Thesis Reference - Archive ouverte UNIGE
Transcription
Thesis Reference - Archive ouverte UNIGE
Thesis Emergence de la maladie de Chagas en Suisse: contexte et défis de santé publique JACKSON, Yves-Laurent Julien Abstract La maladie de Chagas est l'une des maladies tropicales les plus négligées. Cette infection parasitaire chronique, endémique en Amérique latine, affecte 8-10 millions de personnes. La fin du XXème siècle a vu la migration de plus de 15 millions de personnes à risque vers l'Europe, l'Amérique du Nord et l'Australie, transformant la maladie de Chagas en un problème de santé global. La Suisse, et Genève en particulier, abrite une importante communauté de migrants latinoaméricains. Cette thèse présente les investigations conduites à Genève qui illustrent les dimensions épidémiologiques et sociales de cette émergence et identifie le double fardeau de santé lié au phénomène de transition épidémiologique en cours dans les pays d'origine. Les données locales sont discutées en regard du contexte européen et illustrent les nouveaux défis de santé publique liés à l'hypermobilité des migrants. Reference JACKSON, Yves-Laurent Julien. Emergence de la maladie de Chagas en Suisse: contexte et défis de santé publique. Thèse de privat-docent : Univ. Genève, 2014 Available at: http://archive-ouverte.unige.ch/unige:41534 Disclaimer: layout of this document may differ from the published version. [ Downloaded 20/11/2016 at 18:13:57 ] Section de médecine clinique Département de médecine communautaire, de premier recours et des urgences Service de médecine de premier recours " Emergence de la maladie de Chagas en Suisse : Contexte et défis de santé publique" Thèse présentée à la Faculté de Médecine de l'Université de Genève pour accéder à la fonction de privat-docent par ______________________________________ Yves-Laurent JACKSON Genève 2014 1 2 Résumé La maladie de Chagas est l’une des maladies tropicales les plus négligées en raison de sa distribution dans des populations vulnérables. Cette infection parasitaire chronique, endémique en Amérique latine où elle est essentiellement transmise par voie vectorielle et transplacentaire, affecte 8-10 millions de personnes. Son poids de santé publique est important en raison des complications cardiaques tardives, sources de coûts de santé élevés. La fin du XXème siècle a vu la migration de plus de 15 millions de personnes à risque vers l’Europe, l’Amérique du Nord et l’Australie, transformant la maladie de Chagas en un problème de santé global. Ceci rend nécessaire le développement de nouvelle connaissances liées à ces changements épidémiologiques et à l’élaboration de mesures de santé publique dans des contextes où la maladie est encore largement méconnue et insuffisamment considérée. Outre permettre la provision de soins adaptés aux personnes infectées afin de prévenir les conséquences tardives graves, il est impératif d’interrompre la chaîne de transmission congénitale et par voie de transfusion et de transplantation de tissus infectés. La Suisse, et Genève en particulier, abrite une importante communauté de migrants latinoaméricains à risque et des cas de complication sévère et de transmission ont été identifiés dès le début des années 2000. Cette thèse présente les investigations conduites à Genève qui illustrent les dimensions épidémiologiques et sociales de cette émergence. Elle souligne en particulier la persistance des facteurs responsables de son statut de maladie négligée, à savoir un fort lien avec la pauvreté et met en évidence l’apparition du concept de double fardeau de santé (burden of disease) lié au phénomène de transition épidémiologique en cours dans les pays d’origine. Les résultats genevois montrent l’ampleur de ce phénomène encore largement sous-estimé et soulignent les besoins en termes d’intervention en santé publique. Cette thèse met les données suisses en perspective avec celles de l’Europe et discute certains nouveaux défis dans le contexte de la situation politique et économique contemporaine. 3 Remerciements L’exploration de l’émergence de la maladie de Chagas à Genève a été rendue possible par le travail acharné de nombreux collaborateurs des HUG et d’institutions partenaires. Qu’ils trouvent ici l’expression de ma sincère gratitude. Je tiens à remercier tout particulièrement : Le Prof. François Chappuis, mon mentor et proche ami, qui m’a ouvert à la recherche, guidé tout au long de ces travaux, inspiré et aidé à donner le meilleur de moi-même, toujours avec le sourire Les Profs. Louis Loutan et Jean-Michel Gaspoz pour leur soutien et leur confiance Les infirmières, réceptionnistes et médecins actuels et anciens de la CAMSCO (ex Umsco) qui ont fortement contribué au succès des projets (en particulier Marylise Holst, Hans Wolff, Tina Mazzocato, Martine Locatelli, Odile Colombel, Heidi Fowler, Gloria Griess, Elisabeth Mouton, Graziella Singh, Claudia Estrada, Laurent Gétaz, Marius Besson, Monica Varcher, Diana Urzola et bien d’autres) Les membres du Groupe Chagas des HUG (Anne Mauris, Alessandro Diana, Begona Martinez de Tejada, Claire-Anne Wyler, Cristina Reis, Klara Posfay-Barbe, Noémie Wagner) Le Dr Pedro Albajar Vinas de l’OMS Ainsi que toutes les organisations qui ont relayé l’information dans les communautés Latinos à Genève Cette thèse est dédiée à mes parents qui m’ont poussé à développer ma curiosité, à mes amis et à Aless, Babur et Pema Lou pour la joie et la force qu’ils me donnent. 4 Table des matières 1. Introduction 1.1. Modes de transmission p. 6 p. 7 1.2. Cours de l’infection, présentation clinique et diagnostic p. 9 1.3. Traitement p. 13 2. Epidémiologie et aspects de santé publique en Amérique Latine 2.1. Mouvements de population et changements épidémiologiques p. 17 p. 18 3. Contexte suisse 3.1. Accès aux soins des migrants latino-américains p. 19 p. 20 3.2. La maladie de Chagas en Suisse avant 2000 p. 21 3.3. Contexte des études p. 21 4. Objectifs de la thèse 4.1 Organisation du manuscript p. 22 p. 22 5. Prevalence, clinical staging and risk for blood-borne transmission of Chagas disease among Latin American migrants in Geneva, Switzerland p. 23 6. Congenital transmission of Chagas disease in Latin American immigrants in Switzerland p. 31 7. Paediatric Chagas disease in Europe: a series of 45 cases from Spain and Switzerland p. 35 8. Metabolic, mental health, behavioral and socioeconomic characteristics in migrants with Chagas disease p. 57 9. Chagas disease in Switzerland: history and challenges p. 67 10. Chagas disease in European countries: the challenge of a surveillance system p. 72 11. Need for comprehensive healthcare for T. cruzi infected immigrants in Europe p. 83 12. Economic crisis and enhanced immigrants mobility: new challenges in the management of Chagas disease in Europe p.87 13. Discussion 13.1. Principaux résultats 13.2. Défis de santé publique à relever et futures orientations de recherche p. 93 p. 93 p. 98 14. Conclusions p.101 15. Références p.102 5 1. Introduction La maladie de Chagas, l’une des infections parasitaires majeures en Amérique du Nord, Centrale et du Sud, affectes les humains depuis plusieurs millénaires. Des extraits d’ADN de kinétoplaste de Trypanosoma cruzi identifiés dans des tissus biologiques extraits de momies datant de plus de 7000 ans au Chili et au Pérou (Aufderheide et al., 2004). De nos jours, cette maladie ancienne continue à peser d’un poids substantiel en termes de santé publique et de coûts économiques dans les régions endémiques (WHO, 2010). La première description de l’infection est l’œuvre de Carlos Chagas (1878-1934) en 1909, un jeune médecin brésilien envoyé par l’Institut Oswaldo Cruz de Rio de Janeiro dans la Province du Minais Gerais pour investiguer une épidémie de fièvre supposément d’origine palustre (Chagas, 1909a, 1909b; Petraglia Kropf, 2011). Dr Chagas identifia alors non seulement le parasite et son principal vecteur mais également le cycle parasitaire complet ainsi que les principaux éléments cliniques de l’infection, ce qui lui valut d’être nommé deux fois (1913 et 1921) pour recevoir le prix Nobel de médecine, sans succès. L’Organisation Mondiale de la Santé (OMS) considère la maladie de Chagas comme l’une des infections tropicales les plus négligées en raison de son association avec la pauvreté et du fait qu’elle affecte essentiellement des populations vulnérables dénuées de poids politique (WHO, 2010). Elle bénéfice de peu d’intérêt scientifique et ne fait pas l’objet d’investissements en recherche et développement suffisants de la part de l’industrie pharmaceutique en raison d’un potentiel commercial jugé trop faible (Chatelain & Loset, 2011; Trouiller et al., 2002). Ceci contribue à expliquer sa place marginale sur l’échiquier de la santé globale. Malgré plusieurs résolutions de l'Assemblée Mondiale de la Santé appelant à une attention accrue aux conséquences de la maladie sur la santé humaine et à son poids socioéconomique, les efforts de santé publique et la recherche scientifique ont été limités par l’écart important entre les besoins et les moyens à disposition (CHRD, 1990; Lancet, 2006). Le fait que le dernier médicament mis sur le marché pour cette indication remonte à 1971 constitue un exemple de la négligence dans laquelle la maladie de Chagas se trouve actuellement. Plusieurs initiatives transnationales centrées sur la lutte vectorielle en Amérique Latine ont permis une réduction notable de la prévalence au cours de la seconde moitié du XXème siècle (Schofield, Jannin, & Salvatella, 2006). Néanmoins, les résultats de 6 ces efforts ont été limités par les difficultés politiques, financières et administratives sur le long terme et sur la persistance d’un important réservoir humain. Certains indicateurs montrent néanmoins que cette situation évolue depuis quelques années. Le nombre de publications scientifiques, tant cliniques que de santé publique ou de recherche fondamentale, consacrés à la maladie de Chagas a substantiellement augmenté depuis la fin du XXème siècle, attestant d’une attention accrue. De plus, l’émergence du concept de Maladies Tropicales Négligées (NTD) sur la scène de la Santé Globale, attestée par la création d’un Département de Contrôle des NTD au sein de l’OMS et d’initiatives internationales d’envergure avec la mise à disposition de fonds importants telles que lors de la Déclaration de Londres (The London Declaration on Neglected Tropical Diseases, 2012), a permis aux efforts de lutte contre la maladie de Chagas de recevoir des ressources jusqu’alors inégalées. Il est probable que l’arrivée d’un nombre croissant de personnes à risques ou porteuse de la maladie dans les pays développés ait également facilité cette évolution. Ainsi, c’est le processus d’internationalisation de la maladie qui pourrait s’avérer être un facteur clé dans l’amélioration de sa prise en charge et la réduction de ses effets délétères sur la santé humaine. La Suisse figure parmi les pays récemment touchés par cette évolution, tant par le fait même de l’émergence locale de la maladie de Chagas que par le développement de savoir qui y a eu lieu. Cette thèse aborde donc ce phénomène d’émergence internationale avec un focus sur la Suisse en mettant particulièrement l’accent sur les aspects de santé publique. Une thèse de PhD auprès de l’Université d’Anvers (Belgique) rédigée en parallèle par l’auteur, se concentre sur le développement du savoir en relation avec les aspects cliniques de la maladie. Afin de faire le lien entre les deux travaux, le texte contient des encarts résumant les principaux résultats présentés dans la thèse de PhD. 1.1. Modes de transmission La maladie de Chagas est consécutive à l’infection par Trypanosoma cruzi, par un protozoaire flagellé de la famille des kinétoplastes. C’est avant tout une zoonose qui affecte un grand nombre d’espèces distinctes, dont des animaux péri-domestiques et domestiques, et l’homme est considéré comme un hôte accidentel (WHO, 2002). Le mode de transmission principal est vectoriel. Plusieurs vecteurs de la famille des triatominés, des insectes 7 hématophages, sont capables de transmettre le parasite, dont les principaux sont Triatoma infestans, T.diminuta et Rhodnius prolixus dans un contexte domestique (image 1). Des cycles vectoriels péri-domestiques ou sylvatiques sont impliqués dans un nombre moindre d’infections humaines. La distribution géographique des vecteurs détermine les zones d’endémicité en Amérique Latine. Image 1 : Triatome vecteur de T. cruzi. (CDC, 2010). Le cycle parasitaire entre le vecteur et l’hôte est relativement simple (figure 1). Après un repas sanguin, le plus souvent nocturne, la reflexe gastro-colique du vecteur mène à l’évacuation de fèces riches en parasites. Ceux-ci pénètrent alors l’organisme soit par le point de ponction soit par voie trans-muqueuse telle qu’à travers les muqueuses digestives ou conjonctivales. Le parasite se retrouve sous deux formes chez l’humain, à savoir une forme trypomastigote flagellée motile dans le système vasculaire et une forme amastigote, métaboliquement moins active, essentiellement présente dans les tissus musculaire et nerveux. Figure 1 : Cycle parasitaire de T.cruzi entre le vecteur et l’hôte humain. (CDC, 2010). La transmission materno-fœtale représente le mode de transmission non-vectoriel principal. Elle dépend de la parasitémie et de facteurs immunologiques complexes. Le risque s’élève à 1-10% (Howard, Xiong, Carlier, Sosa-Estani, & Buekens, 2013). La transfusion de produits 8 sanguin contaminés, surtout de concentrés plaquettaires, représente une autre voie de transmission importante, surtout jusqu’à l’époque récente marquée par le manque de dépistage systématique des donneurs à risque. On estime à 10-20% le risque de transmission par cette voie (WHO, 2002). De façon similaire, la transmission par transplantation d’organes ou de tissus infectés a pris de l’importance avec le développement de ces procédures en zone endémiques au cours des dernières décennies (Altclas, Barcan, Nagel, Lattes, & Riarte, 2008). Bien que responsable d’un nombre d’infections limité, ce mode engendre des coûts de santé très élevés. Récemment, la transmission par voie d’ingestion d’aliments et de liquides contaminés a causé un nombre croissant de petites épidémies localisées lorsque des vecteurs sylvatiques entrent en contact avec la chaine de production alimentaire tel que dans l’industrie de la canne à sucre ou de l’huile de palme (Alarcon de Noya et al., 2010). 1.2. Cours de l’infection, diagnostic et présentation clinique Le cours de l’infection par T.cruzi inclut plusieurs stades et se manifeste par une variété de tableaux cliniques qui en fait une maladie souvent difficile à distinguer cliniquement (Figure 2). La pénétration du parasite dans l’organisme est le plus souvent silencieuse. Cette phase aigüe, qui dure généralement deux à quatre semaines se caractérise par une importante parasitémie. Elle se manifeste dans 10% des cas par un syndrome fébrile aspécifique parfois associé à une polyadénopathie, une hépatosplénomégalie et plus exceptionnellement par une myocardite ou une encéphalite potentiellement sévères. En cas de pénétration par voie conjonctivale, une tuméfaction palpébrale et péri-oculaire localisée représente un signe pathognomonique (signe de Romaña). Le diagnostic à ce stade repose sur des méthodes parasitologiques telles que la recherche de trypomastigotes à l’examen sanguin microscopique après concentration ou par l’identification d’ADN circulants par des tests de dépistage d’acides nucléiques (PCR). La culture ou le xénodiagnostique (détection parasites dans un vecteur après repas de sang d’un patient supposément infecté) ne se pratiquent plus en raison de leur complexité et du délai pour obtenir des résultats. 9 Figure 2 : Evolution de l’infection par Trypanosoma cruzi chez l’homme (inspiré de Rassi et al., 2010) En l’absence de traitement antiparasitaire à ce stade, la parasitémie s’atténue alors que les parasites se déposent dans les tissus sous forme d’amastigotes (image 2). L’infection devient chronique. La phase indéterminée est caractérisée par une absence de symptômes et de signes cliniques identifiables, un électrocardiogramme normal et une sérologie positive. La vaste majorité des personnes infectées dans le monde présente cette forme clinique (Prata, 2001). Image 2 : Formes amastigotes de T. cruzi regroupées en amas dans le stroma placentaire A ce stade, le diagnostic repose sur des méthodes immunologiques indirectes en l’absence de quantité suffisante de parasites dans la circulation sanguine pour être identifiés par les méthodes décrites ci-dessus. La PCR à ce stade n’a au mieux qu’une sensibilité de 80% (Schijman et al., 2011). Plusieurs techniques sérologiques (ELISA, immunofluorescence, Western Blot, etc.) offrent une excellente spécificité diagnostique (Bern et al., 2007; Rassi, 10 Rassi, & Marin-Neto, 2010). La sensibilité imparfaite, bien que proche des 99% avec les tests de nouvelle génération, la présence de résultats parfois discordants et le risque de réaction croisée avec d’autres espèces de trypanosomes (T. rangeli notamment) ou de leishmanies sous-tendent la recommandation d’utiliser deux tests sérologiques distincts avec différents antigènes ou différentes techniques afin de diagnostiquer l’infection à ce stade (WHO, 2002). Récemment, le développement de tests immunochromatographiques rapides a permis de faciliter la démarche diagnostique en limitant le besoin de recourir à des méthodes de laboratoires coûteuses et souvent peu faciles d’accès hors des centres médicaux principaux en milieu urbain. Ceci a également un impact potentiel sur le dépistage de l’infection dans des populations difficiles d’accès en milieu urbain en Europe (encart 1). Encart 1 : Performance d’un test diagnostic rapide pour la détection de l’infection par Trypanosoma cruzi dans une population migrante latino-américaine (Chappuis et al., 2010) Les résultats du test rapide immunochromatographique Chagas Stat-Pak® effectué sur le sang complet et le sérum de 999 participants migrants latino-américains adultes vivant à Genève ont été comparés aux résultats de deux tests ELISA (standard de référence). Un total de 125 (12.5%) participants a présenté une infection. La sensibilité et la spécificité du Chagas Stat-Pak® sur le sang complet étaient de 95.2% (95% intervalle de confiance (95% IC) : 89.2% - 97.9%) et 99.9% (95% IC : 99.3% à 100%), respectivement. Sur le sérum, elles étaient de 96% (95% IC : 91% à 98.3%) et de 99.8% (95% IC : 99.2% à 99.9%). La concordance des résultats entre sang complet et sérum était supérieure à 99.7% alors que les valeurs prédictives positives et négatives dans cette population étaient supérieures à 98%. Les performances de ce test permettent son utilisation parmi les adultes migrants à risque en Europe. Le léger déficit de sensibilité doit être mis en balance avec la facilité d’utilisation et sa capacité à produire un résultat immédiat qui facilitent l’accès au diagnostic aux personnes à risque hors des centres de santé. 11 Cette infection silencieuse évolue dans 20-40% des cas vers une atteinte d’organe après plusieurs décennies. Les mécanismes immunopathologique, encore mal compris, impliquent probablement des processus auto-immuns s’ajoutant à une toxicité directe du parasite (Lescure et al., 2010; Rassi et al., 2010). L’atteinte cardiaque est la principale complication en termes de fréquence et de gravité. Cette atteinte inflammatoire segmentaire chronique évolue vers une destruction du tissus myocardique remplacé par de la fibrose, responsable d’une dilatation progressive (MarinNeto, Cunha-Neto, Maciel, & Simoes, 2007). La perte de fonction contractile et la transformation morphologique mènent à une insuffisance cardiaque le plus souvent globale (Blum, Zellweger, Burri, & Hatz, 2008). Une fois la cardiomyopathie dilatée établie, une déformation sacculaire de l’apex du ventricule gauche fibrosé peut évoluer vers un anévrisme associé à un fort risque d’une thrombose source d’embolies périphériques. De plus, l’inflammation myocardique chronique engendre une hyperexcitabilité ventriculaire source d’arythmies alors que le processus fibrosant peut porter atteinte à l’intégrité des faisceaux de conduction (Rassi et al., 2010). Ainsi, la cardiomyopathie chagasique s’exprime cliniquement par l’association de risque d’insuffisance cardiaque progressive bilatérale, de troubles de la conduction intra-auriculaires, intra-ventriculaire ou atrio-ventriculaire, d’arythmies ventriculaires et d’accidents vasculaires cérébraux (AVC) (Rassi et al., 2010). En zone endémique, cette infection représente effectivement un facteur de risque majeur pour les AVC (Carod-Artal & Gascon, 2010). Le système digestif est le deuxième appareil le plus souvent atteint. L’infection chronique mène à la destruction progressive des cellules nerveuses des plexus sous-muqueux (de Oliveira, Troncon, Dantas, & Menghelli, 1998). Selon la localisation préférentielle de ce processus, il s’ensuit une perte du tonus puis une dilatation soit de l’œsophage soit du colon (de Rezende, Lauar, & de Oliveira, 1960). L’évolution et l’expression clinique ressemble à une achalasie dans le cas d’atteinte oesophagienne ou de maladie de Hirschprung lorsque le colon est atteint. Le stade final de ce processus est le syndrome des mégas organes en cas de dilatation massive, souvent fatale. 12 1.3. Traitement et marqueurs de guérison La prise en charge thérapeutique repose sur les traitements étiologiques (antiparasitaires) ainsi que sur les traitements ciblant les organes secondairement endommagés. A l’heure actuelle, seules deux molécules ont été enregistrées pour la maladie de Chagas. Le benznidazole, un 2-nitroimmidazole, a été commercialisé par Roche en 1969 alors que le nifurtimox, un 5-nitrofurans, l’a été par Bayer en 1971. Depuis lors, en l’absence de conditions-cadres favorables à la recherche et d’un manque de potentiel économique pour les fabricants, aucun autre médicament n’a été mis sur le marché malgré de récents efforts de développements de nouveaux dérivés azolés (Chatelain & Loset, 2011; Ribeiro et al., 2009). D’autres molécules telles que l’allopurinol ou d’anciens dérivés azolés ont montré une efficacité partielle in vitro ou lorsqu’utilisées en combinaison mais n’ont pas fait l’objet d’une reconnaissance et de recommandations d’utilisation (Apt, 2010; Apt et al., 2013; PerezMazliah et al., 2013). Le cas du nifurtimox et le benznidazole reflète parfaitement la situation de négligence dans laquelle se trouve la maladie de Chagas ainsi que d’autres infections tropicales dites négligées. Ils partagent des caractéristiques communes telles qu’un relatif manque de données d’efficacité et de sécurité dans les phases pré- et post-mise sur le marché, la nécessité de longues durées de traitement (30 à 120 jours) et un profil de tolérance mal connu, particulièrement chez l’adulte utilisant le nifurtimox (encart 2) (Le Loup, Pialoux, & Lescure, 2011). Aucune étude comparative n’a permis de déterminer leur efficacité sur les différentes souches de T. cruzi. Ceci explique la qualité relativement limitée des preuves sous-tendant les recommandations thérapeutique et la place proéminente prise par les recommandations basées sur des avis d’experts (Bern, 2011). De plus, leur production et disponibilité a régulièrement fait l’objet d’incertitude, limitant leur utilisation à large échelle (Ribeiro et al., 2009; Schofield et al., 2006). Les objectifs et modalités du traitement antiparasitaire différent selon le stade de la maladie. La guérison peut être obtenue dans environ 80-100% des cas lorsque le traitement antiparasitaire est appliqué à la phase aigüe ou très précoce, essentiellement chez les enfants de moins de deux ans (Bern, 2011; Lescure et al., 2010; Sosa-Estani & Segura, 2006). L’efficacité réelle des traitements étiologiques dans les phases non-aigüe fait encore l’objet de controverses mais il est communément admis qu’elle ne dépasse pas 30-50%, étant 13 inversement proportionnelle à la durée de l’infection (J. Coura & De Castro, 2002; Urbina, 2009). Chez l’adulte au stade chronique, l’objectif du traitement repose davantage sur la prévention des complications que sur l’éradication de l’infection. Parmi les rares données disponible figure une étude prospective non randomisée montrant une diminution substantielle du risque d’évolution vers un changement de phase ou une aggravation des dommages d’organe suite à la prise de benznidazole (Viotti et al., 2006). Cette étude est quasiment la seule source des recommandations thérapeutiques récentes qui ont élargi l’indication au traitement antiparasitaires aux adultes à la phase chronique de la maladie (Bern et al., 2007). En effet, les pays endémiques ont traditionnellement restreint les recommandations d’utilisation des antiparasitaires aux phases aigües ou très précoces menant aux taux de guérison les plus importants (J. R. Coura, 2009). L’étude randomisée contrôlée BENEFIT en cours, la plus large menée à ce jour, devrait permettre de récolter de précieuses informations quant à l’efficacité et la sécurité du benznidazole chez l’adulte. Encart 2 : Utilisation du nifurtimox chez l’adulte (Jackson, Alirol, et al., 2010) Une étude observationnelle a évalué la tolérance et la sécurité du nifurtimox chez quatrevingt-un patients adultes à la phase chronique recevant 10mg/kg/j en 3 doses pendant 60 jours avec un suivi médical à J7, 21 et 60 et selon besoins. Les endpoints étaient l’interruption de traitement et la survenue et le type des effets indésirables. Huit patients ont été perdus de vue. Sur les 73 restants, 32 (43.8%) ont interrompu leur traitement avant les 60 jours en raison d’effets indésirables (EI). 97.5% ont subis des EI, la plupart de gravité légère ou moyenne et 7.4% ont présenté des EI sévères non attendus (SUSARs). Les patients présentant 3ou plus EI avaient un risque augmenté d’interruption définitive de traitement (hazard ratio : 8.42 ; 95% IC : 1.6-45.5). Cette étude conclut que le nifurtimox est mal toléré chez les patients adultes en phase chronique et mène à de fréquentes interruptions prématurées de traitement. De plus, la survenue d’effets indésirables graves représente une limitation à la distribution de ce traitement en situation ne permettant pas un suivi clinique rapproché. Les traitements non-étiologiques servent à limiter les conséquences des atteintes d’organe. Actuellement, il n’existe pas de traitement permettant de guérir ces dommages une fois qu’ils sont présents (Le Loup et al., 2011; Rassi et al., 2010). IN cas d’atteinte cardiaque, des 14 médicaments anti-arythmiques et contre l’insuffisance cardiaques sont utilisés bien qu’aucune données de qualité de permette de soutenir des recommandations (Bern, 2011; Blum et al., 2008). En cas d’atteinte avancée, la pose d’un pacemaker, d’un défibrillateur interne voir la transplantation cardiaque représentent les seules options thérapeutiques. A ce titre, l’infection par T. cruzi représente une des étiologies principales à l’origine des transplantations cardiaques en zone d’endémie, notamment en Argentine (Bestetti & Theodoropoulos, 2009). Concernant les atteintes du tractus digestif, encore moins de données permettent d’émettre des recommandations solides (Pinazo, Canas, et al., 2010). Il est généralement admis qu’en cas d’atteinte avancée avec troubles de la motilité marqués, voir en présence de dilatation, le traitement chirurgical est le seul à permettre un contrôle des symptômes et à réduire les risques de complication. L’une des autres difficultés cliniques majeures actuelles réside dans l’absence de marqueur de réponse au traitement chez l’adulte à la phase chronique. En effet, si lors de phase aigüe ou précoce (<2 ans) on observe la disparition rapide de la parasitémie et la négativation de la sérologie respectivement, la réponse humorale lors de la phase chronique persiste de nombreuses années après l’administration du traitement et empêche de mesurer l’effet de l’intervention (encart 3). De plus, cette absence de marqueur a un effet limitant sur la capacité de tester de nouvelles substances antiparasitaires. Malgré cela, l’OMS recommande l’utilisation de la sérologie comme marqueur de guérison chez l’adulte (WHO, 2002). Etant donné la médiocre sensibilité de la PCR à la phase chronique, cette technique ne permet pas non plus d’évaluer la réponse thérapeutique (Ramirez et al., 2009). De nouveaux marqueurs de réponse au traitement et de nouvelles techniques d’analyse sont actuellement en voie d’évaluation. Parmi ceux-ci figurent l’évaluation quantitative de la réponse sérologique, de la réponse immune T-spécifique, le suivi de bio-marqueurs par l’analyse protéomique et la cytométrie de flux (Fernandez-Villegas et al., 2011; Laucella et al., 2009; Ndao et al., 2010; Vitelli-Avelar et al., 2007). 15 Encart 3 : Suivi sérologique et par PCR trois ans après traitement par nifurtimox (Jackson et al., 2013) Cette étude prospective a suivi 37 patients adultes à la phase chronique traités par nifurtimox 3 ans auparavant. L’objective était d’observer la réponse thérapeutique en comparant les résultats de deux tests sérologiques ELISA et d’un test diagnostique rapide (Chagas Stat-Pak®) sur le sérum pré- et 3 ans post-traitement. De plus, une recherche de parasite circulant à été effectuée par PCR sur le sérum post-traitement. Aucun des tests sérologiques, ELISA ou rapides, effectués sur des sera post-traitement n’était négatif mais 28 (75.3%) montraient des titres abaissés par rapport au niveau prétraitement. De plus, la PCR était positive dans un (2.7%) sérum. Ces résultats démontrent le manque d’intérêt de la sérologie comme marqueur de guérison chez des adultes au stade chronique traités par nifurtimox dans la pratique clinique. Dans cette cohorte, 97.3% des participants avaient des résultats pouvant soit indiquer un échec de traitement soit la persistance d’une réponse humorale malgré un traitement efficace. 16 2. Epidémiologie et aspects de santé publique de la maladie de Chagas en Amérique Latine. La distribution géographique et populationnelle de la maladie de Chagas en Amérique latine a subi d’importants changements au cours des dernières décennies. En effet, alors qu’elle se rencontrait essentiellement dans les zone rurales des pays d’Amérique centrale et du Sud, les efforts de lutte anti-vectorielle, les transformations écologiques consécutives au développement de nouvelles pratiques d’agriculture industrielle associés aux mouvements de population vers les zones urbaines ont profondément modifié son épidémiologie. Traditionnellement, la zone d’endémie se définissait par la présence de vecteurs et couvrait une vaste surface de 21 pays allant du sud des Etats-Unis jusqu’à l’Argentine (figure 3). Dans les années 1980, environ 15-20 millions de personnes étaient infectées et 100 millions étaient à risque d’infection (WHO, 2002). Des initiatives nationales et transnationales de contrôle vectoriel ont permis une nette réduction du taux d’incidence (environ 40'000 par an) et la prévalence s’est stabilisée autour de 10 millions de personnes en 2009 (PAHO, 2006; WHO, 2010). La transmission de T. cruzi par voie transfusionnelle a traditionnellement joué un rôle important dans certains pays caractérisés par l’absence de régulation, la faible capacité à les faire respecter et la popularité du don pour des motifs économiques (WHO, 2002). La progressive mise en place du screening universel des donneurs de sang contribué à réduire le nombre de cas de transmission transfusionnelle, rendant cette route relativement marginale (Schmunis, Rodriguez, Coenen, Bellorin, & Gianella, 2008). Il en va de même pour la prévention secondaire de l’infection congénitale avec l’augmentation des programmes de dépistages des femmes enceintes, le screening des nouveau-nés de mères infectées et l’accès amélioré au traitement des femmes jeunes avant leur première grossesse. De nos jours, la maladie est particulièrement prévalente en Bolivie (5-20% de la population selon les provinces) et l’Argentine, le Mexique et le Brésil sont les pays avec le plus grand nombre de personnes infectées. La charge (burden of disease) sociale et économique de cette infection est substantielle en Amérique Latine du fait de sa chronicité et de la potentielle sévérité des complications. Des modèles montrent que dans cette région, l’infection est responsable de la perte annuelle de 0.51 DALY avec un coût de $ 474.- par personne au stade chronique et de 7 milliard 17 globalement, nettement plus que d‘autres infections parasitaires (malaria) ou virales (HIV) (B. Lee, Bacon, Bottazzi, & Hotez, 2013). Figure 3 : Distribution des cas de maladie de Chagas en Amérique Latine 2006-2009 (WHO, 2010) Actuellement, aucun vaccin humain n’est disponible bien que plusieurs études sur des animaux soient en cours avec des résultats prometteurs et que le potentiel économique d’un tel vaccin ai été bien démontré (Gupta et al., 2013; B. Y. Lee, Bacon, Connor, Willig, & Bailey, 2010). Par ailleurs, certains auteurs ont argumenté que le succès des campagnes antivectorielle passées constituait un risque pour le contrôle de la maladie en raison de la baisse de la vigilance et des investissements financiers et structurels dans les pays les plus à risque (Jose Rodrigues Coura & Vinas, 2010; Schofield et al., 2006). 2.1. Mouvements de population et changements épidémiologiques Depuis les années 80’, les transformations sociales, politiques et économiques des pays endémiques ont générés des flux migratoires massifs des campagnes vers les zones urbaines et entre pays voisins (Moscatelli et al., 2013). Ceci a eu pour conséquence une progressive urbanisation de la maladie avec un nombre croissants de personnes infectées vivant en zone (péri) urbaine et une adaptation de certains vecteurs à cet environnement les rendant 18 capable de transmettre T. cruzi associé à une augmentation de la proportion de la voie congénitale parmi les nouveaux cas (Medrano-Mercado et al., 2008; Moscatelli et al., 2013). Si cette évolution peut théoriquement être source de facilitation dans l’accès au dépistage et aux soins des populations à risque, tel qu’attesté par l’augmentation du nombre de cas congénitaux détectés, il semble qu’en fait ce soient les populations vulnérables, généralement à plus faible potentiel d’accès aux services médicaux et de santé publique, qui soient majoritairement affectées. A Buenos Aires par exemple, seules 16% des femmes enceintes infectées étaient originaires de la ville, le reste étant des migrants des Provinces endémiques argentines ou des pays voisins (Moscatelli et al., 2013). A Arequipa au Pérou et à Cuernavaca au Mexique, la densité d’infestation de triatomes vecteurs augmente avec le degré de pauvreté des quartiers examinés (Delgado et al., 2013; Ramsey et al., 2005). A cela s’ajoutent les nouveaux risques liés à la transmission par voie alimentaire à grande échelle comme lorsque plus de 1000 personne furent exposées à du jus de goyave infecté à Caracas (Venezuela), résultant en plus de 100 infections (Alarcon de Noya et al., 2010). 3. Contexte suisse La Suisse a une riche histoire de relations diplomatiques et commerciales et d’échange de populations avec l’Amérique Latine. Au XIXème siècle, des suisses, paysans appauvris, travailleurs qualifiés ou personnes tombées à l’aide sociale dont l’Etat fédéral cherchait à se débarrasser, émigrent en grand nombre d’abord au Brésil puis dans les pays du cône sud (Argentine, Chili, Uruguay) (Veyrassat, 2007). Des colonies suisses voient le jour (Nova Friburgo près de Rio de Janeiro) et les échanges commerciaux s’intensifient. Au tournant du XXème siècle, 15% des émigrants suisses vivent en Amérique Latine. Les flux migratoires se renversent dans la seconde moitié du XXème siècle et s’accélèrent dans les années 70’ et 80’ à la faveur des troubles politiques au Chili et en Argentine. La Suisse accueille alors de nombreux réfugiés latino-américains et des travailleurs qualifiés (Portmann-Tinguely & von Cranach, 2013). Les bouleversements politiques internationaux et l’essor des échanges mondialisés des années 90’ favorisent l’arrivée d’une nouvelle – et importante – population migrante à la recherche d’opportunités économiques. En 2004, l’Offices migration publie un rapport dans lequel on estime que sur les 50'000 à 300'000 19 migrants sans permis de séjours (sans-papiers) résidants en Suisse, une proportion importante est d’origine latino-américaine (Office des migrations, 2004). Quant à Genève, elle abrite l’une des communautés latino-américaines principales du pays, estimées à environ 10'000 personnes, incluant des migrants surtout femmes d’origine colombiennes, équatoriennes, boliviennes et péruviennes (Fluckiger & Pasche, 2005). Il faut également souligner que le développement du tourisme vers les zones d’endémies avec la baisse des prix du transport aérien de masse dès la fin du XXème siècle amène un nombre croissant de résidents suisses à s’exposer au risque d’infection par voie vectorielle. De plus, les activités humanitaires du CICR et d’autres organisations internationales amènent de nombreux expatriés à vivre en zone rurale endémique. 3.1. Accès aux soins des migrants latino-américains en Suisse Si les migrants résidant ont l’obligation de contracter une assurance-maladie et accès aux subsides cantonaux pour bénéficier des soins en Suisse en cas de difficultés financières, les migrants sans-papiers sont dans un premier temps exclu de ce système mis en place lors de la mise en application de la loi sur l’assurance-maladie (LAMal) en 1996. Cette exclusion est ensuite levée mais la plupart des sans-papiers n’accèdent pas à l’assurance pour des motifs économiques ou de méconnaissance du système (Wolff et al., 2005). En 1997, le Conseil d’Etat genevois charge les HUG de mettre sur pieds une structure d’accès aux soins pour les résidents les plus vulnérables socialement du canton. L’Unité Mobile de Soins Communautaires (UMSCO) est alors rattachée au Département de Médecine Communautaire et reçoit une clientèle latino-américaine rapidement croissante. Ces patients peuvent alors bénéficier de soins de médecine générale et des spécialités, permettant d’identifier un spectre de nouveaux problèmes de santé internationale. A l’exception du canton de Vaud, aucune autre région ne se dote d’un tel système public d’accès aux soins pour les sans-papiers. 20 3.2. La maladie de Chagas en Suisse avant 2000 Les premiers cas rapportés de maladie de Chagas en Suisse remontent aux années 80’ (Liechti, Baur, Gurtner, & Straub, 1990). Il s’agit alors de cas sporadiques, fortement symptomatiques, identifiés chez des migrants latino-américains tardivement dans le cours de la maladie. En 1996, Sztajzel rapporte le premier cas vu à Genève (Sztajzel et al., 1996). Il s’agit d’une patiente bolivienne de 56 ans consultant au Département de Médecine Communautaire pour une constipation sévère. Elle présente une cardiomyopathie avancée associée à des troubles du rythme et de la conduction. Les auteurs concluent qu’il est indispensable que les médecins de premier recours et spécialistes en Europe soient conscients de l’émergence de cette maladie méconnue. En effet, outre la place très modeste accordée à l’enseignement des maladies tropicales durant les études de médecine en Suisse, aucune réglementation de santé ne dirige les cliniciens vers une meilleure conscience du problème. A l’exception du paludisme, ces maladies ne sont généralement pas à déclaration obligatoire. La seule mesure à visée préventive existante consiste en une série de questions pré-donation permettant d’exclure des potentiels donneurs de sang à risque. Le donneurs répondant positivement à l’une ou plusieurs des questions de dépistages sont alors exclues sans que leur soit proposé un dépistage. 3.3 Contexte des études Les études qui constituent le corps de cette thèse ont été menées dans le cadre des activités du Département de Médecine Communautaire, de Premier recours et des Urgences des Hôpitaux Universitaires de Genève (HUG) entre 2006 et 2011. Ces projets successifs ont fait suite au nombre croissant de cas cliniques rencontrés aux HUG depuis le début des années 2000 et à la réalisation par les auteurs du manque de connaissance clinique et épidémiologique en relation avec l’émergence de cette infection. Ces études ont été rendues possible par la collaboration entre divers départements des HUG ainsi que grâce aux collaborations et au soutien de l’OMS et de multiples organisations actives auprès des communautés latino-américaines dans le Canton de Genève. 21 4. Objectifs de la thèse Cette thèse a pour objectif principal de décrire l’émergence de la maladie de Chagas en Suisse avec un focus sur Genève. Alors que les aspects cliniques de ce phénomènes sont traités dans ma thèse de PhD (Jackson, 2014, in press), ce travail se concentre sur les aspects de santé publique. Plus précisément, il aborde les aspects épidémiologiques, explore le contexte de cette émergence par l’identification des caractéristiques socio-économiques des personnes infectées et discute les défis de la prise en charge au niveau populationnel en Europe en temps de crise économique et financière. 4.1. Organisation du manuscrit Après avoir présenté des notions générales sur la maladie de Chagas et décrit le contexte dans lequel les différentes études ont été menées à Genève, cette thèse inclut les principales publications touchant aux aspects de santé publique et se conclut par une discussion des résultats. Le premier papier décrit une étude transversale menée auprès de communautés migrantes latino-américaines à Genève visant à établir la prévalence de la maladie, sa description clinique et le risque de transmission par voie de transfusion sanguine. Le second papier décrit les premiers cas de transmission congénitale et évalue le risque chez les femmes enceintes latino-américaines sans-papiers consultants aux HUG. Le papier suivant rapporte la première série de cas pédiatriques en Europe. Le quatrième article explore la situation socio-économique des personnes infectées à Genève dans une perspective de déterminants sociaux de la santé. Les papiers 5 et 6 rapportent des données au niveau suisse et européen afin de mettre la situation genevoise en perspective, tandis que les deux derniers papiers ouvrent une discussion sur les challenges et l’impact de la crise économique et financière sur le contrôle de la maladie de Chagas en Europe. 22 5. Prevalence, clinical staging and risk for blood-borne transmission of Chagas disease among Latin American migrants in Geneva, Switzerland Cet article a été publié dans: PLoS Negl Trop Dis 2010;4(2):e592 doi10.1371/journal.pntd.0000592 par: Jackson Y, Getaz L, Wolff H, Holst M, Mauris A, Tardin A, Sztajzel J, Besse V, Loutan L, Gaspoz JM, Jannin J, Albajar-Vinas P, Luquetti A, Chappuis F. 23 Prevalence, Clinical Staging and Risk for Blood-Borne Transmission of Chagas Disease among Latin American Migrants in Geneva, Switzerland Yves Jackson1*, Laurent Gétaz1, Hans Wolff1, Marylise Holst1, Anne Mauris2, Aglaé Tardin3, Juan Sztajzel4, Valérie Besse5, Louis Loutan3, Jean-Michel Gaspoz1, Jean Jannin6, Pedro Albajar Vinas6, Alejandro Luquetti7, François Chappuis3 1 Division of Primary Care Medicine, Department of Community Medicine And Primary Care, University Hospitals of Geneva and Faculty of Medicine, Geneva University, Geneva, Switzerland, 2 Division of Humanitarian and International Medicine, Department of Community Medicine and Primary Care, University Hospitals of Geneva and Faculty of Medicine, Geneva University, Geneva, Switzerland, 3 Department of Genetics and Laboratory, University Hospitals of Geneva and Faculty of Medicine, Geneva University, Geneva, Switzerland, 4 Division of Cardiology, Department of General Internal Medicine, University Hospitals of Geneva and Faculty of Medicine, Geneva University, Geneva, Switzerland, 5 Department of Radiology, University Hospitals of Geneva and Faculty of Medicine, Geneva University, Geneva, Switzerland, 6 Control of Neglected Tropical Diseases, World Health Organization, Geneva, Switzerland, 7 Laboratorio de Chagas, Hospital das Clinicas, Universidade Federal de Goiás, Goiania, Brazil Abstract Background: Migration of Latin Americans to the USA, Canada and Europe has modified Chagas disease distribution, but data on imported cases and on risks of local transmission remain scarce. We assessed the prevalence and risk factors for Chagas disease, staged the disease and evaluated attitudes towards blood transfusion and organ transplant among Latin American migrants in Geneva, Switzerland. Methodology/Principal Findings: This cross-sectional study included all consecutive Latin American migrants seeking medical care at a primary care facility or attending two Latino churches. After completing a questionnaire, they were screened for Chagas disease with two serological tests (Biomérieux ELISA cruzi; Biokit Bioelisa Chagas). Infected subjects underwent a complete medical work-up. Predictive factors for infection were assessed by univariate and multivariate logistic regression analysis.1012 persons (females: 83%; mean age: 37.2 [SD 11.3] years, Bolivians: 48% [n = 485]) were recruited. 96% had no residency permit. Chagas disease was diagnosed with two positive serological tests in 130 patients (12.8%; 95%CI 10.8%–14.9%), including 127 Bolivians (26.2%; 95%CI 22.3%–30.1%). All patients were in the chronic phase, including 11.3% with cardiac and 0.8% with digestive complications. Predictive factors for infection were Bolivian origin (OR 33.2; 95%CI 7.5–147.5), reported maternal infection with T. cruzi (OR 6.9; 95%CI 1.9–24.3), and age older than 35 years (OR 6.7; 95%CI 2.4–18.8). While 22 (16.9%) infected subjects had already donated blood, 24 (18.5%) and 34 (26.2%) considered donating blood and organs outside Latin America, respectively. Conclusions: Chagas disease is highly prevalent among Bolivian migrants in Switzerland. Chronic cardiac and digestive complications were substantial. Screening of individuals at risk should be implemented in nonendemic countries and must include undocumented migrants. Citation: Jackson Y, Gétaz L, Wolff H, Holst M, Mauris A, et al. (2010) Prevalence, Clinical Staging and Risk for Blood-Borne Transmission of Chagas Disease among Latin American Migrants in Geneva, Switzerland. PLoS Negl Trop Dis 4(2): e592. doi:10.1371/journal.pntd.0000592 Editor: Marleen Boelaert, Institute of Tropical Medicine, Belgium Received September 24, 2009; Accepted December 9, 2009; Published February 2, 2010 Copyright: ß 2010 Jackson et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Funding: The Foundation Simon I. Patino, Geneva, Switzerland, the WHO, the Geneva University Hospitals and the Department of Health and Community medicine, Faculty of Medicine, University of Geneva sponsored this study. bioMérieux Switzerland and Ruwag Switzerland donated the serological tests. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript Competing Interests: The authors have declared that no competing interests exist. * E-mail: yves.jackson@hcuge.ch people worldwide and kills more than any other parasitic disease in Latin America [2]. Until recently, its geographical distribution was mostly determined by the area of endemicity of the infected vectors. Successful vector control in endemic countries, urbanization, human migration and unpreparedness of newly affected areas have contributed to modify the distribution of Chagas disease [3,4]. Non-endemic countries (i.e. countries free of vectors) in North America, Europe and Western Pacific Region have seen the recent emergence of Chagas disease following the migration of more than 15 million people from endemic areas [4]. Estimates of Introduction Chagas disease is a zoonosis caused by Trypanosoma cruzi (T. cruzi), a flagellated protozoa transmitted to humans by the faeces of blood-sucking triatomine bugs. The parasite can also be acquired by blood transfusion, organ transplant, ingestion of food contaminated with triatomines or their feces, or congenital transmission [1]. In 2009, we celebrate the 100th anniversary of the first complete description of the disease by Carlos Chagas, a Brazilian physician. Chagas disease affects eight to ten million www.plosntds.org 1 February 2010 | Volume 4 | Issue 2 | e592 Chagas Disease in Switzerland donors at risk have yet to implement screening measures. The attitude and practice of Latin American migrants towards blood donation in non-endemic countries has yet to be investigated. In 2008, Switzerland hosted 43’000 legal residents originating from Central and South America [16]. This figure did not include Swiss nationals from Latin American origin and the estimated 30– 50’000 undocumented Latin American migrants. Undocumented migrants experience difficulties in accessing medical care in Switzerland, as health insurance is mandatory and expensive [17]. The first report of Chagas disease in Switzerland goes back to 1996. Since then, several imported and congenital cases have been reported [18,19]. The objectives of this descriptive transversal study were to (1) determine the prevalence of Chagas disease in a community of Latin American adult migrants living in Geneva, (2) assess the risk factors for T. cruzi infection, (3) clinically stage the disease, and (4) evaluate the transfusional and transplantational risk to local recipients. Author Summary Chagas disease, a parasitic disease caused by Trypanosoma cruzi, is a leading cause of cardiac and digestive tract disorders in Mexico, Central and South America. An increasing number of cases have recently been reported in North America and Europe due to international human migration, but data outside Latin America remains scarce. This study showed that Chagas disease is an emerging health problem in Switzerland, affecting a substantial proportion of Latin American migrants (13%). Persons at increased risk of infection were Bolivian, older than 35 years or had a mother infected with T. cruzi. Early signs of cardiac or digestive tract disease were found in one out of six infected patients. The risk of local transmission by blood transfusion or organ transplant was illustrated by the frequent willingness expressed by patients to donate blood or organs in Switzerland. The authors recommend the screening of persons at risk of infection and the diffusion of appropriate information to the medical community to increase awareness of this emerging health problem. Considering that affected persons frequently lack health insurance in Switzerland, a facilitated access to medical care is an important step towards better recognition and management of Chagas disease. Methods Setting The study took place in a primary care centre (the Community Care Mobile Unit) of the Geneva University Hospitals which provides affordable care to more than 2000 Latin American migrants yearly, the majority of them living in Geneva with neither residency permit nor health insurance. Privacy is strictly ensured for undocumented persons. This unit cooperates closely with representatives of migrants communities. Information about the study was widely diffused in cultural centres, churches and migrant associations. In addition, two recruitment sessions took place in churches attended by migrants. the total number of T. cruzi infected people living in non-endemic countries and reported cases are both on the rise, reaching an estimated 25’000 to 40’000 in Western European countries in 2008. [4–11]. These estimates are usually based on the number of registered Latin American migrants in the recipient country multiplied by the mean prevalence of the disease among blood donors in the home country. This mode of calculation has several limitations, as it does not include migrants without legal registration (undocumented), and does not take into account regional variations of disease prevalence within endemic countries [12]. Acute T. cruzi infection - frequently asymptomatic - is followed by a long period of latency with few or no circulating parasites (indeterminate form of the chronic phase) [1]. After decades, 20– 30% of infected persons develop chronic cardiac or digestive tract complications. Chronic chagasic cardiopathy (CCC), which is responsible for the high morbidity, mortality, and socio-economical impact of the disease in affected areas, is frequently underdiagnosed, particularly in non-endemic countries [7]. ECG is the recommended screening test for cardiac damage [13]. Up to 10% of T. cruzi infected persons may develop gastro-intestinal motility disorder leading to progressive dilatation of the oesophagus (megaoesophagus) and/or the colon (megacolon). Suspected digestive tract complications are investigated by barium studies. Specific clinical features of Chagas disease in non-endemic countries are not well characterized and may differ from those found in Latin America for various reasons, including different duration of exposure to infection. Until now, the few published studies describing disease patterns in Europe were conducted in specialized centres, and the findings may not be extrapolated to the global Latin American migrant community [5,14]. Blood-borne transmission of T.cruzi has been reported in several non-endemic countries [11,15]. Prevalence of infected blood donations in Europe and North America varies widely, reaching 0.62% in at-risk donors in Spain [15]. Recently, USA, Spain and France have implemented measures to reduce transfusional risk through blood donors screening and deferral strategies [11]. However, most European countries that may harbour blood www.plosntds.org Participants and procedures Between June and December 2008, all consecutive adult Latin American migrants were invited to participate to the study. Other inclusion criteria were age more than 16 years and signature of an informed consent form. Pregnant women were excluded from the study and were referred to the Maternity ward of the Geneva University Hospitals where a specific program for Chagas screening has been ongoing since January 2008 [9]. Written informed consent was requested from participants. Participants completed a questionnaire (available in Spanish, Portuguese and French) that collected socio-demographic and medical data, and assessed their prior and current attitudes towards blood donation and organ transplant. A multilingual volunteer was available to help onsite. Serological tests, clinical investigations and treatment were free of charge. This study was approved by the ethics committee of the Geneva University Hospitals in January 2008 (protocol 07-285). Diagnosis of T. cruzi infection Peripheral blood was drawn by a qualified nurse and serum was kept refrigerated at 220uC. Two commercialized ELISA-based serological tests (ELISA cruzi, Biomérieux, Brazil and Bioelisa Chagas, Biokit, Spain), which detect antibodies against crude and recombinant T. cruzi antigens respectively, were performed according to manufacturers’ instructions with Dynatech-MRW Microplate Washer. Chagas disease was diagnosed when both tests were positive. The two tests were repeated in case of discrepant results (e.g. positive-negative; doubtful-negative). External quality control consisted of testing serum samples from all individuals with positive or discordant ELISA tests and from 10% of individuals with negative tests (Laboratory of Chagas disease, Goias University, Brazil). A combination of four serological tests was 2 February 2010 | Volume 4 | Issue 2 | e592 Chagas Disease in Switzerland reference laboratory and proved to be negative. Socio-demographic characteristics and clinical data of T. cruzi infected individuals compared to non-infected ones and analysis of factors associated with infection are shown in Tables 1 and 2, respectively. Multivariate analysis showed that major predictive factors for T. cruzi infection were Bolivian origin (adjusted odds ratio (OR 33.2; 95%CI 7.5–147.5), maternal infection with T. cruzi (OR 6.9; 95%CI 1.9–24.3), and age older than 35 years (OR 6.7; 95%CI 2.4–18.8). performed (Chagatek ELISA, Biomérieux, Argentina; EIE Chagas Bio-Manguinhos, Brasil; Chagatest HAI, Wiener, Argentina; inhouse immunofluorescent test using Biomerieux conjugate, Biomérieux, Brazil). Results were sent back with an integrated conclusion (positive, negative or non-conclusive). Staging and management of the disease All individuals with confirmed T. cruzi infection were contacted by phone and underwent a clinical evaluation that included full medical history, physical examination, and a 12-lead electrocardiogram (ECG) with a 30-second DII strip. In case of symptoms or signs suggestive of cardiac failure, history of syncope, or ECG changes consistent with CCC, an echocardiogram and a 24-hour Holter recording were performed. Results of cardiac investigations were independently reviewed by two cardiologists. The classification of CCC was based on the Brazilian Consensus [20]. Patients with dysphagia to solid or liquid food and/or with severe constipation (less than 2 stools per week and/or use of laxatives more than 5 days per week for more than 6 months) underwent gastro-intestinal tract barium examination. Oesophageal abnormalities were staged according to the classification of de Rezende [21]. The colon was considered abnormal if its diameter exceeded 6cm. In the absence of abnormal findings by ECG, echocardiography, 24-hour Holter recording, and barium studies, Chagas disease was classified in the indeterminate form of the chronic phase. According to recent recommendations, all eligible cases were treated with nifurtimox or benznidazole for 60 days [13]. Clinical description Clinical evaluation was performed in 124 patients (95.4%), whereas 6 patients were lost to follow-up due to unexpected departure from Switzerland. Out of 14 patients (11.3%) with ECG abnormalities consistent with CCC, 12 (9.7%) were classified as grade A, one as grade B2 (0.8%) and one could not be fully investigated (Table 3). Twelve (9.7%) other patients with normal ECG had symptoms or signs consistent with heart disease. Seven of them underwent further investigations. Four had echocardiographic signs of low-grade diastolic dysfunction and one showed coronary sinus dilatation. Two others presented rhythmic abnormalities on Holter recording. In the absence of definite criteria defined by the Brazilian consensus, we did not consider these seven patients as cases of CCC. Twenty-one (16.9%) patients reported dysphagia (n = 10) and/or severe constipation (n = 16). Barium studies were performed in 16 patients. One patient (0.8%) had grade I oesophageal involvement (Figure 1). 109 (87..9%) patients were classified as chronic infection in the indeterminate form. Statistical analysis Blood and organ donation In order to investigate the relationship between Chagas disease and possible predictive factors, we used 262 tables and performed Chi-square and Fisher’s exact tests for categorical variables and unpaired Student’s t-tests for continuous variables. Univariate and multivariate logistic regression analyses were used to assess factors associated with Chagas disease. All analyses were performed using SPSS for Windows (version 15.0). Two-hundred forty seven participants (24.4%) and twenty-two patients (16.9%) had already donated blood. Twenty-four (18.5%) and 34 (26.2%) patients expressed willingness to donate blood and organs outside Latin America, respectively (Table 4). Discussion We found a high (12.8%) prevalence of Chagas disease among 1012 Latin American migrants attending an urban primary care centre and two Latino churches in Geneva, Switzerland. This figure is much higher than previously reported in Canada (1%) and Germany (2%), but lower than the very high (41%) prevalence found at a referral centre in Spain [5,22,23]. Our finding is mostly explained by the high proportion (48%) of Bolivian migrants in the study cohort, of whom 26.2% were diagnosed with Chagas disease. This figure is consistent with recent epidemiological studies conducted in affected provinces of Bolivia (Santa Cruz, Cochabamba), where most of the Bolivian migrants living in Geneva originate from [24,25]. Bolivian participants were not over-represented in our study as they constitute 42% of Latin American migrants consulting in our primary care facility. Bolivian origin was the main predictive factor for T. cruzi infection, in concordance with other reports from non-endemic countries [5,9]. Only three of the 130 patients originated from other countries (Argentina and Brazil). This is unclear whether these three patients were infected in their country of origin or in Bolivia, where they lived for several years. The absence of cases diagnosed in migrants from other endemic countries is likely to be explained by the insufficient number of persons tested, the possible effect of cluster sampling (as shown in Bolivians) and the lower average national prevalence of T. cruzi infection in other Latin American countries [4]. Nevertheless, cases originating from most Central and South American countries have been reported in nonendemic countries [5,14]. Therefore, consideration for T. cruzi infection should not be restricted to Bolivians. Results Thousand-and-twelve participants, with a mean age of 37.2 (standard deviation (SD) 11.3) years and a female predominance (83%), were recruited in the study. Ninety-six percent of participants were undocumented. Countries of origin were Bolivia (n = 485; 48%), Brazil (n = 249; 25%), Colombia (n = 61; 6%), Peru (n = 58; 6%), Ecuador (n = 47; 5%), Paraguay (n = 28; 3%), Nicaragua (n = 24; 2%), Honduras (n = 24; 2%) and others (n = 36; 4%). The mean duration of stay outside Latin America was 4.9 (SD 4.0) years. Socio-demographic characteristics and medical history data related to T. cruzi infection of the 1012 participants are shown in Table 1. Previous bite by triatomine bugs were reported by 11.2% of the participants, 12.7% had received blood transfusion in Latin America and 7.7% were born from a T. cruzi infected mother. Previous positive testing for Chagas disease was reported by 2.6% of participants. Prevalence of Chagas disease and predictive factors On the basis of concordant positive serological tests, Trypanosoma cruzi infection was diagnosed in 130 participants, resulting in an overall prevalence of 12.8% (95% confidence interval (CI) 10.8– 14.9); prevalence among Bolivians was 26.2% (95%CI 22.3–30.1; n = 127). External quality control confirmed all positive cases. Three infected individuals originated from Argentina (n = 2) and Brazil (n = 1); all had lived for several years in Bolivia. All (n = 12) discordant serological results in Geneva were controlled at the www.plosntds.org 3 February 2010 | Volume 4 | Issue 2 | e592 Chagas Disease in Switzerland Table 1. Description of Latin American migrants (n = 1012) with and without Chagas disease (CD) in Geneva, Switzerland. Age (mean) Total population N = 1012, Mean (SD) or n (%) Subjects with CD, N = 130, Mean (SD) or n (% within CD) Subjects without CD, N = 882, Mean (SD) or n (% without CD) 37.4 (SD 11.3) 41.0 (SD 9.4) 36.9 (SD 11.5) Age in 2 groups p* ,0.0001 ,0.0001 #35 years 494 (48.8%) 37 (28.5%) .35 years 518 (51.2%) 93 (71.5%) 457 (51.8%) 425 (48.2%) Sex (female) 835 (82.5%) 108 (83.1%) 727 (82.4%) Bolivia 486 (47.5%) 127 (97.7%) 359 (40.7%) other 528 (52.5%) 3 (2.3%) 523 (59.3%) Years outside Latin America 4.9 (SD 4.0) 4.6 (SD 2.1) 4.9 (SD 4.2) Yes 78 (7.7%) 26 (20.0%) 52 (5.9%) No 604 (59.7%) 47 (36.2%) 557 (63.2%) Don’t know 330 (32.6%) 57 (43.8%) 273 (31.0%) Yes 80 (7.9%) 27 (20.7%) 53 (6.1%) No 857 (84.7%) 95 (73.1%) 762 (86.4%) Don’t know 75 (7.4%) 8 (6.2%) 67 (7.6%) Yes 113 (11.2%) 35 (26.9%) 78 (8.8%) Now 336 (33.2%) 20 (15.4%) 316 (35.8%) Don’t know 563 (55.6%) 75 (57.7%) 488 (55.3%) Yes 129 (12.7%) 30 (23.1%) 99 (11.2%) No 879 (86.9%) 100 (76.9%) 779 (88.3%) Don’t know 4 (0.4%) 0 4 (0.5%) Yes 10 (1.0%) 5 (3.8%) 5 (0.6%) No 1001 (98.9%) 125 (96.2%) 876 99.3%) Don’t know 1 (0.1%) 0 1 (0.1%) Origin 0.85 ,0.0001 Mother with T. cruzi infection 0.41 ,0.0001 Previous testing ,0.0001 Previous triatomine bite ,0.0001 Previous transfusion 0.001 Previous treatment 0.002 *p concerns difference between subjects with and without Chagas disease. doi:10.1371/journal.pntd.0000592.t001 Older migrants were at increased risk for T. cruzi infection, most likely due to a longer and more intense exposition to vectorial transmission in their home country. Vector control campaigns have resulted in a sharp reduction of transmission in endemic countries during the last decades, therefore conferring relative protection to younger generations [3]. History of maternal infection (defined by positive serology in the home country) was also a strong and independent predictive factor for infection. Being borne from an infected mother cumulates the risk of vertical transmission and shared exposure to vectorial transmission. The risk of unrecognized vertical transmission in non-endemic countries is increased by the low proportion of patients aware of being infected, the lack of clinical signs in most infected newborns and the absence of systematic prenatal screening program [1,9,10]. Screening should be offered to women of childbearing age, pregnant women and their offspring (in case of proven maternal infection) [9]. Only 4% of patients had valid residency permit and health insurance. It is estimated that several millions of migrants at risk for Chagas disease reside undocumented in Europe and in North America [4,26]. In many countries, such as Switzerland, undocumented migrants face difficulties to access preventive and www.plosntds.org curative care. This socio-economic dimension must be taken into consideration by policy makers at the planning stage of screening programs for Chagas disease in non-endemic countries. ECG abnormalities consistent with CCC were found in 11.3% of cases, a proportion comparable to previous reports [5,27]. Most patients who could be classified were in grade A CCC according to the Brazilian consensus classification. One patient presented with advanced stage cardiopathy (grade B2) requiring specific therapy. Interestingly, five symptomatic patients with normal ECG had low-grade diastolic dysfunction or coronary sinus dilatation by echocardiography and two others presented rhythmic abnormalities on Holter recording. In the absence of identified alternative aetiology, the diagnosis of early stage CCC is possible. However, the Brazilian criteria do not allow these patients to be classified as such. More studies are needed to define the diagnostic and prognostic value of echocardiography and Holter in symptomatic cases with normal ECG. The low rate of advanced CCC in our study can be explained by the overall young patients’ age and, possibly, by the healthy migrant effect. The latter implies that persons who initiate a long distance migration tend to be healthier than persons who do not migrate [28]. Nevertheless, cases of 4 February 2010 | Volume 4 | Issue 2 | e592 Chagas Disease in Switzerland Table 2. Predictive factors, unadjusted and adjusted odds ratios (OR) for Chagas disease (CD) among T. cruzi infected Latin American migrants in Geneva, Switzerland (n = 130). Prevalence of CD, n (%) Unadjusted OR for CD (95%CI) Adjusted OR for CDu (95%CI) Adjusted OR for CD* (95%CI) Age (years) #35 37/494 (7.5%) .35 93/518 (18.0%) 2.7 (1.8;4.0) 3.6 (2.3;5.6) 6.1 (2.2;16.7) Women 108/835 (12.9%) 1.04 (0.6;1.7) 0.85 (0.5;1.5) 1.04 (0.3;3.4) Men 22/177 (12.4%) 61.7 (19.5;195.3) 71.2 (22.4;226.4) 31.7 (7.2;139.5) Gender Origin Bolivia 127/486 (26.1%) Other 3/528 (0.6%) Mother with T. cruzi infection 26/78 (33.3%) Mother without T. cruzi infection 47/604 (7.8%) Previous triatomine bite 35/113 (31.0%) No previous triatomine bite 20/336 (6.0%) 5.9 (3.4;10.3) 6.5 (1.9;22.8) 7.1 (3.9;12.0) 1.8 (0.7;4.6) uAdjustment for age, sex and origin (patients included in this model: n = 1012). *Adjustment for all variables in table 2 (patients included in this model: n = 378). doi:10.1371/journal.pntd.0000592.t002 advanced CCC have also been diagnosed in Geneva outside the study period [18,19]. The disease burden and treatment cost of CCC is recognized as an emerging challenge in some nonendemic countries like the USA and Spain [8,14]. Only one patient had radiological evidence of low-grade digestive tract alteration consistent with Chagas disease. This low prevalence of digestive tract complications is comparable to findings reported in Spain [5]. As strict clinical criteria were used before undergoing barium studies, we can not exclude to have missed one or more paucisymptomatic case(s). T. cruzi transmission by blood transfusion has been sporadically reported in North America and in Europe [1,11,15]. Persistent parasitemia in infected blood donors can lead to infected donations over a long period of time [29]. In our cohort, 24.4% participants and 16.9% of T. cruzi infected patients had a prior history of blood donation. Despite a relatively short time (mean: 4.9 years) spent outside Latin America, 6.9% of participants had already donated blood in North America or in Europe. Moreover, a significant proportion of participants and of T. cruzi infected patients expressed the intention to donate blood outside Latin America in the future. Table 3. Description and staging of patients with Chagas disease and ECG abnormalities in Geneva, Switzerland. Patient (sex age) Symptoms Signs ECG Echocardiogram Holter Staging F 28 chest pain none inversed T wave avF normal PVB (576/24h), bradycardia 459 A F 35 - none partial RBBB normal normal A F 40 palpitation none inversed T wave v1-v3 normal normal A F 43 - none AVB grade I normal sustained AT A F 45 - none RBBB normal PVB (480/24h), PSVB A F 45 dyspnea, syncope none RBBB normal PSVB, sustained AT A F 46 - none bradycardia normal PVB (264/24h), PSVB, bradycardia 399 A F 46 - none PSVB, bigeminisme - - unknown F 50 dyspnea, chest pain, palpitation none LBBB LVEF 35%, global hypokinesia PVB (3960/24h), non-sustained VT B2 F 51 syncope none RBBB, bradycardia normal bradycardia 349 A F 54 chest pain, palpitation none PVB diastolic dsyfunction grade 2 PVB (9504/24h) A F 56 - none PVB, LAFB normal PVB (28464/24h), bi-trigeminisme A F 59 - none inversed T wave v2-v3, q wave in D1, avL diastolic dysfunction grade 1, dilated LA PVB (432/24h), PSVB, bradycardia 449 A M 44 chest pain none LAFB, inversed T wave avF normal normal A RBBB, right bundle branch block; LBBB, left bundle branch block; LAFB, left anterior fascicular block; AVB, atrio-ventricular block; PSVB, premature supra-ventricular beat; PVB, premature ventricular beat; LA, left atria; AT, atrial tachycardia; LVEF, left ventricular ejection fraction. doi:10.1371/journal.pntd.0000592.t003 www.plosntds.org 5 February 2010 | Volume 4 | Issue 2 | e592 Chagas Disease in Switzerland This positive attitude towards blood donation and the large proportion of patients unaware of being infected highlights the risk of blood-borne transmission and support the implementation of preventive measures in non-endemic countries. Organ transplant is a rare mode of transmission that has been reported both in endemic and non-endemic countries [30]. Chagas disease can present as a fulminant systemic disease in immunosuppressed patients [1]. In our cohort, none of the participants had donated organs and none of the T. cruzi infected patients had a previous history of organ transplant. However, a high proportion of participants and cases considered organ donation while alive or after passing away. Health professionals involved in organ transplantation should be informed or reminded that organ donors or recipients at risk of being infected require screening for Chagas disease. The high proportions of migrants with no legal registration and of Bolivian origin, as well as the recruitment limited to one city, represent the main limitations of this study as they partially restrict the extrapolation of our findings to other settings. We believe that these limitations are counter-balanced by the large population screened and by the choice of a primary care setting as a recruitment site. Therefore, our study may offer a valuable insight into the current trends of this emerging health problem in Europe. According to our and others’ findings, we recommend screening for Chagas disease in priority all Latin American persons at increased chance of (1) infection (e.g. Bolivian origin, diagnosis of Chagas disease in the mother or in other close family members, prior history of blood transfusion in endemic countries, presence of suggestive cardiac or digestive complaints), (2) severe illness (e.g. immunosuppressed individuals), (3) transmitting T. cruzi to others (e.g. pregnant women and women of child bearing age, blood or organ donors), and (4) cure with existing treatments (newborns and children). Cost-effectiveness studies may help to design more rational recommendations. Considering the millions of persons at risk who have recently migrated outside Latin America, medical students and physicians in non-endemic countries must be made aware of the emergence of this neglected tropical disease. Supporting Information Figure 1. Gastro-oesophageal barium examination in left posterior oblique view in upright position in a T. cruzi infected individual showing delayed bolus elimination without oesophageal dilatation (de Rezende stage I) one minute after ingestion. doi:10.1371/journal.pntd.0000592.g001 Alternative Language Abstract S1 Translation of the abstract into French by YJ. Found at: doi:10.1371/journal.pntd.0000592.s001 (0.02 MB DOC) Table 4. Frequency of history and intention of blood and organ donation in Latin American migrants living in Geneva, Switzerland. Latin American migrants (n = 1012) N (%) History of blood donation Bolivian migrants (n = 486) N (%) Migrants with Chagas disease (n = 130) N (%) 247* (24.4) 109 (22.4) 22 (16.9) in Latin America 208 (84.2) 96 (88.1) 22 (100) in Europe 17 (6.9) 1 (0.9) 0 not stated 27 (10.9) 13 (11.9) 0 Intention to give blood outside Latin America 206 (20.4) 70 (14.4) 24 (18.5) History of organ donation 0 0 0 Intention to give organ 360 (35.6) 149 (30.7) 34 (26.2) *Five individuals have donated blood in more than one geographical region. doi:10.1371/journal.pntd.0000592.t004 www.plosntds.org 6 February 2010 | Volume 4 | Issue 2 | e592 Chagas Disease in Switzerland Checklist S1 STROBE checklist. Found at: doi:10.1371/journal.pntd.0000592.s002 (0.09 MB DOC) Author Contributions Conceived and designed the experiments: YJ HW LL JMG JJ PAV AL FC. Performed the experiments: YJ LG MH AM AT JS VB AL FC. Analyzed the data: YJ HW FC. Wrote the paper: YJ HW FC. Acknowledgments Authors wish to thank Odile Colombel, Tina Mazzocato, Martine Locatelli, Heidi Fowler-Njie, Suelene Tavares and Tatiana Collipal for their valuable help. References 16. Swiss federal office for migration (2009) Number of permanent foreign resident population by nationality; Available: http://www.bfm.admin.ch/etc/medialib/ data/migration/statistik/auslaenderstatistik/2008.Par.0047.File.tmp/ ts8_wohnbevoelkerung_staat_2008-12-e.pdf. Accessed 18 June 2009. 17. Berne GFS (2005) Sans-papiers en Suisse : c’est le marché de l’emploi qui est déterminant, non pas la politique d’asile. Bern. Available: http://www.bfm. admin.ch/etc/medialib/data/migration/illegale_migration/sans_papiers.Par. 0006.File.tmp/sans_papiers_studie.pdf. Accessed 18 June 2009. 18. Sztajzel J, Cox J, Pache JC, Badaoui E, Lerch R, et al. (1996) Chagas’ disease may also be encountered in Europe. Eur Heart J 17: 1289. 19. Jackson Y, Chappuis F, Loutan L (2008) Chagas disease in Switzerland: managing an emerging infection and interrupting its transmission. Rev Med Suisse 4: 1212–4, 6–7. 20. Brazilian Ministerio do Salud (2005) Brazilian consensus on Chagas disease. Rev Soc Bras Med Trop 38(suppl 3): 7–29. 21. de Rezende JLK, de Oliveira A (1960) Clinical and radiological aspects of aperistalsis of the esophagus. Rev Bras Gastroenterol 12: 247–62. 22. Steele LS, MacPherson DW, Kim J, Keystone JS, Gushulak BD (2007) The sero-prevalence of antibodies to trypanosoma cruzi in Latin American refugees and immigrants to Canada. J Immigr Minor Health 9: 43–7. 23. Frank M, Hegenscheid B, Janitschke K, Weinke T (1997) Prevalence and epidemiological significance of Trypanosoma cruzi infection among Latin American immigrants in Berlin, Germany. Infection 25: 355–8. 24. Sosa-Estani S, Gamboa-Leon MR, Del Cid-Lemus J, Althabe F, Alger J, et al. (2008) Use of a rapid test on umbilical cord blood to screen for Trypanosoma cruzi infection in pregnant women in Argentina, Bolivia, Honduras, and Mexico. Am J Trop Med Hyg 79: 755–9. 25. Breniere SF, Bosseno MF, Noireau F, Yacsik N, Liegeard P, et al. (2002) Integrate study of a Bolivian population infected by Trypanosoma cruzi, the agent of Chagas disease. Mem Inst Oswaldo Cruz 97: 289–95. 26. Senior K (2007) Chagas disease: moving towards global elimination. Lancet Infect Dis 7: 572. 27. Blum JA, Zellweger MJ, Burri C, Hatz C (2008) Cardiac involvement in African and American trypanosomiasis. Lancet Infect Dis 8: 631–41. 28. Kliewer E (1992) Epidemiology of diseases among migrants. Int Migr 30: 141–64. 29. Leiby DA, Herron RM, Jr., Garratty G, Herwaldt BL (2008) Trypanosoma cruzi parasitemia in US blood donors with serologic evidence of infection. J Infect Dis 198: 609–13. 30. Kun H, Moore A, Mascola L, Steurer F, Lawrence G, et al. (2009) Transmission of Trypanosoma cruzi by heart transplantation. Clin Infect Dis 48: 1534–40. 1. Prata A (2001) Clinical and epidemiological aspects of Chagas disease. Lancet Infect Dis 1: 92–100. 2. Hotez PJ, Bottazzi ME, Franco-Paredes C, Ault SK, Periago MR (2008) The neglected tropical diseases of latin america and the Caribbean: a review of disease burden and distribution and a roadmap for control and elimination. PLoS Negl Trop Dis 2: e300. 3. Schofield CJ, Jannin J, Salvatella R (2006) The future of Chagas disease control. Trends Parasitol 22: 583–8. 4. Schmunis GA (2007) Epidemiology of Chagas disease in non-endemic countries: the role of international migration. Mem Inst Oswaldo Cruz 102 Suppl 1: 75–85. 5. Munoz J, Gomez i Prat J, Gallego M, Gimeno F, Trevino B, et al. (2009) Clinical profile of Trypanosoma cruzi infection in a non-endemic setting: immigration and Chagas disease in Barcelona (Spain). Acta Trop 111: 51–5. 6. Lescure FX, Canestri A, Melliez H, Jauréguiberry S, Develoux M, et al. (2008) Chagas disease, France. Emerg Infect Dis 14: 644–6. 7. Guerri-Guttenberg RA, Grana DR, Ambrosio G, Milei J (2008) Chagas cardiomyopathy: Europe is not spared! Eur Heart J 29: 2587–91. 8. Milei J, Guerri-Guttenberg RA, Grana DR, Storino R (2009) Prognostic impact of Chagas disease in the United States. Am Heart J 157: 22–9. 9. Jackson Y, Myers C, Diana A, Marti HP, Wolff H, et al. (2009) Congenital transmission of chagas disease in latin american immigrants in Switzerland. Emerg Infect Dis 15: 601–3. 10. Munoz J, Coll O, Juncosa T, Verges M, del Pino M, et al. (2009) Prevalence and vertical transmission of Trypanosoma cruzi infection among pregnant Latin American women attending 2 maternity clinics in Barcelona, Spain. Clin Infect Dis 48: 1736–40. 11. Castro E (2009) Chagas’ disease: lessons from routine donation testing. Transfus Med 19: 16–23. 12. Schmunis GA, Rodriguez G, Coenen J, Bellorin EG, Gianella A (2008) Prevention of blood-borne diseases in Bolivia, 1993–2002. Am J Trop Med Hyg 79: 803–8. 13. Bern C, Montgomery SP, Herwaldt BL, Rassi Jr A, Marin Nieto JA, et al. (2007) Evaluation and treatment of chagas disease in the United States: a systematic review. JAMA 298: 2171–81. 14. de Ayala AP, Perez-Molina JA, Norman F, Lopez-Velez R (2009) Chagasic cardiomyopathy in immigrants from Latin America to Spain. Emerg Infect Dis 15: 607–8. 15. Piron M, Verges M, Munoz J, Casamitjana N, Sanz S, et al. (2008) Seroprevalence of Trypanosoma cruzi infection in at-risk blood donors in Catalonia (Spain). Transfusion 48: 1862–8. www.plosntds.org 7 February 2010 | Volume 4 | Issue 2 | e592 6. Congenital transmission of Chagas disease in Latin American immigrants in Switzerland Cet article a été publié dans: Emerg Inf Dis 2009;15(4):601-3 Par: Jackson Y, Myers C, Diana A, Marti HP, Wolff H, Chappuis F, Loutan L, Gervaix A. 31 Congenital Transmission of Chagas Disease in Latin American Immigrants in Switzerland Yves Jackson, Catherine Myers, Alessandro Diana, Hans-Peter Marti, Hans Wolff, François Chappuis, Louis Loutan, and Alain Gervaix International migration has changed the epidemiologic patterns of Chagas disease. Recently, 2 cases of Chagas disease transmitted from Latin American women to their newborns were diagnosed in Geneva, Switzerland. A retrospective study to detect Chagas disease showed a prevalence of 9.7% among 72 Latin American women tested during pregnancy in Switzerland. C hagas disease, a zoonotic infection caused by Trypanosoma cruzi, is the most important endemic parasitic infection in Mexico and Central and South America because of the number of persons who become ill or die from this disease (1). An estimated 8–10 million persons are infected, and ≈14,000 persons die each year from Chagas disease (1,2). Historically, transmission by triatomine vectors has been the most common source of infection; however, the populations affected, transmission routes, and geographic distribution of Chagas disease cases have been greatly modified by urbanization and international migration. An estimated 14 million people from countries in which Chagas disease is endemic have moved to North America, Europe, Japan, and Australia. The number of persons currently infected by T. cruzi is probably >100,000 in the United States and >6,000 in Spain (2). In Europe, vertical, transfusional, and transplantational routes have accounted for all cases of transmission. The risk for vertical transmission from an infected mother to her newborn is ≈5% (3). Vertical transmission is likely to go undetected in Europe because of lack of screening programs for at-risk pregnant women, who are usually in Author affiliations: Geneva University Hospitals and University of Geneva, Geneva, Switzerland (Y. Jackson, C. Myers, A. Diana, H. Wolff, F. Chappuis, L. Loutan, A. Gervaix); and Swiss Tropical Institute, Basel, Switzerland (H.-P. Marti) DOI: 10.3201/eid1504.080438 the long-lasting, chronic, asymptomatic phase of the disease and are unaware of their infection. An estimated 2,000 babies may have been born with T. cruzi infection in North America in recent years, and 2 cases of vertical transmission were recently reported from Spain (4–6). We report 2 additional cases of congenital infection with T. cruzi, detected in 2001 and 2006, at the Geneva University Hospitals in Switzerland. Subsequently, we conducted a retrospective serologic survey of pregnant Latin American immigrants to assess the potential for vertical transmission of Chagas disease in Switzerland. The Cases In 2001, a 31-year-old woman from Santa Cruz, Bolivia, delivered a 2,860-g, full-term, apparently healthy baby at the Geneva University Hospitals after an uncomplicated pregnancy. Like most undocumented immigrants recently arrived in Switzerland, she had received no medical supervision during her pregnancy. She stated that a blood test for T. cruzi, conducted in Bolivia, had been negative. Macroscopic examination of the fetal side of the placenta showed a 3.5-cm, subchorial, liquid-filled cyst (Figure 1). Histopathologic examination showed disseminated chorioamnionitis and associated funiculitis with large numbers of nonflagellated parasites. A recent infection with Toxoplasma gondii was ruled out by serologic testing. Congenital T. cruzi infection was confirmed by a positive blood microscopic examination for the infant, a positive serologic test result for the mother (immunofluorescence assay using killed T. cruzi parasites, Swiss Tropical Institute, Basel, Switzerland), and a positive blood PCR with TCZ1/TCZ2 primers for both the mother and the newborn. Electrocardiogram and echocardiogram of the newborn showed no abnormalities. The newborn received nifurtimox (10 mg/kg/d for 60 days) without notable adverse effects. Parasitemia became undetectable at the end of treatment, and serologic test result at 1 year of age was negative. The mother refused to be treated, claiming that she was feeling fine. Figure 1. Fetal side of the placenta from Latin American pregnant woman who delivered her baby at Geneva University Hospitals, Geneva, Switzerland. A macroscopic subchorial liquid-filled cyst can be seen near the umbilical cord insertion. Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 15, No. 4, April 2009 601 DISPATCHES In 2006, a 25-year-old woman arrived in Switzerland from Santa Cruz, Bolivia, when she was 5 months pregnant. She delivered a 2,480-g, premature but healthy baby at 34 weeks’ gestation at the Geneva University Hospitals. After discharge, histopathologic examination of the placenta showed funiculitis and chorioamnionitis with clusters of nonflagellated parasites. The mother had not been previously tested for T. cruzi but related that her father had died of Chagas disease–related heart complications. T. cruzi serologic testing by immunofluorescence was positive for the mother, and blood microscopic examination and PCR were positive for the newborn, confirming vertical transmission. Electrocardiogram and echocardiogram of the baby showed no abnormalities. The newborn began a 60-day course of nifurtimox (10 mg/kg/d) at 20 weeks of age and had no adverse effects. Blood PCR and serologic testing at 5 and 26 weeks after treatment was started, respectively, produced negative results. The mother was treated with nifurtimox after completion of breast-feeding and showed good tolerance to the drug. The Study In response to these 2 cases, in 2007, a retrospective serologic survey for T. cruzi infection was performed on stored serum samples from 72 undocumented pregnant Latin American women who had received prenatal care at the Geneva University Hospitals during the previous year. Median age was 30 years (range 20–43), and countries of origin were Bolivia (n = 30), Brazil (n = 22), Peru (n = 6), Ecuador (n = 5), Colombia (n = 4), Chile (n = 2), Honduras (n = 1), and unknown (n = 2). Serum samples were tested by IFA using T. cruzi parasites from in vitro culture (Swiss Tropical Institute). No confirmatory test was available. Of the 72 samples, 7 (9.7%) were positive, most from Bolivian women (n = 5). The seroprevalence among Bolivian women was 16.6% (5/30), consistent with prevalence found by similar surveys conducted recently in Bolivian maternity hospitals (7). Limitations of the study include the small number of samples tested and lack of a confirmatory test as recommended by the World Health Organization. Conclusions Only a small number of congenital cases of Chagas disease have been reported in countries in which this infection is nonendemic. The absence of routine screening programs for Chagas disease in pregnant women and newborns at risk most likely explains this low number, but other factors may be involved. Chagas disease affects immigrants, who frequently lack legal status and therefore experience difficulties (e.g., fear of deportation and financial and administrative constraints) in accessing quality healthcare during pregnancy. In Switzerland, undocumented immigrant women have poor access to medical supervision during 602 pregnancy, so most consult a physician late in pregnancy or at time of delivery (8). Chagas disease is rare in Europe, and healthcare workers may simply not search for it, resulting in missed opportunities to diagnose the disease. In addition, up to two thirds of infected newborns are asymptomatic at birth, so congenital infection may go undetected if not actively sought. Systematic screening of pregnant women at risk is likely to be beneficial in several ways. Treatment of infected mothers after completion of breast-feeding may reduce the risk for vertical transmission during subsequent pregnancies. Treatment of young women at the chronic, indeterminate stage of infection is likely to lower their risk for developing cardiac complications (9). Early screening and treatment of infected newborns are associated with high cure rates (10). Older children of mothers with newly diagnosed Chagas disease also benefit from screening and treatment (11). In addition, because immigrants with inadequate access to healthcare are at risk for being lost to follow-up after delivery, perinatal screening offers a good opportunity to screen other family members and offer treatment as needed. Because most pregnant women receive their diagnosis during the chronic, asymptomatic stage of Chagas disease, screening with 2 sequential serologic tests is the most efficient strategy for detection of infection (12). PCR and parasitologic tests are ineffective for detection because they show lower sensitivity during this phase (13). In contrast, infected newborns usually have high levels of parasitemia. Therefore, microscopic techniques such as microhematocrit and concentration methods in umbilical cord blood Pregnant women from Mexico and Central and South America Serology – + Confirmation -with second serology - Stop investigations + + Microscopic exam of cord blood Newborn of infected mother + – PCR of cord or peripheral blood + Clinical assessment and treatment – Stop investigations – – Serology at 9 months of age + + Serology with confirmation Older children from infected pregnant women Figure 2. Algorithm for screening, diagnosis, and treatment of Trypanosoma cruzi congenital infection at Geneva University Hospitals, Geneva, Switzerland. Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 15, No. 4, April 2009 Chagas Disease in Latin American Immigrants have fairly high (>80%) sensitivity (14). PCR is more sensitive for detecting Chagas infection in infants than in adults; however, few laboratories perform T. cruzi PCR in Europe. Launched in January 2008, a program of systematic Chagas disease screening of pregnant women at risk and of newborns delivered by infected mothers is under way at the Geneva University Hospitals (Figure 2). All pregnant women from Mexico and Central and South America are screened by serologic testing. Newborns of infected mothers are screened by microscopic examination of cord blood after concentration (microhematocrit, Strout’s method) and, if negative, by PCR. If PCR is negative, serologic testing is performed when the child is 9 months of age. Blood cultures are not performed because of time needed to obtain results. Examination of the placenta, which is an unreliable screening method, is also not conducted for diagnostic purposes (15). All infected mothers (after completion of breast-feeding), newborns, and their siblings are offered treatment for this potentially fatal disease. Prenatal and delivery care of Latin American immigrants is an opportunity to screen for Chagas disease and its potential vertical transmission. This strategy will help address this emergent health problem in Europe. Acknowledgments We thank E. Couvreur for diagnosing Chagas disease from the placenta of the newborn described in the first case. Dr Jackson is an internal medicine specialist who works at the Geneva University Hospitals in travel medicine and migrant health. His research focuses on Chagas disease in immigrants living in Switzerland. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. References 1. 2. 3. Jannin J, Salvatella, R, editors. Quantitative estimates of Chagas disease in the Americas. OPS/HDM/CD/425-06. Washington: Pan American Health Organization; 2006. Schmunis GA. Epidemiology of Chagas disease in non-endemic countries: the role of international migration. Mem Inst Oswaldo Cruz. 2007;102(Suppl 1):75–85. DOI: 10.1590/S007402762007005000093 Torrico F, Alonso-Vega C, Suarez E, Rodriguez P, Torrico MC, Dramaix M, et al. Maternal Trypanosoma cruzi infection, pregnancy outcome, morbidity, and mortality of congenitally infected and noninfected newborns in Bolivia. Am J Trop Med Hyg. 2004;70:201–9. 15. Riera C, Guarro A, El Kassab H, Jorba J, Castro M, Angrill R, et al. Congenital transmission of Trypanosoma cruzi in Europe (Spain): a case report. Am J Trop Med Hyg. 2006;75:1078–81. Munoz J, Portus M, Corachan M, Fumado V, Gascon J. Congenital Trypanosoma cruzi infection in a non-endemic area. Trans R Soc Trop Med Hyg. 2007;101:1161–2. DOI: 10.1016/j.trstmh.2007.06.011 Buekens P, Almendares O, Carlier Y, Dumonteil E, Eberhard M, Gamboa-Leon R, et al. Mother-to-child transmission of Chagas’ disease in North America: why don’t we do more? Matern Child Health J. 2008;12:283–6. DOI: 10.1007/s10995-007-0246-8 Torrico F, Alonso-Vega C, Suarez E, Rodríguez P, Torrico M, Dramaix M, et al. Endemic level of congenital Trypanosoma cruzi infection in the areas of maternal residence and the development of congenital Chagas disease in Bolivia. Rev Soc Bras Med Trop. 2005;38(Suppl 2):17–20. Wolff H, Epiney M, Lourenco AP, Costanza MC, DelieutrazMarchand J, Andreoli N, et al. Undocumented migrants lack access to pregnancy care and prevention. BMC Public Health. 2008;8:93. DOI: 10.1186/1471-2458-8-93 Viotti R, Vigliano C, Lococo B, Bertocchi G, Petti M, Alvarez MG, et al. Long-term cardiac outcomes of treating chronic Chagas disease with benznidazol versus no treatment. Ann Intern Med. 2006;144:724–34. Altcheh J, Biancardi M, Lapena A, Ballering G, Freilij H. Congenital Chagas disease: experience in the Hospital de Ninos, Ricardo Gutierrez, Bueno Aires, Argentina. Rev Soc Bras Med Trop. 2005;38(Suppl 2):41–5. de Andrade AL, Zicker F, de Oliveira RM, Almeida e Silva S, Luquetti A, Travassos LR, et al. Randomised trial of efficacy of benznidazole in treatment of early Trypanosoma cruzi infection. Lancet. 1996;348:1407–12. DOI: 10.1016/S0140-6736(96)04128-1 Bern C, Montgomery S, Herwaldt B, Rassi A Jr, Marin-Neto J, Dantas R, et al. Evaluation and treatment of Chagas disease in the United States: a systematic review. JAMA. 2007;298:2171–81. DOI: 10.1001/jama.298.18.2171 Solari A, Ortíz S, Soto A, Arancibia C, Campillay R, Contreras M, et al. Treatment of Trypanosoma cruzi–infected children with nifurtimox: a 3 year follow-up by PCR. J Antimicrob Chemother. 2001;48:515–9. DOI: 10.1093/jac/48.4.515 Mora MC, Sanchez Negrette O, Marco D, Barrio A, Ciaccio M, Segura M, et al. Early diagnosis of congenital Trypanosoma cruzi infection using PCR, hemoculture, and capillary concentration, as compared with delayed serology. J Parasitol. 2005;91:1468–73. DOI: 10.1645/GE-549R.1 Azogue E, La Fuente C, Darras C. Congenital Chagas disease in Bolivia: epidemiological aspects and pathological findings. Trans R Soc Trop Med Hyg. 1985;79:176–80. DOI: 10.1016/0035-9203 (85)90328-1 Address for correspondence: Yves Jackson, Department of Community Medicine and Primary Care, Geneva University Hospitals, Rue Michelidu-Crest 24 1211, Geneva 14, Switzerland; email: yves.jackson@ hcuge.ch Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 15, No. 4, April 2009 603 7. Paediatric Chagas disease in Europe : a series of 45 cases from Spain and Switzerland Cet article a été publié dans: Ped Inf Dis J. 2014. Epub ahead of print Par: Rodriguez L, Posfay-Barbe K, Monsonis Cabedo M, Juncosa Morros T, Diana A, Wyler C-A, Martinez de Tejada B, Chappuis F, Fumadó Pérez V, Jackson Y. 35 The Pediatric Infectious Disease Journal Publish Ahead of Print DOI: 10.1097/INF.0000000000000139 Pediatric Chagas Disease in Europe: 45 Cases from Spain and Switzerland Luciana Rodriguez Guerineau1,2, MD, Klara M. Posfay-Barbe1, MD, MS, Manuel Monsonis Cabedo3, Teresa Juncosa Morros3, PhD, Alessandro Diana1, MD, Claire-Anne D Wyler Lazarevic1, MD, Begoña Martinez de Tejada4, MD, PhD, François Chappuis5 , MD, PhD, Victoria Fumadó Pérez2, MD, PhD, and Yves Jackson6, MD Department of Pediatrics, University Hospitals of Geneva and University of Geneva, TE 1 Switzerland; Department of Pediatrics, Sant Joan de Déu Hospital, University of Barcelona, Spain; 3 Laboratory of Microbiology, Sant Joan de Déu Hospital, University of Barcelona, Spain; 4 Department of Gynecology & Obstetrics, University Hospitals of Geneva and University of EP 2 Geneva, Geneva, Switzerland; Division of international and humanitarian medicine, Department of community medicine, C 5 primary care and emergency medicine, University Hospitals of Geneva and University of 6 C Geneva, Geneva, Switzerland; Division of primary care, Department of community medicine, primary care and emergency A medicine, University Hospitals of Geneva and University of Geneva, Geneva, Switzerland; Address correspondence to: Luciana Rodriguez Guerineau, International Health Unit, Department of Pediatrics, Sant Joan de Déu Hospital, Passeig Sant Joan de Déu 2, 08950 Esplugues de Llobregat, Barcelona, Spain. Phone: +34 93 253 21 00. Fax: +34 93 203 39 59. Email: lrodriguez@hsjdbcn.org Abbreviated title: Pediatric Chagas Disease in Europe 1 Copyright © 2013 Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited. Running head: Pediatric Chagas Disease Key words: Chagas disease, Trypanosoma cruzi, children, migration, Europe Funding source: No external funding was received for this study. Financial Disclosure: The authors have no financial relationships relevant to this article to disclose. D Conflict of Interest: The authors have no conflicts of interest to disclose. Acknowledgement TE C. Reis, M. Varcher and A. Mauris gave us permission to be mentioned in the acknowledgments A C C EP section. 2 Copyright © 2013 Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited. Abstract Background Chagas disease, a potentially fatal parasitic infection, is emerging in Europe in the context of international migration but there is little public health attention and frequent lack of clinicians’ awareness. To date, there is no published information about clinical characteristics in chilren. D Methods We reviewed the medical files of all children (<18 years) with Chagas disease managed in two TE hospitals in Barcelona, Spain and Geneva, Switzerland between January 2004 and July 2012. Results Forty-five cases were identified. Two children (4.4%) were diagnosed during the acute phase and EP the remaining 43 (95.6%) were in the chronic phase of the infection. All but one were asymptomatic. Forty (97.6%) of the 41 treated children completed 60-days of treatment. Thirtyfive (85.4%) received benznidazole, five (12.2%) nifurtimox and one (2.4%) both drugs C consecutively. There were 2 (4.9%) treatment interruptions due to adverse events. The most frequent adverse events were skin rash (24.4%), anorexia or insufficient weight gain (14.6%) and C anemia (2.4%). Twenty-nine (64.4%) children were followed-up by serology after 2 years. Five (17.2%) were cured. A Conclusion Pediatric Chagas disease is an emerging health issue in Europe that requires enhanced attention. Greater emphasis should be put on screening pregnant women at risk and their newborns in case of infection along with older children and relatives. Pediatricians have a central role to play in providing families with information and offering testing in situations of risk. 3 Copyright © 2013 Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited. Chagas disease, a parasitic zoonosis caused by Trypanosoma cruzi predominates in Latin America. It puts 8 - 10 million infected persons at risk of potentially life-threatening cardiomyopathy and disabling chronic digestive tract complications occurring decades after the initial infection.1 Despite past successes of regional control initiatives, there is currently an epidemiological shift entailing new challenges following enhanced local and transnational D population movements in Latin America and alongside the progressive urbanization of the infection.2,3 As a result, vertical infection is becoming a prominent route of transmission.3,4 TE Recently, a growing number of T. cruzi infections have been recorded outside Latin America, after more than 18 million people at risk moved to non-endemic countries, mostly to North America, Europe, and Australia.5 In 2009, more than 3.2 million immigrants from endemic EP regions lived in Europe, of whom around 1 million were without valid residence permits (undocumented) thus facing difficulties in accessing to medical care.6 It is estimated that 60,000 to 120,000 infected persons currently live in Europe.6,7 Sixteen European countries have reported cases, mostly in adult immigrants from Latin America, and T. cruzi transmission via blood A large proportion of cases in Europe affect immigrants originating from Bolivia, where high C 11 C transfusion, organ transplant and from mother-to-child has been identified in several countries.8- prevalence rate and operational difficulties represent consequent challenges in controlling A Chagas disease.2,3,12 While most endemic countries have put emphasis on detecting infection in children because of more favorable treatment outcomes as compared to adults, non-endemic countries have so far paid only very limited attention to Chagas disease in children.2,11 Yet, it has been shown that screening for Chagas disease in pregnant women or newborns provide the opportunity of detecting further cases among siblings and relatives as infections often occur in clusters.13 Only few cities or regions in Western Europe have implemented screening programs 4 Copyright © 2013 Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited. in mothers and newborns to detect congenital transmission. Detection in older children is even less practiced as no recommendations on systematic or regular opportunistic screening exists in this age group.11 Considering the frequent vulnerable socioeconomic conditions in which affected immigrant family live and the long-lasting course of the infection, a holistic whole-offamily approach within a longitudinal perspective is required to effectively tackle this issue. D Several health institutions in Europe have initiated programs along this line in recent years. This paper reports a series of cases of pediatric T. cruzi infections diagnosed and managed in two TE hospitals in Barcelona, Spain and Geneva, Switzerland. It discusses the clinical and epidemiological significance of this emerging health issue and presents a set of recommendations EP regarding the management of pediatric Chagas disease in this region. METHODS Setting C Spain is the country with the largest number of Latin Americans in Europe. There were more than 1,400,000 Latin American immigrants registered in Spain in 2012, not considering the C unknown number of non-registered persons.14 In Barcelona, the seroprevalence of T. cruzi infection in pregnant Latin American women is 3.4%, and 7.3% of their newborns have been A shown as congenitally infected.15 The Sant Joan de Déu Hospital is one of the reference centers for pediatric Chagas disease in the city. Geneva, Switzerland, hosts a community of Latin American immigrants with high T. cruzi infection rate and congenital transmission has been documented since 2001.9,16 The Geneva University Hospitals are the reference centers for Chagas disease management and research in the country. Immigrants without the mandatory 5 Copyright © 2013 Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited. health insurance can access to care through a special scheme, which has proven capital in the identification of Chagas disease emergence in Switzerland. Systematic management of pediatric Chagas disease started in 2004 in Barcelona and in 2007 in Geneva. Both programs entail a multidisciplinary approach focusing on the whole family and are based on clinical protocols published elsewhere.9,15 The diagnosis of Chagas disease in children D entails a complex multi-step process requiring strict adherence to published international TE recommendations to ensure optimal performance and comparability. Case definition We present here all children up to18 years with a diagnosis of T. cruzi infection identified in Diagnostic procedures EP and/or managed by our two Hospitals between January 2004 and July 2012. C Previous papers thoroughly explained the diagnostic procedures used in both Hospitals.9,10 In summary, when an acute infection, including congenital, was suspected, the diagnostic procedure C included a microscopic blood examination and an in-house real-time PCR if the blood examination was negative. If both tests were negative, children underwent serological testing A nine months later. In Barcelona two enzyme-linked immunosorbent assays (ELISA) were used, one with recombinant antigens (BioELISA Chagas; Biokit S.A.) and the other with crude antigen from T. cruzi epimastigotes (in-house ELISA) in older infants. Positive results were confirmed by a third test, the CHAGAS ELISA IgG+IgM (Vircell microbiologists). In Geneva, the BioELISA Chagas test and an in house Immunofluorescence assay using killed T. cruzi parasites (Swiss Tropical Institute, Basel) were performed for diagnosis. In children without clinical and 6 Copyright © 2013 Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited. epidemiological argument for an acute infection, the diagnostic procedure included the same serological tests with the optional use of PCR in Barcelona. In case of proven infection, patients underwent full clinical assessment, including a 12-leads ECG with a 30 seconds DII strip and an echocardiogram allowing for the staging of the disease. D The ECG was also performed annually during follow-up. Staging TE We staged the infection according to the WHO guidelines.2 Newborns of T. cruzi seropositive mothers or older children with epidemiological arguments in favor of a recent (<2 months) exposure to T.cruzi and presenting with positive parasitological tests were considered having an EP acute infection. All others were considered being in the chronic phase of the infection. The indeterminate form of the chronic phase was diagnosed in presence of positive serological tests, normal ECG and echocardiogram and in absence of clinical signs or symptoms evocative of C organ complications. The diagnosis of chronic Chagas disease with cardiac or digestive complication was made in presence of characteristic symptoms or clinical signs confirmed by C radiological exams and after thorough clinical investigations excluding alternative etiologies. A Treatment, follow-up and assessment of cure Anti-parasitic therapy, either nifurtimox 10mg/kg/day or benznidazole using different protocols (8-10 mg/kg/day in Barcelona; 10 mg/kg/day in children below 12 years and 5 mg/kg/day in older children with a maximum dose of 300 mg/day in Geneva), was given under close monitoring for 60 days. All efforts were put to provide an annual clinical and serological followup to assess the response to treatment as recommended.2 Healthcare workers made all due efforts 7 Copyright © 2013 Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited. to contact families not presenting to their follow-up appointments. Cure was determined by two negative serological tests after treatment. Management of other family members In presence of an index case (mother or infant), siblings and relatives were offered the D opportunity to undergo a screening test. Mothers and other infected family members were then managed according to recommendations.2,17 This paper only presents and discusses results TE pertaining to the infected children. Statistics EP We performed simple descriptive statistical analysis and compared groups using Student’s t or Mann-Whitney U tests for continuous variables and Chi-square or Fisher's exact tests for categorical variables, according to their distribution. P-values less than 0.05 were considered C RESULTS C significant. All analyses were performed using SPSS 19.0 (IBM Corp., Armonk, NY). Demographic and clinical characteristics A Forty-five children, all from Latin American origin, 35 in Spain and 10 in Switzerland have been diagnosed with T. cruzi infection in the two Hospitals (Table 1). Children were aged 1 month to 18 years at time of diagnosis. They originated from Bolivia (n=41), Argentina (n=3) and Nicaragua (n=1). 18 (40%) were born in Europe and 27 (60%) in Latin America. Two children (4.4%) were diagnosed during the acute phase and the remaining 43 (95.6%) were in the chronic phase of the infection. One (2.2%) child, a 9-year-old girl from Bolivia, was suffering from the 8 Copyright © 2013 Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited. digestive form of the chronic infection in presence of a megaesophagus confirmed by characteristic imaging and endoscopic exams. All others were in the indeterminate form of the chronic phase. No child presented or developed symptoms or ECG alteration suggestive of cardiac complication during the follow-up period. Besides the two cases responding to the criteria of an acute congenital infection, trans-placental transmission was the route of infection D for those children born in Europe who never travelled abroad. For those born in Latin America, this was also the most likely route although vectorial transmission could not be formerly ruled TE out. Treatment EP All children received anti-parasitic treatment, three of whom in their country of origin and one in another hospital in Barcelona. Of the forty-one treated in our two Hospitals, thirty-five (85.4%) received benznidazole, five (12.2%) nifurtimox, and one (2.4%) both drugs consecutively. C Thirteen (31.7%) presented one adverse event (AE), while two (4.9%) had two. The most frequent AEs were skin rash (n=10, 24.4%), anorexia or insufficient weight gain (n=6, 14.6%), C and anemia (n=1, 2.4%). There were two (4.9%) treatment interruptions due to drug intolerance. The first case followed a generalized rash appearing at day 13 after benznidazole initiation, A leading to definite treatment interruption. The second followed a nifurtimox-related generalized rash appearing at day 8, leading to a switch to benznidazole without complication. In other patients with rash, antihistaminic use and/or transient anti-parasitic treatment dose reduction were effective in alleviating symptoms without the need for treatment interruption. The occurrence of adverse events was neither associated with the type of drug (p=1) nor with age (p=0.14). 9 Copyright © 2013 Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited. Follow-up and assessment of cure Serological follow up at 2 years was possible in 29 children (64.4%). In 8 cases, the follow-up serology is not available yet and 8 children were lost to follow-up after treatment. At 2 years, five patients (17.2%) presented negative serology indicating definitive cure and twenty-four (82.8%) still presented positive results. Of those, 17 (58.6%) showed a serological titer reduction D less than 50% compared to pre-treatment levels and 7 (24.1%) had a >50% titer reduction. When comparing cured with not cured children, there was no significant statistical difference in origin TE (Bolivia versus other South American countries, p=0.32), gender (p=0.34), type of drug received (p=0.17), and PCR positivity at time of diagnosis (p=0.48). The only factor associated with cure was the age at diagnosis and treatment (p=0.008). All infants (n=4) treated before one year of age was cured. C DISCUSSION EP age were cured, whereas only 1 (4.2%) out of 24 children diagnosed and treated after one year of We present the first series of cases of pediatric Chagas disease diagnosed and managed outside C Latin America, which attests that T. cruzi infection is an emergent health issue among children in Europe. We found that most children tolerated treatment well but that the cure rate two years A after treatment was low. Moreover we experienced difficulties in adequately following-up this immigrant and vulnerable population over years. Our data add to previous studies illustrating the emergence of Chagas disease in adult immigrant populations in Europe and about its vertical transmission outside Latin America.11 Currently, there is no information about the number of children infected in Europe. Epidemiological models 10 Copyright © 2013 Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited. showed that pediatric cases could include 20 to 184 congenitally infected newborns and 474 to 919 infected adoptees born in Latin America in 2009 but we don’t know how many older children born in Latin America and infected with T. cruzi infection reside in European countries following early age migration.6 Given the current migration dynamics and the indolent course of the disease during the initial decades after infection, it can be presumed that a substantial number D of older children and teenagers living in Europe host undetected T.cruzi infection and present risks of complication for the medium term. Epidemiological evaluation is further hampered by TE the unknown number of undocumented children at risk and by the fact that Latin American adoptees are a poorly studied group. In Spain, between 1998 and 2009, 7359 adoptees originated from countries at risk for Chagas disease, representing 17.2 % of all international adoptees.18 In EP Switzerland, between 1979 and 2008, 5043 children born in endemic countries were adopted, accounting for 25.7% of all foreign-born adoptees.19 In absence of systematic screening, it is likely that a number of adoptees are currently infected, which calls for enhanced attention for this C group. Taking a life-long perspective, economic analysis showed that Chagas disease incurred high C costs to societies in endemic and non-endemic regions.20 On the other hand, pre-natal screening in non-endemic countries, even in situation of low prevalence and low transmission rate, has A been shown to have a favorable cost-benefit ratio. 21 Therefore, there is an urgent need for accrued public health and clinical attention to Chagas disease in children living in Europe and to the development of appropriate interventions to tackle health and economic risks pertaining to the long-term complications of the infection and to its unnoticed transmission. 11 Copyright © 2013 Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited. All children at the acute and chronic phase were asymptomatic at time of diagnosis except one child previously diagnosed in Bolivia who already had developed the digestive form of the chronic phase. There is no similar data outside Latin America allowing for comparison. In Latin America, it is estimated that less than 5% of congenitally infected infants develop Chagas disease-related symptoms during the acute phase.2 Further longitudinal studies are required to TE infected children living outside area with risk of reinfection. D more precisely assess the development and the Chagas disease-related health outcomes of All children but one could finish the 60-days treatment and they presented relatively low rates of adverse events. This is in sharp contrast with the poor tolerance to benznidazole and nifurtimox EP found in adults, leading to frequent treatment interruptions.22,23 This represents a strong argument in favor of deploying efforts to detect and treat cases as early as possible. Current therapeutic recommendations state that treatment should be provided to all infected newborns, children and adolescents less than 18 years of age, irrespective of the stage of the disease.2,17 Two drugs, C nifurtimox and benznidazole, are currently available and offer similar efficacy in children.24,25 C Yet, the recently available benznidazole pediatric formulation will likely facilitate treatment of A young children, making of it the first-line option. We found an overall strikingly low cure rate compared to data from Latin America.26,27 This may be explained by the fact that most children with serological follow-up were probably already infected for several years. Indeed, cure in children, as attested by conversion to negative serological results after treatment, has been shown to be inversely proportional to the duration of infection.24,28 A second explanation may pertain to the natural prolonged latency before return to 12 Copyright © 2013 Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited. negative serology after treatment and therefore to the need for a prolonged serological follow-up, as shown in adults treated decades after the initial infection and presenting long-lasting humoral responses.29 This might be illustrated by the fact that children who still tested positive after 2 years of follow-up had lower serological titers as compared to pre-treatment values, suggesting a possible favorable ongoing outcome as recently proposed by some authors.30 In absence of D consensus on that issue, there is a need for further research on the clinical meaning of decreasing antibody titers after treatment in children living in non-endemic countries. More studies are also TE needed to better assess treatment efficacy in children in non-endemic countries and to understand the factors associated with treatment failure. EP Following-up mobile and vulnerable immigrant families over years was a major challenge for our two Hospitals. The consequent rate of loss to follow-up represents a limitation of our study. In absence of specific investigation, we cannot provide precise explanations but mobility within C and between countries in Europe in search of better economic opportunities, the influence of the global financial crisis on the job market, and difficulties to accessing to care due to C administrative reasons are likely factors that would deserve further investigation. A survey in Geneva showed that most immigrants with Chagas disease lived in very disadvantaged A conditions and had to face multiple barriers to access appropriate care.31 This highlights the need for considering the socioeconomic condition in which affected families live when organizing care for Chagas disease patients. It also calls for strengthening coordination between health institutions, as well as between family physician and specialized units, within and across countries over time. 13 Copyright © 2013 Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited. CONCLUSION Considering the available epidemiological information about infection risks in children, the dynamic of T. cruzi transmission in Europe and the experience gathered in our two Hospitals, we suggest screening the following groups of children either systematically or at least in an opportunistic way depending on the local context: a) children born from T. cruzi infected D mothers; b) children of families in which a first or second-degree relative has T. cruzi infection; c) children born or having lived in an area where active vectorial transmission occurs; d) children TE who have received blood or tissue products in Latin America; and e) adoptees originating from an endemic country. In addition, the finding of any pediatric case should entail thorough investigation within the family, including the parents and the siblings. Serologically positive EP children should be informed about not donating blood or other tissues and female teenagers should be informed of the theoretical persistent risk of transmission to their offspring. C Specific attention should be paid to children living in the most vulnerable groups of migrants, such as immigrants without valid residency documents. Finally, the possibility of co-infection C with HIV in the mother and the child should be kept in mind and actively searched for in case of risk factors given the aggravated clinical consequences in that context.32 We acknowledge the A central role of pediatricians in providing children at risk and their families with appropriate information, counseling and testing, and call for more research at clinical and public health levels on the challenges related to the emergence of Chagas disease in children in Europe. Like other neglected diseases, Chagas disease illustrates the necessity to develop comprehensive, collaborative and holistic approaches to provide the optimal health outcome to affected families. This collaboration between two cities in different countries reflects this concern and should serve 14 Copyright © 2013 Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited. as a starting point to further collaborations aiming at improving the management of pediatric Chagas disease in Europe. ACKNOWLEDGEMENT The authors wish to acknowledge the contribution of C. Reis, Dr M. Varcher and A. Mauris in A C C EP TE D identifying, diagnosing and managing the patients. 15 Copyright © 2013 Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited. REFERENCES 1. World Health Organization. Sustaining the drive to overcome the global impact of neglected tropical diseases. Geneva: WHO, 2013. 2. World Health Organization. Control of Chagas disease. Brasilia (Brazil): WHO, 2002 3. Alonso-Vega C, Billot C, Torrico F. Achievements and challenges upon the 2009. PLoS Negl Trop Dis. 2013;7(7):e2304. Moscatelli G, Garcia Bournissen F, Freilij H, Berenstein A, Tarlovsky A, Moroni S, et al. TE 4. D implementation of a program for national control of congenital Chagas in Bolivia: results 2004- Impact of migration on the occurrence of new cases of Chagas disease in Buenos Aires city, Argentina. J Infect Dev Ctries. 2013;7(8):635-7. Schmunis GA, Yadon ZE. Chagas disease: a Latin American health problem becoming a EP 5. world health problem. Acta Trop. 2009;115(1-2):14-21. 6. Basile L, Jansa JM, Carlier Y, Salamanca DD, Angheben A, Bartoloni A, et al. Chagas 2011;16(37). 8. World Health Organization. Chagas disease in Europe. Geneva: WHO, 2010. C 7. C disease in European countries: the challenge of a surveillance system. Euro Surveill. Castro E. Chagas' disease: lessons from routine donation testing. Transfus Med. A 2009;19(1):16-23. 9. Jackson Y, Myers C, Diana A, Marti HP, Wolff H, Chappuis F, et al. Congenital transmission of Chagas disease in Latin American immigrants in Switzerland. Emerg Infect Dis. 2009;15(4):601-3. 10. Munoz J, Portus M, Corachan M, Fumado V, Gascon J. Congenital Trypanosoma cruzi infection in a non-endemic area. Trans R Soc Trop Med Hyg. 2007;101(11):1161-2. 16 Copyright © 2013 Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited. 11. World Health Organization. Control and prevention of Chagas disease in Europe. Report of a WHO Informal Consultation (jointly organized by WHO headquarters and the WHO Regional Office for Europe) Geneva, Switzerland, 17–18 December 2009. Geneva: WHO, 2009. 12. Organizacion Panamericana de la Salud. Estimacion cuantitativa de la enfermedad de Chagas en las Americas. Montevideo, Uruguay: PAHO, 2006 Zulantay I, Apt W, Ramos D, Godoy L, Valencia C, Molina M, et al. The D 13. epidemiological relevance of family study in chagas disease. PLoS Negl Trop Dis. 14. TE 2013;7(2):e1959. Spanish National Institute of Statistics. Estadística de Migraciones. 2013; Available at: http://www.ine.es. Accessed March 31 2013. Munoz J, Coll O, Juncosa T, Verges M, del Pino M, Fumado V, et al. Prevalence and EP 15. vertical transmission of Trypanosoma cruzi infection among pregnant Latin American women attending 2 maternity clinics in Barcelona, Spain. Clin Infect Dis. 2009;48(12):1736-40. Jackson Y, Getaz L, Wolff H, Holst M, Mauris A, Tardin A, et al. Prevalence, clinical C 16. staging and risk for blood-borne transmission of Chagas disease among Latin American migrants 17. C in Geneva, Switzerland. PLoS Negl Trop Dis. 2010;4(2):e592. Bern C, Montgomery SP, Herwaldt BL, Rassi A, Jr., Marin-Neto JA, Dantas RO, et al. A Evaluation and treatment of chagas disease in the United States: a systematic review. JAMA. 2007;298(18):2171-81. 18. Spanish National Institute of Statistics. Adopciones internacionales por países y periodo. 2012; Available at: http://www.ine.es/jaxi/tabla.do?type=pcaxis&path=/t25/a072/a02/l0/&file=c70004.px. Accessed November 11 2012. 17 Copyright © 2013 Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited. 19. Swiss Federal Bureau of Statistics. 2010; Available at: http://www.pxweb.bfs.admin.ch/. Accessed September 5 2012. 20. Lee BY, Bacon KM, Bottazzi ME, Hotez PJ. Global economic burden of Chagas disease: a computational simulation model. Lancet Infect Dis. 2013;13(4):342-8. 21. Sicuri E, Munoz J, Pinazo MJ, Posada E, Sanchez J, Alonso PL, et al. Economic in a non endemic area. Acta Trop. 2011;118(2):110-7. Jackson Y, Alirol E, Getaz L, Wolff H, Combescure C, Chappuis F. Tolerance and safety TE 22. D evaluation of Chagas disease screening of pregnant Latin American women and of their infants of nifurtimox in patients with chronic chagas disease. Clin Infect Dis. 2010;51(10):e69-75. 23. Pinazo MJ, Guerrero L, Posada E, Rodriguez E, Soy D, Gascon J. Benznidazole-related EP adverse drug reactions and their relationship to serum drug concentrations in patients with chronic chagas disease. Antimicrob Agents Chemother. 2013;57(1):390-5. 24. Sosa-Estani S, Segura EL. Etiological treatment in patients infected by Trypanosoma 25. C cruzi: experiences in Argentina. Curr Opin Infect Dis. 2006;19(6):583-7. Urbina JA. Specific chemotherapy of Chagas disease: Relevance, current limitations and 26. C new approaches. Acta Trop. 2009 ;115(1-2):55-68 Yun O, Lima MA, Ellman T, Chambi W, Castillo S, Flevaud L, et al. Feasibility, drug A safety, and effectiveness of etiological treatment programs for Chagas disease in Honduras, Guatemala, and Bolivia: 10-year experience of Medecins Sans Frontieres. PLoS Negl Trop Dis. 2009;3(7):e488. 27. Escriba JM, Ponce E, Romero Ade D, Vinas PA, Marchiol A, Bassets G, et al. Treatment and seroconversion in a cohort of children suffering from recent chronic Chagas infection in Yoro, Honduras. Mem Inst Oswaldo Cruz. 2009;104(7):986-91. 18 Copyright © 2013 Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited. 28. Rassi A, Jr., Rassi A, Marin-Neto JA. Chagas disease. Lancet. 2010;375(9723):1388-402. 29. Jackson Y, Chatelain E, Mauris A, Holst M, Miao Q, Chappuis F, et al. Serological and parasitological response in chronic Chagas patients 3 years after nifurtimox treatment. BMC Infect Dis. 2013;13:85. 30. Viotti R, Vigliano C, Alvarez MG, Lococo B, Petti M, Bertocchi G, et al. Impact of Negl Trop Dis. 2011;5(9):e1314. Jackson Y, Castillo S, Hammond P, Besson M, Brawand-Bron A, Urzola D, et al. TE 31. D aetiological treatment on conventional and multiplex serology in chronic Chagas disease. PLoS Metabolic, mental health, behavioural and socioeconomic characteristics of migrants with Chagas disease in a non-endemic country. Trop Med Int Health. 2012. 17(5):595-603. Almeida EA, Ramos Junior AN, Correia D, Shikanai-Yasuda MA. Co-infection EP 32. Trypanosoma cruzi/HIV: systematic review (1980-2010). Rev Soc Bras Med Trop. A C C 2011;44(6):762-70. 19 Copyright © 2013 Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited. Table 1: Demographic and clinical characteristics of 45 children with Chagas disease in Barcelona, Spain and Geneva, Switzerland. Characteristics Switzerland (N=10) Total (N=45)a n n n (%) 4 1 4 1 month -18 years 1 month – 16 years 1 month – 18 Spain (N=35) Age in years (median) Range 17 Female 18 4 22 (48.9) 33 8 41 (91.1) 1 2 3 (6.7) 1 0 1 (2.2) 1 1 2 (4.4) Chronic indeterminate 33 9 42 (93.3) Chronic digestive 1 0 1 (2.2) Benznidazole 31 4 35 (85.4) Nifurtimox 0 5 5 (12.2) Both 0 1 1 (2.4) Presence of AE 11 4 15 (36.6) Skin rash 6b 4 10b (24.4) Origin Bolivia Argentina Nicaragua Stage of infection C C Acute 6 23 (51.1) TE Male EP Gender D years A Treatment (n=41) Tolerance (n=41) 20 Copyright © 2013 Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited. Insufficient weight gain/ anorexia 6b 0 6b (14.6) Anemia 1 0 1 (2.4) Treatment interruptions 2 0 2 (4.9) 21 3 24 (82.8) ↓ <50% 16 1 17 (58.6) ↓ >50% 5 2 7 (24.1) Negative TE Positive D Serology at 2 year follow-up (n=29) 3 2 5 (17.2) AE: Adverse event. aUnless specified otherwise. bTwo children had skin rash and A C C EP insufficient weight gain 21 Copyright © 2013 Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited. 8. Metabolic, mental health, behavioral and socioeconomic characteristics in migrants with Chagas disease Cet article a été publié dans: Trop Med Int Health. 2012;17(5):595-603 Par: Jackson Y, Castillo S, Hammond P, Besson M, Brawand-Bron A, Urzola D, Gaspoz J-M, Chappuis F. 57 Tropical Medicine and International Health doi:10.1111/j.1365-3156.2012.02965.x volume 00 no 00 Metabolic, mental health, behavioural and socioeconomic characteristics of migrants with Chagas disease in a non-endemic country Yves Jackson1, Sara Castillo2, Perle Hammond2, Marius Besson1, Anne Brawand-Bron1, Diana Urzola1, Jean-Michel Gaspoz1 and François Chappuis3 1 Department of Community Medicine, Primary Care and Emergency Medicine, University Hospitals Geneva, Switzerland 2 Geneva Medical School (University), Geneva, Switzerland 3 Division of International and Humanitarian Medicine, University Hospitals Geneva, Switzerland Abstract objectives Chronic Chagas disease causes cardiopathy in 20–40% of the 8–10 million people affected. The prevalence of atherogenic factors increases rapidly in Latin America. Somatic, mental, behavioural and social characteristics of the 80 000 Latino migrants with Chagas disease in Europe are not known. We postulate that they may accumulate these factors for poor health – notably cardiovascular-outcomes. methods This study took place at the Geneva University Hospitals in 2011. Latin American migrants with Chagas disease diagnosed in Geneva since 2008 were contacted. Interviews and blood tests assessed behavioural, socioeconomic, metabolic and cardiovascular factors. results One hundred and thirty-seven patients (women: 84.7%; median age: 43 years) with chronic Chagas disease were included in the study. The majority were Bolivians (94.2%), undocumented (83.3%), uninsured (72.3%) and living below the Swiss poverty line (89.1%). Prevalence of obesity was 25.5%, of hypertension 17.5%, of hypercholesterolemia 16.1%, of impaired fasting glucose 23.4%, of diabetes 2.9%, of metabolic syndrome 16.8%, of anxiety 58.4%, of depression 28.5%, of current smoking 15.4% and of sedentary lifestyle 62.8%. High (>10%) 10-year cardiovascular risk affected 12.4%. conclusions Latin American migrants with Chagas disease accumulate pathogenic chronic conditions of infectious, non-transmissible, socioeconomic and behavioural origin, putting them at high risk of poor health, notably cardiovascular, outcomes. This highlights the importance of screening for these factors and providing interventions to tackle reversible disorders; facilitating access to care for this hard-toreach population to prevent delays in medical interventions and poorer health outcomes; and launching prospective studies to evaluate the long-term impact of these combined factors on the natural course of Chagas disease. keywords Chagas disease, migrants, Europe, risk factors, prevention, cardiovascular disease Introduction Major social and demographic transformations are occurring in Latin America: alongside with rapid urbanization, life expectancy steadily rises and the main burden on population health is shifting from infectious diseases to chronic non-communicable disorders (Andrade 2009). The increase in overweight prevalence in Latin America has been among the world’s fastest since 1980, twice the rate observed in other parts of the world (Finucane et al. 2011). Southern and tropical regions of Latin America display among the world’s fastest increase in hypertension ª 2012 Blackwell Publishing Ltd prevalence in men (Danaei et al. 2011a). The same is true for diabetes in both men and women (Danaei et al. 2011a,b). The diabetes and obesity epidemic and the resulting cardiovascular diseases are expected to heavily impact on population health and economics in this region. Eight to ten million people are infected with Trypanosoma cruzi, the causative agent of Chagas disease (PAHO 2006). The majority lives in Central and South (Latin) America, where the disease is present in 21 countries. After decades, chronic T. cruzi infection causes cardiac damage in 20–40%, resulting in premature mortality and in a serious public health burden, with an 1 Tropical Medicine and International Health volume 00 no 00 Y. Jackson et al. Health of migrants with Chagas disease in Europe estimated 667 000 DALYs lost each year (PAHO 2006; Rassi et al. 2010). Arrhythmia, heart failure and cardioembolic events account for premature morbidity and mortality (Rassi et al. 2010). In recent years, the distribution of the disease has evolved following the adaptation of vectors to urban settings, ecological changes and global migrations, causing new public health challenges (Coura & Vinas 2010). Millions of people have left endemic countries towards North America, Western Pacific Region and Europe, which harbors 3 millions migrants at risk of carrying Chagas disease (Gascon et al. 2009). Consequently, imported cases and transmission of Chagas disease have been increasingly reported in Western Europe where more than 80 000 Latin American migrants are infected (Jackson et al. 2009a,b, 2010a,b; WHO 2009). Migrants with Chagas disease in Europe are predominantly women of child-bearing age, with 11.3– 22.5% already affected by T. cruzi cardiopathy (Munoz et al. 2009; Jackson et al. 2009a,b, 2010a,b; Perez-Ayala et al. 2011). Non-medical factors such as poor living conditions and socioeconomic inequalities are massive contributors to global premature morbidity and mortality (Wilkinson & Marmot 2003). Migrants are particularly exposed, considering their social and mental health vulnerability, and the risk of not accessing optimal medical care. Therefore, Latin American migrants in Europe presenting with the chronic form of Chagas disease may accumulate chronic risks for cardiac disease and adverse health outcomes from infectious, metabolic, psychological and social origins. If so, this could impact the usual prognosis of patients with chronic Chagas and thus require specific management to prevent adverse outcomes. So far, recommendations and experts opinions have favored a disease-centered approach for the clinical management of Chagas disease patients, focusing on the infectious component and its complication and giving low importance to associated multidimensional factors (WHO 2002; Rassi et al. 2010). We aimed to evaluate the presence of cumulative metabolic, mental health, behavioural and socioeconomic factors in a cohort of Latin American migrants with Chagas disease in Geneva, Switzerland. As hypothesized, we found high prevalence of chronic adverse factors for global, notably cardiovascular, health in this cohort of migrants with Chagas disease. Methods Ethical statement This study was approved by the ethical board for medical research of the Geneva University Hospitals. Written informed consent was obtained from all participants. 2 Study design and setting This cross-sectional study took place at the Geneva University Hospitals, which are the reference centre for the clinical management of Chagas disease in the Geneva state. Migrants’ communities and support groups were informed about the study. Participants Between January and June 2011, all adult patients with Chagas disease diagnosed in Geneva since 2008 were invited to participate. The diagnosis of Chagas disease was based on two positive serological tests using different methods, as recommended by WHO. Inclusion criteria were age > 15 years and signature of the informed consent form (with a parent signature for 16–18-year-old individuals). Patients were individually contacted by phone. In the event of five unanswered phone calls, investigators sent an invitation letter to the last recorded address. All study documents were available in Spanish. Data collection and definition Demographic, behavioural and socio-economic variables were collected by multilingual (French, Spanish) investigators in a one-to-one setting at the Geneva University Hospitals. Three or five-item Likert scales were used to collect some categorical data (e.g. job satisfaction, behavioural modification). Investigators recorded information on economic items (e.g. income, remittance) based on oral information without requesting documentary evidence. Weight modification following migration was assessed by comparing the weight measured during the study consultation with the weight last measured before the participant left his ⁄ her home country. To address a possible memory bias, we used a proxy by comparing the current self-assessed and measured weights in a subsample of 38 consecutive participants. Results showed no significant differences (68.5 vs. 68.6 kg). Screening for anxiety and depression was performed using the Spanish version of Hospital Anxiety and Depression Scale (HADS) (Quintana et al. 2003). This questionnaire investigates both dimensions with seven items each, with a maximal score of 28 points per dimension. The threshold for a positive screening was 8 points in both dimensions (Hermann 1997). Investigators were available for help if the subject faced difficulties in reading or understanding questions. Anthropomorphic measures were collected in participants wearing light clothes after removing shoes. Blood pressure was measured three times consecutively on the left ª 2012 Blackwell Publishing Ltd Tropical Medicine and International Health volume 00 no 00 Y. Jackson et al. Health of migrants with Chagas disease in Europe arm with a calibrated automated Omron M7 device while the patient was sitting in a calm environment, at least 20 min after the beginning of the consultation. The median systolic and diastolic values were used for the diagnosis of hypertension. Staging of Chagas disease was assessed by performing a 12-lead electrocardiogram (ECG) with a 30-s DII strip unless a recent (< 12 months) similar ECG was available in the patients’ medical file. Presence of Chagas disease typical ECG abnormalities (right bundle-branch block, atrio-ventricular blocks, left anterior fascicular block, supraventricular or ventricular premature beats, ST-T changes, abnormal Q wave and low QRS voltage) in absence of other documented cause of cardiopathy was considered diagnostic for T. cruzi cardiopathy. Digestive involvement, which had been previously diagnosed in one participant, was not actively searched for in this study. Fasting serum glucose and cholesterol levels were measured in early morning according to standard laboratory methods in use at the Geneva University Hospitals. Ten-year risk of cardiovascular disease was determined using the male and female version of the Framingham 10-year risk calculator (D’Agostino et al. 2008). This Table 1 Diagnostic criteria for metabolic, behavioural, anthropomorphic and mental health disorders in patients with Chagas disease in Geneva, Switzerland composite measure includes sex, age, systolic blood pressure, total cholesterol, HDL cholesterol, current anti-hypertensive therapy, cigarette smoking and diabetes. The score being validated for individuals aged 30 onwards, we plotted younger participants (n = 8, aged 25–29) as being 30. Ten-year risk was graded as low if <5%, intermediate if between ‡5% and <10%, and high if ‡10%. Diagnostic criteria for metabolic, behavioural, anthropomorphic and mental health items are summarized in Table 1. To adapt to participants’ limited availability, fasting blood tests were only done once. All results were communicated to participants. In case of detection of new health problem(s), participants were referred for clinical management to the Division of Primary Care Medicine of the Geneva University Hospitals, or to their general practitioner. Statistics Results are presented as proportions with 95% confidence intervals, and continuous data are presented as median and Criteria for diagnosis High blood pressure Systolic pressure or Diastolic pressure or Anti-hypertensive treatment Hypercholesterolemia Total fasting serum cholesterol or Hypolipemiant treatment Impaired fasting Fasting serum glucose glucose Diabetes Fasting serum glucose or Random serum glucose or Antidiabetic treatment Metabolic syndrome ‡3 of the following items: Waist circumference Serum triglyceride Serum HDL-cholesterol Blood pressure Fasting serum glucose Self-reported diabetes Abdominal obesity Waist circumference Overweight BMI Obesity BMI Smoking Physical activity Anxiety Depression HADS anxiety subscale HADS depression subscale Values >140 mmHg >90 mmHg >6.5 mmol ⁄ l ‡ 5.6 to <7 mmol ⁄ l ‡7 mmol ⁄ l ‡ 11.1 mmol ⁄ l ‡102 cm (m); ‡88 cm (f) ‡ 1.7 mmol ⁄ l <1.03 mmol ⁄ l (m); <1.29 mmol ⁄ l (f) ‡130 ⁄ 85 mmHg ‡6.1 mmol ⁄ l ‡102 cm (m); ‡88 cm (f) ‡25 to <30 ‡30 >1 cigarette in last 30 days >1 weekly period of physical activity inducing above the average sweating >8 >8 Abbreviations: BMI: body mass index (meter of body surface ⁄ kg2); HADS: Hospital Anxiety and Depression Scale; m: male; f: female. ª 2012 Blackwell Publishing Ltd 3 Tropical Medicine and International Health volume 00 no 00 Y. Jackson et al. Health of migrants with Chagas disease in Europe range. Statistics were performed using Stata 11 Software (StataCorp LP, College Station, TX 77845). Results Participants Of 222 eligible patients with Chagas disease diagnosed since 2008, 137 (61.7%) were included in the study; 67 (30.1%) did not answer to phone calls and to the invitation letter, 9 (4.1%) refused to participate, and 9 (4.1%) were in Latin America during the study period. Most participants were Bolivians women of child-bearing age who had lived in Switzerland for 7 years (Table 2). Participants did not differ in origin, age and sex from the 85 eligible patients who were not included. All participants were in the chronic stage of Chagas disease: 111 (81%) were in the indeterminate phase, 25 (18.3%) had signs of T. cruzi cardiopathy and 1 (0.7%) had digestive tract involvement. Table 2 Demographic characteristics of 137 patients with Chagas disease in Geneva, Switzerland Subcategory Gender Origin Age Age groups Years outside Latin America Civil status Children *Denominator n = 72. Denominator n = 116. 4 Female Male Bolivia Argentina Brazil 16–30 31–40 41–50 51–60 60+ Married or in couple Live away from partner* Single Widow Divorced 0 1 2 3 4-7 Living away from children* n (%) or median (range) 116 21 129 4 4 43 9 43 54 28 3 7 (84.7) (15.3) (94.2) (2.9) (2.9) (25–69) (6.6) (31.4) (39.4) (20.4) (2.2) (3–31) 72 (52.6) 24 (33.3) 28 9 28 21 14 32 38 32 49 (20.4) (6.6) (20.4) (15.3) (10.2) (23.4) (27.7) (23.4) (42.2) Actual health self assessment When asked about their current global health, 2 (1.5%) participants rated it as very poor, 8 (5.8%) as poor, 78 (57%) as average, 43 (31.4%) as good and 6 (4.4%) as very good. In comparison with pre-migration status, 34 (24.8%) rated their current global health as worse, 44 (32.1%) as similar and 59 (43.1%) as better. Socioeconomic characteristics A large majority of participants were living without residency permit (83.3%) and health insurance (72.3%) in Switzerland (Table 3). Whereas most participants were employees or running a small business at home, 81.2% worked as domestic employees in Geneva under unsatisfactory conditions. Only 10.9% were earning a monthly income above the poverty threshold and 54% declared a poorer social situation than in their home country. Participants declared frequent communication problems with health professionals and 65.7% had to share a bedroom with two or more persons. Behavioural characteristics Weight control was markedly disrupted with 59.1% and 40.1% having gained or lost a mean of 5 kg since migration, respectively (Table 4). A large majority lacked regular physical activity (62.8%), a situation identical to (26.3%) or worse (41.6%) than that in Latin America. Sleep quantity and quality had fallen after migration. Few were current smokers (15.3%) and 47.4% declared an increased daily fruit and vegetable intake. Metabolic and mental health disorders Overweight (74.5%), obesity (25.5%) and excessive waist circumference (63.5%) were highly prevalent (Table 5). High prevalence of chronic non-communicable disorders such as hypertension (17.5%), high cholesterol (16.1%), and impaired fasting glucose (23.4%) were associated with a high rate of metabolic syndrome (16.8%), whereas diabetes was present in 2.9%. We found high rate of positive screening for depression (28.5%) and anxiety (58.4%). Cardiovascular risk Among the 137 participants, median 10-year risk for cardiovascular disease was 2.8% (range: 0.2–49.8). When categorized according to severity, 96 (70.1%), 24 (17.5%) and 17 (12.4%) participants were at low, intermediate and ª 2012 Blackwell Publishing Ltd Tropical Medicine and International Health volume 00 no 00 Y. Jackson et al. Health of migrants with Chagas disease in Europe Table 3 Socio-economic characteristics of the 137 patients with Chagas disease in Geneva, Switzerland Subcategory Legal status in Switzerland Access to care in Switzerland Ability to communicate in French* Difficulty communicating adequately with health professionals in Switzerland Number of persons sharing the participants bedroom Occupation in Latin America Occupation in Switzerland Job satisfaction in Latin America* Job satisfaction in Switzerland Number of current employers Income (past month) Income below poverty lineà Remittance (past month) Number of beneficiary in home country Social situation in Switzerland (global) compared to pre-migration status* n (%) or median (range) No residency permit Legal resident No health insurance Have health insurance Very poor Poor Average Good Very good Yes No 110 27 99 38 27 33 57 9 11 80 57 <2 2–3 >3 At home ⁄ unemployed Student Employee Small business High qualification job At home ⁄ unemployed Student Employee Domestic employee Small business High qualification job Very poor Poor Average High Very high Very poor Poor Average High Very high 0–1 2–3 >3 47 40 50 14 7 43 66 7 2 0 128 111 5 2 4 6 23 62 42 10 17 40 57 13 74 47 16 1784 122 412 3 63 30 44 Better Equivalent Worse (83.3) (16.7) (72.3) (27.7) (19.7) (24.1) (41.6) (6.6) (8) (58.4) (41.6) (34.3) (29.2) (36.5) (10.2) (5.1) (31.4) (48.2) (5.1) (1.4) (0) (93.4) (81.2) (3.6) (1.4) (2.8) (4.4) (16.8) (45.3) (30.7) (7.3) (12.4) (29.2) (41.6) (9.5) (54) (34.3) (11.7) (0–7058) (89.1) (0–2352) (0-10) (46) (19.1) (34.9) *Self-assessed on a 3- or 5-item Lickert scale. US dollar. Exchange rate on September 29, 2011: 1 Swiss Franc = 0.85 US dollar. àPoverty line defined as £60% of the median national income (2010: USD 3105). high risk, respectively. In the low risk group, 15 (15.6%) participants presented electrocardiographic signs of T. cruzi cardiopathy, compared to 10 (24.4%) in the intermediate and high risk groups. ª 2012 Blackwell Publishing Ltd Discussion This study shows the coexistence of chronic metabolic, mental health and behavioural disorders with very poor 5 Tropical Medicine and International Health volume 00 no 00 Y. Jackson et al. Health of migrants with Chagas disease in Europe Table 4 Behavioural characteristics of the 137 patients with Chagas disease in Geneva, Switzerland Subcategory n (%) or median (range) Weight modification following migration Weight change Weight change 136 (99.3) No change 1 (0.7) Weight gain 81 (59.9) Number of 5.6 (0.4–33) extra kg Weight loss 55 (40.1) Number of 5 (0.4–27) lost kg Physical activity in Active 51 (37.2) Switzerland* Sedentary 86 (62.8) Physical activity compared Decrease 57 (41.6) to Latin America Equivalent 33 (24.1) Increase 47 (34.3) Consumption of fruit and Decrease 36 (26.3) vegetables compared to Equivalent 36 (26.3) Latin America Increase 65 (47.4) Tobacco smoking In Switzerland 21 (15.3) In Latin America 38 (27.7) Sleep quality in Switzerland Decrease 11 (8) compared to Latin America Equivalent 59 (43.1) Increase 67 (48.9) Weekly number of nights of less Decrease 20 (14.6) than 7 hours compared to Equivalent 35 (25.5) Latin America Increase 82 (59.9) *Defined as any physical activity inducing increased body heat or sweating at least once weekly. socioeconomic conditions in a cohort of young-to-middle aged Latin American migrants suffering the chronic form of Chagas disease, and resulting in a substantial risk for adverse health – notably cardiovascular – outcomes. Excessive waist circumference Overweight or obesity Obesity High blood pressure High serum cholesterol Impaired fasting glucose Diabetes Metabolic syndrome Depression Anxiety The high prevalence of chronic non-communicable disorders, such as excessive waist circumference, overweight and obesity among study participants is in accordance with the rapidly growing trends reported in Latin America. The prevalence of obesity reached 23% in urban dwellers in Latin America; in Bolivia, the country most affected by Chagas disease, 10% of adult men and 27.1% of women were obese in 2009 (Schargrodsky et al. 2008; WHO 2011). Notably, 59.1% of participants in our study had put on weight since migrating to Europe, with a mean gain of 0.8 kg ⁄ year. Behavioural changes may explain this finding, as 62.8% participants declared no regular physical activity in Switzerland, with only one third reporting increased energy expenditure after migrating, which confirms findings in Bolivian migrants in Spain (Posada et al. 2011). Posada et al. (2011) have shown that diet modifications after migration in Bolivian migrants are complex and frequently associated with changes in bowel habits. These are intimately connected to sociocultural, professional and economic factors. In contrast to migrants in Spain, half of the participants (47.3%) in Geneva reported increased daily fruit and vegetable intake as compared to Latin America. Of note was the decreasing proportion of smokers after migration. Overall, these findings are of concern, as abdominal obesity is associated with higher risk of cardiovascular, metabolic, osteoarticular, and cancer related morbidity and mortality (Finucane et al. 2011). In contrast to high blood pressure, the prevalence of hypercholesterolemia has been stable in Latin America since 1980 (Danaei et al. 2011; Farzadfar et al. 2011). We found prevalences of 16.1% for hypercholesterolemia and of 17.5% for hypertension, comparable to rates reported from urban areas of Latin America (Schargrodsky et al. 2008). In Brazil, 20% and 57% of n (%) 95% confidence interval Diagnosis in Switzerland n (%) 87 102 35 24 22 32 4 23 39 80 55.3–71.7 67–81.8 18.2–32.9 11.1–24 9.8–22.3 16.2–30.5 0.6–5.8 10.5–23.1 20.8–36.1 50–66.8 * 19 ⁄ 102 3 ⁄ 35 21 ⁄ 24 20 ⁄ 22 31 ⁄ 32 4⁄4 23 ⁄ 23 35 ⁄ 39 73 ⁄ 80 (63.5) (74.5) (25.5) (17.5) (16.1) (23.4) (2.9) (16.8) (28.5) (58.4) Table 5 Prevalence of metabolic and mental health disorders including the proportion of diagnosis made in Switzerland in 137 patients with Chagas disease (18.6) (8.6) (87.5)à (90.9)à (96.9)à (100)à (100)à (89.7)à (91.3)à *Data not available: waist circumference in home country not known. BMI in Latin America calculated with reported last weight before leaving home country. àPreviously not known by patient and diagnosed during the study or since arrival in Switzerland. 6 ª 2012 Blackwell Publishing Ltd Tropical Medicine and International Health volume 00 no 00 Y. Jackson et al. Health of migrants with Chagas disease in Europe older Chagas disease patients were suffering dyslipidemia and hypertension, respectively (De Angelis Alves et al. 2009). Whereas impaired fasting glucose was highly prevalent in our cohort (23.4%), diabetes affected only a small proportion of individuals (2.9%). This may be explained by the overall young age of participants. Nevertheless, the 16.8% prevalence of metabolic syndrome, which is associated with a 3.5–5.2-folds increase in the risk of diabetes, highlights the need for behavioural and medical intervention (Ford et al. 2008). Chagas disease is a chronic infection resulting in a 20– 40% risk of cardiopathy over decades. Its pathogenesis includes immunologically mediated tissue damages, autonomic dysfunction and coronary microvascular abnormalities (Rassi et al. 2010). Metabolic syndrome is associated with a 65% and 27% increase in cardiovascular risk and all cause mortality, respectively (Ford 2005). We postulate that persistent exposure to atherogenic factors secondary to chronic non-communicable diseases could add to the T. cruzi chronic infection to produce myocardial damage and increase risk for cardiovascular events on the long term. At the time of the study, 18.3% participants already suffered T. cruzi cardiac damages and most were at low to intermediate risk for cardiovascular disease. This can be explained by protective factors such as young age and pre-menopausal status. Further studies are needed to better evaluate the impact of the coexistence of these factors on the pathogenesis, evolution and prognosis of T. cruzi cardiopathy. We found a consequent proportion of subjects with positive screening for anxiety (58.4%), depression (28.5%) and altered sleep duration (59.9%) and quality (48.9%). As no physiopathology rational supports a relation between Chagas disease and poor mental health, this association is probably mediated by socioeconomic factors. A study in Brazil found depressive symptoms in 40.9% of 110 patients with advanced Chagas disease and the presence of chronic complication of the infection put patients at higher risk (Ozaki et al. 2010). Poor mental health, chronic stress and insufficient quantity and quality of sleep negatively affect mental, metabolic and cardio-vascular health, resulting in increased mortality (De Hert et al. 2009; Marmot 2009; Cappuccio et al. 2010). Concomitant emotional distress and sleep disturbance might also alter patients’ ability to tolerate antiparasitic treatment. Indeed, nifurtimox has significant neuropsychiatric effects in adults resulting in a high proportion of premature treatment interruption (Jackson et al. 2010a,b). Therefore, poor mental health in chronic Chagas disease patient may impact both on the global health prognosis and on the ability to undergo antiparasitic treatment. ª 2012 Blackwell Publishing Ltd This study shows that Chagas disease affects a vulnerable group of population in Europe. Most participants were living below the national poverty line, lacked residency permit and could not access to the national health care system through the mandatory health insurance. These factors, associated with poor housing and working conditions, low job satisfaction, social exclusion and heavy economical burden, are known to combine towards increased morbidity and mortality both at individual and at population levels (Ferrie et al. 2002; Wilkinson & Marmot 2003). The Swiss poverty line is, alongside with cost of living, higher than in most other European countries. Therefore, migrants incomes need to be evaluated both in terms of absolute and relative poverty. Of note, most participants were women, a constant finding in different studies done in Europe so far, that highlight the need to tailor intervention strategies to this group (Munoz et al. 2009; Jackson et al. 2010a,b). In Latin America, the association of Chagas disease with poverty and the impact of social determinants on adverse chronic Chagas disease outcome have been thoroughly described (Briceno-Leon & Mendez Galvan 2007; Viotti et al. 2009). This is the first study identifying the socioeconomic disadvantage of migrants with Chagas disease outside Latin America. European countries have different policies regarding migrants’ access to care and to residency permits. Spain is more liberal than other Western European countries, including Switzerland. Still, most vulnerable migrants with Chagas disease experience difficulties and barriers in accessing to optimal quality care and preventive medicine in Western Europe (Jackson et al. 2009a,b). So far, only 4000 of the 80 000 patients in Europe have been properly diagnosed and treated (WHO 2009). In addition, communication problems between patients and health professionals, which are known to adversely affect quality of care, were frequently identified in our cohort (The Institute of Medicine 2002). Our findings can be generalized to other recent Latin American migrants in Europe who are not infected by T. cruzi, as their demographic characteristics are similar to those infected (Jackson et al. 2009a,b; Munoz et al. 2009; Perez-Ayala et al. 2011). These results stress the need for a more comprehensive approach to Chagas disease patients – and other Latin American migrants – than previously proposed, both at clinical and at public health levels (WHO 2009). Specifically, they highlight the need to apprehend this infection, and possibly other parasitic chronic infections such as strongyloidiasis, within the framework of the globally increasing prevalence of non-communicable diseases and of the factors of social, cultural and economic vulnerability related to international migration (Angheben et al. 2011). 7 Tropical Medicine and International Health volume 00 no 00 Y. Jackson et al. Health of migrants with Chagas disease in Europe Our study is purely descriptive and does not aim at identifying a causal relationship between these factors and Chagas disease or the fact of being a Latin American migrant. We acknowledge that these factors are not specific to Latin American migrants with Chagas disease, but more a reflection of the global health of a vulnerable group of population. The relative homogeneity of the cohort constitutes a study limitation, but the characteristics of our participants were comparable to cohorts in Spain and Italy, the most affected countries in Europe (Jackson et al. 2009a,b; Munoz et al. 2009). Another limitation results from the single fasting serum test used for diagnosing glucose metabolism abnormality. As most participants could not afford missing work to attend a second study visit, we directly referred individuals with glucose abnormality to their general practitioner. This is a frequently reported limitation in cross-sectional studies that may contribute to over-estimation of the reported rate of glucose intolerance or diabetes. We acknowledge that migrants’ socioeconomic conditions vary between countries and therefore may influence their global health status. Nevertheless, we believe that our results appropriately reflect the condition of the majority of 80 000 Latin American individuals infected with T. cruzi who recently migrated to Europe. In conclusion, migrants with Chagas disease in Switzerland suffer from pathogenic chronic conditions of infectious, non-communicable, socioeconomic and behavioural origin putting them at high risk of poor health, notably cardiovascular, outcomes and that should modify the traditional disease-centered approach. These findings highlight the importance of (i) screening for these associated factors and providing interventions to tackle reversible disorders, (ii) facilitating access to care for this hard-toreach population to prevent delays in medical interventions and poorer health outcomes and (iii) launching prospective studies to evaluate the long-term impact of these combined factors on the natural course of Chagas disease. Acknowledgement This study was supported by a grant from the Foundation Simon I. Patiño in Geneva, Switzerland. References Andrade F (2009) Estimating diabetes and diabetes-free life expectancy in Mexico and seven major cities in Latin America and the Caribbean. Revista Panamericana de Salud Pública 26(1), 9–16. Angheben A, Anselmi M, Andreoni F, et al. (2011) Stronglyoidiasis and Chagas disease sero-prevalence in a 8 Bolivian community, Italy. Tropical Medicine & International Health 16(S1), 94. Briceno-Leon R & Mendez Galvan J (2007) The social determinants of Chagas disease and the transformations of Latin America. Memórias do Instituto Oswaldo Cruz 102(Suppl 1), 109–112. Cappuccio FP, D’Elia L, Strazzullo P & Miller MA (2010) Sleep duration and all-cause mortality: a systematic review and meta-analysis of prospective studies. Sleep 33(5), 585–592. Coura JR & Vinas PA (2010) Chagas disease: a new worldwide challenge. Nature 465(n7301_supp), S6–S7. D’Agostino RB, Vasan RS, Pencina MJ, et al. (2008) General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation 117(6), 743–753. Danaei G, Finucane MM, Lin JK, et al. (2011a) National, regional, and global trends in systolic blood pressure since 1980: systematic analysis of health examination surveys and epidemiological studies with 786 country-years and 5.4 million participants. Lancet 377(9765), 568–577. Danaei G, Finucane MM, Lu Y, et al. (2011b) National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. Lancet 377(9765), 31–40. De Angelis Alves R, De Almeida E, Da Silva Wanderley J & Guariento M (2009) Chagas’ disease and ageing: the coexistence of other chronic diseases with Chagas’ disease. The Revista da Sociedade Brasileira de Medicina Tropica 42(6), 622–628. De Hert M, Dekker JM, Wood D, Kahl KG, Holt RI & Moller HJ (2009) Cardiovascular disease and diabetes in people with severe mental illness position statement from the European Psychiatric Association (EPA), supported by the European Association for the Study of Diabetes (EASD) and the European Society of Cardiology (ESC). European Psychiatry 24(6), 412–424. Farzadfar F, Finucane MM, Danaei G, et al. (2011) National, regional, and global trends in serum total cholesterol since 1980: systematic analysis of health examination surveys and epidemiological studies with 321 country-years and 3.0 million participants. Lancet 377(9765), 578–586. Ferrie JE, Shipley MJ, Stansfeld SA & Marmot MG (2002) Effects of chronic job insecurity and change in job security on self reported health, minor psychiatric morbidity, physiological measures, and health related behaviours in British civil servants: the Whitehall II study. Journal of Epidemiology & Community Health 56(6), 450–454. Finucane MM, Stevens GA, Cowan MJ, et al. (2011) National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants. Lancet 377(9765), 557–567. Ford ES (2005) Risks for all-cause mortality, cardiovascular disease, and diabetes associated with the metabolic syndrome: a summary of the evidence. Diabetes Care 28(7), 1769–1778. Ford ES, Li C & Sattar N (2008) Metabolic syndrome and incident diabetes: current state of the evidence. Diabetes Care 31(9), 1898–1904. ª 2012 Blackwell Publishing Ltd Tropical Medicine and International Health volume 00 no 00 Y. Jackson et al. Health of migrants with Chagas disease in Europe Gascon J, Bern C & Pinazo MJ (2009) Chagas disease in Spain, the United States and other non-endemic countries. Acta Tropica 115(1–2), 22–27. Hermann C (1997) International experiences with the Hospital Anxiety and Depression Scale: a review of validation data and clinical results. Journal of Psychosomatic Research 42(1), 17–41. Jackson Y, Angheben A, Carrilero Fernandez B, et al. (2009a) Management of Chagas disease in Europe. Experiences and challenges in Spain, Switzerland and Italy. Bulletin de la Société de Pathologie Exotique 102(5), 326–329. Jackson Y, Myers C, Diana A, et al. (2009b) Congenital transmission of Chagas disease in Latin American immigrants in Switzerland. Emerging Infectious Diseases 15(4), 601–603. Jackson Y, Alirol E, Getaz L, et al. (2010a) Tolerance and safety of nifurtimox in patients with chronic chagas disease. Clinical Infectious Diseases 51(10), e69–e75. Available: http://cid. oxfordjournals.org/content/51/10/e69.full.pdf+html. Accessed 2011 July 15 Jackson Y, Getaz L, Wolff H, et al. (2010b) Prevalence, clinical staging and risk for blood-borne transmission of Chagas disease among Latin American migrants in Geneva, Switzerland. PLoS Neglected Tropical Diseases 4(2), e592. http://www.plosntds. org/article/info%3Adoi%2F10.1371%2Fjournal.pntd. 0000592. Accessed 14 ⁄ 7 ⁄ 2011. Marmot M (2009) Closing the health gap in a generation: the work of the Commission on Social Determinants of Health and its recommendations. Global Health Promotion (Suppl 1, 23–27. Munoz J, Gomez i Prat J, Gallego M, et al. (2009) Clinical profile of Trypanosoma cruzi infection in a non-endemic setting: immigration and Chagas disease in Barcelona (Spain). Acta Tropica 111(1), 51–55. PAHO (Organizacion Panamericana de la Salud) (2006). Estimacion cuantitativa de la enfermedad de Chagas en las Americas. PAHO, Montevideo, Uruguay. Posada E, Pell C, Angulo M, et al. (2011) Bolivian migrants with Chagas disease in Barcelona, Spain: a qualitative study of dietary changes and digestive problems. International Health 3, 289–294. Ozaki Y, Guariento ME & de Almeida EA (2010) Quality of life and depressive symptoms in Chagas disease patients. Quality of Life Research 20(1), 133–138. Perez-Ayala A, Perez-Molina JA, Norman F, et al. (2011) Chagas disease in Latin American migrants: a Spanish challenge. Clinical Microbiology 17(7), 1108–1113. Quintana JM, Padierna A, Esteban C, et al. (2003) Evaluation of the psychometric characteristics of the Spanish version of the Hospital Anxiety and Depression Scale. Acta Psychiatrica Scandinavica 107(3), 216–221. Rassi A Jr, Rassi A & Marin-Neto JA (2010) Chagas disease. Lancet 375(9723), 1388–1402. Schargrodsky H, Hernandez-Hernandez R, Champagne BM, et al. (2008) CARMELA: assessment of cardiovascular risk in seven Latin American cities. American Journal of Medicine 121(1), 58–65. The Institute of Medicine (2002) Unequal Treatment: Confronting Racial and Ethnic Disparities in Health Care: Institute of Medicine. National Academy of Science, Washington DC, 764 pp. Viotti R, Vigliano CA, Alvarez MG, et al. (2009) The impact of socioeconomic conditions on chronic Chagas disease progression. Revista Española de Cardiologı́a 62(11), 1224–1232. Wilkinson R & Marmot M (2003) Social Determinants of Health: The Solid Facts. World Health Organization, Geneva. World Health Organization (WHO) (2002) Control of Chagas Disease. Second report of the WHO experts committee. Technical report series no 995. World Health Organization, Geneva. World Health Organization (WHO) (2009) Control and Prevention of Chagas Disease in Europe. Report of a WHO informal consultation (jointly organized by WHO headquarters and the WHO regional office for Europe). World Health Organization, Geneva. http://www.who.int/whosis/whostat/EN_WHS2011_ Full.pdf. Accessed 14 ⁄ 7 ⁄ 2011. World Health Organization (WHO) (2011) World Health Statistics 2011. WHO, Geneva; http://www.who.int/whosis/whostat/ EN_WHS2011_Full.pdf. Accessed 15 ⁄ 7 ⁄ 2011. Corresponding Author Yves Jackson, Division of Primary Care Medicine, Geneva University Hospitals, rue Gabrielle-Perret-Gentil 6 1211 Geneva 14, Switzerland. Email: yves.jackson@hcuge.ch ª 2012 Blackwell Publishing Ltd 9 9. Chagas disease in Switzerland: history and challenges Cet article a été publié dans: Euro Surveill. 2011;16(37):pii=19968 Par: Jackson Y, Chappuis F. 67 Surveillance and outbreak reports Chagas disease in Switzerland: history and challenges Y Jackson (yves.jackson@hcuge.ch)1, F Chappuis2 1. Division of primary care medicine, Department of community medicine, primary care and emergency medicine, Geneva University Hospitals and University of Geneva, Switzerland 2. Division of humanitarian and international medicine, Department of community medicine, primary care and emergency medicine, Geneva University Hospitals and University of Geneva, Switzerland Citation style for this article: Jackson Y, Chappuis F. Chagas disease in Switzerland: history and challenges. Euro Surveill. 2011;16(37):pii=19963. Available online: http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=19963 Article published on 15 September 2011 Chagas disease, endemic in Latin America, is an emerging health problem in Europe affecting an estimated 80,000 persons. Around 60,000 Latin American migrants live in Switzerland, and cases of Chagas disease have been reported since 1979. As of June 2011, 258 cases have been diagnosed, mostly adults in the indeterminate phase of the chronic stage of the disease. Vertical transmission has been identified and there is a high potential for blood- and organ-borne transmission in the absence of systematic screening. Major challenges include (i) raising awareness among migrants and healthcare professionals, (ii) developing national protocols for screening and treatment targeting high-risk groups such as pregnant woman, newborns, migrants from highly endemic areas (e.g. Bolivia), and immunocompromised migrants, (iii) preventing blood- and organ-borne transmission by appropriate screening strategies, (iv) taking into account the social vulnerability of individuals at risk in the design and implementation of public health programmes, and (v) facilitating contacts with the communities at risk through outreach programmes, for example in churches and cultural groups Introduction The parasite Trypanosoma cruzi, the causative agent of Chagas disease, has been affecting humans for at least 9,000 years, but Europe has experienced the emergence of this disease as a significant health issue only very recently [1,2]. In humans, T. cruzi is responsible for a chronic infection causing potentially lethal cardiac damages in up to 30% of cases. It was traditionally confined to the Americas, resulting in a high social and financial burden primarily in rural areas [3]. In the absence of T. cruzi vectorial transmission outside Latin America, Chagas disease in non-endemic countries is predominantly an imported infection, affecting migrants more than travellers [4]. Besides, transplacental and blood-borne transmissions have been reported in Europe [5,6]. In 2010, the World Health Organization (WHO) estimated that 80,000 persons could be infected in Europe, making Chagas disease one of the predominant emerging parasitic infections in the continent [2]. www.eurosurveillance.org In Switzerland, a small country of 7.8 million inhabitants, foreigners accounted for 22.4% of the total population in 2010. Currently, 35,000 Latin American migrants originating from the 21 countries endemic for Chagas disease are legal residents in Switzerland. This figure does not include adopted children or migrants who have received the Swiss citizenship. Moreover, since the 1990s, a large number of Latin American migrants have been settling in Europe without residence permit and are not recorded in the official registries. For example, 1,229 residents of Bolivian origin were officially registered in Switzerland in 2009, but migrants associations estimate that around 9,000 Bolivians live in the canton of Geneva alone, most of them undocumented (F. Anda, Association des Boliviens de Genève, June 2010, personal communication). A large majority of recent Latin American migrants are women employed in the domestic industry. Thus, it can be estimated that the real number of Latin American migrants at risk of having Chagas disease currently living in Switzerland may be as high as 60,000 to 90,000 [2]. Undocumented migrants are legally entitled to access the Swiss healthcare system by purchasing a health insurance. Yet, the expensive premium (EUR 200–300 per month), lack of knowledge of the system and administrative barriers prevent the vast majority of them from contracting an insurance, thus making access to care difficult, especially outside the main urban areas, where communities and support groups are less organised. The first recorded case of Chagas disease in Switzerland dates back to 1979 [7]. Since then, the number of cases recorded has increased in parallel with the growth of the population at risk, alongside higher awareness among health professionals and with improved access to reliable diagnostic tools [8,9]. Several studies have documented the emergence and transmission of Chagas disease in Latin American communities in Switzerland [5,10,11]. Here, we review epidemiological, clinical and social data on all cases of Chagas disease diagnosed and recorded in Switzerland. 1 Methods We used several sources of information to identify cases and their characteristics before aggregation: (i) the clinical databases of two studies done in Geneva in 2008: a community-based cross-sectional study in adult Latin American immigrants over the age of 16 years [10] and a prospective study in pregnant Latin American women attended at the Geneva University Hospitals [11], (ii) the database of all cases seen at the Geneva University Hospitals and (iii) information collected from the main laboratories performing diagnosis of T. cruzi infection, the major Swiss healthcare institutions and experts active in international health and infectious diseases in Switzerland. To optimise data collection, an internet search for published cases was conducted using two major electronic databases (Pubmed and Embase). The keywords ‘Switzerland’, ‘Chagas disease’, and ‘Trypanosoma cruzi’ were used. To avoid duplication of cases from different sources, the date of birth, nationality, sex and place of diagnosis and treatment were cross-checked. Cases were defined as any individual in whom T. cruzi testing was positive, either by serology (≥9 month after birth in newborns), nucleic-acid assay or microscopy. Up to 2008, the Swiss Tropical Institute in Basel was the only Swiss laboratory performing serology for T. cruzi infection (in-house indirect immunofluorescent assay), haemoculture and nucleid acid assay (in-house PCR). Since 2008, Geneva University Hospitals have been using two different serological tests (ELISA cruzi, Biomerieux, Brazil and Chagas Stat-Pak, Chembio Diagnostic Systems, United States). Moreover, several Swiss reference laboratories perform microscopical examination in blood and tissues. Since 2008, screening programmes in Geneva have focused on Latin American individuals who fulfil one or more of the following criteria: Bolivian origin, relative of a patient with Chagas disease, suggestive symptoms, recipient of a blood transfusion in the home country, or pregnancy. Table 1 Socio-demographic characteristics of patients with Chagas disease, Switzerland, January 1979–June 2011 (n=258) Results Number of cases and place of diagnosis From 1979 to June 2011, a total of 258 persons have been diagnosed with T. cruzi infection in Switzerland. All but five patients were diagnosed in Geneva. Time variation of frequency of cases and clinical features From 1979 to 2007, in the absence of screening programmes, 11 cases of T. cruzi infection had been identified including eight symptomatic cases: five with cardiac, one with cardiac and digestive complications, and two congenital infections with placental abnormalities [5,7-9]. After screening programmes were initiated in Geneva, 247 cases were diagnosed from January 2008 to June 2011, with a lower proportion of symptomatic cases (53 of the 231 clinically evaluated patients). Socio-demographic characteristics Table 1 shows the socio-demographic characteristics of the 258 patients. The median age was 41 years and women were overrepresented with 83% of cases. The vast majority of patients were Bolivians (n=241). Information on whether they had a residence permit was available for 176 patients. Most of those (n=171) were living in Switzerland without a residence permit and without health insurance. Mode of transmission and clinical staging Congenital transmission (acute phase) was diagnosed in four newborns, all of them from Bolivian mothers. In addition, five children between 1 and 11 years of age were diagnosed at the early indeterminate phase of the chronic stage. Table 2 shows the clinical staging of the 258 patients. One fatal case occurred following a fulminant T. cruzi infection reactivation in an immunosuppressed patient who had received a heart transplant [10]. Diagnosis All patients in the indeterminate phase of the chronic stage and one newborn (aged nine months) were N (%) or median (range) Sex Female 215 (83.3) Male 43 (16.7) Age 41 (0–77) Children (<16 years) 9 (3.5) Country of origin Argentina Bolivia 241 (93.4) Brazil 8 (3.1) Chile 2 (0.8) Colombia 1 (0.4) Lack of valid residency permit (undocumented)a a 6 (2.3) Denominator=176. 2 171 (97.1) Table 2 Clinical staging of patients with Chagas disease, Switzerland, January 1979–June 2011 (n=258) Stage N (%) Acute – congenital 4 (1.6) Acute – reactivation 1 (0.4) Chronic – early indeterminate 5 (2) Chronic – indeterminate 178 (69) Chronic with cardiac involvement 51 (19.8) Chronic with digestive tract involvement 3 (1.2) Chronic with cardiac and digestive tract involvement 1 (0.4) Information not available 15 (5.6) www.eurosurveillance.org diagnosed by positive results in at least one, mostly two, serological assays (immunofluorescence, ELISA or immunochromatography) with the strategies or combinations varying depending on the diagnosing centre. One newborn was diagnosed by positive T. cruzi nucleic acid test of umbilical cord blood. Two other newborns were diagnosed by detection of amastigote forms of T. cruzi in the placenta with confirmation by positive serology and nucleic acid assay. The patient with T. cruzi reactivation was diagnosed by identifying amastigote forms in the skin and in a bone marrow biopsy, and by a positive peripheral blood buffy coat. Treatment Criteria for treatment initiation were based on recommendations from the World Health Organization and on guidelines from the United States [11,12]. Until 2009, nifurtimox was used for availability reasons. Since then, benznidazole has been more easily available and has become the first-line treatment. Anti-parasitic treatment was initiated in 129 patients (50%). Ninetythree patients received nifurtimox (10 mg/kg/day) and 36 received benznidazole (5 mg/kg/day; max:300 mg/ day). Overall, adverse events caused premature treatment termination (less than 60 days) in 41 patients (31.8%; nine with benznidazole and 32 with nifutimox). A full description on tolerance of nifurtimox in patients treated in Switzerland has been published [13]. Discussion To our knowledge, 258 cases of Chagas disease were diagnosed and recorded in Switzerland between 1979 and 2011. Considering the limited number of medical centres and laboratories working on parasitic diseases in Switzerland, this figure probably reflects the actual situation correctly. Almost all cases were diagnosed in Geneva, which has several reasons: (i) a large community of Bolivian migrants live in Geneva, (ii) local policies allow access to primary healthcare for uninsured individuals, (iii) repeated epidemiological investigations on Chagas disease and information sessions with the community have created confidence and reinforced the cooperation between migrants and the Geneva University Hospitals (HUG), (iv) screening programmes have been implemented in the Canton of Geneva. Such programmes have so far not been put in place in blood banks, maternity wards and health institutions of other Swiss cantons, with the exception of Lausanne in the Canton of Vaud. The implementation of screening in Geneva is the main explanation for the shift from a low number of detected cases with a high proportion of symptomatic individuals (until 2007) to a higher number of cases with a high proportion of asymptomatic individuals (since 2008). Previous studies in Geneva showed 25% prevalence within the Bolivian community, mostly in women of child-bearing age who had a positive attitude towards blood donation in Geneva, which highlighted the risk of blood-borne and congenital transmission [5,14]. www.eurosurveillance.org Chagas disease represents an emerging and complex health issue in Switzerland considering (i) the presence of a significant number of infected persons, (ii) their social situation with poor access to healthcare and very low socioeconomic status, (iii) the active vertical transmission and the potential for transmission through blood and organ donations, and (iv) the low awareness and consideration by public health authorities and health professionals [15]. The situation of Chagas disease in Switzerland is emblematic of the European context, as until now only Spain and France have adopted public health policies to control the spread of this emerging infection [16]. National recommendations or programmes of case detection and management or prevention of local transmission do not currently exist in Switzerland. Specific tests to diagnose chronic Chagas disease are available in a limited number of laboratories. Neither of the two drugs active against T. cruzi, benznidazole and nifurtimox, are registered by the Federal Pharmaceutical Office and thus require specific agreement for each treatment, nor are they easily available. Since 2008, some progress has been made regarding the management of Chagas disease in Switzerland. Serologies are now available in two laboratories (HUG and the Swiss Tropical and Public Health Institute in Basel). A rapid diagnostic test has been validated and is being used in HUG and the University Hospital of Lausanne [17]. Systematic screening of Latin American pregnant women was first implemented at HUG in 2008, followed in 2010 by a wider strategy of screening all persons at risk, i.e. Latin American immigrants, persons who received blood transfusion in Latin America or persons born to a Latin American mother. In 2011, the University Hospital of Lausanne is expected to adopt similar protocols. Systematic screening of blood donors at risk is under discussion at local (Geneva, Lausanne) and national levels. Ties with Latin American communities have been strengthened through information exchange and awareness campaigns. Education of medical students and health professionals through clinical meetings, presentations in congresses and publications in national medical journals has been initiated. Considering the number of Latin American immigrants living in Switzerland and the proportion of T. cruzi infections in this community, up to 3,000 cases could be present in the country. The main challenges for the control of this emerging health threat are: (i) raising awareness both in communities at risk of infection and in health professionals, e.g. primary care physicians, gynaecologists/obstetricians, paediatricians, cardiologists, gastroenterologists, and radiologists, (ii) developing national protocols for screening and treatment, targeting high-risk groups such as pregnant woman, newborns, Bolivian citizens, immunosuppressed migrants, (iii) preventing blood- and organ-borne transmission by appropriate screening strategies, (iv) taking into account the social vulnerability of individuals at 3 risk in the design of programmes and their implementation, and (v) facilitating contacts with the communities at risk through outreach programmes, for example in churches and cultural groups. 17. Chappuis F, Mauris A, Holst M, Albajar-Vinas P, Jannin J, Luquetti AO, et al. Validation of a rapid immunochromatographic assay for diagnosis of Trypanosoma cruzi infection among Latin-American Migrants in Geneva, Switzerland. J Clin Microbiol.;48(8):2948-52. Acknowledgments The authors wish to thank Hanspeter Marti (Swiss Tropical and Public Health Institute, Basel, Begona Martinez de Tejada, Cristina Reis, Alessandro Diana, Anne Mauris and Claire-Anne Wyler (Geneva University Hospitals) and Valérie D’Acremont (CHUV Lausanne) for helping gathering information References 1. Aufderheide AC, Salo W, Madden M, Streitz J, Buikstra J, Guhl F, et al. A 9,000-year record of Chagas’ disease. Proc Natl Acad Sci U S A. 2004;101(7):2034-9. 2. World Health Organisation (WHO). Statement – Chagas disease in Europe. Geneva: WHO; 20 January 2010. Available from: http://www.who.int/neglected_diseases/integrated_media_ chagas_statement/en/index.html 3. Hotez PJ, Bottazzi ME, Franco-Paredes C, Ault SK, Periago MR. The neglected tropical diseases of latin america and the Caribbean: a review of disease burden and distribution and a roadmap for control and elimination. PLoS Negl Trop Dis. 2008;2(9):e300. 4. Lescure FX, Le Loup G, Freilij H, Develoux M, Paris L, Brutus L, et al. Chagas disease: changes in knowledge and management. Lancet Infect Dis. 2010;10(8):556-70. 5. Jackson Y, Myers C, Diana A, Marti HP, Wolff H, Chappuis F, et al. Congenital transmission of chagas disease in latin american immigrants in Switzerland. Emerg Infect Dis. 2009;15(4):601-3. 6. Flores-Chavez M, Fernandez B, Puente S, Torres P, Rodriguez M, Monedero C, et al. Transfusional chagas disease: parasitological and serological monitoring of an infected recipient and blood donor. Clin Infect Dis. 2008;46(5):e44-7. 7. Liechti M, Baur HR, Gurtner HP, Straub PW. Cardiac complications of American trypanosomiasis (Chagas disease). Various case reports and general observations. Schweiz Med Wochenschr. 1990;120(41):1493-6. 8. Jackson Y, Chappuis F, Loutan L. [Chagas disease in Switzerland: managing an emerging infection and interrupting its transmission]. Rev Med Suisse. 2008;4(157):1212-4, 6-7. French. 9. Sztajzel J, Cox J, Pache JC, Badaoui E, Lerch R, Rutishauser W. Chagas’ disease may also be encountered in Europe. Eur Heart J. 1996;17(8):1289. Eur Heart J. 1996 Aug;17(8):1289. 10. Jackson Y, Dang T, Schnetzler B, Pascual M, Meylan P. Trypanosoma cruzi fatal reactivation in a heart transplant recipient in Switzerland. J Heart Lung Transplant. 2010;30(4):484-5. 11. Bern C, Montgomery SP, Herwaldt BL, Rassi A Jr., Marin-Neto JA, Dantas RO, et al. Evaluation and treatment of chagas disease in the United States: a systematic review. JAMA. 2007;298(18):2171-81. 12. World Health Organisation (WHO) Expert Committee on the Control of Chagas disease (2000: Brasilia, Brazil). Control of Chagas disease: second report of the WHO expert committee. WHO technical report series; 905. Geneva: WHO; 2002. Available from: http://whqlibdoc.who.int/trs/WHO_TRS_905. pdf 13. Jackson Y, Alirol E, Getaz L, Wolff H, Combescure C, Chappuis F. Tolerance and safety of nifurtimox in patients with chronic chagas disease. Clin Infect Dis.;51(10):e69-75. 14. Jackson Y, Getaz L, Wolff H, Holst M, Mauris A, Tardin A, et al. Prevalence, clinical staging and risk for bloodborne transmission of Chagas disease among Latin American migrants in Geneva, Switzerland. PLoS Negl Trop Dis.2010;4(2):e592. 15. Jackson Y, Angheben A, Carrilero Fernandez B, Jansa i Lopez del Vallado JM, Jannin JG, Albajar-Vinas P. [Management of Chagas disease in Europe. Experiences and challenges in Spain, Switzerland and Italy]. Bull Soc Pathol Exot. 2009;102(5):326-9. 16. Castro E. Chagas’disease: lessons routine donation testing. Transfus Med 2009;19(1):16-23. 4 www.eurosurveillance.org 10. Chagas disease in European countries: the challenge of a surveillance system Cet article a été publié dans: Euro Surveill. 2011;16(37):pii=19968 Par: Basile L, Jansà JM, Carlier Y, Salamanca DD, Angheben A, Bartoloni A, Seixas J, Van Gool T, Cañavate C, Flores-Chávez M, Jackson Y, Chiodini PL, Albajar-Viñas P. 72 Surveillance and outbreak reports Chagas disease in European countries: the challenge of a surveillance system L Basile1, J M Jansà2, Y Carlier 3, D D Salamanca4 , A Angheben5, A Bartoloni6, J Seixas7, T Van Gool8, C Cañavate9, M FloresChávez9, Y Jackson10, P L Chiodini11, P Albajar-Viñas (albajarvinasp@who.int)12, Working Group on Chagas Disease13 1. Department of Health, Generalitat of Catalonia, Barcelona, Spain 2. Directorate General of Public Health and Foreign Healthcare, Ministry of Health, Social Affairs and Equality, Madrid, Spain 3. Faculty of Medicine, Free University of Bruxelles, Brussels, Belgium 4. French Institute for Public Health Surveillance (Institut de Veille Sanitaire, InVS), Saint Maurice, France 5. Centre for Tropical Diseases, COHEMI network, Hospital S. Cuore, Don Calabria, Negrar, Verona, Italy 6. University Hospital Centre Careggi, COHEMI network, Firenze, Italy 7. Clinical unit of Tropical Diseases, Institute of Hygiene and Tropical Medicine, New University of Lisbon, Lisbon, Portugal 8. Department of Medical Microbiology, University of Amsterdam, Amsterdam, the Netherlands 9. National Centre of Microbiology, Instituto de Salud Carlos III, Madrid, Spain 10.Division of primary care medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland 11. Hospital for Tropical Diseases, London, United Kingdom 12.World Health Organization (WHO) Programme on Control of Chagas disease, Department of Control of Neglected Tropical Diseases, WHO, Geneva, Switzerland 13.The members of this group are listed at the end of the article Citation style for this article: Basile L, Jansà JM, Carlier Y, Salamanca DD, Angheben A, Bartoloni A, Seixas J, Van Gool T, Cañavate C, Flores-Chávez M, Jackson Y, Chiodini PL, Albajar-Viñas P, Working Group on Chagas Disease. Chagas disease in European countries: the challenge of a surveillance system. Euro Surveill. 2011;16(37):pii=19968. Available online: http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=19968 Article published on 15 September 2011 A study of aggregate data collected from the literature and official sources was undertaken to estimate expected and observed prevalence of Trypanosoma cruzi infection, annual incidence of congenital transmission and rate of underdiagnosis of Chagas disease among Latin American migrants in the nine European countries with the highest prevalence of Chagas disease. Formal and informal data sources were used to estimate the population from endemic countries resident in Europe in 2009, diagnosed cases of Chagas disease and births from mothers originating from endemic countries. By 2009, 4,290 cases had been diagnosed in Europe, compared with an estimated 68,000 to 122,000 expected cases. The expected prevalence was very high in undocumented migrants (on average 45% of total expected cases) while the observed prevalence rate was 1.3 cases per 1,000 resident migrants from endemic countries. An estimated 20 to 183 babies with congenital Chagas disease are born annually in the study countries. The annual incidence rate of congenital transmission per 1,000 pregnancies in women from endemic countries was between none and three cases. The index of underdiagnosis of T. cruzi infection was between 94% and 96%. Chagas disease is a public health challenge in the studied European countries. Urgent measures need to be taken to detect new cases of congenital transmission and take care of the existing cases with a focus on migrants without legal residency permit and potential difficulty accessing care. www.eurosurveillance.org Introduction Chagas disease is caused by the parasite Trypanosoma cruzi and is considered endemic in 21 Latin American countries. It currently affects around 10 million people in Latin America, and 10 to 30 per cent of cases have developed or will develop cardiac, digestive or nervous system disorders [1]. In the last two decades many efforts have been made to reduce the incidence of Chagas disease in endemic countries [2], but exchange of population between Latin America and Europe, the United States, Australia and Japan has resulted in increased detection of T. cruzi in these countries [3]. In non-endemic regions, the parasite can be transmitted vertically (congenital transmission from mother to fetus), and by infected blood and organ donors [4]. In 2008, more than 38 million migrants were living in Europe, of whom 11% came from Latin America [5]. This figure did not include migrants without valid residency permit (irregular, undocumented migrants) [6], people born outside Europe who have acquired citizenship of a European country, or children from foreign countries adopted by European families. Official figures thus clearly underestimate the number of migrants from endemic areas, and therefore also the number of T. cruzi-infected people. Currently, only a small number of persons infected with T. cruzi have been detected in Europe [4]. Several reasons account for this fact: 1 • Most European health professionals have little or no experience with the detection and management of Chagas disease [7]. • Access to screening programmes for the communities at risk is very limited as only a few institutions offer screening, mostly in major urban areas. • The diagnosis of the chronic phase is usually delayed as most patients remain asymptomatic for many years [8]. There is no common European legislation to prevent the transmission of T. cruzi by blood donation, although in Spain and France screening of Latin American donors is mandatory, while in countries like Italy or the United Kingdom (UK) blood donation by migrants from endemic Latin American countries is prohibited and their country of origin is recorded by questionnaire [4]. Only some autonomous communities of Spain, such as Valencia [9] and Catalonia [10], have protocols for screening of pregnant women from Latin America to prevent congenital transmission. The rest of Spain and other European countries, except for some focal institutional experiences [11], have not adopted any governmental preventive measures yet. Very few studies have estimated the prevalence of Chagas disease in European countries [12-15]. In Spain, it was estimated that between 40,000 and 65,000 residents were infected with T. cruzi in 2009 [4], while in other European countries the estimate range was between 12,000 and 15,000 [16]. The lack of an information system to report Chagas disease cases and transmission in all European countries makes it difficult to provide an overall figure of all diagnosed cases in Europe so far, and therefore no exact overview of the burden and public health impact of Chagas disease in Europe can be made. For this reason, the World Health Organization (WHO) set up in 2009 a working group of experts on Chagas disease from those European countries where T. cruzi-positive cases had been detected (Austria, Belgium, Croatia, Denmark, France, Germany, Italy, the Netherlands, Portugal, Romania, Spain, Sweden, Switzerland and United Kingdom). The aim was to collect and asses the available information, create a network of experts to exchange information and experience between countries and define a common strategy for the epidemiological surveillance of Chagas disease [17]. This paper presents the efforts of this group of experts to provide a preliminary view of the situation in Europe, using a consensual, homogeneous methodology. The objectives of this study were to estimate the expected and observed prevalence of cases of T. cruzi-infected people from endemic countries of origin, the annual incidence of congenital transmission and the estimated 2 rate of underdiagnosis among cases of T. cruzi infection in 2009 in the participating countries. Methods Study design and population An epidemiological study was designed to analyse aggregate measures of the prevalence of T. cruzi infection and the incidence of congenital transmission of Chagas disease in 2009. The units of observation were the European countries that according to the WHO estimate, had more than 400 cases of Chagas disease [4], i.e. Belgium, France, Germany, Italy, the Netherlands, Portugal, Spain, Switzerland and the UK. Case definition For the purposes of this study, according to the WHO case definition [18], a case of Chagas disease was considered as any individual who, as a result of a screening programme or of testing as a possible case, was positive for antibodies against T. cruzi in two serological (ELISA) assays. Inclusion and exclusion criteria The target population included three categories: • Subjects of any age born in countries endemic for Chagas disease who were regular residents of the above-mentioned European countries in the year 2009 or the latest year for which this information was available. • The undocumented migrants from disease endemic countries resident in the above-mentioned European countries. • Children born in countries endemic for Chagas disease and adopted by families from the above-mentioned European countries. Latin Americans not born in countries endemic for Chagas disease (e.g. the Caribbean islands) were excluded. European travellers to endemic countries and cases of Chagas disease diagnosed in European travellers presumably infected in endemic countries were excluded due to the small expected number of cases and the difficulty in obtaining information about them. Information sources The study population was quantified using official published data obtained from national institutions in the included European countries, Eurostat and data collected by the working group and collaborators of the project. All these sources are listed in Table 1 and the corresponding data are shown in Table 2. The numbers of diagnosed cases of Chagas disease in each European country was provided by members of the national reference institutions and members of the WHO working group. www.eurosurveillance.org The infection rates used to calculate the expected prevalence rate among the estimated resident population of Latin Americans in European countries (Table 3) were those published by the WHO in 2006 [19]. The rates for Bolivia were calculated according to available data on the Bolivian population living in Europe [20,21]. The rates for French Guyana and Surinam were provided respectively by the Institute of Health Surveillance (Institut de Veille Sanitaire, France) and by the Department of Medical Microbiology of the University of Amsterdam (the Netherlands) and rely on estimations on immigrants from these countries living in Europe. Table 1 Information sources for estimates of migrant residents (legal and undocumented), adoptions and annual births in nine studied European countries Country Belgium France Germany Category Institution and reference year Legal immigration National register, Directorate of Statistics and Economic Information (DGSIE), 2006 Estimated undocumented immigration Faculty of Medicine, Free University of Bruxelles, Brussels, Belgium 2006 Adoptions Adoption in French and Dutch-speaking Belgium, Belgian Directorate of adoption, 2001–2009 Annual births National register, Directorate of Statistics and Economic Information (DGSIE), 2006 Legal immigration Institute of Health Surveillance (INVS), 2008 Estimated undocumented immigration Institute of Health Surveillance (INVS), 2008 Adoptions Institute of Health Surveillance (INVS), 1980–2007 Annual births Institute of Health Surveillance (INVS), 2008 Legal immigration Eurostat, 2008 Legal immigration Italian National Institute of Statistics (ISTAT), 2009 Estimated undocumented immigration Centre for Tropical Diseases, Hospital Ospedale Sacro Cuore Don Calabria, Verona, Italy, 2009 Adoptions Commission for international adoptions, Presidency of the Council of Ministers, 2000–2009 Annual births ISTAT, 2008 Legal immigration Statistics Netherlands, 2008 Estimated undocumented immigration Central government (Rijksoverheid), 2005 Legal immigration Statistics Portugal (INE), 2009 Estimated undocumented immigration Institute of Hygiene and Tropical Medicine, New University of Lisbon, Lisbon, Portugal Annual births INE Portugal, 2009 Legal immigration Statistics Spain (INE), 2009 Estimated undocumented immigration Statistics Spain (INE), 2009 Adoptions Statistics Spain (INE), 2000–2007 Annual births Statistics Spain (INE), 2008 Legal immigration Federal departement of justice and police, 2009 Estimated undocumented immigration Division of primary care medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland , 2009 Adoptions Federal office of statistics, Section demography and migration, 1979–2008 Annual births Demographic portrait of Switzerland, 2008 Legal immigration Office for National Statistics, Social Surveys Dataservice, 2009 Estimated undocumented immigration 1.Sveinsson, Kjartan Páll. Bolivians In London - Challenges and Achievements of a London Community, Runnymede Community Studies, Runnymede Trust. 2007 2.Buchuck S. Crossing borders: Latin American exiles in London. Untold London, 2010 3.Bérubé M. Colombia: In the crossfire. Migration Information Source. Migration Policy Institute. 2005 4.James M. Ecuadorian identity, community and multi-cultural integration. Runnymede Trust. 2005 Annual births Office for National Statistics, Vital Statistics Outputs Branch, 2009 Italy the Netherlands Portugal Spain Switzerland United Kingdom www.eurosurveillance.org 3 The applied rates of congenital transmission (1.4% and 7.3%) came from cohorts of migrant pregnant women living in Europe [11,22]. Data collection and analysis To estimate the expected prevalence of T. cruziinfected people in the studied countries, we first calculated the number of regular residents originating from endemic countries, according to the data published by the national statistical institutes in each country. When there were no published data, these were obtained from governmental sources or from members of the working group (Table 1). To calculate the undocumented migrant population, we used estimates from governmental sources, national referral centres and indexed and non-indexed publications (Table 1). In the case of Spain, the official number of regular residents was subtracted from the number of migrants included in the municipal census. In the case of children born in endemic countries and adopted by European families, we sought official data sources on adoption by country of birth (Table 1). The inclusion of this population in the study depended on the availability of data on adoptions, and finally data from five countries (Belgium, France, Italy, Spain, and Switzerland) were included. To obtain the expected absolute number of cases of T. cruzi infection, the number of regular and undocumented migrants from Latin America and the number of adopted children, stratified by country of origin, was multiplied by the corresponding national infection rates in the countries of origin. A two-sided confidence intervals method with continuity correction for the single proportion [23] was applied to calculate the expected number of cases in migrants for every endemic country of origin. The expected number of cases obtained was divided by the corresponding reference population to obtain the expected prevalence rate (shown as percentage). In the case of minimum and maximum values for reference population, an average value was applied to calculate the expected prevalence. To calculate the observed prevalence of T. cruzi-infected people, the members of the working group were asked to actively search for cases diagnosed in their country up to the year 2009, dividing this amount by the total reference population to obtain the observed prevalence rate, shown as percentage. To estimate the expected annual incidence of congenital transmission, national data on annual births of children of women from endemic areas stratified by country of birth or nationality of the mother as registered in 2009 or the latest year available was collected (Table 1). These figures were multiplied by the respective rates of infection in endemic countries, which provided an estimate of the absolute number of mothers infected with T. cruzi who gave birth in one year. Applying the range of congenital transmission rates (1.4% to 7.3%) to this result gave an estimate of the number of T. cruzi-infected children born in each participating European country. The annual incidence rate of congenital transmission in the population at risk was obtained by dividing the number of children infected in one year by the number of pregnancies in that year. To estimate the index of underdiagnosis we calculated the rate ratio between the observed and expected prevalence rates. The result represents the proportion of diagnosed cases divided by the total estimated cases. The index is presented as a percentage obtained from the following formula: 1-rate ratio. Table 2 Estimates of migrants resident in nine studied European countries, legal and undocumented, originating from countries endemic for Chagas disease, and births to mothers from endemic countries, 2009 Country Estimated undocumented (min–max) Adoptions Total (min–max) Annual births Nb % Nb %a Nb % Nb %a Nb 28,880 1 14,440 1 490 1 43,810 1 722 1 France 97,981 4 51,500 5 19,389 51 168,870 5 5,545 10 Germany 85,313 4 Not reported - Not reported - 85,313 3 Not reported - 260,864 12 112,000–120,000 6,784 18 379,648–387,648 12 3,351 6 220,172 10 17,400 2 Not reported - 237,572 7 Not reported - 110,113 5 11,011 1 Not reported - 121,124 4 3,950 7 1,263,342 56 484,509 1,754,205 53 35,525 67 Belgium Italy The Netherlands Portugal Spain Switzerland United Kingdom Total a Resident immigrants Regular population 35,761 2 38,000–42,000 162,517 7 250,000–335,000 2,264,943 101b 978,860–1,075,860 11 % 47 6,354 17 4 4,994 13 78,755–82,755 2 375 1 28 Not reported - 412,517–497,517 14 3,433 6 100 3.281,814–3,378,814 101b 52,901 98b 99b 38,011 In the case of minimum and maximum values, the percentage refers to the average value. The deviation is due to rounding. b 4 www.eurosurveillance.org Results More than three million migrants from endemic countries (MEC) were estimated to live in the nine European countries included in the study, representing 1% of the total population living in Europe. Due to immigration from Brazil, Portugal was the country with the highest percentage of migrants coming from endemic areas. Among the countries where no Romance language is spoken, the Netherlands had the highest percentage of migrants coming from endemic countries, mainly from Surinam (84% of MEC in the Netherlands), a former Dutch colony and an endemic country for Chagas disease with a low infection rate. Prevalence in migrants and adoptees For details about MEC living in Europe, multiple sources of information were used (Tables 1 and 2). However, it was not possible to identify all people at risk due to the lack of data stratified by endemic country. Between 40,227 and 62,724 people infected with T. cruzi resided regularly in the included countries, accounting for between 1.8% and 2.8% of all regular MEC (Table 4). The highest prevalence estimation for regular MEC was seen in Spain, where between 2.3% and 3.8% of them were infected with T. cruzi. The estimated numbers of undocumented MEC infected by T. cruzi were very high: prevalence estimations were substantially higher than for regular MEC, with the Table 3 Distribution of the migrant population from countries endemic for Chagas disease resident in nine studied European countries, and estimated number of people infected, 2009 Endemic country Infection rate Nb %c Nb 95% confidence interval %c Argentina 4.13 237,678 7.1 9,815 9,626–10,006 10.4 0.74 2,464 0.1 18 11–29 0 Brazil Chile Colombia min 10 268,926 max 27.5 290,926 1.02 670,299 20.1 0.99 99,483 3.0 min max Costa Rica Ecuador Guatemala Surinam Uruguay 6,837 6,703–6,971 7.2 1.0 985 925–1,045 4,496 4,334–4,620 5,168 5,025–5,353 5.1 0.1 25 16–37 0 18.4 10,662 10,479–10,847 11.2 3.37 15,389 0.5 519 476–565 0.5 1.98 9,183 0.3 182 157–210 0.2 1.29 23,555 0.7 13 7–24 0 18,987 0.6 3.05 27,121 1.03 1.14 min 0.25 max 0.5 min max 47 36–63 94 78–116 0.8 827 773–884 0.9 74,346 2.2 766 714–825 0.8 13,317 0.4 152 129–178 0.2 0.01 4,555 0.1 0 0–5 0 2.54 87,550 2.6 2,224 2,136–2,320 2.3 0.69 min 0.15 max 0.5 Venezuela 268,957 273,957 183,216 8.2 5.5 1,856 1,775–1,936 1,890 1,808–1,972 287 257–330 954 898–1,008 0.1 2.0 0.7 0.66 69,702 2.1 460 418–502 0.5 1,16 93,836 2.8 1,089 1,023–1,154 1.1 0.3 100 Undeterminedd 19,389 0.6 165 384 Total 3,281,814–3,378,814 100 68,318–123,078 c d 56.4 4,808 Paraguay Peru 79,539–80,470 612,809 Nicaragua Panama 15.4 26,597–27,188 80,014 1.74 Honduras Mexico 546,244 26,893 0.53 Guyana French Guyana 0.96 476,244 8.4 El Salvador b % Estimated number of infected peopleb Belize Bolivia a Total regular and undocumented immigrant populationa The total immigrant population from Bolivia, Colombia and Peru is a range of values due to estimations of undocumented population. Estimates based on infection rate of the country of origin. In the case of minimum and maximum values, the percentage refers to the average value. This number refers to adoption in France, for which no data is available stratified by endemic country, and the estimate of people infected was calculated by the Institut de Veille Sanitaire, France. www.eurosurveillance.org 5 highest estimated prevalence in Spain (between 3.9% and 7.8% of undocumented MEC), and Switzerland (between 2.5% and 7.8% of undocumented MEC). France had the highest number of positive cases among children adopted from endemic countries, although these were from countries with low infection rates. Cases represented between 0.8% and 2% of French adoptions from endemic countries. The overall expected prevalence in the participating countries ranged from 1.2% to 2.4% of total adoptions of children from endemic settings. Congenital transmission In the studied countries almost 53,000 children were born in 2009 from mothers originating from endemic countries. Of these, between 1,347 and 2,521 were born from mothers infected with T. cruzi, and there was congenital transmission in between 20 and 184 cases. This corresponds to between none and three infected children per 1,000 births to mothers at risk (Table 5). With 67% of births from mothers originating from endemic countries occurring in Spain, almost 90% all of cases of congenital transmission occurred in that country. In other countries, there were between none and six cases of congenital transmission per year. Underdiagnosis By 2009, 4,290 cases of infection with T. cruzi were diagnosed in the study countries (Table 6), and 89% of all cases were detected in Spain. The total observed prevalence rate was 0.13% of the total MEC. The lowest observed rates occurred in Germany (0.002%) and the Netherlands (0.003%) and the highest in Switzerland (0.223%). The index of underdiagnosis shows that, in general, between 94% and 96% of expected cases were not diagnosed (Table 6). The index of underdiagnosis was lowest in Switzerland, where between 89% and 95% of expected cases were not detected, while in Germany, the Netherlands, Portugal and the UK, more than 99% of expected cases in migrants were not diagnosed. Overall, the Latin American nationalities with the greatest presence in Europe were Brazilans, Colombians and Ecuadorians, although most expected cases of Chagas were attributed to Bolivian migrants (Table 3). Discussion The Control of Chagas disease is a recent public health challenge in many countries in Europe. The reason is that it is an imported disease mainly affecting the migrated poor population from different Latin American countries who often have limited access to diagnosis and treatment of this disease. This also makes it difficult to quantify the disease impact in terms of expected cases. However, it is a challenge that requires urgent action due to the risks involved in the context of blood, organ and tissue donation, and the risk of congenital transmission to infants of infected mothers. In addition, the presence of potentially infected population groups who may present with heart, digestive tract and general disorders in the medium and long term, needs to be considered also with a view to the individual patient and the impact on clinical costs. To quantify the European expected prevalence the authors decided to use initially the WHO official infection rates for every disease endemic country [18]. On the other hand, it was observed that all prevalence studies on Latin American immigrants living in Europe showed rates in the Bolivian community higher than the 6,75% WHO official estimated rate [20,21,24,25]. For this reason we preferred to use a more realistic range for Bolivian migrants (minimum 10.0%, maximum 27.5%) that was based on the known epidemiological situation in Europe. This choice could have introduced some bias at the methodological level by elevating the results in only one community. Nevertheless, the authors believe that this decision was necessary because the final results were closer to the reality that Table 4 Estimated numbers of migrants from Chagas disease-endemic countries infected with Trypanosoma cruzi and expected prevalence in the nine studied European countries in 2009 Country Estimated undocumented (min-max) Legal (min-max) Prevalence Belgium Adoptions (min-max) Prevalence Total (min-max) Prevalence Prevalence 451-601 1.6-2.1 226-301 1.6-2.1 6-19 1.2-3.9 683-921 1,6-2.1 France 1,253-1,542 1.3-1.6 730-897 1.4-1.7 165-384 0.8-2 2,148-2,823 1.3-1.7 Germany 1,123-1,481 1.3-1.7 Not reported - Not reported - 1,123-1,481 1.3-1.7 Italy 4,133-5,322 1.6-2 2,220-6,520 1.9-5.6 111-194 1.6-2.9 6,464-12,036 1.7-3.1 776-1,528 0.3-0.7 191-245 1.1-1.4 Not reported - 967-1773 0.4-0.7 Netherlands Portugal Spain Switzerland United Kingdom Total 6 1,141 1 114 1 Not reported - 1,255 1 28,974-48,510 2.3-3.8 18,884-37,874 3.9-7.8 126-234 2-3.7 47,984-86,618 2.7-4.9 535-750 1.5-2.1 982-3,132 2.5-7.8 66-88 1.3-1.8 1,584-3971 2-4.8 1,841-1,849 1.1 4,270-10,352 1.5-3.5 - - 6,111-12,201 1.3-2.4 40,227-62,724 1.8-2.8 27,617-59,435 2.7-5.8 474-919 1.2-2.4 68,318-123,078 2-3.6 www.eurosurveillance.org professionals involved in the detection of cases see every day in health systems. Another relevant point is that other applied national infection rates, based on the population in diseaseendemic countries, do not take into account the effects of heterogeneity of the immigrant population living in Europe (i.e. age groups, socio-economic differences, rural-urban origin, etc.) and these differences are not reflected in the results. The results of this study highlight the difficulty in obtaining accurate data on the population at risk and specific information on diagnosed cases, the lack of official national data, the underestimation of migrants in the official figures, and the lack of a system for reporting detected cases in non-endemic countries. According to the estimations of expected cases in the different non-endemic countries, and to offer a better view of the situation, we classified the countries in three groups. The first category includes only Spain, which accounts for almost 75% of expected cases. The second group is represented by France, Italy and the UK, while the third group is represented by the other non-endemic countries (Belgium, Germany, the Netherlands, Portugal and Switzerland). The key role played by Spain in the prevention and control of Chagas disease in Europe is not only due to the high expected prevalence of T. cruzi infection, but also relates to its pivotal position in the migrant flow to Europe and the cultural and linguistic proximity to Latin American countries. France has played a key role in the development of recent studies and specific interventions and regulations for Chagas disease [26], although the country had a low expected number of cases. This and the existence of French national territory in the endemic region of Latin America (French Guyana) places France in a distinctive position in the prevention and control plans for Chagas disease in non-endemic European countries. Table 5 Estimated congenital transmission and prevalence rate per 1,000 pregnancies in women from Chagas disease-endemic areas, residing in nine studied European countries, 2009 Infected pregnant women (min–max) Country Belgium France Germany Italy The Netherlands Annual births Infected infants (min–max) Number of cases Cases per 1,000 pregnancies Number of cases Cases per 1,000 pregnancies 722 10–13 14–18 0–1 <1 5,545 53–74 10–13 1–5 <1 Not reported Not applicable - Not applicable - 3,351 55–76 16–23 1–6 1 Not reported Not applicable - Not applicable - Portugal 3,950 40 10 1–3 <1 Spain 35,525 1,125–2,226 32–63 16–162 0-5 375 6–8 16–21 0–1 1 United Kingdom 3,433 58–84 17–24 1–6 1 Total 52,901 1,347–2,521 25–48 20–184 0–3 Switzerland Table 6 Diagnosed cases, observed and expected prevalence rates and percentage of underdiagnosis of Chagas disease in migrants from endemic areas residing in nine studied European countries, up to 2009 Country Cases diagnosed Observed prevalence rate (%) Expected prevalence rate (min–max, %) Index of underdiagnosis (min–max, %) Belgium 19 0.043 1,6-2.1 97.2–97.9 France 111 0.066 1.3-1.7 94.8–96.1 Germany Italy The Netherlands Portugal Spain 2 0.002 1.3-1.7 99.8–99.9 114 0.03 1.7-3.1 98.3–99.0 7 0.003 0.4-0.7 99.3–99.6 8 0.007 1 99.4 3,821 0.218 2.7-4.9 92.0–95.6 89.2–95.2 Switzerland 180 0.223 2-4.8 United Kingdom 28 0.006 1.3-2.4 99.6–99.7 4,290 0.13 2-3.6 93.9–96.4 Total www.eurosurveillance.org 7 The observed prevalence was extremely low, compared with the expected rates, in Belgium, the Netherlands, Portugal and the UK, suggesting a lack of awareness and interventions (protocols, studies, etc) against Chagas disease in those countries. The UK, especially London where most Latin American immigrants to the UK reside [27], ranks second in Europe in terms of residents estimated to be infected with T. cruzi and cases of congenital transmission, with numbers nearly identical to those of Italy. These results are entirely novel and in contrast to UK estimates published in previous studies [16]. This discrepancy could be due to potential underestimation in official statistics of the Latin American population actually resident in the UK. The study highlights the presence of positive cases in undocumented migrants, especially in Spain, Italy and Switzerland. These countries have large Bolivian communities not represented in official statistics [24,28] that makes it even harder for the national authorities to identify the population at risk. On the other hand these results can offer only an incomplete picture of the reality due to the limitations of estimating the reference population. Nevertheless the present study offers new information not included in previous studies that only included documented migrants [3,15]. The fact that being an undocumented migrant could be associated with originating from poor endemic areas with higher prevalence rates highlights the value of developing demographic studies that can contribute to providing more reliable estimates of this population. The estimated results on underdiagnosis are a good indicator of the limited epidemiological impact of Chagas disease in the context of European health and surveillance systems. Epidemiological silence, understood as the lack of detected cases, which is common in some European countries, shows the need for greater involvement of European health authorities in controlling neglected tropical diseases, among others Chagas disease. The priority could be the implementation of screening programmes of target populations and the training of professionals in the detection of possible cases. The legislation or protocols already implemented in countries such as Spain or France would be very useful to reduce the differences in preparedness and available programmes between European countries. Such collaboration would be of help in developing a European surveillance system, which is essential for further progress in controlling Chagas disease. The control of congenital transmission is undoubtedly one of the most important measures for the prevention and control of Chagas disease that should be addressed by surveillance systems because of the effectiveness of treatment in infants. Likewise, the establishment of regulations for blood and organ donation is essential to limit the impact of Chagas disease in countries where there is no vector transmission. Systematic screening of the risk population, at present only carried out in some regions of France, Spain and 8 Switzerland, should also be introduced after carrying out cost-effectiveness analyses to decide which measures could be most appropriate. In terms of public health, the authors believe that the main proposals and challenges for European countries where cases have already been identified or that have residents from endemic areas are: • To create an international information and surveillance system for the reporting of cases, control of transmission, exchange of information between European countries, and training of primary healthcare workers. • To carry out studies to define the risk of congenital transmission in pregnant women from Latin America and to evaluate the impact of potential screening protocols for the control of congenital transmission according to the results obtained. • To carry out epidemiological studies allowing for reliable estimation of true prevalence rates among immigrants resident in Europe. • To consider systematic screening (by questionnaire or serological tests) blood, organ and tissue donors from endemic Latin American regions. • To publish official statistics of migrants from Chagas-endemic countries in each European country containing data by regular and irregular status according to their country of origin. • To facilitate access to diagnosis and treatment to groups of migrants at risk of being excluded from the national health systems such as undocumented immigrants. • To reinforce the teaching on international health and tropical diseases in the curricula of health sciences in European Universities. Acknowledgments In addition to the members of the working group on Chagas disease in Europe, we would like to thank the collaboration of: Dr. Zeno Bisoffi (Centro per le Malattie Tropicali, Ospedale S. Cuore, Don Calabria, Negrar, Verona. COHEMI network), Dr. Manuel Segovia (Hospital Universitario Virgen de la Arrixaca, Murcia, Spain), Dr. Pere Godoy (Departament de Salut, Generalitat de Catalunya, Barcelona, Spain), Ms. Beatriz Camps Carmona (WHO Programme on Control of Chagas disease, Department of Control of Neglected Tropical Diseases, WHO, Geneva, Switzerland), Ms. Mar Velarde (WHO Programme on Control of Chagas disease, Department of Control of Neglected Tropical Diseases, WHO, Geneva, Switzerland) The study presented in this article is part of a European project called “Development of a system of epidemiological surveillance for Chagas disease in Europe” financed by the WHO Programme on Control of Chagas disease, Innovative & Intensified Disease Management, Department of Control of Neglected Tropical Diseases) Members of the Working Group on Chagas Disease in Europe: Apart from the authors of this article, the present working group is composed of: www.eurosurveillance.org Dr. Mariella Anselmi (Centro per le Malattie Tropicali, Ospedale S. Cuore, Don Calabria, Negrar, Verona, Italy. COHEMI network), Dr. Luigi Gradoni (Dipartimento di Malattie Infettive, Parassitarie e Immunomediate, Istituto Superiore di Sanità, Roma, Italy), Dr. José Antonio Pérez Molina (Hospital Ramon y Cajal, Madrid, Spain), Dr. Joaquim Gascón (Hospital Clínic, Barcelona, Spain. COHEMI network), Dr. Jordi Gomez i Prat (Centre de Salut Internacional i Medicina Tropical Drassanes, Barcelona, Spain), Dr. Luisa Sánchez Serrano (Instituto de Salud Carlos III, Madrid, Spain), Dr. Magdalena García (Consorcio Hospital General Universitario de Valencia, Valencia, Spain), Dr. Bartolomé Carrilero Fernández (Hospital Universitario Virgen de la Arrixaca, Murcia, Spain), Dr. Jane Jones (Health Protection Agency, London, UK), Dr. Emmanuel Bottieau (Institute of Tropical Medicine, Antwerp, Belgium), Dr. Xavier Lescure (Hôpital Tenon, Paris, France), Dr. Pierre Ambroise-Thomas (Académie nationale de Médecine, Meylan, France), Dr. Jean Delmont (Centre de formation et recherche en médecine et sante tropicales, Marseille, France), Dr. Guillaume Le Loup (Service de Maladies infectieuses tropicales, Hôpital Tenon, Paris, France), Dr. Luc Paris (Service de Parasitologie-Mycologie, Groupe Hospitalier Pitié-Salpêtrière, Paris, France), Dr. Françoise Gay-Andrieu (Laboratoire de ParasitologieMycologie, Institut de Biologie - Hôtel Dieu, Nantes, France), Dr. Aldert Bart (Parasitology Section, Dept Med Microbiol, Academic Medical Center, Amsterdam, the Netherlands), Dr. August Stich (Tropenmedizin Missionsärztliche Klinik, Würzburg, Germany), Dr. Israel Molina (Hospital Vall d’Hebron, Barcelona, Spain), Dr. Carmen Muñoz (Hospital Sant Pau, Barcelona, Spain), Dr. Carmen Cabellos (Hospital de Bellvitge, Barcelona, Spain), Dr. Lluis Valerio (Unitat de Salut International Metropolitana Nord, Barcelona, Spain), Dr. Angel Lluis Ballesteros (Hospital de Badalona, Barcelona, Spain), Dr. Cristina Soler (Hospital de Santa Caterina, Girona, Spain), Dr. Toni Soriano (Hospital Joan XXIII, Tarragona, Spain) and Dr. Jean Jannin (Innovative and Intensified Disease Management Unit, Department of Control of Neglected Tropical Diseases, WHO, Geneva, Switzerland) References 1. World Health Organization (WHO). Working to overcome the global impact of neglected tropical diseases: first WHO report on neglected tropical diseases. Geneva: WHO; 2010. Report No.: WHO/HTM/NTD/2010.1. Available from: http://whqlibdoc. who.int/publications/2010/9789241564090_eng.pdf 2. Dias JC, Silveira AC, Schofield CJ. The impact of Chagas disease control in Latin America: a review. Mem Inst Oswaldo Cruz. 2002;97(5): 603-12. 3. Schmunis GA, Yadon ZE. Chagas disease: A Latin American health problem becoming a world health problem. Acta Trop. 2010;115(1-2):14-21. 4. World Health Organization (WHO). Control and prevention of Chagas disease in Europe. Report of a WHO Informal Consultation (jointly organized by WHO headquarters and the WHO Regional Office for Europe) Geneva, Switzerland, 17-18 December 2009. Final report. Geneva: WHO; 2010. Report No.: WHO/HTM/NTD/IDM/2010.1. Available from: http://www. fac.org.ar/1/comites/chagas/Chagas_WHO_Technical%20 Report_16_06_10.pdf 5. Vasileva K. Statistics in focus. Citizens of European countries account for the majority of the foreign population in EU-27 in 2008. Luxembourg: Eurostat; 2009. Report No.: 94/2009. Available from: http://epp.eurostat.ec.europa.eu/cache/ITY_ OFFPUB/KS-SF-09-094/EN/KS-SF-09-094-EN.PDF 6. European Commission (EC). Size and development of irregular migration to the EU, Clandestino Research Project, Counting the Uncountable: Data and Trends across Europe. Bruxelles: EC; 2009 [Accessed: 27 Feb 2011]. Available from: http:// clandestino.eliamep.gr/wp-content/uploads/2009/12/ clandestino_policy_brief_comparative_size-of-irregularmigration.pdf 7. Jackson J, Angheben A, Carrilero Fernández B, Jansa i Lopez del Vallado JM, Jannin JG, Albajar-Viñas P. Prise en charge de la maladie de Chagas en Europe. Expériences et défis en Espagne, Suisse et Italie. [Management of Chagas disease in www.eurosurveillance.org Europe. Experiences and challenges in Spain, Switzerland and Italy]. Bull Soc Pathol Exot. 2009;102(5):326-9. French. 8. Rassi A Jr, Rassi A, Marin-Neto JA. Chagas disease. Lancet. 2010;375(9723):1388-402. 9. Autonomous Government of Valencian Community. Enfermedad de Chagas importada. Protocolo de actuación en la Comunitat Valenciana. [Imported Chagas Disease. Protocol of actions in the Valencian Community]. Valencia: Conselleria de Sanitat, Generalitat Valenciana; 2009 [Accessed: 14 Jun 2010]. Spanish. Available from: http://biblioteca.sp.san.gva.es/biblioteca/ publicaciones/MATERIAL/PUBLICACIONES/INFAN_MUJER/ PERINATAL/MAMUAL_ENF_CHAGAS.PDF 10. Autonomous Government of Catalonia. Protocol for screening and diagnosing Chagas disease in pregnant Latin American women and their newborns. Barcelona: Departament de Salut, Genaralitat de Catalunya; 2010 [Accessed: 14 Jun 2010]. Available from: http://www.gencat.cat/salut/depsalut/html/ en/dir3559/chagasprot_eng.pdf 11. Gonzalez-Granado L, Rojo P, Gonzalez-Tomé M, Camaño I, Salto E, Flores M. Cribado sistemático de la enfermedad de Chagas en embarazadas bolivianas y seguimiento de los recién nacidos. Experiencia de un año. [Systematic screening of Chagas Disease in Bolivian pregnant women and newborn follow-up. One-year experience]. Enf. Emerg. 2009;11 Supl1:1819. Spanish. 12. Salamanca DD, La Ruche G, Tarantola A, Degail MA, Jeannel D, Gastellu-Etchegorry M. Maladie de Chagas en France: estimation du nombre de personnes infectées et d’atteintes cardiaques en 2009, selon les groups à risqué [Chagas disease in France: estimated number of infected persons and cardiac diseases in 2009, by risk groups].. Bull Soc Pathol Exot. 2009;102(5):285-90. French 13. Jackson Y, Gétaz L, Wolff H, Holst M, Mauris A, Tardin A, et al. Prevalence, Clinical Staging and Risk for Blood-Borne Transmission of Chagas Disease among Latin American Migrants in Geneva, Switzerland. PLoS Negl Trop Dis. 2010;4(2):e592. 14. Guerri-Guttenberg RA, Ciannameo A, Di Girolamo C, Milei JJ.Mal di Chagas : Un problema emergente di salute pubblica in Italia ? [Chagas disease: an emerging public health problem in Italy?]. Infez Med. 2009;17(1):5-13. Italian. 15. Pérez de Ayala A, Pérez-Molina JA, Norman F, López-Vélez R.. Chagasic cardiomyopathy in Immigrants from Latin America to Spain. Emerg Infect Dis. 2009;15(4):607-8. 16. Guerri-Guttenberg RA, Grana DR, Ambrosio G, Milei J. Chagas cardiomyopathy: Europe is not spared!. Eur Heart J. 2008;29(21):2587–91. 17. World Health Organization (WHO). New global effort to eliminate Chagas disease. Partners set out strategy against the ‘kissing bug’ disease. Geneva: WHO; 3 Jul 2007. Available from: http://www.who.int/mediacentre/news/releases/2007/ pr36/en/ 18. World Health Organization (WHO). Control of Chagas disease. Technical report. Geneva: WHO; 2002. Available from: http:// whqlibdoc.who.int/trs/WHO_TRS_905.pdf 19. Pan American Health Organization (PAHO). Estimación cuantitativa de la enfermedad de Chagas en las Américas. [Quantitative estimation of Chagas Disease in the Americas]. Montevideo: PAHO; 2006. Report No.: OPS/HDM/CD/425-06. Spanish. 20. Piron M, Vergés M, Muñoz J, Casamitjana N, Sanz S, Maymó RM, et al, Seroprevalence of Trypanosoma cruzi infection in at-risk blood donors in Catalonia (Spain). Transfusion. 2008;48(9):1862-8. 21. Muñoz J, Coll O, Juncosa T, Vergés M, del Pino M, Fumado V, et al. Prevalence and vertical transmission of Trypanosoma cruzi infection among pregnant Latin American women attending 2 maternity clinics in Barcelona, Spain. Clin Infect Dis. 2009;48(12):1736-40. 22. Yadon ZE, Schmunis GA. Congenital Chagas disease: Estimating the potential risk in the United States. Am.J.Trop. Med.Hyg. 2009;81(6):927–33. 23. Newcombe RG. Two-sided confidence intervals for the single proportion: comparison of seven methods. Stat Med. 1998;17(8):857-72. 24.Jackson Y, Myers C, Diana A, Marti HP, Wolff H, Chappuis F, et al. Congenital Transmission of Chagas Disease in Latin American Immigrants in Switzerland. Emerg Infect Dis. 2009; 15(4): 601-3. 25. Patricio-Talayero JM,,Benlloch-Muncharaz MJ, Collar-delCastillo JI, Rubio-Soriano A, Serrat-Pérez C, Magraner-Egea J, et al. Vigilancia epidemiológica de la transmisión vertical de la enfermedad de Chagas en tres maternidades de la Comunidad Valenciana. [Epidemiological surveillance of verticallytransmitted Chagas disease at three maternity hospitals 9 in the Valencian Community]. Enferm Infecc Microbiol Clin. 2008;26(10):609-13. Spanish. 26. Société de pathologie exotique. Atelier de consensus sur la Maladie de Chagas en zone non endémique (Paris – 26 Juin 2009). [Consensus workshop about the Chagas disease in non-endemic areas (26 June 2009, Paris, France)]. Bull Soc Pathol Exot. 2009;102(5):273-352. French. 27. BBC News. Born abroad, an immigration map of Britain, South America special report. London: BBC MMXII; 2010. [Accessed: 18 Jan 2011]. Available from: http://news.bbc.co.uk/2/shared/ spl/hi/uk/05/born_abroad/countries/html/south_america.stm 28.Orihuela M. Boliviani in Italia. [Bolivians in Italy]. Latinoamericando s.r.l., il portale del mondo latino. [ Latinoamericando Ltd., the portal of the Latin world.] 28 Jul 2009. Italian. Available from: http://www.latinoamericando. it/cms/index.php?option=com_flexicontent&view=ite ms&cid=51:focus-immigrazione&id=3827:boliviani-initalia&Itemid=33&lang=es 10 www.eurosurveillance.org 11. Need for comprehensive healthcare for T. cruzi infected immigrants in Europe Cet article a été publié dans: Rev Soc Bras Med Trop. 2009; 42 (suppl 2): 92-95 Par: Velarde-Rodríguez M, Avaria-Saavedra A, Gómez-i-Prat J, Jackson Y, Alves de Oliveira W, Camps-Carmona B, Albajar-Viñas P. 83 Rev Soc Bras Med Trop - Vol: 42: Suplemento II, 2009 25a Reunião Annual de Pesquisa Aplicada em Doença de Chagas 13a Reunião Annual de Pesquisa Aplicada em Leishmanioses Need of comprehensive health care for T. cruzi infected immigrants in Europe Mar Velarde-Rodríguez1, Andrea Avaria-Saavedra2, Jordi Gómez-i-Prat3, Yves Jackson4, Wilson Alves de Oliveira Junior5, Beatriz Camps-Carmona1 and Pedro Albajar-Viñas1 Abstract Paleoparasitology studies have evidenced that Chagas disease is almost as old as man's presence in the Americas. At the beginning of the twentieth century the disease was mostly confined to the rural areas of South America, Central America and Mexico. Later, the increase of population mobility, facilitated by the new different means of transport, greatly contributed to spread the disease and even the vector first across Latin America, secondly to the urban and peri-urban environment, and finally to the so-called disease non-endemic countries. Consequently, new areas harbouring people with T. cruzi infection have faced the risk of autochthonous transmission. Since the last decade of the twentieth century, Chagas disease has become an emerging public health challenge in Europe. This challenge stems from the considerable diversity observed among Latin American immigrants: a variety of origins and social groups; a heterogeneous geographical distribution in the continent; a wide range in their prevalence rates of T. cruzi infection; and different predominance of clinical forms of the chronic phase and different severity of morbidity. The identification of the main health determinants of the Latin American immigrant communities in a specific area (including their diversity and barriers such as their immigrant condition and their socio-cultural-economic characteristics) is crucial to design and implement comprehensive health-care strategies for the care of people with Chagas disease in Europe. Specific innovative approaches are needed to make possible the meeting between the health system and the T. cruzi infected patients, such as: the multidisciplinary approach; the community approach; and the Expert Patient Programme. The associations of Chagas disease patients have also been proven to be very helpful as voice of these usually neglected patients. Key-words: Comprehensive health care. Immigrants. Europe. Disease nonendemic. T. cruzi infection. Chagas disease. Human mobility and Chagas disease distribution in the world According to one of the most accepted hypothesis, America was first settled by people from Asia who migrated across the Bering Strait around 20.000-25.000 years ago1. It is believed that groups of this early population migrated from North America to South America, on foot or using primitive boats along the coastline approximately 12.000-15.000 years ago2. Paleoparasitology studies have evidenced that Chagas disease is almost as old as man's presence in the Americas. At present, the most ancient human infection by Trypanosoma cruzi (flagellate protozoa of the kinetoplastida order and trypanosomatidae family), is known from mummies dated as 9.000 years old and found in the coastal and low valley sites in northern and southern Chile3. 1. Chagas disease programme. Department of Control of Neglected Tropical Diseases. World Health Organization, Geneva. 2. Universidad Santo Tomás, Santiago de Chile. 3. Unitat de Medicina Tropical i Salut Internacional Drassanes. Catalan Institute of Health, Barcelona. 4. Department of community medicine and primary care, Geneva University Hospitals and University of Geneva. 5. Ambulatório de Doença de Chagas e Insuficiência Cardíaca, Oswaldo Cruz University Hospital, University of Pernambuco. Address to: Dr. Pedro Albajar Vinas. WHO/HTM/NTD/IDM/Chagas disease. Av. Appia 20, 1211 - Geneva 27, Switzerland. 92 Carlos Ribeiro Justiniano Chagas discovered the disease in 1909 in Brazil. At the beginning of the twentieth century the disease was mostly confined to the rural areas of South America, Central America and Mexico. Later, the population mobility through new transportation routes, especially railroads and roadways, greatly contributed to disseminate the disease across 21 Latin American countries (Argentina, Belize, Bolivia, Brazil, Chile, Colombia, Ecuador, French Guiana, Guyana, Paraguay, Peru, Uruguay, Suriname and Venezuela, in South America; Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua, Panama, in Central America; and Mexico, in North America). Afterwards, in the second half of the twentieth century, driven by population's flows from the countryside to the cities and also, in some cases, with the adaptation of some vectors to the urban and peri-urban environment, Chagas disease became an urban phenomenon4,5. At present, Chagas disease can also be found in the so called disease non-endemic countries as a result of the population mobility, mainly migrations occurred in the last decades from Latin American countries where Chagas disease is endemic to the USA, Canada, many European countries (especially Belgium, France, Italy, Spain, Switzerland and the United Kingdom, but also Austria, Croatia, Denmark, Germany, Luxembourg, the Netherlands, Norway, Portugal, Romania and Sweden) and some Western Pacific countries (mainly Australia and Japan). Additionally, the disease expansion outside Latin America has also been associated to foreigners visiting disease-endemic areas, for work or tourism reasons, and returning to their home countries infected by T. cruzi. Consequently, countries harbouring people with T. cruzi infection face the risk of autochthonous transmission through blood transfusion, transmission from mother to son infection (vertical) and through organ transplantation6,7. Initial spread of Chagas disease vectors linked to the population movements The vectors of Chagas disease are blood-sucking Hemiptera of the Triatomine subfamily (family Reduviidae). There are more than 140 species of insect vectors of Chagas disease, mainly of American origin. Triatomine bug species with the capacity to transmit T. cruzi have also been identified outside America in parts of Africa, Middle East, Southeast Asia and the Western Pacific. Current theories indicate that those species in Southeast Asia have probably derived from American species transported to seaports by sailing ships since the sixteenth century. The construction of railways and roadways have also played a significant role as means of dispersal for these vectors. There is evidence of the spread of the main intradomiciliary vector species, the Triatoma infestans, from its origin in the Bolivian Andean valleys to the rest of South America. This spread has mainly occurred over Rev Soc Bras Med Trop - Vol: 42: Suplemento II, 2009 the last 150 years and it has been associated to human migrations. For example, T. infestans has been reported in chairs and passengers’ commodities on long-distance trains in Chile during the 1960s, buses in Bolivia during the 1980s, and suitcases of passengers travelling from Bolivia to Argentina in the 1990s8 . In addition to maritime and overland routes, at present time, the risk of spreading the Triatomine vector by air transportation routes has also been demonstrated. Current diversity of the Latin American population in Europe at risk of being infected by T. cruzi According to the International Organization for Migration (IOM), Latin American immigrants living in Europe at present are mainly young, at reproductive age and with a high proportion of women9. Nevertheless, a considerable diversity has been observed among those Latin American immigrants in Europe at risk of being infected by T. cruzi. The geographical distribution of the Latin American population living in Europe is not homogeneous. For example, according to official sources, Brazilians constitute the largest group of Latin American immigrants in France; Peruvians and Ecuadorians have the highest number of residents in Italy; and Argentineans, Bolivians, Colombians and Ecuadorians have the most significant presence in Spain7. A diversity of social groups has been identified within the Latin American population at risk of being infected in Europe. At country level, one of the most common ways of classifying the immigrant population is according to their legal (documented) or illegal (undocumented) status. For certain European countries, such as France, the groups of adopted children from Latin American countries and children born in France from Latin American mothers, have also been found to be significant in number7. Despite the difficulty of the task, it is important to try to obtain accurate estimations of authorized and unauthorized immigrants by country, due to the high estimated proportion of immigrants at risk of having T. cruzi infection in Europe. Prevalence rates for T. cruzi infection are also heterogeneous among the Latin American population living in Europe, which reflects geographical variations in the distribution of the infection in their countries of origin. In different studies carried out in European countries, a higher prevalence has been found in the population coming from Latin American regions of high endemicity10,11,12,13, for instance, in the case of Bolivian immigrants who come from Chuquisaca, Cochabamba, Santa Cruz and Tarija Departments. Moreover, since the 1970s, progressive implementation of various national control programmes in Chagas disease endemic countries, principally focused on eliminating the domestic vectors and establishing blood donation screening for T.cruzi, have resulted in a significant reduction of transmission13. Therefore, in their countries of origin, older Latin American immigrant generations now living in Europe were often exposed to a higher risk of infection than younger ones. For most of these adult immigrants, their infection occurred decades ago and they are now presumably in the late chronic phase of the disease14. Geographical variations in Latin American countries also show different predominance of clinical forms of the chronic phase and different severity of morbidity. Therefore, in the coming years infected 25a Reunião Annual de Pesquisa Aplicada em Doença de Chagas 13a Reunião Annual de Pesquisa Aplicada em Leishmanioses individuals in Europe coming from countries such as Argentina, Bolivia and Brazil may develop myocardiopathy and/or digestive abnormalities, whereas infected people coming from Central American countries may show chronic Chagas cardiopathy without evident digestive abnormalities15. European health services and the necessity of meeting health-care needs of Latin American immigrants with T. cruzi infection Until the last decade of the twentieth century, Chagas disease was almost unknown in Europe. At the beginning of the twenty-first century, as an emerging disease, it has represented a big challenge to the health system and society itself. After the first approaches implemented and experiences acquired, a range of challenges involving the care of people with Chagas disease were identified16: Detection of an infection mostly without evident clinical manifestations (asymptomatic); Availability of appropriate serological tests for screening and diagnosis purposes and the need of trained health-care professionals able to perform accurate clinical diagnosis; Awareness among health and public health professionals about this emerging disease; Access to parasitological and non-parasitological treatment; treatment compliance; patient tolerability; patient follow-up; and assessment of therapeutic response; Primary prevention of transmission by blood transfusion, cell, tissue or organ transplantation; Early diagnosis and treatment (secondary prevention) of congenital transmitted cases; Collection and analysis of epidemiological data (baseline) and establishment of an information and surveillance system; Understanding and consideration of the complex psycho-social, socio-labour-economic and cultural-linguistic conditions of the Latin American immigrant population in Europe; Overcoming the frequently encountered assumption in immigrants from disease endemic countries that adults infected with T. cruzi cannot be treated; Bridging the gap and creating trust between the health system and communities of documented and especially undocumented immigrants, in order to increase acceptation and adaptation of public health programmes; Implementation of public health strategies for the care of people with Chagas disease. The identification of the main health determinants of the Latin American immigrant communities in a specific area is crucial to design and implement public health strategies for the care of people with Chagas disease in Europe. Among others, some of these health determinants could be their legal and insurance status, cultural and linguistic barriers, their labour conditions and their socialeconomical situation. Typically, immigrants in an unauthorized condition have a more limited access to health care. In Switzerland, for example, immigrants 93 Rev Soc Bras Med Trop - Vol: 42: Suplemento II, 2009 frequently face difficulties in accessing health care because health insurance is expensive. A study conducted in Geneva among 1,012 Latin American immigrants showed that only 4% of the participants had a valid residence permit and health insurance11. Programmes and strategies ensuring that immigrants without documents have access to health care in European countries could improve the health condition of this population17. Within the range of challenges regarding access to health care, the utilization of health services by foreign-born communities can be conditioned or influenced by linguistic, cultural or social barriers between these communities and the health-care systems in their host country. It has also been shown that these barriers can be associated with negative health outcomes17. Consequently, health education and disease prevention activities that are linguistically and culturally tailored for Latin American communities in Europe are needed to ensure the effectiveness of health-care programmes and, ideally, a better use of health services. Even when immigrants have access to health care and use medical services, the continuity of care can be hampered by the precarious working conditions of immigrants, their frequent geographical mobility and their complex social situations. In a study conducted in Spain between 2004 and 2007, 43/483 (8%) of Latin American adults who attended specialized centres for infectious diseases withdrew from medical care after serological tests had been performed but before specific medical examinations had been conducted10. The reasons for withdrawal included: conflicting work schedules and health service opening hours; complicated referral arrangements between primary health-care services and medical specialists; and lack of information and sensitization of pregnant Latin American women and their families about the need of diagnosis and treatment8,19,20. Three innovative methodological approaches have been proposed in order to offer comprehensive health care with a major focus on people in the chronic phase of Chagas disease. Multidisciplinary approach A proven successful approach for the care of people with Chagas disease has been the creation of expert teams composed by different professionals, where each member has a distinct role and all members interact with each other in an interdisciplinary process. This professional team will work with close collaboration with the patient and the family (the so-called therapeutic triangle) in order to provide the best health care. It has been shown that the support of the family has a remarkable influence on the adherence to treatment by the patient. For instance, this professional team can be composed by a diversity of health professionals such as: a cardiologist, who evaluates the patient and advises on the cardiac follow-up and treatment; a nurse, who has frequent contact with the patient and educates him and his family about the disease; a social worker, whose work mainly focuses on minimizing the impact of socio-economic factors on the patient follow-up and his disease; a psychologist, who assesses and counsels on the psycho-emotional factors that are impairing the patient’s quality of life; a nutritionist, who, taking into consideration the socio-economic, cultural and environmental background of the patient, designs a feasible diet, thereby facilitating the patient’s adherence to the dietary regimen21. Primary health-care physicians, 94 25a Reunião Annual de Pesquisa Aplicada em Doença de Chagas 13a Reunião Annual de Pesquisa Aplicada em Leishmanioses paediatricians, obstetricians, radiologists and gastroenterologists are also key actors to compose the team in order to increase the opportunities to screen and care for infected individuals. Community approach In the context of immigration, the meeting between the patient and the health system is only promoted when the condition of the human being and his close family and community links are taken into account (including the immigrant, social, work, language and cultural barriers faced). This meeting between the patient and the health system requires a highly skilled and committed team of health personnel: culturally and professionally diverse and able to work in an interdisciplinary way, as in the above-mentioned approach. The main characteristic of this second approach is the presence of the community health agent as a key member of this team, who is the link between the patient and his family and community, and is a social and political actor with a high capacity of working within the health system and the community. In the community approach, to better understand the social and cultural diversity of the immigrant population (country of origin, age, gender and others), including their external interactions, it is essential to carry out quantitative and qualitative research that will facilitate the approximation to the reality with its full complexity. The ultimate objective is to create unique strategies to adapt the health system to the needs of the immigrant communities (developing health-care protocols and educational material, among others) and to lower its threshold regarding accessibility (with minimal administrative requests, economically affordable, culture and migrant-friendly and delocalized from main health centres). This will definitely facilitate the implementation of community and family work strategies, with a cross-cultural approach, key to the prevention, diagnosis, treatment and follow-up of infected and ill people18,19,20. Expert Patient Programme The recent application of the Expert Patient Programme to Chagas disease is a pioneer methodology because it involves Chagas disease chronically-infected people as active actors in the health-care process. Additionally to medical care, the unique characteristic of this programme is the organization of complementary sessions facilitated by a patient who has first-hand experience in the disease, the "expert patient”, who counsels others suffering from similar symptoms and problems. In this approach, the health-care professional attending these sessions has an observer role and can intervene in the session only if requested by the "expert patient"22. In countries like the United Kingdom this programme has already shown positive effects on the health of people with chronic diseases such as diabetes. At present, a pilot project applying this methodology to Chagas disease patients is being implemented by the Institut Català de la Salut in Barcelona, Catalonia, Spain, in collaboration with the World Health Organization. The objectives of the Expert Patient Programme for Chagas disease include increasing the knowledge of people with Chagas disease about their condition, improving their degree of self-care, ensuring therapeutic compliance, and improving the quality of their lives and that of their families. Finally, the authors would like to highlight the current existence of associations of Chagas disease patients in the regions of the Rev Soc Bras Med Trop - Vol: 42: Suplemento II, 2009 Americas, Europe and the Western Pacific. They have had a key role as voice of the frequently neglected disease carriers. The first assembly of a new International Federation of world associations is being organized in the city of Recife, Pernambuco, Brazil, in the second semester of 2010. Conclusions The comprehensive health care of Chagas disease patients in Europe requires taking into account their significant determinants of health, including their diversity and barriers such as their immigrant condition and their socio-cultural-economic characteristics. Specific innovative approaches are needed to make possible the meeting between the health system and the T. cruzi infected patients, such as: the multidisciplinary approach, with the interaction of several health professionals from different disciplines; the community approach, with the community health agent as a key actor; and the Expert Patient Programme, with the involvement of the patient in his own care. The associations of Chagas disease patients have also been proven to be very helpful as voice of these usually neglected patients. 25a Reunião Annual de Pesquisa Aplicada em Doença de Chagas 13a Reunião Annual de Pesquisa Aplicada em Leishmanioses 8. Schofield CJ, Grijalva M. J, Diotaiuti L. Distribución de los vectores de la Enfermedad de Chagas en países “no endémicos”: la posibilidad de transmisión vectorial fuera de América Latina. Enf Emerg 2009; 11 (suppl 1): 20-27. 9. Pellegrino A. Migration from Latin America to Europe: Trends and Policy. International Organization for Migration 2004. 10. Muñoz J, Gómez i Prat J, Gállego M, Gimeno F, Treviño B, López-Chejade P et al. Clinical profile of Trypanosoma cruzi infection in a non-endemic setting: immigration and Chagas disease in Barcelona (Spain). Acta Trop 2009; 111 (suppl 1): 51-55. 11. Jackson Y, Gétaz L, Wolff H, Holst M, Mauris A, Tardin A et al. Prevalence, Clinical Staging and Risk for Blood-Borne Transmission of Chagas Disease among Latin American Migrants in Geneva, Switzerland. PLoS Negl Trop Dis 2010; 4 (issue 2): e592. 12. Lescure FX, Canestri A, Melliez H, Jauréguiberry S, Develoux M, Dorent R et al.Chagas Disease, France. Emerg Infect Dis 2008; 14(4): 644-646. 13. Anselmi M, Angheben A, Degani M, Tais S, Spreafico I, Bonifacio E et al. Imported Chagas disease in Italy: Preliminary screening results of selected immigrant populations. Trop Med Int Health 2009; 14(suppl .2): 74-75. 14. Dias JCP. Elimination of Chagas disease transmission: perspectives. Mem Inst Oswaldo Cruz 2009; 104(suppl. 1): 41-45. 15. Pérez de Ayala A, Pérez-Molina JA, Norman F, López-Vélez R. Chagasic cardiomyopathy in immigrants from Latin America to Spain. Emerg Infect Dis 2009; 15(suppl 4): 607-608. 16. Coura JR, Albajar-Vinas P. Chagas disease: a new worldwide Challenge. Nature 2010; 465 (n7301_supp): S6-S7. References 17. Jackson Y, Angheben A, Carrilero Fernández B, Jansà i López del Vallado JM, Jannin JG, Albajar-Viñas P. Chagas disease in Europe. Experiences and challenges in Spain, Switzerland and Italy. Bull Soc Pathol Exot 2009; 102(5): 326-329. 1. Guhl F, Jaramillo C, Vallejo GA, Cárdenas A, Arroyo F, Aufderheide A. Chagas disease and human migration. Mem Inst Oswaldo Cruz 2000; 95(4): 553-555. 18. Gushulak B, Weekers J, MacPherson DW. Migrants in a globalized world — health threats, risks and challenges: an evidence-based framework. Emerg Health Threats J 2009; 2: e10. 2. Araújo A, Jansen AM, Reinhard K, Ferreira LF. Paleoparasitology of Chagas disease - A review. Mem Inst Oswaldo Cruz 2009; 104 (suppl 1): 9-16. 3. Aufderheide AC, Salo W, Madden M, Streitz J, Buikstra J, Guhl F et al. A 9,000-year record of Chagas' disease. Proc Natl Acad Sci USA 2004; 101(7): 2034-2039. 4. Briceño-León R, Méndez Galván J. The social determinants of Chagas disease and the transformations of Latin America. Mem Inst Oswaldo Cruz 2007; 102 (suppl 1):109-112. 5. Levy MZ, Bowman NM, Kawai V, Waller LA, Cornejo del Carpio JG, Cordova Benzaquen E et al. Periurban Trypanosoma cruzi–infected Triatoma infestans, Arequipa, Peru. Emerg Infect Dis 2006; 12: 1345-1352. 6. Schmunis GA, Yadon ZE. Chagas disease: A Latin American health problem becoming a world health problem. Acta Trop 2010; 115: 14-21. 7. WHO 2010. Control and prevention of Chagas disease in Europe. Report of a WHO Informal Consultation (jointly organized by WHO headquarters and the WHO Regional Office for Europe). Geneva, Switzerland, 17-18 December 2009. WHO/HTM/NTD/IDM/2010.1. 19. Avaria A, Gómez i Prat J. "Si tengo Chagas es mejor que me muera" El desafío de incorporar una aproximación socio-cultural a la atención de personas afectadas por la enfermedad de Chagas. Enf Emerg 2008; 10 (Suppl 1): 40-45. 20. Avaria A, Gómez i Prat J. Mujer derivada por médicos de familia para descartar enfermedad de Chagas. Capitulo 4: Atención Comunitaria a la población inmigrante. In: UMTSID editor. 50 Casos clínicos de salud internacional. 25 años de trabajo de la Unidad de Medicina Tropical y Salud Internacional. Gràfiques Montseny; 2008. p. 229-236. 21. Avaria A. Migrar, enfermar-sanar lejos de casa. Bolivianos en Barcelona experiencia hecha carne. In: Agar L, editor. Migraciones, salud y globalización, entrelazando miradas. Santiago de Chile: OIM, OPS, MINSAL; 2010. p. 199-213. 22. Oliveira Jr W. All-around care for patients with Chagas disease: a challenge for the XXI century. Mem Inst Oswaldo Cruz 2009; 104 (suppl 1): 181-186. 23. González Mestre A, Fabrellas Padrés N, Agramunt Perelló M, Rodríguez Pérez E, Grifell Martín E. Expert patient program Institut Català de la Salut: From passive to active patient. RISAI 2008; 1(1): 1-3. 95 12. Economic crisis and enhanced immigrants mobility: new challenges in the management of Chagas disease in Europe Cet article a été accepté pour publication dans: Bull World Health Organ. 2014 Par: Jackson Y, Varcher Herrera M, Gascon J. 87 Economic crisis and enhanced immigrants mobility: new challenges in the management of Chagas disease in Europe Yves Jackson1, Monica Varcher Herrera1, Joaquim Gascon2 1 Department of community medicine, primary care and emergency medicine, Geneva University Hospitals and University of Geneva, Switzerland 2 Barcelona Centre for International Health Research (CRESIB), ISGLOBAL, Barcelona, Spain Corresponding author Yves Jackson Department of community medicine, primary care and emergency medicine, Geneva University Hospitals and University of Geneva Rue Gabrielle-Perret-Gentil 6 1211 Geneva 4, Switzerland yves.jackson@hcuge.ch Ph. +61 (0)452 543 600 Key words Public health policy, infection control, Chagas disease Abstract The financial and economic crisis affecting Europe since 2008 and the ensuing austerity measures have caused adverse health impact on some populations, most notably on vulnerable groups. Recession-led fiscal measures have often resulted in reduced public health and clinical services to vulnerable immigrants as illustrated by the recent change of national policy in Spain severely restricting undocumented immigrants’ access to care. At the same time, Europe sees the emergence of new communicable health threats, some of them in relation with new patterns of immigration. This article discusses new challenges pertaining to Chagas disease management in the context of the current crisis. This emerging disease affects 80’000 to 120’000 people in Europe with ongoing local transmission and is particularly at risk of being exacerbated by the crisis given its complex clinical and social characteristics. We present a set of suggestions to adapt and enhance the current responses to Chagas disease in Europe in light of the ongoing crisis context. Manuscript Mounting evidences illustrate the health impact of the global financial crisis in Europe. Those include increasing risk behaviours and poorer mental, maternal and child health among the most vulnerable groups of population (1). Limited data are available about the relationship between communicable diseases-related health outcomes and economic downfall in developed countries. A meta-analysis suggested worsened health outcomes affecting the whole population, while vulnerable and hard-to-reach groups such as infants, elderly, poor, homeless, prisoners and immigrants carried the main burden (2). Europe harbours a substantial burden of infectious diseases linked to social and economic disadvantage borne by such vulnerable groups. The last two decades saw the arrival of more than 3.5 millions Latin American immigrants in Europe, with a predominance of young-tomiddle age women and a proportion living in irregular situation (3). Chagas disease, a parasitic infection endemic in Latin America, has recently emerged in Europe, affecting an estimated 80’000 to 120’000 Latin American immigrants and entails annual costs of up to $ 16 and 137 million due to healthcare costs and lost productivity, respectively (4). Transmission through congenital and unscreened blood and organ donations has been identified in several countries. Spain and Italy, two countries severely hit by the crisis, host the largest Latino communities at risk and the highest number of cases (5). Undetected and untreated, 20-40% of infected people will develop potentially severe cardiac, digestive or neurologic complications requiring complex, costly and long-lasting medical attention. Despite evidences showing the economic and health benefits of implementing targeted screening and treatment strategies among at at-risk groups, Chagas disease-related health needs remain largely unmet in Europe as attested by the limited number of cases identified in regards to the estimated burden and to the dearth of health policies regarding its control and management. The long clinically-silent phase, the poor specificity and high diversity of symptoms when there are, the need for specific diagnostic procedures and the lack of awareness among health professionals contribute to limit opportunities for identifying infected individuals. Moreover, infected Latino immigrants in Europe often face administrative and economic barriers hindering access to care. Recommended transmission control strategies include screening pregnant women, their newborns and other family members and testing blood and organ donors at risk. The current crisis in Europe and the subsequent austerity measures impact on the management of Chagas disease. Several European countries have cut health and social services targeting vulnerable immigrants since 2008. In Spain for example, a Royal Decreelaw (2012) severely restricted access to preventive and primary healthcare for undocumented immigrants. The decreasing economic opportunities in countries most affected, such as Spain, Portugal and Italy, has led to enhanced immigrants mobility within Europe and towards their home countries (3). Immigrant families have often been forced to split with male and female members targeting gender-specific job opportunities in different places. This enhanced mobility jeopardizes continuity of care and challenges the implementation of the recommended whole-of-family screening after a case of infection has been identified. While most infected immigrants initially lived in Spain, a country that has developed effective responses against Chagas disease over the last decade, a consequent number has recently moved to less economically affected countries with fewer or no Chagas disease programs, raising the challenge of further enhancing transmission. In order to respond to these challenges entailed by the consequences of the current period of economic hardship, the austerity measures and the enhanced mobility of immigrants at risk of Chagas disease, there is a need for enhanced and coordinated multi-pronged, sustained public health and clinical interventions grounded in evidences. Therefore, we propose a set of recommendations to optimize Chagas disease management and control in Europe in the current context of economic crisis: i) Developing Chagas disease-related programs in countries/regions hosting communities at high risk. The community at highest risk in Europe are Bolivians (5). Although difficult to precisely quantify, it is estimated that around 300’000 live in Europe, frequently clustered in closely-knit communities (3). In regions/countries where large-scale programs targeting all Latin-American immigrants are not feasible, efforts should primarily focus on the Bolivian community. While this may pose the risk of missing some cases from other communities, it would provide acceptable effectiveness as Bolivians account for more than 90% of cases identified so far in Europe. Therefore, all efforts should be made to identify new areas where Bolivian immigrants settle and to develop preventive and curative Chagas disease programs targeting them. ii) Optimizing Chagas disease interventions effectiveness by grounding them into primary health care systems. While developing de novo specialized Chagas disease programs might entail too many financial and organisational constraints, grounding them into existing primary health care programs targeting immigrants, where most people at risk are being attended, is likely to be the most effective strategy. Indeed, improving awareness, ensuring diagnostic facilities are available and developing capacities to correctly orientate patients among the various therapeutical options within such settings (including paediatric and gynaecology and obstetrics facilities) in regions hosting communities at-risk would allow for multiplying the opportunities to identify cases and for providing a whole-of family approach shown to be effective. Yet, close collaboration between primary and specialized care services have proven very beneficial, especially in the management of treatment. Moreover, the fact that Chagas disease patients frequently present concomitant non-communicable diseases (NCD) requiring recurrent contacts with healthcare services also calls for merging Chagas and NCD management strategies. Strong coordination and effective communication between health institutions providing health services for immigrants across Europe would allow for optimizing continuity of care in the context of immigrants enhanced mobility. Among other benefits, this could reduce the consequent loss of follow-up in children recently born from infected mothers during the multi-stage diagnostic procedure in the first year of life and improve the clinical follow-up of adults after treatment. iii) Fostering support from the communities. Chagas disease is deeply embedded in social, economic and cultural factors and affected immigrants communities maintain patterns. Immigrants may not engage with programs for different reasons including unawareness, fear of stigma or negative representation about the disease. In recent years, Chagas disease patients’ organizations have developed both in Latin and North America and in Europe (http://www.findechagas.com). They have shown to be effective partners in raising awareness, spreading information and facilitating contacts between communities and health systems in cities with consequent Chagas disease burden. Strengthening community-based interventions with the support of immigrants’ organizations may therefore harness great benefits in terms of effectiveness of screening and transmission control programs in the often hard-to-reach communities. iv) Reinforcing measures to control vertical and blood-borne transmission. Except for a few European countries, there is a dearth of public health policies regarding Chagas disease control, which results in its persisting transmission. Considering that congenital infection is the main route of transmission outside endemic areas, the high proportion of female Latin American immigrants of child-bearing age and the proven favourable cost-effect ratio of screening (6), priority attention should be paid to identify infected pregnant women in areas hosting communities at risk. Adding Chagas disease serology to other pre-natal blood tests in well defined populations would not incur important extra costs, while harnessing important public health and individual benefits. Moreover, blood-transfusion transmission control, would it be by pre-donation questionnaire and donors exclusion or by blood testing in donors at risk, should be implemented in countries hosting populations at risk. By carefully selecting the criteria for screening (for instance Bolivian origin or long-term residency in rural area of endemic countries, history of unscreened blood transfusion in Latin America or Chagas disease in the mother) a single or a limited number of reference centres would be sufficient to process all samples with limited extra costs. In conclusion, the current economic crisis entails risks and opportunities regarding the control and management of Chagas disease in Europe and the containment of high economic costs. Whereas crisis-related factors may lessen the public health and clinical capacities to address this issue and increase immigrants’ vulnerability, the experience gained in Europe about Chagas disease management during the last decade may hold great promise in facilitating the decision-making about optimal control strategies in newly affected countries. The current context also provides an excellent opportunity to reflect upon and adapt those strategies and forces to rethink some long-established paradigms. References 1. Karanikolos M, Mladovsky P, Cylus J, Thomson S, Basu S, Stuckler D, et al. Financial crisis, austerity, and health in Europe. Lancet. 2013;381(9874):1323-31. 2. Suhrcke M, Stuckler D, Suk JE, Desai M, Senek M, McKee M, et al. The impact of economic crises on communicable disease transmission and control: a systematic review of the evidence. PloS one. 2011;6(6):10. 3. IOM. Rutas y dinámicas migratorias entre los países de América Latina y el Caribe (ALC), y entre ALC y la Unión Europea. Bruxelles: IOM, 2012. 4. Lee B, Bacon K, Bottazzi M, Hotez P. Global economic burden of Chagas disease: a computational simulation model. Lancet Infect Dis. 2013;13(4):342-8. 5. Basile L, Jansa JM, Carlier Y, Salamanca DD, Angheben A, Bartoloni A, et al. Chagas disease in European countries: the challenge of a surveillance system. Euro surveillance : bulletin europeen sur les maladies transmissibles = European communicable disease bulletin. 2011;16(37). 6. Sicuri E, Munoz J, Pinazo MJ, Posada E, Sanchez J, Alonso PL, et al. Economic evaluation of Chagas disease screening of pregnant Latin American women and of their infants in a non endemic area. Acta Trop. 2011;118(2):110-7. 13. Discussion 13.1 Principaux résultats Les études épidémiologiques conduites à Genève, bien que basées sur un recrutement non aléatoire (non-random sampling), illustrent l’émergence de la maladie de Chagas en Suisse et son importance en termes de santé publique. Des données similaires récoltées en Espagne, Italie et en France indiquent que ce phénomène touche simultanément plusieurs pays d’Europe occidentale abritant des communautés de migrants Latino-Américains (Angheben A, 2011; Lescure et al., 2008; Munoz, Gomez i Prat, et al., 2009). Ceci reflète la nature chronique de cette infection le plus souvent acquise durant l’enfance en zone endémique puis portée de manière chronique tout au long de l’existence. Ainsi, les taux de prévalence au sein des diverses communautés migrantes reflètent les taux trouvés parmi les populations adultes de ces pays endémiques respectifs (PAHO, 2006). A ce titre, tant à Genève que dans les pays Européens de l’Ouest, les migrants d’origine bolivienne constituent la population la plus affectée en termes de prévalence, élément concordant avec le fait que la Bolivie présente les taux de prévalence nationaux et régionaux les plus élevés. Autrement dit, les taux de prevalence d’infection parmi les communautés migrantes Latino en Europe sont proportionnels à la proportion de Boliviens. En Suisse, Genève abrite la communauté bolivienne la plus importante, ce qui contribue à expliquer la position proéminente du canton dans le nombre de cas recensés à ce jours au niveau national (Jackson & Chappuis, 2011). Alors que plus de 40’000 personnes originaires de pays endémiques vivent en Suisse, le nombre réel de personnes à risque reste mal connu en raison de la présence simultanée d’une population migrante sans permis de séjour (sans-papiers) dont la taille est probablement au moins équivalente (GFS.Berne, 2005; Swiss Federal Bureau of Statistics, 2010). En 2010, les pays de l’Union Européenne abritaient environ 4.5 millions de résidents d’origine Latino-Américaine dans le contexte de flux migratoires s’étant fortement accélérés au cours des années 2000’(IOM, 2012). En effet, le nombre annuel de migrants Latinos entrant dans l’Espace Européen entre 2000 et 2006 a doublé pour atteindre 400’000 personnes. A noter également que ces flux transcontinentaux se superposent à des flux massifs intra-nationaux et inter-régionaux en Amérique Latine où plus de 17 millions de 93 personnes à risque ont migré au cours des deux dernières décennies. Les données démographiques récentes montrent que cette dynamique migratoire ne se tarit pas avec la crise économique et financière que connait l’Europe depuis 2007 (IOM, 2012). L’une des conséquences de la crise consiste en l’augmentation de la mobilité des migrants Latino entre pays Européens, quittant les régions les plus affectées telles que l’Espagne et le Portugal pour se diriger vers des régions plus prospères telles que la Suisse. Il est donc probable que le nombre de personnes à risque de maladie de Chagas présentes en Suisse continue à augmenter. En 2009, il a été estimé que 80-120’000 personnes adultes d’origine Latino-Américaine étaient porteuses de la maladie de Chagas en Europe, ce qui fait de cette infection la maladie parasitaire émergente principale du continent (Hotez & Gurwith, 2011; WHO, 2009). A l’heure actuelle, seules quelques milliers de cas ont été diagnostiqués (WHO, 2009). Les modèles épidémiologiques estiment que plus de 90% des cas d’infection en Europe restent actuellement non détectés (Basile et al., 2011). Ceci appelle donc à des efforts importants des politique de santé publique afin de combler ce fossé avec la mise en place d’interventions à divers niveaux et dans divers secteurs afin d’améliorer le taux de dépistage des personnes infectées. En premier lieu, il convient d’adresser le problème du manqué d’attention qui caractérise cette maladie au niveau des systèmes de santé et du manque de connaissance des professionnels de santé (Jackson et al., 2009; Velarde-Rodríguez et al., 2009). Les données suisses et européennes montrent une très large prédominance de femmes parmi les personnes infectées. Ceci peut s’expliquer par une plus grande demande soins de la part des femmes mais surtout par des facteurs sociaux, économiques et conjoncturels dans les pays d’origine et receveurs ayant favorisé une migration majoritairement féminine en Europe (Benach, Muntaner, Delclos, Menendez, & Ronquillo, 2011; IOM, 2012). La féminisation de la maladie de Chagas en Europe a pour conséquence de favoriser le risque de transmission congénital de T. cruzi et souligne l’importance d’une approche familial plus qu’individuelle de la gestion du risqué et du management de la maladie. Nos résultats confirment la transmission verticale de l’infection en Suisse dans un contexte initial d’absence de mesure de prévention et d’identification du risque. Ces résultats ont 94 sous-tendus la mise en place d’un programmes de screening prénatal chez les femmes enceintes à risque à Genève qui a permis l’identification d’un nombre important de cas (Martinez de Tejada, Jackson, Paccolat, & Irion, 2009). Des données similaires ont été publiées dans les pays voisins avec initialement l’identification de cas de transmission puis plus récemment la mise en évidence d’un large pool de femmes enceintes infectées et dépistées pendant la grossesse supportant la mise en place de screening (Angheben A, 2011; Flores-Chavez et al., 2011; Munoz, Coll, et al., 2009; Munoz, Portus, Corachan, Fumado, & Gascon, 2007; Riera et al., 2006). Ces résultats montrent que la voie transplacentaire est la route de transmission prédominante en Europe. Des modèles épidémiologiques estiment que plusieurs centaines d’enfants naissent infectés chaque année en Europe (Basile et al., 2011). A l’heure actuelle, il n’existe pas de données de qualité suffisante pour évaluer l’effet de prévention primaire sur la transmission du traitement des jeunes femmes en âge de procréer avant la grossesse. Néanmoins, certaines données récentes évoquent une possible diminution du risque après traitement (Murcia et al., 2013). Les traitements antiparasitaires disponibles ne sont pas applicables pendant la grossesse, il n’existe donc pas de moyens de prévention secondaire de l’infection. Il en découle une nécessité de développer des algorithmes de suivi séquentiels pour le dépistage et le traitement de la mère et de l’enfant sur le moyen terme après la naissance. La description des 45 cas pédiatriques de Genève et Barcelone illustre la difficulté d’assurer un tel suivi parmi cette population hautement mobile et souvent précaire, ce qui débouche sur une perte conséquente de cas en cours de route (Guerineau et al., 2013). La mitigation des conséquences de la transmission congénitale en Europe passé par la mise en place systématique de programmes de dépistage des femmes enceintes à risque. Dans les régions qui les appliquent, de tels programmes ont montré un rapport coût-bénéfice très favorable (Sicuri et al., 2011). Il est également impératif de développer de nouveaux outils diagnostiques permettant d’identifier l’infection du nouveau-né dans la phase immédiate post-natale ainsi que des traitements utilisables durant la grossesse. Nos données supportent l’idée d’une approche familiale et communautaire du dépistage de la maladie de Chagas en raison de la fréquente existence de facteurs de risques partagés entre membres de la même famille/communauté. Une récente publication a démontré l’impact positif d’un dépistage élargi autour d’un cas index permettant d’identifier des 95 clusters de cas (Zulantay et al., 2013). Plus globalement, l’approche communautaire permet également de travailler sur les barrières d’accès aux soins et les représentations parfois négatives de la maladie (Magnani, Oliveira, & Gontijo, 2007; Minneman et al., 2012). Un programme d’éducation à la santé maternelle culturellement adapté à la clientèle latinoaméricaine à Madrid a permis d’augmenter le taux d’acceptation du screening de l’infection chez les femmes enceintes (Navarro et al., 2011). Cet ancrage culturel et communautaire de l’intervention préventive fait d’autant plus sens au vu du profil socioéconomique des migrants à risque. En effet, à Genève et en Suisse, la très large majorité des cas sont identifiés chez des personnes sans permis de séjour valables (sans-papiers) et sans assurance-maladie (Demaurex et al., 2013; Jackson et al., 2012; Jackson, Getaz, et al., 2010). Ainsi, en l’absence d’ancrage de ces programmes dans la communauté, souvent hors des institutions de santé, il est probable que leur rendement soit très faible et ne permettent d’identifier que les cas avancés d’infection se présentant avec des complications d’organes comme ce fut le cas jusqu’au milieu des années 2000 en Suisse, en Espagne et en Italie (Jackson et al., 2009; Jackson & Chappuis, 2011). En outre, l’une des garanties du succès des programmes de dépistage et de prise en charge de la maladie de Chagas Nos résultats identifient un risque conséquent de transmission par voie de transfusion ou de transplantation. En effet, une proportion importante de personnes infectées se déclare désireuses de donner leur sang ou leurs organes en Suisse. De plus l’absence fréquente de procédure de dépistage efficaces dans les centres de transfusion sanguine et de transplantation ont facilité cette transmission sanguine ou tissulaires ainsi que des cas de réactivation chez des patients greffés immunosupprimés en Europe et aux Etats-Unis (Bern, Kjos, Yabsley, & Montgomery, 2011; Flores-Chavez et al., 2008; Jackson, Dang, Schnetzler, Pascual, & Meylan, 2011). Il convient de noter que dans notre cohorte, plus de 95% des personnes ignoraient leur infection au moment du diagnostic, ce qui illustre les limites d’un screening base sur un questionnaire quant à la présence de l’infection tel que pratiqué en Suisse jusqu’en 2013. Heureusement, l’identification de donneurs infectés et nos données ont permis de modifier les procédures avec l’instauration de tests sanguins chez les personnes à risque depuis 2013 sur le modèle de ce qui se pratique en Espagne (Pizzi Bosman & Rosochova, 2011). De plus, la récente publication de recommandations américaines et européennes sur l’identification et le management de donneurs d’organes 96 infectés devrait également permettre de mieux prendre en charge le risque liés à ce mode de transmission (Chin-Hong et al., 2011; Pinazo et al., 2011). L’évaluation de l’état de santé physique, mentale et social des personnes avec maladie de Chagas à Genève montre la présence de facteurs de risque cumulatifs de plusieurs ordres. Sur le plan somatique, la présence de troubles métaboliques tels que l’hypertension, l’hypercholestérolémie, le diabète et la surcharge pondérale étayent la transition de santé qui a actuellement lieu dans les pays endémiques, à savoir la présence de maladies infectieuses associée à l’émergence rapide des maladies non transmissibles. Ceci force à redéfinir la façon d’appréhender la maladie de Chagas pour laquelle on peut faire l’hypothèse que le pronostic pourrait être ultimement s’aggraver en présence de comorbidités athérogènes. Ceci renforce le besoin d’interventions de santé préventive précoces parmi la population à risque, tant pour identifier l’infection que pour agir sur les comorbidités. Par ailleurs, la présence fréquente de troubles de la santé mentale est un facteur d’importance dans la prise en charge des personnes infectées. En effet, le dépistage de trouble psychique est important au vu du risque de troubles psychiques induits par les médicaments antiparasitaires (Jackson, Alirol, et al., 2010; Perez-Molina et al., 2009; Pinazo, Munoz, et al., 2010). De plus, cette souffrance psychique peut contribuer à fragiliser la situation socioéconomique de migrants atteints, vivant déjà, pour la plupart, en situation de précarité. En effet, notre étude montre une association étroite entre infection à T. cruzi et précarité socioéconomique. Ce lien, bien décrit en région endémique, complexifie la prise en charge des populations à risque en Europe de par la fréquente difficulté d’accès aux soins, notamment préventives, des personnes infectées, la fréquente position des communauté migrantes en marge de la société et de l’agenda politique et de par l’impact négatif sur la santé de déterminants sociaux défavorables (Benach et al., 2011; Cuadra, 2012; Wolff et al., 2005). Le contexte actuel de crise économique et financière ayant forcé plusieurs pays abritant des communautés à risque à adopter des mesures d’austérité fait poser une menace bien réelle sur le contrôle de la maladie de Chagas en Europe. En effet, outre l’abandon de programmes de santé préventive et de premier recours destinés aux populations migrantes et défavorisées, on assiste également à la montée de la xénophobie et de l’intolérance face aux résidents étrangers qui peuvent avoir des conséquences néfastes sur la santé migrants à 97 risque (MdM, 2013; Rechel, Mladovsky, Ingleby, Mackenbach, & McKee, 2013). Comme indiqué plus haut, la crise s’accompagne d’une mobilité accrue des migrants précaires entre régions et pays d’Europe, ce qui pose de nouveaux défis dans l’organisation des soins pour cette infection chronique. L’expérience de terrain de la Consultation Ambulatoire Mobile de Soins Communautaires à Genève reflète ce nouveau fait avec l’arrivée d’une forte population de migrants Latino-américains ayant résidé en Espagne au cours de la dernière décennie et venant chercher en Suisse de meilleures opportunités. Nombre de cas de maladie de Chagas actuellement dépistés aux HUG arrivent d’Espagne où un diagnostic, voir tout ou partie de la phase d’évaluation/traitement ont été pratiqués. La plupart de ces nouveaux cas vivent en situation de grande précarité et d’incertitude quant à leur avenir proche, les empêchant souvent de se projeter dans l’avenir et d’accepter un traitement et un suivi sur plusieurs mois. Ceci rend nécessaire de renforcer la collaboration avec des centres de santé recevant des patients migrants latino-américains dans les pays voisins et dans les pays d’origine afin de garantir la continuité des soins. Par ailleurs, ce nouveau contexte souligne l’importance de l’implémentation des programmes ciblant la maladie de Chagas dans les services de médecine de premier recours (primary care). Ceci permet d’optimaliser les chances de contact avec la population cible et donc d’améliorer l’efficacité des programmes, de fournir une intervention centrée sur la famille, mais également afin de fournir des soins pluridisciplinaires globaux au vu de la coexistence de maladies chroniques non-transmissibles. Finalement, favoriser l’implication des communautés fait sens dans étant donnés les facteurs sociaux et culturels dans lequel émerge la maladie de Chagas en Europe (Ventura-Garcia et al., 2013). 13.2. Défis à relever et futures orientations de recherche Au vu de l’intérêt scientifique limité qu’a suscité la maladie de Chagas jusqu’à présent, de nombreuses questions fondamentales restent à élucider. Sur le plan de la recherche, plusieurs priorités se dégagent. La première concerne l’identification de traitements plus efficaces, mieux tolérés et de moins longue durée permettant de prévenir la survenue de complications potentiellement fatales à différents âges de la vie. Plusieurs molécules (dérivés azolés) sont en cours 98 d’évaluation mais à ce jour, aucune n’a montré de bénéfice substantiel. Etant donnés les très longs délais de développement d’un médicament avant sa mise sur le marché, il conviendrait d’investiguer de nouvelles stratégies avec les traitements existants. Un traitement combinant les deux médicaments ou associant le benznidazole à un dérivés azolé devrait être testé contre la monothérapie actuelle avec comme outcome primaire la tolérance et l’efficacité. De plus, différents régimes de doses et de durées devraient être testés au vu de l’aspect peu pratique et du besoin de ressources important des schémas actuels. La seconde priorité concerne l’identification de marqueurs de guérison après traitement. En effet, le suivi sérologique est le seul outil disponible actuellement mais il n’est d’aucune utilité clinique chez les personnes au stade chronique étant donné la latence de plusieurs années, voir décennies, avant un retour à la négativité. Notre groupe a initié une collaboration avec la Fondation Drugs for Neglected Diseases Initiative (DNDi) et l’Université de Mc Gill (Montréal) afin d’identifier des marqueurs sanguins de diagnostic et de guérison utilisant des techniques d’analyse protéomique. Une première phase d’étude s’est déroulée sur des patients adultes traités par nifurtimox compares à des contrôles et une seconde phase devrait en explorer les performances chez des enfants. Le troisième point concerne l’exploration du contexte dans lequel émerge la maladie de Chagas en Suisse et en Europe. A ce jour, aucune étude n’a exploré plus avant nos trouvailles publiées en 2012 concernant les facteurs socioéconomiques des patients. Outre une meilleure compréhension de la dimension socioculturelle de la maladie au niveau de l’individu, permettant également de donner une voix aux malades par le biais d’approches qualitatives, une analyse approfondie des déterminants globaux, liés à la question migratoire, du genre, de l’acculturation et à l’impact à la crise économique actuelle, contribuerait à faciliter la sortie de l’ombre de cette maladie négligée, à sa meilleure prise en considération par les milieux sanitaires et au développement de programmes de dépistage et de prise en charge plus performants. Ultimement, le défi consistant à combler le fossé entre la présence d’une importante population à risque et le faible nombre de cas dépistés et à contrôler de manière plus efficace la transmission de T. cruzi hors d’Amérique latine. Sur le plan pratique, la mobilité des personnes à risque appelle au développement de réseaux d’institutions permettant de favoriser le dépistage des personnes à risque et le suivi des cas à travers le temps et les zones géographiques. 99 La quatrième priorité tient à une meilleure compréhension des relations causales et des conséquences de la coexistence de l’infection chronique à T. cruzi et de maladies non transmissibles chroniques telles que les maladies métaboliques. En effet, il est probable que ce cumul de charges de maladie (burden of disease) modifie profondément la présentation, le développement et le pronostic de la maladie de Chagas. Cet état de fait requiert une approche non plus isolée de l’infection mais bien plus globale tant sur le plan clinique que de la santé publique Finalement, cette émergence questionne la façon dont le savoir sur cette maladie évolue depuis sa “sortie” d’Amérique latine. En effet, on assiste à une rapide augmentation des publications et des connaissances issues des régions non-endémiques depuis la fin du Millénaire. Ceci a mené à plusieurs changements de paradigmes bien ancrés dans une vision latino-américaine de la maladie tels que la priorité mise sur la lutte anti-vectorielle, le peu d’intérêt porté aux patients adultes et l’approche essentiellement biomédicale de l’infection. Une investigation épistémologique permettrait ainsi de mieux comprendre ces changements et leurs impacts sur la façon de penser la maladie au travers des continents et du temps. 100 14. Conclusions L’émergence de la maladie de Chagas en Suisse et en Europe s’inscrit dans de le contexte de processus globaux et mondialisés tels que l’augmentation des flux migratoires transcontinentaux, leur féminisation et le développement d’une frange de population migrante extrêmement précarisée. Par ailleurs, la population cible est porteuse d’une double charge de maladie, combinant maladies infectieuses et maladies non-transmissibles ce qui va certainement contribuer à redéfinir l’évolution du pronostic de santé des sujets atteints. Dans le contexte actuel, ceci engendre de nombreux défis cliniques et de santé publique au vu du déficit de connaissance et de directives (policies) locales et nationales à propos de la gestion de l’émergence de maladie de Chagas. Il persiste donc un risque sanitaire, social et économique pour la population migrante latino et la population résidente auquel il s’agit de faire face. Genève et la Suisse font partie des précurseurs et des rares régions européennes ayant réagi à cette émergence tant par la mise en place de programmes destinés à identifier les personnes infectées et à limiter l’impact de la transmission que par le développement de projets de recherche permettant de mieux cerner ce phénomène. Une approche scientifique pluridisciplinaire combinant des méthodes de recherche quantitatives et qualitatives associée à la participation active des communautés à risque représente la voie à approfondir en vue d’appréhender au mieux ce phénomène d’émergence et d’y répondre de manière la plus complète possible. 101 15. Références Alarcon de Noya, B., Diaz-Bello, Z., Colmenares, C., Ruiz-Guevara, R., Mauriello, L., ZavalaJaspe, R., . . . Noya, O. (2010). Large urban outbreak of orally acquired acute Chagas disease at a school in Caracas, Venezuela. J Infect Dis, 201(9), 1308-1315. Altclas, J. D., Barcan, L., Nagel, C., Lattes, R., & Riarte, A. (2008). Organ transplantation and Chagas disease. JAMA, 299(10), 1134; author reply 1134-1135. Angheben A, A. M., Gobbi F, Marocco S, Monteiro G, Buonfrate D, Tais S, Talamo M, Zavarise G, Strohmeyer M, Bartalesi F, Mantella A, Di Tommaso M, Aiello KH, Veneruso G, Graziani G, Ferrari MM, Spreafico I, Bonifacio E, Gaiera G, Lanzafame M, Mascarello M, Cancrini G, Albajar-Viñas P, Bisoffi Z, Bartoloni A. . (2011). Chagas disease in Italy: breaking an epidemiological silence. Euro Surveill, 16(37). doi: http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=19969 Apt, W. (2010). Current and developing therapeutic agents in the treatment of Chagas disease. Drug Res Devel Ther, 4, 243-253. Apt, W., Arribada, A., Zulantay, I., Rodriguez, J., Saavedra, M., & Munoz, A. (2013). Treatment of Chagas' disease with itraconazole: electrocardiographic and parasitological conditions after 20 years of follow-up. J Antimicrob Chemother, 68(9), 2164-2169. Aufderheide, A. C., Salo, W., Madden, M., Streitz, J., Buikstra, J., Guhl, F., . . . Allison, M. (2004). A 9,000-year record of Chagas' disease. Proc Natl Acad Sci U S A, 101(7), 2034-2039. Basile, L., Jansa, J. M., Carlier, Y., Salamanca, D. D., Angheben, A., Bartoloni, A., . . . AlbajarVinas, P. (2011). Chagas disease in European countries: the challenge of a surveillance system. Euro Surveill, 16(37). doi: pii: 19968 Benach, J., Muntaner, C., Delclos, C., Menendez, M., & Ronquillo, C. (2011). Migration and "low-skilled" workers in destination countries. PLoS Med, 8(6), e1001043. Bern, C. (2011). Antitrypanosomal therapy for chronic Chagas' disease. N Engl J Med, 364(26), 2527-2534. Bern, C., Kjos, S., Yabsley, M. J., & Montgomery, S. P. (2011). Trypanosoma cruzi and Chagas' Disease in the United States. Clin Microbiol Rev, 24(4), 655-681. Bern, C., Montgomery, S. P., Herwaldt, B. L., Rassi, A., Jr., Marin-Neto, J. A., Dantas, R. O., . . . Moore, A. C. (2007). Evaluation and treatment of chagas disease in the United States: a systematic review. JAMA, 298(18), 2171-2181. 102 Bestetti, R. B., & Theodoropoulos, T. A. (2009). A systematic review of studies on heart transplantation for patients with end-stage Chagas' heart disease. J Card Fail, 15(3), 249-255. Blum, J. A., Zellweger, M. J., Burri, C., & Hatz, C. (2008). Cardiac involvement in African and American trypanosomiasis. Lancet Infect Dis, 8(10), 631-641. Carod-Artal, F. J., & Gascon, J. (2010). Chagas disease and stroke. Lancet Neurol, 9(5), 533542. CDC. (2010). American Trypanosomiasis. Retrieved 06.08.2013, from http://www.cdc.gov/parasites/chagas/biology.html Chagas, C. (1909a). Nova espécie morbida do homem, produzida por um Trypanosoma (Trypanosoma cruzi). Brasil Médico, 23(161). Chagas, C. (1909b). Nova tripanozomiase humana. Estudos sobre a morfolojia e o ciclo evolutivo do Schizotrypanum cruzi n.g., n.s.p., ajente etiolójico de nova entidade mórbida no homem. Mem. Inst. Oswaldo Cruz, 1(159-218). Chappuis, F., Mauris, A., Holst, M., Albajar-Vinas, P., Jannin, J., Luquetti, A. O., & Jackson, Y. (2010). Validation of a rapid immunochromatographic assay for diagnosis of Trypanosoma cruzi infection among Latin-American Migrants in Geneva, Switzerland. J Clin Microbiol, 48(8), 2948-2952. Chatelain, E., & Loset, J. R. (2011). Drug discovery and development for neglected diseases: the DNDi model. Drug Des Devel Ther, 5, 175-181. Chin-Hong, P. V., Schwartz, B. S., Bern, C., Montgomery, S. P., Kontak, S., Kubak, B., . . . Ison, M. G. (2011). Screening and treatment of chagas disease in organ transplant recipients in the United States: recommendations from the chagas in transplant working group. Am J Transplant, 11(4), 672-680. CHRD. (1990). Health Research: Essential Link to Equity in Development. In Oxford University Press (Ed.). New York: Commission on Health Research for Development. Coura, J., & De Castro, S. (2002). A Critical Review on Chagas Disease Chemotherapy. Mem Inst Oswaldo Cruz, 97(1), 3-24. Coura, J. R. (2009). Present situation and new strategies for Chagas disease chemotherapy: a proposal. Mem Inst Oswaldo Cruz, 104(4), 549-554. Coura, J. R., & Vinas, P. A. (2010). Chagas disease: a new worldwide challenge. Nature, 465(n7301_supp), S6-S7. Cuadra, C. B. (2012). Right of access to health care for undocumented migrants in EU: a comparative study of national policies. Eur J Public Health, 22(2), 267-271. 103 de Oliveira, R. B., Troncon, L. E., Dantas, R. O., & Menghelli, U. G. (1998). Gastrointestinal manifestations of Chagas' disease. Am J Gastroenterol, 93(6), 884-889. de Rezende, J., Lauar, K. M., & de Oliveira, A. (1960). [Clinical and radiological aspects of aperistalsis of the esophagus.]. Rev Bras Gastroenterol, 12, 247-262. Delgado, S., Ernst, K. C., Pumahuanca, M. L., Yool, S. R., Comrie, A. C., Sterling, C. R., . . . Levy, M. Z. (2013). A country bug in the city: urban infestation by the Chagas disease vector Triatoma infestans in Arequipa, Peru. Int J Health Geogr, 12(1), 48 Demaurex, C., Cárdenas Núñez, M., Aparicio, H., Bodenmann, P., Genton, B., & D’Acremont, V. (2013). Screening for Chagas Disease in Switzerland: “One Size Fits All”? Paper presented at the 13th Congress of the International Society of Travel Medicine, Maastricht. Fernandez-Villegas, A., Pinazo, M. J., Maranon, C., Thomas, M. C., Posada, E., Carrilero, B., . . . Lopez, M. C. (2011). Short-term follow-up of chagasic patients after benznidazole treatment using multiple serological markers. BMC Infect Dis, 11, 206. doi: 10.1186/1471-2334-11-206 Flores-Chavez, M., Fernandez, B., Puente, S., Torres, P., Rodriguez, M., Monedero, C., . . . Canavate, C. (2008). Transfusional chagas disease: parasitological and serological monitoring of an infected recipient and blood donor. Clin Infect Dis, 46(5), e44-47. doi: 10.1086/527448 Flores-Chavez, M., Merino, F., Garcia-Bujalance, S., Martin-Rabadan, P., Merino, P., GarciaBermejo, I., . . . Cuadros, J. (2011). Surveillance of Chagas disease in pregnant women in Madrid, Spain, from 2008 to 2010. Euro Surveill, 16(38). Fluckiger, Y., & Pasche, C. (2005). Analyse du secteur clandestin de l'industrie domestique à Genève. Geneva: University of Geneva. GFS.Berne. (2005). Sans-papiers en Suisse : c’est le marché de l’emploi qui est déterminant, non pas la politique d’asile (pp. 37-38). Bern. Guerineau, L. R., Posfay-Barbe, K. M., Cabedo, M. M., Morros, T. J., Diana, A., Lazarevic, C. A., . . . Jackson, Y. (2013). Pediatric Chagas Disease in Europe: 45 Cases from Spain and Switzerland. Pediatr Infect Dis J. doi: 10.1097/INF.0000000000000139 Gupta, S., Wan, X., Zago, M. P., Sellers, V. C., Silva, T. S., Assiah, D., . . . Garg, N. J. (2013). Antigenicity and diagnostic potential of vaccine candidates in human Chagas disease. PLoS Negl Trop Dis, 7(1), e2018. doi: 10.1371/journal.pntd.0002018 Hotez, P. J., & Gurwith, M. (2011). Europe's neglected infections of poverty. Int J Infect Dis, 15(9), e611-619. doi: 10.1016/j.ijid.2011.05.006 Howard, E., Xiong, X., Carlier, Y., Sosa-Estani, S., & Buekens, P. (2013). Frequency of the congenital transmission of Trypanosoma cruzi: a systematic review and metaanalysis. BJOG. doi: 10.1111/1471-0528.12396 104 IOM. (2012). Rutas y dinámicas migratorias entre los países de América Latina y el Caribe (ALC), y entre ALC y la Unión Europea. Bruxelles: IOM. Jackson, Y. (2014, in press). Chagas disease in non-endemic countries: Experience from Geneva, Switzerland. (PhD thesis), University of Antwerp, Antwerp. Jackson, Y., Alirol, E., Getaz, L., Wolff, H., Combescure, C., & Chappuis, F. (2010). Tolerance and safety of nifurtimox in patients with chronic chagas disease. Clin Infect Dis, 51(10), e69-75. doi: 10.1086/656917 Jackson, Y., Angheben, A., Carrilero Fernandez, B., Jansa i Lopez del Vallado, J. M., Jannin, J. G., & Albajar-Vinas, P. (2009). [Management of Chagas disease in Europe. Experiences and challenges in Spain, Switzerland and Italy]. Bull Soc Pathol Exot, 102(5), 326-329. Jackson, Y., Castillo, S., Hammond, P., Besson, M., Brawand-Bron, A., Urzola, D., . . . Chappuis, F. (2012). Metabolic, mental health, behavioural and socioeconomic characteristics of migrants with Chagas disease in a non-endemic country. Trop Med Int Health, 17(5), 595-603. Jackson, Y., & Chappuis, F. (2011). Chagas disease in Switzerland: history and challenges. Euro Surveill, 16(37), pii: 19963. Jackson, Y., Chatelain, E., Mauris, A., Holst, M., Miao, Q., Chappuis, F., & Ndao, M. (2013). Serological and parasitological response in chronic Chagas patients 3 years after nifurtimox treatment. BMC Infect Dis, 13, 85. doi: 10.1186/1471-2334-13-85 Jackson, Y., Dang, T., Schnetzler, B., Pascual, M., & Meylan, P. (2011). Trypanosoma cruzi fatal reactivation in a heart transplant recipient in Switzerland. J Heart Lung Transplant, 30(4), 484-485. Jackson, Y., Getaz, L., Wolff, H., Holst, M., Mauris, A., Tardin, A., . . . Chappuis, F. (2010). Prevalence, clinical staging and risk for blood-borne transmission of Chagas disease among Latin American migrants in Geneva, Switzerland. PLoS Negl Trop Dis, 4(2), e592. doi: 10.1371/journal.pntd.0000592 Lancet. (2006). Chagas' disease--an epidemic that can no longer be ignored. Lancet, 368(9536), 619. Laucella, S. A., Mazliah, D. P., Bertocchi, G., Alvarez, M. G., Cooley, G., Viotti, R., . . . Tarleton, R. L. (2009). Changes in Trypanosoma cruzi-specific immune responses after treatment: surrogate markers of treatment efficacy. Clin Infect Dis, 49(11), 16751684. Le Loup, G., Pialoux, G., & Lescure, F. X. (2011). Update in treatment of Chagas disease. Curr Opin Infect Dis, 24(5), 428-434. 105 Lee, B., Bacon, K., Bottazzi, M., & Hotez, P. (2013). Global economic burden of Chagas disease: a computational simulation model. Lancet Infect Dis, 13(4), 342-348. Lee, B., Bacon, K. M., Connor, D. L., Willig, A. M., & Bailey, R. R. (2010). The potential economic value of a Trypanosoma cruzi (Chagas disease) vaccine in Latin America. PLoS Negl Trop Dis, 4(12), e916. doi: 10.1371/journal.pntd.0000916 Lescure, F. X., Canestri, A., Melliez, H., Jaureguiberry, S., Develoux, M., Dorent, R., . . . Pialoux, G. (2008). Chagas disease, France. Emerg Infect Dis, 14(4), 644-646. Lescure, F. X., Le Loup, G., Freilij, H., Develoux, M., Paris, L., Brutus, L., & Pialoux, G. (2010). Chagas disease: changes in knowledge and management. Lancet Infect Dis, 10(8), 556-570. Liechti, M., Baur, H. R., Gurtner, H. P., & Straub, P. W. (1990). [Cardiac complications of American trypanosomiasis (Chagas disease). Various case reports and general observations]. Schweiz Med Wochenschr, 120(41), 1493-1496. Magnani, C., Oliveira, B. G., & Gontijo, E. D. (2007). [Representations, myths, and behaviors among Chagas disease patients with pacemakers]. Cad Saude Publica, 23(7), 16241632. Marin-Neto, J. A., Cunha-Neto, E., Maciel, B. C., & Simoes, M. V. (2007). Pathogenesis of chronic Chagas heart disease. Circulation, 115(9), 1109-1123. Martinez de Tejada, B., Jackson, Y., Paccolat, C., & Irion, O. (2009). [Congenital Chagas disease in Geneva: diagnostic and clinical aspects]. Rev Med Suisse, 5(222), 20912092, 2094-2096. MdM. (2013). Accès aux soins en Europe en temps de crise et de montée de la xénophobie. Paris: Médecins du Monde. Medrano-Mercado, N., Ugarte-Fernandez, R., Butron, V., Uber-Busek, S., Guerra, H. L., Araujo-Jorge, T. C., & Correa-Oliveira, R. (2008). Urban transmission of Chagas disease in Cochabamba, Bolivia. Mem Inst Oswaldo Cruz, 103(5), 423-430. Minneman, R. M., Hennink, M. M., Nicholls, A., Salek, S. S., Palomeque, F. S., Khawja, A., . . . Leon, J. S. (2012). Barriers to Testing and Treatment for Chagas Disease among Latino Immigrants in Georgia. J Parasitol Res, 2012, 295034. doi: 10.1155/2012/295034 Moscatelli, G., Garcia Bournissen, F., Freilij, H., Berenstein, A., Tarlovsky, A., Moroni, S., . . . Altcheh, J. (2013). Impact of migration on the occurrence of new cases of Chagas disease in Buenos Aires city, Argentina. J Infect Dev Ctries, 7(8), 635-637. doi: 10.3855/jidc.2930 Munoz, J., Coll, O., Juncosa, T., Verges, M., del Pino, M., Fumado, V., . . . Gascon, J. (2009). Prevalence and vertical transmission of Trypanosoma cruzi infection among pregnant 106 Latin American women attending 2 maternity clinics in Barcelona, Spain. Clin Infect Dis, 48(12), 1736-1740. Munoz, J., Gomez i Prat, J., Gallego, M., Gimeno, F., Trevino, B., Lopez-Chejade, P., . . . Gascon, J. (2009). Clinical profile of Trypanosoma cruzi infection in a non-endemic setting: immigration and Chagas disease in Barcelona (Spain). Acta Trop, 111(1), 5155. Munoz, J., Portus, M., Corachan, M., Fumado, V., & Gascon, J. (2007). Congenital Trypanosoma cruzi infection in a non-endemic area. Trans R Soc Trop Med Hyg, 101(11), 1161-1162. Murcia, L., Carrilero, B., Munoz-Davila, M. J., Thomas, M. C., Lopez, M. C., & Segovia, M. (2013). Risk factors and primary prevention of congenital Chagas disease in a nonendemic country. Clin Infect Dis, 56(4), 496-502. Navarro, M., Perez-Ayala, A., Guionnet, A., Perez-Molina, J. A., Navaza, B., Estevez, L., . . . Lopez-Velez, R. (2011). Targeted screening and health education for Chagas disease tailored to at-risk migrants in Spain, 2007 to 2010. Euro Surveill, 16(38). Ndao, M., Spithill, T. W., Caffrey, R., Li, H., Podust, V. N., Perichon, R., . . . Ward, B. J. (2010). Identification of novel diagnostic serum biomarkers for Chagas' disease in asymptomatic subjects by mass spectrometric profiling. J Clin Microbiol, 48(4), 11391149. Office des migrations. (2004). Rapport sur la migration illégale. Berne: ODM. PAHO. (2006). Estimacion cuantitativa de la enfermedad de Chagas en las Americas. Montevideo, Uruguay: PAHO. Perez-Mazliah, D. E., Alvarez, M. G., Cooley, G., Lococo, B. E., Bertocchi, G., Petti, M., . . . Viotti, R. (2013). Sequential combined treatment with allopurinol and benznidazole in the chronic phase of Trypanosoma cruzi infection: a pilot study. J Antimicrob Chemother, 68(2), 424-437. Perez-Molina, J. A., Perez-Ayala, A., Moreno, S., Fernandez-Gonzalez, M. C., Zamora, J., & Lopez-Velez, R. (2009). Use of benznidazole to treat chronic Chagas' disease: a systematic review with a meta-analysis. J Antimicrob Chemother, 64(6), 1139-1147. Petraglia Kropf, S. (2011). The art of medicine, Carlos Chagas: science, health, and national debate in Brazil. Lancet, 377, 1741-1742. Pinazo, M. J., Canas, E., Elizalde, J. I., Garcia, M., Gascon, J., Gimeno, F., . . . Trevino, B. (2010). Diagnosis, management and treatment of chronic Chagas' gastrointestinal disease in areas where Trypanosoma cruzi infection is not endemic. Gastroenterol Hepatol, 33(3), 191-200. 107 Pinazo, M. J., Miranda, B., Rodriguez-Villar, C., Altclas, J., Brunet Serra, M., Garcia-Otero, E. C., . . . Shikanai-Yasuda, M. A. (2011). Recommendations for management of Chagas disease in organ and hematopoietic tissue transplantation programs in nonendemic areas. Transplant Rev (Orlando), 25(3), 91-101. Pinazo, M. J., Munoz, J., Posada, E., Lopez-Chejade, P., Gallego, M., Ayala, E., . . . Gascon, J. (2010). Tolerance of benznidazole in treatment of Chagas' disease in adults. Antimicrob Agents Chemother, 54(11), 4896-4899. Pizzi Bosman, L., & Rosochova, J. (2011). First Swiss case of Chagas positive blood donor detected by the transfusion center of Geneva. Blood Transfus, 9(Suppl 1), 41. Portmann-Tinguely, A., & von Cranach, P. (2013). Réfugiés. Dictionnaire historique de la Suisse. Retrieved 10.02.2014, from http://www.hls-dhs-dss.ch/textes/f/F16388.php Prata, A. (2001). Clinical and epidemiological aspects of Chagas disease. Lancet Infect Dis, 1(2), 92-100. Ramirez, J. D., Guhl, F., Umezawa, E. S., Morillo, C. A., Rosas, F., Marin-Neto, J. A., & Restrepo, S. (2009). Evaluation of adult chronic Chagas' heart disease diagnosis by molecular and serological methods. J Clin Microbiol, 47(12), 3945-3951. Ramsey, J. M., Alvear, A. L., Ordonez, R., Munoz, G., Garcia, A., Lopez, R., & Leyva, R. (2005). Risk factors associated with house infestation by the Chagas disease vector Triatoma pallidipennis in Cuernavaca metropolitan area, Mexico. Med Vet Entomol, 19(2), 219228. Rassi, A. J., Rassi, A., & Marin-Neto, J. A. (2010). Chagas disease. Lancet, 375(9723), 13881402. Rechel, B., Mladovsky, P., Ingleby, D., Mackenbach, J. P., & McKee, M. (2013). Migration and health in an increasingly diverse Europe. Lancet, 381(9873), 1235-1245. Ribeiro, I., Sevcsik, A. M., Alves, F., Diap, G., Don, R., Harhay, M. O., . . . Pecoul, B. (2009). New, improved treatments for Chagas disease: from the R&D pipeline to the patients. PLoS Negl Trop Dis, 3(7), e484. doi: 10.1371/journal.pntd.0000484 Riera, C., Guarro, A., Kassab, H. E., Jorba, J. M., Castro, M., Angrill, R., . . . Portus, M. (2006). Congenital transmission of Trypanosoma cruzi in Europe (Spain): a case report. Am J Trop Med Hyg, 75(6), 1078-1081. Schijman, A. G., Bisio, M., Orellana, L., Sued, M., Duffy, T., Mejia Jaramillo, A. M., . . . Ladzins, J. (2011). International study to evaluate PCR methods for detection of Trypanosoma cruzi DNA in blood samples from Chagas disease patients. PLoS Negl Trop Dis, 5(1), e931. doi: 10.1371/journal.pntd.0000931 108 Schmunis, G. A., Rodriguez, G., Coenen, J., Bellorin, E. G., & Gianella, A. (2008). Prevention of blood-borne diseases in Bolivia, 1993-2002. Am J Trop Med Hyg, 79(5), 803-808. Schofield, C. J., Jannin, J., & Salvatella, R. (2006). The future of Chagas disease control. Trends Parasitol, 22(12), 583-588. Sicuri, E., Munoz, J., Pinazo, M. J., Posada, E., Sanchez, J., Alonso, P. L., & Gascon, J. (2011). Economic evaluation of Chagas disease screening of pregnant Latin American women and of their infants in a non endemic area. Acta Trop, 118(2), 110-117. Sosa-Estani, S., & Segura, E. L. (2006). Etiological treatment in patients infected by Trypanosoma cruzi: experiences in Argentina. Curr Opin Infect Dis, 19(6), 583-587. Swiss Federal Bureau of Statistics. (2010). migration. Retrieved 05.09.2012, from http://www.pxweb.bfs.admin.ch/ Sztajzel, J., Cox, J., Pache, J. C., Badaoui, E., Lerch, R., & Rutishauser, W. (1996). Chagas' disease may also be encountered in Europe. Eur Heart J, 17(8), 1289. The London Declaration on Neglected Tropical Diseases. (2012). Retrieved 09.05.2013, from http://www.unitingtocombatntds.org/downloads/press/london_declaration_on_ntd s.pdf Trouiller, P., Olliaro, P., Torreele, E., Orbinski, J., Laing, R., & Ford, N. (2002). Drug development for neglected diseases: a deficient market and a public-health policy failure. Lancet, 359(9324), 2188-2194. Urbina, J. A. (2009). Specific chemotherapy of Chagas disease: Relevance, current limitations and new approaches. Acta Trop, 115(1-2), 55-68. Velarde-Rodríguez, m., Avaria-Saavedra, A., Gómez-i-Prat, J., Jackson, J., Alves de Oliveira Junior, W., Camps-Carmona, B., & Albajar-Viñas, P. (2009). Need of comprehensive health care for T. cruzi infected immigrants in Europe. Rev Soc Bras Med Trop, 42(Suppl II), 92-95. Ventura-Garcia, L., Roura, M., Pell, C., Posada, E., Gascon, J., Aldasoro, E., . . . Pool, R. (2013). Sociocultural aspects of chagas disease: a systematic review of qualitative research. PLoS Negl Trop Dis, 7(9), e2410. doi: 10.1371/journal.pntd.0002410 Veyrassat, B. (2007). Amérique Latine. Dictionnaire historique de la Suisse. Retrieved 07.02.2014, from http://www.hls-dhs-dss.ch/textes/f/F28923.php Viotti, R., Vigliano, C., Lococo, B., Bertocchi, G., Petti, M., Alvarez, M. G., . . . Armenti, A. (2006). Long-term cardiac outcomes of treating chronic Chagas disease with benznidazole versus no treatment: a nonrandomized trial. Ann Intern Med, 144(10), 724-734. 109 Vitelli-Avelar, D. M., Sathler-Avelar, R., Wendling, A. P., Rocha, R. D., Teixeira-Carvalho, A., Martins, N. E., . . . Martins-Filho, O. A. (2007). Non-conventional flow cytometry approaches to detect anti-Trypanosoma cruzi immunoglobulin G in the clinical laboratory. J Immunol Methods, 318(1-2), 102-112. WHO. (2002). Control of Chagas disease World Health Organ Tech Rep Ser, (2002/07/03 ed., Vol. 905, pp. i-vi, 1-109, back cover). Brasilia (Brazil): WHO. WHO. (2009). Control and prevention of Chagas disease in Europe. Report of a WHO Informal Consultation (jointly organized by WHO headquarters and the WHO Regional Office for Europe) Geneva, Switzerland, 17–18 December 2009. Geneva: WHO. WHO. (2010). Working to overcome the global impact of neglected tropical diseases: first WHO report on neglected tropical diseases. Geneva: WHO. Wolff, H., Stalder, H., Epiney, M., Walder, A., Irion, O., & Morabia, A. (2005). Health care and illegality: a survey of undocumented pregnant immigrants in Geneva. Soc Sci Med, 60(9), 2149-2154. Zulantay, I., Apt, W., Ramos, D., Godoy, L., Valencia, C., Molina, M., . . . Corral, G. (2013). The epidemiological relevance of family study in chagas disease. PLoS Negl Trop Dis, 7(2), e1959. 110