stone roundness of moraines connected with taku glacier
Transcription
stone roundness of moraines connected with taku glacier
STONE ROUNDNESS OF MORAINES CONNECTED WITH TAKU GLACIER, SOUTHEASTERN ALASKA MATTI SEPPÄLÄ SEPPÄLÄ, MATTI 1976: Stone roundness of moraines connected with Taku Glacier, southeastern Alaska. Bull. Geol. Soc. Finland 48, 87—94. The roundness and flatness (Cailleux's indices) of granodioritic stones from three different moraines in contact with Taku Glacier were measured. Mean roundness of talus material was 60, of late Wisconsin moraine material 240 and of push moraine material 370. Flatness of stones decreased in the same order. Results were statistically evaluated and the differences were identified also by analysis of variance. By comparing the stone size and roundness it was concluded that the original forms of stones determine their final forms. Flat and small stones cannot be rounded as easely as cubical and bigger blocks by glacial and glaciofluvial processes. Matti Seppälä, SF-20500 Turku Department o/ 50, Finland. Introduction T h e aim of this p a p e r is to describe t h e i n f l u e n c e of glacial a n d glaciofluvial processes on t h e r o u n d n e s s of stones in t h e a r e a of a n active valley glacier. A p r o b l e m h e r e is t h e p r o c e d u r e by w h i c h t h e stones w e r e t r a n s p o r t e d a n d r o u n d e d b e f o r e r e a c h i n g t h e i r p r e s e n t location. Since t h e r e a r e f e w e r possibilities in t h e case of a valley glacier, it is easier to s t u d y t h e p r o b l e m in these conditions t h a n in o t h e r cases e.g. m o r a i n e s of t h e c o n t i n e n t a l ice sheets. T h e T a k u Glacier in s o u t h e a s t e r n A l a s k a w a s chosen as a s u i t a b l e r e s e a r c h a r e a (Fig. 1). Geography, University of Turku, S a m p l e s w e r e t a k e n f r o m : 1) a g r a n o d i o r i t e m o u n d of stones (talus moraine) s i t u a t e d on t h e slope of a n u n a t a k in t h e m i d d l e p a r t of t h e glacier, 2) a m o r a i n e of l a t e Wisconsin d a t e lying n e a r t h e p r e v i o u s site a n d s i t u a t e d on t h e slope of Icy Basin, a small t r i b u t a r y glacier of t h e T a k u Glacier, w h e r e t h e till is s u b j e c t e d to q u i t e active solifluction, a n d 3) a p u s h m o r a i n e at t h e foot of t h e T a k u Glacier on t h e seashore, w h e r e t h e m a t e r i a l is w a s h e d glaciofluvial sand, silt a n d g r a v e l . Methods T h e m e t h o d of m e a s u r i n g r o u n d n e s s used in this s t u d y w a s t h a t of C a i l l e u x (e.g. B l e n k 88 Matti Seppälä 1960, p. 203). S t o n e s w i t h a d i a m e t e r of m o r e t h a n 20 m m a n d less t h a n 140 m m (cf. K i n g and B u c k l e y 1968, p. 202) w e r e t a k e n a n d t h e i r m a x i m u m l e n g t h (L), t h e m a x i m u m w i d t h (1) at r i g h t angles to t h e l e n g t h a n d t h e thickness (E) at r i g h t angles to b o t h of these m e a s u r e d . In a d d i t i o n t h e m i n i m u m r a d i u s (r) of c u r v a t u r e in t h e p r i n c i p a l p l a n e L I at its s h a r p e s t point w a s t a k e n . W i t h t h e aid of t h e s e m e a s u r e m e n t s an i n d e x of r o u n d n e s s 2r/L X 1000 a n d an i n d e x of f l a t n e s s (L + 1)/2E X 100 w a s calculated for the stones. A n i n c r e a s e in t h e i n d e x of r o u n d n e s s indicates a h i g h e r d e g r e e of r o u n d n e s s in t h e stone. A decrease in t h e v a l u e of E m e a n s a h i g h e r i n d e x of f l a t n e s s a n d t h e h i g h e r t h e value, t h e f l a t t e r is t h e stone. W h e n t h e v a l u e f o r t h e i n d e x of f l a t n e s s a p p r o a c h e s 100, it m e a n s t h a t t h e values for L, 1 a n d E a r e t h e s a m e as in a c u b e or a sphere. roundness higher than the m a x i m u m value for s a m p l e 1 (Fig. 4). In s a m p l e 2 t h e m e a n i n d e x of r o u n d n e s s w a s 240 a n d t h e s t a n d a r d T h e n u m b e r of stones m e a s u r e d at each s a m p l i n g location v a r i e d b e t w e e n 20 a n d 91. O n l y g r a n o d i o r i t i c stones w e r e selected for measurement. T h e results w e r e processed statistically a n d t h e m e a n s (x), s t a n d a r d d e v i a t i o n s (s), coefficients of v a r i a b i l i t y (v), a n d s t a n d a r d e r r o r s of t h e m e a n (m) calcul a t e d f o r each of t h e t h r e e sites. T h e sign i f i c a n c e of t h e statistical d i f f e r e n c e s b e t w e e n t h e samples w a s s t u d i e d w i t h t h e aid of a n a l y s i s of v a r i a n c e (Table 1). Stone roundness As m i g h t h a v e been e x p e c t e d t h e least r o u n d e d stones w e r e f o u n d in t h e t a l u s m o r a i n e (sample 1, Figs. 1, 2 a n d 4, T a b l e 1). T h e m e a n i n d e x of r o u n d n e s s f o r stones f r o m this s a m p l e w a s only 60 a n d t h e m a x i m u m v a l u e 160 (Table 1). A p p r o x i m a t e l y 68 p e r cent of t h e stones in s a m p l e 2 a n d over 90 p e r cent of those in s a m p l e 3 h a d an i n d e x of i i i Fig. 1. General m a p of the Taku Glacier area with sampling locations (1—3). C 10 is the main camp on the J u n e a u Icefield. The hatched area is Taku Inlet. Stone roundness of moraines connected with Taku Glacier, Table 1. Roundness and flatness distributions of studied samples. Roundness - Sample n Range 1 2 3 20 25 91 X Flatness L 3 — 160 80 — 520 70 — 700 60 240 370 40 120 150 F = 45.106 dfl = 2 p < 0.001 89 Explanation of symbols in text. L 1000 s southeastern Alaska 1 + • 2 E i1nn 00 V m Range X s V m 60.33 49.49 40.82 8.93 2.35 15.6 142 — 929 106 — 344 106 — 215 236 185 147 168 50 21 71.26 26.77 13.94 37.6 9.92 2.14 df2 = 134 deviation 120 or, in o t h e r w o r d s , c o n s i d e r a b l y l a r g e r t h a n in s a m p l e 1 b u t s o m e w h a t s m a l l e r t h a n in s a m p l e 3 (s = 150) (Table 1). T h e s t a n d a r d e r r o r of t h e m e a n i n d e x of r o u n d ness w a s l a r g e s t in s a m p l e 3 (Table 1). More t h a n 16 p e r cent of t h e stones f r o m the push moraine were more rounded than a n y single stone in t h e o t h e r samples. T h e stones in this s a m p l e w e r e also on a v e r a g e m o r e r o u n d e d t h a n o t h e r s (x = 370). The r a n g e (70—700) w a s by f a r t h e g r e a t e s t (Table 1). T h e c u m u l a t i v e c u r v e for t h e i n dices of r o u n d n e s s in s a m p l e 3 w a s cons e q u e n t l y g e n t l e r t h a n for t h e o t h e r s a m p l e s (Fig. 4). W h e n testing statistical d i f f e r e n c e s in t h e indices of r o u n d n e s s of t h e s a m p l e s by m e a n s of analysis of v a r i a n c e , a v a r i a n c e ratio (F = 45.106) w a s obtained, w h i c h is significant b e l o w t h e 0.1 °/o risk level (p < 0.001) (Table 1). 14.805 dfl = 2 p < 0.001 df2 134 also decreased in t h e same w a y (Table 1). This same r e g u l a r i t y w a s also followed by t h e coefficient of v a r i a b i l i t y a n d t h e s t a n d a r d e r r o r of t h e m e a n (Table 1). In t h e c u m u l a t i v e c u r v e s d r a w n for the indices of f l a t n e s s t h e i n f l u e n c e of t h e r o u n d i n g of t h e stones can also be seen (Fig. 4). T h e steepest c u r v e is t h a t for the most r o u n d e d p u s h m o r a i n e m a t e r i a l and t h e f l a t t e s t t h a t of t h e slightly or not at all rounded talus material. A v a r i a n c e analysis w a s also c a r r i e d out in t h e case of t h e t h r e e samples on t h e basis of flatness. This g a v e a similar result to t h e one obtained f r o m t h e analysis of t h e indices of r o u n d n e s s . T h e v a r i a n c e r a t i o for t h e t h r e e s a m p l e s (F = 14.805) is significant Flatness T h e h i g h e s t v a l u e s for t h e i n d e x of f l a t n e s s w e r e o b t a i n e d f o r stones f r o m t h e t a l u s m a t e r i a l (x = 236). In s a m p l e 2 stones w e r e less f l a t (x = 185). T h e stones w i t h t h e most even p r o p o r t i o n s w e r e f o u n d in t h e p u s h m o r a i n e s a m p l e (x = 147) (Table 1 a n d Fig. 4). T h e s t a n d a r d d e v i a t i o n (s), w h i c h gives an indication of v a r i a t i o n s w i t h i n t h e sample, Fig. 2. Angular stones f r o m the talus material (Sample 1). The longer side of the compass is 11 cm in length. Photographs by the author. 90 Matti Seppälä Fig. 3. Rounded stones f r o m the push moraine (Sample 3). The longer side of the matchbox is 5 cm in length.. Stereogram. below t h e 0.1 °/o risk level (p < 0.001) (Table 1). Relationship between roundness and flatness T h e indices of f l a t n e s s b e c o m e s m a l l e r as the stones become m o r e r o u n d e d (Figs. 4 a n d 5). 1 A 2 x In Fig. 5 t h e indices of r o u n d n e s s a n d f l a t n e s s a r e s h o w n t o g e t h e r . T h e stones of s a m p l e 1 a r e to be f o u n d in t h e l o w e r p a r t of the g r i d a n d t h e a r e a w i t h i n w h i c h t h e values lie e x t e n d s to t h e r i g h t . T h e a r e a r e p r e s e n t i n g s a m p l e 2 lies h i g h e r u p on the grid a n d lies f a r t h e r to t h e l e f t t h a n t h e f i r s t e v e n t h o u g h it, too, is r a t h e r e l o n g a t e d b e cause of a single stone. S a m p l e 3 p r o v i d e s a r o u n d i s h a r e a lying e v e n f a r t h e r to t h e 3 . Fig. 4. Percentage cumulative curves of the flatness (L + l)/2Exl00 and roundness 2r/Lxl000 of the studied samples. Key to symbols: 1. talus material, 2. Late Wisconsin moraine and 3. push moraine stones (see Fig. 1.). Stone roundness of moraines connected with Taku Glacier, southeastern Alaska 91 — • 1000 Fig. 5. Relationships between roundness and flatness of stones in different moraines. symbols: see Fig. 4. l e f t a n d h i g h e r on t h e grid t h a n t h e t w o p r e v i o u s samples. T h e g r e a t e r t h e degree of erosion a n d r o u n d n e s s of t h e stones, t h e f a r t h e r to t h e l e f t a n d t h e h i g h e r u p t h e grid t h e c l u s t e r s of v a l u e s f o r t h e indices lie. r o u n d e d . H o w e v e r , no clear statistical correlation was obtained for the whole material. If Fig. 6 is studied m o r e closely, t h e r e can uo i a 2 x 3 • X X 130 • 120 Relationship between stone size and roundness 110 8 * 100 o a a 90 To i l l u s t r a t e t h e size of t h e stones t h e l e n g t h of t h e l o n g i t u d i n a l axis (L) of stones w a s chosen (cf. K i n g a n d B u c k l e y 1968). W h e n this w a s c o m p a r e d w i t h t h e i n d e x of r o u n d n e s s of t h e stones it w a s noticed (Fig. 6) t h a t l a r g e stones, w h i c h w e r e most f r e q u e n t in the t a l u s m a t e r i a l , w e r e g e n e r a l l y less r o u n d e d t h a n small stones, w h i c h h a d u n d e r gone d i f f e r e n t a b r a s i o n processes. This obs e r v a t i o n is r a t h e r n a t u r a l since t h e size of t h e stones decreases as t h e y a r e w o r n a n d Key to 80 70 ,' 60 * a a ^ X & a aa aa • X X . 50 X • 40 • X >» w • • » 30 20 • 0 100 200 300 • 400 500 600 700 *JL. 1000 Fig. 6. Relationship between stone length (L) and roundness (2r/Lxl000) of stones in different moraines. Key of symbols in Fig. 4. 92 Matti Seppälä be seen some i n t e r e s t i n g h y p e r b o l i c lines f o r m e d by t h e points f r o m the samples. F r o m this t h e guess m i g h t be h a z a r d e d t h a t a stone of a c e r t a i n s h a p e w h e n it h a s b e e n loosened f r o m t h e rock u n d e r g o e s a c e r t a i n developm e n t process in t h e course of its becoming r o u n d e d . In o t h e r words, t h e f i n a l f o r m of a stone is d e t e r m i n e d p r i m a r i l y by its original s h a p e w h e n c r u m b l e d a w a y f r o m t h e rock a n d secondarily by t h e processes t h r o u g h w h i c h it s u b s e q u e n t l y passes (cf. K i n g and B u c k l e y 1968). In Fig. 6 it is possible to follow f i v e or six d i f f e r e n t h y p e r b o l i c r o u n d n e s s g e n e r a t i o n lines. T w o of t h e lines a r e not v e r y clear b e c a u s e of t h e small m a t e r i a l used and t h e f a c t t h a t t h e largest stones w e r e not m e a s u r e d b u t t h e y a p p e a r only in t h e section of t h e f i g u r e i l l u s t r a t i n g m o r e r o u n d e d stones. T h e stones a r e clearly not c r u s h e d in t h e course of t h e f l u v i a l processes a n d t h e r e f o r e t h e y follow t h e r o u n d n e s s developm e n t lines r a t h e r closely. On t h e o t h e r h a n d , the glacier can c r u s h stones w h i c h h a v e a l r e a d y b e e n r o u n d e d (cf. H o l m e s 1960, p. 1648). As a r e s u l t of this n e w stones a r e f o r m e d w h i c h in t u r n a r e s u b j e c t e d to t h e a b r a s i o n activity of t h e r o u n d i n g processes. Discussion As g e n e r a l r u l e it m a y be said t h a t t h e degree of r o u n d n e s s of stones is d e t e r m i n e d by t h e process a n d t h e distance t h e y a r e transported. At p r e s e n t t h e r e a r e t w o t y p e s of m a t e r i a l w h i c h a r e t r a n s p o r t e d by t h e ice a n d w a t e r s of T a k u Glacier. First, t h e r e is m a t e r i a l deposited on t h e p e a k s a n d slopes of m o u n tains d u r i n g t h e Wisconsin glaciation and, second, m a t e r i a l r e c e n t l y b r o k e n off t h e rocks as a r e s u l t of periglacial w e a t h e r i n g processes (Hamelin 1964). It is not k n o w n h o w f a r t h e f i r s t t y p e of m a t e r i a l has b e e n t r a n s p o r t e d a n d w h a t stages it has passed t h r o u g h b e f o r e being deposited on t h e n u n a t a k s . T h e originally fluvial material may have been carried by c o n t i n e n t a l ice f r o m d i f f e r e n t d r a i n a g e a r e a s to t h e n e w s u r r o u n d i n g s . In s t u d i n g m a t e r i a l t h a t m a y h a v e b e e n t r a n s p o r t e d by t h e cont i n e n t a l ice it is t h e r e f o r e necessary to b e e x t r e m e l y c a r e f u l in d r a w i n g conclusions a b o u t r o u n d i n g t h a t has r e s u l t e d f r o m glacial a n d glaciofluvial processes. T h e stones f r o m t h e Wisconsin glaciation m o r a i n e on t h e T a k u Glacier a r e noticeably m o r e r o u n d e d t h a n stones t a k e n f r o m t h e t a l u s sample. These m o r a i n e s a r e small in size a n d t h e i r m a t e r i a l m o v e s only slowly d o w n t h e slope u n d e r t h e i n f l u e n c e of solifluction. C o n s e q u e n t l y t h e a m o u n t of m a t e r i a l m o v e d n o w is v e r y small w h e n compared with the material that crumbles away by f r o s t w e a t h e r i n g a n d is t r a n s p o r t e d by t h e glacier a n d its w a t e r s . S e d i m e n t a t i o n on t h e coasts of A l a s k a is e x t r e m e l y r a p i d at t h e t e r m i n u s of glaciers (cf. J o r d a n 1962). Stones of the p u s h m o r a i n e of t h e T a k u Glacier w h i c h lie close to t h e s u r f a c e at t h e edge of t h e glacier h a v e p r e s u m a b l y been t r a n s p o r t e d t h e r e only a f e w y e a r s earlier. T h e m a x i m u m s t r a i g h t - l i n e distance over w h i c h m a t e r i a l can h a v e been t r a n s p o r t e d f r o m t h e source of t h e T a k u Glacier to its p r e s e n t foot is 60 kilometres, a n d t h e direction of t r a n s p o r t is d o w n w a r d s along t h e glacier valley. T h e stones h a v e been c a r r i e d e i t h e r f r o z e n into t h e glacier or g l a c i o f l u v i a l ly by m e l t w a t e r s . In this case t h e m e t h o d b y w h i c h this m a t e r i a l has a r r i v e d at its p r e s e n t site m a y be t e r m e d a o n e - w a y t r a n s p o r t a t i o n system. On t h e basis of one rock t y p e t h e source of w h i c h is k n o w n it is possible to a r r i v e at a f a i r l y reliable p i c t u r e of t h e r o u n d i n g qualities of t h e stones a n d t h u s a r r i v e at an idea of h o w g r e a t a distance t h e y w o u l d h a v e h a d to t r a v e l to become completely r o u n d e d . Stone roundness of moraines connected with T a k u Glacier, southeastern Alaska It is, of course, impossible to m e a s u r e u n d e r n a t u r a l conditions t h e total distance t h e stones t r a v e l l e d b e f o r e being deposited. In this s t u d y w e k n o w only t h e place in w h i c h t h e stones h a v e b e e n deposited: w e do not k n o w h o w long a stone m i g h t h a v e b e e n rolled back a n d f o r t h on one spot, for e x ample, in a glacier moulin. T h e r e are p l e n t y of g r a n o d i o r i t i c rocks in t h e T a k u Glacier area, in t h e b a t h o l i t h s of t h e Coast R a n g e (Forbes 1959), so t h a t t h e stones could h a v e o r i g i n a t e d f r o m several d i f f e r e n t sources along t h e sides of t h e glacier. By selecting only g r a n o d i o r i t i c stones f o r t h e m e a s u r e m e n t s it w a s possible to k e e p one v a r i a b l e (rock type) c o n s t a n t (cf. K i n g a n d B u c k l e y 1968, p. 200). S a m p l e 1 is r e p r e s e n t a t i o n of those stones t h a t h a v e loosened f r o m t h e rock in t h e course of periglacial w e a t h e r i n g processes. T h e r e sults of m e a s u r e m e n t s i n d i c a t e t h a t a cons i d e r a b l e n u m b e r of f l a t stones b r e a k a w a y a n d become t a l u s m a t e r i a l . T h e g r a n o d i o r i t i c rock has one p r e d o m i n a n t direction of Ass u r i n g a n d t w o o t h e r s at r o u g h l y r i g h t angles to the f i r s t b u t at d i f f e r e n t angles to each other. This c h a r a c t e r has its e f f e c t on t h e original s h a p e of t h e stones. T h e d e g r e e of r o u n d n e s s of t h e stones of t h e second s a m p l e is m u c h t h e s a m e as t h a t observed b y K i n g (1969, p. 294) in analyses m a d e on B a f f i n I s l a n d of m o r a i n e s of d i f f e r e n t ages. U n f o r t u n a t e l y K i n g does not r e v e a l w h i c h t y p e s of rock she used in h e r measurements. In glacial m e l t w a t e r s t r e a m s m a t e r i a l does not need to be t r a n s p o r t e d v e r y g r e a t distance for r a p i d r o u n d i n g to t a k e place because of t h e e f f i c a c y of the t u r b u l e n t , r u n n i n g w a t e r of such s t r e a m s (cf. K i n g and B u c k l e y 1968, p. 211). L a r g e stones b e c o m e r o u n d e d m o r e r a p i d l y t h a n small ones (cf. K i n g a n d B u c k l e y 1968, p. 209) since t h e y t e n d to be rolled along t h e b o t t o m of m e l t w a t e r c h a n n e l s in t h e course of t r a n s p o r t . T h i s can be seen in Fig. 6 93 w h e r e t h e best r o u n d e d stones a r e not t h e smallest ones. The l a r g e s t n u m b e r of m e a s u r e m e n t s of stones w a s t a k e n in t h e t h i r d s a m p l e (Table 1). T h e s e stones h a v e possibly u n d e r g o n e all t h e d i f f e r e n t t r a n s p o r t a n d a b r a s i o n phases connected w i t h t h e glacier. Theref o r e t h e most r o u n d e d stones a n d t h e g r e a t e s t v a r i a t i o n in m a t e r i a l a r e to be f o u n d in this sample. A small p r o p o r t i o n of t h e m a t e r i a l m a y h a v e c a r r i e d on t h e s u r f a c e of t h e glacier so t h a t it h a s not b e e n a b r a d e d at all. We do not k n o w e x a c t l y w h a t e f f e c t tidal w a t e r s h a v e h a d on t h e r o u n d n e s s of stones in t h e T a k u Inlet area, w h e r e t h e r e a r e s t r o n g tidal c u r r e n t s (cf. S l a t t a n d H o s k i n 1968, p. 434—435), n o r t h e significance of o u t w a s h processes in proglacial s t r e a m s (Alimen 1961 according to F l i n t 1971, p. 168). These processes m a y h a v e a f f e c t e d t h e d e g r e e of r o u n d n e s s to some e x t e n t b e f o r e t h e p u s h moraine was formed. Conclusions C o m p a r e d w i t h t h e m a t e r i a l b r o k e n off t h e original rock a n d t h e stones deposited e a r l i e r d u r i n g t h e glacial p h a s e t h e r o u n d n e s s of stones increases v e r y c o n s i d e r a b l y in t h e course of t h e i r being t r a n s p o r t e d b y t h e T a k u Glacier to its m a r g i n . In g e n e r a l it m a y be said, t h e r e f o r e , t h a t t h e r o u n d i n g e f f e c t of a t e m p e r a t e valley glacier a n d its w a t e r s on t h e m a t e r i a l it t r a n s p o r t s is v e r y g r e a t , even w h e n t h e distance over w h i c h t h e materialis t r a n s p o r t e d is short. P e r h a p s t h e most i m p o r t a n t observation m a d e in this s t u d y is t h a t t h e r o u n d n e s s of t h e stones d e p e n d s on t h e i r original s h a p e a n d size in w h i c h t h e y loosened f r o m t h e rock face. Of course, t h e f i n a l s h a p e of t h e stones d e p e n d also on t h e rock t y p e a n d erosional processes to w h i c h t h e y a r e s u b jected (cf. B l e n k 1960). 94 Matti Seppälä It is intended later to study experimentally, with the aid of a ball mill-like device, changes in the shape of stones, and so follow the rounding of stones of a given shape as they pass t h r o u g h d i f f e r e n t rounding processes (cf. K u e n e n 1959). Acknowledgements — Professor M a y n a r d M. Miller, Head of the 12th Glaciological and Arctic Sciences Institute, 1971, on t h e J u n e a u Icefield m a d e it possible for me to t a k e p a r t in the I n stitute. T h e staff of t h e Institute assisted me in m a n y ways. Mrs. Leena Kiiskilä m a d e the f i n a l d r a w i n g s of t h e figure. Mr. Christopher G r a p e s t r a n s l a t e d t h e m a n u s c r i p t into English. My participation in t h e S u m m e r I n s t i t u t e w a s m a d e possible by scholarships f r o m t h e National Science Foundation (U.S.A.), Leo and Regina Wainstein's Foundation (Finland) and t h e National Research Council for N a t u r a l Sciences (Finland). REFERENCES Blenk, Marianne (1960) Ein Beitrag zur m o r p h o metrischen Schotteranalyse. Z. f ü r Geomorphol. N.F. 4: 202—242. Flint, Richard Foster (1971) Glacial and Q u a t e r n a r y geology. Wiley, New York. Forbes, Robert B. (1959) T h e bedrock geology and petrology of t h e J u n e a u ice field area, southe a s t e r n Alaska. Unpublished Ph. D. thesis. University of Washington. Hamelin, Louis-Edmond (1964) Le periglaciaire du Massif J u n e a u en Alaska. Biul. P e r y g l a c j a l n y 13: 5—14. Holmes, Chauncey D. (1960) Evolution of till-stone shapes, c e n t r a l N e w York. Bull. Geol. Soc. Am. 71: 1645—1660. Jordan, G. F. (1962) Redistribution of sediments in A l a s k a n bays and inlets. Georg. Rev. 52: 548—558. King, Cuchlaine A. M. (1969) Moraine types on H e n r y K a t e r Peninsula, East B a f f i n Island, N.W.T., Canada. Arctic and Alpine Res. 1: 289—294. King, C. A. M. and Buckley, J. T. (1968) T h e analysis of stone size and shape in an Arctic environment. J. Sed. Petrol. 38: 403—417. Kuenen, PH. H. (1959) E x p e r i m e n t a l abrasion. 3. Fluviatile action on sand. Am. J. Sei. 257: 172—190. Slatt, Roger M. and Hoskin, Charles M. (1968) Water and sediment in t h e Norris Glacier o u t w a s h area, Upper T a k u Inlet, southeastern Alaska. J. Sed. Petrol. 38: 434—456. Manuscript received, F e b r u a r y 4, 1976.