Advantages of Continuous Flow Technology for Ionic
Transcription
Advantages of Continuous Flow Technology for Ionic
Advantages of Continuous Flow Technology for Ionic Liquid Chemistry C. Oliver Kappe Christian Doppler Laboratory for Microwave Chemistry (CDLMC) and Institute of Chemistry, University of Graz Heinrichstrasse 28, A-8010 Graz, Austria oliver.kappe@uni-graz.at www.maos.net Microreactors/Flow Chemistry in Organic Synthesis – Recent Books Reviews on Microreactor/Flow Chemistry by: Ley, Seeberger, Hessel, Jensen, Kirschning, Watts, Yoshida, Wirth, Roberge, Ryu, .... 1 Characteristics of Microreactor Chemistry High Mixing Efficiency = Short Diffusion Paths (Micromixing) Diffusion time Reactor Size 0.5 ms 1 μm 0.05 s 10 μm 5s 100 μm 500 s 1 mm MeO OMe + CO2Me N Bu batch or flow MeO conditions Bu N CO2 Me OMe MeO + Bu N CO2 Me OMe CO2Me -78 °C OMe OMe batch: T-mixer (500 μm): MM1: MM2 (25 μm): 37% 36% 50% 92% OMe Bu 32% 31% 14% 4% High g Surface-To-Volume Ratio: Controlling g Exothermic Reactions O Me Me O H Me O F2 /N2, HCOOH 5-10 °C microreactor Me Me O F Me 100% conv (91% yield) Yoshida, J.-i. Flash Chemistry. Fast Organic Synthesis in Microreactors, Wiley-VCH, 2008 Advantages of Microreactor/Continuous Flow Chemistry • Very efficient mixing of the reactants (micromixing) • Rapid heat transfer and temperature control of the reaction system • Control of residence/reaction times • Automated reaction optimization – on the fly changes • Multi step reactions in a continuous sequence Microreactor Chip for Flow Processing • Immobilized catalysts/reagents • Hazardous reagents/conditions • Easy scale-up of a proven reaction by: • increase of time • reactor volume change • parallel processing (numbering up) • Automated purification possible by: • solid phase scavenging • chromatographic separation • liquid/liquid extraction • Integrated analytics and screening (lab-on-a-chip) 2 Industrial-Scale Use of Microreactors to Produce Pharmaceuticals Numbering Up Microreactors (DSM) Naproxcinod (NicOx) COX Inhibiting Nitric Oxide COX-Inhibiting Oxide-Donator Donator (CINOD) for Relief of Pain and Inflammation - Osteoarthritis DSM - NicOx Collaboration • nitration, neutralization and work-up in one flow step • cleaner and higher yields as in batch process • significantly lower waste generation • >100 tons/year production scale • “on hold” for FDA approval 96 reactors on 2 towers Thayer, A. Chem. Eng. News 2009, 87 (March 16 issue), 17 Braune, S. et al. (DSM) Chem. Today 2009, 27(1), 26 Continuous Processing Top Priority For Green Chemistry Research in Pharma Jimenez-Gonzales, C. et al. Org. Process Res. Develop. 2011, 15, 900 3 Green and Sustainable Chemical Synthesis Using Flow Chemistry - Improved product selectivity: - - better control by fast heat and mass transfer better kinetic control Avoiding energy over-consuming - - no cryogen cooling needed for lowtemperature reactions Protecting-group-free synthesis - improved atom and step economy Green and Sustainable Chemical Synthesis Yoshida, J.-i.; Kim, H.; Nagaki, A. ChemSusChem 2011, 4, 331 see also: Wiles, C.; Watts, P. Green Chem. 2012, 14, 38 Flow Ozonolysis (O-CubeTM Technology) Schematic Diagram www.thalesnano.com Safety Features ¾ Ozone detector ¾ Temperature limit shutdown ¾ Pressure limit shutdown temperature flow rates ozone conc. -25 °C to rt 0.2- 2 mL/min 15 wt% Irfan, M.; Glasnov, T. N.; Kappe, C. O. Org. Lett. 2011, 13, 984 4 Synthesis of Ionic Liquids in Microreactors (1) N O O S O O N + Microreactor Set-Up neat + N N _ EtSO4 microreactor (< 100 °C) 50 °C 70 °C 7 mL/min 1.75 mm i.d. 6.7 mL volume 4.37 mm i.d. 13.8 mL volume 1 x 0.65 mm x 125 mm channels 11 mL volume 600 x 600 μm channels Conversion: 98% Productivity: 500 g/h STY: 4 kg/m3s Renken, A. et al. (EPFL, IMM, Solvent Innovation) Chem. Eng. Process. 2007, 46, 840 Synthesis of Ionic Liquids in Microreactors (2) N N + neat Br N microreactor (65-85 °C) 1.2 equiv Microreactor Set-Up + N _ Br 85 °C 8 mL/min 2.0 mm i.d. 3.0 mm i.d. 4.0 mm i.d. 6.0 mm i.d. 306 mL overall volume 450 μm channels Conversion: 97% (99% purity) Residence time: 48 min STY: 1.27 kg/Lh Waterkamp, D. A. et al. (Uni Bremen, IoLiTec) Green Chem. 2007, 9, 1084 5 Synthesis of Ionic Liquids in Microreactors (3) N N + neat Br N microreactor (100-140 °C) + N _ Br Microreactor Set-Up Set Up 1.7-3.3 mL/min 100-140 °C 45 μm channels NMR pure directly after microreactor Residence time: 5-10 min Wilms, D. et. al. (Uni Mainz) Org. Proces Res.Develop. 2009, 13, 961 Flow Chemistry in High-Temperature/Pressure Process Windows • Very efficient mixing of the reactants (micromixing) • Rapid heat transfer and temperature control of the reaction system • High temperature/high pressure capability (back pressure regulation) • Control of residence/reaction times • Automated reaction optimization – on the fly changes • Multi step reactions in a continuous sequence • Immobilized catalysts/reagents • Hazardous reagents/conditions • Easy scale-up of a proven reaction by: • increase of time • reactor volume change • parallel processing (numbering up) • Automated purification possible by: • solid phase scavenging • chromatographic separation • liquid/liquid extraction • Integrated analytics and screening (lab-on-a-chip) Tube/Capillary Reactor for Flow Processing (“Mesofluidic”) 6 Batch Microwave-Assisted Organic Synthesis Characteristics of MW Heating MeOH at 190 °C at 32 bar p 35 30 200 25 T 150 20 15 100 10 50 P 5 0 Pressure [b bar] • direct energy transfer • rapid dielectric heating (tan δ) • volumetric heating • superheating of solvents (300 °C, 30 bar) • fast cooling Power [W] Temperature [°C] 250 0 0 60 120 180 240 300 360 Time [s] BUT: NOT SCALABLE IN BATCH MODE! Advantages • • • • shortening reaction times improving yields cleaner reaction profiles expanded reaction envelop change product distributions new reaction pathways • ………….. • penetration depth (2.45 GHz) • limitations in reactor design • safety, cost, complexity • magnetron power • energy balance Tutorial Review: Kappe, C. O. Chem. Soc. Rev. 2008, 37, 1127 Microwave Chemistry – From Laboratory Curiosity to Standard Practice in 25 Years Applications in Organic Synthesis • • • • • • • • • • • • • • • Transition Metal Catalyzed C-X Bond Formation Other Metal-Mediated Metal Mediated Processes Metathesis, CH-Bond Activation Cycloaddition Reactions Rearrangements Enantioselective Reactions Organocatalysis, Biocatalysis Radical Reactions Oxidations, Reductions Heterocycle Synthesis Total Synthesis Ionic Liquid Synthesis/Solvents Solid- /Fluorous Phase Synthesis Immobilized Reagents, Scavengers and Catalysts Solid Phase Peptide Synthesis Kappe, C. O. Angew. Chem. Int. Ed. 2004, 43, 6250 Kappe, C. O.; Stadler, A. “Microwaves in Organic and Medicinal Chemistry” Wiley-VCH, 2005 (2nd. Ed. 2012) Kappe, C. O.; Dallinger, D. Mol. Diversity 2009, 13,71 7 Preparation of Ionic Liquids under Microwave Conditions Early Work Westman, J. PCT Int. Appl. WO 0072956 (2000) Namboodiri, V. V.; Varma, R. S. Chem. Commun. 2001, 643; Pure Appl. Chem. 2001, 73, 1309 Tetrahedron Lett. 2002, 43, 5381; Chem. Commun. 2002, 342 Khadilkar, B. M.; Rebeiro, G. L. Org. Proc. Res. Dev. 2002, 6, 826 Fraga-Dubreuil, J. et al. Org. Proc. Res. Dev. 2002, 6, 374 Recent Studies R-X N Y Z R + N Y MW, 80-210 °C, 6-20 min 0.05 - 2 mol scale (open or closed vessel) X - Z R = alkyl X = Cl, Br, or I Z = NMe, S, CH Y = CH, CMe, NMe Deetlefs, M.; Seddon, K. R. Green Chem. 2003, 5, 181 SWOT Analysis: Deetlefs M.; Seddon, K. R. Green Chem. 2010, 12, 17 Review Martinez-Palou, R. Mol. Diversity 2010, 14, 3 bmimBr Heating Behavior under Microwave Conditions IR Versus FO Sensors Heating Ionic Liquids (100 °C Set Temp, IR + FO Probe) Discover (CEM) Internal Fiber-Optic Sensors 30 W max 250 250 OpS FO N +120 200 200 140 140 + N Br _ 100 100 150 150 80 80 CEM CEM IRIR 100 100 60 60 40 40 50 50 • Probe in immersion well • Fast response time • Less dependent on stirring efficiency D. Obermayer 120 120 20 20 Power Power 0 0 Power[W] [W] Power • Measure surface temperature of vessel • Delay in response • Extremely dependent on stirring efficiency Temperature[°C] [°C] Temperature Initiator (Biotage) External Infrared Sensors 00 50 50 100 100 150 150 200 200 0 0 250 250 Tim Timee[s] [s] OpS FO CEM IR OpSens© Fiber Optic Probe CEM Discover Standard Infrared Sensor Org. Biomol. Chem. 2010, 8, 114 8 Simultaneous FO/IR Temperature Measurement Monowave 300 FO/IR Dual Temperature Control 100 °C Set Temperature Br IR Control / FO Slave (Set ramp time 2 min) 250 250 250 140 200 200 120 120 200 120 100 100 150 150 80 80 100 100 60 60 Power [W] IR IR Power Power 40 40 Temperature [°C C] Temperature [°C C] 160 FO FO 100 150 80 IR 100 60 Power 40 50 50 Power [W] +35 _ FO Control / IR Slave (Set ramp time 2 min) 160 160 140 140 + N N 50 20 20 20 00 0 00 00 100 100 200 200 300 300 0 0 400 400 100 200 300 400 Tim e [s] Tim Timee [s] [s] Org. Biomol. Chem. 2010, 8, 114 D. Obermayer Microwave Synthesis of bmimBr – Problems of Exothermicity and Absorptivity FO Temperature Control, 100 °C Set Temp (Monowave 300) 200 +50 140 180 FO Temperature [°C] 140 IR 100 120 80 100 60 80 Image für prep run 40 N 160 120 N + Power [W] 160 neat Br MW, 100°C, 10 min 1.02 eq N 60 + N _ 40 20 Br 20 Power 0 0 0 200 400 600 800 Tim e [s] Microwave Absorptivity bmimPF6 Temperature 25 °C 100 °C 200 °C Tan δ 0.184 1.804 3.592 Solvent EtOH NMP water MeCN THF hexane Tan δ (25 °C) 0.941 0.275 0.123 0.062 0.047 0.020 Robinson, J. et al. Phys. Chem. Chem. Phys. 2010, 12, 4750 9 Microwave Synthesis of bmimBr in a Silicon Carbide Vessel FO Temperature Control, 100 °C Set T (Monowave 300) N N + Br neat N + N MW _ Br 180 160 700 140 600 T (Pyrex) 120 500 100 400 T (SiC) 80 300 60 200 P (SiC) P (Pyrex) 40 20 Power [W] Temperature [°C] 800 100 0 0 0 60 120 180 240 300 360 420 480 540 600 660 Tim e [s] Comparison of Thermal Effusivity for SiC, Pyrex and Steel SiCa Pyrex 18/8 Steel 125 1,2 30 Cp [J kg-1 K-1 10-3] 0,6 0,7 0,5 ρ [kg m-3 10-3] 3,10 2,23 8,02 1400 11000 Thermal conductivity λ [W m-1 K-1] Specific heat capacity Density Thermal effusivityb e [J s-1/2 m-2 K-1] 15000 a SiC:Ekasic® F SSiC, ESK Ceramics. b Thermal effusivity e: [e = (kρc )0.5]. p The Use of Ionic Liquids as Doping Agents in Microwave Chemistry Pyrazinone Diels-Alder Chemistry Cl Ph N O N O conventional conditions: PhCl, 135 °C, 1-2 days solvent O Δ or MW Ph N R = Cl R = OH O N R Microwave conditions: DCE, 160 °C, ca 1 h DCE/IL 190 °C, 8 min Temperature [°C] Ionic-Liquid (IL) Doped Solvents 200 180 160 140 120 100 80 60 40 20 0 mmol IL in 2 mL DCE 0.300 Me + N _ bmimPF6 = N PF6 0.150 0.070 Bu 0.035 heating profiles for bmimPF6-doped DCE (bp 80 °C) 0 E. Van der Eycken 100 200 300 Time [s] 400 500 0.000 600 J. Org. Chem. 2002, 67, 7904 10 Batch Microwave Versus High-Temperature/Pressure Flow Chemistry • Flash Heating (seconds?) • High Pressures (< 30 bar) • High Pressures (~200 bar) • High Temperatures (< 300°C) • High Temperatures (~350°C) x Not Scaleable • Directly Scaleable x Explosions Possible • Inherently Safe HPLC Pump A M • Flash Heating (~1 min) P Microreactor (Chip/Coil) HPLC Pump B Microwave Reactor ((= Autoclave Reactor)) Can Microwave (Batch) Chemistry be Translated to Flow Conditions? Short Reaction Times = Short Residence Times Commercially Available “Mesofluidic“ Reactors for (High Temperature/Pressure) Organic Synthesis Labtrix X-Cube Flash www.thalesnano.com www syrris com www.syrris.com www.chemtrix.com Asia (Africa, FRX) FlowStart Evo www.futurechemistry.com FlowSyn www.uniqsis.com R-Series S Flow System Propel www.accendocorporation.com MR Explorer Kit www.vapourtec.co.uk NanoTek www.advion.com Lonza FlowPlate www.sigma-aldrich.com http://www.ehrfeld.com 11 High-Temperature/Pressure Flow Reactor (X-Cube Flash) Stainless steel coil (SX316L, 1000 μm i.d.) www.thalesnano.com Temperature Pressure Flow rates Changeable size of reaction zone 4mL Res. time [min]: 0.4 to 8 25-350 °C 50-180 bar 0.5-10 mL/min 4,8,16 mL 8mL 16mL 0.8 to 16 1.6 to 32 Razzaq, T.; Glasnov, T, N.; Kappe, C. O. Eur. J. Org. Chem. 2009, 1321; Chem. Eng. Technol. 2009, 32, 1702 Case Study of “Microwave-to-Flow”: 2-Methylbenzimidazole Formation Kinetic Study (Batch/Microwave) NH 2 O + NH 2 Temperature (°C) 25 60 100 130 (2 bar) 160 (4 bar) 200 (9 bar) 270 (29 bar) OH (excess) neat (1 M) N rt-270 °C N H t >99% conv (HPLC) 9 weeks 5 days 5h 30 min 10 min 3 min “1 s“ k = A e-Ea/RT Ea = 73.4 kJ mol-1 A = 3.1 x 108 12 Batch Microwave Scale-Up: 2-Methylbenzimidazole (250 °C, 4 s, 5 M) MW instrument Reaction volume (mL) Yield in g (%) Monowave 300 2.5 1.12 (85) Masterwave BTR 630 300 (91) Ramp/hold/cooling Overall processing time (min) time (min) 0.67/0.06/3.5 4.2 7/0 06/26 7/0.06/26 33 Heating Profiles Temperatu ure [°C] 300 250 T (Masterwave) 200 T (10 mL) 150 100 50 0 0 2 4 6 8 10 12 14 16 18 Time [min] 20 22 24 26 28 30 Converting Batch Microwave to Continuous Processing (Process Intensification) Benzimidazole Synthesis NH 2 AcOH (1 M) N min-1 flow rate 270 °C, 70 bar, 8.0 mL (4 mL coil, 30 s residence time) NH 2 N H ~50 g/hour Pyrazole Synthesis O O + HN Ph NH2 1.1 equiv EtOH (3 M), HCl (cat) N N Ph 180 °C, 130 bar, 8.0 mL min-1 flow rate (4 mL coil, 30 s residence time) ~225 g/hour g Diels-Alder Cycloaddition + 2 equiv. CN toluene (2.2 M) 280 °C, 130 bar, 8.0 mL min-1 flowrate (16 mL coil, 2 min residence time) CN ~80.4 g/h Damm, M.; Glasnov, T, N.; Kappe, C. O. Org. Process Res. Develop. 2010, 14, 215 13 High-Temperature/Pressure Flow Chemistry Methylations with Dimethyl Carbonate Dimethyl Carbonate (DMC) as Methylating Reagent J. D. Holbrey, y T. Yan • • • • • DMC considered as green methylation reagent Replacement for toxic and hazardous dimethyl sulfate and methyl halides Only CO2 and MeOH as byproducts Environmentally benign, non-toxic, biodegradable, safe No phosgene in the synthesis involved: G. D. Short, M. S. Spencer 1985 EP0314668 Reviews: a) Y. Ono, Catal. Today 1997, 35, 15; b) S. Memoli, M. Selva, P. Tundo, Chemosphere 2001, 43, 115; c) P. Tundo, M. Selva, Acc. Chem. Res. 2002, 35, 706; d) S. V. Chankeshwara, Synlett 2008, 624; e) F. Arico, P. Tundo, Russ. Chem. Rev. 2010, 79, 479 Methylations with Dimethyl Carbonate (DMC) DMC as Ambivalent Electrophile : Methoxycarbonylation vs Methylation • Reactions promoted by base • High T required for methylation Reviews: a) Y. Ono, Catal. Today 1997, 35, 15; b) S. Memoli, M. Selva, P. Tundo, Chemosphere 2001, 43, 115; c) P. Tundo, M. Selva, Acc. Chem. Res. 2002, 35, 706; d) S. V. Chankeshwara, Synlett 2008, 624; e) F. Arico, P. Tundo, Russ. Chem. Rev. 2010, 79, 479 14 Ionic Liquid-Catalyzed N-Methylation of Indole Under Microwave Batch Conditions O DMC:DMF (10:1) IL catalyst N H + N CH 3 MW, conditions A B O O- O N N+ OCH3 I L Catal yst IL reference (Bu3N + DMC): Holbrey, J. D. et al. Green Chem. 2010, 12, 407 Entry Temp. [°C] t [min] 1 3 5 7 8 9 10 11 13 90 130 170 210 230 230 230 230 230 (17 bar) 10 10 10 10 10 20 20 20 20 Catalyst [mol%] 10 10 10 10 10 10 0 5 2 Conv. [HPLC 215nm, %] 45 64 66 90 99 100 85 100 100 Selectivity [%] A B 0 45 0 64 15 51 79 11 98 1 100 0 6 79 100 0 100 0 Continuous Flow N-Methylation of Indole Using Nearcritical/Supercritical DMC DMC:DMF (10:1) (~1M) Bu 3N (2 mol%) N H 285 °C, 150 bar, 1.3 mL/min (3 min res. time, 4 mL coil) N CH 3 DMC critical point: Tc 275 °C, Pc 45 bar (bp. 90 °C) In-Situ Generation of IL Catalyst O O N n -Bu3N + Me O O DMC Me MeOH MW, 160 °C, 10 h O ON+ IL Cat aly st Holbrey, J. D. et al. Green Chem. 2010, 12, 407 15 Continuous Flow N-, O-, and S-Methylations Using Nearcritical/Supercritical DMC CH 3 N H 98% N H OH OH 88% 87% OH 90% O2N SH H 3C CH 3 93% 94% F N SH Conditions • • • • 52% CH3 CO2 H CH 3 93% ~0.9 M in DMC:DMF (10:1) 2 mol% l% B Bu3N 285 °C, 150 bar ~3 min res. time CO 2H 86% S CO 2H 81% Continuous-Flow High-T/p Methylations Involving DMC Methylations of Phenols U. Tilstam, Org. Process Res. Dev. 2012, 16, 1150 Methylation /Carboxylation of N-Methylimidazol D. Breuch, H Löwe, Green Process Synth. 2012, 1, 261 Methylation of 1-Pentanol in scCO2 D. N. Jumbam et al., J. Flow Chem. 2012, 1, 24 16 Ionic Liquids as Soluble Basic Catalysts to Replace Inorganic Bases Pd-Catalyzed Direct Arylation of Heterocycles (Fagnou) Pd(OAc)2 , PCy3 PivOH, K 2CO3 , DMF HetAr H + HetAr Br 1.1 equiv HetAr MW, 180 °C, 10-60 min (CONV: 110 °C, 1.5-74 h) HetAr 30 examples (50-88%) Optimization of Unsuccessful Examples Br H + S Pd(OAc) 2, ligand PivOH (30 mol%), K 2CO3 (1.5 equiv) solvent (0.5 M) S MW, 130-180 °C, 10-60 min NO2 NO2 Entry 1 (lit) 2 3 …… xx thiophene (equiv) 1 1 1 Pd(OAc)2 (mol%) 2 2 2 Ligand (mol%) Solvent T (°C) Conv (%) DMA DMA DMA Time (min) 24 h 60 60 P(Cy)3·HBF4 (4) P(Cy)3·HBF4 (4) P(Cy)3·HBF4 (4) 110 130 180 <5 15 50 1.1 1 P(Cy)3 (2) DMF 10 180 83 (75% yield) J. Org. Chem. 2011, 76, 8138 M. Baghbanzadeh (with K. Bica, TU Vienna) Our Drivers for Flow Chemistry – Process Chemistry (Process Intensification) SAFETY Hazardous Chemistry • Hydrogenation (H-Cube) JCC 2005, 641; EJOC 2009, 1326 Review: CSC 2011, 300 • Ozonolysis OL 2011, 984 • Hydrazoic Acid SCALE-UP “General” General Organic Synthesis • Transition-Metal Catalysis ASC 2008, 717; CEJ 2009, 1001; ASC 2010, 3089 OL 2010, 2774; AJC 2011, 1522 • Multistep Target Synthesis ASC 2010, 3089; OPRD 2011, 858; JOC 2011, 6657 Review: JHC 2011, 11 ACIE 2010, 7101; BJOC 2011, 503 CEJ 2011, 13146; JFC 2012, 8 • Peroxide/Ether CEJ 2012, 6124 • Hydrazine/nano-Fe3O4 ACIE 2012, in press High-T/p High T/p Process Windows • Microwave-to-Flow …………OPRD 2010, 215; EJOC 2009, 1321 Review: CEJ 2011, 11956 • High-T/p Flow Chemistry ………….CET 2009, 1702 Review: CAJ 2010, 1274 • Flow Microwave Processing Review: MRC 2007, 395, GPS, 2012, 281 17 Mimicking Microwave Chemistry in Conventionally Heated High T/p Flow Reactors X-Cube Flash (350 °C, 180 bar) FlowSyn (260 °C, 70 bar) R-Series Flow System (250 °C C, 200 bar) Chem. Eur. J. 2011, 17, 11956 11956-11968 Continuous Flow Microwave Reactors Pioneering Studies by Strauss (CSIRO, Australia) Cablewski, T.; Faux, A. F.; Strauss, C. R. J. Org. Chem. 1994, 59, 3408 cf. Strauss, C. R.; Faux, A. F. Int. Pat. Appl. PCT/AU89/00437, 1989 Reviews: Glasnov, T. N.; Kappe, C. O. Macromol. Rapid Commun. 2007, 28, 395 Baxendale, I. R.; Hayward, J. J.; Ley, S. V. Comb. Chem. High Throughput Screening 2007, 10, 802 Singh, B. K.; Kaval, N.; Tomar, S.; Van der Eycken, E.; Parmar, V. S. Org. Process Res. Dev. 2008, 12, 468 18 Production Scale Continuous Flow Microwave Reactor Hybrid Reactor Equipment - General Setup for Continuous Processing Clariant Unit: - frequency: 2.45 GHz - max power: max 6 kW Border Conditions for Lab Use: - max temp: 300°C - max pressure: 70 bar - max flow 20 l/h Scale-Up to Production Scale in Large Scale Microwave Flow Reactor Process Intensification for Benzimidazole Synthesis NH2 O + NH2 OH (excess) neat (5 M) N MW, 260 °C (25 bar) 5 L/h (42 s residence time) N H 25 mol/h (3.65 kg/h = 86 kg/day) • cylindrical ceramic flow tube (75 cm length, 10 mm i.d., 60 mL volume) • single-mode microwave cavity (6 kW, 2.45 GHz) • max temperature t t 300 °C, °C max pressure 70 b bar • max flow rate 20 L/h • extremely energy efficient • advanced safety concept (TüV) Morschhäuser, R. et al. Green Process. Synth. 2012, 1, 281 19 Scale-Up to Production Scale in Large Scale Microwave Flow Reactor Process Intensification for Organic Reactions O O a) OH + C8 H17 H2N neat NMe 2 C8 H17 249 °C (35 bar) b ) 28 s (5.1 L/h) (1.05 equiv) N H NMe 2 b) neat MeO OH O + HNMe2 MeO NMe2 246 °C (20 bar) 51 s (2.8 L/h) (1.05 equiv) O c) O O HO + OH Me HO MeSO3 H (cat) M Me HO 249 °C (27 bar) 27 s (5.3 L/h) Me O Me M Me Me (2 equiv) d) OH + HO2C NMP O O 225 °C (15 bar) 35 s (4.0 L/h) N N CO2H NH 2 (2.2 equiv) Energy Efficiency Single mode (lab use) GHz Overall efficiency [%] 2.45 100% from power plug 10-12% MW→heat transfer 40% transformation losses Multi mode (lab use) 5-8% 2.45 GHz 30-40 % MW→heat transfer 40% transformation losses 20-25% Hybrid resonator 2.45 GHz 90-95 % MW→heat transfer 40% transformation losses Hybrid resonator 915 MHz 90-95 % MW→heat transfer 50-55% 70–75% 20% transformation losses Moseley, J. D.; Kappe, C. O. Green Chemistry 2011, 13, 794 20 The Future of Continuous Manufacturing (1): Container Plants Concept The Future of Continuous Manufacturing (2): “Factory of the Future” Conventional Versus Process Intensified Plant Naproxcinod (Nitronaproxen) Non Steroidal Anti Non-Steroidal Anti-Inflammatory Inflammator Drug Dr g (Not yet approved by the FDA) DSM - NicOx Collaboration • nitration, neutralization and work-up in one flow step • cleaner and higher yields as in batch process • from feasibility to large scale production in 18 month • >100 tons/year production scale EU FP7 Project: F3 (flexible, fast and future) Factory Initiative (visualization by DSM) 21 Acknowledgements Christian Doppler Laboratory for Microwave Chemistry A Public-Private-Partnership Initiative (2006-2013) Dr. Toma N. Glasnov Bernhard Gutmann Tahseen Razzaq David Obermayer Benedikt Reichart David Cantillo Bartholomäus Pieber Muhammad Irfan The Journal of Flow Chemistry Editor-in-Chief C. Oliver Kappe Associate Editors Paul Watts,, Thomas Wirth,, Ferenc Darvas, Claude De Bellefon, Pete Licence Regional Editors Jun-ichi Yoshida, Volker Hessel Aaron Beeler, Lixiong Zhang, Rodrigo de Souza Research Highlights Editor T Toma N. N Gl Glasnov Editorial Board Andreas Kirschning, Peter Seeberger Takehiko Kitamori, Andrew J. deMello Brian Warrington check out the issues online: www.jflowchemistry.com 22 Microwave & Flow Chemistry Conference 20th – 23rd July 2013 Silverado Resort, Napa Valley, California Chaired By: C. Oliver Kappe (University of Graz) Nicholas Leadbeater (University of Connecticut) Talk Deadline: 19th March 2013 Plenary Speakers Include: Roman Morschhaeuser (Clariant GmbH), Peter Seeberger (Max‐Planck Institute), Jun‐Ichi Yoshida (Kyoto University), Timothy Jamison (MIT) & Timothy Braden (Eli Lilly and Company) www. .com 23
Similar documents
MTR, MTRE, SPK, MTH, MTA - immersible pumps
iron and stainless steel • stainless steel version (I-version) with all wetted parts of stainless steel EN/DIN 1.4301 or better. The mounting flange dimensions are according to DIN 5440. The mechan...
More information