sont aussi des mères que dans une proportion très minime en comparaison avec les moyennes nationales et que par conséquent, l’explication de leur moindre succès professionnel ne peut donc se trouver dans ce facteur. En effet, seules 37.2% des 427 femmes de notre population ont un ou plusieurs enfants, alors que les hommes sont pères dans une proportion bien plus importante (51.2% ; N=566). Dès lors, et même si, comme le dit une personne interrogée : « Je ne parle pas des femmes célibataires qui sont sans doute des hommes, de ce point de vuelà », la maternité ne peut être invoquée comme freinant toutes les carrières. De plus, loin de subordonner leur carrière professionnelle à des choix de vie familiaux, les femmes disent significativement plus que les hommes faire dépendre leurs choix de vie privée 9 Reunil : Fassa-Kradolfer des impératifs de la carrière : à la question « Envisagez-vous d’en avoir [des enfants] ? » qui tentait de mesurer la perception de la relation entre carrière et famille, les femmes disent de manière significativement plus nette que les hommes (Khi2(1) =17.95 ; N=612 p<.001) modifier leurs projets de parentalité pour des raisons professionnelles (« Oui, mais plus tard pour des raisons professionnelles » : 17.6% ; « Non, pour des raisons professionnelles » : 3%), (respectivement 9% et 2.1% pour les hommes). Ces résultats montrent que, loin de faire dépendre leur vie professionnelle de leur vie privée et familiale, les femmes de l’Unil construisent plus que les hommes des stratégies professionnelles qui tentent d’adapter leur vie privée aux impératifs de la profession d’universitaire. Ils suggèrent aussi une sensibilité accrue des femmes à l’articulation entre vie professionnelle et vie privée, sensibilité qui se traduit par les réponses données à la question touchant à la perception de la relation entre vie de couple et accomplissement professionnel. Si les répondant.e.s considèrent très majoritairement le « fait de vivre avec une ou des autres personnes » comme un « avantage » (respectivement 84% des hommes et 77.8% des femmes), les femmes sont significativement (Khi2(1)=5.79 N=925 p=.016) plus divisées que les hommes sur cette question. Il y a donc lieu de constater que les femmes de notre population perçoivent avec plus d’acuité que les hommes les difficultés de concilier vie familiale et vie professionnelle et que cette dernière influe grandement sur leurs choix dans le domaine privé. De tels résultats ne permettent pas pour autant de conclure que la conciliation travailfamille ne pèse pas plus sur les épaules des femmes que sur celles des hommes. Nos résultats montrent qu’au contraire les femmes paient un tribut bien plus lourd que les hommes de ce point de vue : 18.4% des femmes interrogées disent effectuer la plupart des tâches, les hommes dans la même situation ne consistant qu’en une toute petite minorité (2%) et une forte proportion des hommes reconnaît que la plupart des tâches sont effectuées par leur conjointe (21%). La prise en charge des enfants est le domaine où les différences sont les plus nettes et les réponses des personnes interrogées montrent que les hommes bénéficient largement du travail de leur conjointe alors que les femmes ne peuvent le faire. L’éducation des enfants ne semble pas faire partie de la vie des hommes universitaires, à tel point que 91% d’entre eux ne prennent part aux activités éducatives que pour 1/4 ou moins du temps, 1.8% consacrant plus de la moitié de leur temps à ces activités. L’investissement des femmes est de nature différente. Une grande proportion d’entre elles (31.3%) disent prendre en charge les enfants pour moitié, celles qui s’en occupent moins étant toutefois plus nombreuses (40.3%) que celles qui s’en occupent plus (28.4%). De telles différences pointent le moindre investissement des hommes dans la sphère familiale mais aussi le report de ce type de charges sur leur compagne, les femmes devant salarier une personne externe si elles ne peuvent consacrer plus de la moitié de leur temps à leurs enfants. En effet, près de la moitié des hommes qui travaillent ou étudient comme doctorants à l’Unil (47.5%%) font appel à leur compagne pour prendre en charge leurs enfants pour plus de la moitié du temps. Les femmes jouissant d’une telle aide de la part de leur compagnon sont, par contre, très nettement minoritaires (6.3%). 10 Reunil : Fassa-Kradolfer Problèmes structurels, réponses individuelles Sans nier l’apport que les programmes de mentoring peuvent apporter aux carrière féminines (notre groupe de travail est né de rencontres réalisées dans ce cadre-là et notre projet a bénéficié du soutien du LIEGE), force est de constater que la réalisation d’un véritable gender mainstreaming ne sera possible qu’au prix d’une déconstruction des représentations de la carrière académique. En effet, les récits de carrière que nous avons entendus ont mis l’accent sur des obstacles et facilitations de toute nature mais ceux qui se mettent sur le chemin des femmes sont plus nombreux et tiennent à leur sexe. Les discriminations dont il a été fait mention sont pour la plupart dues à une perception des femmes qui les rattachent encore prioritairement à la sphère privée et qui conçoit leur investissement professionnel comme complémentaire à leur investissement privé. Leur carrière, au regard des normes universitaires, est finalement conçue comme atypique. L’importance du thème de la conciliation dans l’ensemble des discours en témoigne non seulement mais induit aussi des pratiques organisationnelles de par sa performativité. Nos propos sont loin de mettre en cause la réalité des difficultés de la conciliation et l’importance des tensions auxquelles donne lieu l’impératif de faire jouer les implications professionnelles avec les implications privées. Ces tensions sont fortes et elles créent, comme le disent les répondant.e.s des obstacles dans les carrières féminines et dans certaines des carrières masculines. Elles sont perceptibles par la plupart de nos interlocuteurs.trices institutionnel.le.s qui tentent de trouver des solutions pour les lever, tout au moins partiellement. Plusieurs des responsables des Facultés de l’UNIL ont d’ailleurs fait état de leur volonté de « construction de l’égalité » (Laufer, 2005) en envisageant la possibilité de mesures de rattrapage pour compenser le temps consacré à la maternité. Elles vont d’une interprétation souple des limites d’âge à un calcul qui équivaut un enfant par une année de « retard » ou un article en moins. Cette attitude, louable car elle permet d’envisager des actions pour promouvoir l’égalité, n’est que rarement mise en relation avec la paternité et ses obligations. Une seule personne, parmi les responsables facultaires, dit pouvoir envisager que ces mesures soient ouvertes indifféremment aux deux sexes. Ce fait est regrettable car il maintient l’association femme-maternité-sphère privée et fait subsister les raisons elles-mêmes qui peuvent être à la source de la moindre confiance accordée aux femmes. Il semble paradoxal que cette question ne soit prise au sérieux et que les sacrifices demandés aux femmes ne soient évalués à leur juste prix, que sous la pression des revendications d’hommes voulant vivre dans un monde plus égalitaire. La « communauté d’intérêt » est celle qui traditionnellement régi les carrières scientifiques et elle est tout aussi traditionnellement très majoritairement masculine. Cette caractéristique extérieure à la profession intervient dans le dessin des trajectoires et construit un plafond de verre sur le chemin des femmes, dessinant de plus une voie bornée par des parois de verre. Les mécanismes de cette exclusion de la course aux postes les plus prestigieux ne sont toutefois pas explicites et les responsables des Facultés justifient le faible nombre de femmes aux postes professoraux par des éléments qui renvoient justement au système de genre et les dédouanent de la responsabilité organisationnelle que porte l’Unil. Le discours sur la conciliation travail-famille semble être un de ces cache-genre et il a ceci de particulier qu’il sert à définir des politiques tendant à construire plus d’égalité. On ne saurait nier, comme le remarque Laufer (2005), que ce discours reflète une part de réalité, tant il est vrai que « le poids des 11 Reunil : Fassa-Kradolfer modèles de socialisation et la question des rôles familiaux » a pour effet de construire de plus grandes difficultés lorsqu’il s’agit de circonvenir les obstacles de la carrière professorale8. Mais un tel discours a aussi pour résultat de « négliger l’importance d’autres processus qui sont, eux, localisés dans les organisations, et qui (à travers les processus de recrutement et de carrière notamment) assignent aux femmes des rôles et des statuts organisationnels exigeant soumission et dépendance » (Laufer, 2005 : 34). La focalisation faite sur les difficultés de la conciliation travail-famille participe ainsi, de notre point de vue, à décharger les membres de ces organisations professionnelles de la responsabilité des politiques de recrutement et du maintien de critères qui peuvent être à la source de discriminations directes ou indirectes9. En faisant reposer les différences que l’on peut constater dans les recrutements sur des facteurs extérieurs aux Facultés et à l’université, les membres des autorités décanales se délestent d’un poids qui pourrait inciter à la révision des critères de recrutement et de construction de la carrière. Cette perception est partagée par les membres de la relève; sa prépondérance évite que le modèle normatif de la carrière universitaire ne soit questionné et ses normes discutées. Dans ce registre, l’explication des inégalités en termes de genre est ramenée à une question de sexe et ce sont les femmes, du fait des limitations – ou des potentialités – de leur corps qui finissent par être responsables de leurs « retards de carrière ». Conclusion : pistes pour rompre avec l’idée du « retard » La situation décrite combine des inégalités s’inscrivant dans les différents niveaux de la réalité sociale, dans le système de genre, dans l’organisation professionnelle qu’est l’Unil et, au niveau individuel, elle induit des « choix » très cadrés selon le genre des personnes. Elle est connue des acteurs/trices de l’Unil et amène les femmes qui travaillent à l’Unil à exprimer une moindre satisfaction professionnelle que leurs collègues masculins. Elle les conduit aussi à imaginer moins volontiers leur avenir comme professeure et à adopter des stratégies (y inclus de rupture) différentes selon qu’elles considèrent que l’égalité passe par l’un des trois modèles décrits ci-dessous. • Le premier modèle consiste dans le maintien du statut quo ; ce modèle masculin du savant désincarné et sans inscription autre que la science exige des femmes qu’elles s’adaptent ; dans ce cadre, elles doivent travailler plus que les hommes et faire des sacrifices plus importants pour obtenir des résultats similaires. C’est en adéquation avec ce modèle qu’une de nos répondantes a pu déclarer que : Mais le fait d'être une femme, tu dois toujours t'associer avec soit un prof ou soit un homme. Donc moi je me suis toujours associée avec un partenaire homme pour arriver au bout de nos 8 Le rapport écrit par Roux, et al. il y a plus de 10 ans, montrait brillamment que « …la conjugalité et la famille constituent un obstacle à la carrière féminine, tandis qu’elles soutiennent au contraire la carrière masculine » (1997 : 26). 9 « La discrimination indirecte utilise un critère, autre que l’un des critères prohibé par le droit communautaire pour fonder une différence de traitement, à l’encontre de personnes relevant d’un de ces critères. Le résultat est analogue à celui d’une discrimination directe mais à l’issue d’un processus différent. La discrimination indirecte est ainsi cachée par un critère neutre faisant écran. La discrimination indirecte se découvre en examinant les effets de la règle ou de la pratique. La discrimination indirecte est une discrimination en fait. » (Miné, 2003 : 8). 12 Reunil : Fassa-Kradolfer affaires. C'est une stratégie qui est quasiment nécessaire dans cet institut…pour réussir malgré tout. Donc, c'est quand même une barrière. Avoir des projets propres comme un homme, ce n'est pas possible, ça je ne crois pas que. Mais il faut accepter ça comme ça. Moi je n'ai pas de problème d'avoir quelqu'un devant, mais entre avoir quelqu'un devant et être complètement effacée, ça, c'est autre chose ! (F, 322). • Le second modèle vise l’intégration des femmes au sein de l’université mais conserve le même modèle normatif comme référence. Appréhendant les femmes comme des outsiders qui doivent bénéficier de mesures d’encouragement (telles que celle prônées par les PFE et les programmes de mentoring) pour rattraper leurs retards ou compenser leur atypicité, il maintient une forme d’essentialisation du genre. Un semblant d’égalité paraît reconstitué, mais il passe par la stabilisation d’une vision extrêmement sexuée des carrières… et de la vie. Ce second modèle peut par ailleurs créer du ressentiment car les corrections qu’il apporte ponctuellement isolent celles qui en bénéficient et peuvent les faire approcher comme des « bénéficiaires privilégiées d’un traitement de faveur immérité » (Fraser 2005 : 37) plutôt que comme des personnes à qui l’on donne leur dû. • Finalement, le troisième modèle affirme qu’une véritable politique d’égalité ne sera possible qu’au prix d’un changement fondamental de paradigme (par ailleurs aussi revendiqué par certains hommes) et d’une mise en cause des normes nées de l’icône wébérienne du savant. Il va sans dire que la pérennité du premier modèle nous semble inacceptable dans une perspective de construction de l’égalité. Il inscrit en effet les femmes dans des situations de dépendance et de soumission et les contraint à ruser pour se faire (re)connaître et pour valoriser leurs mérites. Dans ce cadre, l’excellence ne peut jamais se conjuguer au féminin et en faire preuve revient à accepter de se nier dans des différences culturelles qui existent et marquent les trajectoires. Quant au second modèle, il correspond à ce que Fraser décrit comme une « redistribution corrective » visant « à remédier à l’injustice économique de genre [en] s’efforçant de garantir aux femmes une part équitable des emplois et des formation existants, sans toucher ni à la nature ni au nombre de ceux-ci » (2005 : 37). Se présentant comme un rééquilibrage des sexes dans les couches supérieures des hiérarchies, ces corrections ne s’attachent pas à la question de la reconnaissance ; elles ne prennent pas en compte l’injustice culturelle faite aux femmes et ne valorisent pas la féminité. Certaines des critiques faites à ces timides tentatives d’ « action positive » montrent à l’envi que ces redressements laissent intact « le code binaire du genre » et peuvent donner naissance à de nouvelles formes de nonreconnaissance et à de nouveaux dénis de compétences. Le troisième modèle, auquel va notre faveur car il est seul susceptible de servir de base à la diversité et de souche à une véritable égalité implique lui que les critères et les normes de la carrières soient réévalués de façon à prendre du large avec les références maculinistes implicites qui lui ont donné naissance. Il s’agit ici, dans l’optique de Fraser, d’une remédiation transformatrice dont elle dit qu’elle « vise les causes profondes » et qui passe par la déconstruction et tend « à mettre fin au non-respect en transformant la structure 13 Reunil : Fassa-Kradolfer d’évaluation culturelle sous-jacente. En déstabilisant les identités et la différenciation existantes, ces remèdes ne se contentent pas de permettre au respect de soi des groupes actuellement non respectés de se développer ; ils changent le sens de soi de chacun.» [sic] (Fraser 2005 : 31). Bibliographie Bachmann, R., Rothmayr, C., & Spreyermann, C. (2004). Evaluation Programme fédéral Egalité des chances entre les femmes et les hommes dans le domaine universitaire. Rapport sur la mise en oeuvre et l'efficacité du programme de 2000 à 2003. Berne: OFES. Bourdieu, P. (1984). Homo Academicus. Paris: Minuit. Bourdieu, P., & Passeron, J.-C. (1964). Les héritiers. Paris: Minuit. CSST (Conseil suisse de la science et de la technologie). (2001). L'encouragement de la relève universitaire dans les hautes écoles suisses (No. document CSST 1/2001). Berne: Conseil suisse de la science et de la technologie. Fassa, F., Kradolfer, S., & Paroz, S. (2008). Enquête au royaume de Matilda. La relève académique à l’Université de Lausanne. Genève et Lausanne: PAVIE Working Papers (Vol. 1). Felli, R., Goastellec, G., Baschung, L., & Leresche, J.-P. (2006). Politique fédérale d'encouragement de la relève académique et stratégies institutionnelles des universités. Evaluation du programme "relève" de la Confédération (20002004). Lausanne: Observatoire Science/politique/société. Université de Lausanne. Fraser, N. (2005). Qu'est-ce que la justice sociale? Reconnaissance et redistribution. Paris: La découverte. Goastellec, G., Leresche, J.-P., Moeschler, O., & Nicolay, A. (2007). Les transformations du marché académique suisse. Evaluation du programme Professeurs boursiers FNS. Berne: Fonds national suisse. Laufer, J. (2005). La construction du plafond de verre: le cas des femmes cadres à potentiel. Travail et emploi, 102, 31-44. Miné, M. 2003. "Les concepts de discrimination directe et indirecte", Lutte contre la discrimination: Les nouvelles directives de 2000 sur l’égalité de traitement, Trèves 31 mars-1er avril 2003, http://www.era.int/web/fr/resources/5_1095_2955_file_fr.4200.pdf (consulté mai 2008). Palomba, R., & Menniti, A. (Eds.). (2001). Filles de Minerve. Rome: Institut de recherche sur la population et les politiques sociales. Rehmann, I. (2004). Helsinki-Gruppe. Frauen in der Wissenschaft. Länderbericht Schweiz. Bern: Bundesamt für Bildung und Wissenschaft. Roux, P., Gobet, P., & Lévy, R. (1997). La situation du corps intermédiaire dans les Hautes Ecoles Suisses. Berne: Conseil suisse de la science. Theurillat, G., & Jufer, N. (2006). L'égalité de A à Z. Lausanne: Bureau de l'égalité (UNIL). Widmer, M., & Lischetti, B. (2003). Programme fédéral "Egalité des chances" 20002003. Berne: CUS. 14 Parcours de genre dans les institutions Filières scientifiques et genre !"#$%&%'()*+,-.+/0 12345675'5&'(3"5&358'95'#:;963%4"2& 0<573<5675'%8823";5'%6'0*=(*>'?&"@578"4;'95'0%5&>'A7%&35 BC845@%&2@"3DE%&%922CF7' !"#$%&#$"'()&)$'#*+,*,)-'*)*."/*)01$'+*'$*-,( !"#$%&'()#*+(),-#'./012#*3450/0/#*6*!"(7080/#*9450/0/#*:#*)"4'()#*;--07#%-%#))#*)#<*90))#<*= ,6$2679:<6"> '5&' A7%&35>' #58' F"##58'82&4' 5&47;58' 9%&8 ' 426458 '#58 'F"#"G758' 95' #H5&85"I&5J5&4' 86K;7"567''54'75K7;85&45&4'#%'J%$27"4;'958'5FF534"F8>'LMNC'*##58'82&4'J%$27"4%"758'5&'#544758'OPQ>QNR'54' 83"5&358'<6J%"&58'OMP>SNRC'T58'F"##58'2&4'F%"4'958'K573;58'75J%7U6%B#58'5&'J;953"&5>'LV>WN>'54'5&' 972"4>'MXN>'85345678'%6475F2"8'32&8"9;7;8'32JJ5'J%836#"&8C'Y%"8'9%&8'#5'8534567'958'I7%&958';32#58' 9H"&I;&"5678>'5##58'75845&4'47G8'J"&27"4%"758'54'75K7;85&45&4'5&'SZZP>'SMN'958'5FF534"F8CW''T5'4%6['958' F"##58'@%7"5'85#2&'#5'J295'95'7537645J5&4'958';32#58'\'SMN'9%&8'#58'F27J%4"2&8'6&"@578"4%"758>'SXN' 9%&8'#58';32#58'753764%&4'%6'&"@5%6'B%33%#%67;%4>'SSN'9%&8'#58';32#58'753764%&4'867'#5'K72I7%JJ5' 958'3#%8858'K7;K%7%42"758'83"5&4"F"U658C'',688">'#5'4%6['95'F"##58'@%7"5'9H6&5';32#5']'#H%6475'\'WXN']' #H^>'WPN']'#H*32#5'05&47%#5>'J%"8'SV>XN']'#H/-(,SC'',6$2679H<6">'#H*_A'K7;85&45'#%'K%74"36#%7"4;'5&' 32JK4%&4 ' #5 ' K#68 ' I7%&9 ' &2JB75 ' 958 ' F"##58> ' QQN ' 5& ' SZZP> ' 32JK%7%4"@5J5&4 ' ] ' 9H%64758 ' ' ;32#58' 9H"&I;&"5678C' TH;32#5'_2#`453<&"U65'A;J"&"&5>'a'*_Ab*32#5'9H"&I;&"5678'c'95K6"8'#%'J"["4;Q>'%';4;'37;;5' 5& ' WdSL ' K%7 ' 6&5 ' F5JJ5 ' "&I;&"567bK"2&&"G75 ' Y%7"8bT26"85 ' _%7"8 ' 9%&8 ' 6&5 ' ;K2U65 ' 2e ' "# ' ;4%"4' U6%8"J5&4'"JK288"B#5'K267'6&5'F"##5'95'K26786"@75'#58';46958'83"5&4"F"U658'54'95'95@5&"7'"&I;&"567C' T%' 37;%4"2&'95' 35445' ;32#5'%@%"4'K267 'B64'95' K57J54475'#H%33G8'958 'F5JJ58 ']'#H"&96847"5'54'%6[' 3%77"G758'$68U65'#]' '7;857@;58'%6['<2JJ58C'*##5'%'F27J;'K5&9%&4'Md'%&8'958'F5JJ58'"&I;&"5678' %@%&4'95'8H26@7"7']'#%'J"["4;'5&'WddXC'15K6"8'#H26@574675'95'#H;32#5'%6['I%7f2&8'#58'5FF534"F8'958' F"##58'2&4'9"J"&6;'F2745J5&4'9G8'#%'K75J"G75'%&&;5'95'#%'J"["4;'\'MQN'5&'WddX'K75J"G75'%&&;5'95'#%' J"["4;>'LZN'5&'WddL>'QSN'5&'WddP>'QPN'5&'SZZZ>'QQN'5&'SZZX'54'QQN'5&'SZZPC 1G8 ' U6H"#8'2&4 ' ;4;'%6427"8;8 ']' `'5&4757> '#58'I%7f2&8' 2&4 ' 75K7"8' #% 'K#%35'92J"&%&45 'U6H"#8' 2336K5&4'<%B"465##5J5&4'9%&8'#58';32#58'9H"&I;&"5678'\'5&'SZZP'#H;32#5'32JK75&9'QQN'95'F"##58'54' MPN'95'I%7f2&8C'02JK%7%4"@5J5&4']'9H%64758';32#58'54'F27J%4"2&8'453<&"U658'54'83"5&4"F"U658>'3H584' #H*_A'U6"'32JK45'#5'K#68'I7%&9'&2JB75'95'F"##58'OQQN'32&475'SMN'958'F"##58'867'#H5&85JB#5'958' ;32#58'9H"&I;&"5678'5&'SZZPRC'057458'#%'K72K274"2&'958'F"##58'OQQN'95K6"8'SZZXR'75845'86K;7"5675']'#%' K#6K%74 ' 958 ' ;32#58 ' 9H"&I;&"5678> ' J%"8 ' "# ' &H5JKg3<5 ' U65 ' #H;32#5 ' &:% ' K%8 ' 7;688" ' ] ' 7;%#"857 ' 6&' W =%KK274>'SZZd>'!"##$%&$'&()*+,-%&%.*&#$&/0$1"-&2$"()#"'45&2$"/,#$&6$-%$"(-$1$-'&%.74*"$.*>'Y"&"84G75'95' #:;963%4"2&'&%4"2&%#5C S -245'9H"&F27J%4"2&>'ZMCSSC Q ',@53'#5'K%88%I5']'#%'J"["4;'5&'WddX>'TH*32#5'_2#`453<&"U65'A;J"&"&5'3<%&I5'#5'&2J'54'95@"5&4'a'TH*_Ab*32#5' 9H"&I;&"5678'cC' 7537645J5&4'K%7"4%"75C'h6"'82&4'358'F"##58'54'358'I%7f2&8'U6"'5&475&4']'#H;32#5'i 1%&8'354'%74"3#5'&268'%##2&8';469"57'#58'J;3%&"8J58'54'#58'F%345678'U6"'K26885&4'#58';#G@58>' F"##58'54'I%7f2&8>']'85'K7;85&457'%6['32&32678'54']'"&4;I757'6&5';32#5'9:"&I;&"5678'i _267 ' 45&457 ' 95 ' 75&975 ' 32JK45 ' 95 ' #5678 ' J24"@%4"2&8> ' &268 ' %@2&8 ' 3<2"8" ' 9H;469"57 ' #58' 47%$5342"758 ' 958 ' ;#G@58'\ ' U65#8 ' 5&$56[ ' #58 ' K26885&4b"#8 ' ] ' 85 ' K7;85&457 ' %6[ ' 32&32678'i ' _564b2&' 9"84"&I657'#58'J24"@%4"2&8'958'I%7f2&8'95'35##58'958'F"##58'i' 1%&8'6&'K75J"57'45JK8>'&268'&268'%44%3<572&8']'%&%#`857''#H;@2#64"2&'95'#%'J"["4;'9%&8'#58' ;32#58'9H"&I;&"5678'54'&268'J54472&8'%335&4'867'#H;@2#64"2&'95'#%'J"["4;']'#H5[b*32#5'_2#`453<&"U65' A;J"&"&5C''1%&8'6&'956["GJ5'45JK8>'&268'K7;85&4572&4'#58'7;86#4%48'95'&2475'5&U6g45'K274%&4'867'#58' J24"@%4"2&8']'"&4;I757'6&5';32#5'9H"&I;&"5678C' 23456789:;:<=9)>8)?18@A*B=?8)4=?C:8BD9<EF8)G6H<9<98 *&'A7%&35>'#58';32#58'9H"&I;&"5678'2&4'#2&I45JK8';4;'958';32#58'7;857@;58'%6['I%7f2&8'54' 5##58'&5'85'82&4'26@57458'%6['F"##58'U65'4%79"@5J5&4C',#278'U65'#58'K75J"G758'a'I7%&958';32#58'c'2&4' ;4;'37;;58'%6'WVGJ5'8"G3#5>'#58';32#58'9H"&I;&"5678'&H2&4'32JJ5&3;']'8H26@7"7'%6['F"##58'U6H%6'9;B64' 96'SZGJ5' 8"G3#5>'86"45']'#%'K75J"G75'I65775'J2&9"%#5'U6"'%'K72@2U6;'6&5'I7%&95'K;&67"5'95'$56&58' <2JJ58 ' O#H*32#5 ' 05&47%#5 ' 95 ' _%7"8 ' 5& ' WdWP> ' #H/&84"464 ' -%4"2&%# ' 9H,I72&2J"5 ' 5& ' WdWd> ' #H*32#5' (6K;7"5675'9H;#5347"3"4;'5&'WdWd>'#H*32#5'(6K;7"5675'9H%;72&%64"U65'5&'WdSX>CCCRC'1H%6475'K%74>'#58' ;32#58'F2&9;58']'35445';K2U65'2&4';4;'426458'J"[458'\'#H*32#5'95'3<"J"5'95'Y%785"##5'OWdWPR>'#H*32#5' 95'3<"J"5'95'=265&'OWdWVR>'#H*32#5'95'3<"J"5'95'=5&&58'OWdWdR>'#H*32#5'95'3<"J"5'95'(47%8B267I' OWdWdR>'#H/&84"464'9H2K4"U65'OWdSZRC'Y%"8'358'26@5746758'&H2&4'K%8'K72@2U6;'6&'%FF#6['95'$56&58' F"##58'\'7%758'82&4'35##58'U6"'2&4';4;'%9J"858'9%&8'358';4%B#"885J5&48'54'5&3275'K#68'7%758'2&4';4;'#58' F5JJ58'9"K#jJ;58'"&I;&"5678'U6"'2&4'5[573;'#5'J;4"57C _267 ' K%##"57 ' 35445 ' 8"46%4"2& ' 54 ' F%@27"857 ' #H%33G8 ' 958 ' F"##58 ' %6[ ' ;46958 ' 54 ' %6[ ' 3%77"G758' 9H"&I;&"5678'9%&8'#5'J2&95'"&96847"5#>'$68U65'#]'7;857@;58'%6['<2JJ58>'6&5'F5JJ5'9"K#jJ;5>'5&' WdSS>'95'#H/&84"464'9Hk#5347"3"4;'95'l75&2B#5>'Y%7"5bT26"85'_%7"8>'U6"'%@%"4'@;36'9"FF"3"#5J5&4'8%' 8"46%4"2&'J"&27"4%"75'9%&8'35445';32#5>'9;3"95'95'F2&957>'5&'WdSL>'6&5';32#5'9H"&I;&"5678'7;857@;5' %6[ ' F"##58> ' #H*32#5 ' _2#`453<&"U65 ' A;J"&"&5C ' _5&9%&4 ' Md ' %&8> ' 35445 ' ;32#5 ' % ' F27J; ' 958 ' F5JJ58' "&I;&"5678'%@%&4'95'8H26@7"7'%6['I%7f2&8'54'95'95@5&"7'J"[45'5&'WddXC' Même si le pourcentage des filles dans les écoles d’ingénieurs augmente après la deuxième guerre mondiale, avec l’apparition de nouveaux secteurs et de nouvelles écoles, il ne dépasse pas 4% jusqu’en 1964. À partir de cette date leur proportion croît régulièrement passant de 7% en 1975, 11% en 1978, à 15% en 1981. À cette époque, les dernières grandes écoles non-mixtes s’ouvrent progressivement à la mixité : l’École des Ponts et Chaussées en 1962, l’École des Mines de Paris en 1969, et l’Ecole polytechnique en 1972. En 1986 les ENS d’ULM et de Sèvres fusionnent, entraînant une baisse très importante des filles admises dans les sections mathématiques et physique. Depuis 1984, le nombre de filles sur l’ensemble des écoles d’ingénieurs ne cesse d’augmenter ; mais il s’agit d’une augmentation modérée car leur proportion n’a jamais dépassé 30% : 17,5 en 1984 (7494 filles), 19,6 en 1989 ( 10633 filles), 22,6 en 1994 (16534 filles), 22,3 en 1998 (18467 filles), 23,1 en 2000 (20606 filles) et 25% en 2004 (25308 filles).4 L’Ecole Polytechnique Féminine (EPF) de Seaux qui, depuis sa création en 1925, était la seule école d’ingénieurs réservée aux filles, restait la dernière école d’ingénieurs non-mixte. En 1994, elle devient mixte en s’ouvrant aux garçons. Depuis, la proportion des filles a considérablement diminué. *&'WdSL>'#H*_A'%@%"4';4;'37;;5'K267'F27J57'6&"U65J5&4'958'F"##58C'15'WdSP']'WdQS>'5##5'%'F27J;' L'9"K#jJ;58'K%7'%&>'95'WdQQ']'WdQd>'X>V'9"K#jJ;58>'95'WdXZ']'WdXX>'M>S'9"K#jJ;58>'95'WdXL']'WdXd>' SZ>V'9"K#jJ;58C8'1%&8'#58'%&&;58'WdMZ>'#H;32#5'_2#`453<&"U65'A;J"&"&5'$265'6&'7j#5'"JK274%&4'\'5&' WdMX ' 5##5 ' F27J5 ' XLN ' 958 ' F5JJ58 ' "&I;&"5678 ' 9"K#jJ;58 ' 95 ' #H%&&;5 ' OWSM ' 867 ' SVWRC ' Y%"8 ' %@53' #H26@574675'958'%64758';32#58'9H"&I;&"5678'%6['F"##58'9%&8'#58'%&&;58'WdPZ>'35445'K72K274"2&'9"J"&65' 32&8"9;7%B#5J5&4'\'SXN'5&'WdPS'OWZQ'867'XSSR'54'856#5J5&4'LN'5&'WdVd'OWXQ'867'SdXMR9C'1%&8'#58' %&&;58'WddZ>'#5'&2JB75'95'3%&9"9%46758'B%"885'32&8"9;7%B#5J5&4>'F%"8%&4'37%"&975'K267'#H;U6"#"B75' F"&%&3"57 ' 95 ' #H;32#5 ' 54 ' %688" ' K267 ' 8% ' 7;K64%4"2&C ' TH%&%#`85 ' 958 ' 3%&9"9%46758 ' 958 ' F"##58 ' U6" ' 85' K7;85&4%"5&4']'#H;32#5''9%&8'#%'K;7"295'95'WdVZ']'WddX'J2&475'U65>'$68U6H]'WdVV>'#%'K72I7588"2&';4%"4' 32&84%&45'54'9;K%88%"4'VZZ'3%&9"9%46758>'J%"8']'K%74"7'95'WdVV'#5'&2JB75'95'3%&9"9%46758'32JJ5&35' ]'9"J"&657C'05445'B%"885'8H%335&465'%K7G8'WddZ'54'%445"&4'SSN'5&'WddQ'2e'WLS';#G@58'82&4'5&47;58']' #H;32#5>'K267'MQW'3%&9"9%46758'5&75I"847;58C'0H584'35445'B%"885'96'&2JB75'958';#G@58'U6"'%'K2688;' #H;32#5'5&@"8%I57'#%'J"["4;C' 15K6"8'WddW>'#H*32#5'_2#`453<&"U65'A;J"&"&5'%';I%#5J5&4'958'K72B#GJ58'9H"&8574"2&'95'358' 9"K#jJ;58C'*&'WddS>'WXN'95'#%'K72J24"2&'584'5&'753<573<5'9H5JK#2"'U6%475'J2"8'%K7G8'#%'8274"5'95' #H;32#5'54'SLN'%K7G8'<6"4'J2"8>'%#278'U65'#58'K72J24"2&8'95'WdVM']'WddW'%@%"5&4'4726@;'6&'5JK#2"' 472"8']'U6%475'J2"8'%K7G8'#567'8274"5'95'#H;32#5PC'TH;32#5'584'%688"'K7;2336K;5'K%7'#%'9"J"&64"2&'95'#%' K72K274"2&'95'F"##58'9%&8'#58'3#%8858'457J"&%#58'54'K%7'#567'K7;F;75&35'K267'#58'K72F588"2&8'95'#%'8%&4;' 54 ' #58 ' 3%77"G758 ' 32JJ573"%#58> ' %"&8" ' U65 ' K%7 ' #% ' J6#4"K#"3%4"2& ' 958 ' F27J%4"2&8 ' 9H"&I;&"5678 ' 5&' K72@"&35'54'958'37;%4"2&8'958'F"#"G758'6&"@578"4%"758'J2"&8'32m456858'U65'#H*_AC','35445';K2U65'#%' K#6K%74'958';32#58'9H"&I;&"5678'82&4'4263<;58C'*4%&4'6&5';32#5'K7"@;5>'92&4'#58'F7%"8'95'#%'832#%7"4;' X -245'9H"&F27J%4"2&'96'Y"&"84G75'95'#H*963%4"2&'-%4"2&%#5\'VPCWd>'dXCQZ>'dVCSd>'ZSCZQ>'ZQCLW>ZMCSSC l75#2&',C>WddS>'Y%7"5bT26"85'_%7"8'54'#58'9;B648'95'#H*32#5'K2#`453<&"U65'F;J"&"&5'OWdSLbWdXLR>':.##$'"-&2;0"%',"*$ & 2$&#;4#$/'*"/"'45&&nWdC L M Y%77`'0C>'SZZX>&<$%&=$11$%&"-(4-"$.*%5&>-$&*4?,#.'",-&*$%7$/'.$.%$5&_%7"8>'!5#"&5&2KC>'3"4C>'KCWZSC P 'A2&9%4"2&'*_A>'(532&9'5[573"35>'W57'2342B75'WddSoQW'%2m4'WddQ>'=%KK274'9H%34"@"4;C ;4%"5&4'47G8';#5@;8'54'92&4'VZN'958'7588267358';4%"5&4'%8867;58'I7p35']'#%'832#%7"4;'958';#G@58>'#H*_A' 7"8U6%"4'9H%@2"7'958'9"FF"36#4;8'F"&%&3"G758C'_267'#%'9"7534"2&'95'#H;32#5'"#'&H;4%"4'K%8'#%'U6584"2&'95' 9"J"&657'#5'&"@5%6'96'32&32678'9H5&47;5>'&"'95'9"J"&657'#5'&2JB75'958';#G@58C''.6@7"7'#H;32#5'%6[' I%7f2&8'%KK%7%"88%"4'%#278'32JJ5'#%'J5"##5675'82#64"2&'K267';@"457'#%'37"85';32&2J"U65C'' T%'9;3"8"2&'95'K%8857']'#%'J"["4;''584'K7"85'5&'WddXC'T5'8"I#5'*_A'584'32&857@;>'K%735'U6H"#'584'32&&6' 958'5&475K7"858'U6"'7537645&4'#58';#G@58>'J%"8'"#'&5'857%'K#68'9;3#"&;C'TH;32#5'95@"5&4'*_Abk32#5' 9H"&I;&"5678C'1G8'#%'K75J"G75'%&&;5'95'#H"&84%67%4"2&'95'#%'J"["4;>'#%'K72K274"2&'958'$56&58'F"##58' 5&47;58'5&'K75J"G75'%&&;5'%'9"J"&6;'47G8'7%K"95J5&4>'95'WZZN'958'F"##58'%@%&4'#%'J"["4;'5&'WddX' OWLS'5&'WddQR>'2&'584'K%88;']'LZN'5&'WddM'OPd'F"##58R>'K6"8'#%'3<645'%'32&4"&6;C'15K6"8'SZZX>'#H;32#5' %'84%B"#"8;'#5'&2JB75'95'F"##58']'QQNC 02JJ5&4'5[K#"U657'35445'J2"&975'K7;85&35'958'F"##58'9%&8'#58';32#58'9H"&I;&"5678'i'.&'&5' K564'32JK75&975'#5'3%8'95'#H*_A'U65'8"'2&'#5'75K#%35'9%&8'#5'32&45[45'95'#H5&85JB#5'958'5FF548'95'#%' J"["4;'9%&8'#5'8`84GJ5'832#%"75'54'9%&8'#5'3<%JK'K#68'8K;3"F"U65'958';32#58'9H"&I;&"5678C'T%'J"["4;' %'56'5&'5FF54'958'5FF548'32&47%84;8'\'9H6&5'K%74>'32JJ5'#H2&4'J2&47;' B5%6326K'9H%645678'O1676b !5##%4>'SZZX'q'!%695#24>'SZZM'q''A5#26r"8>'WddXR>'#%'J"["4;'%'26@574'95'&26@5##58'F"#"G758'%6['F"##58'54' #567'%'K57J"8'9H%3U6;7"7'958'9"K#jJ58'&26@5%6[C'*&'K%74"36#"57>'#%'J"["4;'%'75&96'K288"B#5'#H%33G8' 958'F"##58'%6['9"K#jJ58'9H"&I;&"567C'05K5&9%&4'3H584'K564bg475'%688"'#%'J"["4;'U6"'K564'5[K#"U657'#567' F%"B#5 ' K7;85&35> ' 5& ' 7%"82& ' 958 ' 27"5&4%4"2&8 ' 47G8 ' 9"FF;75&4"5##58 ' 958 ' F"##58 ' 54 ' 958 ' I%7f2&8 ' 9%&8' #H5&85JB#5'96'8`84GJ5'832#%"75'J"[45C'T58'753<573<58'2&4'5&'5FF54'J"8'5&';@"95&35'958'K<;&2JG&58' 84763467%6['9H"&;I%#"4;>'958'K72358868'95'9"837"J"&%4"2&8'54'958'F27J58'9H%642b8;#534"2&' '3<5r'#58' F"##58'5&'J"["4;C' _267'75&975'32JK45'95'#%'F%"B#5'K7;85&35'958'F"##58'9%&8'#58'F"#"G758'U6"'K7;K%75&4'%6'J;4"57' 9H"&I;&"567>'Y%7"5'1676b!5##%4V>'5[K#"U65'U65'#58'F"##58'2K45&4''K267'''#58'''27"5&4%4"2&8''26''K267''#58' 92J%"&58'2e''#%''K288"B"#"4;''95''a'32&3"#"57'c''#%''@"5''F%J"#"%#5''54''#%''@"5'K72F588"2&&5##5'%KK%7%s4' K#68'F%3"#5C'*##58';3%745&4'95'#567'3<2"['a'#58''3%77"G758'''U6"'#567''K%7%"885&4'"&32JK%4"B#58''%@53''#5' 9584"&' '823"%#' 'U6"'#567'85JB#5'"&32&4267&%B#5'cC'_267'#58'F"##58>'35'U6H5##58'32&8"9G75&4'32JJ5' a'75&4%B#5'c>'35'82&4'958'"&@584"885J5&48'';963%4"F8'9%&8' '#%' '9"7534"2&''958''F"#"G758' 'U6"'#567'82&4' 47%9"4"2&&5##5J5&4''9584"&;58'54'U6"'327758K2&95&4'%6['85345678'96'J%73<;'96'47%@%"#'U6"'5JK#2"5&4' K7;F;75&4"5##5J5&4 ' 958 ' F5JJ58C ' *##58 ' &H"I&275&4 ' K%8 ' U65 ' #H5&I%I5J5&4 ' 9%&8 ' #58 ' F"#"G758' 47%9"4"2&&5##5J5&4'J%836#"&58'7"8U65'9H5&47%s&57'K267'5##58'958'9"FF"36#4;8''a'9H"&8574"2&''823"%#5''54' K72F588"2&&5##5'c>'J%"8'';I%#5J5&4'958'9"FF"36#4;8''K8`3<2#2I"U658'54'F%J"#"%#58>'3%7'2&'%445&9'9H6&5' F"##5'U6H5##5'8H"&@584"885''9%&8''#%'@"5'F%J"#"%#5C Y%772'54'AC+26"##24d'2&4''J2&47;''U65''#58''F"##58''2&4''96''J%#''']'''8H"J%I"&57'''9%&8'''958' K72F588"2&8' ' ' 83"5&4"F"U658C' ' T5' ' '95I7;' ' '95' '32&I765&35' '5&475' '"J%I5' '95' '82"' '54' ' #H"J%I5' K72424`K"U65'95'#%'F"#"G75'83"5&4"F"U65'584''47G8''F%"B#5'3<5r'#58'F"##58C'05'U6"'@564'9"75'U65'#58'I%7f2&8' V '1676b!5##%4'YC>'SZZX>'TH;32#5'958'F"##58C'h65##5'F27J%4"2&'K267'U65#8'7j#58'823"%6['i>'_%7"8>'t%7J%44%&>'S5';9C Y%772'0C>'+26"##24'AC>'WddW>'=5K7;85&4%4"2&'95'82">'75K7;85&4%4"2&'96'83"5&4"F"U65b4`K5'54'3<2"['9:6&5'27"5&4%4"2&' 83"5&4"F"U65'3<5r'958'F"##58'54'958'I%7f2&8'95'8532&95>'<;@*"$-')'",-&A/,#)"*$&$'&B*,=$%%",--$##$>'&nQ>'@2#C'SZ>'WddWC d 92&&5&4'6&5'"J%I5'K72424`K"U65'K723<5'95'35##5'95'#%'K72F588"2&'83"5&4"F"U65C 'T58'F"##58> 'JgJ5' U6%&9'5##58'9;3#%75&4'U65'#58'F"##58'2&4'958'3%K%3"4;8';I%#58']'35##58'958'I%7f2&8'K267'#H%33G8'%6[' J;4"578'453<&"U658>'5&@"8%I5&4'35K5&9%&4'J%$27"4%"75J5&4'K267'5##58bJgJ58'6&'J;4"57'u'F;J"&"&'vC' 1:%"##5678>'85#2&'ACY%7"244"WZ>'JgJ5'U6%&9'#58'F"##58'"&4GI75&4'#58'F"#"G758'83"5&4"F"U658>'5##58'&H`' 5&475&4'K%8'%@53'#58'JgJ58'75K7;85&4%4"2&8'U65'#58'I%7f2&8'54'J%&"F5845&4'6&5'K#68'I7%&95'9"FF"36#4;' 9H"95&4"F"3%4"2&'%6'J29G#5'96'83"5&4"F"U65C '.&'K564'86KK2857'U65'#58'F"##58'2&4']'F%"75'F%35']'958' B%77"G758'"&84"464"2&&5##58'54'36#4675##58'U65'&5'75&32&475&4'K%8'#5678'3%J%7%958'I%7f2&8C ' T5'3<%JK'958'I7%&958';32#58>'5&'K%74"36#"57'#5'3<%JK'958'I7%&958';32#58'9H"&I;&"5678>' 8H"&837"4 ' 9%&8 ' #5 ' 32&35K4 ' 95 ' #% ' 75K729634"2& ' O!2679"56> ' WdVdRWW' 95 ' #% ' 92J"&%4"2& ' 958 ' F"#"G758' 83"5&4"F"U658 ' 867 ' 9H%64758 ' F"#"G758> ' %"&8" ' U65 ' 9%&8 ' #% ' 75K729634"2& ' 95 ' #% ' 36#4675 ' 83"5&4"F"U65 ' U6"' 95@"5&4'6&'"&8476J5&4'"JK274%&4'95'#%'92J"&%4"2&'J%836#"&5'9%&8'#%'823";4;'"&96847"5##5'54'U6"'5[3#64' #58'F5JJ58C T58'K#68'I7%&958';32#58>'32JJ5'#H*32#5'K2#`453<&"U65>'#H*32#5'958'J"&58>'#H*32#5'958'K2&48' 54'958'3<%688;58>'543C>'26@75&4'#%'K288"B"#"4;'95'47G8'I7%&958'3%77"G758C'*&'9"84"&I6%&4'#58'F%36#4;8>'#58' K54"458';32#58'54'#58'I7%&958';32#58>'_C!2679"56'J2&475'#H2KK28"4"2&'95'358'472"8'I726K58'9%&8'#5' 3<%JK'96'K26@2"7'2e'35445'2KK28"4"2&'9;F"&"4'#H;32#5'54'#%'K28"4"2&'U6H5##5'2336K5C',"&8">'#H%64567' 9"84"&I65'#58';32#58'95'#%'a'I7%&95'c'54'95'#%'a'K54"45'c'K2745C'05445'2KK28"4"2&'5&475'#%'a'I7%&95'c'54' #%'a'K54"45'c'K2745'32&47"B65']'75K7296"75'#58'a'3%9758'86K;7"5678'c'54'#58'a'3%9758'J2`5&8'cC'T58' 3%9758'86K;7"5678'"8868'958';32#58'95'#%'I7%&95'K2745'O_2#`453<&"U65>'T%'05&47%#5>'T58'J"&58>'T58' _2&48'54'0<%688;58wR'85'9"7"I5&4'@578'#58'<%6458'F2&34"2&8'95'#H*4%4'26@7%&4'867'95'47G8'I7%&958' 3%77"G758C'T58'3%9758'J2`5&8'"8868'958';32#58'95'#%'K54"45'K2745'92&4'F%"4'K%74"5'TH*_A'O#58';32#58' 453<&"U658'54'8K;3"%#"8;58>'#58';32#58'95'K72@"&358>'#58'F%36#4;8'95'83"5&358wR'85'9"7"I5&4'@578'958' J;4"578'54'958'85345678'#58'K#68'8K;3"%#"8;8'54'9"75345J5&4'27"5&4;8'@578'#%'K729634"2&C'02JJ5'"#'`'%' 6&5'92J"&%4"2&'958'I7%&958';32#58'867'#58'K54"458';32#58'9%&8'#5'3<%JK'96'K26@2"7>'"#'`'%'%688"'6&5' 92J"&%4"2&'54'6&5'@"2#5&35'8`JB2#"U65'U6"'5[3#65&4'#58'F"##58'95'#567'3<%JKC'T%'8;#534"2&']'#H5&47;5' 9%&8'358';32#58'9;3267%I5'#58'F"##58>'3%7'5##58'82&4'47%9"4"2&&5##5J5&4'5[3#658'96'3<%JK'96'K26@2"7>' 95'JgJ5'35445'8;#534"2&'584'6&5'F27J5'95'#%'@"2#5&35'8`JB2#"U65'U6"'#58'75K26885'@578'9H%64758' 92J%"&58'J2"&8'"JK274%&48'9%&8'#5'3<%JK'96'K26@2"7';32&2J"U65>'K2#"4"U65>'823"%#>w h65#U658'3<573<56858'OY%77`>'WddL>'SZZX'q'A2&4%&"&">'SZZSR'5[K#"U65&4'35K5&9%&4'K267U62"' 54'32JJ5&4'3574%"&58'F"##58'K%7@"5&&5&4']'9;K%8857'358'9;457J"&"8J58'26'358'3<2"['32&47%"&48'54'F2&4' 958'3<2"['9"48'a'%4`K"U658'cC'1%&8'#567';4695'%6K7G8'958'K2#`453<&"3"5&&58'54'958'&27J%#"5&&58' 83"5&4"F"U658>'YCA577%&9>'AC/JB574'54''0CY%77`WS'8H"&45772I5&4'867'#58'J;3%&"8J58'54'#58'F%345678'U6"' 32&96"85&4 ' 358 ' F"##58 ' ] ' 8H"&@584"7 ' 9%&8 ' 958 ' F27J%4"2&8 ' &2& ' 47%9"4"2&&5##5J5&4 ' "&@584"58 ' K%7 ' #58' F5JJ58'U65'75K7;85&45&4'#H*-('9H?#Jb83"5&358'54'#Hk32#5'_2#`453<&"U65C'(5#2&'358'%6456758>'#58' WZ Y%7"244"'AC>'SZZW>'u'_#%35'54'84%464'958'J%4<;J%4"U658'85#2&'#5'85[5'9%&8'#%'847634675'958'75K7;85&4%4"2&8'823"%#58'95'#%' 83"5&35'54'958'J;4"578'83"5&4"F"U658'3<5r'#58'32##;I"5&8'54'958'#`3;5&8'v>'<$%&/)0"$*%&"-'$*-)'",-).C&2$&7%D/0,#,("$>' &nXdC WW !2679"56'_C>'WdVd>'<)&-,E#$%%$&2;F')'G&H*)-2$%&4/,#$%&$'&$%7*"'&2$&/,*7%5&_%7"8>'Y"&6"4C WS A577%&9''YC>'/JB574'AC>'Y%77`'0C>'WddP>'A5JJ58'54'83"5&358C'?&5';U6%4"2&'"JK72B%B#5'i>'!,*1)'",-IF17#,">'&nLLC 3<2"[''95'F27J%4"2&'U65'F2&4'#58'F"##58''&5''82&4''K%8'F273;J5&4'a'7%"82&&%B#58'c'54'32&F27J58'%6[' %445&458'U65'#%'823";4;'%'@"8b]b@"8'9H5##58C'T567'F%"B#5'K7;85&35'&5'8"I&"F"5'K%8'#H5[3#68"2&>'J%"8' 327758K2&9' ']'6&'3<2"['9;#"B;7;C'T58'F"##58'958'J"#"56['K7"@"#;I";8'86B"885&4'J2"&8'95'32&47%"&458' U65 ' #58 ' I%7f2&8 ' 958 ' JgJ58 ' J"#"56[C ' .& ' %445&9 ' J2"&8 ' 9H5##58 ' U6H5##58 ' F%885&4 ' 6&5 ' 3%77"G75' K72F588"2&&5##5 ' ' 54 ' 823"%#5 ' B7"##%&45C ' T5678 ' 3<2"[ ' 9;K5&9%&4 ' J2"&8 ' U65 ' 356[ ' 958 ' I%7f2&8 ' 958' K7588"2&8 ' F%J"#"%#58 ' 54 ' 823"%#58> ' 5##58 ' 3<2"8"885&4 ' 85#2& ' #567 ' I2m4> ' 92&3 ' 5##58 ' &5 ' 3<2"8"885&4 ' #58' 83"5&358'54'#%'453<&2#2I"5'U65'8"'5##58'%"J5&4'358'J%4"G758C'.&'K564'86KK2857'U6H"#'5&'584'95'JgJ5' K267'#58'F"##58'U6"'2&4'3<2"8"'54'U6"'3<2"8"885&4'95'F%"75'#H*_AC *& ' 35 ' U6" ' 32&357&5 ' #H*_A> ' &268 ' 3<573<2&8 ' ] ' 32JK75&975 ' K267U62" ' #58 ' ;#G@58> ' F"##58 ' 54' I%7f2&8 ' 3<2"8"885&4 ' 35445 ' ;32#5C ' *& ' 75K75&%&4 ' #% ' 4<G85 ' 95 ' _C!2679"56 ' 54 ' YC ' 95 ' (%"&4bY%74"&JK& 2KK28%&4'9%&8'#5'3<%JK'958'I7%&958';32#58'aI7%&95c'54'aK54"45'c'K2745>'&268'K282&8'#H<`K24<G85' U65'#H*_A';4%&4'6&5'aK54"45'c'I7%&95';32#5'K7"@;5' ']'K7;K%8'"&4;I7;58>'#58'I%7f2&8'#%'3<2"8"7%"5&4' K%735'U6H5##5'#567'K57J54>'%#278'U6H"#8'2&4'6&'&"@5%6'832#%"75'"&86FF"8%&4'K267'%33;957'%6['3#%8858' K7;K%7%42"758'54'%6['I7%&958';32#58'#58'K#68'K7584"I"56858>'9H2B45&"7'J%#I7;'4264'#5'4"475'9H"&I;&"567' I;&;7%#"845>'%#278'U65'#58'F"##58'#%'3<2"8"7%"5&4'K%735'U65'#H27"I"&5'F;J"&"&5'95'#H;32#5'#58'7%88675'54' #567' 92&&5' 32&F"%&35'K267' %FF72&457'35'J"#"56'47%9"4"2&&5##5J5&4'32&8"9;7;' 32JJ5'6&' 4577"42"75' J%836#"&C _267'%KK27457'958';#;J5&48'95'7;K2&85>'#H5&U6g45'J5&;5'%6K7G8'958';#G@58'95'#H*_A'8H584' K72K28;5 ' 9H%&%#`857 ' #58 ' F%345678 ' 54 ' #58 ' J24"@%4"2&8 ' #567 ' K57J544%&4 ' 9H"&4;I757 ' #H;32#5C ' T%' J;4<292#2I"5'%92K4;5';4%"4'6&'U6584"2&&%"75'54'958'5&4754"5&8'85J"b9"7534"F8C'(67'VLZ'U6584"2&&%"758' 9"847"B6;8> ' SPd ' 2&4 ' ;4; ' 7;36K;7;8C Le taux de réponse s’élève à 32,8%. Notre échantillon est composé de 60% (165) de garçons et 40% (109) de filles. En 2000, au moment de la passation du questionnaire, à l’école, on comptait 37% des filles sur l’ensemble de la formation généraliste. De ce point de vue, notre échantillon de l’étude est représentatif de la population des élèves scolarisés à l’école. Les entretiens semi-directifs au nombre de 31 (15 filles et 16 garçons) ont été effectués auprès des élèves qui ont accepté de nous laisser leurs coordonnées dans le questionnaire. Ils ont donné lieu à une analyse thématique. TH%&%#`85'4<;J%4"U65'958'5&4754"5&8JL'&268'%'K57J"8'95'9"84"&I657'U6%475'I726K58'9H;#G@58'\ WC TH;32#5'32JJ5'957&"G75'3<%&35'9H%33;957'%6'4"475'"&I;&"567'I;&;7%#"845'\'#58';#G@58'U6"'%K7G8' #H;3<53'5&'Y%4<8'(?_'54'5&'Y%4<8'(_*'5&475&4']'#H;32#5'K267'2B45&"7>'J%#I7;'4264>'#5'4"475' 9H"&I;&"567'I;&;7%#"845C SC TH*_A>';32#5'9;8"7;5'\'#58';#G@58'U6"';4%"5&4'%44"7;8'K%7'#5'3j4;'I;&;7%#"845'95'#H;32#5>'%"&8"'K%7' #H6&5'958'2K4"2&8'U6H5##5'K72K285C WQ !2679"56'_C>'(%"&4bY%74"&'YC>'WdVP>'a',I7;I%4"2&'54'8;I7;I%4"2&C'T5'3<%JK'958'I7%&958';32#58'54'#5'3<%JK'96' K26@2"7'c>'M/'$%&2$&#)&*$/0$*/0$&$-&%/"$-/$%&%,/")#$%>'&nMdC' WX -2475'75365"#'95'92&&;58'32&8"845'5&'475&45'54'6&'5&4754"5&8'85J"b9"7534"F8C'-2475'32JJ6&"3%4"2&'K2745'867'#H%&%#`85'95' <6"4'5&4754"5&8C QC TH*_A>'#%'32&4"&6%4"2&'95'#H<"842"75'F%J"#"%#5'\'#58';#G@58'U6"'2&4'9;$]'56'6&5'JG75>'8x67'26'4%&45' U6"'584'K%88;5'K%7'35445';32#5'54'U6"'8%@%"4'U65'#H*_A';4%"4'6&5'B2&&5';32#5C XC TH;32#5 ' 54 ' 858 ' K7;K%8 ' "&4;I7;58> ' K288"B"#"4; ' 9H2B45&"7 ' 6& ' 9"K#jJ5 ' 9H"&I;&"567 ' 5& ' ;@"4%&4 ' #58' 3#%8858'K7;K%7%42"758'3#%88"U658'\'#58';#G@58'U6"'8H%642b8;#534"2&&5&4'54'37%"I&5&4'#H%4J28K<G75' 32JK;4"4"@5'958'3#%8858'K7;K%7%42"758'26'U6"';4%"5&4'32&83"5&48'U6H"#8'&H%@%"5&4'K%8'#5'&"@5%6' 86FF"8%&4'K267'"&4;I757'6&5'3#%885'K7;K%7%42"75C I3JF<)7=9:)B87)K<??87)8:)B87)L;5M=97)EF<)89:589:)N)?1*4G)O _267U62"'54'U65#8'82&4'#58'5&$56['54'#58'F%345678'U6"'K26885&4'#58';#G@58>'F"##58'54'I%7f2&8>']'85' K7;85&457'%6['32&32678'54']'"&4;I757'#H;32#5'i'TH%&%#`85'958'7;86#4%48'958'92&&;58'96'U6584"2&&%"75'%' K57J"8'9H;469"57'#58'J24"@%4"2&8'958'F"##58'54'958'I%7f2&8']'"&4;I757'#H;32#5>']'5[%J"&57'K267U62"'#58' F"##58'54'#58'I%7f2&8'2K45&4'K267'35445';32#5C' TH%&%#`85 ' 958 ' J5&4"2&8 ' 2B45&658 ' %6 ' B%33%#%67;%4 ' 958 ' ;#G@58> ' F"##58 ' 54 ' I%7f2&8> ' J2&475 ' U65' I#2B%#5J5&4'#58';#G@58'5&475&4']'#H;32#5'%@53'958'J5&4"2&8'a'_%88%B#5'c>'XZN'54'a',885r'B"5&'c>' XLN'54'B5%6326K'J2"&8'%@53'#58'J5&4"2&8'a'!"5&'c>'WXN'54'a')7G8'B"5&'c>'WNC'05'82&4'#58'I%7f2&8' U6"'5&475&4'75#%4"@5J5&4'K#68']'#H;32#5'%@53'#%'J5&4"2&'a'_%88%B#5'c'OXMN'32&475'QSN'958'F"##58R>' %#278'U65'#58'F"##58'"&4GI75&4'#H;32#5'5&'K#68'I7%&9'&2JB75'%@53'#58'J5&4"2&8'a',885r'B"5&'c'OLZN' 32&475'XWNR'54'a'!"5&'c'OWPN'32&475'WSNRC TH5[%J5&'95'#567'J2`5&&5'%&&65##5'5&'J%4<8'54'5&'K<`8"U65'&268'J2&475'U65'#58';#G@58'958' 956['85[58'2&4'56'6&5'J2`5&&5'%&&65##5'5&'K<`8"U65'95'WQCS'OJ"&yP>J%[yWdR'J%"8'U6H5&'J%4<8' #58 ' F"##58 ' 2&4 ' 56 ' 6&5 ' J2`5&&5 ' 6& ' K56 ' K#68 ' ;#5@;5 ' U65 ' 35##5 ' 958 ' I%7f2&8> ' O#% ' 9"FF;75&35 ' 584' 8"I&"F"3%4"@5'%6'856"#'95'ZCZLR'3H584b]b9"75>'#%'J2`5&&5'%&&65##5'958'I%7f2&8';4%"4'95'WSCd'54'35##5' 958'F"##58'95'WQCL>'OJ"&yV>'J%[yWVRC T%'''#2I"U65'''96''F2&34"2&&5J5&4''95''#H27"5&4%4"2&''832#%"75''%B264"4''%6''F%"4''U65'#H5&47;5'5&' 3#%885'K7;K%7%42"75'83"5&4"F"U65'584'7;857@;5''%6[''B2&8'';#G@58>''%@53''6&''B2&'&"@5%6''5&''J%4<8''54' K<`8"U65C'(56#5J5&4'#58''F"##58''9"8K28%&4''9H6&'%688"''B2&''B%I%I5''832#%"75''U65''#58''I%7f2&8'U6"' 327758K2&9']''#H5[35##5&35>''8674264''5&''J%4<8>''285&4''95J%&957'6&5'27"5&4%4"2&'83"5&4"F"U65'%K7G8' #567 ' B%3C ' 0C ' Y%77` ' ' 826#"I&5 ' ' U65 ' ' #% ' ' 47%$5342"75 ' "JK72B%B#5> ' 958 ' F"##58 ' 9%&8 ' ' #58 ' ' ;32#58' 9H"&I;&"5678>''584''9"75345J5&4'''I;&;7;5'''K%7''#5'''F2&34"2&&5J5&4'''''832#%"75''''95''#H5[35##5&35C' 1%&8'6&5'5&U6g45'%6K7G8'958' 'K2#`453<&"3"5&8' '54' '958' '&27J%#"5&8' '#H%645675'J2&475' ' '6&5' 'K#68' I7%&95' ''F7;U65&35'' ''958''' 'J5&4"2&8' '''47G8'' ''B"5&'''O)!R'54'B"5&'O!R>'K%74"36#"G75J5&4'3<5r'#58' F"##58CWL' Y%"8'#H*_A'&H5&475'K%8'9%&8'#%'3%4;I27"5'958';32#58'#58'K#68'K7584"I"56858C'T58';#G@58'U6"' 5&475&4']'#H;32#5'2&4'5&'I;&;7%#'#58'J5&4"2&8'a'_%88%B#5'c'54'a',885r'!"5&'c'54'U65'#567'K%732678'&5' WL A577%&9'YC>'/JB574'AC>'Y%77`'0C>'Wddd> '<;$C/$##$-/$&%/,#)"*$&N&.-$&)==)"*$&2$&=)1"##$5&<$&/)%&2$%&-,*1)#"$--$%&$' & -,*1)#"$-%&%/"$-'"="O.$%5'_%7"8>'#Ht%7J%44%&C 327758K2&9'K%8']'6&'K%732678'9H5[35##5&35C'058'7;86#4%48'J2&475&4'U65'#58';#G@58>'F"##58'54'I%7f2&8>' U6"'85'9"7"I5&4'@578'#H*_A'&5'85'9"84"&I65&4'K%8'K%7'#567'5[35##5&35'832#%"75'54'U65'#567'27"5&4%4"2&' @578'#H*_A'54'#58';46958'9H"&I;&"5678'584'75&965'K288"B#5'K%7'#5678'&2458'J2`5&&5J5&4'B2&&58'5&' 9"83"K#"&58'83"5&4"F"U658C' '''''''' !5%6326K'95'47%@%6['2&4'J2&47;'U65'#58'F"##58'U6"'85'9"7"I5&4'@578'#58';46958'9H"&I;&"567'82&4' 9H27"I"&5'958 '3263<58' 86K;7"56758' 54' U6H5##58'86B"885&4'826@5&4'#H"&F#65&35'96'32&45[45' F%J"#"%#' 83"5&4"F"U65'54'826@5&4'6&'J29G#5'F;J"&"&C'OY%77`>'SZZX>'A2&4%&"&">'SZZSR TH;4695 ' 95 ' #H27"I"&5 ' 823"%#5 ' 958 ' ;#G@58 ' 5&47;8 ' ] ' #H*_A> ' &268 ' % ' J2&47; ' U65 ' #58 ' ;#G@58' 832#%7"8;8']'#H*_A'2&4'#5678'956['K%75&48'9"8K28%&4'95'4"4758'95'#H5&85"I&5J5&4'86K;7"567'OMLN'958' KG758'54'LXN'958' JG758R'54';I%#5J5&4'U65'#58'F"##58'2&4'K#68' U65' #58'I%7f2&8' 6&'KG75'9"K#jJ;' "&I;&"567'OLPN'32&475'XQNRC'058'7;86#4%48'&268'%JG&5&4']'9"75'U65'#%'F%J"#"%7"4;'%@53'#%'K72F588"2&' 9H"&I;&"567'%'75&96'K288"B#5'35445'27"5&4%4"2&'@578'#H*_A''54'@578'#58';46958'9H"&I;&"5678C'.&'K564' 86KK2857'%688"'U65'#58'F"##58'%`%&4'6&'KG75'"&I;&"567'#58'%"95&4']'867J2&457'#58'84;7;24`K58'867'#5' J;4"57'9H"&I;&"567'32JJ5';4%&4'6&'J;4"57'J%836#"&C -268'%@2&8';469";'32JJ5&4'#58';#G@58'2&4'32&&6'#H;32#5>'8H"#8'2&4'9;K28;'#567'3%&9"9%4675' 9%&8'9H%64758';4%B#"885J5&48>'8H"#8';4%"5&4'%9J"8>'54'8H"#8'826<%"4%"5&4'"&4;I757'6&5'%6475';32#5C'-268' %@2&8'@26#6'8%@2"7'8"'#5'3<2"['95'#H*_A';4%"4'6&'3<2"['K%7'9;F%64'26'6&5';32#5'@7%"J5&4'9;8"7;5>'8"' #58';#G@58'#%'3<2"8"88%"5&4'K%735'U6H"#8'&H%@%"5&4'K%8'2B45&6'#H;32#5'9;8"7;5'26'6&5'K7;K%'9%&8'6&' B2&'#`3;5C' TH%&%#`85'95'#%'95J%&95'54'95'#H%9J"88"2&'958';#G@58'9%&8'9H%64758';4%B#"885J5&48'&268'%' J2&47;'U6H5&'I;&;7%#'#58';#G@58'2&4'2B45&6'#H;4%B#"885J5&4'U6H"#8'%@%"5&4'95J%&9;C'T%'J%$27"4;'%' 9;K28;'8%'3%&9"9%4675'9%&8'6&5';32#5'%K7G8'#5'B%3>'3H584b]b9"75'QPN>'92&4'SQN'958'I%7f2&8'54'WXN' 958 ' F"##58C ' .& ' 75J%7U65 ' %688" ' U6H5& ' I;&;7%# ' "#8 ' 2&4 ' 56 ' 6&5 ' 7;K2&85 ' F%@27%B#5 ' ] ' #567 ' 95J%&95C' *&86"45>'6&'I7%&9'&2JB75'9H;#G@58'%'95J%&9;'6&5'3#%885'K7;K%7%42"75'3#%88"U65>'SMN>'92&4'WLN'958' I%7f2&8'54'WWN'958'F"##58>'54'U65'WLN'958'I%7f2&8'54'WZN'958'F"##58'2&4';4;'%9J"8C'Y%"8'B5%6326K' J2"&8 ' 9H;#G@58 ' 2&4 ' 95J%&9; ' 6& ' 1?) ' 54 ' 6& ' !)(CPN ' 9H5&475 ' 56[ ' 2&4 ' F%"4 ' #567 ' "&837"K4"2& ' ]' #H6&"@578"4;C' -268'K26@2&8'32&84%457' U65' #58';#G@58>'JgJ5'8H"#8'2&4' 56'6&5'7;K2&85'F%@27%B#5']'#567' 3%&9"9%4675'9%&8'6&5'%6475';32#5'9H"&I;&"5678'54'9%&8'6&5'3#%885'K7;K%7%42"75>'2&4'K7;F;7;'#H*_AC' 1H%"##5678>&]'#%'U6584"2&'95'8%@2"7'8H"#8'%@%"5&4'K7;F;7;''6&5'%6475';32#5'26'F"#"G75'#%'J%$27"4;>'PPN>' 9;3#%75 ' 95 ' &5 ' K%8 ' 75I754457 ' #5 ' 3<2"[ ' 95 ' #H;32#5> ' 92&4 ' XLN ' 958 ' I%7f2&8 ' 54 ' QSN ' 958 ' F"##58C ' J9& 0CA2&4%&"&"'OSZZSR'%'32&84%4;'9H%K7G8'6&5';4695'%6K7G8'958';469"%&48'95'#H/-)'O/&84"464'-%4"2&%#'958' );#;32JJ6&"3%4"2&8R'U65'#58'F"##58'82&4'J2"&8'&2JB756858'U65'#58'I%7f2&8'OSSN'32&475'XXNR']' WM 'TH/-)'584'J5JB75'96'l726K5'958');#;32JJ6&"3%4"2&8'Ol*)R'54'95'#%'02&F;75&35'958'l7%&958'*32#58C'T5'32&32678' 9H5&47;5'5&'K75J"G75'%&&;5'584'26@574'%6[';#G@58'958'3#%8858'K7;K%7%42"758'83"5&4"F"U658'J%4<;J%4"U658'z'K<`8"U65' OY_R>'K<`8"U65'b'3<"J"5'O_0R>'K<`8"U65'b'83"5&358'95'#H"&I;&"567'O_(/R'54'K<`8"U65'z'453<&2#2I"5'O_)R 75I754457 ' 95 ' &5 ' K%8 ' %@2"7 ' "&4;I7; ' 6&5 ' %6475 ' ;32#5 ' 9H"&I;&"567 ' 45#8 ' U65 ' 05&47%#5 ' _%7"8>' );#;32JJ6&"3%4"2&8>'T58'Y"&58'95'_%7"8>'_2#`453<&"U65C T58';32#58'#5'K#68'826@5&4'J5&4"2&&;58'K%7'958';#G@58'95'#H*_A'82&4'\'*(Y*'(697"%'O*32#5' 8K;3"%#5'95'J;3%&"U65'54'9H;#5347"3"4;R>'WVN>'#58';32#58'96'I726K5'A*(/0'OA;9;7%4"2&'958';32#58' 86K;7"56758'9H"&I;&"5678'54'958'3%9758R>'WdN>'#58'/-(,'O/&84"464'&%4"2&%#'958'83"5&358'%KK#"U6;58R>' WWN>'*(/**'O/&I;&"5678'5&';#53472&"U65'54';#53472453<&"U65R>'WSN>'*(),0,'O*32#5'86K;7"5675'958' 453<&"U658 ' %;72&%64"U658 ' 54 ' 95 ' 32&847634"2& ' %642J2B"#5R> ' VN> ' *(/*, ' O*32#5 ' 86K;7"5675' 9H"&F27J%4"U65>';#53472&"U65>'%642J%4"U65R>'XNC )26458' 358' ;32#58'J5&4"2&&;58'82&4'958';32#58'5&'3"&U'%&8>'8K;3"%#"8;58'9%&8'6&'3574%"&' 92J%"&5>'54'K7"@;58>'8%6F'#58'/-(,'U6"'5&475&4'9%&8'#%'3%4;I27"5'958';32#58'6&"@578"4%"758C'TH;4695' 9H6&5'5&U6g45'a'T5'3#%885J5&4'958'I7%&958';32#58'9H"&I;&"5678'c'K6B#";5'5&'SZZS'K%7'a'T5'-26@5#' *32&2J"845'c'&268'J2&475'U65'K%7'7%KK274']'426458'358';32#58'J5&4"2&&;58'K%7'958';#G@58>'#H*_A'584' #%'J"56['K#%3;5>'8%6F''K%7'7%KK274']'#H/-(,'95'T`2&C',"&8"'2&'&245'U65'#H*_A'2336K5'#%'WSGJ5'K#%35' 9%&8'#5'7%&I'95'3#%885J5&4>'#H/-(,'95'T`2&'#5'dGJ5>'#H/-(,'95')26#2685'WPGJ5>'#H/-(,'95'=5&&58' SSGJ5>'#H*(/**'SdGJ5>'#H*(/*,'QSGJ5>'#H*(Y*b(?1=/,'QQGJ5C' TH;4695'95'#%'K723;9675'9H%9J"88"2&'9H5&47;5'958';#G@58']'#H*_A'%'J2&47;'U65'#%'J%$27"4;' 958';#G@58'%'"&4;I7;'#H;32#5'%K7G8'#5'B%3'(>'MXN>'92&4'QPN'958'F"##58'54'SPN'958'I%7f2&8C'/#'F%64' 826#"I&57'%688"'U65'QMN'958';#G@58'"&4GI75&4'K%7'958'%9J"88"2&8'867'4"475>'#%'J%$27"4;'%K7G8'Y%4<8' (?_'54'Y%4<8'(_*>'WVN>'WSN'958'I%7f2&8'54'MN'958'F"##58'%"&8"'U65'95'#H6&"@578"4;>'WXN>'VN'958' I%7f2&8'54'MN'958'F"##58C'T58'K26735&4%I58'958';#G@58'%`%&4'"&4;I7;'#H;32#5'%K7G8'Y%4<8'(_*>'1?)' 54'!)('82&4'F%"B#58>'%64267'95'QNC'.&'K564'9"75'U65'#58';#G@58'%K7G8'#H;3<53'5&'J%4<8'(?_'54'5&' Y%4<8'(_*'5&475&4']'#H;32#5'K267'2B45&"7'J%#I7;'4264'#5'9"K#jJ5'9H"&I;&"567'I;&;7%#"845'54'95'#H%6475' 3j4;'#58';#G@58'@5&%&4'95'#H?&"@578"4;>'95'1?)'26'!)('5&475&4']'#H;32#5'K267'2B45&"7'#5'9"K#jJ5' 9H"&I;&"567'K#68'@%#27"8;'867'#5'J%73<;'95'#H5JK#2"C P3)/1=5<L<98)K6H<9<98)>8)?16B=?8 TH;4695'958'7%"82&8'96'3<2"['95'#H*_A'%'J2&47;'U65'35'U6"'%44"75'#5'K#68'#58';#G@58'@578'35445' ;32#5'3H584'8%'F27J%4"2&'I;&;7%#"845>'QQN'OWdN'958'I%7f2&8'54'WXN'958'F"##58R>'5&86"45'#5'3<2"['958' 8K;3"%#"4;8 ' 5& ' 3`3#5 ' "&I;&"567> ' QQN ' OWPN ' 958 ' I%7f2&8 ' 54 ' WMN ' 958 ' F"##58R> ' 54 ' 858 ' F27J%4"2&8' "&457&%4"2&%#58> ' WPN ' OWSN '958 'I%7f2&8'54'LN '958 ' F"##58RC ' (56#5J5&4' WN '9;3#%75'g475 '%44"7;'K%7' #H;32#5'K267'82&'27"I"&5'F;J"&"&5>'54'"#'F%64'826#"I&57'U65'35'K26735&4%I5'32&357&5'#58'I%7f2&8'54' U6H%636&5'F"##5'&H%'9;3#%7;'%@2"7';4;'%44"7;5'K%7'#5'K%88;'F;J"&"&'95'#H;32#5C -268 ' %@2&8 ' F%"4 ' #H<`K24<G85 ' U65 ' #58 ' F"##58 ' 3<2"8"885&4 ' #H;32#5 ' K267 ' 82& ' K%88; ' F;J"&"&C' TH%&%#`85'958'92&&;58'&5'&268'%'K%8'K57J"8'95'#H%FF"7J57C'0574%"&58'F"##58'35K5&9%&4'9;3#%75&4'9%&8' #58'5&4754"5&8'U65'#5'F%"4'9H%@2"7'K#68'95'F"##58'9%&8'#567'5&4267%I5'%'F%3"#"4;'#567'"&4;I7%4"2&']'#H;32#5C' *&'%&%#`8%&4'#58'7%"82&8'U65'#58';#G@58'&268'2&4'92&&;'K267'3<2"8"7'#H*_A>'&268'%@2&8';4;' %J5&;5']'9"84"&I657'U6%475'I726K58'9H;#G@58>'85#2&'#%'J24"@%4"2&'K7"&3"K%#5'U6"'#58'%'32&96"8']' 3<2"8"7'35445';32#5C' <;4/,#$&/,11$&2$*-"P*$&/0)-/$&2;)//42$*&).&'"'*$&"-(4-"$.*&(4-4*)#"%'$ 05'I726K5'584'75K7;85&4;'K%7'958';#G@58'U6"'9H6&'3j4;>'%K7G8'#H;3<53'5&'J%4<8'(?_'54'5&' J%4<8'(_*>'5&475&4']'#H*_A'K267'2B45&"7'J%#I7;'4264'#5'4"475'9H"&I;&"567'I;&;7%#"845>'54'95'#H%6475' K%7'958';#G@58'U6"'@"5&&5&4'95'#H6&"@578"4;'K267'2B45&"7'6&'9"K#jJ5'K#68'@%#27"8;'867'#5'J%73<;'95' #H5JK#2"'U6H6&'9"K#jJ5'6&"@578"4%"75C'/#8';4%"5&4'4268'95'B2&8';#G@58'54'"#8'%@%"5&4'95'B2&&58'&2458' 9%&8'#58'J%4"G758'83"5&4"F"U658'OJ%4<8'54'K<`8"U65R'54'5&'I;&;7%#'"#8'2&4'2B45&6'6&5'J5&4"2&'%6'B%3C' T567'27"5&4%4"2&'5&'K75J"G75'('54'5&'457J"&%#5'(';4%"4'I6"9;5'K%7'#5678'B2&&58'&2458'54'K%7'#567' K7;F;75&35 ' K267 ' #58 ' J%4"G758 ' 83"5&4"F"U658'\ ' a'#58 ' J%4"G758 ' 83"5&4"F"U658> ' f% ' %##%"4 ' 4264 ' 856#'c ' 26' a'3H584'35'U6H"#'`'%@%"4'95'K#68'F%3"#5'cC'/#8';4%"5&4';I%#5J5&4'32&83"5&48'U65'#%'F"#"G75'('26@7%"4'867' 426458'#58'9"83"K#"&58'95'#H5&85"I&5J5&4'86K;7"567C 0H584'6&'K56'K%7'9;F%64>'F%645'95'J"56['U6H"#8'82&4'5&47;8']'#H;32#5'K267'2B45&"7'6&'9"K#jJ5' 9H"&I;&"567C'T692@"3>'%K7G8'%@2"7'F%"4'6&'%&'5&'J%4<8'(?_'%'K7"8'32&83"5&35'U6H"#'&H%'K%8'6&'&"@5%6' %885r'86FF"8%&4'K267'"&4;I757'%K7G8'J%4<8'(_*'6&5';32#5'K7584"I"5685>'26'32JJ5'"#'9"4>'a 'O.)-2 & Q;4')"%&$-&1)'0%&A>B5&+)&%$&7)%%)"'&-"&E"$-5&-"&1)#&$-&=)"'5&"#&-;D&)?)"'&*"$-&2$&/)')%'*,70"O.$5&1)"% & Q;)?)"%&*$()*24 &.-&7$.&/$&O."&4')"'&.-&7$.&7*P%&1,-&-"?$).5&$'&Q$&1$&%."%&2"'&+)&-$&?).'&7)% & ?*)"1$-'&#$&/,.7&O.$&Q$&'*)?)"##$&2.*&$-&ABF&7,.*&="-)#$1$-'&"-'4(*$*&7)%&=,*/$1$-'&#$%&4/,#$%&O." & /,**$%7,-2)"$-'&$C)/'$1$-'&6&/$&O.$&Q$&?,.#)"%&$'&2,-/&Q$&1$&%."%&7,*'4&%.*&#;FB!'cWPC',#278'U65' K267'-%4<%#"5>'%K7G8'956['75926B#5J5&48'5&'K75J"G75'%&&;5'95'#%'F%3'95'K<%7J%3"5>'#H*_A';4%"4'#%' 957&"G75'3<%&35'9H2B45&"7'6&'9"K#jJ5'9H5&85"I&5J5&4'86K;7"567>'aQ;)"&=)"'&"-(4-"$.*&7)*&24=).'&-$ & 7,.?)-'&7)%&=)"*$&#)&70)*1)/"$&cWVC'/#8'2&4'56'4268'#58'956['#%'J5&4"2&'aB"5&'c'%6'B%3C'_5&9%&4'42645' #%'832#%7"4;'"#8';4%"5&4'95'B2&8';#G@58'54'5&'K%74"36#"57'9%&8'#58'J%4"G758 '83"5&4"F"U658'OJ%4<8'54' K<`8"U65R>'#5'3<2"['95'#%'F"#"G75'('8H"JK28%"4'32JJ5'6&5'a%."'$&#,("O.$'c'26'K%735'U65'3H584 'R/$ & O.;"#&D&)?)"'&2$&7#.%&=)/"#$'cC'/#8'5&475&4']'#H;32#5'867'4"475'5&'956["GJ5'%&&;5>'T692@"3'867'9288"57>' -%4<%#"5'5&'K%88%&4'#58'45848'32JK#;J5&4%"758C'',6'J2J5&4'95'#H5&4754"5&'"#';4%"4'5&'L GJ5'%&&;5>'5##5' 5&'QGJ5C' 058';469"%&48>'U6"'2&4'"&4;I7;'#H*_A'a'K%7'9;F%64'c>'8%@%"5&4'%@%&4'9H5&4757']'#H;32#5'U6H5##5' ;4%"4 ' 6&5 ' ;32#5 ' 95 ' F"##58 ' 54 ' U6H5##5 ' &H584 ' K%88;5 ' U65 ' 47G8 ' 7;35JJ5&4 ' ] ' #% ' J"["4;C ' T58 ' F"##58' 75@5&9"U65&4'#5'F%"4'U6H5##58'&H2&4'K%8'"&4;I7;'#H;32#5'K267'82&'27"I"&5'F;J"&"&5>'a'f%'&H%'%636&' 7%KK274'%@53'U65'35'82"4'J"[45'26'K%8'c'54'5##58'4726@5&4'&27J%#>'5&'U65#U65'82745>'U6H"#'`'%"4'K#68'95' I%7f2&8C'T58'I%7f2&8>'56[>';4%"5&4'K5786%9;8'U6H"#'`'%@%"4'K#68'95'F"##58'U65'9%&8'9H%64758';32#58' 9H"&I;&"5678C'Y%"8'K267'#58'F"##58'54'#58'I%7f2&8'"8868'95'35'I726K5>'#H27"I"&5'F;J"&"&5'95'#H;32#5'&H%' K%8'96'4264'$26;'9%&8'#567'3<2"['54'9%&8'#567'27"5&4%4"2&'@578'#H;32#5>'a'f%'&H;4%"4'&"'6&5'J24"@%4"2&>' WP '(45@%&2@"3'!C>'SZZM>'<)&1"C"'4&2)-%&#$%&4/,#$%&2;"-(4-"$.*%G&<$&/)%&2$&#;$CIF/,#$&B,#D'$/0-"O.$&!41"-"-$>'_%7"8>' t%7J%44%&>'2KC>'3"4C>'KCWXZC' WV '/B"9C>'2KC>'3"4C>'KCWXQC &"'6&'2B84%3#5'cC T58'F"##58'54'#58'I%7f2&8';@2U65&4'#58'B2&8'3j4;8'54'#5'B"5&F%"4'95'#%'J"["4;'867'#%'J5&4%#"4;'54' #H%4J28K<G75'95'#H;32#5C'T58'F"##58'K5&85&4'U6H6&'3%975'6&"U65J5&4'F;J"&"&'584'J2"&8'5&7"3<"88%&4>' %@53'958'45&9%&358']'#%'$%#268"5'54']'#H<`K237"8"5C'-%4<%#"5'J5&4"2&&5>'a'6&#)&#"1"'$&%"&$##$&)?)"'&4'4 & $-/,*$&.-"O.$1$-'&=41"-"-$&Q$&-$&%."%&7)%&%S*$&O.$&Q$&%$*)"%&?$-.$5&7)*/$&O.$&Q$&7$-%$5&.-$&4/,#$ & ,T&"#&D&)&.-"O.$1$-'&2$%&="##$%5&/;$%'&.-$&1$-')#"'4&O.)-2&1U1$&%74/")#$5&/;$%'&7$.'IU'*$& &1,"-% & ',#4*)-'5 & 7#.% & %4*"$.CG & M?$/ & 2$% & ()*+,-% & /;$%' & .- & 7$. & 7#.% & 24/,-'*)/'4G & V;$%' & 7#.% & =)/"#$ & 2$ & '*)?)"##$*&2)-%&.-&$-?"*,--$1$-'&1"C'$&O.$5&.-"O.$1$-'&=41"-"-&cWdC' _267'#58'I%7f2&8'%688"'#5'3%7%34G75'F;J"&"&'95'#H;32#5'75K7;85&45'6&5'26@574675'9H58K7"4'54'6&' J"#"56'a'K#68'%;7;>'K#68'26@574>'J2"&8'B764'c>'32&47%"75J5&4'%6[';32#58'2e'"#'`'%'47G8'K56'95'F"##58>' 3%7'a'6&5'J5&4%#"4;'95'I%7f2&8'3H584'#2679'cC _267'35'K72F"#'9H;469"%&4>'#%'&2&bJ"["4;'75K7;85&45'U65#U65'3<285'9H<"8427"U65>'64"#5'9%&8'6&5' ;K2U65>'%#278'U65'#%'J"["4;'75K7;85&45'a'6&5'75@%#27"8%4"2&'7;5##5'95'#H;32#5'%6'&"@5%6'"&96847"5#'c>' 3%7'a'f%'F%"4'K#68'J2957&5w6&5';32#5'6&"U65J5&4'F;J"&"&5>'f%'F%"4'6&'K56'9"&28%675'cC <;FB!5&#;4/,#$&24%"*4$ 1%&8'35'I726K5'&268'4726@2&8'#58';#G@58'U6"';4%"5&4'%44"7;8'K%7'#5'3j4;'I;&;7%#"845'95'#H;32#5>' %"&8"'U65'K%7'#H6&5'958'2K4"2&8'U6H5##5'K72K285C'T5'F%"4'U6H5##5';4%"4'@7%"J5&4'6&5';32#5'9;8"7;5'85' @2"4']'47%@578'#58'847%4;I"58'95'3574%"&8';#G@58'U6"'2&4'45&4;'K#68"5678'F2"8'#58'32&32678'95'#H*_A'54' U6"'2&4>'82"4'75F%"4'#%'457J"&%#5'('9%&8'#5'B64'9H%@2"7'6&'J5"##567'&"@5%6>'82"4'F%"4'6&5'%6475'F"#"G75' 32JJ5'K%7'5[5JK#5'6&'/?)'U6"'#567'%'K57J"8'95'#H"&4;I757'%K7G8'K#68"5678'45&4%4"@58C'T567'K%732678' 832#%"75 '&5 ' 85 ' 3%7%34;7"85'K%8 'K%7 ' #5 'K%732678 '9H6& ';#G@5 'B7"##%&4> ' JgJ5 '8" '3574%"&8 ' 2&4 ' 56' 958' J5&4"2&8'%6'B%33%#%67;%4C''Y%"8'35'I726K5'9H;#G@58'%'6&'K2"&4'5&'32JJ6&>'"#8'2&4'3<2"8"'#%'F"#"G75'(' %6'#`3;5'K%735'U6H"#8'%"J%"5&4'#58'J%4"G758'83"5&4"F"U658>'`'32JK7"8'#%'B"2#2I"5'54'#%'3<"J"5C T5'3<2"['95'#H*_A'K267'35'I726K5'9H;#G@58';4%"4'%688"'847%4;I"U65>'K%735'U65'#H*_A';4%"4' J"56[ ' 324;5 ' U65 ' #58 ' ;32#58 ' 2e ' "#8 ' ;4%"5&4 ' %9J"8 ' 54 ' U6" ' ;4%"5&4 ' 958 ' ;32#58 ' 8K;3"%#"8;58 ' O(697"%>' T*(/*,>'T*(),0,wRC TH27"I"&5'F;J"&"&5'&H;4%"4'K%8'#5'37"4G75'95'3<2"['95'#H;32#5'K267'35'I726K5'9H;#G@58C'T58' F"##58';4%"5&4'32&45&458'95'85'754726@57'6&5'F2"8'5&47;58']'#H;32#5'K%7J"'4%&4'95'F"##58>'%#278'U65'#58' I%7f2&8'85'85&45&4'6&'K56'9;@%#27"8;8']'#H"9;5'95'85'754726@57'9%&8'6&5' 'a'4/,#$&7,.*&#$%&="##$%'cC' {6#"5&'826#"I&5'a'$##$&-$&%;)77$##$&7#.%&#;F/,#$&B,#D'$/0-"O.$&!41"-"-$5&$##$&%;)77$##$&FB!5&/;$%' & Wd /B"9C>'2KC>'3"4C>'KCWXMC 7)%&7,.*&#$&/W'4&2$&#;)-/"$--$&4/,#$'cSZC _267'#58'F"##58'#5'3%7%34G75'F;J"&"&'&H;4%"4'K%8'#5'K2"&4'9;3"8"F>'3H;4%"4'8532&9%"75C'/8%B5##5' %FF"7J5'U6H5##5'8%@%"4'U6H"#'`'%@%"4'K#68'95'F"##58'U65'9%&8'9H%64758';32#58'54'5##5'8H584'9"4'U6H5##5' %67%"4'K#68'9H%"95'%6'&"@5%6'95'#H"&4;I7%4"2&C <;4/,#$5&#)&/,-'"-.)'",-&2$&#;0"%',"*$&=)1"#")#$&N&R&<$%&04*"'"P*$%&X 05'I726K5'584'75K7;85&4;'K%7'958';#G@58'U6"'2&4'9;$]'56'U65#U6H6&5'95'#567'F%J"##5>'6&5'JG75>' 6&5'8x67'26'6&5'4%&45>'U6"'584'K%88;5'K%7'35445';32#5'54'U6"'8%@%"4'9;$]'U65'#H*_A';4%"4'6&5'B2&&5' ;32#5C'T%'K%74"36#%7"4;'95'35'I726K5'584'U65'358'K5782&&58'95'#%'F%J"##5';4%"5&4'832#%7"8;58'K5&9%&4' U65'#H;32#5';4%"4'&2&bJ"[45C' 0%72#"&5'%'56'6&5'8x67']'#H;32#5'K5&9%&4'U65'3H;4%"4'5&3275'&2&bJ"[45>'T%675'8%'JG75'54' Y%I%#"'956['4%&458C'058'472"8'F"##58'2&4'3<2"8"'#H*_A'K%735'U65'9%&8'#%'F%J"##5'2&'32&&%"88%"4'B"5&' #H;32#5>'5##58' 8%@%"5&4'U65'#H*_A' ;4%"4' 6&5'B2&&5';32#5' '26'32JJ5 '9"4'0%72#"&5>'aQ$&%)?)"%&,T & Q;)##)"%'cC ' T% ' K28"4"2& ' 95 ' 0%72#"&5 ' @"8b]b@"8 ' 95 ' #% ' J"["4; ' 95 ' #H;32#5 ' 85 ' 47%96"4 ' ] ' 47%@578' #H%6IJ5&4%4"2&'96'&"@5%6'95'#H;32#5'95K6"8'#%'J"["4;>'a#$&-"?$).&)&).(1$-'4&E$)./,.7&7."%O.;"#&D&) & 7#.%&2$&1,-2$&6&%;"-%/*"*$&2,-/&"#&D&)&7#.%&2$&%4#$/'",-'cSW>'3H584b]b9"75'6&5';32#5'6&"U65J5&4' F;J"&"&5 ' 8"I&"F"5 ' #% ' 9;@%#27"8%4"2& ' %#278 ' U65 ' #% ' K7;85&35 ' 958 ' I%7f2&8 ' ] ' #H;32#5 ' 8"I&"F"5 ' 6&5' 7532&&%"88%&35'54'6&5'@%#27"8%4"2&'95'#H;32#5'54'95'4"475'"&I;&"567'*_AC'1H%"##5678'8"'3H;4%"4'426$2678' 6&5 ' ;32#5 ' K267 ' #58 ' F"##58> ' 5##5 ' &5 ' 857%"4 ' K%8 ' 5&47;5C ' h6%&4 ' ] ' Y%I%#"> ' 5##5 ' 9;3#%75 ' U65 ' #H27"I"&5' F;J"&"&5'&H%'K%8'"&F#65&3;'82&'3<2"[>'J%"8'5##5'7532&&%s4'U65'#5'F%"4'95'85'754726@57'9%&8'6&5';32#5' 2e'"#'`'%'B5%6326K'95'F"##58>'%@%"4'6&'3j4;'K28"4"F>'RO.;"#&D&)"'&7#.%&2$&="##$%5&+)&1;)&7#.&7)*/$&O.$&Q$ & 7$-%$&O.$&/;$%'&?*)"&O.$&/;4')"'&)(*4)E#$&2;U'*$&7)*=,"%&&$-'*$&#$%&="##$%5&"#&D&)&.-$&).'*$&)1E")-/$ & O.$&%$.#$1$-'&)?$/&2$%&()*+,-%&XYYG&_6"8'5##5'9"4'%688"'U6H5##5'75885&4%"4'6&5'3574%"&5'F"574;'9H%@2"7' 4%&4'95'F"##58'%64267'9H5##5'54'95'@2"7'U65'426458'358'F"##58'@2&4'95@5&"7'"&I;&"5678C& ,'47%@578'35' 4;J2"I&%I5'2&'@2"4'U65'K267'35445'F"##5'#%'@"8"2&'95'#%'83"5&35'54'9H"&I;&"57"5'584'32&8"9;7;5'32JJ5' 6& ' 92J%"&5 ' J%836#"&> ' 6&5 ' 3574%"&5 ' K72K274"2& ' 958 ' F"##58 ' 85 ' J2&475 ' 7%8867%&45 ' 867 ' #5 ' K#%&' K8`3<2#2I"U65'54''K267'858'K72$548'K72F588"2&&5#8C'02&357&%&4'#%'J"["4;']'#H;32#5>'426458'#58'472"8>'5&' 7;F;75&35'%@53'#58'K72K28'958'K5782&&58'95'#567'F%J"##5'U6"'F7;U65&4%"5&4'#H;32#5>'826#"I&5&4'U65'#%' K7;85&35 ' 958 ' I%7f2&8 ' ] ' #H;32#5 ' % ' B5%6326K ' 9H"JK%34 ' 867 ' #H%4J28K<G75> ' a/;$%' & .- & 7$. & 7#.% & 24/,-'*)/'45&1,"-%&/,-%/"$-/"$.C&cC' SZ SW /B"9C>'2KC>'3"4C>'KCWLZC '/B"9C>'2KC>'3"4C>'KCWLXC SS '/B"9C>'2KC>'3"4C>'KCWLLC <;4/,#$&$'&%$%&7*47)%&"-'4(*4$% 1%&8'35'I726K5'#58';#G@58'2&4'3<2"8"'#H*_A'9%&8'#5'B64'9H;@"457'#58'3#%8858'K7;K%7%42"758' 3#%88"U658>'82"4'K%735'U6H"#8'8H%642b8;#534"2&&5&4'54'37%"I&5&4'#H%4J28K<G75'32JK;4"4"@5'958'3#%8858' K7;K%7%42"758>'82"4'K%735'U6H"#8';4%"5&4'32&83"5&48'U6H"#8'&H%@%"4'K%8'6&'&"@5%6'86FF"8%&4'K267'%33;957' %6['J%4<8'(?_'54'J%4<8'(_*'54'`'7;688"7C'/#8'%"J%"5&4'4268'#58'J%4<;J%4"U658'54'#%'K<`8"U65>'7%"82&' K7"&3"K%#5'K267'#5'3<2"['95'#%'F"#"G75'(C'/#8'2&4'4268'"&4;I7;'#H;32#5'5&'K75J"G75'%&&;5C' 02&357&%&4'#H27"I"&5'F;J"&"&5'95'#H;32#5>'#58';469"%&48'9;3#%75&4'U65'f%'&H%'K%8'27"5&4;'#567' 3<2"[C'Y%"8'#58'F"##58'85'85&45&4'K#68']'#H%"85']'#H*_A'K%735'U6H"#'`'%'K#68'95'F"##58'U65'9%&8'9H%64758' ;32#58'9H"&I;&"5678C ?&5 ' 753<573<5 ' 7;%#"8;5 ' K%7 ' 12J"&"U65 ' Y%74"&YK' %6K7G8 ' 958 ' ;469"%&458 ' 95 ' #H*32#5' _2#`453<&"U65'A;J"&"&5'5&'WdPW'J54'5&';@"95&35'#5'@;36'95'#%'&2&bJ"["4;'95'#H;32#5'K%7'#58'F"##58' 832#%7"8;58']'#H;32#5'%6'J2J5&4'95'#H5&U6g45C','35445';K2U65'#%'&2&bJ"["4;'75K7;85&4%"4'K267'358' $56&58'F"##58'#%'@2"5'95'#H%3372"885J5&4'958'F5JJ58'"&I;&"5678'5&'A7%&35C'T%'K#6K%74'958'F"##58'9%&8' #58 ' %&&;58 ' MZ ' 54 ' PZ ' 3<2"8"88%"5&4 ' #H;32#5 ' K267 ' ;@"457 ' #% ' 32JK;4"4"2& ' %@53 ' #58 ' I%7f2&8 ' 54 ' #%' 32JK%7%"82&'%@53'56['U6%&4']'#5678'3%K%3"4;8C'TH"&837"K4"2&'9%&8'35445';32#5'U6"';4%"4'&2&bJ"[45']' 6&5';K2U65'2e'426458'#58'%64758';32#58'9H"&I;&"5678'8H26@75&4'%6['F5JJ58>'75K7;85&4%"4'K267'5##58' 6&5'82745'95'K724534"2&>'a'6&'@2"#5'K724534567'c'9%&8'35'92J%"&5'7;857@;'%6['<2JJ58C'/&45772I;58' 867'#H26@574675'95'#H;32#5'%6['I%7f2&8>'5##58';4%"5&4'426458'9H%33279'J%"8'%FF"7J%"5&4'%@53'37%"&45' U65'#567'K7;85&35'a'F%@27"857%"4'#H58K7"4'95'32JK;4"4"2&'9%&8'#5'47%@%"#'cYLC )75&45'%&8'%K7G8>'%636&5'F"##5'&H5&@"8%I5'#5'754267']'#%'&2&bJ"["4;C'T%'&26@5##5'"95&4"4;'95' #H;32#5'K%7%s4'g475'%3U6"85'K267'#58'F"##58'32JJ5'K267'#58'I%7f2&8C'T567'5&47;5']'#H;32#5'&H%'K%8';4;' I6"9;5'K%7'#5'K%88;'F;J"&"&'54'3H584'@%#%B#5'K267'#58';#G@58'95'4268'#58'I726K58C'/#'85JB#5'U65'3H584' #%'F27J%4"2&'I;&;7%#"845'54'#58'K578K534"@58'9H5JK#2"'U6"'82"5&4'#58'K7"&3"K%6['37"4G758'96'3<2"['958' ;469"%&48C .=9B?F7<=9 T58 ' ;#G@58 ' U6" ' 2K45&4 ' K267 ' 35445 ' ;32#5 ' 82&4 ' aJ2`5&8 ' B2&8'c> ' #567 ' K%732678 ' 832#%"75 ' &5' 327758K2&9'K%8']'6&'K%732678'9H5[35##5&35>'"#8'"&4GI75&4'#H;32#5'%@53'958'J5&4"2&8'K%88%B#5'54'%885r' B"5&>'#58'F"##58'82&4'K#68'&2JB756858']'5&4757']'#H;32#5'%@53'#%'J5&4"2&'%885r'B"5&>'35'U6"'K726@5'U65' #H*_A ' 584 ' 6&5 ' I7%&95 ' aK54"45'c ' ;32#5 ' 96 ' 956["GJ5 ' 7%&IC ' T5678 ' &2458 ' J2`5&&58 ' %&&65##58 ' 5&' 9"83"K#"&58'83"5&4"F"U658'54'8m75J5&4'#5'I2m4'K267'#58';46958'9H"&I;&"567'54'K267'#%'453<&"U65'2&4' 75&96'35445'27"5&4%4"2&'K288"B#5C'T58';#G@58>'F"##58'32JJ5'I%7f2&8>'&H%`%&4'K%8'#5'&"@5%6'86FF"8%&4' SQ Y%74"&'1C>'WdPW>'a'<;4#P?$&"-(4-"$.*&2$&#;4/,#$&7,#D'$/0-"O.$&=41"-"-$'c>')<G85'5&'823"2#2I"5>'_%7"8'+C SX Y%74"&'1C>'WdPW>'2KC>'3"4C>'KCVMC K267'"&4;I757'#58'3#%8858'K7;K%7%42"758''3#%88"U658'54'%K7G8'#58';32#58'#58'K#68'7;K64;58>'#%'3<2"8"885&4' K%735'U6H%@53'6&'47%@%"#'7;I6#"57'"#8'82&4'8m78'9H2B45&"7'#5'9"K#jJ5'9H"&I;&"567'I;&;7%#"845']'#%'F"&'95' #5678';46958C'T58'I7%&98'K26735&4%I58'958';#G@58'5&47;8']'#H;32#5'867'#58'%9J"88"2&8'867'4"475'54'U6"' @"5&&5&4'95'J%4<8'(?_'54'95'#H?&"@578"4;>'J2&475&4'U65'K267'358';#G@58'U6"'2&4'32&&6'6&';3<53'5&' 3#%885'K7;K%7%42"75'3#%88"U65'9H6&'3j4;>'54' 95'#H%6475'U6"'@"5&&5&4'95'#H6&"@578"4;>' ' #H*_A'584'#%' 957&"G75'3<%&35'9H2B45&"7'6&'9"K#jJ5'9H"&I;&"567'I;&;7%#"845'@%#27"8;'823"%#5J5&4'867'#5'J%73<;'95' #H5JK#2"C TH;4695 ' 958 ' 92&&;58 ' 96 ' U6584"2&&%"75 ' &5 ' &268 ' % ' K%8 ' K57J"8 ' 9H%FF"7J57 ' U65 ' #58 ' F"##58' 3<2"8"885&4'#H;32#5'K267'82&'K%88;'F;J"&"&C'1H%"##5678>'9H%K7G8'#58'5&4754"5&8'#H27"I"&5'F;J"&"&5'9%&8' %636&'3%8'&H%'K%8'"&F#65&3;'#5'3<2"['95'#H27"5&4%4"2&C'?&5'F2"8'5&47;58']'#H;32#5'3574%"&58'F"##58' 9;3#%75&4'U65'#5'F%"4'9H%@2"7'K#68'95'F"##58'9%&8'#H5&4267%I5'%'F%3"#"4;'#567'"&4;I7%4"2&']'#H;32#5'54'#58'%' 7%8867;58'9%&8'#567'3<2"['K72F588"2&&5#>'95'@2"7'5&4%&4'95'F"##58'U6"'@2&4'95@5&"7'"&I;&"567C T%'J"["4;'95'#H5&85"I&5J5&4'K267'358'&26@5##58'I;&;7%4"2&8'9H"&I;&"5678'584'%3U6"85'54'4264' ]'F%"4'#;I"4"J5'3%7'#%'823";4;'584'J"[45>'#5'J2&95'96'47%@%"#'584'J"[45>'92&3'"#'F%64'32JJ5&357']' 8H<%B"4657'%6'J;#%&I5'958'85[58'9;$]']'#H;32#5C'/#8'82&4'4268'9H%33279>'F"##58'32JJ5'I%7f2&8>'"#8' 75F685&4'#%'&2&bJ"["4;'54'#5'754267']'#%'&2&bJ"["4;>'32&8"9;7;5'32JJ5'U65#U65'3<285'9H<"8427"U65'54' 9;K%88;>'64"#5'9%&8'6&5'3574%"&5';K2U65C ,*G*,*'.*()Q$Q/$"+,&4R$J-*( ,7J8472&I'/C_C>'072JB"5'lC>'SZZZ>'u'02JK72J"858'"&',92#5835&48H'.336K%4"2&%#',8K"7%4"2&8'%&9'*[K534%4"2&8'F72J' l7%958'V'42'WZ'v>'Z,.*-)#&,=&[,/)'",-)#&:$0)?",*>'&nLMC !%&967%',C>'WdPP>u'(5#Fb5FF"3%3`'\')2E%79'%'6&"F`"&I'4<527`'2F'B5<%@"27%#'3<%&I5'v>'B%D/0,#,("/)#&\$?"$]>'VX'OSRC !%695#24'0C>'*84%B#54'=C>'SZZM>'M##$^&#$%&="##$%&_5'_%7"8>'(56"#>'S5';9C !54r'-C*C>'t%3|544'lC>'WdVW>'u')<5'75#%4"2&8<"K'2F'3%7557b75#%459'85#Fb5FF"3%3`'5[K534%4"2&8'42'K5735"@59'3%7557'2K4"2&8' "&'32##5I5'E2J5&'5&9'J%&'v>'Z,.*-)#&,=&V,.-%$#"-(&B%D/0,#,(D>'SVOLRC !2679"56'_C>''_%88572&'{C0C>'WdPZ>'<)&\$7*,2./'",-5'_%7"8>'*9"4"2&8'95'Y"&6"4C !2679"56'_C>'(%"&4bY%74"&'O95R'YC>'WdVP>'a',I7;I%4"2&'54'8;I7;I%4"2&'\'#5'3<%JK'958'I7%&958';32#58'54'#5'3<%JK'95' K26@2"7'c>'M/'$%&2$&#)&*$/0$*/0$&$-&%/"$-/$%&%,/")#$%5'&nMd>'KCWbXdC !2679"56'_C>'WdVd>'<)&-,E#$%%$&2;F')'5&(*)-2$%&4/,#$%&$'&$%7*"'&2$&V,*7%5'_%7"8>'Y"&6"4C !2679"56'_C>'WddV>'<)&2,1"-)'",-&1)%/.#"-$>'_%7"8>'(56"#C 0%3<5#26'{C>'WdVX>'a'15'Y%7"5'067"5'%6['"&I;&"5678'95'#H%&'SZZZ'c>'V.#'.*$&'$/0-"O.$5'&nWS>'J%78>'KCSMLbSPWC 1676b!5##%4'YC>'<;4/,#$&2$%&="##$%G&`.$##$&=,*1)'",-&7,.*&O.$#%&*W#$%&%,/").C&a>'_%7"8>'t%7J%44%&>'SZZX>'S5';9C A5#26r"8'lC>'WddX>'<$&/,##P($&).&O.,'"2"$-&N&)2)7')'",-5&%,/")#"%)'",-&$'&*4.%%"'$&%/,#)"*$2$%&="##$%&$'&2$%&()*+,-%>'_%7"8>' _?AC A577%&9'YC>'/JB574'AC>'Y%77`'0C>'WddP>'A5JJ58'54'83"5&358C'?&5';U6%4"2&'"JK72B%B#5'i>'!,*1)'",-IF17#,">'&nLLC A577%&9'YC>'/JB574'AC>'Y%77`'0C>'Wddd> '<;$C/$##$-/$&%/,#)"*$&N&.-$&)==)"*$&2$&=)1"##$5&<$&/)%&2$%&-,*1)#"$--$%&$' & -,*1)#"$-%&%/"$-'"="O.$%5'_%7"8>'#Ht%7J%44%&C A2&4%&"&"'0<C>'SZZS>'a')7%$548'823"%6['54'832#%"758'958'F"##58'54'958'I%7f2&8'@578'6&5';32#5'9H"&I;&"567'\'TH/&84"464' -%4"2&%#'958');#;32JJ6&"3%4"2&8'c>'\$?.$&2$%&A/"$-/$%&A,/")#$%>'&nSd>'KCWQZbWQPC l244F75982& 'TC(C> 'WdVW>'a'0"736J837"K4"2& '%&9'32JK72J"85'\ ','95@5#2KJ5&4%# '4<527`'2F '2336K%4"2&%# '%8K"7%4"2&8v>' Z,.*-)#&,=&V,.-%$#"-(&B%D/0,#,(D>'SV'OMRC l75#2& ' ,C> ' WddS> ' a'Y%7"5bT26"85 ' _%7"8 ' 54 ' #58 ' 9;B648 ' 95 ' #H*32#5 ' _2#`453<&"U65 ' A;J"&"&5'c> ':.##$'"- & 2;0"%',"*$ & 2$ & #;4#$/'*"/"'45'&n'WdbSZ>'$6"&b9;35JB75>'KC'WQQbWLMC T%K%& ' )C=C> '{"&I5#58|"' {C> ' WddS> ' u0"736J837"B"&I ' +23%4"2&%# ' ,8K"7%4"2&8 ' "& ' {6&"27 ' t"I< ' (3<22#v> 'Z,.*-)# & ,= & V,.-%$#"-(&B%D/0,#,(D>'@2#C'Qd>'&nWC Y3Y%<2&'YC>''_%442&'}C>'WddP>'u'l5&957'9"FF575&358'"&'3<"#975&:8'%&9'%92#5835&48:'K5735K4"2&8'2F'"&F#65&358'2&'4<5"7' 3%7557'95@5#2KJ5&4'v>'A/0,,#&V,.-%$#,*>'XXC Y%772 ' 0C> ' +26"##24 ' AC> ' WddW> ' =5K7;85&4%4"2& ' 95 ' 82"> ' 75K7;85&4%4"2& ' 96 ' 83"5&4"F"U65b4`K5 ' 54 ' 3<2"[ ' 9:6&5 ' 27"5&4%4"2&' 83"5&4"F"U65'3<5r'958'F"##58'54'958'I%7f2&8'95'8532&95>'<;@*"$-')'",-&A/,#)"*$&$'&B*,=$%%",--$##$>'&nQ>'@2#C'SZ>'WddWC Y%7"244"'AC>'SZZW>'u'_#%35'54'84%464'958'J%4<;J%4"U658'85#2&'#5'85[5'9%&8'#%'847634675'958'75K7;85&4%4"2&8'823"%#58'95'#%' 83"5&35'54'958'J;4"578'83"5&4"F"U658'3<5r'#58'32##;I"5&8'54'958'#`3;5&8'v> '<$%&/)0"$*%&"-'$*-)'",-).C&2$&7%D/0,#,("$>' &nXdC Y%77`'0C>'WdVd>'a'A5JJ58'"&I;&"5678'\'6&5'O"7R7;8"84"B#5'%835&8"2&'i'c>'b-=,*1)'",-&%.*&#$%&A/"$-/$%&A,/")#$%5'S>'@2#CSV>' $6"&>'KC'SdWbQXXC Y%77`'0C> 'WddS>'a'156[ 'I;&;7%4"2&8 '95 'F5JJ58'"&I;&"5678 '"88658 '958';32#58 '9H;#5347"3"4;'c> ':.##$'"- &2;0"%',"*$ &2$ & #;4#$/'*"/"'45'&nWd>'$6"&b9;35JB75>'KC'WLPbWMdC Y%77`'0C>'a'A5JJ5'54'"&I;&"567'\'#%'F"&'9H6&5'"&32JK%4"B"#"4;'i'c>'<)&*$/0$*/0$5'&nSXW>'J%78>'KC'QMSbQMQC Y%77`'0C>'WddS>'a'T58'"&I;&"5678'\'6&5'K72F588"2&'K#68'J%836#"&5'5&',##5J%I&5'U6H5&'A7%&35'i'c'<;,*"$-')'",-&%/,#)"*$ & $'&7*,=$%%",--$##$5'SW>'&nQ>'$6"##54b85K45JB75>'KCSXLbSMPC Y%77`'0C>'SZZX>&<$%&=$11$%&"-(4-"$.*%5&>-$&*4?,#.'",-&*$%7$/'.$.%$5&_%7"8>'!5#"&5&2KC>'3"4C>'KCWZSC Y%6'}5"b0<5&I>'SZZQ>'u'A%34278'4<%4'"&F#65&35'K578"845&35'"&'83"5&35'%&9'5&I"&557"&I'3%7557'%8K"7%4"2&8'v> 'V)*$$* & c$?$#,71$-'&`.)*'$*#D>'J%78C) Y2832&"'->'WdVd>'<)&1"C"'4&2)-%&#;$-%$"(-$1$-'&%$/,-2)"*$5&.-&=).C&%$1E#)-'&a>'_%7"8>'_?AC Y2832&"'->'WddX>'!$11$%&$'&%)?,"*%G&<)&%,/"4'45&#;4/,#$&$'&#)&2"?"%",-&2$&%)?,"*%5&_%7"8>'#Ht%7J%44%&C Y2832&" ' -C> ' (45@%&2@"3 ' !C>) SZZP> 'H$-*$ & $' & M?$-"*G' <$% & *$7*4%$-')'",-% & 2$% & 14'"$*% & /0$^ & #$% & )2,#$%/$-'$% & $' & #$% & )2,#$%/$-'%5'_%7"8>'t%7J%44%&>'(;7"5'a'l5&75'54'*963%4"2&'cC _"I5`75 'AC>'WdVM> 'A,/")#"%)'",-&2"==4*$-'"$##$&2$%&%$C$%G&<)&/)%&2$%&=.'.*$%&=$11$%&/)2*$%&2)-%&#$%&(*)-2$%&4/,#$% & 2;"-(4-"$.*%&$'&2$&($%'",-5&)<G85'K267'#5'923427%4'95'QGJ5'3`3#5'5&'823"2#2I"5>'?&"@578"4;'95'_%7"8'+//C (45@%&2@"3'!C>'SZZQ>'<)&1"C"'4&2)-%&#$%&4/,#$%&2;"-(4-"$.*%&N&<$&/)%&7)*)2,C)#&2$&#;$CIF/,#$&B,#D'$/0-"O.$&!41"-"-$5& )<G85'5&'(3"5&358'95'#H;963%4"2&>'?&"@578"4;'-%&45775b'_%7"8'WZC (45@%&2@"3'!C>) SZZX>'a'TH<"842"75'95'#%'J"["4;']'#H5['*32#5'_2#`453<&"U65'A;J"&"&5'OWdMdbSZZZR'c> 'V)**$=,.*%&2$ & #;42./)'",-5'$%&@"57b$6"&>'&nWP>'KKCLVbPMG (45@%&2@"3'!C>'Y2832&"'-C>'SZZL>'a'TH;32#5'_2#`453<&"U65'A;J"&"&5'\'6&5'J"["4;'K%7%92[%#5'c>' '\$?.$&!*)-+)"%$&2$ & B42)(,("$>'&nWLZ>'KKCWdbQWC Stevanovic B., 2006, La mixité dans les écoles d’ingénieurs. Le cas de l’ex-Ecole Polytechnique Féminine, Paris, l’Harmattan, coll. « Savoir et Formation ». (45@%&2@"3'!C>'SZZV>'a'Y24"@%4"2&8']'"&4;I757'6&5';32#5'9:"&I;&"5678C'T:5[b*32#5'_2#`453<&"U65'A;J"&"&5\'T:27"I"&5' F;J"&"&5'95'#:;32#5'%44"75b4b5##5'#58'F"##58i'c>'V)0"$*%&2.&VF\!FF>'&nSL>'KKCLWbPQC 1 Les Cycles Préparatoires Polytechniques contribuent-ils à réduire les inégalités de genre dans l’accès aux formations d’ingénieurs ? Josette Costes1 Les Cycles Préparatoires Polytechniques (CPP) ont été créés en 1993 par les Instituts Nationaux Polytechniques (INP) dans un contexte général de hausse de l’offre de places en école d’ingénieurs et de baisse d’attrait pour les études scientifiques. Il s’agissait de diversifier les voies d’accès aux écoles d’ingénieurs. Les INP, qui regroupent vingt écoles publiques d’ingénieurs2, ont fait l’hypothèse que des élèves qui refusaient de passer par les classes préparatoires (CPGE) pouvaient devenir de très bon-ne-s ingénieurs, moyennant une formation adaptée. Conçus dès leur création comme une alternative aux CPGE, les CPP présentent d’importantes différences avec ces dernières. La plus « spectaculaire » est que les élèves qui y sont admises ne passent pas de concours au terme des deux années d’étude : c’est le contrôle continu qui joue ce rôle (moyenne de 10 sur 20 demandée à la fin de chaque année, classement des élèves pour l’accès aux écoles d’ingénieurs). Les autres différences résident dans le mode d’accès aux CPP (entretien individuel avec lettre de motivation en plus des résultats scolaires), dans l’organisation des études (enseignement généraliste pendant trois semestres, spécialisé au 4ème semestre et stage obligatoire de cinq semaines en entreprise ou en laboratoire) et dans l’information donnée sur les écoles (présentation systématique, rencontres avec d’anciens-nes élèves) Les filles, qui sont plus nombreuses que les garçons à poursuivre des études supérieures, sont minoritaires dans les études scientifiques, et leur part n’évolue que lentement.3 Au sein des études scientifiques, filles et garçons n’ont pas le même parcours : ils étudient des disciplines différentes dans des établissements différents. Les garçons investissent les CPGE quand les filles, jugeant ces dernières trop compétitives, sont plus nombreuses à l’université 4. Quand elles envisagent une école d’ingénieur, elles sont plus nombreuses que les garçons à choisir une préparation intégrée (30 % des filles contre 16 % des garçons)5. Elles se concentrent en 1 PRAG Mathématiques à l’Institut National Polytechnique de Toulouse ; Membre de l’équipe Simone SAGESSE-CERTOP Université Le Mirail à Toulouse et de l’équipe Genre et Education de l’IUFM MidiPyrénées 2 situées géographiquement aux environs de Grenoble, Nancy et Toulouse Nous nous intéressons ici aux études scientifiques non médicales. 4 Education et formations n°72 septembre 2005 Impact du contexte scolaire dans l’élaboration des choix d’études supérieures des élèves de terminale. « Le fait d’être une fille plutôt qu’un garçon réduit de moitié les chances d’envisager une orientation en CPGE ». « Toutes choses égales par ailleurs, les filles ont en moyenne deux fois plus de chances que les garçons d’envisager des études supérieures à l’université » Le même constat avait été fait en 2001 (Note d’information 01-31) 5 Enquête du CNISF de 1999, citée par C Marry « Les femmes ingénieurs » p 166 3 Josette Costes 2ème Conférence internationale du Resup Lausanne, 18-20 juin 2009 2 chimie, biologie, agronomie quand les garçons se répartissent dans tous les secteurs. Les écoles d’ingénieurs reflètent ces différences : en 2006-07, 27 % de leurs effectifs sont des femmes mais elles sont 13 % à l’Ecole Nationale Supérieure d’Arts et Métiers et 61 % dans les écoles dépendant du Ministère de l’agriculture et de la pêche (agronomie)6. Les CPP sont à la fois une alternative déclarée aux CPGE et une voie d’accès à des écoles d’ingénieurs. Dans cette étude, nous nous demandons si depuis leur ouverture en 1993, les CPP ont favorisé ou non l’accès des femmes à ces écoles et si l’originalité de leur cursus a modifié la répartition sexuée dans ces écoles. Pour l’admission en CPGE, c’est dès la terminale que les élèves choisissent leur discipline dominante, alors que les élèves des CPP disposent de deux années de plus pour cela. La différence est particulièrement importante pour la biologie. Or cette discipline marque les différences sexuées d’orientation (2 élèves sur 3 de BCPST7 sont des filles). Ce report du choix, joint aux informations données sur toutes les écoles, favorise-t-il ou non une diversification du choix des filles ? Pour répondre à ces questions, nous avons d’abord fait une analyse sexuée des CPP, de la candidature aux CPP à l’admission en école. Nous avons continué par une analyse sexuée et comparative de la répartition en écoles de deux populations : celle des élèves des CPP admis-es en 1ère année d’école d’ingénieur et celle des élèves de ces mêmes écoles non issu-es des CPP. Nous cherchons à déterminer si les différences sexuées de répartition sont plus importantes ou non dans la population issue des CPP. Dit autrement : le passage par un CPP fait-il entrer plus de filles dans les écoles peu féminisées et plus de garçons dans les écoles très féminisées ? Nous avons utilisé : - les taux de féminisation des différents groupes d’élèves la répartition dans les écoles selon la spécialité, le sexe et l’origine (CPP ou non) une répartition sexuée « théorique » des élèves issus des CPP en 1ère année d’école : ce qu’elle serait si les élèves des CPP se répartissaient comme les non issus des CPP8 la moyenne des notes obtenues par les élèves des CPP admis-es en école le nombre de places offertes aux CPP par les différentes écoles Selon le caractère étudié, nous avons considéré les effectifs cumulés sur une période donnée ou l’évolution dans le temps. Cette étude porte à priori sur toutes les promotions d’élèves depuis la création des CPP en 1993 jusqu’à la rentrée 2008. Cependant, les données n’étant pas toutes disponibles pour 6 Les étudiants Repères et références statistiques – éd 2007 p187 BCPST : classe préparatoire aux grandes écoles, section Biologie, Chimie, Physique, Sciences de la Terre 8 répartition proportionnelle à celle des élèves non issus des CPP 7 Josette Costes 2ème Conférence internationale du Resup Lausanne, 18-20 juin 2009 3 toutes les années, nous avons à diverses reprises réduit la période d’étude. Nous le préciserons à chaque fois. Les données sont issues des statistiques fournies par les INP et des Procès-Verbaux des jurys d’admission en école. Les résultats de l’étude (1ère partie) : 1 - Les CPP sont plus féminisés que les CPGE ou les INSA mais n’atteignent pas la parité. Les CPP sont une petite structure. L’effectif des élèves de 1ère année est passé de 140 en 1993 à 277 à la rentrée 2008 avec un total de 3 116 élèves pour la période 1993-2008. Le graphique suivant représente l’évolution du taux de féminisation des élèves de 1ère année entre 1993 et 2008. Pendant cette période, le taux de féminisation des 1ère année de CPGE scientifiques est passé de 26 % en 1993-94 à 30 % en 2006-07. Celui des 1er cycles d’universités scientifiques a Josette Costes 2ème Conférence internationale du Resup Lausanne, 18-20 juin 2009 4 oscillé entre 36 % et 38 %. Celui des INSA, établissements qui recrutent sur le même vivier d’élèves que les CPP, est resté stable à 30 %9 Les CPP se distinguent donc par une forte féminisation : passées les deux premières années, la part des filles oscille autour de 40 % des effectifs, frôle la parité en 1998 et dépasse d’environ 10 points celle en CPGE et dans les INSA. La féminisation des CPP est proche de celle des facultés de sciences. En cumulant les effectifs depuis 1993, sur 10 élèves admis dans les CPP, 4 étaient des filles. Cette féminisation a cru fortement de l’ouverture en 1993 (31 %) à 1998 (49 %). La tendance générale est ensuite à une baisse modérée (41,5 % en 2008). 2 - Les filles sont plus souvent admises dans les CPP que les garçons, mais l’écart se réduit au fil des années. Evolution du pourcentage de femmes dans les candidatures et les admissions aux CPP : Lecture : en 1998, les filles représentaient 30 % des candidats et 49 % des admis aux CPP 9 Notes d’information du Ministère de l’Education Nationale 94-16, 94-29 ,00-32 et 06-22 Josette Costes 2ème Conférence internationale du Resup Lausanne, 18-20 juin 2009 5 La part des candidatures féminines est très stable : de 1998 à 2008, 3 candidats aux CPP sur 10 sont des candidates. Seulement 3 sur 10 alors qu’à cette période, de 42 % (en 1997) à 46 % (en 2004) des élèves de terminale S sont des filles10. Les filles sont plus souvent admises dans les CPP que les garçons, l’écart allant de 19 points en 1998 à 7 en 2007. Deux explications à cet avantage aux filles : La meilleure réussite des filles au lycée : elles redoublent moins, sont plus souvent à l’heure ou en avance, sont plus souvent reçues au baccalauréat (+5 points) et avec de meilleures mentions que les garçons11. L’admission au CPP faisant intervenir les notes des classes de première et terminale et les résultats au baccalauréat, les filles sont en meilleure position que les garçons dans 2 critères de sélection sur 3. Les garçons s’orientent plus souvent vers les CPGE que les filles, ces dernières préférant les filières moins sélectives. Au Baccalauréat général et technologique12 2005, 46 % des filles ayant obtenu une mention Très Bien et 28 % de celles ayant obtenu une mention Bien se sont orientées en CPGE contre 60 % et 39 % des garçons dans la même situation13. Les CPP, qui sont une alternative aux classes préparatoires, avec contrôle continu, sont donc susceptibles d’intéresser un plus grand nombre de filles avec de bons résultats scolaires : en particulier celles qui, si elles étaient nées garçons, seraient allées en CPGE. 3 - Les élèves filles des CPP, sont un peu plus souvent admises en école d’ingénieur que les élèves garçons. La comparaison pour une même promotion de la part des filles à l’entrée dans les CPP et à l’entrée en école d’ingénieur au terme des deux années d’étude est à l’avantage des filles. Trois promotions seulement, dont la 1ère, ont vu la part féminine légèrement diminuer : 10 Note d’information 06-06 Note d’information 04-07 19,6 % des reçues au baccalauréat S en 2003 ont obtenu la mention Bien ou Très Bien contre 16 % des garçons. 12 (STI, STL et STT uniquement) 13 Note d’information 06-23 11 Josette Costes 2ème Conférence internationale du Resup Lausanne, 18-20 juin 2009 6 Lecture : Dans la promotion admise en 1ère année des CPP en 1993, il y avait 31 % de filles. Deux ans après, elles représentaient 28 % des admis en 1ère année d’école d’ingénieurs. Les élèves filles des CPP sont un peu plus souvent admises en 2ème année que les garçons : elles représentent 40 % des effectifs de 1ère année entre 1993 et 2006, 42,4 % des effectifs de 2nde année entre 1994 et 2007 et 42,6 % des effectifs des admis-es en école entre 1995 et 2007. C’est une différence notable avec les CPGE scientifiques où la part des filles diminue de la 1ère à la 2ème année (-5 %)14. Non seulement les filles sont plus nombreuses à intégrer les CPP, mais elles y restent. Cette scolarité meilleure des filles est confirmée par leurs résultats au CPP. La moyenne des notes qu’elles y obtiennent est chaque année sauf en 2007 et 2008, légèrement supérieure à celle des garçons (+ 0,1 point sur 20 en moyenne). Cette note moyenne, qui conditionne l’accès aux écoles par l’intermédiaire du classement, joue un rôle fondamental dans l’admission en écoles. 4 – Parmi les élèves admis-es entre 1997 et 2007 en 1ère année des écoles d’ingénieurs des INP, le groupe des élèves issu-es des CPP a toujours été nettement plus féminisé que celui des non issu-es des CPP. 14 Notes d’information 96-14, 00-18, 03-29, 04-16 « Si 22 % des élèves des classes scientifiques abandonnent avant les concours, ces taux sont plus fréquents encore parmi les filles » Lemaire, 2001, cité par C Marry « Les femmes ingénieurs » Josette Costes 2ème Conférence internationale du Resup Lausanne, 18-20 juin 2009 7 Lecture : en 1997, parmi les élèves admis en 1ère année d’école, il y avait 34 % de filles parmi les élèves des CPP et 25 % de filles parmi les élèves non issus des CPP. Ce tableau met en évidence l’augmentation lente mais continue de la part des femmes dans les écoles qui les reçoivent. L’écart de féminisation avec les élèves issu-es des CPP est important : il varie entre 7 % en 2005 et 23 % en 2000. Il est à noter que la parité est atteinte chez les élèves des CPP en 2000 et frôlée en 2004. Cette analyse sexuée des CPP, de la candidature à l’admission en écoles nous fournit une première réponse : oui les CPP ont favorisé l’accès des filles aux écoles d’ingénieurs des INP, contribuant ainsi à réduire les inégalités de genre. Ils intègrent plus de filles que les CPGE, elles y font une bonne scolarité et, sur les effectifs cumulés entre 1997 et 2007, 44 % des élèves des CPP admis en école étaient des filles contre 28 % des non issus des CPP. La différence est importante. Les résultats de l’étude (2ème partie) : Ces résultats concernent la répartition des élèves admis en 1ère année d’écoles entre 1997 et 2007, selon la spécialité de l’école, le sexe des élèves et leur origine (CPP ou non CPP). Nous avons comparé les parts de chaque école par sexe et selon l’origine des élèves. Les écoles les plus féminisées sont celles d’agronomie, de chimie et l’école de géologie (taux supérieur à 42 % sur la période 1997-2007). Dans toutes les autres, le taux de féminisation est Josette Costes 2ème Conférence internationale du Resup Lausanne, 18-20 juin 2009 8 inférieur à 33 % (même période). Nous considérons les premières comme féminisées (même si les écoles de chimie et géologie ne sont pas paritaires) et les secondes comme peu féminisées. Nous disons alors que l’origine CPP tend à réduire pour une école donnée les différences sexuées d’orientation si elle augmente plus la part des garçons que celle des filles pour les écoles « féminisées » et/ou si elle augmente plus la part des filles que celle des garçons pour les écoles « peu féminisées ». 1 - La féminisation élevée des CPP fait entrer plus de filles dans toutes les écoles y compris les peu féminisées. Catherine Marry avait fait le même constat à propos des INSA dans son étude sur les femmes ingénieurs15. Le diagramme suivant fournit pour chaque école le taux de féminisation des élèves qui y sont admis-es entre 1997 et 2007 selon qu’ils sont ou non issus des CPP. Lecture : Parmi les élèves issus des CPP entrés à l’ENSAIA entre 1997 et 2007, 67 % étaient des filles. Parmi les élèves non issus des CPP entrés à l’ENSAIA entre 1997 et 2007, 64 % étaient des filles L’intitulé complet des écoles figure en fin d’article. ENSG : école de Géologie EMN : école des Mines de Nancy Ecoles de biologie : ENSAIA et ENSAT Ecoles de chimie : A7 et ENSIC 15 Catherine MARRY, Les femmes ingénieurs, Une révolution respectueuse, Belin, 2004 Josette Costes 2ème Conférence internationale du Resup Lausanne, 18-20 juin 2009 9 La courbe de féminisation des élèves issu-es des CPP suit globalement celle des non issu-es des CPP. Elle est décalée vers le haut, avec deux « pics » inverses correspondant à l’école des Mines de Nancy et à l’école de géologie. Cela signifie que le fait de passer par un CPP ne modifie pas le caractère plus ou moins féminisé de la majorité des écoles. Mais ce constat global doit être nuancé. Dans les écoles les moins féminisées, la proportion de filles parmi les élèves des CPP est nettement supérieure à celle des filles parmi les élèves non issus des CPP, la différence allant de 8 à 31 points et le taux de féminisation du groupe CPP y est au moins double de celui des non CPP dans cinq écoles sur 1016. L’école des Mines de Nancy, qui constitue l’un des pics, est remarquable : parmi les élèves qui y sont admis, 1 sur 2 est une fille s’ils viennent des CPP, 1 sur 5 sinon. Dans les trois écoles les plus féminisées, la proportion de filles parmi les élèves des CPP est soit inférieure, soit un peu supérieure à celle des filles non issues des CPP, l’écart allant de moins 7 points à plus 10. Il y a là comme une atténuation des différences sexuées d’orientation, les CPP tendant à faire entrer un peu plus de filles dans des écoles peu féminisées et un peu plus de garçons dans les écoles les plus féminisées. L’école de Géologie de Nancy, qui constitue le second pic, est la seule où la part des filles issues des CPP est inférieure à celle des non issues des CPP. Elle fait partie des écoles les plus féminisées, après celles de biologie et avant celles de chimie. L’étude de la répartition dans les écoles par sexe et par origine montre que ce sont les filles des CPP qui intègrent cette école deux fois moins que celles non issues des CPP, le poids de cette école étant quasi le même pour les garçons, qu’ils soient ou non issus des CPP. L’origine CPP réduit donc pour cette école les différences sexuées d’orientation. 2 – Etude de la répartition dans les écoles. Pour étudier l’influence de l’origine CPP sur la répartition dans les écoles, nous avons calculé ce que serait la répartition des élèves des CPP entrés dans les écoles entre 2000 et 2007 s’ils se comportaient comme les élèves non issus des CPP dans la même période et nous avons comparé cette répartition théorique (proportionnelle à celle des non CPP) à la répartition réelle. 16 l’EMN (Mines de Nancy), l’ENSGSI (Génie des Systèmes Industriels), l’ENSICA (Constructions Aéronautiques),l’ENSEM (Electricité et Mécanique) et l’ESISAR (Systèmes avancés) Josette Costes 2ème Conférence internationale du Resup Lausanne, 18-20 juin 2009 10 Répartition théorique des élèves des CPP proportionnelle à celle des non issus des CPP : Pour les filles : Lecture : entre 2000 et 2007, 63 filles élèves des CPP ont intégré l’A7 chimie. Si elles s’étaient réparties proportionnellement à leur consœurs non issues des CPP, elles auraient été 60. La liste complète des écoles figure en annexe. Nous lisons sur ce diagramme que l’origine CPP a favorisé l’entrée des filles dans les écoles d’agronomie (ENSAT et ENSAIA, +33), de papeterie (EFPG, +14), et dans une moindre mesure à l’N7 (+8), les autres gains n’étant pas significatifs. Nous lisons aussi que l’origine CPP a réduit l’accès des filles à l’école de géologie (-17), à celle de chimie de Nancy (l’ENSIC, -16) et à l’école des Mines (-14). Pour les garçons : Josette Costes 2ème Conférence internationale du Resup Lausanne, 18-20 juin 2009 11 Lecture : entre 2000 et 2007, 112 garçons élèves des CPP ont intégré l’N7. S’ils s’étaient répartis proportionnellement à leurs confrères non issus des CPP, ils auraient été 100. L’origine CPP a favorisé l’entrée des garçons dans les écoles d’agronomie (ENSAIA et ENSAT, +40), de génie industriel (ENSGI et ENSGSI, +25), à l’ENSIMAG (informatique, +10) , à l’N7 et à l’école de papeterie (+9). Elle a réduit leur accès à l’école des mines (-41), à l’ESISAR (systèmes avancés, -16), à l’ENSICA (Constructions aéronautiques, -15) et à l’ENSEEG (électricité, -11), La comparaison des deux diagrammes montre que l’origine CPP a favorisé l’accès aux écoles d’agronomie, de papèterie et à l’N7, pour les filles comme pour les garçons, et qu’elle a réduit l’accès à l’école des mines et à l’ENSIC, pour les filles comme pour les garçons. Elle montre aussi que l’origine CPP n’influe pas de la même manière sur les deux écoles de chimie : cette influence est quasi nulle pour l’A7, alors qu’elle réduit l’accès à l’ENSIC. Elle met aussi en évidence les différences sexuées d’orientation, indépendamment de l’origine (CPP ou non) : Les garçons vont d’abord à l’N7, l’A7 (école de chimie) n’arrivant qu’en 4ème position. Les filles vont d’abord dans les écoles d’agronomie et l’A7, l’N7 n’arrivant qu‘en 4ème position. Les conséquences sur les inégalités de genre sont ambivalentes : en favorisant l’accès des garçons aux écoles très féminisées d’agronomie, l’origine CPP tend à les réduire. Mais en favorisant l’accès aux filles de ces mêmes écoles, elle tend à augmenter leur concentration sur Josette Costes 2ème Conférence internationale du Resup Lausanne, 18-20 juin 2009 12 ce domaine. Concernant l’ENSIC (chimie) son accès réduit pour les filles des CPP tend à réduire les inégalités de genre en diminuant la concentration des filles sur ce domaine. Mais cette école est aussi la moins féminisée des deux écoles de chimie. L’origine CPP éloigne donc d’un objectif paritaire. 3 – Etude de la répartition dans les écoles suivant la spécialité. Nous avons regroupé les écoles suivant leurs spécialités, à partir des groupements utilisés par le CNISF dans sa 18ème enquête. La liste des écoles par spécialité figure en fin d’article. Le tableau suivant donne l’intitulé des groupements et leur poids parmi l’ensemble des écoles. spécialité électronique, télécommunications, électrotechnique, électricité, automatique physique, matériaux, fluides chimie Mines, géologie agronomie Informatique, mathématiques appliquées mécanique, constructions aéronautiques génie des systèmes industriels total abréviation élect, télécom poids 25 mat, fluides chimie mines, géol agro info méca, aéro génie indust 17 12 11 10 9 9 7 100 Lecture : sur 100 élèves admis-es en 1ère année d’école, 25 on intégré une école d’ « élect, télécom » Les deux diagrammes suivants représentent la répartition des élèves admis-es dans les écoles entre 2001 et 2007, par sexe, spécialité et origine : Josette Costes 2ème Conférence internationale du Resup Lausanne, 18-20 juin 2009 13 Lecture : sur 100 filles élèves des CPP admises en 1ère année d’école entre 2001 et 2007, 27 ont intégré une école d’agronomie. Sur 100 filles non issues des CPP admises en 1ère année d’école entre 2001 et 2007, 21 ont intégré une école d’agronomie. Lecture : sur 100 garçons élèves des CPP admis en 1ère année d’école entre 2001 et 2007, 28 ont intégré une école d’électricité, d’électronique, télécommunications, électrotechnique, électricité, automatique. Sur 100 garçons non issus des CPP admis en 1ère année d’école entre 2001 et 2007, 29 ont intégré l’une de ces écoles. La comparaison des deux diagrammes montre que l’origine CPP fait varier la part de chaque spécialité dans le même sens, sauf pour « constructions aéronautiques ». La part de celle-ci est en effet quasi la même pour les filles, issues on non des CPP et moindre pour les garçons des CPP. Josette Costes 2ème Conférence internationale du Resup Lausanne, 18-20 juin 2009 14 Pour les spécialités peu féminisées, l’origine CPP augmente le poids de « physique, matériaux, fluides » et diminue un peu le poids de « électricité, télécommunication », et surtout celui de « mines, géologie », pour les filles comme pour les garçons. Pour les spécialités féminisées, l’origine CPP augmente le poids de l’agronomie (elle le double pour les garçons) et diminue un peu celui de la chimie. D’après la 18ème enquête du CNISF17 (2007), « électricité, télécommunication » et « informatique » sont, avec la mécanique, les spécialités les moins féminisées, agronomie et chimie étant les plus féminisées. L’informatique est un marqueur particulier des différences sexuées dans la mesure où la part des femmes y était nettement plus importante il y a trente ans18. Dans notre étude, la part de l’informatique est pour les filles la moitié de celle pour les garçons, CPP ou non. Celle de l’agronomie est prépondérante pour les filles, CPP ou non, dernière pour les garçons non issus des CPP mais médiane pour ceux des CPP. La part de la chimie est pour les garçons, la moitié de celle pour les filles. Parmi les élèves non issu-es des CPP : Une fille sur 5 a intégré une école d’agronomie contre 1 garçon sur 20. Une fille sur 5 a intégré une école de chimie contre 1 garçon sur 10. Parmi les élèves issu-es des CPP : Une fille sur 4 a intégré une école d’agronomie contre 1 garçon sur 10. Une fille sur 6 a intégré une école de chimie contre 1 garçon sur 12. Si nous regroupons les spécialités agronomie et chimie, nous constatons que 4 filles sur 10 intègrent l’une école de ces écoles, un peu plus pour celles des CPP (4,3) et un peu moins (3,9) pour les non CPP. Quant aux garçons, moins d’1 sur 2 intègre l’une de ces écoles, 1,9 s’ils viennent des CPP, 1,4 sinon. Or les effectifs de 1ère année de ces écoles représentent 22 % des effectifs totaux. La concentration des filles dans ces domaines est donc flagrante. Nous constatons donc que l’origine CPP, indépendamment de la féminisation élevée de ceuxci, ne réduit pas les différences sexuées d’orientation les plus marquantes. 17 18 Conseil National des Ingénieurs Scientifiques de France Isabelle Collet, 2005 Josette Costes 2ème Conférence internationale du Resup Lausanne, 18-20 juin 2009 15 5 – Les deux écoles les plus cotées admettent des groupes d’élèves des CPP beaucoup plus féminisés que les non CPP. Les écoles fixent chaque année le nombre de places qu’elles réservent aux élèves des CPP. Ceux-ci classent les écoles qu’ils souhaitent intégrer. Ils y sont ensuite admis ou non en fonction de leurs résultats. Les écoles les plus cotées sont aussi les plus demandées. Le nombre de places offertes étant régulièrement supérieur à celui des élèves admis en écoles, certaines « font le plein » quand d’autres gardent des places vacantes. Le choix des élèves est donc un choix qui peut être contraint. Nous avons classé les écoles suivant la moyenne des notes obtenues au CPP par les élèves qui y ont été admis-es entre 2000 et 2007. Cinq d’entre elles, parmi les moins féminisées, recrutent les meilleurs élèves et ne laissent aucune place vacante. Deux écoles arrivent en tête et se détachent : l’école des Mines de Nancy et l’ENSICA19. Les deux premières sont celles qui proposent le moins de places et un petit nombre de places. Les possibilités des élèves sont donc réduites. Or nous avons constaté plus haut que la part de ces deux écoles est bien inférieure pour les élèves des CPP que pour les autres. Ce nombre très limité de places offertes nous en fournit une explication. Pour autant, les filles des CPP y sont très présentes, particulièrement à l’école des Mines. Ces écoles étant les plus cotées, seul-es les meilleur-es peuvent y prétendre. Les filles, dont les résultats sont légèrement supérieurs à ceux des garçons peuvent y prétendre. L’étiquette Mines, ou aéronautique, à la différence de chimie ou biologie, est plutôt connotée masculine. Nous pouvons lire ici un effet de « la logique de l’excellence » qui pousse les meilleurs élèves à postuler aux meilleures écoles, quels que soient les freins éventuels, en particulier ceux liés au sexe. 6 – Deux écoles d’une même spécialité peuvent recevoir des filles et des garçons des CPP en proportions différentes. Nous avons déjà fait ce constat à propos des deux écoles de chimie. Il en est de même dans d’autres spécialités : L’ENSEEIHT à Toulouse est divisée en cinq départements. Celui d’hydraulique et mécanique des fluides intègre le groupe d’élèves des CPP le plus féminisé (50 % de filles), celui d’informatique le groupe le moins féminisé (12 % de filles) HMG est aussi une école d’hydraulique et mécanique. Le taux de féminisation des élèves des CPP qui y sont admis est 19 moyenne aux Mines de Nancy : 14,1 sur 20 ; à l’ENSICA : 13,9 ; autres écoles : inférieure à 12,9 Josette Costes 2ème Conférence internationale du Resup Lausanne, 18-20 juin 2009 16 de 35 %. L’ENSIMAG forme des ingénieurs en informatique. Le taux de féminisation des élèves des CPP qui y sont admis est de 23 %. Nous constatons ici que des écoles ayant les mêmes spécialités n’ont pas la même audience auprès des filles des CPP. La cote de ces écoles ne peut expliquer ces différences : l’ENSEEIHT est la seule à laisser des places vacantes, l’ENSIMAG et HMG sont plus cotées que l’ENSEEIHT. Pourquoi ces différences ? Si des raisons géographiques interviennent, l’image et la réputation de ces écoles jouent aussi un rôle. Les élèves se fabriquent une représentation des écoles plus ou moins fidèle à la réalité et cette représentation influe sur leur choix. Une enquête sur les déterminants de ces choix d’école est en cours. Les écoles ont certainement une carte à jouer en travaillant leur présentation et les informations qu’elles donnent. Conclusions : Nous avons étudié les taux de féminisation des écoles et des élèves CPP et non CPP, sans considérer le poids de chaque école. L’étude de la répartition des élèves dans les écoles nous a permis de raisonner sans influence du taux de féminisation. Nous avons aussi évoqué la cote des écoles. Comment ces paramètres se croisent-ils et quelle influence ont-ils sur les différences sexuées d’orientation ? La première conclusion est que le paramètre le plus important est la féminisation élevée des CPP. Les filles investissent alors toutes les écoles, y compris les plus masculines. La seconde conclusion concerne les spécialités qui marquent les différences sexuées d’orientation. Globalement, les filles des CPP, comme leurs consœurs, sont nombreuses en agronomie et chimie et plus rares en informatique. Cependant, l’origine CPP augmente le poids des écoles de biologie pour les filles comme pour les garçons mais plus pour les garçons. La tendance est donc à équilibrer la répartition sexuée en favorisant l’entrée des garçons. En chimie, le poids des écoles diminue pour les filles et les garçons. La tendance est alors à diminuer la concentration des filles mais aussi à s’éloigner de l’objectif paritaire. En informatique, la féminisation des CPP amène plus de filles dans cette spécialité, sans modifier la répartition sexuée. La tendance est donc à réduire les différences sexuées d’orientation. En automatique/électricité, électronique/télécommunications, la féminisation des CPP amène plus de filles dans ces spécialités. L’étude de la répartition montre que l’origine CPP diminue un peu la part de la seconde. Les deux influences sont donc antagonistes. Josette Costes 2ème Conférence internationale du Resup Lausanne, 18-20 juin 2009 17 La troisième conclusion concerne les deux écoles les plus sélectives. Elles sont aussi parmi les plus masculines. L’origine CPP multiplie par deux et plus le taux de féminisation du groupe d’élèves qui intègre chacune de ces écoles. Mais cette influence qui, jointe aux effets d’une logique d’excellence, tend à réduire les différences sexuées d’orientation, est considérablement limitée par le petit nombre de places offertes. La quatrième conclusion est que la spécialité et le niveau d’entrée des écoles ne sont pas les seuls déterminants du choix des élèves. Pourquoi l’ENSIC, qui recrute plus haut que l’ENSIACET et a des places disponibles est-elle déficitaire en élèves des CPP ? Pourquoi l’ENSIMAG, qui recrute plus haut que l’ENSEEIHT et n’a pas de places vacantes, accueillet-elle plus de filles du CPP que l’ENSEEIHT informatique ? La réputation des écoles joue un rôle important dans les vœux formulés par les élèves. Les écoles gagneraient à intégrer dans leurs présentations la question des choix masculins et féminins. Par ailleurs, le mode de recrutement dans les CPP change depuis la rentrée 2006 (diminution du poids du baccalauréat, entretien et choix du CPP plus précoces). Quelles seront les incidences des modifications du recrutement, en particulier sur le taux de féminisation, dont nous avons vu l’importance ? La conclusion générale est que par rapport à un objectif de réduction des différences sexuées d’orientation, le meilleur atout des CPP est son taux élevé de féminisation. Il est clair que, grâce à lui, les CPP favorisent l’accès des filles aux écoles d’ingénieurs et à toutes les écoles, quelque soit leur spécialité. Par contre, ils modifient peu les tendances lourdes de la répartition sexuée dans les écoles. L’influence de l’origine CPP sur l’orientation en agronomie et en chimie est ambivalente : augmentation du poids des écoles d’agronomie pour les garçons mais légère augmentation de la concentration pour les filles. Le petit nombre de places offertes par l’école la plus cotée est un frein réel à l’entrée des filles dans cette école. L’originalité de la structure CPP ne bouleverse pas la donne en matière d’orientation. Elle attire plus de filles, qui y restent et intègrent des écoles d’ingénieurs en n’en délaissant aucune. Mais cette étude prouve aussi que parmi les déterminants qui influent sur le choix de ces écoles, ceux liés à l’identité sexuée et aux rapports sociaux entre les sexes sont particulièrement puissants. Une modification, même légère, de ces choix ne peut se faire sans un travail en profondeur sur le masculin, le féminin, les rapports sociaux et les inégalités entre les sexes. Les écoles d’ingénieurs pourraient introduire cette dimension dans leurs présentations aux élèves et les CPP initier une réflexion sur ces questions à partir de l’insertion professionnelle des femmes et des hommes. Ce travail mené, avec les filles et avec les garçons, permettrait peut-être une évolution de leurs choix. Les CPP contribueraient alors, à la mesure de leur taille, à un accès plus égalitaire aux études scientifiques. Josette Costes 2ème Conférence internationale du Resup Lausanne, 18-20 juin 2009 18 Bibliographie : Isabelle COLLET, Etat des lieux : l’existence d’un fossé numérique concerne surtout les filles, dans Actes du colloque : Femmes, sciences et techniques de l’information et de la communication, décembre 2005 Catherine MARRY, Les femmes ingénieurs, Une révolution respectueuse, Belin, 2004 Françoise VOUILLOT, L’orientation : un instrument du genre, dans Actes du colloque Femmes et Informatique, les encourager de l’école à l’université, ENS Lyon, 17-18 novembre 2006 CNISF : 18ème enquête, 2007 Conseil National des Ingénieurs Scientifiques de France Rachid BOUHIA, , Les étudiants en classes préparatoires aux grandes écoles, année 20052006, Note d’information 06-23 Amélie BRIFFAUX,Résultats définitifs de la session 2003 du baccalauréat, Note d’information 04-07 Brigitte DETHARE, Les classes préparatoires aux grandes écoles, année 1995-1996, Note d’information 96-14 Brigitte DETHARE, Les classes préparatoires aux grandes écoles, année 1999-2000, Note d’information 00-18 Brigitte DETHARE , Les écoles d’ingénieurs publiques et privées, année 1999-2000 , Note d’information 00-32 Brigitte DETHARE, Les classes préparatoires aux grandes écoles, année 2002-2003, Note d’information 03-29 Pauline GIRARDOT, Les étudiants en classes préparatoires aux grandes écoles, année 20032004, Note d’information 04-16 Sylvie LEMAIRE, Profil et devenir des élèves inscrits dans une classe préparatoire aux grandes écoles, Note d’information 01-31 Nadia NAKHILI, Education et formation n°72, 2005, Impact du contexte scolaire dans l’élaboration des choix d’études supérieures des élèves de terminale Josette Costes 2ème Conférence internationale du Resup Lausanne, 18-20 juin 2009 19 Delphine PERELMUTER et Sandrine MASSE, Les écoles d’ingénieurs publiques et privées Effectifs en 2004-2005, Note d’information 06-22 Fabienne ROSENWALD, Les filles et les garçons dans le système éducatif, Note d’information 06-06 Les étudiants, repères et références statistiques, 2007 ANNEXE : Liste des écoles par spécialité et des sigles utilisés CPGE : Classes Préparatoires aux Grandes Ecoles CPP : Cycle Préparatoire Polytechnique INPG : Institut National Polytechnique de Grenoble INPL : Institut National Polytechnique de Lorraine INPT : Institut National Polytechnique de Toulouse Les groupements d’écoles par spécialité : Agronomie : ENSAT : Ecole Nationale Supérieure Agronomique de Toulouse ENSAIA : Ecole Nationale Supérieure d’Agronomie et des Industries Alimentaires (Nancy) Chimie : A7 : ENSIACET : Ecole Nationale Supérieure des Ingénieurs en Arts Chimiques et Technologiques (Toulouse) ENSIC : Ecole Nationale Supérieure des Industries Chimiques (Nancy) Electronique, télécommunications, électrotechnique, électricité, automatique : ENSERG : Ecole Nationale Supérieure d’Electronique et Radioélectricité de Grenoble INPG tél : Institut National Polytechnique de Grenoble Département Télécommunication ENSEEG : Ecole Nationale Supérieure d’Electrochimie et Electrométallurgie de Grenoble ENSIEG : Ecole Nationale Supérieure d’Ingénieurs Electriciens de Grenoble N7 : ENSEEIHT : Ecole Nationale Supérieure d’Electrotechnique, d’Electronique, d’Informatique, d’Hydraulique et des Télécommunications de Toulouse, départements de Josette Costes 2ème Conférence internationale du Resup Lausanne, 18-20 juin 2009 20 Génie Electrique et Automatique, de Electronique et Traitement du Signal et de Télécommunications et Réseaux Mines et géologie : ENSMN : Ecole Nationale Supérieure des Mines de Nancy ENSG : Ecole Nationale Supérieure de Géologie (Nancy) Informatique et mathématiques appliquées : ENSIMAG : Ecole Nationale Supérieure d’Informatique et de Mathématiques Appliquées de Grenoble N7 : ENSEEIHT : Ecole Nationale Supérieure d’Electrotechnique, d’Electronique, d’Informatique, d’Hydraulique et des Télécommunications de Toulouse, département de Informatique et Mathématiques Appliquées Mécanique, constructions aéronautiques : ENSEM : Ecole Nationale Supérieure d’Electricité et de Mécanique (Nancy) ENSICA : Ecole Nationale Supérieure d’Ingénieurs de Constructions Aéronautiques (Toulouse) Physique, matériaux, fluides : EEIGM : Ecole Européenne d’Ingénieurs en Génie des Matériaux (Nancy) ENSHMG : Ecole Nationale Supérieure d’Hydraulique et Mécanique de Grenoble ENSPG : Ecole Nationale Supérieure de Physique de Grenoble EFPG : Ecole Française de Papeterie et des Industries Graphiques de Grenoble ENSEEIHT : Ecole Nationale Supérieure d’Electrotechnique, d’Electronique, d’Informatique, d’Hydraulique et des Télécommunications de Toulouse, département de Hydraulique et Mécanique des Fluides. Génie des systèmes industriels : ENSGI : Ecole Nationale Supérieure de Génie Industriel (Grenoble) ENSGSI : Ecole Nationale Supérieure en Génie des Systèmes Industriels (Nancy) ESISAR : Ecole Nationale Supérieure en Systèmes Avancés et Rhône-Alpes Josette Costes 2ème Conférence internationale du Resup Lausanne, 18-20 juin 2009 Actes du Colloque international du RESUP : Les inégalités dans l' enseignement supérieur et la recherche, Université de Lausanne, 18 au 20 Juin 2009 Inequalities and knowledge production Research Policy, industry and scientific publications Figure 1: Total Number of Publications 400 200 100 0 1985 1990 1995 Year Imperial 2000 2005 City Figure 2: Average Number of Publications (per staff) 4 3 PublNo Publication 300 2 1 0 1985 1990 1995 Year 2000 Imperial City 95% confidence interval 2005 Figure 3: Average % of EPSRC with Industry (per staff) 1 Industry EPSRC .8 .6 .4 .2 0 1985 1990 1995 Year 2000 Imperial City 2005 95% confidence interval Figure 4: Average % of industry co-authored publications Industry Publication .6 .4 .2 0 1985 1990 1995 Year Imperial 2000 City 95% confidence interval 2005 Table 1: Variables used in descriptive statistics and GMM estimation Variable Dependent Variables Description Publications Number of publications by individual i corresponding to observation period t Co-author weighted publications Number of publications by individual i corresponding to observation period t weighted by the inverse of the number of co-authors Impact Factor weighted publications Number of publications by individual i corresponding to observation period t weighted by the Impact Factor of the journal Fraction of applied publications Categorial Variables Fraction of applied publications by individual i in observation period t Leavers 1-5yrs Individuals i that left the sample after 1 to 5 years Leavers 6-10yrs Individuals i that left the sample after 6 to 10 years Newcomers after 2002 Industry EPSRC Individuals i that joined the sample after 2002 Value of EPSRC funds Amount of total EPSRC funding in GBP received by individual i in observation period t Fraction of EPSRC funds with industry collaboration Fraction of EPSRC funds with one or more industrial partners received by individual i in observation period t Degree of industry collaboration Moving fraction of accumulated EPSRC funds with one ore more industrial partners received by individual i up to period t-1 No industry collaboration Equals 1 if no EPRSC funds involved the industry up to period t-1 ; 0 otherwise No EPSRC Industry Co-author Equals 1 if no EPSRC funds were received up to period t-1 ; 0 otherwise Fraction of publications with co-authors from the industry Fraction of publications with one or more industry co-authors published by individual i in observation period t Fraction of co-author weighted publications with co-authors from the industry Fraction of publications with one or more industry co-authors published by individual i in observation period t and weighted by the inverse of the number of co-authors Fraction of Impact Factor weighted publications with co-authors from the industry Fraction of publications with one or more industry co-authors published by individual i in observation period t and weighted by the Impact Factor of the journal Degree of industry collaboration Moving Fraction of accumulated publications with one or more industry co-authors published by individual i up to period t-1 Quadratic Term Square of 'Degree of industry collaboration' No industry collaboration Equals 1 if no publications were industry co-authored up to period t-1 ; 0 otherwise No Publications of any Released patents Equals 1 if there were no publications up to period t-1 ; 0 otherwise Number of patents filed previous year Number of patents filed by individual i in period t-1 Number of patents filed this year Number of patents filed by individual i in period t Number of patents filed following year Academic Rank Number of patents filed by individual i in period t+1 Lecturer Equals 1 if individual i is Lecturer in period t ; 0 otherwise (Benchmark) Senior Lecturer Equals 1 if individual i is Senior Lecturer in period t ; 0 otherwise Reader Equals 1 if individual i is Reader in period t ; 0 otherwise Professor Equals 1 if individual i is Professor in period t ; 0 otherwise Table 2: Descriptive Statistics City University Std.Dev. Min 2.8 0 Variable Number of publications Mean 1.15 Number of co-author weighted publications 0.65 1.27 Number of Impact Factor weighted publications 1.209 Value of EPSRC funds (in £1000) Imperial College Std.Dev. Min 2.21 0 Mean 1.64 0 12.5 0.7 0.95 0 7 3.835 0 45.954 1.892 4.245 0 62.606 0.682 (0.146)*** 16.32 33.02 0 271.45 77.23 149.1 0 2138.22 60.703 (45.59)*** Fraction of applied publications 79.3% 34.3% 0.0% 100.0% 79.4% 35.2% 0.0% 100.0% 0.001 (0.020) Fraction of publications with coauthors from the industry 8.2% 24.2% 0.0% 100.0% 11.6% 25.4% 0.0% 100.0% 0.028 (0.013)** Fraction of EPSRC funds with industry collaboration 31.5% 43.1% 0.0% 100.0% 33.8% 38.6% 0.0% 100.0% 0.023 (0.022) 0.03 0.18 0 2 0.05 0.27 0 4 Number of patents filed this year The total number of observations for City University is 1088 (97 academics); for Imperial College it is 3097 (279 academics). Standard errors in parentheses; * significant at 10%; ** significant at 5%; *** significant at 1% Inactive Staff -or those having no publications and no EPSRC funds- are excluded Max 16 Comparison Mean Diff. (Imperial - City) 0.497 (0.083)*** Max 34 0.048 (0.037) 0.024 (0.008)*** Table 3: Impact of industry-collaboration - measured as % of industrial EPSRC over all EPSRC - on Number of Publications GLS with Fixed Effects Constant 1.758 (0.243)*** No industry collaboration Degree of industry collaboration Interaction for Leavers 1-5yrs Interaction for Leavers 6-10yrs Interaction for Newcomers 2002 Released patents Number of patents filed previous year Number of patents filed this year Number of patents filed following year Academic Rank Senior Lecturer Reader Professor GMM (Instrumenting for Publications and Patents) GMM (Instrumenting for Publications and Industry Collaboration) GMM (Instrumenting for Publications, Patents and Industry Collab) 1.477 (0.240)*** 1.649 (0.255)*** 1.582 (0.280)*** 2.939 (0.624)*** 2.934 (0.607)*** 0.197 (0.018)*** 0.232 (0.069)*** 0.234 (0.069)*** 0.274 (0.074)*** 0.273 (0.079)*** -0.924 (0.191)*** -0.639 (0.149)*** -0.840 (0.257)*** 0.697 (1.472) 0.550 (0.662) -0.304 (1.697) -0.758 (0.188)*** -0.516 (0.147)*** -0.704 (0.252)*** 0.694 (1.444) 0.467 (0.649) -0.575 (1.666) -1.296 (0.250)*** -0.697 (0.215)*** -0.802 (0.334)** 0.168 (0.410) -0.295 (1.000) dropped -1.178 (0.252)*** -0.706 (0.212)*** -0.718 (0.346)** 0.092 (0.375) -0.404 (0.481) dropped -2.519 (0.692)*** -1.593 (0.491)*** -3.062 (0.921)*** 2.017 (5.019) 2.326 (1.869) dropped -2.491 (0.675)*** -1.527 (0.446)*** -3.035 (0.945)*** -0.505 (5.822) 2.072 (1.819) dropped 0.082 (0.131) -0.220 (0.132)* -0.286 (0.133)** 0.117 (0.128) -0.156 (0.130) -0.311 (0.131)** 0.345 (0.154)** 0.197 (0.141) -0.043 (0.161) 0.060 (0.184) -0.309 (0.169)* 0.252 (0.631) 0.404 (0.158)** 0.276 (0.162)* -0.068 (0.183) 0.091 (0.180) -0.210 (0.225) 0.063 (0.616) 0.598 (0.120)*** 1.240 (0.147)*** 1.907 (0.192)*** 0.458 (0.118)*** 0.949 (0.147)*** 1.470 (0.193)*** 0.100 (0.094) 0.687 (0.153)*** 0.872 (0.184)*** 0.089 (0.098) 0.582 (0.174)*** 0.819 (0.234)*** -0.047 (0.129) 0.463 (0.170)*** 0.523 (0.212)** -0.024 (0.126) 0.470 (0.174)*** 0.593 (0.221)*** Publications (t-1) Industry collaboration No EPSRC GLS with Fixed Effects GMM (Instrumenting for Publications) 3442 3442 3091 3091 3091 3091 Observations 348 348 325 325 325 325 Number of ID 220 133 256 305 Number of Instruments -5.09 (0.0000) -5.00 (0.0000) -5.05 (0.0000) -5.01 (0.0000) AR1 test z (p-value) 0.87 (0.3850) 0.85 (0.3976) 0.99 (0.3242) 0.95 (0.3427) AR2 test z (p-value) 0.3923 0.1960 0.3396 0.7747 Sargan test p-value 0.07 0.10 R-squared (within) 0.11 0.35 R-squared (between) Standard errors are in parentheses. * significant at 10%; ** significant at 5%; *** significant at 1% All models include year dummies. The category LECTURER is the omitted category in the Tenure scale. GMM instruments are lagged values of the left hand side variables. For GMM estimates, the finite-sample correction to the two-step covariance matrix derived by Windmeijer (2005) is used. Inactive Staff -or those having no publications and no EPSRC funds- are excluded Table 4: Impact of industry-collaboration - measured as % of Publications with Industry Coauthors - on Number of Publications GLS with Fixed Effects Constant 1.543 (0.246)*** No industry collaboration Degree of industry collaboration Interaction for Leavers 1-5yrs Interaction for Leavers 6-10yrs Interaction for Newcomers 2002 Released patents Number of patents filed previous year Number of patents filed this year Number of patents filed following year Academic Rank Senior Lecturer Reader Professor GMM (Instrumenting for Publications and Patents) GMM (Instrumenting for Publications and Industry Collaboration) GMM (Instrumenting for Publications, Patents and Industry Collab) 0.948 (0.248)*** 1.734 (0.283)*** 1.638 (0.288)*** 2.142 (0.442)*** 2.199 (0.418)*** 0.201 (0.019)*** 0.230 (0.069)*** 0.235 (0.069)*** 0.265 (0.069)*** 0.259 (0.071)*** -0.728 (0.202)*** -0.501 (0.150)*** -1.191 (0.446)*** -0.529 (3.948) -0.871 (1.227) -0.648 (2.415) -0.207 (0.205) -0.202 (0.150) -0.720 (0.440) -0.754 (3.876) -1.158 (1.205) -0.819 (2.371) -1.336 (0.297)*** -1.005 (0.273)*** -2.096 (0.647)*** -1.330 (1.426) -1.306 (1.164) dropped -1.084 (0.275)*** -0.923 (0.257)*** -1.779 (0.617)*** -1.709 (1.161) -1.108 (1.080) dropped -1.849 (0.472)*** -1.361 (0.407)*** -2.624 (1.261)** -5.067 (6.678) 0.588 (1.407) dropped -1.804 (0.458)*** -1.355 (0.405)*** -2.705 (1.238)** -5.013 (10.336) 0.388 (1.286) dropped 0.080 (0.131) -0.206 (0.132) -0.281 (0.133)** 0.113 (0.129) -0.148 (0.130) -0.306 (0.131)** 0.323 (0.150)** 0.177 (0.143) -0.075 (0.162) -0.008 (0.189) -0.331 (0.173)* 0.337 (0.628) 0.346 (0.150)** 0.188 (0.153) -0.132 (0.177) 0.060 (0.184) -0.231 (0.218) -0.114 (0.601) 0.533 (0.121)*** 1.179 (0.150)*** 1.874 (0.195)*** 0.449 (0.119)*** 0.954 (0.149)*** 1.487 (0.195)*** 0.012 (0.100) 0.606 (0.155)*** 0.847 (0.177)*** 0.034 (0.107) 0.488 (0.176)*** 0.862 (0.198)*** -0.119 (0.115) 0.376 (0.182)** 0.663 (0.216)*** -0.125 (0.113) 0.401 (0.181)** 0.713 (0.225)*** Publications (t-1) Industry collaboration No Publications GLS with Fixed Effects GMM (Instrumenting for Publications) 3442 3442 3091 3091 3091 3091 Observations 348 348 325 325 325 325 Number of ID 220 133 253 302 Number of Instruments -5.22 (0.0000) -5.15 (0.0000) -5.34 (0.0000) -5.27 (0.0000) AR1 test z (p-value) 0.96 (0.3368) 0.93 (0.3544) 1.16 (0.2449) 1.11 (0.2679) AR2 test z (p-value) 0.2250 0.2015 0.1869 0.3720 Sargan test p-value 0.07 0.10 R-squared (within) 0.11 0.40 R-squared (between) Standard errors are in parentheses. * significant at 10%; ** significant at 5%; *** significant at 1% All models include year dummies. The category LECTURER is the omitted category in the Tenure scale. GMM instruments are lagged values of the left hand side variables. For GMM estimates, the finite-sample correction to the two-step covariance matrix derived by Windmeijer (2005) is used. Inactive Staff -or those having no publications and no EPSRC funds- are excluded. Table 5: Impact of industry-collaboration measured as % of industrial EPSRC over all EPSRC GMM GMM (3 year stock of (excluding those with industry collaboration) few publications) Dependent Variable: Dependent Variable: Dependent Variable: Publications Publications Publications Interaction for Main Effect City GMM (with University Interactions) GMM GMM Probit Dependent Variable: Coauthor Weighted Publications Dependent Variable: Impact Factor Weighted Publications Dependent Variable: Applied-ness Coefficients Marginal Effects Constant 2.454 (0.457)*** 2.697 (0.564)*** 2.844 (0.630)*** 1.150 (0.200)*** 5.442 (1.438)*** Dependent Variable (t-1) 0.332 (0.040)*** 0.239 (0.072)*** 0.269 (0.079)*** 0.234 (0.055)*** 0.008 (0.112) Industry collaboration No EPSRC No industry collaboration Degree of industry collaboration Released patents Number of patents filed previous year Number of patents filed this year Number of patents filed following year Academic Rank Senior Lecturer Reader Professor 0.502 (0.626) -1.694 (0.467)*** -1.172 (0.382)*** -2.334 (0.730)*** -0.868 (0.429)** -0.297 (0.433) 0.294 (0.826) -2.226 (0.638)*** -1.623 (0.514)** -2.312 (0.771)*** -2.261 (0.705)*** -1.279 (0.478)*** -2.712 (1.016)*** -0.866 (0.222)*** -0.523 (0.182)*** -1.182 (0.400)*** -4.973 (1.495)*** -3.802 (1.222)*** -5.488 (1.861)*** -0.467 (0.183)** -0.226 (0.119)* -0.958 (0.265)*** -0.163 (0.068)** -0.074 (0.039)* -0.307 (0.084)*** 0.075 (0.186) -0.081 (0.235) 0.284 (0.499) 1.633 (0.321)*** 1.837 (0.331)*** -0.989 (0.672) -0.101 (0.566) -0.280 (0.203) -0.081 (0.189) 0.093 (0.182) -0.211 (0.179) 0.095 (0.591) 0.108 (0.083) -0.016 (0.106) -0.014 (0.292) 0.070 (0.402) -0.689 (0.558) -0.218 (1.187) 0.174 (0.083)** -0.124 (0.084) -0.015 (0.087) 0.055 (0.026)** -0.039 (0.027) -0.005 (0.028) 0.018 (0.111) 0.717 (0.191)*** 1.012 (0.229)*** -0.048 (0.129) 0.438 (0.184)** 0.617 (0.225)*** -0.027 (0.057) 0.217 (0.078)*** 0.283 (0.092)*** -0.084 (0.160) 0.603 (0.282)** 1.188 (0.474)** -0.081 (0.133) -0.172 (0.129) -0.140 (0.163) -0.026 (0.044) -0.057 (0.044) -0.045 (0.052) -0.091 (0.123) 0.401 (0.169)** 0.511 (0.204)** 3093 3245 2464 2751 3091 3091 Observations 325 272 268 325 325 Number of ID 464 260 302 305 305 Number of Instruments -5.82 (0.0000) -4.95 (0.0000) -5.02 (0.0000) -6.25 (0.0000) -1.92 (0.0553) AR1 test z (p-value) 1.56 (0.1190) 1.62 (0.1044) 0.91 (0.3631) 0.29 (0.7752) -0.99 (0.3239) AR2 test z (p-value) 1.0000 0.3911 0.9672 0.7715 0.6215 Sargan test p-value 0.2100 Pseudo R-squared 0.7450 Predicted p -1588.3864 Log likelihood Robust standard errors are in parentheses. * significant at 10%; ** significant at 5%; *** significant at 1% All regressions include year dummies, and Interactions with dummy variables for Leavers and Newcomers. The category LECTURER is the omitted category in the Tenure scale. Probit Regressions include group dummies. GMM instruments are lagged values of the left hand side variables. For GMM estimates, the finite-sample correction to the two-step covariance matrix derived by Windmeijer (2005) is used. Inactive Staff -or those having no publications and no EPSRC funds- are excluded.