Bachelor`s Thesis - Christian Hoffmann
Transcription
Bachelor`s Thesis - Christian Hoffmann
Universität Osnabrück Cognitive Science Bachelor Program Bachelor’s Thesis The influence of prepositions on attention during the processing of referentially ambiguous sentences Christian Hoffmann September 29, 2009 Supervisors: Prof. Dr. Peter Bosch Computational Linguistics Working Group, Institute of Cognitive Science University of Osnabrück Germany Prof. Peter König Neurobiopsychology Working Group, Institute of Cognitive Science University of Osnabrück Germany Abstract The present study uses eye-tracking to investigate the role of prepositions in resolving referential ambiguities. Playmobil sceneries and prerecorded sentences were presented and fixation behaviour on possible referents of the discourse was recorded. The sentences investigated contained a subject NP whose head NP refers to two objects in the scenery modified by a PP that uniquely identified the referential object of the subject NP. The hypothesis was that when a preposition can uniquely identify an object in a scenery then the fixation probability of said object should rise already prior to the processing of the following prepositional NP. If the preposition does not uniquely identify an object, then the fixation probability of the referential object should only rise after processing the prepositional NP. The results seem to imply that there are no major differences in fixation probabilities connected to the prepositions. Bootstrapping analyses revealed that there are some significant differences, namely more fixations on the target in the ambiguous block. 2 Contents 1 Introduction 4 2 Methods 8 2.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 Experimental stimuli . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.1 Visual stimuli . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.2 Auditory stimuli . . . . . . . . . . . . . . . . . . . . . 11 2.2.3 Filler . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3 Apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.4 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.5 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.5.1 Regions of Interest . . . . . . . . . . . . . . . . . . . . 16 2.5.2 Statistics . . . . . . . . . . . . . . . . . . . . . . . . . 16 3 Results 19 3.1 Subject Validity . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2 Stimulus Validity . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.3 Time Course of Fixations . . . . . . . . . . . . . . . . . . . . 22 3.4 Bootstrapping . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4 Discussion 28 References 30 A Visual Stimuli 31 B Auditory Stimuli 33 C Fillers - Visual 36 D Fillers - Auditory 39 E Statistics 41 F Complementary Figures 43 G Consent Sheet 48 3 1 Introduction “Linguistic theory [...] may inform a theory of language processing. And observations about language processing may inform linguistic theory, i.e. support or disconfirm its predictions.”(Bosch (2009)) In the last few decades, interest in neuroscientific methods for analyzing linguistic processing has been on the rise. More and more research areas develop which incorporate paradigms and methods from both theoretical linguistics and neuroscience. Specifically the method of analyzing the gaze of people, known as eyetracking, generated major interest in the linguistic community, due to the seminal paper of Cooper (1974), who showed that people fixate elements of a visual scene that had a connection to spoken language stimuli to which they listened at the same time. Many researchers focused on eye-tracking as a method to investigate ongoing linguistic processing. As Michael K. Tanenhaus puts it, “eye movements provide a continuous measure of spoken-language processing in which the response is closely time locked to the input without interrupting the speech stream. [...] The presence of a visual world makes it possible to ask questions about realtime interpretation.” Tanenhaus et al. (2000) Eye-tracking has been used before to investigate topics like overt attention and its modulation, reading behaviour (in particular the implications on online lexical access and syntactic processing, e.g. garden-path sentences) and others. For an overview, see Rayner (1998). Of most importance for the understanding of the findings from Tanenhaus, Rayner, Cooper, Chalmers and others are the visual world paradigm and the linking hypothesis. The visual world paradigm serves as a blueprint for psycholinguistic experiments. Basically, subjects fixations are measured as they interact in some fashion with a visual scenery according to tasks proposed by the experimenter, thereby integrating linguistic and non-linguistic knowledge and action. The linking hypothesis proposes an intrinsic connection between eye movements and lexical access, making it possible to derive knowledge about linguistic processing from analyzing non-linguistic actions. In his overview (Tanenhaus et al. (2000)) Tanenhaus shows that visual context and even real-world knowledge (see also Chambers et al. (1998)) can help to resolve apparent (or temporal) syntactic ambiguity and is rapidly 4 1 INTRODUCTION 5 integrated throughout the processing of linguistic utterances and also that linguistic experience (such as relative frequencies of lexical competitors) can influence fixation behaviour. A major topic in this field is the question of how referential expressions (e.g. “The cat on the tree”) are processed. As Chambers et al. (1998) shows, even prepositions suffice in certain tasks to identify the referential object of an expression by restricting the domain of interpretation. Studies conducted at the University of Osnabrück show that determiner gender1 and adjectival constructions ensuring referential uniqueness already give rise to a higher fixation probability on the referential object due to an anticipation effect, even before the onset of the noun itself (Hartmann (2006)). Kleemeyer (2007) and Bärnreuther (2007) showed that top-down influences had a much higher impact on attention modulation than bottom-up processes when presented in parallel. Karabanov (2006) showed what differences in fixation probabilities arise when processing full noun phrases compared to pronouns. The last three studies mentioned used a more natural visual world than Tanenhaus and the others, by providing Playmobil R sceneries as visual stimuli. Furthermore, subjects did not have to perform complex tasks while viewing the sceneries, as it was the case in Chambers et al. (1998) and Hartmann (2006). The object of this study is to investigate a problem posed by Peter Bosch in Bosch (2009). The basic question is in which way does the uniqueness constraint of the definite determiner contribute to the processing of potentially ambiguous referential expressions. For a sentence like: (1) Put the red block on the block on the disk. which is syntactically ambiguous, one finds two constituent structures: (2) put [the [red block]] [on [the [block [on [the [disk]]] (3) put [the [red [block [on [the block]]] [on [the disk]]] If this sentence is presented while figure 1 is shown, which contains more than one red block (one of which is even on another block), and a third block on a disk, the uniqueness constraints of the first two definite determiners are not met when analyzing their corresponding constituents. But 1 determiners in German have gender markers 1 INTRODUCTION 6 somehow, most people intuitively chose sentence 3 as the correct meaning of the sentence. Bosch proposes two alternatives: either constraints of single constituents are collecting during incremental construction of the semantic representation of the determiner phrase so that the meaning becomes clear after processing the second “block”-phrase, where it becomes clear that the DP describes a red block which is on another block. Or the violated uniqueness constraint leads to a modulation of processing ressources: the dereference of said DP becomes the most important point on the agenda of the parser, which immediately uses the information obtained from the following preposition to decide which block is the referential object of the DP. Figure 1: Example block world, taken from Bosch (2009) The hypothesis behind this experiment is that when in such a sentence (or any other expression containing a definite determiner and a referentially ambiguous DP) a preposition can give the information needed to resolve such an ambiguity, then this fact should be easily be seen in an earlier rise of the fixation probability on the referential object of that DP. If the preposition cannot provide such information2 , then the fixation probability on the referential object should rise only after the onset of the prepositional NP-head. 2 In said case, picture the second block on a hat, then the ambiguity cannot be resolved solely by the preposition, as both blocks are “on” something 1 INTRODUCTION 7 In order to test this hypothesis, several visual stimuli were constructed bearing exactly those characteristics mentioned before and were shown to subjects while they were listening to matching spoken stories. 2 Methods This part contains all important information about the participants of this study, the materials used for preparation and experimental design and procedures used during the experiment and for subsequent analysis. 2.1 Participants Participants were contacted through personal contacts and the internal mailing lists of the student bodies of the cognitive science and psychology programmes at the University of Osnabrück, Germany. The actual subjects of this study were almost equally distributed among those programmes. They had to be native German speakers, have normal or corrected-to-normal vision and had to have no hearing deficits. For their participation, subjects were rewarded with either course credit or 5 Euros. All subjects participated voluntarily and were naı̈ve with regard to the purpose of this study. Fixations were recorded from 25 subjects. Of those data sets, four had to be rejected. For two subjects, the data files were corrupt and therefore not readable. The experiment for one subject ended prematurely, rendering the data set unusable. One subject had a red-green color blindness, but as the subjects fixation behaviour was the same as of the other remaining subjects (see subject validity of subject 21 in table 6), the data set of said subject was used nevertheless. One subjects performance was significantly different from the rest (see subject validity of subject 5) and its data set was disregarded. All in all, 21 data sets were used for subsequent analysis. The characteristics taken from the subject questionnaires are shown in table 1. 2.2 Experimental stimuli R Subjects received multi modal stimuli, composed of photographs of Playmobil sceneries and auditory stimuli which were semantically related to them. See Karabanov (2006), Kleemeyer (2007), Bärnreuther (2007) and Karabanov (2006) for similar designs. Ten stimuli were assembled from stimuli and filler material from prior experiments collectively used in Alexejenko et al. (2009). The pictures were edited with GIMP 2.6 in such a way as to conform to the constraints of the experimental design. Information about the construction of the original 8 2 METHODS Category Age (yrs) Height (cm) Daily screen time (hours) Language knowledge (no.) Previous eye-tracking studies (no.) Gender Female Male Education High school diploma University degree Occupation Student Unemployed Vision aids None Glasses Contact lenses Occular dominance Left Right Unclear Handedness Left Right Unclear Color Vision Red-green colour blind Perfect 9 Range 18-28 154-193 2-10 1-5 0-6 Number 14 11 Number 22 3 Number 24 1 Number 14 6 5 Number 10 11 4 Number 1 23 1 Number 1 24 Median 22 174 5 2 1 Percent 56% 44% Percent 88% 12% Percent 96% 4% Percent 56% 24% 20% Percent 40% 44% 16% Percent 4% 92% 4% Percent 4% 96% Mean ± SD 22.5 ± 2.26 172.8 ± 8.63 5 ± 2.53 2.56 ± 0.96 1.24 ± 1.67 Table 1: Statistics of study participants, collected from subject questionnaires 2 METHODS 10 stimuli and filler can be found in Kleemeyer (2007). As some of the original images reused here had a resolution of 1024x768 pixels, all final images were downscaled to this resolution. Auditory stimuli were constructed corresponding to the experimental question raised in Bosch (2009). In order to find out what role prepositions may play during the processing of referential ambiguities, sentences were constructed whose subject phrase (sentence head) consisted of a noun phrase modified with a prepositional phrase. The whole phrase uniquely identified an object of the visual stimulus matching the auditory stimulus. The head of the subject phrase matched two objects of the visual stimulus, as did the NP of the prepositional phrase. In one condition, the preposition was supposed to uniquely identify the referential object of the subject phrase3 , whereas in the other condition, the ambiguity could only be resolved when processing the prepositional NP. 2.2.1 Visual stimuli R Every stimuli/filler depicted a natural scenery constructed from Playmobil objects. Those sceneries consisted of multiple objects referred to during the course of the corresponding auditory stimulus and also contained a vast amount of other objects serving as distraction, ensuring a higher possibility that a fixation on an object of interest is related to the auditory stimulus, and not to general browsing of the scenery. In particular, every scenery had two identical objects (identical in the sense of being part of the same category, e.g.“owl”,“man”,“cat”) serving as target and competitor. In addition, two objects served as their “locationary” identifiers, i.e. identifying the location of the target/competitor in the scenery. 4 It is important to mention that there were matching distractors for the locationary identifiers as well. This was required in order to keep all references to the locationary identifiers in the auditory stimuli ambiguous. 3 E.g.“The cat in front of...” uniquely identifies a cat if the other cat in the picture is not in front of something. 4 To give an example, in one picture two owls were amidst a woodland scenery, one in a tree, the other on on a hill. The target here was the owl in the tree (the tree therefore being the locationary identifier of the target), the distractor the owl on the hill (the hill therefore being the locationary identifier of the competitor). 2 METHODS 11 There was also a reference object in every picture to study the attention shift of participants to an easily identifiable, salient target and to compare those shifts to those elicited by the relevant part of the auditory stimulus. Figure 2: Exemplary visual stimulus. The target is circled in red, the competitor in green. The locationary object of the target and its distractor are circled in purple, the locationary object of the competitor and its distractor in blue. The reference object is circled in yellow. 2.2.2 Auditory stimuli As already stated, there were two conditions for every stimulus, i.e. two stories were designed that solely differed in one preposition in the last sentence. The stimuli consisted of four to six sentences in four slots. The first sentence was an informal overview of the scenery, without any direct reference to any object in it. 1. In der Savanne. (In the savannah.) The reason for the introduction of that sentence was to measure participants’ fixations on the stimuli while not guided by linguistic input. The next one to two sentences introduced (referred to) the locationary objects. 2 METHODS 12 2. In der felsigen Landschaft traben zwei Elefanten. (Two elephants are trotting through the rocky countryside.) The one to two sentences in the third slot contained references to the target/competitor, as well as distractors and the reference object. 3. Die beiden Männer beobachten die vielen durstigen Tiere am einzigen Wasserloch5 . The two men are watching the many thirsty animal near the watering hole. The only difference between the two conditions could be found in the fourth slot. As explained above, the sentence consisted of a subject NP composed of an NP and a prepositional phrase. In one case, the preposition was a more regular one, not capable of identifying the referential object by itself, i.e. prepositions able to convey more possible relations than others. The german prepositions auf, neben and bei were used in this condition (meaning “on”, “next to” and “near”, respectively. In the other, due to the relation between subject head and prepositional NP conveyed by the preposition, the ambiguity posed by the subject head could have already been resolved by the preposition. Here, the german prepositions in, vor, hinter, unter and an were used, meaning “in”, “in front of”, “behind”, “below/under” and “at.” 4. Der Mann vor dem grauen Felsen ist ein erfahrener Jäger. (The man in front of the grey rock is an experienced hunter.) See Figure 2 for an exemplary stimulus. All sentences were recorded6 by using a Trust HS-2100 Headset and Audacity 1.2.67 and Cool Edit Pro 2.08 . Noise and pitch reduction procedures were carried out on all audio files. Furthermore, silent intervals were cut to ensure equal length of all files (18.770s - 19.962s). The number of syllables differed slightly among all sentences (58-62 syllables). Manual alignment was performed to ensure that onsets of the subject head NP, the preposition and the prepositional NP only differed on a small scale. See Table 2 for details. By adding a non-disambiguating adjective to the PP, a time window of approximately 800 ms between preposition onset and the onset of the prepositional NP could be ensured for further analysis. 5 This is the reference object. Sentences were all spoken by the experimenter himself. 7 (http://audacity.sourceforge.net/) 8 (http://www.adobe.com/products/audition/) 6 2 METHODS Stimulus Nr. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 mean 13 Onset subj-head NP 15,348 15,362 15,330 15,319 15,357 15,338 15,358 15,336 15,353 15,328 15,343 15,333 15,325 15,330 15,334 15,348 15,345 15,328 15,329 15,319 15,338 Onset prep. 15,946 15,911 15,940 15,909 15,919 15,980 15,960 15,930 15,970 15,964 15,877 15,946 15,928 15,944 15,925 15,887 15,948 15,970 15,901 15,968 15,936 Onset prep. NP 16,786 16,766 16,704 16,842 16,757 16,736 16,777 16,778 16,792 16,721 16,757 16,780 16,719 16,765 16,732 16,771 16,744 16,739 16,623 16,698 16,749 Table 2: Onsets of subject head NP, prepositions and prepositional NPs. Even Stimulus numbers correspond to the ambiguous case, odd to the unambiguous case. The first two stimuli correspond to visual stimulus 1, the next two to visual stimulus 2, and so on. 2 METHODS 2.2.3 14 Filler Filler images were all those images from the material of Alexejenko et al. (2009), which had not been used to construct stimuli. For each of those filler images an auditory filler was recorded, which was of equal length as the auditory stimuli and consisted of 3-5 sentences. 2.3 Apparatus A head-mounted binocular Eye-Tracker(“Eye Link II”, SR Research, Mississauga, Ontario, Canada) was used to record subjects’ eye movements. Two infrared cameras tracked the movements of the participants’ pupils, one tracked the head position relative to the monitor. A Pentium 4 PC (Dell Inc., Round Rock, TX, USA) was used to control the eye-tracker. See figure 3 for an overview of the system9 . A second PC (Powermac G4 8000 MHz) controlled the stimulus presentation. Stimuli were presented on a 21” cathode ray tube monitor (SyncMaster 1100DF 2004, Samsung Electronics Co, Ltd, Korea), resolution set to 1024x768 and a refresh rate of 100Hz. Pupil positions were tracked using a 500 Hz sample rate. Figure 3: Eye Link II Head-Mounted Eye-Tracking System 9 Image taken from Karabanov (2006) 2 METHODS 2.4 15 Procedure The experiment was conducted in a dimly lit room. Prior to the experiment itself, subjects were welcomed and the experiments procedure was explained to them. Subjects were informed that they could interrupt the experiment at any time. Subjects then had to fill out a consent sheet (see section G) and a standardized questionnaire (see table 1). Tests for ocular dominance and color deficiency were performed. If subjects were able to follow the instructions up until now, it was assumed that their hearing was also sufficient for the experiment. Subjects were then seated 80 cm from the monitor and the eye-tracker was fitted on their head. Afterwards, a 13 point calibration and validation procedure was started. Participants were asked to fixate a small dot showing up in a random order at thirteen different locations on the screen. During calibration, the raw eye-data was mapped to gaze-position. During validation, the difference between computed fixation and target point was computed, in order to obtain gaze accuracy. The procedure was repeated until the mean error for one eye was below 0.3◦ , with a maximum error below 1◦ , this eye was subsequently tracked during the whole experiment. Subjects then were provided with headphones (WTS Philips AY3816), through which the auditory stimuli were presented. The headphones also served the purpose of blocking out background noise in order to ensure full concentration on the task. Subjects were told to carefully listen to the auditory stimuli and look at the visual stimuli. Before each stimulus, a small fixation spot in the middle of the screen was presented, so that drift correction could be performed and subjects had the chance to have a small break in between trials. If the difference between gaze and computed fixation position was too high, calibration and validation were repeated. The stimuli were presented in a random order, with the constraints that no more than two actual stimuli were presented in a row and that every subject was presented with exactly five stimuli conforming to the ambigue condition and five stimuli of the unambigue condition. Furthermore, for every subject there was another subject that was presented with the same order of stimuli, but with exactly the opposite conditions, as to assure that all stimuli and all conditions were presented equally often without fully giving up randomization. The ten stimuli and 15 fillers were presented as one block. After the experiment, 2 METHODS 16 participants were informed about the goal of this study. 2.5 Data Analysis It has already been shown extensively that measuring eye movements seems to be an adequate tool for the investigation of attention and is especially useful when trying to understand the mechanisms behind language processR ing Tanenhaus et al. (2000). With the help of Playmobil scenarios it has also been shown that top-down influences seem to at least partially override bottom-up influences on attention (Kleemeyer (2007), Bärnreuther (2007)). It therefore seems to be an adequate instrument to study the processing of prepositions and its influence on attention. A fixation is defined as the inverse of a saccade, i.e. whenever the eye-tracker does not measure a saccade, there is a steady fixation. The acceleration threshold for a saccade was 8000◦ /sec2 , the velocity threshold 30◦ /s and the deflection threshold 0.1◦ . Fixation locations and durations were calculated online by the eye-tracking software and later converted into ASCII text. All further analysis was done with MATLAB 2.5.1 10 Regions of Interest In order to find out whether a subject fixated a referent of the discourse, regions of interest (ROIs) were manually chosen around each referent in every scene using MATLABs build-in function roipoly. The borders of the referent were chosen as close as possible around the actual figurine in the scene. As part of the fixations in question lay outside the manually chosen regions of interest, they were scaled up 12 pixel in the horizontal axis (being equivalent to 0,552◦ of visual angle) and 20 pixel in the vertical axis (equivalent to 0.76◦ of visual angle). For an example, see figure 4. An example of all the fixation outside of the regions of interest can be seen in figure 5. 2.5.2 Statistics The time course of the probabilities to fixate a certain referent throughout viewing the scenery is the important part of analysis. In order to interpret rise and fall of fixation probabilities, 150 ms time windows were chosen in which all relevant statistical analysis was implemented. This particular 10 (www.mathworks.com) 2 METHODS 17 Figure 4: Example image for regions of interest. Left: target (woman) and target locationary object (car), right: competitor (woman sitting), competitor locationary object (tree), front: reference object (man) Figure 5: Example of fixations not belonging to any region of interest length was chosen as the data was somewhat scarce. In order to test stimulus validity, the first 2.5 seconds (in which no reference to any object in the 2 METHODS 18 scenery was yet made in the auditory stimulus) were analyzed by adding up all fixations on referents and comparing them among images. As this revealed some minor issues (see Results [3]), the time window between 2500 ms and 15000 ms was also analyzed (being the time window in which all referents were introduced) in the same way. Subject validity was analyzed by summing up all fixations over the different images. For both validity analyses, MATLABs lillietest function was used to ensure normal distributions. The influence of prepositions on fixation probabilities (and therefore on attention) was then tested using bootstrapping algorithms. Both intraconditional and inter-conditional testing was performed11 . For all statistic tests, a significance level of α = .05 was used. 11 Intra-conditional meaning the comparison of fixation probabilities between different ROIs of the same condition, inter-conditional being the comparison of fixation probabilities for a specific ROI in the two different conditions. 3 Results 3.1 Subject Validity The first statistical test conducted was to find out whether the fixations on the different ROIs over all subjects constituted normal distributions. For that, all fixations over the whole time course of the stimulus presentation were summed up and MATLABs lillietest function was used as a test for normality. The findings are visualized in figure 6, an overview over the statistics can be found in table 3. As it could be easily discerned that subject number 5 was a statistical outlier, all further statistical tests were conducted without the data of that subject. The lillietest revealed that all fixation distributions were normalized, except for the fixations on the locationary object of the competitor. This could be due to the fact that this object was mostly inanimate and most stimuli contained considerable amounts of animate distractors, so that fixations on those objects could be unstable due to the fact that, as Karabanov (2006) already pointed out, subjects prefer fixations on animate/human objects over inanimate. This did not pose a problem however, as the data clearly shows that all subjects fixated the object during the presentation (mean = 4.3536%, std. − dev. = 0.8902%), i.e. identified it either before or during the presentation of the relevant part of the stimulus. 3.2 Stimulus Validity Following that, a series of normality tests was conducted to ensure stimulus validity. Contrary to previous studies, it could not be shown that fixation behaviour in the first part of the stimulus, where no objects were yet introduced, could be a reliable baseline for test statistics concerning fixation behaviour mediated by auditory stimuli. As can be seen in figure 7 and in table 4, there was quite a large variance in fixation probabilities, especially on target, competitor and the distractor of the targets locationary object. This is due to the fact that those objects varied in size and that each stimulus contained a great amount of distractor objects. But this also ensured that fixations done on objects during their introduction via the auditory stimulus could be considered to be directly linked to the linguistic input, and not to attentional browsing of the 19 3 RESULTS 20 Figure 6: Subject validity, fixations over all images picture12 . That browsing occurred nevertheless can be seen in light of the large number of fixations on beyond-ROI regions. This was partly also due to the limited accuracy of the eye-tracker, leading to the fact that a percentage of fixations that should have counted towards one of the ROIs was off by a few degrees. Also see figure 5. As can be seen in table 4, fixation probabilities on target and competitor were nevertheless a normal distribution. To ensure that the stimuli were really valid and appropriate for further statistical testing, the time interval between 2500 and 15000 ms was tested, under the hypothesis that the auditory stimuli presented similar objects for all stimuli, so that fixation probabilities should be similar as well. The results are visualized in figure 8 and table 5. One can see quite clear that in every picture all the relevant objects were fixated prior to the investigated stimulus part. Thus it was secured that all objects have been seen before and subjects do not have to search for objects first, overt attention that is due to linguistic input should be immediately visible. 12 If one has many objects in a stimulus, fixation on one of them precisely at the point when it is presented in a concomitant auditory stimulus get more and more unlikely to have been a coincidence with increasing number of objects. 3 RESULTS 21 Figure 7: Stimulus validity, fixations over all subjects, between 0 and 2500 ms Figure 8: Stimulus validity, fixations over all subjects, between 2500 and 15000 ms 3 RESULTS 3.3 22 Time Course of Fixations The time course of fixation probability over all images are shown in figures 9 and 10. As expected, the fixation probabilities on both target and competitor object rise twice during the whole presentation of the stimulus. A small peak beginning around 9000 ms can be distinguished, representing the time frame in which the target/competitor compatible NP is introduced. This clearly shows that subjects shift their attention on visual sceneries in line with the linguistic processing of additional linguistic stimuli. The second rise of the fixation probabilities (i.e. the relative number of fixations) occurs concurrently with the second naming of said NP. Around the time of the onset of the prepositional head-NP, the fixation probabilities diverge and a considerable number of fixations is directed towards the target, implying that the subjects we’re focusing their attention on it, having understood that the subject-NP refers to it. Throughout the rest of the stimulus, most fixations stay on either the target or the target locationary object, shifting back and forth between them. To better understand the Figure 9: Time course of fixation probabilities, ambiguous condition. Yellow stripe: first introduction of target/competitor-NP. First line: mean onset subject-head-NP, second line: mean onset prepositional NP-head. 3 RESULTS 23 Figure 10: Time course of fixation probabilities, unambiguous condition. Yellow stripe: first introduction of target/competitor-NP. First line: mean onset subject-head-NP, second line: mean onset prepositional NP-head. stages of linguistic processing of ambiguous sentences and to compare it to the processing of unambiguous sentences, a closer visual inspection of the time frame in question was necessary. A visualization of the fixation probabilities of said time frame for both the unambiguous and the ambiguous condition can be found in figures 11 and 12. A few observations can be made: first and foremost, the differences in the time course of fixation probability are minimal at best. Second, there seems to be an early peak of fixations on the target in the ambiguous case around 16400 ms, which would have been suspected in the unambiguous case when the integration of the proposition alone would be enough to resolve the ambiguity of the subject-NP. Third, increased fixations on both target and target locationary object seem to last longer in the ambiguous case than in the unambiguous one (the last peak in the ambiguous case is at 19350 ms). All of those observations have to be treated carefully, as the dataset is small and therefore statistical significance cannot be guaranteed. 3 RESULTS 24 Figure 11: Time course of fixation probabilities, unambiguous condition, time span between subject head onset and end of stimulus Figure 12: Time course of fixation probabilities, ambiguous condition, time span between subject head onset and end of stimulus 3 RESULTS 3.4 25 Bootstrapping Bootstrapping analyses were conducted to find out if there are any significant differences between fixation probabilities on target and competitor. Both differences between conditions and in the conditions were analyzed. Bootstrapping algorithms were applied both over all images and all subjects, to find out for how many images and subjects significant differences can be found, respectively. Bootstrapping was applied to time windows of 150 ms width, between 15200 ms (shortly before the onset of the subjecthead-NP) and 22000 ms (the last recorded fixations). 1000 bootstrap samples were taken from the vector of fixations on either ROI1 (target) or ROI2 (competitor), for both the ambiguous and the unambiguous condition. As a test statistic, the difference of means was calculated and compared to the actual difference of means, both in and between conditions13 . A difference was considered significant if it fell either into the 2,5 percentile or was larger than the 97,5 percentile. The figures 13, 14, 15 and 16 depict the results of bootstrapping analyses over images. No graphs are given for the results of bootstrapping over the subjects, as it did not yield a single significant difference. From figure 13 it can be concluded that fixation behaviour on the target does indeed differ between conditions. Further analysis confirmed the observation made earlier, namely that the target object gets significantly more fixations in the ambiguous case. For all four images for which the time window between 15950 ms and 16100 ms became significant, the difference between unambiguous and ambiguous case was negative. Interestingly, this is the time window right after the onset of the preposition. The other peaks seem to support the claim that in the ambiguous case, fixations stayed more often on the target for a longer time. The differences here are also all negative. As there is mostly only one or two pictures that lead a significant difference, this hypothesis cannot be proven. There are also significant differences in the fixation probabilities on the competitor object between conditions. They are even less pronounced than in the case of the target object. The relevant time frames can be observed in figure 14. 13 I.e. mean(ROI1 unamb) - mean(ROI1 amb), mean(ROI1 unamb) - mean(ROI2 unamb), ... 3 RESULTS 26 Figure 13: Significant Differences after Bootstrapping - Fixations on Target unamb. vs amb. Condition Figure 14: Significant Differences after Bootstrapping - Fixations on Competitor Unamb. vs Amb. Condition, peaks at 16100, 17750 and 19700 ms 3 RESULTS 27 Figure 15: Significant Differences after Bootstrapping - Fixations on Target vs Competitor Ambiguous Condition Interestingly, the differences seen in the time course of fixations in both conditions do not seem to be that significant. For the ambiguous case, there are 15 time windows in which the differences become significant for one image. For the unambiguous one, there are 17 time windows, two of which show two images with significant differences. Figure 16: Significant Differences after Bootstrapping - Fixations on Target vs Competitor Unambiguous Condition 4 Discussion This study about the linguistic processing of prepositions has some interesting implications. Due to the scarcity of the data14 most of the implications are in need of future research. It seems that contrary to e.g. Chambers et al. (1998), prepositions do not seem to provide as much information into the processing stages of natural language understanding as for experiments in which choices are limited and subjects rely heavily on them. It seems that people process the prepositional NP-head fully when faced with a referentially ambiguous phrase and only then shift their attention to the referent. It could also be the case that the time window in which an influence of the preposition was suspected did not suffice. Therefore one proposal for future research would be to widen the gap between preposition and PP-head-NP even further. As far as this study is concerned, there are a few significant differences in fixation probabilities, oddly enough there 14 As could be seen by the fact that no bootstrapping analysis over the subjects yielded significant results - in most time windows, the single subject did not look at either target or competitor, only the average over subjects shows results 28 4 DISCUSSION 29 seem to be more fixations on the target in the ambiguous case. This could be an artifact of this study, i.e. there could be a bias towards fixating the competitor (even though none of the earlier time windows shows such a discrepancy). Nevertheless, it should be subject of future research. The results of this study seem to be in favor of the theory that constraints from single constituents are collected during an incremental construction of semantic representations. References Alexejenko, S., Brukamp, K., Cieschinger, M., and Deng, X. (2009). Meaning, vision and situation - study project. Bärnreuther, B. (2007). Investigating the influence of visual and semantic saliency on overt attention - bsc. thesis univ. osnabrueck, cognitive science. Bosch, P. (2009). Processing Definite Determiners. Formal Semantics Meets Experimental Results. Lecture Notes on Computer Science. Chambers, C. G., Tanenhaus, M. K., Eberhard, K. M., Carlson, G. N., and Filip, H. (1998). Words and worlds: The construction of context for definite references. Cooper, R. M. (1974). The control of eye fixation by the meaning of spoken language. Cognitive Psychology, 6. Hartmann, N. (2006). Processing grammatical gender in german - an eyetracking study on spoken-word recognition - bsc. thesis univ. osnabrueck, cognitive science. Karabanov, A. N. (2006). Eye tracking as a tool for investigating the comprehension of referential expressions - bsc. thesis univ. osnabrueck, cognitive science. Kleemeyer, M. (2007). Contribution of visual and semantic information and their interaction on attention guidance - an eye-tracking study - bsc. thesis univ. osnabrueck, cognitive science. Rayner, K. (1998). Eye movements in reading and information processing: 20 years of research. Psychological Bulletin, 124(3). Tanenhaus, M. K., Magnuson, J. S., Dahan, D., and Chambers, C. (2000). Eye movements and lexical access in spoken-language comprehension: Evaluating a linked hypothesis between fixations and linguistic processing. 30 A Visual Stimuli Figure 17: Visual Stimuli 1-6 31 A VISUAL STIMULI Figure 18: Visual Stimuli 7-10 32 B Auditory Stimuli (a) is the unambiguous condition, (b) is the ambiguous one. 1. (a) Im Wald ist viel los. Ein paar Hügel säumen die kleine Lichtung. Bäume spenden Schatten. Zwei Eulen schauen sich um, Rehe spielen am Wasser und auch ein Fuchs traut sich dazu. Die Eule in dem kleinen Baum hält nach Beute Ausschau. (b) Im Wald ist viel los. Ein paar Hügel säumen die kleine Lichtung. Bäume spenden Schatten. Zwei Eulen schauen sich um, Rehe spielen am Wasser und auch ein Fuchs traut sich dazu. Die Eule auf dem kleinen Baum hält nach Beute Ausschau. 2. (a) In der Savanne. In der felsigen Landschaft traben zwei Elefanten. Die beiden Männer beobachten die vielen durstigen Tiere am einzigen Wasserloch. Der Mann vor dem grauen Felsen ist ein erfahrener Jäger. (b) In der Savanne. In der felsigen Landschaft traben zwei Elefanten. Die beiden Männer beobachten die vielen durstigen Tiere am einzigen Wasserloch. Der Mann neben dem grauen Felsen ist ein erfahrener Jäger. 3. (a) Im Wartezimmer. Die Kisten sind voller Spielzeug. Die Frauen warten schon lange. Die beiden Kinder langweilen sich trotz der vielen Spielsachen. Auf dem Tisch liegen Zeitschriften. Das Kind vor der einen Kiste wird gerade aufgerufen. (b) Im Wartezimmer. Die Kisten sind voller Spielzeug. Die Frauen warten schon lange. Die beiden Kinder langweilen sich trotz der vielen Spielsachen. Auf dem Tisch liegen Zeitschriften. Das Kind bei der einen Kiste wird gerade aufgerufen. 4. (a) Der erste Frühlingstag. Die Kinder spielen vergnügt, nur mit den Eimern spielt gerade keins. Zwei Kätzchen schleichen herum, und Blumen blühen überall. Die Frau geniesst die Sonne. Die Katze vor dem kleinen Kind geht jetzt auf Erkundungstour. (b) Der erste Frühlingstag. Die Kinder spielen vergnügt, nur mit den Eimern spielt gerade keins. Zwei Kätzchen schleichen herum, und 33 B AUDITORY STIMULI 34 Blumen blühen überall. Die Frau geniesst die Sonne. Die Katze bei dem kleinen Kind geht jetzt auf Erkundungstour. 5. (a) Nachmittags im Park. Bänke laden zum Ausruh’n ein. Zwei Frauen sind mit ihren Enkeln da. Zwei Picknickkörbe steh’n bereit, die Kinder spielen Fussball und ein Hund tollt freudig umher. Der Korb hinter der einen Frau ist voller Leckereien. (b) Nachmittags im Park. Bänke laden zum Ausruh’n ein. Zwei Frauen sind mit ihren Enkeln da. Zwei Picknickkörbe steh’n bereit, die Kinder spielen Fussball und ein Hund tollt freudig umher. Der Korb bei der einen Frau ist voller Leckereien. 6. (a) Im vollen Wirtshaus. An den Tischen sitzen ein paar Männer und trinken etwas. Zwei Hunde schnüffeln neugierig, die Männer warten auf’s Essen und die Kellnerin serviert ein Bier. Der Hund unter dem einen Tisch bettelt um einen Knochen. (b) Im vollen Wirtshaus. An den Tischen sitzen ein paar Männer und trinken etwas. Zwei Hunde schnüffeln neugierig, die Männer warten auf’s Essen und die Kellnerin serviert ein Bier. Der Hund bei dem einen Tisch bettelt um einen Knochen. 7. (a) Im Klassenzimmer. Es gibt ein paar Tische und Hocker für die Schüler. Die beiden Kinder setzen sich gerade, die Spielsachen sind weggeräumt und die Lehrerin beginnt die Stunde. Das Kind vor dem einen Tisch hört ihr noch nicht richtig zu. (b) Im Klassenzimmer. Es gibt ein paar Tische und Hocker für die Schüler. Die beiden Kinder setzen sich gerade, die Spielsachen sind weggeräumt und die Lehrerin beginnt die Stunde. Das Kind bei dem einen Tisch hört ihr noch nicht richtig zu. 8. (a) Ein Grillfest im Sommer. Die Familie ist mit zwei Autos da. Bei den Bäumen spielt ein Hund. Die zwei Frauen sind schon hungrig, die Kinder sitzen am Feuer und der Vater passt aufs Essen auf. Die Frau hinter dem grossen Auto holt noch mehr Kohle. (b) Ein Grillfest im Sommer. Die Familie ist mit zwei Autos da. Bei den Bäumen spielt ein Hund. Die zwei Frauen sind schon hungrig, die Kinder sitzen am Feuer und der Vater passt aufs Essen auf. Die Frau neben dem grossen Auto holt noch mehr Kohle. B AUDITORY STIMULI 35 9. (a) Auf dem Bauernhof. Die Kinder beobachten die Enten und Gänse an den Teichen. Zwei Katzen streifen umher, und Hühner gackern um die Wette. Die Bäuerin hat viel zu tun. Die Katze an dem kleinen Teich hat grad einen Fisch entdeckt. (b) Auf dem Bauernhof. Die Kinder beobachten die Enten und Gänse an den Teichen. Zwei Katzen streifen umher, und Hühner gackern um die Wette. Die Bäuerin hat viel zu tun. Die Katze bei dem kleinen Teich hat grad einen Fisch entdeckt. 10. (a) Mitten in der Prärie. Kakteen wachsen auf den Felsen. Zwei Cowboys schlagen ein Lager auf. Zwei Geier suchen nach Nahrung und Pferde laufen herum. Ein schwarzer Hund schaut sich um. Der Geier vor dem einen Cowboy ist schon ganz abgemagert. (b) Mitten in der Prärie. Kakteen wachsen auf den Felsen. Zwei Cowboys schlagen ein Lager auf. Zwei Geier suchen nach Nahrung und Pferde laufen herum. Ein schwarzer Hund schaut sich um. Der Geier bei dem einen Cowboy ist schon ganz abgemagert. C Fillers - Visual Figure 19: Filler Images 1-6 36 C FILLERS - VISUAL Figure 20: Filler Images 7-12 37 C FILLERS - VISUAL Figure 21: Filler Images 13-15 38 D Fillers - Auditory 1. Beim Zahnarzt. Die Arzthelferin holt die nötigen Instrumente aus den Schränken. Der Zahnarzt steht noch hinter dem Trennschirm am Tisch und trinkt noch seinen Kaffee aus. Der Patient auf dem Behandlungsstuhl fühlt sich schon ein wenig unwohl. 2. Im grossen Burghof. Der grosse goldene Ritter bringt dem kleinen gerade den Schwertkampf bei. Der Mann bei den Fässern betrinkt sich und die Marktfrau bietet ihre Waren feil. Der Ritter mit der Hellebarde bewacht das Stadttor. 3. Nachmittags im Zoo. Zwei Löwen stehen an der Tränke und ein Elefant ist eine Portion Heu. Die Oma und ihr Enkel beobachten begeistert die vielen Tiere. Der Tierpfleger will gleich das Elefantengehege sauber machen. 4. Tief im Dschungel. Auf den Bäumen hocken Vögel und auf dem Boden streiten sich zwei Affen um Bananen. Die Schildkröte versucht die reifen Früchte zu erreichen. Der einzelne Affe versucht die anderen vor der Schlange zu warnen. 5. In der Zirkusmanege. Die Affen und der Elefant rollen Fässer umher während ein Clown jongliert. Der Dompteur passt auf dass die Tiere alles richtig machen. Die Zuschauer auf den Rängen amüsieren sich prächtig. 6. Auf einer Lichtung Bei den Bäumen und an den Blumen tummeln sich viele Tiere. Zwei Frischlinge halten sich nah bei ihrer Mutter auf, die kleinen Füchse trauen sich weiter weg. Das Eichhörnchen klettert lieber auf dem Baum umher. 7. Auf dem Wochenmarkt. In den Körben und auf dem Tisch liegt frisches Gemüse. Der Mann ist mit dem Fahrrad gekommen um bei der Bäuerin seine Einkäufe zu erledigen. Die Bäuerin begrüsst ihn und seinen Hund gerade freundlich. 8. Beim Familienausflug. Die Mutter und ihr Kind wollen gleich mit dem Kanu los paddeln Der Vogel beim Korb versucht etwas zu essen 39 D FILLERS - AUDITORY 40 zu ergattern und die Enten gehen schwimmen. Der Junge hat seinen Fussball zum spielen mitgenommen. 9. Auf einer Ranch. Der Bulle frisst Stroh dass die Rancher gerade zusammengeharkt haben. Das Gras hat der Rancher gebündelt um es später den Pferden zu geben. Die Frau vor dem Wagen wird gleich noch die Pferde striegeln. 10. Beim Kinderarzt. Beim Bett stehen allerlei medizinische Gerätschaften und im Schrank liegt Spielzeug. Der Junge auf dem Stuhl hat sich beim Sportunterricht verletzt. Die ärztin sagt ihm dass er wahrscheinlich auf Krücken nach Hause gehen muss. 11. Ein Tag im Stadtpark. Ein paar Hasen und Rehe ruhen sich unter den Bäumen aus. Die Frau macht einen Spaziergang mit ihrem Hund. Sie unterhält sich gerade mit dem Mann. Die Ente am Teich schaut ihren Jungen beim Schwimmen zu. 12. In einem kleinen Park. Die Blumen blühen und die vielen Bäume sind voller Blätter. Die Oma und ihr Enkel sind mit dem Hund zum Spielen in den Park gekommen. Das Fahrrad an dem einen Baum gehört den kleinen Jungen. 13. Morgens in der Schule. Die Kleiderschränke sind noch leer und die Stühle noch nicht besetzt. Nur die Lehrerin und ein Schüler sind schon da. Sie fragt ihn wo die anderen bleiben. Die Aktentaschen im blauen Schrank gehören der Lehrerin. 14. Auf dem Reiterhof. Beim Zaun liegt in einer Schubkarre Stroh für die Pferde. Auf dem Zaun hängen auch ein paar Sattel. Das kleine Kind will gleich einen Ausritt machen. Das Pferd neben der Tränke hat schon einen Sattel auf dem Rücken. 15. Im Indianerdorf. Ein grosses Tipi ist aufgebaut und die Pferde haben Jagdbemalung. Der Häuptling redet mit dem Cowboy über die bevorstehende Jagd. Das braune Pferd, dass gerade am Fluss trinkt, gehört dem Häuptling. E Statistics ROI 1 2 3 4 5 6 7 8 H 0 0 0 0 1 0 0 0 mean 10.5542 5.8977 8.7508 5.3703 4.3536 6.0272 9.2993 49.7469 std-dev. 2.1560 1.1071 1.5973 0.8303 0.8902 0.9649 2.2232 5.0927 Table 3: Statistics of the Subject Validity - H: Outcome of the Lilliefors-test with α = 0.05, mean value of ROI, standard deviation (both in percent). Fixations on (from top to bottom): target object, competitor object, target locationary object, distractor for target locationary object, competitor locationary object, distractor for competitor locationary object, reference object, beyond ROI ROI 1 2 3 4 5 6 7 8 H 0 0 1 1 0 1 0 0 mean 7.1418 3.6015 8.2362 5.7861 3.3063 8.0087 12.7139 51.2055 std-dev. 5.5750 2.5735 7.5051 7.8266 4.3488 13.1942 8.3210 10.8276 Table 4: Statistics of the Stimulus Validity, for the first 2500 ms - H: Outcome of the Lilliefors-test with α = 0.05, mean value of ROI, standard deviation. ROIs like above. 41 E STATISTICS 42 ROI 1 2 3 4 5 6 7 8 H 0 0 0 0 1 1 0 1 mean 6.9826 6.1760 6.1081 6.0384 5.2184 6.6296 9.7145 53.1324 std-dev. 2.5666 2.8477 1.7871 3.5721 1.6377 7.2425 3.5632 10.8374 Table 5: Statistics of the Stimulus Validity, for the timespan between 2500 and 15000 ms - H: Outcome of the Lilliefors-test with α = 0.05, mean value of ROI, standard deviation. ROIs like above. ROI 1 2 3 4 5 6 7 8 H 0 0 0 0 1 1 0 0 mean 10.4496 5.9346 8.7613 5.3531 4.3345 6.0183 9.1997 49.9490 std-dev. 3.4217 2.2071 2.6996 3.5624 1.8885 7.2006 3.6903 9.5045 Table 6: Statistics of the Stimulus Validity, for the whole presentation of the stimulus - H: Outcome of the Lilliefors-test with α = 0.05, mean value of ROI, standard deviation. ROIs like above. F Complementary Figures Figure 22: Timecourse of total fixations, ambiguous condition 43 F COMPLEMENTARY FIGURES 44 Figure 23: Timecourse of total fixations, unambiguous condition Figure 24: Timecourse of total fixations, unambiguous condition, timespan between subject head onset and end of stimulus LIST OF FIGURES 45 Figure 25: Timecourse of total fixations, ambiguous condition, timespan between subject head onset and end of stimulus List of Figures 1 Example block world, taken from Bosch (2009) . . . . . . . . 6 2 Exemplary visual stimulus . . . . . . . . . . . . . . . . . . . . 11 3 Eye Link II Head-Mounted Eye-Tracking System . . . . . . . 14 4 Example image for regions of interest . . . . . . . . . . . . . . 17 5 Fixations not belonging to any region of interest . . . . . . . 17 6 Subject validity, fixations over all images . . . . . . . . . . . . 20 7 Stimulus validity, fixations over all subjects, between 0 and 2500 ms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Stimulus validity, fixations over all subjects, between 2500 and 15000 ms . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 21 21 Time course of fixation probabilities, ambiguous condition. Yellow stripe: first introduction of target/competitor-NP. First line: mean onset subject-head-NP, second line: mean onset prepositional NP-head. . . . . . . . . . . . . . . . . . . . . . 22 10 Time course of fixation probabilities, unambiguous condition. Yellow stripe: first introduction of target/competitorNP. First line: mean onset subject-head-NP, second line: mean onset prepositional NP-head. . . . . . . . . . . . . . . . 11 Time course of fixation probabilities, unambiguous condition, time span between subject head onset and end of stimulus . . 12 26 Significant Differences after Bootstrapping - Fixations on Target vs Competitor Ambiguous Condition . . . . . . . . . . . . 16 26 Significant Differences after Bootstrapping - Fixations on Competitor Unamb. vs Amb. Condition . . . . . . . . . . . . . . . 15 24 Significant Differences after Bootstrapping - Fixations on Target unamb. vs amb. Condition . . . . . . . . . . . . . . . . . 14 24 Time course of fixation probabilities, ambiguous condition, time span between subject head onset and end of stimulus . . 13 23 27 Significant Differences after Bootstrapping - Fixations on Target vs Competitor Unambiguous Condition . . . . . . . . . . 28 17 Visual Stimuli 1-6 . . . . . . . . . . . . . . . . . . . . . . . . 31 18 Visual Stimuli 7-10 . . . . . . . . . . . . . . . . . . . . . . . . 32 19 Filler Images 1-6 . . . . . . . . . . . . . . . . . . . . . . . . . 36 20 Filler Images 7-12 . . . . . . . . . . . . . . . . . . . . . . . . . 37 21 Filler Images 13-15 . . . . . . . . . . . . . . . . . . . . . . . . 38 22 Timecourse of total fixations, ambiguous condition . . . . . . 43 23 Timecourse of total fixations, unambiguous condition . . . . . 44 24 Timecourse of total fixations, unambiguous condition, timespan between subject head onset and end of stimulus . . . . . 25 44 Timecourse of total fixations, ambiguous condition, timespan between subject head onset and end of stimulus . . . . . . . . 46 45 List of Tables 1 Statistics of study participants, collected from subject questionnaires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 Onsets of subject head NP, prepositions and Prepositional NP 13 3 Statistics Subject Validity . . . . . . . . . . . . . . . . . . . . 41 4 Statistics Stimulus Validity 0-2500 ms . . . . . . . . . . . . . 41 5 Statistics Stimulus Validity 2500-15000 ms . . . . . . . . . . . 42 6 Statistics Stimulus Validity whole timecourse . . . . . . . . . 42 47 G Consent Sheet Christian Hoffmann Arbeitsgruppe Computerlinguistik Universität Osnabrück Albrechtstrasse 28 49069 Osnabrück email: chrihoff@uos.de Aufklärung/Einwilligung Sehr geehrte Teilnehmerin, sehr geehrter Teilnehmer, Sie haben sich freiwillig zur Teilnahme dieser Studie gemeldet. Hier erhalten Sie nun einige Informationen zu Ihren Rechten und zum Ablauf des folgenden Experiments. Bitte lesen Sie sich die folgenden Abschnitte sorgfältig durch. 1) Zweck der Studie Ziel dieser Studie ist es, neue Erkenntnisse über das Satzverständnis anhand von Eye-Tracking-Daten zu erhalten. 2) Ablauf der Studie In dieser Studie werden Ihnen 25 Bilder auf einem Computermonitor gezeigt. Bitte sehen sie sich die Bilder sorgfältig an. Zugleich werden Sie einen kurzen Text zu hören bekommen. Hören Sie aufmerksam zu. Um Ihre Blickposition zu errechnen, wird Ihnen ein ”Eye-Tracker” auf den Kopf geschnallt. Dieses Gerät erfasst die Position Ihres Auges mit Hilfe von kleinen Kameras und Infrarotsensoren. Dieses Verfahren ist ein psychometrisches Standardverfahren, das in dieser Art bereits vielfach angewandt und getestet wurde. Bei unseren bisherigen Erfahrungen und Experimenten mit dem Gerät ist keine Versuchsperson zu Schaden gekommen. Zu Beginn der Untersuchung muss der ”Eye-Tracker” eingestellt werden, dieser Vorgang dauert etwa 10-15 Minuten. Das eigentliche Experiment 48 G CONSENT SHEET 49 dauert dann etwa 15 Minuten. Der Versuchsleiter wird während des ganzen Experiments mit Ihnen im Versuchsraum sein und steht Ihnen für Fragen jederzeit zur Verfügung. Nach der Studie erhalten Sie weitere Informationen zum Sinn und Zweck dieser Untersuchung. Bitte geben Sie diese Informationen an niemanden weiter um die Objektivität eventueller Versuchspersonen zu wahren. 3) Risiken und Nebenwirkungen Diese Studie ist nach derzeitigem Wissenstand des Versuchsleiters ungefährlich und für die Teilnehmer schmerzfrei. Durch Ihre Teilnahme an dieser Studie setzen Sie sich keinen besonderen Risiken aus und es sind keine Nebenwirkungen bekannt. Da diese Studie in ihrer Gesamtheit neu ist, kann das Auftreten von noch unbekannten Nebenwirkungen allerdings nicht ausgeschlossen werden. Wichtig: Bitte informieren Sie den Versuchsleiter umgehend, wenn Sie unter Krankheiten leiden oder sich derzeit in medizinischer Behandlung befinden. Teilen Sie dem Versuchsleiter bitte umgehend mit, falls Sie schon einmal einen epileptischen Anfall hatten. Bei Fragen hierzu wenden Sie sich bitte an den Versuchsleiter. 4) Abbruch des Experiments Sie haben das Recht, diese Studie zu jedem Zeitpunkt und ohne Angabe einer Begründung abzubrechen. Ihre Teilnahme ist vollkommen freiwillig und ohne Verpflichtungen. Es entstehen Ihnen keine Nachteile durch einen Abbruch der Untersuchung. Falls Sie eine Pause wünschen oder auf die Toilette müssen, ist dies jederzeit möglich. Sollten Sie zu irgendeinem Zeitpunkt während des Experiments Kopfschmerzen oder Unwohlsein anderer Art verspüren, dann informieren Sie bitte umgehend den Versuchsleiter. 5) Vertraulichkeit Die Bestimmungen des Datenschutzes werden eingehalten. Personenbezogene Daten werden von uns nicht an Dritte weitergegeben. Die von Ihnen erfassten Daten werden von uns anonymisiert und nur in dieser Form weiterverarbeitet oder veröffentlicht. G CONSENT SHEET 50 6) Einverständniserklärung Bitte bestätigen Sie durch Ihre Unterschrift die folgende Aussage: ”Hiermit bestätige ich, dass ich durch den Versuchsleiter dieser Studie über die oben genannten Punkte aufgeklärt und informiert worden bin. Ich habe diese Erklärung gelesen und verstanden. Ich stimme jedem der Punkte zu. Ich ermächtige hiermit die von mir in dieser Untersuchung erworbenen Daten zu wissenschaftlichen Zwecken zu analysieren und in wissenschaftlichen Arbeiten anonymisiert zu veröffentlichen. Ich wurde über meine Rechte als Versuchsperson informiert und erkläre mich zu der freiwilligen Teilnahme an dieser Studie bereit.” Ort, Datum Unterschrift Bei Minderjährigen, Unterschrift des Erziehungsberechtigten Acknowledgments I want to thank Prof. Peter Bosch and Prof. Peter König for their constant support during the development of this thesis and the opportunity to conduct research of my own in such an exciting field. Furthermore, I want to thank Torsten Betz and Frank Schumann from the NBP-group for their open ear and advice when it was dearly needed. Lastly, I want to thank Vera Mönter for her moral support and permanent motivation. 51 Confirmation Hereby I confirm that I wrote this thesis independently and that I have not made use of any other resources or means than those indicated. Hiermit bestätige ich, dass ich die vorliegende Arbeit selbständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe. Christian Hoffmann, Nijmegen, September 29, 2009 52