Contents - Università degli Studi di Bergamo
Transcription
Contents - Università degli Studi di Bergamo
Introduction Experimental studies Numerical simulations Perspectives Le gocce fanno spread, boing e splash: esperimenti, fenomeni e sfide Marengo Marco University of Bergamo, Italy Introduction Experimental studies Numerical simulations Perspectives INDEX Contents • Introduction • The main parameters Experimental studies • Isothermal drop impacts • Onto solid surfaces • Roughness effects • Wettability effects • Inclined surfaces • ...on small targets • Onto liquid layers • in a deep pool • on very thin film • on liquid film • Drop impact on hot surfaces • Boiling regimes • Secondary drop generation • Multiple droplet impacts Numerical simulations • Available methods (VOF, Level Set, BEM, etc) • Isothermal simulations • Energy equation and phase transition Perspectives Introduction Experimental studies Numerical simulations Perspectives Industrial applications Spray Impingement in Internal Combustion Engines G. Popiołek, H. Boye, J. Schmidt, 2005 Institute of Fluid Dynamics and Thermodynamics Otto-von-Guericke-University Magdeburg, Germany Mitsubishi Web-site mulda.Avi Introduction Experimental studies Numerical simulations Perspectives Industrial applications Spray cooling and quenching Typical hydrodynamic parameters (Choi and Yao, 1987) G = 0.3 – 20 kg/m2 s U = 3-5 m/s d10 ≈ 0.5 mm Maximum heat transfer: 2·106 W/m2 Metallurgical failures For G = 80 kg/m2s, dT/dt = 103 K/s Introduction Experimental studies Numerical simulations Perspectives Agricultural sprays Industrial applications Decrease the overspray and avoid the aerosol Cosmetic sprays Small injection energy, small droplets, low velocities Introduction Spray in humidifiers and dryers High efficiency microspray Experimental studies Numerical simulations Perspectives Airplane icing solidification Cryogenic cooling evaporation Industrial applications Introduction Experimental studies Numerical simulations Perspectives Fire suppression Spray painting Industrial applications Progress in Energy and Combustion Science 26 (2000) 79-130 Fire suppression by water sprays G.Grant, J.Brenton , D.Drysdale Non-newtonian fluids !!! Evaporative cooling tower Cleaner and sanitizers Introduction Etc.... Experimental studies Numerical simulations Perspectives Impact parameters Impact dynamical parameters U, D, α, ρ , σ, µ, g, t, h, Ra, θ, λ, E ... Weber number We = ρ DU 2 σ Ohnesorge number Oh = We = Re Ca = µ ρσD La = U σ /µ D µ 2 ρσ Strouhal number Dimensionless film thickness δ = h D St = fD U Dimensionless roughness amplitude R nd = R a D τ conv ≈ U t D Introduction Experimental studies Numerical simulations Perspectives Impact parameters Impact thermal parameters Saturation temperature ∆ T = Tw − T sat Eckert number Ec = Jakob number Ja = ε = Effusivity U2 c p ∆T c p ∆T h fg kρc p Nukijama temperature - CHF Leidenfrost temperature Introduction Experimental studies Numerical simulations Perspectives Isothermal drop impacts Isothermal drop impact Introduction Experimental studies Numerical simulations Perspectives Drop impact onto solid dry surfaces Isothermal drop impact time scales D ≈ 1-4 mm Drop impact onto solid dry “cold” surfaces Introduction Experimental studies Numerical simulations Perspectives Drop impact evolution Drop spreading on dry surfaces Introduction Experimental studies Numerical simulations Perspectives Drop impact evolution Rioboo R., C. Tropea, M. Marengo, "Outcome from a drop impact on solid surfaces", Atomization and Sprays Journal, Vol. 4, 2000 Introduction Experimental studies Numerical simulations Perspectives Roughness influence Roughness effects Ra = 3µm Ra = 120µm Silicon oil (µ=20 cSt; σ=0.0206 N/m); Vimp=3.16 m/s; D= 2.24 mm Introduction Experimental studies Numerical simulations Perspectives Wettability effects Wettability influence on drop impact t = 0 ms t = 0.45 ms t = 1.31 ms t = 2.27 ms t = 6.02 ms t = 8.21 ms wax (D = 2.75 mm) t = 25.6 ms t = 34.2 ms t = 62.4 ms t = 72.2 ms t = 20.5 ms t = 14.0 ms t = 10.3 ms θrec =95° t = 82.8 ms Vi = 1.18 m/s Glass θrec =6° t = 0 ms t = 0.45 ms t = 8.23 ms Introduction (D = 3.04 mm) t = 2.27 ms t = 6.04 ms t = 20.5 ms t = 62.4 ms t = 1.31 ms t = 14.0 ms t = 10.3 ms Experimental studies Numerical simulations Perspectives Drop impact evolution Initial shock wave t ≈ 10ns Bowden, Lesser, Field, 1985-1988 Drop Shock wave Huygens principle of wave propagation Ve = U/tanβ Tri-supersonic point (a) Drop Shock wave z Liquid hap Cs sin β = U (b) Drop Shock wave r Liquid Shock separation Cs Jetting flow β re V Vjetting x (c) Jetting Cavitation Introduction Experimental studies Numerical simulations Perspectives Drop impact evolution Shock wave formation in droplet impact on a rigid surface: lateral liquid motion and multiple wave structure in the contact line region HALLER, K. K. ; POULIKAKOS, D. ; VENTIKOS, Y. ; MONKEWITZ, P. Journal of Fluid Mechanics (2003) vol. 490, no. 1, pg. 1-14 Time between impact and shock detachment Cs = 1481 m/s Mai D tsd ≈ 2 2Cs U = 5 m/s D = 3 mm tsd = 2 ns Introduction Experimental studies Numerical simulations Perspectives Drop impact evolution Edge propagation: kinetic phase z = R − R − r From the geometry z = Ut 2 re = DUt − U 2 t 2 if t << D/U U = 5 m/s D = 3 mm Dimensionless form z 2 t → 0 re ∝ t1/ 2 t << 600 µs ~ re = τ − τ 2 U R re r Introduction Experimental studies Numerical simulations Perspectives Drop impact evolution Edge propagation: kinetic phase Impact of a water drop on smooth PVC We = 88 50 Experimental data Fitting edge propagation V = atb 40 Velocity [m/s] Fitting cinematic phase V = a exp(bt) ∆t = 60 µs ; t < 250 µs 30 re ≈ DUt = 0.06t 0.5 20 10 Consider a water drop: D = 2.7 mm; U = 1.55 m/s 0 There is a first phase where the impact is driven by the “geometrical” edge propagation 0 50 100 150 200 250 time [µs] A detailed study of the kinematic phase Introduction Experimental studies Numerical simulations Perspectives Drop impact onto liquid layers Splash on a dry and wetted surface Splash of a isopropanol drop (a) a dry glass surface We = 1020; Re = 3225; D = 3.26 mm (b) on a PVC surface covered by a liquid film of 0.1 mm thickness (c) on a PVC surface covered by a liquid film of 0.8 mm thickness. Introduction Experimental studies Numerical simulations Perspectives Drop impact onto liquid layers Drop impact onto very thin films Liquid [σ (N/m); µ (Pa s); ρ (kg/m3 )] Range V (m/s) D (mm) H* We Oh Glycerol-water [0.067; 0.00513; 1100] min. max. min. max. min. max. min. max. 1.11 2.59 0.65 2.76 0.44 2.72 0.86 3.14 2.67 2.71 2.22 3.81 1.42 3.06 1.54 2.08 0.018 0.117 0.017 0.189 0.007 0.093 0.004 0.132 55 300 41 741 28 707 54 890 0.0114 0.0115 0.0159 0.0121 0.0195 0.0286 0.0474 0.0548 Hexadecane [0.0271; 0.00334; 730] PDMS5 [0.0197; 0.00459; 918] PDMS10 [0.0201; 0.00935; 930] 3500 splash 2500 K ( We.Oh -0.4 ) 3000 C-S limit (a) (c) 2000 (b) 1500 crown 1000 D-C limit 500 Dry 0 0,00 Liquid film 0,02 0,04 0,06 0,08 0,10 0,12 0,14 H* ( h/D ) Rioboo et al. (2003) Introduction Experimental studies Numerical simulations Perspectives Drop impact onto liquid layers Drop impact on liquid film We = 560; Oh = 2.e-3 K = 6730; t = 8.3 ms δ = 0.1 Perturbations Jet formation Secondary droplet formation Cossali G.E., A. Coghe, M. Marengo „The impact of a sinlge drop on a wetted solid surface“, Experiments in Fluids, Vol. 22, pp. 463-472, 1997 Introduction Experimental studies Numerical simulations Perspectives Wetted surfaces Crown evolution Important theoretical contributions from Prof. Ilia Roisman Introduction Experimental studies Numerical simulations Perspectives Wetted surfaces Crown height evolution ηC = H Do ηC ,max = A1 Wen τ max = A2 Wen n = 0.65 ÷ 0.75 Introduction Experimental studies Numerical simulations Perspectives Drop impact onto liquid layers Splash and jetting on a deep pool We > 60 We~1 with water only... Oh~1 We > 84 Cascade of coalescences Introduction Rein (1993) Experimental studies Numerical simulations Perspectives Splash and jetting on a deep pool Fr = U2/(gD) Hsiao et al. (1989) Introduction Experimental studies Numerical simulations Perspectives Drop impact onto inclined surfaces Impact on inclined surfaces Impact of a glycerin droplet (We=51, D=2.45) Examples of splashing b a isotropic splash (water droplet D=2.7, We=390 on rough glass, α=45° splash in the forward direction (isopropanol droplet D=3.3, We=544 on smooth glass, α=45°) ∆t=3 ms a b c d a) with rebound from smooth glass (t1=0.0 ms, α=8°) b) t1=7.32 ms, α=8 c) partial rebound (α=9°) d) with deposition on wax (α=5°) Introduction Experimental studies Numerical simulations Perspectives Influence of the impact angle Water on wax We = 90 Re = 4212 t = 3.67 - 3.99 ms Dry inclined surfaces Introduction Dry inclined surfaces Experimental studies Numerical simulations Perspectives Sticking and slipping α = 5° We=390, Re=8875, d=2.7 mm contact contact t = 4.81 ms t = 4.81 ms t = 10.38 ms t = 10.38 ms Glass surface Introduction Wax surface Experimental studies Numerical simulations Perspectives Small targets Impacts onto small targets Radial flow Wetting – Friction No Wetting – No friction Dynamics of a liquid lamella resulting from the impact of a water drop on a small target, Rozhkov, A., Prunet-Foch, B., Vignes-Adler, M., Proc. Mathematical, Physical, Engineering Sciences (2004), 460, 2049, pp 2681-2704 Introduction Small targets Experimental studies Numerical simulations Perspectives Camera 1 Top view Camera 2 By courtesy M. Vignes-Adler Introduction Side view Small targets Experimental studies Numerical simulations Perspectives Camera 1 By courtesy M. Vignes-Adler Camera 2 Introduction Experimental studies Numerical simulations Perspectives The splashing/deposition limit SPLASH/DEPOSITION THRESHOLD Introduction Experimental studies Numerical simulations Perspectives Influence of air pressure / drag The splashing/deposition limit Ethanol drop V = 3.74 m/s P 4 Repeat the experiment with other liquids and with a film Xu (2005) Introduction Experimental studies Numerical simulations Perspectives The splashing/deposition limit Secondary droplet formation Crown splash High values of We, Rnd and with wetted surfaces. With dry surfaces the crown has a lower angle respect to the solid surface Very high number of secondary droplets dsec = 0.05 - 0.7 D u = 0.1 - 0.9 V Introduction Conical jet breakbreak-up High and middle values of We, low wettable or wetted surfaces Low number of secondary droplets (<3) dsec = 0.5 - 0.8 D u < 0.6 V Experimental studies Numerical simulations Perspectives The splashing/deposition limit Secondary droplet formation Recoiling film breakbreakup Rebound Very low wettable surface High value of Weber and low wettable surfaces, small impact angle (?), hot surfaces dsec (?) u=0 dsec = D (?) u (?) Introduction Experimental studies Numerical simulations Perspectives The splashing/deposition limit Secondary droplet formation b) a) Prompt splash Prompt splash High values of We, Rnd and with wetted surfaces. Low liquid viscosity. Very high number secondary droplets of dsec < 0.2 D u = (?) Water drop impact ( D = 2.7 mm) on a glass surface a) Deterministic roughness Ra = 6 µm, λ = 1mm b) Ra = 3.5 µm, λ = 100 µm Introduction Experimental studies Numerical simulations Perspectives The splashing/deposition limit Crown splash threshold Number K K = We Oh−0.4 Critical K number Depending on the impacting drop parameters Depending on impacted surface parameters K > Kcr Secondary droplets formation K < Kcr Deposition Generally Kcr = fn(Rnd, θ, T, λnd, δ) n = splash type Introduction Experimental studies Numerical simulations Perspectives Crown splash threshold The splashing/deposition limit Dry high wettable surfaces Kcr = 649 + 3.76/Rnd0.63 Mundo et al. (1995) Stow and Hadfield (1981) Coghe et al. (1995) 3500 K = We Oh −0.4 3000 2500 2000 1500 1000 500 Splash limit Kcr = 657 0 10-5 10-4 10-3 10-2 10-1 100 Dimensionless Surface Roughness R nd Introduction Experimental studies Numerical simulations Perspectives Crown splash threshold Wetted surfaces (δ < 1) Splash limit Kcr = 2100 +5880 δ1.44 Prompt splash limit Kcr = 2100 + 760 δ0.23 The splashing/deposition limit Introduction Experimental studies Numerical simulations Perspectives The splashing/deposition limit Crown splash threshold Influence of the wettability Critical Weber number as a function of the dimensionless surface roughness ° Aluminium; . Glas; * Plexiglas; + 3M Film (Range 1995) Introduction Experimental studies Numerical simulations Perspectives Droplet array impact (Ts = 80°) z z x y Front and side view Drop Array Impacts Introduction Experimental studies Numerical simulations Perspectives NUMERICAL SIMULATIONS Introduction Experimental studies Numerical simulations Perspectives Numerical simulations Numerical methods Volume of fluid interface (VOF) C.W. Hirt and B.D. Nichols, “Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries,” J. Comp. Phys., 39, 201-225,1981 LEVEL SET METHODS S. Osher and J. Sethian, Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys., 79 (1988), pp. 1249 BOUNDARY ELEMENT METHODS Introduction Experimental studies Numerical simulations Perspectives Numerical simulations Cij = Volume of « fluid » in cell ij Definition of the VOF Method In a volume-of fluid method the motion of the interface itself is not tracked, but rather the volume of each material in each cell is evolved in time and the interface at the new time is reconstructed from the values of the volumes at this new time. For this reason VOF methods are sometimes referred to as volume tracking methods Second-order accurate volume-of-fluid algorithms for tracking material interfaces James Edward Pilliod, Jr. and Elbridge Gerry Puckett Journal of Computational Physics, Volume 199, Issue 2 , 20 September 2004, Pages 465-502 Introduction Experimental studies Numerical simulations Perspectives Numerical simulations where and ∆x = ∆y = h Advection equation If the fluid is incompressible Conservation law for the volume fraction function Introduction Experimental studies Numerical simulations Perspectives Numerical simulations Interface reconstruction (c) is a first-order method of simple line interface calculation (SLIC) type (d) is a second-order method of piecewise .... (PLIC) type Introduction Experimental studies Numerical simulations Perspectives There are other methods, like Marker and Cell (MAC), Lagrangian Tracking, Integral Tracking and so on... Numerical simulations Introduction Experimental studies Numerical simulations Perspectives Numerical simulations LEVEL-SET Introduction Experimental studies Numerical simulations Perspectives Numerical simulations by courtesy of Daniele Di Pietro Introduction Experimental studies Numerical simulations Perspectives Numerical simulations Introduction Experimental studies Numerical simulations Perspectives Numerical simulations LEVEL-SET 3-D modeling of the dynamics and heat transfer characteristics of subcooled droplet impact on a surface with film boiling Yang Ge, L.-S. Fan Int. J. Heat and Mass Transfer 49 (2006) 4231-4249 Introduction Experimental studies Numerical simulations Perspectives Numerical simulations Boundary element methods Introduction Experimental studies Numerical simulations Perspectives Numerical simulations VOF simulations and time accuracy Contact angle problem Numerical and experimental drop impact on solid dry surfaces W.I.Geldorp, R.Rioboo, SJ. A. Jakirlić, S. Muzaferija, C.Tropea, VIII Int. Conf. on Liquid Atomization and Spray Systems, Pasadena, USA, 2000 Introduction Experimental studies Numerical simulations Perspectives Re = 1000, We = 8000 D = 6mm U = 6m/s MOVIE 400 grid point in D 1 grid point = 15 microns by courtesy of Stephane Zaleski Introduction Experimental studies Numerical simulations Perspectives Numerical simulations Select a numerically « nice » case: Not too viscous (no splashing) Not too large Re (too unstable) A glycerine , 4 mm droplet falling at 2 m/s 256² Simulation ( 128 grid points/diameter ) Repeat at 128² : same result
Similar documents
Advantages of Continuous Flow Technology for Ionic
• rapid dielectric heating (tan δ)
More information