Nouvelles bornes et techniques de synchronisation
Transcription
Nouvelles bornes et techniques de synchronisation
Universitddu Qu6bec lnstitut national de la recherchescientifique EnersieMat6riauxT6l6communications Nouvellesborneset techniquesde synchronisation temporellepour les futurs systdmesde communications sansfil Par AhmedMasmoudi M6moirepour I'obtentiondu gradede Maitre bs sciences(M.Sc.) en tdl6communications Jury d'6valuation Directeurde recherche SofidneAffes,INRS-EMT Examinateurinterne SergeTatu,INRS-PUT Examinateurexterne Paul Fortier, D6partementde g6niedlectriqueet de g6nieinformatique Universit6Laval @ droitsrdserv6sde AhmedMasmoudi,2012. {ijl a>'Jl ,'!U?'Jl .-rt . J v't : I Avant-Propos Je souhaite remercier Pr SofieneAffespor,trm'avoir accept,6dans son /quipe et guid6 tout au long de ma maitrise. Sesremarques et critiques pertinentes m'ont conduit vers Ia bonne voie. Un grand merci aussi d M. Faouzi Bellili. C'6tait un vrai plaisir de travailler avec lui. Je remercie aussi mes amis Mouhamed, Hadhami, Foued, Ghaya et mes camarades de I'INRS pour leurs encouragementset leurs soutienstout au long de ces deux anndesainsi que Jigo et Bosspour leur APS. Ces avant-propos seraient incomplets sans un remerciement adressd aux membres de ma famille, en particulier mes parents, monfrdre Mouhamed et ma saur Ines. Ce travail leur appartient d tous. .6ri| diq 5j R6sum6 Ce m6moire est consacr6d la synchronisationtemporelle(ou estimationdu d6lai) pour les r6cepteursnum6riques.Les principalescontributionsincluent deux grandsvolets.Le premier consisted estimerle retardoi les nouvellestechniquesd'estimationd6velopp6es sontbas6essur le critdredu maximumde vraisemblance.D'une part, nousd6velopponsun estimateuri maximum de vraisemblancepar la m6thode"importancesampling"pour les signauxnum6riqueslin6airementmodul6soir I'on considdreun seultrajet de propagation, et doncun seulparambtreh estimer.Danscetteconfiguration,noussupposonsque les donn6estransmisessont totalementinconnuesau niveaudu rdcepteur.Le d6lai resteconstant sur I'intervalled'observationet le bruit est suppos6blanc.Nous appliquonsaussila m6thodepropos6edansle casd'un seultrajet au cas de plusieurstrajetset donc le nombre de paramdtresi estimeraugmenteavecle nombrede trajetsd6tectds.Nous signalonsque dansce cas le signal transmisest connupar le r6cepteur.Cette mdthodepeut s'appliquer dansles radarset les systBmes En plus nousnoussommesint6ress6s de localisations. d la synchronisationtemporellepour les systbmesCDMA en ddveloppantdeux estimateursd maximum de vraisemblance.Le premier sebasesur la m6thode"importancesampling"et I' autresur l' algorithmeit6ratif "expectationmaximization". D'autre part, nous d6rivonsaussiles expressionsanalytiquesdes bornesde Cram6r-Rao pour les estimateursnon biais6sdu retard dans le cas des signaux QAM carr6set des systdmes CDMA. Tabledesmatibres Avant-Propos R6sum6 ll List des figures vt Introduction I La synchronisation temporelle pour les signaux modul6s 3 1.1 Introduction 4 I.2 Uimportancede la synchronisation temporelle 4 1.3 Estimateuri maximumde vraisemblance 1.4 Estimateursdu retardi maximum de vraisemblance. pour FaibleRSB 1.4.I Estimateur 6 7 7 9 I.4.2 Estimateurd Maximum de VraisemblanceConditionnel 1 . 5 Limites de performancedesestimateurs 9 1.5.1 LesBornesde Cram6r-Rao. 9 l0 1.5.2 Les Bornesde Cram6r-Rao Modifi6es I2 1 . 6 Conclusion A Non-Data-Aided Maximum Likelihood Time Delay Estimator using Importance Sampling 15 2.I 16 Introduction 2.2 Discrete-TimeSignalModel 18 2.3 Likelihoodfunction 19 2.4 GlobalMaximizationof the Compressed LikelihoodFunction 2I 2.5 The ImportanceSamplingTechnique. 22 2.6 Estimationof the Time Delay 2.6.1 First scenario: r* € 10,PTI 25 2.6.2 Secondscenarioi r" e [0,7] . 2.6.3 Summaryof steps 25 28 29 .30 2.8 Conclusion 34 Closed-Form Expressionsfor the Exact Cram6r-Rao Bounds of Timing Recovery Estimators from BPSK, MSK and Square-QAM Transmissions 41 3.1 Introduction 43 3.2 SystemModel 44 3.3 Time DelayCRLB for SquareQAM-ModulatedSignals 46 3.4 CRLB for BPSK andMSK ModulatedSignals 52 3.5 GraphicalRepresentations 53 3.6 Conclusion 56 A Maximum Likelihood Time Delay Estimator in a Multipath Environment Using Importance Sampling 65 4.I 66 Introduction 4.2 SystemModel andCompressed LikelihoodFunction 68 4.3 69 Global Maximization of the CompressedLikelihood Function 4.4 The ImportanceSamplingBasedTime DelaysEstimation . 7T 4.4.1 IS Concept 7T 4.4.2 Time DelaysEstimationin Active Systems 75 '77 4.4.3 Time DelaysEstimationin PassiveSystems 4.5 SimulationResults 79 4.6 Conclusion 82 Maximum Likelihood Time Delay Estimation for Direct-SequenceCDMA Multipath Ttansmissions 87 5.1 Introduction 88 5.2 SystemModel andBackground. 9I 5.3 The Crambr-Rao Lower Bound 93 95 98 103 105 108 5.4 ExpectationMaximizationAlgorithm 5.5 The ImportanceSamplingTechnique. 5.6 ExtensionTo MC-CDMA Systems 5.7 SimulationResults 5.8 Conclusion Conclusion 118 Table desfigures l.l Diagrammede l'mil pour un filtre d cosinussur6lev6avecun coefficient de retomb6ede 20% t . 2 Diagrammede I'eil pour un liltre d cosinussur6lev6avecun coefficient de retomb6ede 100% . 2.I Plot of eto,( ) for p\ : 20 andp\: f o rK : 10 usinga root-raisedcosinepulseand 24 100. 2.2 Plot of the cumulativedistributionfunction (CDF), G'(r) whosepdf is g'(r),SNR=5dB. 2.3 Performance versusp', for SNR=10dB. 26 30 2.4 Estimationperformance consideringL'.,00?)I g'(r) andsettingL|,ooQ)I O'?) 31 to 1 with QPSK modulation 2.5 Comparisonbetweenthe estimationperformanceof the IS algorithmusing the two scenariosand the tracking performanceof the CML-TED using QPSKmodulation 2.6 Comparisonbetweenthe estimationperformanceof IS algorithm and the tracking performanceof CML TED using QPSK modulation and for a 32 11 roll-offfactor of 0.2. JJ 2.7 NormalizedMSE of the time delayestimatefor differentQAM modulation order,usinga root-raisedcosinefilter with a roll-off factor0.5. . 34 2.8 Comparisonof the estimationperformancewith and without forced symbols using 16-QAM modulationandfor a roll-off factorof 0.5. 2.9 P l o to f s o ( . ) .g t ( . ) a n d9 2 ( . ) . 34 36 3 . 1 Compressionbetweenthe empirical CRLB and the analyticalexpression in (3.44) for different modulation orders using K : cosinepulsewith rolloff factorof 0.2. 100 and a raised- 53 3 . 2 CRLB/IVICRLBratio vs. SNR for differentmodulationordersusingK : pulsewith rolloff factorof 0.2 and 1. 100and a raised-cosine 3 . 3 CRLB vs. SNR for different modulation orders usins K : 100 and a pulsewith rolloff factorof 0.2. raised-cosine 54 55 3 .4 CRLBA4CRLB ratio vs. SNR for differentmodulationsanda time-limited shapingpulse. 55 4.I Complementary cumulativedistributionfunctionof the ratioK(r*,n). 4.2 Plotof gr, (.) at SNR: 10for (a)p\:1 and(b) p\:6. t5 4.3 Estimationperformanceas a function of p', 4.4 Estimation performanceof the IS-based,EM ML and the MUSIC-type algorithmsin an activesystemvs. SNR. 4 .5 Estimation performanceof the IS-based,EM ML and the MUSIC+ype algorithmsin an passivesystemvs. SNR. 4 . 6 Estimation performanceof the IS-based,EM ML and the MUSIC-type algorithmsin an passivesystemasa functionof Ar. 75 80 81 82 83 4.7 Estimation performanceof the IS-based,EM ML and the MUSIC-type algorithmsvs. signalbandwidthat SNR: 10 dB in an activesystem. 4.8 Estimationperformanceof the IS-basedand the MUSIC-type algorithms 83 84 vs. Dopplershift at SNR: 10 dB. 5 . 1 Estimationperformanceof theIS-based,theEM-basedandthe Root-MUSIC algorithmsfor closely-separated delays,M : 4. 106 5 .2 Estimationperformanceof theIS-based,theEM-basedandthe Root-MUSIC for closely-separated delays,AI :7. 5 .3 MSE vs. number of antennabranchesM for ly' : 107 1 symbol. K : subcarrier,andSNR: 10 dB. 5.4 MSE vs. numberof receivedsymbolsl/ for M : I antennabranch,K : 1 subcarrier. and SNR: 10 dB. L 108 108 5 .5 MSE vs. numberof subcarrierwith M : 7 and N : 1. 5 .6 Complementarycumulativedistributionfunction of the ratio F (A,r^,,). vi 109 111 Introduction La synchronisation est une tacheessentiellepour n'importe quel systdmede communicationsnum6rique.Souventles performances d'un systbmede transmissionsont dict6es par la fiabilit6 de la fonction de synchronisation.En effet, le signalreguest compldtement connu d l'exception desdonndestransmiseset desparamdtresintroduitspar le canal (d6lai, phase,ddcalagefr6quentiel...).M6me si la fonction primordiale du r6cepteurest de reconstruireles donn6estransmises,ceci ne peut sefaire qu'en connaissantles paramdtres introduitspar le canal.Dansce travail, nousnousint6ressonsi la synchronisationtemporelle,ou en d'autrestermesd I'estimationdu d6laide propagation.Dansce contexte,bien que plusieursestimateursdu d6lai aient €t6 d6velopp6sdurant les dernibresd6cennies, ce problbmesusciteencoreune grandeattentionsurtoutaprbsle succbsdes systbmesde communicationsansfil et les avanc6esen micro6lectroniquequi offrent plus de possibilit6 d'impl6mentation. semiLes estimateurs du retardpeuventOtreclass6sen plusieurssous-classes : supervis6s, aveuglesou aveugles. Les techniquessupervisdes dessymboles exploitentla connaissance transmisdans les blocs de synchronisationpour faciliter la proc6dured'estimation.Les puisqueles symbolesinm6thodessemi-aveugles s'inspirentdestechniquessupervis6es connussontd'abordestimdspuisutilis6sdansla synchronisation. Bien qu'ellesrequiBrent la transmissionde moinsde symbolesconnus,ellessouffrentd'erreursde d6tectionsqui d6gradent lesperformances au casoi les du systdme.Dansla suite,nousnousint6ressons donn6estransmises sontinconnues. Dans ce contexte,plusieursestimateursont 6t6 rapport6sdans la litt6raturepour offrir les meilleuresperformancespossibles.Il est connu que I'estimateurd maximum de vraisemblance est un estimateurasymptotiquement efficaceet qu'il r6alisela meilleure performancei des valeursrelativement6lev6esdu rapport signal sur bruit (RSB), m6me sur de courtsintervallesd'observation.Par cons6quent, il a €t6 I'objet de recherches intensives.Dansle casoir les symbolestransmissontconnus,uneexpressionanalytiquedu maximum global de la fonction de vraisemblancepeut Otreobtenue.Toutefois,lorsque les donn6estransmisessonttotalementinconnues(c'est-d-direle parambtred'int6r0tdoit 6tre estim6 d'une manibre aveugle),la fonction de vraisemblancedevient une fonction non-lin6aireet il est difficile, mOmeimpossible,de trouverune expressionanalytiquedu maximumglobal de Ia fonction de vraisemblance. Dansce cas,desm6thodesde rdsolution num6riquesdoiventOtreenvisag6es. Le travail pr6sent6dansce m6moires'inscrit dansle cadrede d6veloppementde m6thodespour trouver le maximum global de la fonction de vraisemblance.L 6tapeprimordialepour le d6veloppement de tels estimateursest d'exprimer le problbmesousla forme d'un modblelin6aireg6n6ralis6.Pource faire noustraitons les modblesles plus r6pandusen communicationnum6rique,h savoirle casd'une transmissiond'un signalmodul6sur un seultrajet,une transmissionsur plusieurstrajetset le puisqueles estimateurs casdes systbmesCDMA. Une telle distinctionest indispensable par la suitechangentd'un moddlei un autre. d6velopp6s Une fois que les estimateurssontd6velopp6s,nous6valuonsleursperformancesen termes de variancede I'estim6 comme une mesurede performancesdu systbme.Pour ce faire, il est dvident qu'il faut les compareraux autresestimateursmais aussipar rapport i une borneinf6rieurede la variancede tout estimateur.Dansce contexte.les bornesde Cram6rRao sont connuescomme des bornesinf6rieurescontre lesquellesles performancesdes estimateurssont compardes.Elles indiquent la limite inf6rieurede la pr6cisiond'estimation qui peut Otreatteinte.Notre revuede la litt6raturenous a r6v6l€,que cesbornesn'ont pas encore6t€ d€rivdesanalytiquementen estimationaveugle.Elles n'ont 6t6 calcul6es que de fagon num6riqued partir d'expressionstrbs complexes.La ddrivationde ces expressionspermetde mieux caract6riseret analyserles performancesdu systdme.Dans ce travail,nousd6rivonsles expressionsanalytiquesde cesbornespour les estimateursde d6lai en pr6sencede la pluspartdesconstellations utilisdescourammentet pourles systbmes CDMA. Ce rapport est structurdcommesuit. Dans le chapitre1, nouspr6sentonsune brbveintroductionsurl'estimationdu retarden communicationsansfiI. Les contributionseffectu6es sont pr6sent6esdansles chapitressuivant.Le chapitre2 d1crit le nouvel estimateurpour les signauxmodul6s.Ensuite,dansle chapitre3, nousd6rivonsles expressions exactesdes bornesde Cramdr-Raopour l'estimationaveugle.Dansle chapitre4, nousd6veloppons un estimateurde d6lai dansle cas d'un canali plusieurstrajets.Et dansle dernierchapitre nousnousint6ressons aux systbmes CDMA oi nousd6veloppons deuxestimateurs d maximum de vraisemblanceet les bornesde Cram6r-Raocorrespondantes. Chapitre 1 La synchronisationtemporellepour les signauxmodul6s 1.1 Introduction La synchronisation est une tdcheessentiellepour n'importe quel systbmede communicationsnum6rique.La synchronisationtemporelle,appeldeaussiestimationdu d6lai de propagation,est un problbmefr6quemmentrencontr6dansla synchronisation.Le but est de s'assurerque les 6chantillonspris du signal regu concordentavecla valeur optimale pour reconstruireles donn6esd'une manibrefiable. Autrementdit, le ddlai introduit par le canal de propagationdoit Otrepris en consid6rationau niveaudu r6cepteur.Une des solutions pour estimerce paramdtreest d'envoyerun signal connu au r6cepteur.La mdthode classiqueconsisted faireI'auto-corrdlation de I'observation. Cependant, cetteapprocheest puisquele signaltransmisne transporte co0teuseen termesd'6nergieet debandepassante pasd'informationutile.C'estpourcetteraisonqueplusieurstravauxont traitdle probldme de la synchronisationtemporelleen utilisant directementle signalregu.Les m6thodes16sultantessontclass6es oir le r6cepteurn'a pasbesoinde commeaveugle(non-data-aided) connaitreles donn6stransmises. Une 6tapeimportantedansle processusd'estimationest de d6terminerune fonction objective,calcul6ed partir du signalregu,de telle fagonqu'une estimdedu d6lai de propagationpeut Otreobtenu.En se basantsur cette fonction, les estimateursdu d6lai sont class6scomme suit [1] : d erreur quadratiquemoyenneminimale (minimum mean squareerror), forgaged z6ro (zero forcing), early-lategate, maximum de vraisemblance, au critdredu maximumde etc.Dansce qui suit,nousnousint6ressons vraisemblance. 1.2 Ltimportance de la synchronisationtemporelle Dansplusieurssystbmesde communications,les performancessont6troitementli6es i la margetemporelleallou6e.La margetemporelleest I'erreur de synchronisationmaximale que le rdcepteurtolbre sansprovoquerdes d6gradationsen performances.Elle peut 6tre jug6e en examinantle diagrammede l'eil du signali l'entr6edu bloc de ddcisionau plusieursr6pliquesdu signal r6cepteur. Le diagrammede I'eil estobtenuen superposant reEu.Le nom de ce diagrammevient du fait que la figure obtenueressembled un ceil humain.Pour 6valuerla margede mancuvre d'un systdmepar rapportaux distorsionsque subit le systdme,par exempleb I'erreur de synchronisation,h l'interfdrenceinter-symbole et au bruit, nous6tudionsla forme et I'ouverturedu diagrammede I'eil. Les figuresl.l et I.2 illustrentles diagrammes de I'ail en absencede bruit et en utilisantun filtre d cosinussur6lev6avecun coefficientde retomb6de 20%et I00To,respectivement.Uinstantauquell'ouverturedu diagrammeest maximalecorrespondd l'instant Commenouspouvonsle voir, I'ouverturede l'ail diminuede optimald'6chantillonnage. plus en plus que nous nous 6loignonsde I'instant t : 0. En effet, f interf6renceinters'6loignede I'instantopsymboleaugmented'autantplus queI'instantd'6chantillonnage Donn6es -0.6 binairc, un c@ffcient -0.4 -o.2 0 de relomb6e 0.2 de 20% 0.4 D6calage tempore FrcuRe 1.1- Diagrammede I'eil pour un filtre d cosinussur6lev6avecun coefficientde retomb6e de20% Donn6es binaire, un c@t{icient -0.8 -0.6 -0.4 -o.2 de retomb6e 0 0.2 D6calage temporel d€ 100% 0.4 FIcune 7.2 -Diagrammede I'eil pour un filtre d cosinussur6lev6avecun coefficientde retomb6ede 100% la margede bruit diminue.En absencede bruit, les donn6es timal, et par cons6quence, peuventOtreparfaitementd6tect6estant que I'instant d'6chantillonnageest d I'intdrieur de la zoned'ouverturede I'eil. Une synchronisationparfaite qui satisfaitle critdre de Nyquist minimise ou annulecompldtementI'interf6renceinter-symbole.Cependant,plus le rapportsignalsurbruit (RSB)diminue,plus l'intervalled'6chantillonnage fiablediminue et le systbmedevientplus sensibleaux effeursde synchronisation. 1.3 Bstimateur e maximum de vraisemblance Uestimateurir maximumde vraisemblance(MLE) estun estimateurdit h efficacitdasymptotique.Il est d6fini commela valeur du paramdtrequi maximisela fonction de vraisemblance.En g6n6ral,rl a €t6 prouv6 en l2l que le MLE est asymptotiquementnon-biais6, atteintla bornede Cram6r-Rao(CRLB) et sonerreurpossddeuneDistributionGaussienne. Concernantnotreproblbme,leMLE devraitatteindrela CRLB pour de grandesvaleursdu rapport signal sur bruit. Pour cette raison,la plupart des algorithmesde synchronisation sontbas6ssur le critbrede maximum de vraisemblance. La formulation du problbmed'estimationvarie suivantque nous consid6ronsun signal h tempscontinu ou un signal d tempsdiscret.La premibreapprochesembleOtrela plus appropridei causede la naturephysiquedu signal,mais les r6cepteursnumdriquesopdrent sur dessdquences 6chantillonndes. Danscettepartie,nousconsid6ronsd'aborduneformulationi tempscontinuepour 6tendre, dansles chapitresqui suivent,I'approcheau tempsdiscret.Nousnotonspar 7 l'ensemble des parambtresinconnusqui inclut la fr6quenceporteuse,l'offset de phase,le retard introduit par le canalet les symbolestransmisdansle cas d'une estimationaveugle.Nous adoptonsla notationr(t,-f) pour le signalreguen absencede bruit qui met en 6videncela d6pendance en 1 . Le moddleen bandede baseest : y(t):r(t,'Y)+w(t), (1.1) on ru(t) est le bruit additif complexe.On considbreque g(f ) estune r6alisationd'un processusal6atoirey(l) pour une valeurdonn6ede I : 7. En effet,une r6alisationde y(f ) a un certaindegr6de ressemblance avecg(/) d6pendamment de la ressemblance entre et t(t,.y), en d'autrestermes,la distanceentreI et 7. Uestimateurd maximum "(t,7) entrey(t) etla de vraisemblance estbas6sur le calcul de ] de sorteque la ressemblance r6alisationy(t) soit maximale.En termesde probabilit6,nousappelonsp(V(t)17)la dene pr 7 .Supposonsquepour deuxr6alisationsde ], sit6de probabilit6de y(l) conditionnd not6espar7t et ]2, nousavons: p\(t) : a(t)17')< p1(t) : a(t)172), (t.2) que11. alors12 estdit plus vraisemblable CommenousI'avonsmentionn6,le but estde maximiserp(y(l) : a(t)17) parrapportd l. La position du maximum est appel6eestim6d maximum de vraisemblanceet est donnde par: i*": : a(t)17)} argmax{p(y(l) -Y (1.3) Cependant,I inclut, en plus des parambtresde synchronisation,les symbolesinconnus qu'on ne cherchepas d estimerd ce niveau.C'est pour cetteraisonque les paramdtres d estimersont rassembl6sdans,\ et les autresparambtres,appel6sparambtresde nuisance, sontrassembl6s dansn. Maintenant,nous devonsreformulerI'estimateuren (1.3) pour tenir comptede n. Soient\ et fi, deux valeurshypoth6tiquesde ), et n, respectivement. En mod6lisantn commeun vecteuraldatoirede densit6de probabilrt€p(n),la formule desprobabilit6stotalespermetd'6crire : floo p(v(t): a(t)l,\): / Jx p@)an. p(v(t): a(t)17) (1.4) Puis,I'estimateurd maximumde vraisemblance de A est : \u r: a r gm ax{ p( y(:r ) g( r ) l^) } (1 . s ) I Dansla suitede ce chapitre,ainsique dansles chapitres2 et3, nousnousconcentrons sur le casoir ) estun scalaire(le d6lai r) et noustraitonsle casoU .\ estun vecteurdansles chapitres4 et 5. 1.4 Bstimateurs du retard i maximum de vraisemblance 1.4.L Estimateurpour FaibleRSB Dans cette section,nous nous int6ressons au cas aveugle(symbolesnon connus).Nous pr6sentonsle traditionnel estimateurpour faible valeurs de RSB d6velopp6en [3]. La fonction de vraisemblanceest : : exp y(t)r(t)dt- ,'AVr}, /t(al,,c) *al,' {fr l,' (1.6) oi 1/0 est la puissancedu bruit, c : {co, cr, ..., c;} repr6sente de donn6es la s6quence inconnueet r(t\ estd6finiecommesuit : (r.7) i:o L objectifestd'estimerle retardT sansavoirune connaissance a priori dessymboles.La m6thodela plus directe est de consid6rerles donn6esc comme un vecteuraldatoire.La fonction de vraisemblanceest moyenn6epar rapportaux donn6estransmisespour obtenir la fonction de vraisemblanceinconditionnelle: A(slt): E"{A(rlr, c)}. (1.8) Malheureusement,l'expressionanalytiquede la fonction de vraisemblanceinconditionnelleestdifficile bi6valuer.C'estpour cetteraisonquequelquesapproximations sontutilis6es.Premidrement,le secondtermedansI'expressionde la fonction de vraisemblanceen (1.6) est ignor6.Cettesimplificationentraineraune ddgradationdesperformances d'estimation. Ensuite,une approximationde la fonction rdsultantepeut Otreenvisag6een utilisantle d6veloppement de Taylor sousI'hypothbsede faiblesvaleursde RSB. Alors nous obtenons[3] : x L+ ,{r),{r)dt ty(al,,c) +hll,' u@,(Dotf fr lo' (1.e) Considdrantla d6finition(1.7),nousavons: - ir - r)d't lo',t),tDo,:E,n lo'v(t)h'(t (1.10) Troisibmeapproximation,puisqueles coefflcientsde h(t) sont n6gligeablespour t f [0,7], les limitesde l'int6graledans(1.10)peuvent6tre6largiesd I'infini pour obtenir: L-1 7T I a U ) r ( t ) dxt l c ; r ( i T * r ) ' (1.11) JoE r ( 1 ): /^+- I a(r)h(u-t)du. (r.r2) J-a (1.11)dans(1.9)et tenantcomptede I'hypothdseE{c6} : g, Maintenant,noussubstituons la fonctionde vraisemblance inconditionnelles'dcritcommesuit : L_L L @ l r ) : D r 2 ( i T+ r ) , (1.13) i,:o oir les termesconstantssont ignor6s.De cette fagon,une expressionplus pratique de la quadratique fonctionde vraisemblance inconditionnelleesttrouv6e.C'est une expression qui impliquela r6ponsedu filtre adaptlau signalreEu.A partirde (1.13),la valeuroptimale du retard r maximisel'6nergiede la s6quence{r(i,T + r)}. Pour trouvercette valeur optimale,il faut annulerla d6riv6ede A(ylr) par rapporti z : L-7 \y'(al")= 2Dr(i,T + r)r' (tT + r). (1.14) i:o Pourz - rp,la d6riv6edela fonctionde vraisemblance inconditionnelle estconsid6r6e commeune erreurd'estimationet utilis6epour estimerle retardde fagonit6rative : Tk+L: rx -l p'e(k), (1.15) e(k) : r(kr + 16)r'(kr + rk), (1.16) avec et p correspond aupasd'adaptation. 1.4.2 Estimateur i Maximum de VraisemblanceConditionnel Nous avonsvu que suite i plusieursapproximations,le critdre du maximum de vraisemblance se formule d'une manidrepratique.Cependant,I'algorithme est ddriv6 sousI'hypothbsed'un faibleRSB.Cettehypothbselimite les performances de I'estimateurpour les largesvaleursdu RSB de telle fagonque la diff6renceentrela bornede Cramer-Raoet les performances d'estimationest d'autantplus importanteque le RSB augmente.En effet, I'estimateurI faible RSB est une approximationde I'estimateuri maximum de vraisemblance.A grandRSB, cetteapproximationne refldteplus la vraie fonction de vraisemblanceet les perfonnances de I'estimateurne sontplus optimales.C'estpour cetteraison qu'un autrealgorithme,connusousle nom de maximum de vraisemblanceconditionnelle (MVC), a 6t6ddveloppeg\Afin d'6viterles approximations, une approchediff6renteest utilis6epour calculerla fonction de vraisemblance.Contrairementi la premibremdthode pr6sent6e en 1.4.1,les symbolesregussontmod6lis6scommed6terministes et inconnus. Les parambtresde nuisance(donn6es,phase)sont exprimdsen fonction du parambtred estimeret du signal regu. De cette fagon,nous obtenonsune fonction qui ddpendseulement du parambtreinconnuqui est le retardh estimer.A partir de cettefonction, un signal d'erreurestcalcul6puis utilisdpour mettrei jour I'estim6du retard. Nous pr6sentonsplus de d6tailssur ce point dans chapitre2. 1.5 Limites de performancedes estimateurs 1.5.1 Les Bornes de Cramdr-Rao Considdrons n'importequellem6thoded'estimationde r et notonspar ? I'estim6correspondant.Vu que ? d6pendde I'observation'y,diff6rentesobservationsengendrentditr6rentsestim6s.Dansce casi estune variableal6atoiredont la moyennepeutcoincideravec les vraiesvaleursde r. Dansce cas,l'estimateurest dit non biais6.Cettepropri6t6estun caractbred'6valuationdesperformances d'estimationpuisque,en moyenne,l'estimateur fournit la vraie valeurdu parambtre.Cependant, l'erreur d'estimationT- r est aussiune mesureimportante,d'oir la n6cessit6ede minimiser cette erreur,ou encoresa variance. Alors quandestce qu'on peutdire quel'erreurd'estimationestacceptable ? Dans ce contexte,la borne de Cram6r-Raoest une limite thdoriquequi fournit une borne inferieurepour la variancede tout estimateurnon-biais6[2] : var{?-r}>CRLB(r), ( 1 r.7 ) avec CRLB(r) : 1 "{{*-m;'1 (1.18) Dansles probldmesde synchronisation, I'applicationde cetteborneest difficile i cause de la complexit6de A(rlr). En effet, nous devonsmoyenner.tt(rlr,u) par rapportaux parambtresde nuisancet^c: A(rlr): I_: Le/,u)p(u)du (1.1e) qui,jusqu'd prdsent,n'a pasd'expressionanalytique.Nouspr6sentons dansle Chapitre3 une mdthodepour d6riverl'expressionanalytiquede la borne de Cram6r-Raopour l'estimation du d6lai et ceci pour une large gammede modulations. Une alternatived la borne de Cram6r-Rao,connuesousle nom de borne de Cramdr-Rao modifide,estpr6sent6e en [5] pour contournerles probldmesde calcul. 1.5.2 Les Bornes de Cram6r-Rao Modifi6es Une approchemodifi6e,propos6epar D'Andrea,Mengali et Reggiannini[5] est souvent utilis6e.I1 s'agit de la bornede CramerRao modifi6e(MCRB pour Modified CramerRao Bound).Cettenouvellebornes'6crit : MCRLB : l/o E-U{'lltu#ell'"} (r.20) Dans(1.20),la moyenneE,{.} esteffectu6esur les parambtres de nuisanceu et K estle nombrede symbolesdansI'intervalled'observation.La notationr(t.r. z) est introduite afin de s6parerle parambtred estimerr desparambtresde nuisancez. Deux remarquesdoiventOtresoulign6esh ce niveausur la MCRLB. Premibrement,dans les 6tapesde d6rivationde la borne,nous supposonsque : - les densit6sde probabilit6de la phaseet de la fr6quencesont connues; - les symboles{c;} sont des variablesal6atoiresind6pendantes, de moyennenulle et E{(c6)2}: g. De plus, D'Andrea a montr6que la borne de Cram6r-Raoest sup6rieurei la borne modifl6e [5]. Il est 6videntqu'il y a lgalitd si le vecteurt^cest parfaitementconnu.Notez que cetteremarquerestevalide quelquesoit le parambtred estimer. La d6rivationde la MCRLB peut ere effectu6ede la fagonsuivante: 10 avec : at, n. Ion' {y1^'1t7ll'} ".U"'\ry#ell'") mt '/ (, \t ) : SL- c i p U/ , - i T - r ) , (r.2r) (r.22) i dans(1.21) et p(t) : dh(t)ldt Commem'(t) estind6pendante de f . et 0,le moyennage selimite au moyennagesurles symboles6mis.Parsuite,nousobtenons: p(t- iT - r) : CI E-{llm'(t)ll2} i (( :\ ; \- P' 7t "'\T) n : "i2rn(t-r)/'r (r.23) la transformdede Fourierde p2(t). La dernibrelgalitd dans(1.23) ot &(/) repr6sente est v6rifi6epar la formulede Poisson.Ensuite,consid6rant(I.2I) et (l.23) et notantque ffr siz""{t-,)lr 5(n)KT,nous obtenons: p,(:\ --l/o[*' llar(lrr.u)ll'0,] u-{ -J : 9r r/-'"\r/Jo [o',,,nn,,-,)/rd.L ll o, ll : KCP2(0) (r.24) Cependant, de Fourrierde h(t) : &(0) esten relationdirecteavecH (f),la transform6e '* a&!D) ' : ( p2e) : n,.-[ f lH(f )l,df. S+* d t \", J-* \ J-co / (r.2s) Finalement,en int6grant(l .24)dans( 1.20),nousobtenonsle rdsultatd6sir6: : MCRLB(r) #*troE", (r.26) oi E" est 1'6nergiemoyennedu signal6misepar symboleet C7 est le carr6de la largeur de bandemoyennenormalis6equi d6pendde la fonction de mise en forme et sontdonnds, par : respectivement, u" : r r+* (f , ; J_* lH )l"t.f \'h:r_,fi f,lH(f)l,df I=lw)luf (r.27) (1.28) proportionnelle L'expressionanalytiqueen (1.26)montrequela MCRLB estinversement au rapportsignalsur bruit E"ll'{o et d la taille de l'observation.De plus,elle est inversementproportionnelle d,C6,le carr6de la largeurde bandede H(f). Ceci veutdire que l'estimation du retardestplus facile d effectueravecdessignauxd largebande.Ceci peut s'expliquerintuitivementpar le fait que les filtres de miseen forme d largebandeont relativementunepetite dur6etemporelleet doncpeuvent6tremieux d6tect6sen pr6sencede bruit. L6 Conclusion Dans ce chapitre,nous avonspr6sent6les caract6ristiques de l'estimateurd maximum de vraisemblance. L'absenced'une expressionanalytiquede I'estimda favoris6le d6veloppementde plusieursalgorithmesd'estimationavecdes complexit6set des performances vari6es.Dans ce contexte,la d6rivationde bornes de pr6cision d'estimation est importantepuisquecelles-cirepr6sententune limite th6oriquei la performancedesestimateurs. Les bornes de Cram6r-Raoindiquent les limites inferieurs pour la variancede I'erreur d'estimation.Cependant,leur applicationau problbmede synchronisationr6sulte en de s6rieusesdifficult6s math6matiques. Les bornesde Cramdr-Raomodifi6essont beaucoup plus faciles d calculer,mais elles se ddtachentdes vraiesbornesde Cram6r-Raode fagon possibles. impr6visibleet doncne refldtentpasles vraiesperformances T2 Bibliographie t l l J. W. M. Bergmans,Digital BasebandTransmissionand Recording,Boston : Kluwer Academic Publishers,1996. t21S. Kay, Fundamentalsof StatisticalSignal Processing,Estimationtheory,PrenticeHall, EnglewoodCliffs, NJ, 1993. Techniquesfor Digital Receivers",New t3l U. Mengali and A. N. D'Andrea,"Sychronization York : Plenum,1997. I4l J. Riba, J. Sala, and G. Yazquez,"Conditional Maximum Likelihood Timing Recovery : EstimatorsandBounds,"inIEEE Trans.on Sig.Process,vol.49,pp. 835-850,Apr. 2001. t5l A. N. D'Andrea,U. Mengali, and R. Reggiannini,"The modifiedCramer-Raobound and its applicationsto synchronizationproblems,"IEEE Trans.Comm.,vol.24, pp. 1391-1399, Feb.-Apr.1994. 13 Chapitre2 A Non-Data-AidedMaximum Likelihood Time DelayEstimator using ImportanceSampling 'A Non-Data-AidedMaximum Li'A. Masmoudi,F. Bellili, S. Affes, andA. St6phenne, kelihood Time Delay EstimatorUsing ImportanceSampling",IEEE Trans.on Sign.Process.,vol. 59, no. 10,pp. 4505-4515,October 2011. DOI: 10.1109/TSP.2011.2161293 IEEE (c) Abstract Danscet article,nouspr6sentonsun nouvelestimateurir maximum de vraisemblancepour le retard de propagationbas6sur "importancesampling" (IS). Nous montronsque la rechercheexhaustiveet les probldmesde convergencedont souffrentles m6thodesit6ratives peuvent6tre contourn6s.Les donn6estransmisessont suppos6sinconnues.Le retardreste constantsur l'intervalled'observationet le signalestentach6par un bruit blancgaussien. NousutilisonsIS pour trouverle maximumglobalde la fonctionde vraisemblance. L id6e du nouvel estimateurest de g€n€rerdesr6alisationsi partir d'une versionsimplifi6ede la fonction de vraisemblance.Nous verronsque les parambtresde l'algorithme affectentles performancesd'estimationet qu'avecun choix appropri6de cesparamdtres,le retardpeut Otreestim6de faqonpr6cise. In this paper,we presenta new time delay maximum likelihood estimatorbasedon importancesampling(IS). We show that a grid searchand lack of convergencefrom which most iterativeestimatorssuffercan be avoided.It is assumedthat the transmitteddataare completelyunknown at the receiver.Moreoverthe carrier phaseis consideredas an unknown nuisanceparameter.The time delay remainsconstantover the observationinterval and the receivedsignal is corruptedby additive white Gaussiannoise (AWGN). We use importancesamplingto find the globalmaximumof the compressed likelihoodfunction. Basedon a global optimizationprocedure,the main ideaof the new estimatoris to generate realizationsof a random variableusing an importancefunction, which approximatesthe actualcompressedlikelihood function.We will seethat the algorithmparametersaffectthe estimationperformanceand that with an appropriateparameterchoice,evenover a small observationinterval,the time delaycanbe accuratelyestimatedat far lower computational costthan with classicaliterativemethods. 2.1 Introduction Parameterestimationis a crucial operationfor any digital receiver; in particularthe recovery of time delay introducedby the channel.Typically, in network communications,the time delayis usuallyassumedto be confinedwithin the symbolduration[1]. Particularly, symbol timing recoveryallows for samplingthe signal at accuratetime instantsin order to achievesatisfactoryperformances.The key task of timing recoveryconsistsin determining the time instantsat which the receivedsignal shouldbe sampledin order to perform reliabledatarecovery.However,in many other applicationssuchasradaror sonarsystems l2l l3l, whereit can exceedthe symbol duration,the time delay is usedto localizetargets. During the last few decades,many time-delayestimatorshave been developedtrying to achievethe well-known Cram6r-Raolower bound (CRLB). A key step in time recovery 16 schemesis the determinationof an objectivefunction from the statisticsof the received signalfrom which an estimateof the time delay canbe extracted.In this sense,it is known that the maximum likelihood estimatoris an asymptoticallyefficient estimator,and that it performscloseto the CRLB at relativelyhigh SNR values[7], evenfor shortdatarecords. Therefore,it hasbeensubjectto intenseresearch.In the caseof data-aided transmissions, where the transmitteddata arc a pri,ori completely known, an expressionfor the global maximum of the log-likelihood function is analytically tractable.However,when the transmitteddataare completelyunknown (i.e., the parameterof interestshouldbe blindly estimated),the log-likelihood function becomesextremelynon-linearand it is difficult to analyticallyfind its global maximum.In this case,maximumlikelihood (ML) solutions must be numerically tackled. The grid searchtechniqueis the most basic alternativeto numericallylind the maximum of the non-linearlikelihood function. Unfortunately,this techniquecan be usedonly if the range of the parameteris confinedto a finite interval, otherwise,iterativemaximizationproceduresmust be envisaged.The most famousiterative proceduresare the Newton-Raphsonmethod [5] and the expectation-maximization algorithm [6]. However,thesetwo prominentmethodsare known to convergeto the ML solution only if the initial guessis close enoughto the true unknown parametervalue.If not, theseiterative algorithmsmay convergeto a local maximum of the likelihood function, or evendiverge.To circumventthis problem,thesealgorithmsmay usemany initial valuesto improvetheir performance.But this increasesin counterparttheir computational complexity without evenultimately warrantingtheir convergenceto the global maximum. In this work, we resortto an entirelydifferent approachfor the estimationof the time delay parameter.The compressed likelihood function is derivedconsideringthe transmittedsymbols as unknown but deterministic.Basedon this function, an iterative algorithm earlier implementedin [8] performsbetter in the high SNR region than the low-SNR unconditional ML (UML) timing error detectors(TEDs) [1], but its performancestill dependson the initialization value making it thereforeprone to severedegradationdue convergence uncertainty. Motivatedby thesefacts,we developin this papera new non-iterativeapproachto find the time delay conditional maximum likelihood (CML) estimates.We implement the CML algorithmin a non-iterativeway.We avoid the grid search,essentialin traditionaliterative approaches,by using the importancesamplingtechniquewhich has been shown to be a powerful tool in performing NDA ML estimation.In fact, this method was successfully applied to estimateother crucial parameterssuch as the direction of arrival (DOA) [9], the carrierfrequency[10] or thejoint DOA-Dopplerfrequencytl11. The importancesampling techniqueis used in this paperin the context of time delay estimation.Moreover, we adoptthe discrete-time modelwidely usedin the field of sensorsarrayprocessing[12] and more recently formulatedin the context of time-delayestimation[8]. The resulting IS-basedestimatorattainsthe modifiedCRLB (MCRLB) overboth the mediumandhieh t7 SNR regions,whereasthe traditional UML TED, being derivedunder the assumptionof low SNR, doesnot approachthe MCRLB at the high SNR region. The remainderof this paperis organizedas follows. In sectionII, we presentthe discretetime signalmodel that will be usedthroughoutthis article.We derivethe compressedlikelihoodfunctionin sectionIII.In sectionIV we introducetheimportancesamplingmethod that will be usedin this article to find the global maximum of the compressedlikelihood function. SectionV dealswith the choiceof the importancefunction and discussesthe impact of someparameterson the estimatorperformance.The newly proposedalgorithm is developedin sectionVL Simulationresultsarediscussed in sectionVII and,finally,some concludinsremarksare drawn out in sectionVIIL 2.2 Discrete-TimeSignal Model First,we presenta list of notationsanddefinitionsthat will be usedin this article. E.{}: theexpectation with respecttor. Euclideannorm. ll Il , (.)t, (.)t : transpositionandconjugatetransposition. SNR : signalto noiseratio. IS : importancesampling. ML : maximum likelihood. CML : conditionalmaximum likelihood. MCRLB : Modified Cram6r-Raolower bound. QAM : PAM : quadratureamplitudemodulation. pulse-amplitudemodulation. Considera traditional communicationsystemwhere on one hand the channeldelaysthe transmittedsignal and on the other hand an AWGN with an overall power of l/6 corrupts the receivedsignalas follows : a(t) : t/ E, r(t - r*)eio+ w(t), (2.r) where r* is the unknown time delay to be estimated,0is the unknown but deterministic channeldistortionphase,tu(f) is an additivewhite Gaussiannoise (AWGN) with independentreal andimaginaryparts,eachof varianceNsl2 andt/4 is the signalamplitude. The unknowntransmittedsignalr(f ) is modeledasfollows : n-r ,,\ r(t):) \a- q h,(/t,- i T ) . /J (2.2) i:o whereK is the numberof transmittedsymbolsin the observationinterval, {"i}fJ'are the unknown complex-valuedsymbols,h(f ) is the shapingpulse of energy E6 and7 is the 18 symbol'sduration. In the sequel,we outlinethe discrete-timesignalmodel which was proposedfor the lirst time in [8] to derivean iterativeCML timing recoveryalgorithm.The receivedsignaly(f) is passedthrough an ideal lowpassfilter of bandwidth F"f 2 and sampledat a frequency F" : 7lT" : klT, where k is a given integer which guaranteesthat fl" is abovethe Nyquistrate.Then,the receivedsamplesg : la(O),A(7"), U(27"),...,y((M - 1)7")l' canbe written in a matrix form as follows : (2.3) A:A,-rlus, whereM is the numberof samplesof g(t) andu andA"- are definedas follows : 6 : [ ' u ( 0 ) ,w ( 7 " ) , . . . , u ( ( M - 1 ) ? : ) ] t , A,* - [oo(r-), at(r*), ..., ax-r(r*)], (2.4) (2.s) with a t ( r * ) : l h ( - i T - r * ) , h ( 7 " - d T - r * ) , . . . , h ( ( M - 7 ) 7 "- i T - , . ) ] ' . (2.6) In(2.3), r is the setof unknowndataand signalphasewhich is givenby : r : ceio : lco, c1 ... c6-1fT eie. (2.7) Moreover,the covariancematrix of u.ris given by : C* : 2o2Ix4 : N6F"I7,1, (2.8) where-Iy refersto the (M x M) identity matrix and2o2: l/6F". The sampleddatagris a linear function of the vectorr but dependsnon-linearlyon the time delay r*. We mention in [8] is inspiredfrom themodelwidely usedin array thatthe modelof Eq. (2.3)presented signal processingwhere each column of the transfer matrix is a function of a different parameter,usuallythe direction-of-arrivalor the frequencyof eachincoming signal.In the contextof time delay estimation,the entirematrix -4". dependson the sameparameterr* . 2.3 Likelihood function The conditional likelihood function of the observed data g is given by : t v ( s l * ; rx) p ( y l r ; r ) : C e x p {- # l l a- A , * l l ' } , Q.s) is the probabilitydensityfunction (pdfl of y conditionedon r and parameterizedby r, and C is a positive constantwhich doesnot dependon the time delay wherep(Alr;r) T9 and thereforewill be dropped,without loss of generality.Note here that r is any possible valueof the time delayparameterr" and that |v(Al*;r) attainsits maximumat r : 7*, i.e.,r* - argmaxA(grlr;r). T Actually,one needsto maximize |t(gln;r) with respectto r in orderto find the ML solution F. However,(2.9) imposesa joint estimationof c and r*, which is very difficult to perform.Therefore,two principal approachesare developedin the literaturein order to obtain a likelihood function that dependsonly on r. On one side,the unconditionalmaximum likelihood (UML) estimatorintroducedin [] considersthe datasymbolsas random and henceaveragesthejoint likelihood function over re to obtain a function that depends only on the time delay as follows : A(sl'): n,UY(ul*;r)j. ( 2.10) On the other side,the data symbolsare modeledas unknownbut deterministicin the formulation of the conditionallikelihood function. Therefore.8. the solutionthat maximizes (2.9)with respectto r,for a givenr is usedin(2.9) asa substituteof r. Actually,i which maximizeslv(A;r,r) alsomaximizesthe log-likelihoodfunctiongivenby : L(u;*,r): -:2 o 2 "ll" a - A,* ll'. Therefore,takingthe gradientof L(ylr;z) (2.rr) with respectto aoandsettingitto zero'. oL(a_;r,r) : _4toTa_ ATA,*):0, 0ro (2.r2) yields the following result : a : (ATA")-'ATy : ATa, (2.r3) whereAf, : (AT A")-r AT is the pseudo-inverse of the matrix A". SubstitutingO into (2.I1), one obtainsthe so-calledcompressedlikelihood function, that dependsonly on the unknowntime delayparameter: L ( a ; r , O: - : - a H ( I x - A , A f ) a , zo' (2.r4) which can be further simplified by dropping the constant terms to obtain the useful compressedlikelihood function denotedby L.(a; r) as follows : L"(a;i : sHA,(ATn,)-' nTu. (2.r5) Note that the expressionin (2.I5) representsthe cross-energybetweenthe pseudo-inverse filter Af and the sampledmatchedfilter Al . For z equal to the timing parameterto be estimated,the fllter Af becomesa zero-forcingequalizersincethe componentsof Af A areintersymbolinterference(ISI)-free(i.e.,Af A : n -l Af, -, see[8]). 20 2.4 Global Maximization of the CompressedLikelihood Function To perform maximum likelihood estimation,we have to maximize (2.I5) with respectto r. Unfortunately,a closed-formexpressionfor this optimization problem is not analytically tractablesincethe objectivefunctionin (2.15)is extremelynon-linearwith respect to r. Therefore,many methodshavebeendevelopedto numericallyfind the maximum, but most of them are iterative [-8]. We cannot deny that thesemethodsprovide good performancein terms of error variance,but unfortunatelythey require, in counterpart,a sufficiently closeinitial guessto convergeto the global maximum of the likelihood function. Otherwise,the resultmay be a local maximum,which doesnot correspondto the true time delayvalue.This is why a suboptimalalgorithmneedsto be appliedfirstly andthen its output is consideredas an initial valuefor any iterativetechnique. To avoid this challengingdrawbackof iterativemethods,we proposein this paperan entirely differenttechniquewhich doesnot claim any initial guessof the time delayparameter. We apply the global maximizationmethodearlierproposedby Pincus[13] which provides a powerful tool for accomplishingnonlinearoptimizationand guaranteesfinding the global maximumwithout any initialization concerns.In fact, the theoremof Pincusstatesthat themaximumofL.(g;r) is givenby : e:lim frrL'",r(r)d,r, (2.16) where r| l - \ -- "c,p\t) exp{pL.(s;r)} ( f r / \l r |,exDl OL-tutrttar ) (2.r7) JJ can be viewedas the normalizedfunctionof exp{pL"(A;r)}.Note that in (2.16)and (2.17),.I is the integrationintervalin which r is supposedto be confined.In a certain way,L'",,(r) canbe viewedas a pdf (sinceit verifiesall the propertiesof a pdf), but since r is actuallydeterministic,L'",r(r) is moreconvenientlycalleda pseudo-pdf[9]. It is also worth noting that, as p -+ oo, L",r(r) becomesa Dirac delta function centeredat the location of its original maximum.We leavebroaddetailson this point in Appendix A. The ML estimatorfor the time delay parameter,obtainedfrom the location of the global maximumof L"(y;r) is given,for a largevalueof po,by: ,: rL'",ooQ)dr. (2.18) /, Now, we needto evaluatethe integralgivenin (2.18),althougha direct integrationremains alwaysdifficult if not impossible.However,this integralis in a way the meanvalueof a randomvariabledistributedaccordingto L'",ro(.).It was shownin [1a] that this type of 2I integralcanbe efficientlyevaluatedusingMonte-Carlosimulationsasfollows : ;.: +f,r, (2.re) arerealizationsof r distributedaccordingto the pseudo-pdf,L'",ro(r), and hence the global maximization problem reducessimply to a generationof random variables. Yet, since it is a non-linear function of r, the direct generationof realizations where {rr}t:, accordingto L'",00(r)is computationallyhard.Thus,insteadof pursuinga fruitlesspath, we usethe importancesamplingtechnique,as donein [9], [10] and [11] for the estimation of the signaldirectionsof arrival, the carrier frequencyand the Doppler frequencies, insteadof directlyusing(2.17). 2.5 The Importance Sampling Technique lt has been shownthat the importancesamplingtechniqueis a powerful tool to compute multipleintegrals;in particularthe one given in (2.18).In fact, it can be easilyseenthat for anyfunction2/(.) : : rr,lffi s'(r)d,r, l, f, f {r)r'",,,e)d,r (2.20) whereg'(.), calledthe normalizedimportancefunction,is anotherpseudo-pdfwhich must be chosenas a simplefunctionof r so thatrealizationsdistributedaccordingto g'(.) can be easily generated.Then, the Monte-Carlo method is used to empirically computethe integralin (2.20) simply via the following summation: -.1L'"'oo('r) - 1 + pt 1 'rt ?)t'",'o?)d,r / 2 t g,0i R lrf (2.2r) wheren, is the kthrealization of r accordingto the normalizedimportancefunction g'(.) Typicully,g'(.) andL'",00(.)shouldbe very similarto and E is the numberof realizations. reducethe varianceof the estimates.However,L'",ro(.)remainsa complexfunction and in counterpartS'(.) needsto be as simpleas possible.Therefore,sometrade-offsmustbe found in the constructionof the importancefunction.In fact, the inversematrix (AT A")-t in the actualcompressed likelihood function,L"(A;r) (or equivalentlyL'",r.(.)), is very non-linearwith respectto r. Intuitively, onecanreplacethis inversematrix by the diagonal matrix ht* Hence,a reasonableapproximationof the compressedlikelihood function is: = L"(a;r) fiu',+"ATa. 2In our case,we have f(r) : r. 22 (2.22) t The approximationof (Al A")-1 with ftt* is very reasonable for mostof theconventional pulseshapingfunctions.For instance,it canbe veriliedthat for the widely usedsquare root-raisedcosinepulse,the diagonalelementsof (Al A,)-1 are dominantcomparedto its off-diagonalones.In fact,as definedin (2.5),the columnsof A" arebuilt upon shifted versionsof the shapingpulse h (.) , thereforeevery elementof AT A" can be seenas the convolutionof two shiftedversionsof h ( .) (the shift being an integermultiple of 7), which valueis maximumwhenthe shiftis the same,i.e.,in thediagonalelements. Whereas,when the shift is not the same,the valueof the convolutionis very low. SeeAppendix B for more detailsaboutthis observation.In the particularcasewherethe pulse shapedoesnot generateinter-symbolinterference,the approximationbecomesstrict equalityand (2.22)yields the exactcompressedlikelihood function. Then,a reasonableimportancefunction is given by: gr r ( , ) ( K-r \ k:0 r lM-r - exp o' {| f- I l s l # " l tlI: 0 y"(i,r")h(i,r"kr .,1'), ( 2.23) wherep1 is anotherconstantdifferent3from p6. Note that the normalizationof go,(.) by It gor@)d, yields the normalizedimportancefunctiong'or(.){i.e., 9'r,(r) : ##W). But sincethe periodogramof the dataevaluatedat the time delayr, In(r), is givenby : : 16(r) lM-| l' :0, 1'2,"',K -r, lDr.(u'")h(ir"-kr- ')1, (2.24) l;:o I then,we rewrite the importancefunction as follows : n-l oo',?):fl e"p{pilt(')}, k:0 (2.2s) with or:fin, Q.26) The normafizatronot(2.25)leadsto the pseudo-pdfg'(.) which will be used,hereafter,to generatethe realizationsinvolvedin (21) : K-l l{ exp{p'r16(r)} nt.l-\vp\\' / - a:0 (2.27) I,E exp{p'rlp(u)}du lt is also worth noting that the performanceof the new maximum-likelihoodestimator rln our case,p1 can be equalto ps, unlike for the multiple parametersestimationwhere p1 should be different from po. 23 dependson thechoiceof p\.ln fact,our ultimategoalis to find the globalmaximumof the functionL.(g;r) : gH A"(ATA")-'ATg. However,this function exhibitsmany local maxima evenin the total absenceof noise,and it is often difficult to distinguishbetween the global and a local maximum. For this pu{pose,p', is chosento render the objective function in (2.27) more peakedaroundits global maximum which will have a relatively higherpeakcomparedto the local maxima.This behavioris illustratedin Fig. 2.1, which plotsthe functiong'oi(.)for Pl: L0 andp't : 20,inthe total absence of the additivenoise. Moreover,we showin Appendix C how this parameterrendersg'o,"(.)morepeakedaround its global maximum. --T- ( r'+27 T ,l a- ,t FtcuRe 2.1- Plot of g'rl(.) for p'r: 20 andp\ : L0 usinga root-raised cosinepulseand f o rK : 100. Basedon this fact, it can be stated,a priori, that it is betterto arbitrarily increasep', in orderto achievebetterperformance.But, this is much easiersaidthan donesince,in practice,this leadsto numericaloverflows.Actually,the bestvalueof p', is the highestpossible withoutresultingin any overflowin the computationof g'0,(.) as it will be seenin Section VII. Sameargumentis valid for ps.In fact, the approximationof (AlA,)-'Vy meansthat the quantiryL"(U;i : .ynA,(AT A")-t ATg is almostequalto h.l* fifP 1r1 wherefYQ) : gHA,Aly (notethatthe superscript(a) in fL:)1r) refersto the word "approximate"wherewe approximateL"(g;z) with LY)(r) by replacing(Al A")-r by #t*). This meansthat ps will resultsin an overflowin exp{p6L.(y;r)} as far as p1 24 Therefore,the optimalvalue,p|t , of po ve{otf;fL^ fr;}. rifiesp'{t : p?'where p?' is againthe optimalvalueof Or: frp',,.. resultsin an overflowin exp We alsonotethat the matrix A, in(2.22) exhibitsan interestingstructuresinceits columns aresimply shiftedversionsof the pulseshape.Hence,the matrix-by-vectoroperationAly can be viewedas a filtering operationof the receivedsamplesgrwith a filter h(.) whose coefficientsarethe centralrow of Af . Therefore,the computationof (2.27)is quite simple and realizationsdistributedaccordingto S'oi(.)in (2.27)can be easiergeneratedthan accordingto Lt.,oo(.) in(2.17). 2,6 Estimationof the Time Delav In the sequel,two scenarioswill be proposeddependingon the rangeof the unknowntime delayparameter.In the first scenario,we assumethat the time delayparametertakesvalues within 10,PT), whereP is a strictlypositiveinteger(i.e.,P > 1). In the secondscenario, we assumethat the time delayparametertakesvalueswithin [0,7]. 2.6.L First scenario2r* e 10,PTI As already mentionedin the introduction, in many applicationssuch as radar or sonar transmissions,the actualtime delay introducedby the channelmay exceedthe symbol's duration.In this subsection,we assumehoweverthat the time delay doesnot exceedPT, where P is a given strictly positiveinteger,i.e., r* € 10,PT| This upperlimitation of the intervalis justified since,in eachcommunicationsystem,we alwayshavean a pri,ori, rdea aboutthe maximum rangeaof r. As we have seenin the previoussection,the maxima of g'r,r(.)areperiodic, with period 7. Therefore,many secondarypeaksmay appearwhich of r*. In fact, to obtain unbiasedestimatesof r*, the expectedvalueof the estimationerror re : T* - i shouldbe equalto zero,i.e. : ultimately affectsthe estimatei (2.28) E{r"}:E{r*-i}:0. However,it may occur that the differencebetweenr* and z* is very important.In fact, to simplify, assumethat gtr,(.) has only 2 peaksand neglectthe others.Then the generated valueswill takevaluesaroundr* andT + T*, with higher probability aroundr* wherethe highestpeak is located.If we denoteby Cl the set of realizationstaking valuesnear r* and Cz the set of realizationstaking valuesnearr* * 7, then from (2.21) the estimated, ?, canbeapproximatedby : ^ ' -_ card(Ct) _* , card(Cz) /_* I r-61 \/ R .rr\ rt), 4Notethat P can be alwayschosenas large as desiredto ensurethat r* € 10,PTI 25 (2.2e) with card(C)denotingthecardinalof C, i.e.,thenumberof elementsof C. Thereforer* f r* since R : card(C) + card(C2)and card(C2) is alwaysnot equalto zero.Moreover, the bias is largerat low SNRsand/orshortdatarecords.This propertywas alsopreviously observedin the caseof frequencyestimationin [15]. To circumventthis problem,the pseudo-pdf,g'r,r(.),must be centeredaroundr*. To that end, two intuitive methodsmay be envisioned.We may either eliminate the secondary peaksto keep only the principal one, or we can generateother peaksin a way that the numberof secondarylobes on either side of the principal lobe is the same.The first idea seemsto be the most efficient, but it is unfortunatelyunrealizableand we opt for the secondalternative.Indeed, as we have seen,the estimationbias stemsfrom the peaks taking place after the principal lobe. Thus we have to modify fii(.) so that it becomes quasi-symmetricaroundr*. To that end, the simplestway is to suppose,virtually, that r takesnegativevaluesalthoughr is always positive.We extendthe interval of definition of g'p\(.)from [0,P7] to [-QT,P7], where Q is a positiveintegersmallerthan P. In this way, virtual secondarylobes appearbefore as well as after r*. Moreover,as it can be seenfrom Frg.2.2, the probability of generatingrealizationsaroundr* I iT is almostthe sameas the one of generatingrealizationsaroundr* - iT . Hence,the estimatorbecomes unbiasedand the estimatei o is more accurate.So far, we have establishedan unbiased 0 r o o o.4 o i ,a +T :.f f T 0.5 :.I 1 711 Frcune 2.2-Plotof thecumulativedistributionfunction(CDF),G'(r) whosepdf is g'(r), SNR = 5 dB. estimatorbasedon a linear averageof the generatedrealizations.But throughsimulations, we noteda performancechangeaccordingto the constellationtype. In fact, for a constant- 26 envelopeconstellationsuch as phase-shiftkeying (PSK), the estimatorworks perfectly. However,its performancedegradesdramaticallyfor non-constant-modulus constellations such as pulse-amplitudemodulation (PAM), quadratureamplitude modulation (QAM), etc. In fact, aswe havepreviouslyseen,the main problemthat facesthe new ML estimator is the presenceof secondarypeaks.Although we have explained,in sectionV how to reducethe adverseeffectsof thesepeaks,they generateirreversibleerrorsin the caseof non-constant-envelope constellations.To simplify the problem,without loss of generality, we supposeagainthat gii(.) exhiUitsonly two peaks,one located atr* and the other locatedat r* 17. From (2.25),gp,,(r-) andgr,,(r. -t T) canbe written asfollows : ( K-tlM-L - kr gp,r(r*):""p1 y"(r")h(ir" pi t- * : r lt l-o--o ( l') ( l*-t | ) \ ri:o -r r-)l | *o{ piIt y.(ir")h(ir" .,1') , (2.30) and K-1.lM-r gri|. *T) : *, {rt *o _kr_-.,1,) , tz-.r lt a.GT")h(iT" ' lz-t " k:r I i:0 - Kr-".,1') {,r lTnr*")h('ir" Q.3I) Noting that the samplesof the receivedsignalarelimited in time to 10,KTI andthe magnitudesof h(t - Kf - r) for , € [0,KTI arevery smallcomparedto thoseof h(t - KT - r) y. (i,T")h,(ir"- KT - r) canbeneglected. for t € lKT, (K + 1)7], then,the term !f;1 Consideringthis result,we expressgpt(r*) as a functionof goiQ. + T) : gri?.) = gp,r(r*+ 7) exp{p'rlo(r*)}, (2.32) where 1o(".) dependsmainly on the amplitudeof the first symbol.In practice,it may occurthat the amplitudeof the first transmittedsymbolis the smallestone.In this case, the contributionof exp{pllo(r.)} in goi?.) is far lessimportantthanthe otherterms,i.e., e x p { p | l s ( r . ) }< e x p { p l l i ( r - ) } f o r i , : 1 , 2 , . . . , K - T . A s a r e s u l t , g o i ( r . ) w i l l b e closerto go,r(r*lT), whichis a localmaximummakingtheestimatei shifttowardr* *7. The sameproblem occurswhen the last transmittedsymbol has the smallestamplitude with the only differencethat the shift will be toward r* - T. To avoid theseproblems,16(r*) must be as large as possible.To that end, we slightly modify the algorithm in the caseof non-constant-modulus constellationsby sendingtwo a priori known symbols: one at the beginningand one at the end of the frame.Moreover, thesetwo known symbolsmustbe of highestenergyamongthe constellationpoints.Then, 27 1o(r.) is no longernegligiblecomparedto li(r*), for i, I 0, and the differencebetween the magnitudeof gr, (r.) andgpi(r. + 7) is largeenoughto avoidan importantdetection error.The samething holdsfor got(r*) andgo,?- - T). 2.6.2 Secondscenarioi,r* € 10,7] In many cases,the time delay doesnot exceedthe symbol duration7. Therefore,we must look for the global maximumonly in [0,7]. As previouslyexplained,the maximaof the importancefunction areperiodicallylocated,with a period equalto 7. Moreover,sincewe know a priori that r doesnot exceed7, then we can more convenientlyusethe circulat' (insteadof the linear) meanto evaluatethe meanin (18). It will be seenin sectionVII in the that the use of the circular meanprovidesconsiderableperformanceenhancements low-SNR region. As it will be explainedlater, the use of the circular meanconsiderably reducesthe computationalcost. To introducethe conceptof a circular mean,considera circular random variable which takesvaluesin a finite interval that can be mappedinto the unit circle. For instance,let a be a randomvariabledefinedin [0, 1] with pdf P(").Then, the circularmeanof a is definedas : E.{o} : }z I P (a)cl,a, e>tp{jura} (2.33) whereZ denotesthe anglein radians.Having Rrealizationsof o, its circular meanis [6] : ^: *t**"'ornva.) (2.34) In our case,if thetime delayis not confinedwithin theinterval10,1],it canbe easilytransposedinto this intervalby normalizingr* by 7. Then,the resultingtransposedestimateis inversedto obtain an estimatein the orieinal interval. Hence.the IS estimateof r* usins (2.34)and(2.21)is : *:#'*f='*",{t!}, (2.3s) ,: #t**on;"o{iT}, (2.36) or finally : where F(r):W (2.37) 9 oi\r ) 5Notethat the circular mean cannotbe usedin the first scenariowhen r may exceedT since it always returnsan estimatein [0, by virtually bringing, into this interval,all the secondarylobesof the normalized "] importancefunction. 28 Note that we needto find the angleof a complexnumber,and thus,we can removeany positivereal factor taking placein (2,36)without affectingthe linal result.This meansthat the two strictlypositivenormalizationconstants[, f'@)au and[, g'(u)du canbe simply dropped.Moreover,an overflowmay occur sinceboth the numeratorandthe denominator are exponentials.To circumventthis problem,we replaceup (r) by F'(16) : K-' ( }{-l (rot"(',) -d,D,-(',)) - drU, tt(rr)-,-g F'(rt)- exp lro;{r,) k:0 \ k:0 (2.38) ) wherewe multiply F(r) by a real scalarfactor. 2.6.3 Summary of steps In the following, we summarizethe stepsof the new algorithm for the two considered scenarios. 1 . Basedon the sampleddatag(i,T),'i : 0, I,. . ., M - T,evaluate theperiodogram Ia(r) accordingto (2.24). 2 . Computethe normalizedimportancefunction in (2.27). Note that, in practice,we use a discreetmodel by substitutingthe integrationin the denominatorof (2.27) by a summationas follows : n-l ( T-T t r / \) | | e x D {o . l u l r l f t-r k:o -nt . (-\ vplv t n-l i (2.3e) D):' fl exp{pil*(',)} ,k:0 wherel/ is the total numberof points in the time delay interval. 3 . GenerateR realizationsof the parameter{r}L, using the inverseprobability inte- gration as detailedin AppendixD. 4 . EvaluatetheweightcoefficientF(4) delinedin (2.37)(or F'(r) definedin (2.38)if we considerthatr is in [0,7]) for eachgenerated valuer;. 5. Computethe meanof the generatedvariablesmultiplied by the weight coefficients to find the ML estimateof the time delav. oNotethat the samesimplificationshavebeenusedin [9] to estimatethe signalDOA. 29 2.7 Simulation Results In this section,we will presentnumericalresultsto substantiatethe performanceof the new ML estimatoras a function of the SNR. We will also refer to our new IS-basedML estimatoras "IS algorithm". The normalized(by T2) meansquareerror (NMSE), defined in (2.40),will be usedas our performancemeasure: NMSE(r) : E{(} - r-)'} (2.40) ry1) 1- andcomputedover 1000Monte-Carloruns.The modifiedCram6r-Raolower bound(MCRLB) is also normalizedby T' and the total numberof transmittedsymbols,K, in the observation window is set to K : 100 and p', is taken equal to 28. Unless specifiedotherwise, a root-raisedcosineshapingpulseof roll-off factor of 0.5 is used.First, the effect of p1 (or equivalentlypt) on the performanceof our IS-basedML estimatoris shown in Fig. 2.3 at an SNR of 10 dB. As it could be predicted,the meansquareerror decreases as p1 increasestoward its optimal value and, for too large values,the performancedeteriorates due to numericaloverflows.In the implementation,p', can be set as a function of the po- too ' ' : ' ' S N R+ to-' 10dB : ::: uJ. o 10' =- 10 - '''N::', :,,'l 1 o -'t0 'L P't versusp\for SNR=10dB. FtcuRB 2.3 - Performance wer of the receivedsamplesg. Moreover,using computersimulations,we verify that for a root-raisedcosinefilter the ratioL|'o?) I g'O) is almostequalto 1. Then to reducethe computationalcomplexity,we can setthis ratio to 1 in (2.2I) and (2.36).In fact, Fig.2.4 30 showsthe NMSE of the IS-basedtime delay ML estimatorwhen this ratio is preserved in the importancefunction and when it is set to 1. As it can be seen,this simplilication doesnot degradethe performanceof the estimatorwhile reducingthe computationalcomplexity considerably.This simplification is also valid for any linear modulation scheme. Therefore,in the following simulationswe considerthat : r| "c,p6\' (-\ ,/\ I o'r\r ) ) . (2.4r) Note that this simplificationremainsvalid when the intersymbolinterferenceis not important (for high valuesof the roll-off factor). As the roll-off factor tendsto 0, it appears necessaryto considerthe ratio in order to achievebetter performanceof the estimator. Moreover,we implementthe iterativeCML estimator,called CML-TED, proposedin [8] o z 10 SNR dB FtcunB 2.4 Estimation performance considering L'",roQ)f g'(r) and setting LL,^?) ls'(r) to 1 wirh QPSKmodulation. and compareits performanceto the performanceof our IS-basedCML estimator.As far as we know, amongall the existing synchronizationtechniques,the CML-TED algorithm achievesthe best performance,but, as an iterative procedure,its performancedepends strictly on the initial guess.To corroborateour claims, we considerin Fig. 5 two initial valuesof r* for the CML-TED, which shouldbe seenasthe result of anotherestimator.In Ft5.2.5,the smallcrossesrepresent the normalizedvariancewheretheinitial valueis very closeto thetruetime delayvalue,i.e.,verifies116-r*l : T 170,with r* beingthetruetime delayvalueto be estimatedand rj is the initial guess.As it canbe seenfrom this figure, 31 evenwith a close-enoughinitial guess,our IS-basedestimatoroutperformsthe CML-TED estimatorin the high SNR region althoughthe CML-TED achievesbetterperformanceat low SNR values.We also note that, at high SNR values,the performanceof our IS-based estimatoris closeto the MCRLB. This meansthat, in this region,our new time delay estimator exhibits performancesequivalentto thosethat could be achievedif the transmitted data were perfectly known to the receiver.However,if we considerlrj - r* | : T f 2, the performanceof the CML-TED deterioratesconsiderablyover the entire SNR region.This illustratesthe fact that the CML-TED algorithm fails to estimatethe time delay if the initial value is not appropriatelychosen,while no initialization concernsare raisedwith our new IS-basedCML estimator.Moreover,the secondvariant of the IS algorithm, namely o o z 'L 10 -5 10 SNR dB Ftcune 2.5 - Comparisonbetweenthe estimationperformanceof the IS algorithm using the two scenariosandthe trackingperformanceof the CML-TED usingQPSK modulation. consideringthe time delay as a circularvariable,is also represented in Fig. 2.5. We see in this casethat the varianceeffor is reducedin the low SNR region. In addition,in both cases,starting from an SNR value of about 5 dB, our IS-basedalgorithm surpassesthe iterativealgorithm,evenwhen assuminga sufficientlyaccurateinitial guess. Furthermore,in Fig. 2.6, the CML-TED algorithm exhibits a variancepenalty for a roll-off equal to 0.2. This penaltyis higher for smallerexcessbandwidth.It has been shownin [8] that the CML-TED reachesthe asymptoticcompressedCRLB (CRLB"), and the differencebetweenthe MCRLB and the CRLB" becomesmore important as the roll-offfactor decreases. Then the performanceof the CML-TED cannotapproachasympJL totically the MCRLB for small roll-off factors.In contrast,the new IS-basedalgorithm always reachesthe MCRLB in the high SNR range,irrespectivelyof the roll-off factor value. : i: :o-: O : : '''''''''''''\' : l - - O- - r s a r s o , . . , , , , , , , ,I, : : , : , : , , , , , , , , 1 O ' , , , , , : : : : : : : : : , ' ' |' -' .- :r - " " . r . o . . . " e . . . . . . . . . ......' .i . . .. . .. : . . . . .. . I ri, o t0 d ..t .,. ,..... . -MCRLB I 1t ,::,:: : : . : : : : : : : : : : : . \ : : : : : : i i : i : : : : : : : :: : : : : : : : : : : : . : . : . ' :: i:{: ' : : :: i : : : : : : : : : : : . . ..:.::::. .:.: { : : : : : : . . . . . . . . . . . . t i : : 1 . . : : : : : .: ' :::::::::::::::::::::::: . : : : : : : : : . :: :: : : : : : : : : : . ::::::.......:...: o 10o I z 10 SNR dB FIcURB 2.6 - Comparisonbetweenthe estimationperformanceof IS algorithm and the tracking performanceof CML TED using QPSK modulation and for a roll-off factor of 0.2. In Fig. 2.7, performancecurves are drawn for 16-QAM and 64-QAM' as examplesfor non-constant modulusconstellations. As explainedin sectionVI, we force the first and the last transmittedsymbolsto be of maximum energy.To illustratethe performancedegradationin the caseof higher-ordermodulations,we alsoplot the NMSE for QPSK.As we can see,the IS algorithm achievescloseperformancefor the threemodulationsordets, with, however,a small improvementfor the QPSK modulation.To illustrate the performanceenhancementachievedby forcing the f,rst and the last symbolsto havemaximum constellationmagnitude,we plot, in Fig. 2.8 the performanceof the new IS-basedML estimatorwithout this constraint.As anticipated,the performanceis strongly affectedby the two edgesymbolssincethe curve correspondingto the non-forcedsymbolsdoesnot approachthe MCRLB. Therefore,for non-constant-envelope modulatedconstellations,it is essentialto force the first and the last transmittedsymbolsto havemaximum energy,as explainedin sectionVI. 33 o z 10 SNR dB FrcunB 2.7 - NormalizedMSE of the time delay estimatefor different QAM modulation order,usinga root-raisedcosinefilter with a roll-off factor0.5. _ MCRLB - < - 16-OAM withforcd symbols - a - 16-OAMwilbullorced 1 0- o 5 t o-' .! z to' 1*. 10 SNR dB 15 FtcuRs 2.8 - Comparisonof the estimationperformancewith andwithout forcedsymbols using 16-QAM modulationandfor a roll-off factorof 0.5. 2.8 Conclusion A computationallyefficient techniquehasbeendevelopedto implementthe CML estimator of the time delay parameter.Basedon a$screte-time model, the transmittedsymbols are supposedto be unknownandno restrictionon their distributionwas assumed.To avoid iterative techniquesand their drawbacks,the importancesampling method was used to find the ML solution.Its main advantageover the iterativeproceduresis that it doesnot requireany initial guessof the time delay parameterand that it is far lesscomputationally expensivewhile retaining good performances.Moreover, its convergenceto the global maximum is guaranteed.Relativeto other proposedmethodssuchas the CML-TED, the IS-basedestimatorexhibitsbetterperformanceat high SNR. In practice,the choiceof the algorithm parametersp6 and p', is critical for the estimationperformanceand for a good choice of theseparameters,a small numberof generatedrealizationscan be sufficientto achievesatisfactoryperformanceand reducethe computationburden. AppendixA Proof of lim L'",rr(')-6, p0-++oo In the following, we prove that Lt",oo(r)definedin (2.I7) tendsto a Dirac deltafunction centeredat the location of its global maximum as ps ) *oo. To do so, considerthe generalcasewhere /(r) is an integrablefunction having one global maximum, denoted a: (2.42) a: arg max f (r). r€lR And denotingby F(r) the following normalizedfunction : exp{pe./(r)} E ' (* \ - (2.43) J'rexp{pof(u)}du' where.I is the definition domainof F.(.). Then,for a given real numberb I o, we have : / A \ -_ 'r ,\u/ j, exp{p6l(b)} "pQJ6ld" -- exp{p6l(a)} (2.44) I ""p{pd(-')}d' However,since/(a) is the maximumvalueof the function/(r), then f (b) - /(o) is a negativenumberand,therefore,exp{ps(f (b) - f (t))} tendsto 0, as well as F'(b), when p6 tendsto oo. As a result: (2.4s) lim F(r) : Q, p0--+oo for any realr f a.Moreover,if we considerthat ,lim F(a) : 0, thenwhateverr € IR, r*m we have lim F(r) : 0 and lim I po-+oo po >@ J _* sumptionthat /]; f 1u7a'u: 0, which is in conflict with the as- F(u)d,u:\. ^+rc Finally,we conclude that a(o) I 0 andrt*" F(u)d,u: 1, F(r) be,ll* olTL /_* comesa Diracdeltafunctioncentered at a whenp6tendsto +oo. 35 Appendix B Justificationof the approximationAT A, = * t ^ The diagonalelementsof Al A" are the convolutionof the sameshifted versionof h(.) (lAT A"l,,n : aT ?)ao(r) foli : 0, L,. . .K - 1 whereai(r) is definedin (6)).Whereas,when the shift is not the same(i.e., lAl A,]tj : al (r)a1Q), i. + j), the valueof theconvolution,o,f,(r)ai?), is, accordingto the Nyquistcriteria,equalto zero.However, s i n c e w e t a k e s o m e s a m p l ehs(o. )f, I A T A , ) o , i : a T ( r ) a i ( t ) , i + j i s n o t r e a l l y e q u a l t o zerobut still very small and negligible in front of lAl A,l;,;. To clarify, we plotted in Fig. 2.9 thefollowingthreefunctions: 96(r) : h(r) x h(r) : h(r)2, 9lr) : h(r) x h(r -T) andg2(r) : h(r) x h(r - 2T) and we takefor example[ATA"]t,, : aT?)az(r) : DY-j9r(mT"). Then, notice from this figure that somesamplesof gr(.) are negative, which will compensatefor positive samplesit D#:.t 7t(mT") from the samefunction therebyresultingin very low convolution.However,the samplesof 96(r) are alwayspositive and thereis no compensationeffect in lAl A,11,, : DX_--,lgo(mT") addedto the fact thatgo@) > 9{r), this resultsin the following conclusion: lAlA,)t1 > IATA")t,t. Using the sameargumentsfor the other off-diagonalelementsof A! A" leadsto the following approximation: ATA,='irn (2.46) ,-,-.- - o :: -r'"'" l t/r FIcURB 2.9 -Plot of 90(.),91(.)and 92(.). 36 AppendixC Proof of the effectof p\ on g'o,ro In the following, we briefly showhow p', (o, equivalently p1)canrendereii (.) more peaked aroundits global maximum.Startingfrom g'o,(r*), definethe function H,"(pr) : g'ri(r.) : H (p't) : (r.)} exp{p'rr,9) f. (2.47) I ""p{p\Lf)(u)ldu J.I where r* is the true time delay value to be estimatedand ff) 1r) is the approximation of L.(y;r) definedin the right-handside of (22), i.e., fY)(r) : yH A,Afy. The first derivativeof H (p\) with respecttopl is givenby equation(2.48). H'(P'r): -exp{p'rr1) (r")} rP)(r.)e*p{p\r?) @)e*p{p'rr'9) @))au @)}au ?.)}J J,exp{p'rrf,) ,r?) @}d,) (1,"'r{o',LY) e*p{p\L9)1"-I1 (r!") ?. ) l au {p'rLf,)1117 {p',Lf,)(u)}du- l r ty, rr) exp rexp (q}d') (f ,"'o{o'LY) (2.48) And noting thatr* - arg ma*, Ll!) 1r). it follows that [ *'@)exp{p'rLlilluyau< rf)g.1 J[L "*o{r',Lf)(u)}c]u. (2.4e) Jt ThereforeH',- {pr) > 0 Vpi . Hence,H,. (pr) is an increasingfunctionwith respectto pl, p'[') , p'lt)we haveu,-b'])) ] H,.@']')), which means7'o<n(r*)] i.e.,for "r"ry g'o,.1e(r*). We concludethat p', rendersthe objectivefunction more and more peaked aroundits globalmaximum. AppendixD Methodto generateiqj!, In this appendix,we detailhow to generaterealizationsaccordingto g'(r). First, we generateavectoru:lur,rtr2,...,ur,)ofRrealizationsuniformlydistributedin[0,1]. 37 Then,we searchr.i: G'-1(u;), whereG'-t(.) is the reciprocalfunctionof the cumulative distributionfunction(CDF) G'(r) of r definedas : G'(") g'r,r(u)du. (2.s0) Unfortunately,a closed-formexpressionof G'- 1(r) is not analyticallytractable.Moreover, sinceG'(r) is a steep-slope function,a fine searchto find T; as argmin,lu6 - G'(z)l is required and makesthe processcomputationallyintensive.However, since G'(r) is an increasingfunctionof r, the function,S(r) : lui - G'(r)l is unimodal.This observation allowsus to adoptthe goldensearch[17] to find the locationof the minimumof S(r). The goldensearchis appropriatefor this problembecauseit convergesafter a small numberof iterationsand requiresonly one function evaluationper iteration. 38 Bibliographie t l l U. Mengali and A. N. D'Andrea, SychronizcttionTechniquesfor Digital Receivers,New York : Plenum,1997. third edition,McGraw-Hill,New York : 2001. l2l M.I. Skolnik,Introductionto RadarSystems, t3l G.C. Carter,Coherenceand TimeDelay Estimation: An Applied Tutorialfor Research,Development,Testand EvaluationEngineers,IEEEPress,New York, 1993. I4l J. W. M. Bergmans,Digital BasebandTransmissionand Recording,Boston: Kluwer Academic Publishers,1996. andP. Lowenborg,"Time-DelayEstimationUsing Farrow-Based t5l M. Olsson,H. Johansson, Fractional-DelayFIR Filters : Filter Approximationvs. EstimationErrors" EUSIPCO2006. t6l N. Noels er al., "Turbo Symchronization: An EM Algorithm Interpretation."IEEE Conf. Commum.,Anchorage,AK, pp. 2933-2937,May 2003. [7] S. Kay, Fundamentalsof StatisticalSignalProcessing,Estimationtheory,PrenticeHall, EnglewoodCliffs, NJ, 1993. [8] J. Riba, J. Sala, and G. Yazquez,"Conditional Maximum Likelihood Timing Recovery : EstimatorsandBounds,"IEEE Trans.on Sig.Process.,vot. 49,pp. 835-850,Apr. 2001. 'An Exact Maximum Likelihood NarrowbandDirection of Arrival Esti[9] S. Sahaand S. Kay, mator,"IEEE Trans.Sig.Process.,vol. 56, pp. 1082-1092,Oct.2008. t10] S. Sahaand S. Kay, "Mean Likelihood FrequencyEstimation,"IEEE Trans. Sig.Process., vol. 48, pp. 1937-1946,JuI.2000. 'A tl1l H. Wang,and S. Kay, Maximum LikelihoodAngle-DopplerEstimatorusingImportance Sampling,"IEEE Trans.Aerospaceand Electro.Sysr.,vol. 46, Apr.2010. studyof conditionalandunconditionaldirection-oft\2l P. StoicaandA. Nehorai,"Performance arrivalestimation,"IEEE Trans.Acoust.,Speech,Sig.Process.,vol. 38, pp. 1783-1795,Oct. 1990. 'A tl3l M. Pincus, ClosedForm Solutionfor CertainProgrammingProblems,"Oper Research, pp. 690-694,1962. 39 t14l L. Stewart,"BayesianAnalysis using Monte-CarloIntegration: a PowerfulMethodologyfor HandlingSomeDifficult Problems,"AmericanStatistician,pp. 195-200,1983. tl5] S. Kay, "Commentson FrequencyEstimationby Linear Prediction,"IEEE trans. on Acoustics,Speechand Sig.Process.,pp. 198-199,Apr. 1979. t16l K. V. Mardia, Statisticsof Directional Data, New York : Academic,1972. t17l D. J. Wilde, GloballyOptimumDesign.EnglewoodCliffs, NJ : Prentice-Hall,1964. 40 Chapitre3 Closed-FormExpressionsfor the Exact Cramdr-RaoBoundsof Timing RecoveryEstimatorsfrom BPSK,MSK and Square-QAMTransmissions rA. Masmoudi,F. Bellili, S. Affes, andA. Stephenne for the : "Closed-FormExpressions ExactCram6r-RaoBoundsof Timing RecoveryEstimatorsfrom BPSK, MSK andSquareIEEE Trans.on Sign.Process.,vol. 59, no. 6, pp. 2474-2484,Jlune QAM Transmissions", 2OTT. DOI: 10.1109/LSP.2008.921477 IEEE (c) Abstract Danscet article,nousd6rivonspour la premibrefois les expressionsanalytiquesdesbornes de Cram6r-Raopour I'estimationdu retardpour les signauxh modulationpar ddplacement de phase,modulationi d6placementminimum et modulationd'amplitude en quadrature. Nous supposonsque les donn6estransmisessont inconnuesau niveaudu r6cepteuret que la fonction de miseen forme satisfaitle critdrede Nyquist.De plus, la phaseet la fr6guence porteusessontconsid6r6es inconnues.Le retardresteconstantsur l'intervalled'observation et le signalregu est entachdde bruit additif. Les nouvellesexpressionsmontrentque les performancesd'estimationne d6pendentpasde la vraie valeurdu paramdtre.De plus, ils concordentavecles r6sultatsobtenuspar calculsempiriques. In this paper,we derivefor the first time analyticalexpressionsfor the exact Cram6r-Rao lower bounds(CRLB) for symbol timing recoveryof binary phaseshift keying (BPSK), minimum shift keying (MSK) and squareQAM-modulatedsignals.It is assumedthat the transmitteddata are completelyunknown at the receiverand that the shapingpulse verifies the first Nyquist criterion. Moreover the carrier phaseand frequencyare considered as unknown nuisanceparameters.The time delay remainsconstantover the observation interval and the receivedsignal is comrptedby additive white Gaussiannoise (AWGN). Our new expressionsprovethat the achievableperformanceholds irrespectivelyof the true time delayvalue.Moreover,they corroboratepreviousattemptsto empirically computethe consideredboundstherebyenablingtheir immediateevaluation. 42 3.1 Introduction In moderncommunication systems,thereceivedsignalis usuallysampledonceper-symbol intervalto recoverthe transmittedinformation.But the unknowntime delay,introducedby the channel,must be estimateda priori in order to samplethe signal at the accuratesampling times.In this context,many time delay estimatorshavebeendevelopedto meetthis requirement.Theseestimatorscan be mainly categorizedinto two major categories: dataaided(DA) andnon-data-aided(NDA) estimators.In DA estimation,a pri,ori known symbols aretransmittedto assistthe estimationprocess,althoughthe transmissionof a known sequencehas the drawbackof limiting the whole throughputof the system.Whereas,in the NDA mode,the requiredparameteris blindly estimatedassumingthe transmittedsymbols to be completelyunknown.In both cases,the performanceof an estimatoraffectsthe performanceof the entire system.In the caseof an unbiasedestimation,the varianceof the timing error is usually usedto evaluatethe estimationaccuracy.The CRLB is a lower bound on the varianceof any unbiasedestimatorand is often used as a benchmarkfor the performanceevaluationof actualestimatorsll,2l. The computationof this boundhas been previously tackled by many authors,under different simplifying assumptions.For instance,assumingthe transmitteddatato be perfectly known and one can derivethe DA CRLB. The modi{iedCRLB (MCRLB), which is alsoeasyto derive,hasbeenintroduced in 13, 41,but unfortunatelyit departsdramaticallyfrom the exact (stochastic)CRLB, especiallyat low signal-to-noise ratios(SNR). Actually, the time delay stochasticCRLBs of higher-ordermodulationswere empirically computedin previousworks.Their analyticalexpressions were tackledonly for specific SNR regions,i.e., very low or very high-SNR valuesand the derivedboundsare referred to asACRLBs (asymptoticCRLBs). In fact, in [5] the stochasticCRLB wastackledunder the low-SNRassumptionand an analyticalexpressionof the considered bound(ACRLB) was derivedfor arbitraryPSK, QAM and PAM constellations.In this SNR region,the authors of [5] approximatedthe likelihood function by a truncatedTaylor seriesexpansion to obtain a relatively simple ACRLB expression.An analyticalexpressionwas also introducedin [6] underthe high-SNRassumption. This high-SNRACRLB coincideswith the stochasticCRLB in this SNR regionbut unfortunatelyit cannotbe usedevenfor moderate (practical)SNR values.Another approachwas later proposedin [7] and [8] to compute the NDA deterministic(or conditional)CRLBs, in which the symbolsare consideredas deterministicunknownparameters.Then the conditionalCRLB is derivedfrom the compressedlikelihoodfunctionf (U;0,0) in which g standsfor the observedvector,0 is the parametervector of interest(including the unknown time delay) and fr is the maximum likelihood estimateof the transmittedsymbols r. However,it is widely known that the conditional CRLB does not provide the actual performancelimit (unconditionalor stochasticCRLBs). In an otherworks, the stochasticCRLB was empiricallycomputed[9] 43 assumingperfectphaseand frequencysynchronizationand a time-limited shapingpulse. Later in [10], its computationwas tackled in the presenceof unknown carrier phaseand frequencyandpulsesthatareunlimitedin time.Both [9] and [10] simplifiedtheexpression of the boundsbut ultimately resortedto empirical methodsto evaluatethe exact CRLB, withoutprovidingany closed-formexpressions. Motivated by thesefacts, in this work, we derive for the first time analyticalexpressions for the stochasticCRLBs of symboltiming recoveryfrom BPSK, MSK and squareQAMmodulatedsignals.We considerthe generalscenarioas in [10] in which the carrierphase and frequencyoffsetsare completelyunknown at the receiver,and we show that this assumptiondoesnot actually affectthe performanceof a time delayestimatorfrom perfectly frequency-andphase-synchronized receivedsamples.The derivationsassumean AWGNcorruptedreceivedsignal and a shapingpulse that verifies the first Nyquist criterion. The last assumptionis verifiedin practicefor mostof the shapingpulses. This paperis organizedas follows. In sectionII, we introducethe systemmodel that will be usedthroughoutthis article. In sectionIII, we derive the analyticalexpressionof the stochasticCRLB for any squareQAM modulation.Then,in sectionIV, we outline the derivationstepsof the CRLB in the casesof BPSK andMSK transmissions. Somegraphical representations arepresentedin sectionV and,finally, someconcludingremarksaredrawn out in sectionVI. 3.2 SystemModel Considera traditional communicationsystemwhere the channeldelays the transmitted signal and a zero-meanproper2 AWGN, with an overall power o2, cor:rttptsthe received signal.In the caseof imperfect frequencyand phasesynchronization,the receivedsignal is expressed as : ,y(t): +,w(t), J n" "(t - r)ejQ"f"t+o) (3.1) where r is the time delay, I is the channeldistortion phase,/" is the carrier frequency offset and j is the complex number verifying j2 : -I. The parametersr, g andf" are assumedto be deterministicbut unknown.They canbe gatheredin the following unknown parametervector : ':l',0,f.)' (3.2) In (3.1),'u(t) is a proper complexGaussianwhite noisewith independent real andimaginaryparts,eachof varianceo2f 2, andr(t) is the transmittedsignalgivenby : 2Apropercomplexrandomprocess n{u(t)2} :0. o(l) satisfies 44 K \- r ( 1 ): L o , h ( t - i T ) , (3.3) i:I with {a,1}[, beingthe sequence of K transmittedsymbolsdrawnfrom a BPSK, an MSK or any square-QAMconstellationand 7 is the symbol duration.The transmittedsymbols are assumedto be statisticallyindependentand equally likely, with normalizedenergy, i.e., E{lall'} : 1. Finally, h(t) is a square-rootNyquist shapingpulse function with unit-energywhich will be seenin sectionsIII and IY as would be expected,to have an importantimpact on the CRLB and thereforeon the system'sperformance.The Nyquist pulse9(l) obtainedfrom h(l) is definedas : s(t): /n F- J__ h(r)h(t-rr)dr. (3.4) and satisfiesthe first Nyquistcriterion: (3.s) g ( n T ): 0 , n 1 0 . O,of thevectorufromthereSupposethatweareabletoproduceunbiasedestimates, ceivedsignal.Thenthe CRLB, which verifiestr{(t > CRLB(z), is definedas [1, ")"} 2l: CRLB(z) : I-r(u), (3.6) where1(z) is the Fisherinformationmatrix (FIM) whoseentriesare definedas : :E u,t : r,2,r, tr(,)tn,i {W W}, (3.7) with L(u) beingthe log-likelihoodfunctionof theparameters to be estimatedand {"r}?_-. are the elementsof the unknownparametervectoru. To beginwith, we showin AppendixA that the problemof time delayestimationis disjoint from the problemof carrierphaseandfrequencyestimation.Indeed,we showthat the FIM is block-diasonalstructuredasfollows : / cnl-n-'(r; o I("): I \ 0 h(0.f.) ( 3.8) ) whereO : [0 , 0]", CRLB(r) is the CRLB of the time delayparameterandI2(0, /") is the (2 x 2) FIM pertainingto the joint estimationof /. and 0. Hence,we prove analytically that we dealwith two separable estimationproblems;on onehandtime delayestimation and on the other hand carrier phaseand frequencyestimation.Actually, this conclusion has been alreadymadein [10] but the authorsresortedto empiricalevaluationsto find 45 that the elementslI(r)|t," and [,t(z)]1,sof the FIM are almostequalto zero.Now, since the parametersare decoupled,we only needto derivethe lirst elementof the global FIM, V @)lt,t in order to find the CRLB for time delay estimationunder imperfect frequency andphasesynchronization.Therefore,in the following, we considerthe virtually derotated receivedsignal/(f) givenby : i@ : Y(t) s-lQ*l't+e1 : J F+r(t - r) + fr(t), (3.e) where6(t) : u(t)e-i{z"t"t+d) i, alsoa proper AWGN with an overallpowero2 sincethe nuisanceparametersare assumedto be deterministic. We mentionthat l. l, n{.}, S{.} and {. }- returnthe magnitude,real,imaginaryandconjugate of any complexnumberand E{.} is the statisticalexpectation.We also definethe SNR of the systemasp - E"lo' . 3.3 Time Delay CRLB for Square QAM-Modulated Signals In this section,we introducethe main contributionembodiedby this paperwhich consists in deriving closed-formexpressionsfor the stochasticCRLBs of time delay estimation whenthe transmitteddataareunknownanddrawnfrom anyNI -arysquareQAM-constellation (i.e.,M :22P). Before further development,it is important to emphasizethat an exact representationof vectorrepresentation /(t) requiresan infinite-dimensional /. But let us considerthe -A/dimensionaltruncatedvectorsi x , n N and 61,', representingthe projection,over an orthonormalbasisof N dimensions,of /(t), r(t) andfr(t), respectively. Then,the pdf of iw conditionedon the transmittedsymbolsa and parameterized by r is given by [4] : /Y t ^.-^| :!+ft"v\P(ilNla;') la*-t*l'\ "-: I ( 3.10) To derivethe likelihood function which incorporatesall the informationcontainedinfi(t), problemsapwe shouldmakeN tendto infinity to get P(ilo;r). However,convergence -'".l pear.To overcome r) is dividedby Lf Qro2)tu*p theseproblems, P(fr1,,1a; ''k:rlA*l-J ^ {t t I o' D*' to obtain : /_N : exp ^@lo;r) 1'+I a" ' Tb'*r') n{g*,;} (3.11) k:L I and as .A/tends to infinity, we obtain the conditional likeli hood function : ^@to;r): exp {+ f_l ntaft)r(t).dt} 3 46 (3.r2) I-:@(')t"dtj To begin with, we note that sincethe transmittedsymbols{oo}f:, are equally likely, then the desiredlikelihood function of the derotatedobservationvectorfi canbe written as : : "{frr'(,,,0(,))} ^(y;,) , ( 3.13) wherethe expectationis performedwith respectto the vectorof transmittedsymbolsand F(ao,y(t))exp {+/_- - ir - r)d,t- tirr'} *rn,t)ai}h(t el4) It canbe shownthat (3.13)reducessimplyto : 1K ^(i;"):#fla'('). (3.1s) ;-1 where ( E"t 2JT ,,, \ - = l r ^ 1r ", )+ - - # H ; ( r ) : \Lo' " * p i( o cpcc r'*- / J-a ) n { i ( t ) 4 } h ( t- i T - r ) d t l , ( 3 . 1 6 ) ) in which C is the constellationalphabet.Actually, the main difficulty in deriving an analytical expressionfor the stochasticCRLB stemsfrom the complexity of the log-likelihood function.Therefore,we will manipulatethe summationinvolvedin (3.16).In fact,considering only squareQAM-modulatedsignals,we are able,by exploiting the full symmetry of the constellation,to factortzeH;(r) which in turn linearizesthe globallog-likelihood function and ultimately linearizesall the derivations. Indeed,denotingby C the subsetof the alphabetpointswith positivereal and imaginary parts(i.e.,e : 1pl - 7)do+ jQk - l)drlo,r:.r.,2,...,2p r), the constellation alphabetC is decomposed asfollows : c:e u i. u (-i) u (-i.) (3.r7) Note that do is the inter-symboldistancederivedunder the assumptionof a normalizedenergysquareQAM constellationas follows : (3.18) 2nli"_i Qk - Using(3.17),we rewrite(3.16)as : H,(r):t "*o{ _.u:rca'}, ("*o{ry,,f \ Zt"ee - ,, n{r(/)(-d)}h(r "tor} +* ( 2{E; f -_ i r _ , - ) d 1 } *exp \TJ_*m{t(/)(-ek)}h(L ) 2\/4 ^_-^| [+* (t - ir , _ ,)dr] *, exp )e;}h J-*n{t(f \T ) (2J4[t* ..)\ (t - ir - ,)dt * exp J_*n{t(r)Ck}h \T }) Now using the hyperboliccosinefunction definedby 2 cosh("r) : (3.re) e' + e-', (3.I9) reducessimply to : H?):2L",.0 -*vrf}I,*^(+l_*-*1y1,;u; }h(t- ir - r)d,t\ o" J-o' oz' { t ) L \ / ?a€c *cosh (#1.-"{aft)ek}h,(t- ir -,)")] (3.20) Moreover,usingthe fact that cosh(o)f cosh(b): 2 cosh(#) cosh(f ) andnotingthat En * eI : 2ft{Zx} and1p - 6T": 2j3{ck}, weobtain: - ,, - io,) * Hiu):2D.*o{ -*lu-f},",n(+in{er}/ ?tn,,)}h(/ ci'eu - u,- oot) "",n(+s{er}/_1r0,,,}h(t (3.2r) Recallthate : {Ql-l)do+ jQm-I)do},,^:r,2,...,2e-tandhencethepreviousexpression of HJr) is rewrittenas : E"((21- t)' + (2^ - r)') d7 ^tP-'"ot 2P-L 2P t Ht(") : ( )" "'"n(+ - ir - ,lot) et- r)o,I_J*ro@)h(t " """n(+ - ir - iot) e* -1)d,/% {i(t)}h(t (3.22) Then,splittingthe two sumsin (3.22),Ho(t) is factorizedasfollows3: 3Notethat similar factorizationwas recently usedto derive an analytical expressionfor the NDA SNR estimation t111,t121. H n(r): 4 tr (u lr)) .P(%(r)), where r*- tJ;(r): v,(i : /_." r*- J_* (3.23) m{utt)} h(t - iT - r)dL. (3.24) s{t(r)}h(t- ir - r)dt, (3.2s) and 2P-1 : ,F-l . \ rr\) _ / - ' -*en\- exp ^ { Z_ 02' rlra3} u ) "orr,l' \ t k:r /^ \ t= '$ek 02 - r)d"r\ . '" (3.26) ) Now, injecting the expressionof Hift) in the likelihood function of the receivedsignal (3.15),we obtain: t ,r \K K ^@;,): (+ ) il F(u/r))F(V(i) \wt / e.27) i:, Finally, the log-likelihood function of the receivedsignalexpandsto : L(r):Dr"(r(u,("))) +th(F(%(?))) i:l Q.28) i:l Note from (3.28)that dueto the factorizationofHift) in (3.19),the globallog-likelihood functionof interestin (3.28)involvesthe sumof two analogous terms.This reducesconsiderablythe complexity of the stochasticCRLB derivation. In fact, the first derivativeof (3.28) with respectto r is obtainedas follows : ygt.ryP. i\y:g!!W) 4r:f dr rluntD 0r P(V?D Er 2 (3zs) %P i, givenby: wherei(r): qD-L F(r): - rya?,}'#er- Ddo,t"n(Tek_1)d",)(3.30) D ""0{-p(zk I^-1 Then the first diagonalelementof the FIM matrix is expressedas : tfqo)']:u{f)a{q,? !u''tt : EltLLriffiffiui(r)u1(r)l Ir(")h:,:El (# \ or /) | 1 ) )+ P-l:F@mrui#ut(r)ut(r)]+ ,,{fi #ffiffi uG)v(r) . } "{*t #&ffi tn)i,,(.)\ (i:tt:t '//'\'L\')) J ti:It:l ' \'r\' ( 3 . 3l ) 49 whereU/r) andVl(r) arethe derivativesof LI1(r) andI{(r) with respectto r. Startingfrom (3.31),the derivationof [/(")]t,t involvesthe evaluationof threeexpectations.However,it is easyto verify that the first andthe last expectationsin the right-hand sideof (3.31)areperformedwith respectto two randomprocesses havingthe samestatistical propertiesand they are thereforeidentically equal.Moreover,as shownin Appendix B, the secondexpectationis equalto zero.Therefore,(3.31)reducessimplyto : : 2ii'{ " :99}ggR r,1,;r,i,) rr(,)t,,, }, F ( U A , r ( U r ( r ) ) n i=r r:r I ) (3.32) First,we considerthe casewherei : l, andweshowin AppendixC that Ui(r) andUi(r) are statisticallyindependent.This resultsin : ( r\r,J),),)',*,,,,,] : u { f y'@,,'J'} (333) u [ u{ (a,r,r),} "\\4urlll\''\//J-\\F@Gt/lr\ /) Thesetwo expectations involvedin the right-handside of (3.33) are easilyevaluatedas follows : r*m , | (F(u1(r)))') "t(iffi,)]: J-I J;P -lutot : +ii'((i,-k)r) {(ar"l)'} " (3.3s) k:1 where 9(.) and g(.) are the first and second derivative of g( ), respectively.We simplify (3.34) by changine t/rUo(t) lo by r and we obtain the following result : (3.36) where 2p- r {-p(zk- 1)'d3}Jrek - l)d,sinh( /zp1zr,- r)d,r),(3.37) "*o k:1' sp(r): I 2pt Gr\t) : \-a ( Lexp { -p(2k - t)'a?} k:L "otn (r/-zoQk- t)d,or). (3.38) 50 We now considerthe casewherei, I l.The intersymbolinterference resultsin a statistical dependence betweenUi(r) andthelirst derivatives(Ii(r) andt{(r) (ikewise for V1(r) and anaUO>. Thus using a standardprobobility approachto derive the expectations involvedin (3.32),we first average by conditioningon U;(r) andUt(r), the first derivativesl4(l then averagethe resultingexpressionwith respectto thesetwo random variables.To that end,considerthe expectationof U;(r) and U7(r) conditionedon U1(r) andU{r) : tr{ui(r)lUn(r),u{r)} : U/r) g((i - t)T), (3.3e) E {U1(r)lU u(r),U,(r)}: Uo(r)g((t- iln. (3.40) Using (3.39)and(3.40),it follows that : , t" { Fi\!,fllgg9 rr,G)utu)lro?),1,,(,-)} ilyl!'ll ily:!'ll / 1 'I \ ' / : F 'r ( u ; ( r )F ) (uilr)) ( u 1 ( r )") ( u t ? ) )F I J - t)r)s((t-d\T\) ua(r)u{r)s((i, and we obtain : t.l ) _ ( ,tr,t,ll,r,(,)))' rp,1,)r1y,1-rr : ,! u,ft)rrtft)] n,((,_t)r1,.4z) t"iGtFdffi \- [ora(,))-,) / wherethe last equalityfollows from the statisticalindependence of Ui(r) and t{(r) and : # I-.J.n^.7"-*a. "{ffiffi,?)}:rl (3.43) Finally, gatheringall theseresults,we obtain the analyticalexpressionof the stochastic CRLB for symboltiming estimation.From squareQAM-modulatedsignalsin thepresence of carrierphaseand frequencyoffsetsas follows : : g'(-- n)r)-2Kps(o)) cRLB(r) tt i ' l(rnf m:rn:r L\ / ""2f #"-*d, 2 K K l-1 -,)r)l (3.44) *s,1'7"-*a*) (l-: tt i'(^ # m:ln:I I Note that for large valuesof K, one can usethe following accurateapproximation[10] : KK+m tI g"(^-n)r) x K \, t'@r\. (3.4s) It is worth mentioningthat the new analyticalexpressionin (3.44) allows the immediate evaluationof time delay stochasticCRLBs, contrarily to the empirical approaches presented in [9] and[10], andthis is madepossiblefor anysquareQAM modulationorder. Second,the shapingpulse is involvedonly via 1j(0) and S'((^,- r,)T), and is separate from the factorsresultingfrom the modulationorder.Moreover,to the best of our knowledge,we showherefor the first time, throughour new analyticalexpression,that the true value of the time delayparameterdoesnot affect the actualachievableperformanceas intuitively expected,i.e., the varianceof the estimationerror holds irrespectivelyof the time delay valueto be estimated. 3.4 CRLB for BPSK and MSK Modulated Signals In this section,we considerthe BPSK and MSK modulations.In BPSK transmissions, thedatasymbolstakevaluesin {-1, +1} with equalprobabilities.In MSK transmissions, the symbolsare definedas a7"11: j ancnwherecp is a sequenceof BPSK symbolsand a6 is the originalvaluedrawnfrom the set{-1, -i,+7,*7}. For thesetwo transmission schemes,the key derivationstepsof the NDA CRLB will be briefly outlined in the following. All derivationdetailscan be found in Appendix D. First, the likelihood function of interestbasedon the receivedsignalis : K\ . ) d ,+t * l u , l ' ) , j:l \ o' J-x, G.46) / wherebi is equalto 1 and jo-'oo for BPSK and MSK, respectively. Therefore,we show that the useful log-likelihood function of fr is given by : L(r):ir("",n (+ I_:n { b : i ( t ) } h ( t - f f - , ) " ) ) G.47) Note that /(t) is definedin (3.9).After somealgebraicmanipulations, detailedin Appendix D, it turns out that the analytical expressionof the stochasticCRLB for time delay estimationis the samefor BPSK andMSK modulations,andit is givenby : CRLB : - ftu,pe)) ('f, iuu^-n):r)f,r'r) [^,{(' ,f,ig((m-',t,)] tn:l n:l (3.48) where0(.) is definedas : ,2 : l"* cosn, / -2P t \ * - ' oQ) \t/ ) ,-U 52 ,n (3.4e) 3.5 Graphical Representations In this sectionowe provide graphicalrepresentationsof the time delay CRLBs and the CRLB/MCRLB ratio for different modulationorders.-First,we mention that the evenin^2t,t ,2 ro ,2 tegrandfunctions involvedin (3.44)and (3.49). rgr(r)e-T and -;ip-1 ffi"-+, respectively,decreaserapidly as lll increases.Therefore,the integralsover [-oo, foo] can be accuratelyapproximatedby a finite integral over an interval [-A, A] and the Riemannintegrationmethodcanbe adequatelyused.In our simulations,we notethat A : 100 and a summationstepof 0.5 providedaccuratevaluesfor the infinite integral. 0 5 sNR [dBl l0 FIcunB 3.1 - Compressionbetweenthe empiricalCRLB and the analyticalexpression pulsewith in (3.44)for differentmodulationordersusing K : 100 and a raised-cosine rolloff factorof 0.2. First, we plot in Fig. 3.1 the CRLBs for different modulationordersandcomparethem to the onespreviouslyobtainedempiricallyin [10]. We seea good agreementbetween the two approachestherebyvalidatingthe developmentsabove.Then,we confirm through Fig. 3.2 that, at low SNR values,the MCRLB is a looserbound comparedto the exact CRLB. Indeed,this figuredepictsthe CRLB/MCRLB ratio asa functionof the SNR.This ratio quantifiesthe performancedegradationthat arisesfrom randomizingthe transmitted dataandit approaches 1 at high SNR values.Hence,in this SNR region,the MCRLB can be used as a benchmarkto evaluatethe performanceof unbiasedtime delay estimators insteadof the exact CRLB, since it is easierto evaluate.However,the gap betweenthe two boundsbecomesimportantas soonas the SNR dropsbelow 7 dB, evenfor QPSKmodulatedsignals,where the stochasticCRLB quantifiesthe actual performancelimit. 53 Moreover,we considerin this figure two valuesof the rolloff factor, 0.2 and 1, in orderto illustratethe effect of the rolloff factor on timing estimation.Clearly,timing estimationis lessaccurateat a lower rolloff factor (largerintersymbolinterference). Moreover,we seefrom Fig. 3.3 that the different CRLBs tend to ultimately coincide with the MCRLB as long asthe SNR getsincreases.Actually, in the high SNR region,the achievableperformanceof NDA estimationof the signal time delay is equivalentto the one obtainedwhen the receivedsymbolsare perfectly known sincein this SNR rangethe MCRLB coincideswith the DA CRLB. J o = J o FtcuRe 3.2 - CRLBA4CRLBratio vs. SNR for differentmodulationordersusins K : 100anda raised-cosine pulsewith rolloff factorof 0.2 and 1. In the speciliccasewhereh(l) is time limited to the symbolduration,the corresponding CRLB follows directly from the generalexpressionin (3.44) by taking it(mT) : 0 for all mtL: 1 -r cRLB(rpl-r* oU1o1 _^T2 1 drl (3.50) I Note from (3.50)that the resultingCRLB becomesthe productof two separateterms; one dependingon the shapingpulsefunction and the other on the signalmodulation.This specialboundis plottedin Fig. 3.4. We seeagaina good agreementin this specialcase betweenthe CRLBs obtainedfrom our analyticalexpressionin (3.50) and their empirical plottedin Fig. I of [9]. This particularexpressionstill finds applicationsin counterparts 54 5 sNR [dBl FIcuRe 3.3- CRLB vs. SNR for differentmodulationordersusinsK : 100anda raisedcosinepulsewith rolloff factorof 0.2. manyconventionalsystemsandin the emergingimpulseradiotechnologylI3,l4l where, precisely,synchronization standstodayas a very challengingissue. Fl o j Q sNR IdBl FtcuRs 3.4 - CRLB/IvICRLBratio vs. SNR for differentmodulationsand a time-limited shapingpulse. 55 3.6 Conclusion In this paper,we derived,for the first time, analyticalexpressionsof the Cram6r-Raolower boundfor symboltiming estimationin the casesof BPSK,MSK andsquare-QAMmodulations.We consideredthe stochasticCRLB wherethe transmitteddata are unknown and randomlydrawn.The carrierphaseandfrequencyoffsetsarealsosupposedto be unknown (nuisanceparameters).We showedthat the knowledgeof the phaseandfrequencydoesnot bring any additionalinformation to the time delay estimationproblem and that the latter is decoupledfrom thejoint estimationof the carrier frequencyand phaseoffsets.Moreover, our analyticalexpressionsfor the CRLBs underlinethe fact that theseboundsdo not dependon the time delay value,which usedto be statedonly intuitively.We confirmed also that the modified CRLB is a valid approximationof the exactCRLB in the high SNR region and that it can be usedas a benchmarksinceit is easierto evaluate.Furthermore, the derivedanalyticalexpressionscorroboratepreviousworks that empirically computed the stochasticCRLBs via Monte Carlo simulations,and henceprovidea usefultool for a quick andeasyevaluationof the CRLBswith BPSK,MSK andsquare-QAMmodulations. Appendix A Proof of the Block-DiagonalStructure of the FIM To show that r and u : lf ",01r aredecoupled,we considerthe actualreceivedsignal y(l) insteadof the virtually derotatedsignal9(l). Then we follow the samederivation stepsfrom (3.13)to (3.28)to retrievethe log-likelihoodfunctionparameterized by z as follows : KK L(u): It" (r1uo1u7\ + t rn(F(V(u))) i-l (3.sr) ;-l The first derivativesof this functionwith respectto the Ith elementof u, {u1}!}1, andr are,respectively,given by : aL(u) _: 0'tr1 K F (Ut( u) )\ur ( u) - p( U( ") ) aV@) t _ 1 e 1 u - L' '1 \./--) F ( U a ( u ) ) ;-1 0tt1 P(V@)) 7ut (3.s2) and |L(u) :_ aa pv,@)) \tLi@)_ a, ev@)))Vi@) - e(v@))- #,O T FW,@D a, k where F.(.) is defined in (3.30). Then we average followine result : 56 0L(v) }L(u) 0r AUQ) ( 3.53) as in (3.31)to obtainthe :' [1(rz)]r,r+r {%?u#P} :'ii'{ffi8#&ry#.#} i:l m:I [' G54t ' In order to simplify the calculations,without loss of generality,we considerI : 1. To beginwith, we lirst differentiateU^(u) with respecttof . andwe obtain: )U*(u) _r- [** -"" 3 {s(r)"-it2nr"t+o} hft - mT - r)tdt af. J-* K -- . )'"- \ - c > /m - 1 {o*}l** n(t- nr - lh(t - mT- irar+ l**s{w(t)}h(t- ntr - r)tdt. (3.55) is a function of the imaginary part of the transmittedsymbols and the derotated W noise,which are mutually independentfrom the real part of the transmittedsymbolsand the derotatednoise.As a result, is independent from Uo(r),U*(r) anO$p. W allowsus to split the expectations in (3.54): tfrt 0u^(u)l : - | rg,@))p(u^(v)) au;@)] - [ rg,p\ rp*p)) lui@)--d; '\NpfiTW;6 " F(IA"D a, I F1rl,(t,D a, I J u {0,:(")\ Ldur ) (3.s6) Notingthatthelastexpectation is equalto zero,itfollows immediatelythatll (u)]r;zis also equalto zero.Thus, we show analyticallythat the two parametersr and f . aredecoupled. The samemanipulationsare usedto prove that r and0 arealso decoupled.Therefore,the FIM is block-diagonalstructuredasgivenby (3.8). Appendix B -- o l\Yt?\fr,(r\v(r\ Proofof vL u tr {| . r+\y=,v)! \ )' L\' ) } trrrt")) F(v1i))'r2\' r rvvr J rn thefoilowing, webrieflyshowrharE {ffiEwe u,?)utr)} : 0.By definirion, Ui(r) dependson the real part of /(t), while I{(r) involvesthe imaginarypart of T(t), which are statisticallyindependent. It follows that Ui(r) and\fi(r) are independent. The (Ii(r) sameargumentshold to show the statisticalindependence andV(r) Then, it of immediatelyfollows that : ), E u{i,\y;9,),{(r4('\t b {!!yI{/,(,)}r{::y:fllai,y}rr, ". ,,J tFdiqUDuift)v1i) j: tF(ui;Du,\')l-lF(v1(r)) 57 (seeAppendixC), eachwith mean And sinceU6(r) and(I;(r) arc statisticallyindependent zero.we obtain: :o "{ffi8ffi,,?)v(,)} (3.s8) AppendixC C.l - Pdfsof Ui(r) and V?) In this Appendix, we establishthe joint pdf of U6(r) and Vi(r) defined,respectively,in (3.24) and (3.25).To that end, we deline theproper complexrandomvariableZi(r) : - r)dt.Itcanbe easilyseenthatzi(r) : U6(r)+ jvo(t) andthat [i|y,Al hQ iT P(Z/r)) : P(Ui(r),V(r)) Usingthesamealgebraic manipulations from (3.16)through (3.23),we establishthe pdf of Z;(r) as follows : P(Z;(r)): : 1 1 ,xp{-V!4!}n,(,) M nor, #.*o o. I { ) -u?(r)j-v'2(r)} o,u,',,F(%(')) : P ({Ji( r ) P( ) V( ") ) , ( 3 .s e) where P(ui(r)) : (3.60) p(v(,)):#l#"r{ YP},,nr, (361) Note that the factorizationof the joint pdt P(Ui(r),V(r)) of Ui(r) and Vi(r) to their elementarypdfs confirmsthat thesearetwo independentrandomvariables. C.2 - Proof of StatisticalIndependenceof Ui(r) and Ut(r) First,note that,Uij) canbe writtenas : (Ii(r): where tf4*n{a} + l3t, (3.62) n{ ?r ( r ) } h(-, iT - r ) dt. (3.63) u,:I_.: 58 Therefore,Ua(r) is givenby : * r+oo t LIi?) : m{o-}s((i-m)T)- / f / --r n 1 a 1 r t } l , t r -i T - r ) d t -OO K : D n{o-iift,- ^)r) - 00. Q.64) m,:I In addition, ffi{rr} andp6 are independentsince the noise and the transmittedsymbols are independent. Recallalsothat 9(0) : 0 (the maximumof g(r) is locatedat 0). Then, - m)f) and ft{r4} are alsoindependent. Moreover,[)6 andpi are obD[:rn{a*}g((i, tainedby a linear transformationof the Gaussianprocessn{tu(t)}. Hencethey are also Gaussianprocesses. Then, sincethe cross-correlation of Bi andp; is equal to zero, as shownbelow : r '-tnA\ LIu,uil - tr] \ (i*r)?*r f f I I t/ iTIr f t { u ' ( f 1 ) e - i Q " I " t t + d ) 1 n 1 ' , ' i t r ; " - ) ( 2t d t f)' }t zx ) ,:,h ( 1 ,- i T - r ) h ( 1 2- i T - r ) d L f i L 2 j 62 f f l* : + II z d(t, - t2)h(t1)h(t2)dtdt2 J J-x fi2 : -;f0 ) -n (3.6s) andtherefore then,pi andUi(r) areactuallytwo uncorrelated Gaussianrandomprocesses theyareindependent. Thus,Ui(r) andu6(r) areindependent. Appendix D Derivation of the Analytical Expressionsfor the CRLBs in Caseof BPSK and MSK Modulations Startingfrom the expressionof the log-likelihoodfunctiongivenin (3.47),we will consisignals, der the two casesof BPSK and MSK separately. Startingwith BPSK-modulated we showthat the log-likelihoodfunctionin(3.47) reducesto : :f ,"(*-n(Tr^,,)), L(r) (3.66) where u6(r):/J *,n,t)j h(t- ir - r)dt. 59 (3.67) Then, the first derivativeof the log-likelihood function with respectto the time delay parameter,r, is given by : " 'i"n (@",u,(')) uili. a, o, +;i@id" oL(r) -2/4 (3.68) wheret/,(r) denotesthe first derivativeof tl(r) with respectto r. It is easyto seethat : (3.6e) Now injecting(3.68)tn(3.7), we obtain: 17 K K frl,,,: 4+tf ot?u*- : ( /q trF- \ /o.ff . .\ ,l e {tu"n1"$uft)" / )tanh("f#u'tr))unG)u,(rt> '") " / 0 2 o ' \ \ [ KK (3.70) +>)Duo,,. 04L t:l l:l Notethat (3.70)is similarto (3.32)(obtainedin thecaseof squareQAM modulations). Thus,for the samereasons, it is moreconvenientto separate thecaseswheni : I andi I l. Moreover,it can be shownthat the pdf of Ui() is given by : : P(u6(r)) .o,r' (#run) # ", {-qg*} ( 3 .7t) Thus, it can be shownthat, after somemanipulations,the expectationsinvolved in (3.70) reduceto : {-?} ['* "^n' \ : "*p n "t"""" {ran.,'fltr\ lTQe"p {-4\ "^"\ o'I*o, o'-)J ,/"r, J---""rt\ry") \ : (3.72) 1 - ' - ' 9 1 0 1" ,' t/2r KK : E"t t g'(^ - n):r)E {(uc(r))'} m:I , o- ' 2 q" "( '0, ) . (3.73) n:L -i,(i- t)r)(# I_:r,1"h (ry) "*o { S}",)' -ps'((i t)r) Q.74) Finally,we obtaintheclosed-formexpression for thestochastic CRLB of BPSK-modulated signalsas follows : : lnrl(, - $oo)) (, i i s,((^- n)r)-frrol) CRLBsp5K " t / 2 t r / / L'L\ \ m:tn:l K ptI K ll-1 g(,,-")r)ll m:7n:l (3.7s) JJ where0b) is definedin (3.49). Now, consideran MSK-modulatedsignal.In orderto find the derivativeof (3.47)with respectto the time delay r, we needto separatethe caseswhereb; is real or imaginary.To do so, we assume,without loss of generality,that K is an evennumber(r.e.,K -- 2P) and ao :7. Using theseassumptions, the log-likelihoodfunctioncanbe writtenas : P / /q.rp \\ L(r): I,n (cosh lTr,,-,(,r))+ / /2{8,,,.\\ h (cosh , e.76) lffu,,tn ) ) where uo(r): /o+- n { t ( r ) }h ( t - i T - r ) d t , J_*, (3.77) and v(,) : /*- *{i(, )} h(t- ir - r)d,t. (3.78) J-a Then,the first derivativeof (3.76)with respectto r is givenby : ry :'+t )*ranh (+r,,-,G))uzi-t (*u,,,t) u,o)tr, ( r^'n with U26-{r) and ho(r) being the derivativesof (}2i-y(r) andV26(r)with respectto r, as : respectively. Then,the first diagonalelementof the FIM matrix is expressed [/(,)],,,:u{ (ry)'} +*te' -,(,)u,, -,(,)\ .""n(# u,, -,61) rt,o -,(')) tu,.r. (+, " { " **a {, *n (r# r,,-,(,) tu,.r. -, 1')w, ?)} (r4r, r,1),,0 ) 22;e{,""r' (#r,,t")) tu"n (#r,,r,1)v,,1,1q,,',] (3.80) } Notethat(3.80)is equivalentto (3.31).Thenfor thesamereasons,[/(")]t,r reducessimply to: : +I [1(')]',, o" P.:- ( /2.G \ /) G ) (!!rt,,-,) tu,'n ("!!rt"-,\\ ur,-,ur,-, I rs.stl - i _ :tE E { tanh o " \ / [ \o' / ) which is similar to (3.70) in the caseof BPSK modulation.Thus we obtain the same expressionfor the stochasticCRLB in caseof MSK andBPSK transmissions as givenby 8.7r. 62 Bibtiographie t t l C. R. Rao, "Information and accuracyattainablein the estimationof statisticalparameters," Bull. CalcuttaMath. Soc., vol. 37,pp. 8 1-91, 1945. tzl S.M. Kay, Fundamentalsof StatisticalSignalProcessing: EstimationTheory,Upper Saddle River, NJ : PrenticeHalL1993. t3l A. N. D'Andrea,U. Mengali, and R. Reggiannini,"The modifiedCramer-Raoboundand problems,"IEEE Trans.Comm.,vol.24, pp. 1391-1399, its applicationsto synchronization Feb.-Apr.1994. I4l U. Mengali, and A.N. D'Andrea, SynchronizationTechniques for Digital Receivers.New York : Plenum,1997. tsl H. Steendamand M. Moeneclaey,"Low-SNR limit of the Cramer-Raobound for estimating the time delayof a PSK, QAM, or PAM Waveform,"IEEE Comm.Letters,vol. 5, pp. 31-33, Jan.2001. t6l M. Moeneclaey,"On the true and the modified Cramer-Raoboundsfor the estimationof a scalarparameterin the presenceof nuisanceparameters,"IEEE Trans.Comm.,vol. 46, pp. 1536-1544,Nov. 1998. l7l J. Riba, J. Sala,and G. Ydzquez,"Conditional maximum likelihood timing recovery: Estimatorsandbounds",IEEE Trans.Sig.Process.,vol. 49,no. 4, pp. 835-850,2001 digital synchronizationl'SignalProcessingAdt8l G. Vizquez, and J. Riba," Non-data-aided vancesin WirelessCommunications,EnglewoodCliffs, NJ : Prentice-Hall,2000, vol. 2, ch. q [9] I. Bergeland A.J. Weiss,"Cram6r-Raoboundon timing recoveryof linearlymodulatedsignalswith no ISI," IEEE Trans.Comm.,vol. 51, pp.134-641, Apr. 2003. "TrueCram6r-Rao boundfor tiH. Steendam, andM. Moeneclaey, tl0] N. Noels,H. Wymeersch, ming recoveryfrom a bandlimitedlinearly modulatedwaveformwith unknowncarrierphase and frequency"I EEE Trans.Comm.,v o7.52, pp. 473 -383,Mar. 2004. of square andS.Affes,"Cram6r-Rao boundsfor NDA SNRestimates tl 1l F.Bellili, A. St6phenne, QAM modulatedsignals",Proc. of IEEE WCNC'09,Budapest,Hungary,Apr. 5-8, 2009. 63 ll2l F. Bellili, A. St6phenne,and S. Affes, "Cram6r-Raolower boundsfor non-data-aidedSNR IEEE Trans.Comm.,vol. 58, pp.32llestimatesof squareQAM modulatedtransmissions", 3 2 1 8N , ov.2010. 'All-digital PAM impulseradio for multiple access t13l C.J. Le Martret and G.B. Giannakis, throughfrequency-selective multipath," in Proc. IEEE GLOBECOM'2))}, pp.71-81,2000. |41 M.Z. Win and R.A. Scholtz,"Impulseradio : How it works,"IEEE Comm.Lett., vol. 2, no. 2, pp.36-38,Feb.1998. 64 Chapitre4 A Maximum Likelihood Time Delay Estimatorin a Multipath Environment UsingImportanceSampling 1A. Masmoudi,F. Bellili, S. Affes, and A. St6phenne,'A Maximum Likelihood Time Delay Estimator in a Multipath EnvironmentUsing ImportanceSampling", submitedin IEEETrans.on Sign.Process. DOI: 10.1109/TSP.2012.2222402 IEEE (c) Abstract Dans cet article, nous pr6sentonsune nouvelle impl6mentationdu critdre de maximum de vraisemblancepour I'estimation du d6lai de propagationdansun milieu multi-trajet, puis nous6tendonsla m6thodepropos6epour l'estimationde la diff6rencedu tempsd'arriv6 quand le signal 6mis est inconnu. La nouvelle techniqueimpl6mentele conceptde l"'importance sampling" (IS) pour trouver le maximum global de la fonction de vraisemblance.Nous 6vitonsla traditionnellerecherchemultidimensionnelleet les m6thodes it6rativespour maximiser la fonction de vraisemblance.Nous montronspar simulation que cette m6thodepermetd'estimer desddlaistrbs procheset offre de meilleuresperformancesqueles m6thodessous-optimales tellesqueMUSIC. Le principal avantagede cette mdthodeest que la convergenceau maximum global est garanticontrairementaux algorithmesit6ratifs qui d6pendent6troitementde l'initialisation. In this paper,we presenta new implementationof the maximumlikelihood criterionfor the estimationof the time delaysin a multipathenvironment,andthen we extendthe proposed methodto the estimationof the time differenceof arrival when the transmittedsignal is unknown.The new techniqueimplementsthe conceptof important sampling(IS) to find the global maximum of the compressedlikelihood function in a modest computational manner.Thus we avoid the traditional multidimensionalgrid searchor the iterative methods to maximize the compressedlikelihood function. We show by simulationsthat the new techniqueallows the estimationof very close delaysand surpassessuboptimaltechniquessuchasthe MUSIC algorithm.The main advantageof our methodis the guaranteed convergenceto the global maximum,contrarily to the populariterativeimplementationof the maximumlikelihood criterion by the well known expectationmaximizationalgorithm. 4.1 Introduction Time delayestimationis a well studiedproblemwith applicationsin many areassuchasradar [1], sonar[2], andwirelesscommunicationsystems[3]. Typically,to allow estimation of the time delay, an a pri,ori known waveform is transmittedthrough a multipath environment,which consistsof severalpropagationpaths,amongwhich the dominantones, relativelyfew, areconsidered.If the transmittedwaveformis unknown,only the difference of arrival times can be estimatedfrom the receivedsignalsat multiple separatedsensors [4]. In what follows,we will treatthe two cases. Thesetwo time delayestimationproblemshavebeenextensivelystudiedin previousyears [5-7]. The maximum likelihood (ML) estimatoris well known to be an optimal technique. For the problem at hand, the likelihood function dependson the time delays and on the complexchannelcoefficientsmakingits solutionintractablein a closed-form.A direct im66 plementationof this criterion requiresa multidimensionalgrid search,whosecomplexity increaseswith the number of unknown delays.Therefore,many iterative methods,such asthe expectationmaximization(EM) algorithm,havebeendevelopedto achievethe well known Cram6r-Raolower bound (CRLB) at a lower coast.But their performancesare closely linked to the initialization valuesand their convergencemay take many complex iterativestepsand therefore,a tread-offmust be found betweencomplexity and accuracy. Hence,thereis yet a needfor developinga non-grid-search-based and a non-iterativeML estimator.Alternatively, sub-optimalmethodsbasedon the eigen-decompositionof the samplecovariancematrix, which initially gainedmuch interestin the direction of arrival estimation,werelaterexploitedin the contextof time delayestimation[8-9]. While these suboptimaltechniquesoffer an attractivereducedcomplexity comparedto the grid search implementationof the ML criterion,they still sufferfrom heavycomputationstepsdue to the eigenvaluedecomposition.Moreover,their performancesarerelativelypoor compared to the ML estimator,especiallyfor closely spaceddelaysand/orfew numbersof samples. Motivated by thesefacts, we derive,in this paper,a new non-iterativeimplementationof the ML time delaysestimatorwhich avoidsthe multidimensionalgrid searchby applying : i) the globalmaximizationtheoremof Pincusproposedin [10] and ii) a powerful Monte Carlo techniquecalled importancesampling(IS) offering therebyan efficient tool to find the global maximum of the likelihood function. Note here that many other traditional Monte Carlo techniques(besidesthe IS method) can also be successfullyapplied.However,unlike the IS method,they often require a larger numberof realizationsthat are,in addition,usually generatedaccordingto a complex probability density function (pdf). Hence they appearto be less attractivefor practical considerations.In this sense,the importancesamplingtechniquelendsitself as a powerful alternativein which the requiredrealizationsare easily generatedaccordingto a simpler pdf. Additionally, it offers a way to processthe obtainedrealizationsin a morejudicious manner [1]. This methodhas indeedbeen applied to the estimationof the direction of arrival(DOA) [13], the joint DOA-Dopplerfrequency[12] and more recentlyto the estimation of the time delay in the context of modulatedsignalsand a single propagation path [14]. Basedon theresultsof theseworks,the IS techniquewasshownto dramatically reducethe computationalcomplexity of the ML estimateswhile still providing high accuracy. The remainderof this paperis organizedas follows.In sectionII, we presentthe system model for the active mode (i.e., known transmittedpulse) and derive the corresponding compressedlikelihood function to be maximized.In sectionIII, we detail the global maximizationmethodappliedto our problem.In sectionIV the importancesamplingtechnique is describedandthen appliedto the estimationof the time delaysboth in activeandpassive (unknowntransmittedpulse).Simulationresultsare discussedin sectionV and, finally, someconcludinsremarksare drawnout in sectionVI. 67 4.2 SystemModel and CompressedLikelihood Function Consideran a priori, known signalr(l) transmittedthrougha multipathenvironment.The receivedsignal is a superpositionof multiple delayedreplicasof the known transmitted waveform;modeledasfollows : P \- u f t ) : ) ZJ air(t-rn)+w(t), (4.1) where P is the total numberof multipath components,u(l) is an additivenoise and a : for, *r,. . . , ap)r are the unknowncomplexpath gainsresultingfrom scatteringand fading throughthe propagationmedium.In addition, {r}l:, arethe unknowntime delays t o b e e s t i m a t e d a n d g a t h e r e d i n t h e v e ct t o: r f r r , r 2 , . . . , r o \ ' . I f F " : 1 / ? i i s t h e samplingfrequency,the resultingsamples,takenat instances{nT"}{:, are: P air(nT"- r)tw(nT"), n:0, 1,..., N - 1, a@7): I (4.2) i:I wherel/ standsfor the total numberof availablesamples. In general,the IS principle is suitablefor the estimationof non-linearparametersin the generallinear models(GLM) describedas : (4.3) a:Q(o)s+u wherea : laq), a(7"),. . . , y((l/ - 1)7:)]t is the receiveddatavectorwhich depends linearly on somenuisanceunknown parameterss and non-linearlyon the delays 0. However,in contrastto the single-pathscenarioin [14], the formulation of the input-output relationshipin (4.2)cannotbe directlytransformedinto a GLM analogousto (4.3).Here, the receivedsamplesare transformedinto the frequencydomain where the model could be expressedin a matrix form. In fact, taking the discreteFourier transformof (4.2), we obtain : P Y(k) : rrl'\ S- tr/ i'2nkr: \arX(k)e---n-- +W(k), k:0, 1..... N - 1, (4.4) i:l (DFTs) where{y(k)}il-t, {X(k)}il; and{W(k)}I;t *" thediscreteFouriertransforms of y(nT"), r(nT") andw(nT"), respectively.Then, consideringthis transformation,the channelcoefficientsvector o and the time delaysr manifestthemselvesas the linear and non-linearunknownparameters,respectively.Hencewe transformthe basicmodelin (4.2) into the generalform of (4.3),usinga compactrepresentation of (4.4)as follows : Y:Qo(r)a*W, 68 (4.s) in which y y(1),. . ., y(N - 1)]t is viewedas the receivedvector,a : [Y(0), and the matrix2 A"(t) dependsonly on the unknowndelaysgathered l"r, or,. . . , c.p]1T in the vectorr andis given by : : o " (t) : [0 "?1) ,Q"( r z) ,.. ., Q"?p) ) , (4.6) with the columns{Q"?o)}l:rbeing definedas : Q " ( r o ) : [ X ( 0 ) , X ( 1 ) e - ! 3 ; P ,X Q ) e - & # L , . . . , X ( t / - t S e - ' # y . g.7) -1)]"are a n d X : [ X ( 0 ) ,X ( 1 ) , . . . , X ( l / - 1 ) ] t a n d W : [ I 4 l ( 0 )W , (1),...,W(N the (.V x 1)-dimensional vectorscontainingtheDFT coefficientsof samplescorresponding to the known transmittedpulse and the additivenoisecomponents,respectively. First, we considerthe active model where, in contrastto the passivemodel treatedlater in section4.4.3,the transmittedsignalr(f) is known to the receiver.Now, following the sameargumentsof [15], the likelihood function of the activemodel (4.5) is given by : A(z.o) xp(y;r.a.):-*.*p{ 7T'" o.'" - \ft-iD"(z)o)'(v d. -iD"(z)c) } 1o.rl ) I by r and wherep(Y;r,a) is the probabilitydensityfunction (pdf) of Y parameterized a and a2 is the spectrumpower of the noise.Actually,the ML solution?x,11rsdelined as the global maximum of the likelihood function in (4.8) with respectto r. However, this formulationof the likelihood function imposesa joint estimationof z and o which is computationallyintensive.Therefore,it is of interestto obtain a likelihood function that dependsonly on r that canbe more easilyhandled.Observingthat A(r, a) is quadratic with respectto c, we considerthe nuisanceparameter,o, as deterministicbut unknown andsubstitute,in (4.8),a by the solutiond(z) which maximizesthe log-likelihoodfunction L(r, a) : ln {A(2, a)} for a given r. Indeed,it can be shownthat 6(r) is given by: 6(r) : (of;(r)o"('))-'a! Q)v (4.e) Replacinga in (4.8) by d(r) and omitting the termsthat do not interferein the maximization with respectto r , we obtain the so-calledcompressedlikelihood function of the systemasfollows : -'oy L.('):#tu *"(z)(of 1')o,(')) 1,7v . (4.10) 4.3 Global Maximization of the CompressedLikelihood Function To find the desiredML estimate,we need to maximize the compressedlikelihood function in (4.10) over z. Yet, L.(r) is non linear with respectto r : hence, a closed-form solution 2Notethat we index A"(z) by a to refer to the activemode. 69 seemsanalytically intractable.It is quite common in the current literature to solve this maximizationproblem in an iterativeway, as an alternativefor the trivial multidimensional grid search.However,iterativeapproachesrequirean initial guess,usuallytakenfrom the output of anothersuboptimalalgorithm.The iterative quadraticML (IQML) [16], the simulatedannealingtechnique[17] and the expectationmaximization(EM) algorithm [5], takenasexamplein our simulation,aresomeof the mostfamousiterativeimplementations of the ML estimator.Naturally,the performancesof theseiterativealgorithmsdependseverely on the availableinitial guessand may even convergeto local maximum reflecting estimateswhich arecompletelydifferent from the real valuesof the delays(corresponding to the globalmaximum). In this context,the globalmaximizationtheoremproposedby Pincust4.111offersan alternativeto find the global maximum of multidimensionalfunctions,suchas the one at hand in (4.10). Interestingly,it does not require any initialization and guaranteesthe convergenceto the global maximum.The ideais very simpleandclaimsthat the solutionis given b y ( 4 . 1 1 :) r r - .€xp{ pL"( r ) }dr i : l i mp-+oo %.r:1.2.....P. J.,. . . J.,explpL"(T)j d.r (4.11) where-I is theintervalin which thedelaysareconfined.Deliningthepseudo-pdPL'",.o(T), for somelarge valueof p6, as : f | /-\ Lc,pg\t ) -- W exp {p61"(z)} (4.r2) then,accordingto (4.11),the optimalvalueof 4 is simplygivenby : o:l, i: lrror'",^(r)dr, L, 2, ..., P. (4.13) Intuitively,we can say that, as p6 tendsto infinity, the function LL,rr(") becomesa PdimensionalDirac-deltafunctioncenteredat the locationof the maximumof L.(r). Thus, the ML estimateis simply obtainedfrom the evaluationof the P-dimensionalintegral in (4.13).Yet,this is a difficult taskdueto the complexityof the involvedintegrandfunction L'".ro(.)is apseudo-pdf L'",*o(.)]. Onesolutionistoexploitthefactthat and [thepseudo-pdf interpretf; as the expectedvalue of ri, the ith elementof a vectorz distributedaccording pseudo-pdfL|,roO.Therefore,if one is ableto generateR realito the multidimensional accordingto L'",00(r),it is reasonable to approximate the expectedvalueof z usingMonte Carlotechniques[11] asfollows : zationsof a randomvector,{r*}f:, P 1+ -\?, -R " 3f|*oG) L'"' (4.r4) k:l is designated as a pseudo-pdfsinceit hasall the propertiesof a pdf althoughz is not really a randomvariable. 70 Hence,we substitutethe complex integrationin (4.13) by a simple samplesaverage. Clearly, as the numberof generatedvalues-Rincreases,the varianceof the samplemean becomessmaller and? gets closerto the global maximum of the compressedlikelihood function. Yet a practicalissueremainsas how to easily generaterealizationsaccordingto L'.,*o(r).The proposedpseudo-pdfis a non-linearfunction of z and needsto operatein a multidimensionalspace,which is not suitablefor easygenerationof realizations.One solutionis to approximatethe actualpseudo-pdfby a one-dimensionalfunction andtransposethe problemof generatinga vectorto the generationof P independentvariables,then resortto the conceptofIS as describedin the next section. 4.4 The Importance Sampling Based Time Delays Estimation 4.4.1 IS Concept Importancesamplingis a Monte Carlo techniquewhich makesuseof an alternativedistribution (carefully designed)to generaterealizations.It is usually appliedwhen the original distributiondoesnot havea practicalform, like L'",po(.)given in our problem. The approachis basedon the following simple observationon the integral involved in A.r3\: : l, Ir"'"'o"o)d'r I, Ir"tiffn'(r)d'r' (4.1s) wherec'(z) is also assumedto haveall the propertiesof a pdf, called normalizedi,mpor. tancefunction (IF). Then,theleft-handsideof (4.15)is interpretedasthe meanof qffi when z is generatedaccordingto gt(r) . Unlike L'.,rr(.), it is of interestto chooseg/(r) to be a simple function of z. Then, we useMonte-Carlomethodsto numericallycompute the expectationasdonein (4.I4): * :,rt-:#, I, I,,tffi n'Q)d,r: (4.r6) where27,is now thekth realizationof r accordingto g'(.). Clearly,the choiceof g'( ) affectsthe estimationperformance.An inappropriatechoiceof g'(.) may needa largenumberof realizationsr? to reducethe estimationvarianceand result in a highercomputationalcomplexity.Therefore,the valueof -Rdependson how much g'(.) resemblesL'.,r.(.). tn the idealcase,generations accordingto g'(.) arethe sameasif they were generatedaccordingto L'",r'(.). Therefore,ideally,the shapesof the two functions .g'(.) andL'",,,o(.)shouldbe similar to reducethe varianceof the estimatorgivenby (4.16)[13]. On the otherhand,we shouldkeepin mind that9'(.) hasto be simpleenough so that realizationscan be easily generated.Thus sometradeoffsare requiredto choosea 7l functionas simpleas possibleyet similar to Lt",ro(.).In what follows, we will showthat owing somesimplilicationsof Lt",ro(.),*" can build an appropriatefunctiong'(.) to properly generatevariables. Now, comingback to the expressionof the actualcompressed likelihoodfunction(4.10), makesthe compressedlikelihood function, and the inversematrix (Oy1"!O"tr)) consequently the pseirdo-pdfL'",00(l),very non-linearwith respectto r. One can approximateQ{ (r)O.(r) by a diagonalmatrix to avoid a heavycomputationof the inverse.In fact,the diagonalelementsof Of;(z)O aregivenby : "(r) 1 l/- \-''-"''' 1 q - o ' ( r ) ( D o ( r ) ) :l r ,Lr I X ( A ) 1 " . I : I . 2 . . . . . P , l(6il'' (4.r7) k:0 and its off-diagonalelementsare : 1V- I r,-H, [ ( { P a ' , ( 7 J { P\0r ) ) ] m ; n __\- lx (k)l'""o { / , a:0 m , fr: i)r k(r* - r.) N ), I , 2 , . . . , P r n t J7 -. to. (4.18) It is easyto verify, for r^ f rn, that: [(of (r)o"(r))]^,*< [(o#(')iD"(z))]r;r (4.r9) Althoughthis inequalitydoesnot give sufficientconditionto approximateAf;(r)lD"(z) by a diagonalmatrix, we verify statisticallythat this inequality holds with very high probability for almost all possiblevaluesof the delay differencerm - rn. To that end, we considerTm;n: rrn - rn as a randomvariableuniformly distributedin4 l-7, 7] and we defineK(r^,n) the ratio (4.18)l(4.17)asfollows : K(',,tn): 'tt#--\ Dfl; lx(A')l'""p { tH lx(k)l (4.20) cumulativedistributionfunctionof K (r*.n) Then,we plot in Fig. 4.1thecomplementary (randomizedaccordingto r*,n), to verify that the diagonalelementsof Of;(z)O,(r) are indeeddominant,with very high probability,comparedto its off-diagonalelements.Therefore,we adoptthe following well-justifiedapproximation: N = ( t lx(k)f) r,, o! 1r)o,1r) (4.2r) where.Iois thep x p identitymatrix. aWeconsiderherethat the delaysdo not exceeda given real value ? (seesection4.4.2 for furtherdetails on this assumption). ^0. H ^0_ !Y0. ^0. a -o 0.1 o.2 0_3 0_5 T 0.6 0.7 FtcuRB 4.1 - Complementary cumulativedistributionfunctionof the ratio K (r,n.n). Then,we definethe importancefunction,gprO, without normalization,[i.e.,g'(r) : gr,G)l I go,(u)du] in the activecaseas : Ho (,)t\, "(r)oy eo,(,)-exp {r*mY (4.22) where p1 is anotherconstantdifferent from p6 for somepracticalreasons.A further discussionon the appropriatechoiceof p6 and p1 is left to the end of this section. After someeasyalgebraicmanipulations, we express(4.22)as: gp,(r): fr"-o {r*iryr(',)}, (4.23) where 1(4) is the periodogram of the data in the frequency domain evaluated at each delay r; as follows : l'/ I(-.\ - t t1o;.t(k)e"p{ i)n (k,A/ *)l (4.24) Now, we commenton the advantageof this choice in (4.23) for the importancefunction (IF). First, we noticethat thejoint contributionof the different delaysir gr, (.) is separable into the productof their individual contributionsasseenfrom (4.23).Hence,we substitute the brute generationof realizationsof the vector z accordingto a multi-dimensionalpdf to the generationof P independentscalarrealizations(i.e., one realizationfor eachentry of z) usingthe elementaryIF, I orjr). definedas : '"P{rr#Xr*rr I(")\ I pr\rt' ) : .LexP {t:*mot r@} ar (4.2s) Note herethat,the multiplicativetermsX (k), k : 7, 2,. . ., l/ act as weightingfactors. They attenuatethe contribution of the frequencieswith low energy in the computation of I (r;) and henceemphasizethe high-SNR frequencies.In fact, this property improves considerablythe performanceof the estimatorcomparedto someother approacheswhere the receivedsignal is divided, in the frequencydomain,by the DFT of the known transmitted waveform [8]. Actually, this operationis not suitablefor narrowbandsignalssince it resultsin someharmful effectsby amplifying the additivenoise in the low-energyfrequencies.It is suitableonly for widebandsignals,in contrastto our algorithm which is also adaptedto narrowbandsignals. Finally, the normalizedIF is given by : fllr exp{prl (ro)} g'o'r(t) : I, [rf]Lr exp{p'rI(u)}dui (4.26) with l- v' oryy--r14ry' Pt (4.27) We mention that the choice of the parametersp\ and po arc of great importancesince its affectsthe performanceof the new estimator.In fact, as alreadymentioned,g'o;(r) is separable as the productof P elementaryIFs, A oll), corresponding to eachdelay16(i.e., t / r nP / \\ rY o'r1?): fllr lri?.iD. Hence,in practice,we usethe samesr,,(") P timesto generate th; P elementsof the vectorz. Actually,for a noise-freeobservation, the functiongor(.) exhibits exactly P lobes centeredat the locations of the true delays and at each run, a realizationis generatedfrom the vicinity of one of the P lobes.However,in the presence of additivenoise,other secondarylobesappearand ultimately affect the generatedvalues. For this reason,the parameterpi shouldbe increasedto renderthe objectivefunction gr;( ) morepeakedaroundthe actualdelays{ro}l:r. This behavioris illustratedin Fig. 4.2where we plot the functiongo,rO for two valuesof p'r. Yet, we observethatpt,cannotbe increasedindefinitely.In fact, very largevaluesof p', will ultimately destroysomeuseful lobesand so usefulrealizationsmay not be generated. Obviously,properchoice of p', is of greatimportance.Its optimal value is the highestone thatmakesat leastsP main lobesappearin gr,r(.).Moreover,by attenuating the secondary lobes,we reducethe probability of generatingundesiredrealizations.Consequentlya good choiceof p/, reducesthe numberof necessaryrealizations-Rand hencethe complexity of the estimator. Recallthat the normalizedIF g'r,(r) is built upon an approximationof the actualcompressedlikelihoodfunctionwhich resultsin biasedestimatesof the delays,especiallyat low SNR values.However,we emphasizeherethe fact that this biascanbe reducedby the presenceof the actualcompressed likelihoodfunctionin theweightingfactorL'",00(r)lg'r, (r) tA oi(.) shouldhaveexactly P lobes,but the additivenoise makesother relatively small secondarylobes appear. 74 0 0 FIcURB4.2 -Plot otq oJ.) at SNR : 10 for (a) pl : 1 and (b) pl : 6. in (4.16).Thus,we can maximizethe contributionof L',.,r.(.)in the weightingfactorby choosingp', smallerthanp6. 4.4.2 Time Delays Estimation in Active Systems The IS-basedestimatorrequiresthe generationof realizationsaccordingto p4 (.) then evaluatingthe following meanvalues: ,,:+>1uort*ff '" (4.28) vp\ *:t where4, is the kth generated vector andrp(i) refersto its ith element. Roughly speaking,the delays can actually take any positive value, but in practice,they are confinedin the interval [0, 7] where 7 is any positive real value that can be chosen high enough6so that ri e 10,?] for i, : 1, 2,. . . , P. Therefore,sincetheparameters are boundedfrom below and above,it is more convenientto usethe circular meaninsteadof the linear meanin (4.28).The advantages of this operationwill be discussedlater. To introducethe conceptof circular mean,define a random variable X taking valuesin the finite interval[0, 1] and denoteby G(X) its pdf. The circularmeanof X is definedas 6In network communications,the delaysare usually confinedin the symbol duration,whereasfor radar and sonar systems,the symbol duration does not really exist and the observationwindow must be longer than the largestdelay. 75 [ 1 8 ]: E"{x}: }z fo'"*v{iztrr}G(r)d,r (4.2e) wherethe operatorl(.) returnsthe angleof its complex argument.Supposethat we have a setof 11, . . . , rR generated via the pdf G(.), thenthe circularmeanin (4.29)is: E"{x}: *r*f r:L "*p{7zn',} (4.30) In our time delays estimationproblem, we first normalizethe delaysby 7 to transpose them into the interval [0,1]. Then we apply directly the circularmeanin (4.30).In this context,the alternativeformulation of the IS-basedestimatoris given by : FGn)",.' ,,: #r* {;r"#}, * (4.3r) whereF(rn) is the weightingfactordefinedby : F(rt) : L'"tr('\) (4.32) I oi\r* ) From the formulationin (4.31), we only needto find the angle of a complexnumber. Therefore,any positivemultiplicativeterm will not affectthe final result.Thus,the two strictlypositiveconstanrsI, e"p{p \l (u6)}d,'u6, [, exp{psL.(r)}rtr and[, I rfll usedin the normalizationof L'",r.(.) andg'r,(z), respectively, can be dropped.However, the exponentialterms in both the numeratorand the denominatorof the weighting factor F(.) may resultin an overflowin the computation.To circumventthis problem,F(.) is substituted by F'(.) : ( P :\') / - pr>,1(rt@))f+.zzt - d.,U,I?t@)F'(rr)- exp (oot"{r,) ,?,?t {nol"('*) Note from (4.33) that the argumentsof the exponentialterms are either negativeor zero and that the valuesofthe exponentialcannotexceedone. Summaryof steps In the following, we recapitulatethe different stepsfor the direct implementationof the new algorithm : 1. ComputetheDFT [y(0), y(1),. . . , y(l/ - 1)] of thereceivedsignalsamples. 2. Use the Fourier transform coefficientsto evaluatethe periodogramaccordingto (4.24). a J. Computethe samplesof the one-dimensionalpdf gp\(.), usedfor the generationof the requiredrealizations,at K pointsas : I o1\Tt): exp{p'r1(4)} ( s:K t rl I : 7 , 2 , .. . , K , rt' L*:r exp{pil (ralJ (4.34) where K is the total numberof points in the interval -/. Note that we substitutethe integrationin the denominatorof Er, (.) by u summationover the discretepointsof the intervalJ. 4. Generateone realizationof z using O'piO.To do so, we generaterealizationsaccordingto grr(.) P timesto retrieveone realizationof the P-dimensionalvectorz. More detailson this point areleft to the Appendix.Repeatthis stepR times. 5. Evaluatethe weightingfactor F'(ro) fori : 1, 2,..., R and computethe circular mean of the generatedvaluesbalancedby the weighting factors to find the ML estimateof the multiple unknown delays.Note that we must evaluatethe term poL"(r) - p\Dl":rI(r1(m)) for all generatedvectors{r}L, beforecomputing F'(re). 4.4.3 Time DelaysEstimationin PassiveSystems In a passivesystem,the transmittedsignalis consideredto be unknown.In this case,only the time differenceof arrival (TDOA) can be estimatedfrom multiple receivedsignalsat spatially separateddestinations[4]. In this section,we assume,without loss of generality, the presenceof two separatedsensors.The receivedsignalsat thesetwo sensorsare modeledas : P1 ln(tl: \-a ) ZJ orir(l - h;i) *rui(l), (4.3s) a2.ir(t- rz,i)+ w2ft). (4.36) \ , /,\ Pz azft): ) \-f t-l and {a^,}131, for n : 7, 2, are the delaysand the complexgains of the receivedsignal at the nth sensor and {P"}2^:, are the known numbersof multipath components.For the sakeof simplicity, supposethat y{t) hasonly one signalcomponent (Pt : 1). The receivedsignal at this sensoris consideredas a referenceand henceit where {r,,t)l!, is assimilatedto a noisy known signal.Then, similarly to (4.4),we expressthe sampled signals(4.35)and(4.36)in the frequencydomainas : Y,(k): ,.ylX(k)""0-t!#.\ { 77 +w,&), (4.37) P2 Yr(k): t' or,,x1t l"o {-UP} * *rtr1. (4.38) k:0,1,...,N-1, where{Y1(k)}Lo , {Yr(k)}{:,, {Wr(k)}fl:o and {Wr(t )}{:o arely' samplesof the Fourier transformof samplesof y1(t), y2(t), w{t) and w2(t), respectively.As mentioned above,the TDOAs will be estimatedby consideringthe receivedsignalin the first sensor asa reference. This simplifiesto theestimationof the P2 delaydifferencesAf) : r2;i-rr;r foyi :1, 3,. . . , Pz. Therefore,we rewrite(4.38)asfollows : :\ Y2(k) P2 i:r [ -ffi P*t?)) \nv,{rr)""p I\ |) + w,1n1, -' (4.3e) go:%,,i:I,2,...,p2, (4.40) in which At;t Wr(k): WzG)- pz r tg \ Biwl(k)."p iz"r I t (4.4r) Doing so, we highlight the parametersof interestin the expressionof Y2(k). Moreover, thereis an analogybetweenthe formulation of the activecasein (4.4) andthe passiveone in (4.39).More precisely,the major differenceis in the referencesignal (X for the active caseandYr for the passivecase). Then, gatheringall the frequencysamples,we obtainthe following matrix representation: Y, : : -1)]t [ % ( 0 ) ,Y r ( l ) , . . . , Y r ( N ao(L,)p + wp, (4.42) wherethe matrix Ao(A") is function of the TDOAs definedas : o o ( A , ): [ d o ( l f ) ) ,o o ( L l ' ) ) , . . e. ,o ( L t a ) ) , f 'n-no)'l 'n J| , l. o,(^y)l: lo,,tol, ' i : L , . . . , F1(1)exp I -t'"n7' Yt(N - 1)exp {I - P2, I (4.43) )l' j2n( N - 1) AY) (4.44) p : l o ' " , c \ 2.2. . . , o ' ' " f ' , LO.r.r (lt.r 0r.r J (4.4s) A" : [nf), rl'), ..., Llo,)f', (4.46) is the vector of the TDOAs of interest.Consideringthesenotations,it turns out that the estimationof the TDOAs canbe performedusing the samealgorithmdevelopedabovefor the activesystem.We only haveto substitutethe vectorQ"?) by Qo(L,) and X(k) by Y1(k) in the expressionof the periodogramin (4.24). The remaining stepsfollow in the sameway. Now we rediscussthe estimationproblem when P1 is different from 1. The problemthen consistsof estimating PtxP2 differentparameters.To that end,we refer againto theresults of the activecase.P1 x P2valuesaregeneratedaccordin1togpr(.) by substitutingX(k) Then,the generated and Y(k) in the expressionof 1(.) UVY1(.) andY2(.),respectively. valuesare classifiedfrom the smallestto the highestand organizedas follows : L,,k: talil,Lt'L...,al?)1, (4.47) whereeachvector{tf)r}f}ris formedfrom P2TDOAs.The final stepconsistsof evaluating the following meansasin (4.31): : ** t+*r r"n)"*o* "#} ^7,{ {t (4.48) 4.5 Simulation Results To properly assessthe performanceof our new IS-basedapproach,we comparethe performanceof the proposedmethod to the expectationmaximization(EM) algorithm [5] as one representativeexampleof the iterative implementationsof the ML criterion and to the MUSIC algorithm proposedin [4] as one representativeexample of suboptimal subspace-based methods.The estimationerror of the three estimatorsis also compared to the Cram6r-Raolower bound (CRLB) which reflects the theoreticalachievableperformancetaken as a benchmarkfor all the consideredalgorithms.In all simulations,the transmittedpulse is a chirp signal which is widely usedin radar and sonarapplications. The numberof snapshotsis setto ly' : 70. We consider3 propagationpathswith closelyspaceddelays f37", 67", 87]]. The multipath gain is assumedto be equal for the three paths. First, we studythe influenceof the parametersps andp', onthe estimationperformance of our new estimator.We verify that thereis no dependenceon p6 as far as it is chosento be higherthanp\ (seesection4.4).However,asillustratedin Fig. 4,3, p\ affectsseriously the estimationperformanceof the new IS-basedalgorithm. As alreadymentioned,small valuesof p', may not reducethe effect of the additive noise involved in gr, (.), while too large valuesreducethe desiredlobesrevealingthe actualdelaysin{ r,r(.) therebypreventing their generation.Therefore,an appropriatechoiceof p', is necessaryin orderto obtain near-optimalperformance.We seefrom Fig. 4.3 that for p', taking valuesbetween2 andT, the performanceis almostthe same,andthus the optimal valueof p', canbe freely selected from this relatively largerange. 79 468101214 performance Estimation as a function of pl FrcuRe 4.3 - Estimationperformanceasa functionof p', Now turning to the comparisonof the different estimators,we recall that the EM and IS-basedalgorithmsaretwo differentimplementationsof the ML criterion.They arehence expectedto exhibit the sameperformancesincethey both try to maximize the sameobjective function. Yet, it shouldbe kept in mind that the IS-basedand MUSIC algorithmsdo not require any initialization while the EM algorithm is iterativein nature.Consequently, we considerfor the EM algorithmtwo scenariosin which the initial valuesare selectedas randomvariables,centeredat the real time delaysand having a varianceof aT! and 10( reflecting,respectively, relativelyaccurateandlessaccurateinitializations.Fig. 4.4 depicts the performanceof the threeestimators.As expected,the two ML estimatorsperform better than the MUSIC estimator.However,for less accurateinitialization, the performance of the EM algorithm deterioratesconsiderablyover the entire SNR range.We seealsothat while the MUSIC techniqueapproaches the CRLB only as far as the SNR is sufficiently high ; the proposedalgorithmperformscloseto the CRLB over the entireSNR range.This is hardly surprisingsince the IS-basedestimatoris far more accurateimplementationof the ML criterion.Sameconclusionshold for the passivecase,alsoplottedin Fig. 4.6 for Pt:7 a n dP r : 3 . So far, comparisonshavebeenperformedas a function of the SNR. To study the resolution power of the different estimators,we considertwo propagationspaths and vary the delay separationAr - 11 - 12 at an SNR value of 10 dB. The resultsare shownin Fig. 4.5. Clearly, as the differencebetweenthe delaysis small, the estimateis less accurate for the threemethods.The two Ml-based estimatorsstill perform betterthan the MUSIC algorithm.For well spaceddelays,all the methodsperform the same. Another important point to study is the effect of the signal bandwidthon the estima- 80 MSE oflhe lst path MSE ofthe 2ndpath 10 ari 510 sNR [dB] 510 sNR [dBl mean MSE ofthe thr€e paths 10 sNR [dB] l0 15 15 sNR [dBl FtcuRe 4.4 - Estimation perforrnanceof the lS-based,EM ML and the MUSIC-type algorithmsin an activesystemvs. SNR. tion performance.In fact, sinceall the derivationsare madein the frequencydomain,the signalbandwidth(definedin the given examplehereas the differencebetweenthe higher and the lower frequencyin the chirp signal) is expectedto have an impact on the estimation procedure.Therefore,we comparein Fig. 4.7 the three estimatorsunder different signalbandwidths.Clearly,the proposedmethodoutperformsthe MUSIC algorithm over the entire bandwidthrange,althoughthe gap betweenthe two methodsdecreasesas the bandwidthincreases.Note that the EM algorithmis alsolesssensitiveto bandwidthvariations. Sameresultshold for the passivesystembut the simulationswere not includedfor the sakeof conciseness. Now we considerthe caseof time varying channels.While the proposedmethod is primarily developedunder the assumptionof constantpathsgains,we verify through simulationsthat it is also robust to time variationsand that the IS-basedestimatoroutperforms MUSIC-type methodsover relativelylow Doppler frequency.Nonetheless,the performancesof the two estimatorsdegradeconsiderablyas the Doppler factor increases.In 8l MSE ofthe MSE ofthe 2nd path lst path 51015 sNR [dBl 10 sNR [dB] 15 mean MSE ot the three Daths MSE ofthe 3rd path 51015 sNR [dBl FtcuRB 4.5 - Estimationperformanceof the lS-based,EM ML and the MUSIC-type algorithmsin an passivesystemvs. SNR. fact, the time variations of the channel coefficients are not taken into account when developing these algorithms, and it was shown in [19] that, in this case,the estimatesbecome necessarilybiasedT.Note, in this case,that we are no longer able to obtain the estimatesof the channel coefficientsusing (4.9). It is for this reasonthat the EM algorithm was omitted in this scenario since it is based, at each iteration, on an estimate of a, which cannot be performed for time varying channels. 4.6 Conclusion In this paper,we developeda new implementationof the Ml-based estimatorfor multiple time delaysbasedon the conceptof importancesampling (IS). We consideredthe 7tn [t9], the effect of the time varying envelopehasbeentreatedin the caseof frequencyestimationwith the MUSIC and ESPRIT alsorithms. 82 FtcuRs 4.6 - Estimationperformanceof the IS-based,EM ML and the MUSIC-type algorithmsin an passivesystemas a functionof Ar. FtcuRB 4.7 - Estimationperformanceof the IS-based,EM ML and the MUSIC-type algorithmsvs. signalbandwidthat SNR : 10 dB in an activesystem. two casesof activeandpassivesystems.The new algorithmis far lessexpensivein terms of computationalcomplexity than the traditional multidimensionalgrid searchmethod. Moreover,unlike the iterative methods,the IS-basedalgorithm doesnot suffer from initialization drawbacks.It performs well over the entire SNR range since its convergence to the global maximum of the likelihood function is guaranteed.In addition,it avoidsthe computationburdenof the eigen-decomposition operationthat is widely encounteredin classicalsubspace-based techniquesin multiple parametersestimation.While thesetraditional methodsperform well evenfor closely separateddelays,at high SNR values,only 83 800 1000 1200 Doppler shift t400 FtcuRe 4.8 - Estimationperformanceof the IS-basedand the MUSIC-typealgorithms vs. Dopplershiftat SNR: 10 dB. the proposedIS-basedtechniqueprovides accurateestimatesat low SNRs and for challenging casesof more closely-spaced delays.In practice,an appropriatechoice of the parametersp6 and p'l canbeperformedto further optimizethe estimationperformance. Appendix Method to generatethe YectorT In this appendix,we presentsomepracticalhints to easily generatea singlerealizationof the vectorz. -First,define{asadiscreterepresentationof theinterval[0,7] (i.e.,€:0 :If s:7with 1/s beeinga givenstepfor somes). - Then,generate1 accordingto gp,r(.)using the inverseprobabilityintegrationmethod. To do so, considera vector z of randomvariablesuniformly distributedover [0, 1]. Then find 1 - argmax,6lG(r), whereG(r) if the cumulativedistributionfunctionassociated t" go;(.) (for moredetails,see[14]). - Then eliminatethe generatedvalue1 from { so that it cannotbe generatedagain. - Repeatthe last two stepsP- 1 timesto generater2, Tz,. . . , rp andobtainonerealization of the P-dimensionalvectorz. 84 Bibliographie t l l M.I. Skolnik,Introduction to radar systems,third edition, McGraw-Hill, New York : 2001. l2l G. C. Carter,Coherenceand time delay estimation: An applied tutorialfor research,development,testand evaluationengineers,IEEEPress,New York, 1993. t3l M. C. Vanderveen,A.-J. van der Veen,and A. Paulraj,"Estimationof multipath parameters in wirelesscommunications,"IEEE Trans.Sign.Process.,vo7.46, pp. 682-690,March 1998. [4] F.-X. Ge, D. Shen,Y. Pengand V. O. K. Li, "Super-resolutiontime delay estimationin mulIEEETrans.CircuitsSysr.,vol.54, no. 9,pp.1977-1986,Sep.2007. tipathenvironments,o' t5l M. Feder,and E. Weinstein,"Parameterestimationof superimposedsignalsusing the EM algorithm."IEEE Trans.Acousr.,Speech. Sign.Process.,vol. 36, pp. 477-489,Apr. 1988. 'Adaptive realizationof a maximum likelihood t6l P. J. Hahn, V. J. Mathewsand T. D. Tran, time delayestimator"Conf.on Acoust.,Speech,Sign.Process.,vol. 6, pp.3l2l-3l24,May 1996. t7l K. Gedalyahu,and Y. C. Eldar, "Time delay estimationfrom low rate samples: A union of approach," IEEETrans.SignalProcess.,vol.58, no, 6, pp. 3017-3031,June2010. subspaces 'Active high resolution time delay estimationfor large BT sit8l M. Pallas and G. Jourdain, gnals,"IEEE Trans.Sign.Process.,vol. 39, no. 4, pp.78l-787, Apr. 1991. l9l A. M. Bruckstein,T. J. Shanand T. Kailath, "The resolutionof overlappingechoes,"IEEE Dec. 1985. Trans.Acoust.,Speech, Sign.Process., vol. 33,no.6, pp. 135?-1367, 'A pp. tl0l M. Pincus, closedform solutionfor certainprogrammingproblems,"Oper Research, 690-694,1962. tl1l A. F. M. Smith,and A. Gelfand,"Bayesianstatisticswithouttears: A sampling-resampling framework,"AmenStatist,vol. 46, pp. 84-88,May 1992. [2] H. WangandS. Kay, 'A maximumlikelihoodangle-Doppler etimatorusingimportancesamplingl'IEEETrans.Aeraspqceand Electro.Syst.,vol. 46, pp. 610-622,Apr. 2010. 'An exactmaximumlikelihoodnarrowbanddirectionof arrivalestimat13l S. Sahaand S. Kay, torl' IEEETrans.Sign.Process., vol.56,pp. 1082-1092,Oct.2008. 85 'A maximumlikelihood l14l A. Masmoudi,F. Bellili, S. Affes, andA. St6phenne, non-data-aided time delay estimatorusing importancesamplingl'IEEE Trans.Sign.Process.,vol. 59, pp. 4505-4515, Oct.2011. tl5l L. Ng and Y. Bar-Shalom,"Multisensor multitarget time delay vector estimationl' IEEE Trans.Acoust.,Speech,Sign.Process.,vol. 34, pp. 669-677,Aug. 1986. tl6] Y. BreslerandA. Macovski,"Exact maximumlikelihood parameterestimationof superimposedexponentialsignalsin noise,"IEEE Trans.Acoust.,Speech, Sign.Process.,vol. ASSP-59, pp. 1081-1089, Oct.1986. t17] K. Sharman,"Maximum likelihood parameterestimationby simulatedannealing,"IEEE Int. Conf.Acoust.,Speech,Sign.Process.,1988,pp.274l-2744,Apr. 1988. t18l K. V. Mardia, Statisticsof directionaldata, New York : Academic,1972. 'Analysisof MUSIC andESPRITfrequencyestimates for sinusoidal l19l O. BessonandP.Stoica, signalswith lowpassenvelopes,"IEEE Trans.Sign. Process.,vot. 44, no. 9, pp. 2359-2364, Sep.1996. 86 Chapitre 5 Maximum Likelihood Time Delay Estimationfor Direct-Sequence CDMA Multipath Transmissions lA. Masmoudi,F. Bellili, and S. Affes, "Maximum LiketihoodTime Delay Estimation for Direct-Sequence CDMA Multipath Transmissions",to submitin IEEE Trans.on Sign. Process. IEEE (c) 87 Abstract Dans cet article, nous consid6ronsle problbme de synchronisationtemporellepour le Direct-Sequence CDMA (DS-CDMA) dansun canalmulti-trajet.Nous d6rivonsles expressionsanalytiquesde la bornede Cram6r-Raopour l'estimation du retarddansles systbmesuni-porteuse DS-CDMA. Puisnousd6veloppons deuxalgorithmesd'estimationbas6ssur le critbre du maximum de vraisemblance.Le premier reprendla m6thodeit6rative "expectationmaximization" (EM). Le secondalgorithmeimpldmentele critbre du maximum de vraisemblanced'une manidrenon-it6rativeet retournele maximum global de la fonctionde vraisemblance en utilisantI'IS. Nous g6n6ralisons aussiles deux algorithmes et la borne de Cram6r-Raopour les systbmesCDMA multi-porteuses.Les simulations montrentque l'algorithme EM estbien appropridpour les systbmesavecun grandnombre d'antennesalors que l'algorithme IS offre de meilleuresperformancesen pr6senced'un petit nombred'antennes. In this paper, we addressthe problem of time delay estimationfrom Direct-Sequence CDMA (DS-CDMA) multipath transmissions.We derivefor the first time a closed-form expressionfor the Cramer-Raolower bound (CRLB) of multiple time delay estimationin (SC)DS-CDMA systems.Thenwe developtwo time delayestimatorsbased single-carrier on the ML criterion.The first one is basedon the iterativeexpectationmaximization(EM) algorithm andprovidesaccurateestimateswhenevera good initial guessof the parameters is availableat the receiver.The secondapproachimplementsthe ML criterion in a noniterativeway and finds the global maximum of the compressedlikelihood function using the importancesamplingtechnique.Unlike the EM-basedalgorithm,this non-iterativemethod doesnot require any initial guessof the parametersto be estimated.We also extend both the SC CRLB and the proposedSC algorithmsto multicarrier (MC)-CDMA systems by exploiting the frequencygain over subcarriers.In this work, the estimationprocess canbe performedusing the channelestimateor directly from the receivedsignaland thus we cover all possiblecases.By an adequateformulation of the problem, we are able to exploit the time and frequencycorrelationif the channelestimateis used.We show by simulationsthat the EM-basedalgorithmis suitablefor CDMA systemswith largereceive antennaaffays whereasthe IS-basedoffersbetterperformancefor small array sizes. 5.L Introduction The most important challengefor wirelessnetworksis the developmentof robust transceiversthat are ableto transmitat high datarateswith a high bandwidthefflciency.Codedivisionmultiple access(CDMA) systemscan satisfythis requirement.CDMA hasbeen adoptedas the multiple accessschemefor the third generationcellular mobile systems 88 becauseof its flexibility in cell planning,usercapacity,supportfor differentratesandrobustnessto multipath channel.One of the most important motivationsbehind the use of CDMA is to increasethe numberof simultaneoususers(usercapacity)with acceptableerror performance.OFDM basedCDMA systems,alsocalledmulticarrier(MC)-CDMA, is a promisingmultiple accessfor high speedcommunicationsystemdueto robustnessagainst frequencyselectivefading channeland fully usethe availablebandwidth [1-2]. However, theperformanceof thesesystemsis closelylinked to synchronization.In the following, we focus on the CDMA array-receiverwhich hasreceivedmuch interestsequelto the performancepotentialit carries 13,4, 5f. Roughly speaking,the post correlationmodel (PCM) of the despreaddatapresentsthe signalin an interestingway to apply the researchesdone estimatorwas initially in the field of affay processing. A suboptimalRoot-MUSIC-based developedin [6] to recoverthe time delayand later relined in [1] to significantlyreduceits complexity.This paperalso investigatesmultiple time delay estimation,yet in an optimal way in which the ML criterion is adaptedto the PCM. The problem of high-resolutionparametersestimationhasbeenextensivelystudiedin the past.In this context,it is well known that the ML techniquealwaysoutperformsthe other sub-optimalmethodsin the challengingcasesof low signal-to-noiseratio (SNR) values or small numberof availabledatasnapshots.However,a direct implementationof the ML criterion requiresa multi-dimensionalgrid searchwhich is of courseimpractical.Alternamethods(which reducethe problem to one-dimensionalgrid tively, eigen-decomposition search)[7, 8] haveattractedmuch interestdue to their simplicity and their high-resolution capacity.Yet, they aremainly basedon the samplecovariancematrix andrequiretherefore a large numberof datasnapshots.However,as we will seelater,the numberof snapshots in CDMA systemsis equivalentto the number of receiving antennaelements.Thus applying a traditional suboptimaltechniquewould require a very large numberof receiving antennabrancheswhich is also impractical.Consequently,thereis a needto derivean efficient implementationof the Ml-based estimatorthat avoidsthe trivial multidimensional grid searchapproach.To that end,iterativemethodsareusuallyenvisionedto find the ML estimatessincea closed-formsolutionis, in mostcases,deemedintractable.And to properly evaluatethe performanceof theseestimators,we derivein the first part of this paper a closed-formexpressionof the Crambr-Rao lower bound(CRLB). Motivatedby thesefacts,we developin the secondpart of this paperan efficientschemefor the estimationof the delaysbasedon the expectationmaximization(EM) algorithm.While this methodis widely usedin multiple parametersestimation,especiallyfor the estimation of multiple time delay from an incoming waveform[9], it hasnot beenyet adaptedto the contextof CDMA systems.In few words,the EM methodoffers an interestingway to decomposethe observedsignalinto different replicas,eachone coming from one path, and Therefore,the multidimensionaloptimizationtaskis thentreateachcomponentseparately. interestinglytransformedinto multiple one-dimensionaloptimizationproblems,resulting 89 in tremendousnumericaladvantages. Under good initialization, the likelihood function of the estimatedparametersis increasedin eachiteration and hencethe algorithm converges to its global maximum. Alternatively,when a good initialization is not available,we resort to the conceptof importancesampling (IS) to derive, in the third pat of this paper,anothertechniquethat finds the global maximum of the likelihood function, in a non-iterativeway. In our case, the likelihood function dependson the time delay and the channelcovariancematrix. To obtain a function that dependson the unknown delaysonly, the channelcovariancematrix is replacedby its ML estimate(a function of the delaysthemselves).The resulting objective function, called compressedlikelihood function, is then maximized with respect to the unknown time delay. To that end, we use the global maximization theorem introducedin [10] that providesan efficienttool of Iinding the global maximumof multidimensionalfunctions.However,it still requiresthe computationof a multidimensional integralwhich is itself difficult to perform.Yet, this integralcan alwaysbe tackledempirically usingMonte Carlo (MC) methods[11]. Among theseMC methods,the importance samplingtechnique,in particular,has been shownto be a powerful methodthat reduces considerablythe computationalcomplexity.Typically, it was successfullyappliedto the estimationof directionof arrival(DOA) [ 12], thejoint DOA-Dopplerfrequencyestimation [13] and,more recently,to the estimationof the time delay in the contextof a singlepath and linearly-modulated signals[14]. Comparedwith the EM ML estimator,this method doesnot needany initialization and doesnot suffer from any convergenceproblem,yet it is computationallymore intensive.The contributionsof this work coverSC-CDMA and MC-CDMA aswell. In the estimationprocess,we distinguishtwo major cases.In the first one,we estimatethe delay directly from the receivedsignalover the antennaarray.In this case,we provethat time, frequencyand spacedimensionsaremixed togetherto obtainone dimensionwhich is the productof the three.On the otherhand,a channelestimatecan be obtainedprior to time delay estimation[26] then we usethe channelestimateto estimate the delays. This paperis organizedas follows.In sectionII, we briefly introducethe post-correlation model. Then, in sectionIII, The analyticalexpressionof the CRLB is derived.In section IV, we developthe new EM-basedML time delay estimator.In sectionY derivationdeIn sectionVI, we extendthe presented tails of the new IS-basedestimatorare discussed. work to the caseof multi-carrier (MC)-CDMA. SectionVII presentssomesimulationresults that corroborateour findinss and finallv someconcludineremarksare drawn out in sectionVIII. 90 5.2 SystemModel and Background We considera CDMA communicationsystemwherethe receiveris equippedwith M receiving antennaelementsthat capturesignalstravelling through a multipath propagation environmentconsistingof P different paths.The signalsreceivedon the M antennasare uncorrelatedwith the spreadingcode and sampledat the chip rate Q. Denoting the processinggain by L (i.e.,L : T lT" with 7 beingthe symbolduration),the resultingpostcorrelationdataof the spatio-temporalobservationof the nth receivedsymbol is modeled by the following matrix form [6] : Zn: G,TnDT (r)s, * ly',, (s.1) where sn: b,{, is a function of the unknowntransmittedsymbol bn andthe squareroot, is the (M x L)-dimensional post-correlation $,, of the total receivedpower r!2"and-Ay',, noisematrix. The pth column of the matrix D(r) that gathersthe time delay parameters, T1-,72,.. . , Tp,is givenby : d, : lp"(-rr), p.(7" - ro),.. ., p"((L - 1)7" - ro))', (s.2) wherep"(.) is the correlationfunction of the spreadingcode.Gn is the M x P spatial propagationmatrix and T," is a P x P diagonalmatrix representingthe normalizedpower ratiosoverthe differentpaths[i.e.,trace(Tl : t)] [6]. Thesetwo matricescanbe further gatheredin one singlespatial-response matrix Jn (i.e.,Jn: GnT",) andby includingthe scalarterm sn in the matrix2Jn, amore compactform of Zn is givenby : zr:D(r)fi +lr;. (5.3) in (5.3),the original problemcanbe interpretedasthe estimation Using the representation observedon.L antenna of the time delay,involvedin the matrix D(r),from M snapshots branches.Each column of ZI representsan observationvector and the columns of $ are interpretedas the transmittedsignalsfrom P different sources.If we supposethat the delay vectorz remainsconstantover N transmittedsymbols,a compactrepresentationof (5.3)over l/ symbolsis givenby : Z:[ 2T,2T,...,ZK] : D(r)Jr + Ar7, (5.4) : [AIrr,N{,. .. ,lffr]. withJr : lJT, $,..., JK]and.Alr Usually, high resolutionmethods(when applied to time delay estimation)transformthe 2Forthe sakeof simplicity, we keepthe samenotationJn for Jns,. Hence,pleasenotethat the following fbrmulation holds, unlessspecifledotherwise,lbr both data-aided(i.e., s, is a known referencesignal) and transmissions. non-data-aided 9l problem into the frequencydomain in order to obtain a formulation that is similar to the one encountered in frequencyestimationl9l, |71, [18], after which high-resolutionmethods,suchas Root-MUSICcan be appliedto estimatethe delays(asin [6]). Following the samelogic, we perform a column-by-columnfast Fourier transform (FFT) of ZT to obtain: (s.s) Z:D(r)Jr+N, where,A/ is the resulting transformednoise matrix and D(t) dependsonly on the unk- nown delaysand is given by : D(r) : ld(r1), d(rr),. .. , d(rp)1, wherethe columns{d(4)}f:, (s.6) aregivenby : d\Tp):lCg,C1e _i2n(L-t)rp,- _j2nrp L ,...,CL-r€ " l', (s.7) and{c}l:oI arethe FFT coefficientsof the spreadingcodecorrelationfunction. Note that, for CDMA systems,the correlationfunction of a perfect spreadingcode is a Dirac function, and hencethe corresponding FFT coefficientsare constantin this ideal case.This featureholds true as a very good approximationevenwith practical spreadingcodes[1], t6l. Before exposingthe main contributionsof this paper,we mentionthat the following developmentis applicableon the estimateof the channelcoefficientsmatrix. Actually,consideringagainthe formulationin (5.1),Zn canbe written asfollows : Zn: I:lnsn * Nr, (s.8) in which Hn : J"Dr (r) denotesthe overall spatio-temporalpropagationmatrix. Interestingly,the model in (5.8) can be usedto estimatethe channelresponse,II,, rn an eflicient way. One can useany blind channelestimatorto obtain an estimate, fin, of LIn. More detailson this subjectcan be found in [6]. Now, taking into accountthe estimation writtenas : "nor,frnis fr|:D(r)fi+EI, (s.e) where E[. is the correspondingchannelerror matrix. The varianceof the entriesof EI dependsofcourse on the noisevariancein the receivedsignal[15] and it hasbeenstated that the power of En is lower than the power of .A[,, which has the effect of increasing the SNR. Clearly,time delay could be estimatedform the column-by-columnFFT of Ff, in (5.9) as well as from (5.5),with the only differencethat the noisepoweris reducedin (5.9).In the remainof this paper,we considerthe formulationin (5.5)sincean estimateof the channelis not alwaysavailable. 92 5.3 The CramBr-RaoLower Bound Beforewe dealwith the two estimators,we derivein this sectiona closed-formexpression for the CRLB for the problem at hand, which will be used as a benchmark,in addition to the Root-MUSIC algorithm, againstwhich we evaluatethe performanceof the new estimators. In fact,the Cramdr-Raolower Bound (CRLB) is a well known lower boundfor the variance of unbiasedestimatorsof an intendedparameter.Many works have so far dealt with the evaluationof the CRLB for the time delay estimationproblem but, as far as we know, no contributionshavebeenmadeyet in the contextof multipathtime delay estimationin DSCDMA systems.To that end, we assumethat the multipath fading coefficients,gathered in $, are random variableswith unknown covariancematrix fily. Therefore,the vector of unknownparametersinvolved in the estimationprocessis : o : lr, W{-Ry(m,n)}'*.,:r,3{.R;(rn, n)}o*.,:r, otl' (s.10) with z : lrt, r2t. . . , rp)r. In the following, we supposethat the differentcolumns of Z, denoted26 arremutually independentand the columns of A/ are also mutually independentand Gaussiandistributed.Under theseassumptions, the probabilitydensity function (pdf) of Z, parameterized by r andl?"r (the covariancematrix of the columnsof $1, is givenby : I B 1 Z :r, R t):;frfr1 -' tI- (det(2(z),RtD(r)' (MN ""ot-?tr (o1r1aro1ryH + o2Ir.\ rrMN * o2I7 ) ) -t zr\ , ( 5 . 11 ) w h e r e d e t ( .r )e t u r n s t h e d e t e r m i n a n t o f a g i v e n m a t r i x a n d r : l r r , T 2 , . . . , r p ) r . T h e n the log-likelihoodfunction,L(r, Rr) : ln(F(Z;r, Rt)), reducessimplyto : L(r, Rr): - ln (det(2(z) RroH (r) + o2t")) - 't r # MN \-- (') + o'rr)-'zn' F-",(o1r1nrou / 6'12) The entries of the Fisher Information matrix (FIM), denoted here 1. are given by3 : I(m,n): Mtrace , {yor'!3=or'Pz=\ -"' )a(m)-"' )a(n) )' (s.r3) with Rs being the covariancematrix of 26 givenby : Rz : D(r)RrDH (r) + o2r7. 'Note that the CRLB of the joint estimationof all parametersis simply the inverseof the FIM .I. 93 (s.14) However,the derivationof the FIM startingfor (5.13) appearsto be intractable.Alternatively, the CRLB is asymptoticallyequivalentto the error covariancematrix, Cy1(z) : E{(? - ,)(? - ,)'}, of the maximumlikelihoodestimate,as M tendsto infinity [25], which meansthat : Cun(r): (s.1s) CRLB(z)' Recallthat the ML estimatei of r verifiesthe following equation: u9@:0, (5.16) OT where AL(.)lAr is the gradientof I(.) with respectto z. Applying the Taylor series expansionto the left-handsideof (5.16)andkeepingonly the first two termsof this developmentleadsto : } L ( r , P " 1 ) , 0--2 L 1 r . P - t ) , . . - \ n -t t) : g, + d"--=t at(i (5.r7) whereA2L(?, P-r)I 0r2 is a Hessianmatrix.Hence,from (5.17)we obtain: | 02L6(r,,Rr)'l -t 0 L(r, P"1) (s.18) rmrnl lOr")OT where02L6(r, R) l0r2 is a Hessianmatrix whenfr.2 -+ Rz and,6-+ o as M tendsto oo. It follows that : a) 0L(r.Rt)'}) _ l02roc.Rt)l-' (.fT tr (]^", vML-t [r,r,(,,.,,1-lr.,n, {aw. or or ar, J a", J \;::"1I)l The analyticalexpressions of thegradient0L(r, P"r)I Er andthematrix02Lo(r, P'1)I 0r2 (derivedin [25]) leadsto the following analyticalexpressionfor the CRLB of time delay estimates: cRLB(r): n2 | r . nl (u" ;N ' LI \ -)l-t [1- il] u) x (n1nH1r1n;'ot")nr)' | | ,6.201 /_l where* standsfor the element-wiseproduct,fI is an orthogonalprojectormatrix defined asfI : D(t) (OH 1r1o1t))-t o' (r) andthematrixU is definedasfollows: U:lur, ui: ? . 1 2 , . . u. ,p ] , 0d(ra) ----;-. OT; 94 (s.2r) (s.22) 5.4 ExpectationMaximizationAlgorithm The EM algorithm is a computationalmodest method to find the maximum likelihood estimatewhen a closed-formsolutionof this one is intractable.Rewritethe loe-likelihood function in (5.12) in a more compactform as follow : L(r, F-r): - ln (det(R2)) - trace {n2'fr"} , 6.23) whereR"b"ingan estimateof R2 computedfrom the columnsof Z asfollows : 't I;L g : MN r (s.24) f-zzH u) . Z i Z i ^ ^tt\ Note herethat the log-likelihoodfunction,L(r,l?;r), dependson the delaysvectorr of interestand the covariancematrix -R7. Hencethe problem can be formulatedas follows : maximizeL(r, R) with respectto r andRr. We alsomentionthat while o2 is usually unknown,it canbe easilyestimatedeitherby averagingtheL - M smallesteigen-values of Rz or simply by exploiting the estimatedpower carriedout in a previousstageof the receiver[6]. Unfortunately,the aboveexpressionof the likelihood function cannot lead to a closedform solutionfor its maxima.Thus,we resortas a first option to a well-knowniterative algorithm, namely the EM algorithm [16], to resolvethis problem numerically.The purposeis to decomposethe observation,{Zu}Yl then estimatethe into P complete-data, delays separatelyfrom each complete-data.This is equivalentto performing P parallel the commaximizationsovera one-dimensional space.This methodreducesconsiderably putationalcomplexity comparedto the brute grid searchsolution. For this purpose,we deflnethe setof completedataas : . t n ) ( i ): J r ( i , , p ) d ( r r + ) n@(i), p : 7, 2,..., P, i : 7, 2,..., MN. (5.25) snapshotfrom wherez(d (i) canbe seenas the receivedsignalon the i'h spatio-temporal thepth path.From (5.25),the covarian o, .(d (i), n {ztol (i)z@ ('i)H} is givenby : "" R"{o): e}d'(ro)d(rr)u * i, ", (s.26) with {e2"}l:, beingthe diagonalelementsof Rr andn1(k) is an arbitrarydecomposition of the estimationerror(i.e.,No : D;:rn@ OD.From (5.25),any column,2i, of 26 can be written as a function of the completedataas follows : D Z ;- : \i: tnl z.r z'''lll. ) .Ll p:L 95 (5.27) Now, we arein a positionto describethe Expectation-step(Z-step) andthe Maximizationstep(,4,I-step) of the EM algorithm.The E-stepconsistsin findingthe conditionalexpectationsof the samplecovariancematrices{fr"rr}f:, of the completedatadefinedas : fr'^r:# Given Rf-'l (s.28) np6r{c-r} (thepreviousestimatesof Rr andr at iteration(q - 1) andfr.2, the expectationof R"rnl canbe computedfrom the classicalformulas of the conditional expectationwith Gaussiandistributedrandomvectorsto yield : u {fi^r;fr";rr9-'}' fiL1L: '{c-r}} : nLnl, Rt;!, ("9,)-' R" ("9t)-' ^L'J,*t"II,("9,)-' *l?],,6.2s) where the matricet Rgj are computedat each iteration from the estimates,jn-t]} unO ,z{o-t} computedin the previous iteration. Now, turning to the estimationof Rl), the procedureis differentfrom the one usedin previousEM algorithmsin [9] and [19] to estimatethe covariancematrix. In fact, in [9] and [19], the covariancematrix of the received signal is simply diagonal,which is not the casein our work. Therefore,we resortto another approachto estimatethe covariancematrix Rl). first. supposetnatRtj is a Toeplitz matrixa (caseof stationaryprocesses).We adoptthe methodproposedin l2ll @riefly detailed next) to the estimationof Toeplitz covariancemaftices,which is also basedon the EM algorithm making it well suitedto our algorithm. Then, we define the l/" x l/" circulant extendedversionof Rs, denotedas -R". The matrix fi|" representsthe covariance matrix of the extendedvectors {Zr}Y{, where Zi consistsof the vector Za augmented bV (N" - l)-dimensional null vectors.The covariancematrix .R" is characterizedby its eigenvaluesas follows : -R" : FH RsF, (s.30) where lf is the standardAL x l/" discreteFourier transform (DFT) matrix and -R6 is a diagonalmatrix constructedfrom the eigenvaluesof .R". The DFT transformof 26 results in the rotatedvectorsCt : FZn foli : 7, 2,. . . , M N. Denotingby fr" the estimateof -R6rusing{Cn}{:, (i.e.,-0" : lllvl N Dyi CoCf), theexpectation of -R6rconditioned on R7 andRz applyingthe sameformula usedto find (5.29) is given by : E(AdRz,R) : n"" (R"'fi-" IRZ')' - R"') Rzc + Rc. (s.31) whereRss is the cross-covariance of C; and Z;. Noting thatZ; : F'C* with F : FII L OITand 0 is the (.L x ,n/"- I) null matrix, the cross-covariance matrix R2s is equaT aThis assumptionimplies that the covariancebetweenZ^ and Zn dependsonly on the differencebetweenm and n, correspondingthereforeto stationaryprocesses. 96 I rc RcF. Thenthe estimateof Rs at iterationq is givenby : - @y-rjI ') F"nf-'r + R\-,tlS.:zl Rgj :oiag(n$-'\ r (tng-tj) LAz(Rr;-,t)-, and,R2 is obtainedusing the transformationZa : FH Cuas follows : Rt;j : r" ngt, (s.33) Finally,it hasbeenshownin [21] that the stablepoint of (5.33)is equalto the maximum likelihoodestimateof Rs,. During the M-step of the EM algorithm,we aim to maximize the log-likelihood function of the complete-data with respectto the parameters of interest{ro},!:r.It is the sameobjective function given in (5.I2), with the true expectationof the completedatareplacedby theconditionalexpectationof ,tn (l; in otherwordsfi|s substituted by R"ws arnd R."by fr.tt . Thus we obtain the log-likelihood function of the complete-data,Lr(r, R,ro>),as follows : - trace Lo(ro,R.<o)): - ln (det(,R,1";)) {e'":},^;e,} (s.34) j Then,at iterationq, theestimaterlq andR,61are thosewhichjointly maximize Lo(re,R"rot). Usingthe eigen-decompositions of R"{d, the log-likelihoodfunctionof the complete-data canbe expressed as : L , ( r o , R " , o: , ) - m ( 1 7 + * ) - U r - 1 ) l n( + \ r/ \. \r/ ( P /^r-r\ P\ -;)a@)'RL']'a(d3t'""' (s3s) (€j1]') (4*g r which emphasizesthe dependenceof Lr(ro, R"r,t) on r, and e2r.fne closed-form expression of its maximum with respectto el, for a given to{n}.i, , : a1r{u}1H ,"o{n} frL1,1,a6'}) + (s.36) Now, injectingthis expressionin (5.35)yields the following one-dimensional maximization problem : :arsm€x-m rj."} fr!n!,a1,l\ {a1ro;" fiafr,l'frln},a1ro), 6.37) or simply the problemof maximizingd,(r)H R{oJ,d(rr). This follows immediatelyfrom the fact that the functionf (r) : - ln(r) t P f o2r is monotonic. So far, the ML estimatehas been found in an iterativeway. However,this methodneeds an initial guessof the parametersfrom which the algorithm startsoperating.Alternatively, to avoidall initializationhurdlesandissues,we developin the next sectiona non-iterative algorithmto find the ML estimateswithout grid searchbasedon importancesampling. sNoting that the matix e2rd(r)d(tr)H is of rank one with -L - 1 null eivenvaluesand one equal to ef , the eigen-decomposition of R"1o1can be easily done. 5.5 The Importance Sampling Technique Similar to the abovealgorithm,we startfrom the expressionof the log-likelihood function in (5.12).A directmaximizationof this functionimposesjoint maximizationover r and .R.7'.Therefore,it will be of interestto formulate an objectivefunction that dependson the time delayonly.To that end,we first maximizethelikelihoodfunctionwith respectto the nuisanceparameters.R;. For this purpose,it can be shownthat the value of Rr that maximizesL(r, P-t) for a fixedvectorr is : Ay' : (oH1r1o1'))-'oHt)fr.2o(r) (DH(r)o(r))-' - o' (oH1r1o1'))-'. (s.38) Then,injectingRy" i" (5.12)yieldsthe so-calledcompressed likelihoodfunctionof the system: L.(') : \rru"" ("e") - m (a"t(nfr,n + o21rr-il))) , in (5.20),is definedas fI : D(r) (DH (r)D(r)) wherefI, introduced (s.3e) 2H(z). Now, the maximumlikelihood estimatesof the time delay areobtainedby maximizing the obtained compressedlikelihood function (again,the most obviousoptimizationtechniquethat naturally comesto mind is to perform a P-dimensionalgrid search,whose complexity increaseswith the numberof delays)L"(r) with respecttor.In this section,as an alternativeto the iterativemethodalreadypresentedin section5.4, we implementherethe ML criterion in a non-iterativeway. We resort to the global maximizationtheoremof Pincus [10] in order to find the global maximumof the multi-dimensionalfunction at hand.In fact, accordingto [10], the globalmaximumof L"(r) with respectto r is givenby : ?-: 'P IL^'oexPr{qLJ')}dr Irexp{pL.(r)} dr lim [t^ ;';; [, (s.40) with J : [0,7] beingthe intervalin which the unknowndelaysare supposedto be confined.Clearly.asp tendsto infinity.thefractionL"+X*# becomesa multidimenJJ... JJexplptJclT)jl sionalDirac function,centeredat the global maximumof L.(.). Therefore,if we define Ii.,(.) as : thepseudo-pdf L'"o(r) : exp{pL"(r)} I, I r exp{pL.(r)} dr' (s.41) theML estimateof {ro}!:r, obtainedby applying(5.40),canbe reformulatedas : tt J, 'i:1, 2, ..., P, Jr'oL'''oQ)dr' (s.42) later).The funcwhereps is a sufficientlylargenumber(whoseoptimalvalueis discussed tion L'",.o(.)is calledpseudo-pdfsinceit hasall the propertiesof a pdf, althoughr is not 98 truly a randomvariable.We note from (5.42)that the ML estimaterequiresthe evaluation of the multi-dimensionalintegral,which is usually diflicult to perform in practice.However, exploitingthe fact that L'",r.(.) is a pseudo-pdf,the involvedintegralcan be simply interpretedas the mean value of ro, when the hole vector r is distributedaccordingto L'",ro(.).Therefore, one caneasilyevaluatethis mean- andhencethe integralsin (5.42) - in orderto obtain? : lit, ?2,. . . , 7")' usingMonte Carlotechniques[11] : p 1+ E - " )-,'r"' (s.43) k:r where {"r}*:, areR realizationsof r, with z being distributedaccordingto L'",.o(.). But anotherproblemariseshere: how to jointly generate{ro$:, for a multidimensional likelihood randomvariable.Actually.L'",ro(.)is constructedusingthe actualcompressed functionin (5.39),which is a multi-dimensionalfunction; makingthe generationof the vector r a very difficult task if not impossible.Therefore,it is of interestto find another pseudo-pdfto generatetherealizationsinsteadof usingL'r,ro(.).To do so,we resortto the conceptof IS as detailedbelow. First, we mentionthat IS is a powerful Monte Carlo techniquel23l which allows generatrngrealizationsusing anotherdistributionthat is simplerthan the actualone.Throughthe IS technique,the generatedsamplesare weightedand averagedin a judicious mannerto obtainthe desiredestimates.This efficientweighting operationimprovesconsiderablythe performanceachievedby the IS methodcomparedto other Monte Carlo techniques.The IS approachis basedon the following simple observation: I, . l,rr"lffis'(r)d,r, (s.44) I l,f {,)r'.,,o?)d,,: where g'(.) is anotherpseudo-pdfcalled normalizedimportancefunction (IF), whose choiceis discussedlater and /(.) is any given parametertransformation. Now, the prowith respectto the blem is recastas the computationof the expectationof f ft)ffi distributiong'(.) ; which is simply performedvia Monte Carlo methodsas follows : * : r?,)L+#, I, l;t)+#s'e)rtr= (s.4s) in which the realizations{26}[1 arenow generatedaccordingto g'(.). Yet, a greatattention shouldbe given to the choiceof g'( ). In fact, the accuracyof this methoddepends on the similarityof the shapesof L'",00(.)and S'(.).In the bestcases,the global maxima of L'.,ro(.) andg'(.) are the same.Still L',,,.o(.)is a complicatedfunction of r andg'(.) must be as simpleaspossibleto easilygeneratethe requiredrealizations.Therefore,some trade-offsmust be found in the constructionof the importancefunction. Moreover,an appropriatechoice of g'(.) reducesthe number R of realizationssincethe generatedvalues 99 will appearas if they were generatedaccordingto the original pseudo-pdfL!,ro(.) when g'(.) is faithful to L'",ro(.).Next, we discussthe appropriatechoiceof g'(.). First, as an alternativeto the actualmultidimensionalcompressedlikelihood function, the importancefunction should be a separablefunction in the different delays, {ro}l:r, to reducethe generationof a P-dimensionalrandomvectorto the generationof P scalarrandom variables.We thereforesimplify the expressionof the compressedlikelihood function L"(.) to lind g'(.). Indeed,it is seenfrom (5.39) that L"(.) involvesthe sum of two independentterms.Thesetwo termscan be written as functionsof the eigenvaluesot[Ifr.zft as follows : \t-e [^") (3) P :f rn i.:L I Llno2, (s.46) and 7 r r 1 /-= : -trace lrJBzfll ;trace (IJP.z) ,/ \ \ where)r, )2, . . . , )p arethe eigenvalues of fIRzfI. . =, _$)o ./ -o,oo (s.47) ". Clearly,the term Lf:r) is doml- in (5.39)we droptheterm LIno2, "*requently, independent on the delays.in In(det (nfi."tl+ o2(1"and it is reasonable ne"r) glectthetermh (det(nR zn + 02(r L with respectto jtrace ("A"). Moreo"))) ver,onecanapproximare rhematrixoH (r)o(r) by thediagonalmatrix (rl.t l",l') t" to avoid the computationof the inverseinvolved in fI. This approximationis well justifled sincethe off-diagonaltermsof thematrix DH (r)D(r) arenegligiblecomparedto its diagonalelements(seethe Appendix for further details).Using this assumption,the term by : ;ltrace (nfr"\- / is approximated nantcomparedto theterm Df:rtn (3) o' \ L,rru""(nfrr) \ / ", lLi:o'lr,l,) t u",(o'1r7fi."o1r7) . \ (s.48) Lastly, consideringall theseobservations,an approximationof the actualcompressedlitermsdiscarded,is givenby : kelihoodfunction,21.;, witn unnecessary TlrS: \rrur" (o1r1o"@fr.") .tMNP \MNo2 L k:l \L p:I j%r(t - 7)ro *",,"*o{ \ "w,nl P : \ - . 1- ,1 r o ) , ,) (s.4e) P:I 100 where -i2n(t-r)r} "rr,rl, *"-,""0 { MN I(r): \- ./--r MNo2 (s.50) can be evaluatedusing the Fast Fourier Transform (FFT). Hence, the normalizedIF is selectedasfollows : flf:' ""n {prl(r)} g'rr(r) : (.Le*p{ pr l( r ) } dr ) "' (s.s 1) which is the product of P elementaryfunctions,each of which dependingon the delay of a given single path. Here, we succeedin making the different delays separableand distributedaccordingto the samepdf p(.) givenby : y\t)- exp {p11(r)} I t e x p{ p 1 I( r ) } d r ' (s.s2) Hence,thejoint pdf of the delaysin g'rr(.) is sptit into the productof P individualpdfs, which transposesthe problem of generatinga P-dimensionalrandom variableto the generation of P one-dimensionalrandom variablesaccordingto a simpler common distribution.Moreover,the constantterm p1 in (5.51)and (5.52)is differentfrom p6 sinceit is more advantageous to use two different valuesas explainedlater. We mention here that the estimationperformancedependson thesetwo parameters.Actually, the pdf p(.) in (5.52) exhibits P lobes centeredat the location of the true time delay.But the estimation enor tn makesother undesiredlobes appearwhich in turn biasesthe generatedvalues not faithful (spuriousvalues)to the true delays.For this reason,p1 is increasedto make the pdf p(.) more peakedaroundthe actualdelays{"r}F:, so that the undesiredlobes disappear.However,very large valuesof p1 may also destroysomeuseful lobes and hence their correspondingdelays will not be generated.Therefore,the optimal value of p1 is the highestone for which the pdf p(.) still exhibitsat leastP main lobes.Moreover,one shouldkeepin mind that the normalizedIF in (5.51)is built upon an approximationof the actualcompressedlikelihood function, which we aim to maximize. Consequently,a bias will always appearin the mean of the valuesgeneratedaccordingto the normalizedIF. Fortunately,this biasis alleviatedby the weightingfactorLL,or(.)I g'(.) introducedby the conceptof IS. Therefore,we maximize the contributionof the compressedlikelihood in the weighting factor ratherthan its approximationby making p6 higher thanp1. Thus, an appropriatechoiceof thesetwo parametersreducesthe number,fi, of requiredrealizations and ultimately the computationalcomplexity. To summarize,thenew IS-basedML estimatoris givenby : : ,r: R t1 \- r^^r rl -r,po(T*) ' E L"k\p) g,eJr i 101 (s.s3) wherez6(p) is thepth elementof the vectorza. We alsomentionthat in practicethe delays are confinedin the interval 10,LT.l [6]. This allows us to further use the circular mean insteadof the linear mean givenby (5.53),as detailedbelow. In few words, to definethe conceptof the circular mean,considera random variable X taking valuesin [0, 1] accordingto a given distributionG(.). The circularmeanof X is givenby [24] : E"{x}: }z lo'","*'Gt)dr, (s.s4) wherethe operatorl(.) returnsthe argumentof any complexnumber.Then, if we havea set of R realizatio,nS, /1, . . ., r R, drawnaccordingto the pdf G(.), the circularmeanin (5.54)is computedas : 11 E-{ " ' t XI " ) : R i-lj-f 2^- R.L k:1 "r2r'rt. (5.ss) Adopting the conceptof circular meanin our problem, an alternativeformulation of the estimatein (5.53)is givenby : ?o:*t+* Ftr).*o{*#\, (5.56) where the delaysare transposedto the interval [0, 1] after being normalizedby LT. and F'(.) is the weightingfactordefinedas : (5.57) Note that the estimatorin (5.56)relies on finding the anglesof a complexnumber.Therefore, we no longerneedto computethe two positivereal normalizationfactorsI, I, exp{pL.(r)} and (f exp{p1I (r)} ar)P sincethey canbe droppedwithout ultimatelyaffectingthe final result.Moreover,during the computationof the weighting factorF(.), the exponential terms in the numeratorand the denominatorof F (.) may result in an overflow.To avoid this overflow,we substituteF'(.) bV F'(.) givenby : - ,,*I?x(p))-,?,?l(0,r.?,)- ,,f.Lf',tr))) F'('r)- exp }t.tt, {o,rJ,n by multiplying F(.) by a positive number.In such a way, the exponentialargumentin (5.58)no longerexceedszero,alleviatingtherebyany computationdifficulty. Summary of steps In the following, we summarizethe entire stepsof the new IS-basedML time delay estimator. 102 dr 1. From the samplesmatrix, Z, computethe periodogram1(.) expressed in (5.50)at discretepoints of the interval 10,LT.]. Then evaluatethe elementarypdf asfollows : exp(p11(1)) It\tzl - Df:rexp(p1l (r1,))' where we substitutethe integral in the denominatorby a summationover all the discretepoints in the integrationinterval. 2. Generateonerealizationof the vectorr accordingto the pseudo-pdfg'pr(.).Tosimplify, we exploit thefact that the delaysareseparableing'or(.)andwe generateP realizations{rr(p)}'o=, accordingto p(.) usingthe inverseprobabilityintegration[20]. It is importantto makesurethat the P generatedentriesr*(7), Tk(2),. . . , rn(P) (in order to obtain one vectorrealization)are different.This condition is necessary sincethe delaysof the pathsarein practicedifferenttherebyensuringthat the matrix inverse(DH G)D(r))-t in L"(.) alwaysexists. 3 . Repeatstep 2) R - I times then evaluatethe weighting factors F'(tl) for i, : 1,..., R. 4. Find the maximum likelihood estimate of the delavs usins the circular mean tn (5.56). 5.6 ExtensionTo MC-CDMA Svstems In MC-CDMA transmitter,the original data are spreadover different subcarriersusing a spreadingcode. Therefore,it is possibleto transmit severalDS-CDMA waveformsin parallel.At time indexn, the inputinformationis first convertedinto l/" : 2K 11 parallel sequencesand modulatedat rate 7lTuc, whereTuc : l/"7 is the symbol durationafter seriaVparallelconversion.Each of the parallel streamis then spreadedwith a spreading code at rute Lf T" and modulatedby the inversediscreteFouriertransform(IDFT). At thereceiver,a reformulationof thepost-correlationmodelfor MC-CDMA of the spatiotemporalobservationfor the kth subcarrierand thenth observationis givenby 126l: Zk,n: s1,,nJp,nD[(z) + l/r,,, (5.60) wheres7r,,and Jp,n arethe signalcomponentand the spatialresponsematrix onthe kth subcarrier, respectively. Thecolumnof thetimeresponse matrixDn(r) : [dr,r, dn,z,. .. , dr,p] are given by : dk,p: "-iark\ffi|p"?ro), p.(T"lk" - ro)ei2"k&,..., p"((Lk" - I)T"Ik" - ro)"j'"*x#!1t, (s.61) 103 where) determinesthe frequencyspacingbetweentwo adjacentsubcarriero(f n : ^k ITMC) andk" is the oversamplingratio [26]. Note herethat thepropagationtime-delaysaresupposedto be the samefor all subcarriers.Unlike the single-carriercase,the receivedsamples Zp,n ca;rrrrot be directly used as an input to the algorithms.Therefore,we introducethe intermediatetransformationof the samplesmatrix, denotedZf,.,, givenby : ZE,n:Zn,* (" tTo) : sk,nJk,,D{ (r) + N;,*, whereLM : [1,...,l]t anda : Dft(r) is: fr, e-i2"+ ,. . . , "-i2"\#E!]". (5.62) The prh columnof dtk,o:d1r,ox a' - p.(T"lk"- ,r), "-tznk\# lp.?ro), , p.((Lk"- t)T.lk"- r)lr.6.AZ7 Hencewe eliminatein Dft(r) the dependence row-wiseof thephaseslopeof eachcolumn vectoron k in the spectraldomain.While the formulationin (5.62)seemsto be adaptedfor the estimationprocess,the phaseshifte-i2"k^ffi oneachcolumnof Dft(r) set against the direct use of the formulation in (5.62). To overcomethis problem, we note that the matrix Dfr(r) canbe writtenas Df(r) : AnD(r) where,46 is a diagonalmatrix which Then we insert the phaseshift in the spatial{"-i'^u^#\::, responsematrix Jp,,to obtaina formulationsimilarto the one in (5.3).Finally,to exploit diagonalelements*" the frequencygain, we gatherthe transformedobservationover the different subcarrier into the following compactrepresentation : z::lziT, z;,7",., 2fl,,1 : D(r)Jf; + N{ , (5.64) [Ar4r, ArJTr,..., A9.JK.,,,] and N{ : [.Aff;, Nfl,... , l/,(f,,,]. The interestingthing with the formulation in (5.64) is that it increasesthe numberof observationsproportionallyto the numberof subcarrierusedin the system.ConsideringN whereJf,' : transmittedsymbols,we formulate a compactrepresentationsimilar to (5.4) by concatenatingthe ,A/observedsymbols: Z : : lzi,2i,..., Z.*l D(r)J{ + l,r"?, (s.6s) 6When.\ is equal to 1, the transiverbelongsto the classof multitone (MT)-CDMA, and if it is equal to I, the transiverbelongsto the family of MC-DS-CDMA. ro4 whereJ"r : lJf',..., Jff)and 1y'"7: [lIr"t,. . ., .Af,ifl]. Comparedto a schemathat estimatesthe delaysover eachsubcarrierseparately,the proposedmodelpresentsbetterperformance.In addition,we are ableto derivethe corresponding CRLB following the samestepsaspresentedin SectionII. This revealsthat the CRLB hasa similar expressionas in (5.20)by multiplyingby a factorof lf N..If we denoteby CRLBo the CRLB when M : .Ay': N" : 1, the resulting CRLB for the MC-CDMA is givenby : : CRLB ffirRLBo (s.66) As a consequence, the time delay estimationmergesspace,time and frequency. To obtain an expressionof the CRLB by using the channelcoefficientsmatrix to estimate the delays,somemodilicationsto the model areneededand developedin Appendix III. In this case,we seethat the resultingCRLB dependson both time andfrequencycorrelation. 5.7 Simulation Results In this section,we comparethe performanceof the two proposedmaximumlikelihood estimatorsagainstthe popularRoot-MUSIC algorithmand the CRLB. In all the simulations, we considera multipath propagationenvironmentwith 3 propagationspaths and we simulatea challenging of closely-spaced scenario delaysequalto 0.L27,0.15?and0.187. The meansquareerror (MSE) - usedasperformancemeasure- of the threeestimators is comparedto the CRLB. First, recall that the EM algorithm is iterativein nature; hence initialization is a critical issue.Therefore,the initial valuesfor this estimatorare selected as random variables,centeredat the real time delay and with a varianceof 0.057. The processinggain is fixed at L : 64 and the optimal valuesof the parametersp6 and pl for the IS-basedtechniqueareequalto 20 and 10,respectively.We alsoassumethat the power is equallydistributedbetweenthe threepathson average. First, we considera singlecarriertransceiverwith lll : 4 antennabranchesat the receiver and one receivedsamples(N : 1) and we comparethe MSE of the two proposedML algorithmsto thoseof the Root-MUSICin Fig. 5.1.We alsoplot theperformance of theEM ML whentheinitial valueshavea varianceof 0.187 reflectinglessaccurateinitializations. Clearly,both the IS-basedand the EM algorithms,for good initializations,outperformthe Root-MUSIC techniqueover a large range of the SNR. While the two ML algorithms presentalmostthe sameperformance, it is suggested in practiceto use,in this configuration, the EM ML approachsinceit offers lesscomputationalcomplexity comparedto the IS-basedalgorithm.Indeed,the EM ML estimatorhasthe advantageof performing P parallel maximizations.Therefore,asthe numberof pathsP increases,thereis no additional noticeablecomputationaltime cost. On the other side, IS-basedalgorithm can guarantee robustnessto the initial estimates,contrarily to the EM ML. r05 MSE ofthe 2nd path MSE ofthe lst Dath 5101520 d, [dB] MSE ofthe 3rd path mean MSE ofthe thrce paths 51015 ", [dB] FtcuRB 5.1 - Estimationperfonnanceof the IS-based,the EM-basedand the RootMUSIC algorithmsfor closely-separated delays,M : 4. So far, all the methodsexhibit good performance,with remarkableimprovementsfor the two new ML estimators.However,a quick study of the EM algorithm and the RootMUSIC revealsthat they arebasedon an estimateof the covariancematrix of the received signal from the columns of the matrix Z, and the accuracyof this estimatedependson the number of antennas(which plays the role of the number of samples).Therefore,we simulatethe performanceof all thesealgorithmsconsideringonly one receiving antenna elementand keep the other simulationconditionsthe sameas in Fig. 5.1. The results are shown in Fig. 5.2. ClearIy,Root-MUSIC estimatoris very sensitiveto the number of receiving antennabranches.Its performancedegradesconsiderablycomparedto the previouscase.It fails completelyin estimatingthe delayswhich, indeed,is dueto the poor estimateof Rs. On the other hand,the EM and the IS-basedalgorithmsareless affected, in this challengingscenario.They still providegoodestimatesregardlessof thechallenging Fig. 5.2 actuallysuggests that the ISoperatingconditionsbasedon shortdatasnapshots. basedalgorithmis evenmorerobustthanthe EM ML estimatorin this configuration. To further investigatethis issue,we fix the SNR value at 10 dB and vary the number of antennabranchesM from 1 to 8 with N : 1. The MSE of the three algorithmsversus M is plotted in Fig. 5.3. As expected,the IS-basedmethodsattainthe CRLB starting from a small value of ,44contrarily to the Root-MUSIC algorithm and the EM ML. This meansthat the IS-basedestimatoris well gearedtowardsituationsof reducedantennaarray t06 MSE ofthe 2nd path MSE ofthc lst path I [dB] mean MSE ofthe three paths MSE of the 3rd path 10 1o 5101520 r [dB] 10 -10 0 r 10 [dBj FIcURB 5.2 - Estimationperforrnanceof the IS-based,the EM-basedand the RootMUSIC for closely-separated delays,AI - 7. sizes.On the otherhand,we plot in Fig. 5.4 the MSE versusN, consideringone antenna branchesin the receiver.Note herethat to seethe effect of the time channelvariation,we usethe channelestimatematrix insteadof the receivedsignalto estimatethe delays.More details about the formulation used in the estimationprocessare presentedin Appendix 2. Clearly, the performanceof the three estimatorsis the same starting from N : 5. But it is not suitableto increaseN sincethe valuesof the delaysmay changefrom one symbol to another.Usually, a tracking technique(as the one developedin [26]) is used to continue estimatingthe delays that is why we prefer to use small number of N in the estimation.In the region of small numbersof snapshots(l/ is less than 5), the MLbasedmethodsperform betterthan the RooTMUSIC algorithmand the gapbetweenthese methodsincreases as N decreases. To evaluatethe impact of the frequencygain in the multicarrier systems,we plot in Fig. 5.5 the MSE versusthe numberof subcarriersl/". We fix A'I at I and ,A/at 1 to better illustratethe influenceof the numberof subcarriersN" on the estimationperformance.As Iy'" increases,the estimationperformanceimprovesto saturatefor high value of -n/".This salutationcan be explainedby the increaseof inter-carrierinterferencewith ,|y'",due to the loss of orthogonalitybetweensubcarrierin a multipath environment.We shouldalso mentionthe similaritybetweenFig. 5.3 - Fig. 5.5 which proovethat the threedimensions time, spaceand frequencyhave the sameimpact on the estimationperformanceof the algorithms.This conclusionis further verifiedby the expressionof the CRLB in (5.66) r07 1456 Number of antcnnr branches FrcuRs5.3 - MSE vs. number of antennabranchesM for ly' : subcarrier, andSNR: 1 0d B . 1 symbol, K : 7 4567 Numbcr ofrcceived sampl€s N Ftcunr 5.4 - MSE vs. numberof receivedsymbolsl/ for M : 7 antennabranch,K : 7 subcarrier,andSNR: 10 dB. which is inverselyproportionalto the numberof receivingantenna,the numberof symbols andthe numberof subcarriers. 5.8 Conclusion In this paper,we developedtwo implementationsof the ML criterion for the estimation of time delay both SC and MC air interfacein multipath environment.We distinguishtwo estimationsprocess: eitherusingdirectly the receivedsignalor usingthe channelestimate matrix. In the first option we showanalytically,throughthe CRLB, andby simulationsthat 108 FtcuRB 5.5 - MSE vs. numberof subcarrierwith M : 7 andN : 1. the three dimensions: time, frequencyand spacehave the sameeffect of the estimation performance.Whereasbasingon the channelestimatematrix, we exploit the time andfrequencycorrelation.While the two proposedmethodsare an implementationof the same criterion,eachone hasits attractiveadvantages. We alsoderiveda closed-formexpression for the corresponding CRLB in the contextof DS-CDMA. The first estimatorrelies on the iterativeEM algorithm with a moderatecomputationcost comparedto the grid search techniquesinceit transformsthe problem of a multidimensionalsearchinto parallel easy searchesover one-dimensionalspaces.Comparedto other eigen-basedmethodssuch as the Root-MUSIC, the EM approachexhibits better performancewith a relatively good initialization, which is an importantissuefor this algorithm that affectsits estimationperformance. The other algorithmis basedon an entirely different approach.It relies on a global maximizationtheoremandthe conceptof importancesamplingto directly find the global maximum. The IS-basedapproachalsoavoidsthe multidimensionalgrid searchby approximating the actual compressedlikelihood function; splitting it thereby into separableonedimensionalfunctionsof the delays.It doesnot requireany initialization andhenceit does not sufferfrom performancedegradation.Its performanceis almostequalto that of the EM algorithm(whichrequiresgoodinitialization),but at the expenseof anincreasein the computationalburden.Moreover,only the IS-basedalgorithmproducesaccurateestimatesfor a small numberof receivingantennabranches.The performanceof the EM approachalso degradesconsiderablyin the specificcaseof single antenna(SISO conflguration)where the Root-MUSIC algorithmfails completelyto estimatethe delays. 109 Appendix1 OH(r)O(r) = >i:i theapproximation Justificationof The diagonalandoff-diagonalelementsof OH (r)D(z) lr,l'Io arerespectivelygivenby : L-l l " , l t *, : t , 2 , . . . ,P , | o H1 r ) o 1 r ) l * ; ^ :t (s.67) t:0 L-l r IDH(r)D(r)l*,n: t TL, 2tr r') lctl-exp m-l (r vm )) L {, 2.. Tn P TN IT n. (5.68) While it is easyto verify that : (s.6e) IDH(r)D(r)],n,, < loH (r)o(r))*,,*, for nt f n, the inequality in (5.69) does not guaranteethat the diagonal elementsare indeeddominantcomparedto the off-diagonalelements.To that end,we defineF(.) the ratiobetween(5.68)and (5.69)asfollows : E'(A- L \4tm'nJ \ -- exp{*ry'-} DL-o'lcll2 D,":] l",l' 1 (s.70) where Lr,n;n - rrn - rn is consideredas a random variable uniformly distributed in l-LT", LT.l.We plot in Fig. 5.6 the probabilityof havingF(A,r^,,) ) r for r e [0, 1] and we verify that the diagonalelementsof OH (r)O(r) are dominant,with very high probability,comparedto its off-diagonalelements.This justifies the following approximation: L_L oH(r)o(r) = I lr,l'ro. (s.71) t:0 Appendix 2 Model used to estimate from the channel coefficientsmatrix The developmentpresentedin the main body of the article is basedon the observation matrix Z. In this case,the columnsof Z are uncorrelatedbecauseof the presenceof 110 ts n0 F f: <0 -5 90 ao 0.1 0.3 0_5 T o.7 0.8 FrcunB 5.6 - Complementary cumulativedistributionfunctionof the ratioF(Lr^,,). uncorrelatedtransmittedsymbols.But if we went to use the channelcoefficientsmatrix fi : lfrT, fr[,. . . , frT,], thesesymbolsare no longerpresentsand the columnsof ff ur" correlated.So we introducea smallmodificationon the formulationto remainthe two algorithmsvalid. This problem can be solvedif viewed in the proper way. First, we performa column-by-column FFT of {ff"}I:rto f(., : obtain: D(r)$+t, : D (t)l g"( r ) , g"( 2) ,.. ., g"( A' [)+] e*, (s.72) where the matrix t,, is the resulting noise and g,(i) is the 'ith column of $ . From the formulationin (5.72),we bring togetherall the channelcoefficientin onematrix fi. defined, AS: (s.73) g(2),.. ., g(M)l+ t, fu : D,noaorlg!), in whichS(i) : l7r(,)', gr(i)',. . . , gN(i)rlT andDnod,if: IxED,where theoperator I standsfor the Kroneckerproduct.If we considerthat the signalis transmittedthrougha Rayleighchanneland we denotethe maximum Doppler frequencyby f n, the covariance matrixof 9(f ) is givenby : Rs: ( Jo(0) Js(21r(N- t)/"7)\ : : I \.r6(2n(N - t)f oT) /o(0) I a E, (s.74) ) Taking into account(5.73) and(5.74), the implementationof the two algorithmsusing the channelinformationmatrix is straishtforward. t11 Appendix 3 CRLB for MC-CDMA using the channel coefficientsmatrix We use a similar developmentsas presentedin Appendix II, with the differencethat here we deal with time and frequencycorrelation.We defineiL"r,, u, the columnby column FFT of the channelresponsematrix fr;, fot thekth subcarrierandnth observationwhich is givenby : fu'rn : o(r)Jflt €n,n : D ( t ) l g r , " ( I ) , g k , , ( 2 ) , . . , g k , , ( M ) l+ 8 r , " , (s.75) wheregn,"(i) is the i'h column of Jffi. Then we gatherthe channelcoefficientsin the matrix fL' givenby: iL":DWG),oe),...,s(A[)], (s.76) w i t h g - ( ?: )l s T , r ( i ) , . . . , s T , r . t ( d g) ,T , r ( i ) , . . . ,s T w " , z ( i ) , . .s. T , , ^ r ( i ) , . . .g, T t " , w ( ia) ]n d D : Ix 8Iu" I2. Denoteby Q(Lf,Al) the autocorrelation of the channeltransfer function (we supposehereuncorrelatedscatteringwherethe autocorrelationtransferfunction in frequencyis a function of only the frequencydifferenceLf [27], the covariance matrix of g'(d) is Rn. : iD E -R.7wherethe elementsof iD are function of /(A/, Al). Injecting Rs" andD in6.ZO), the CRLB can be written in this alternativeway : (')) (cnrn-r " : d:f."." f*,,;.ri,ilri*r:'"r,"!,, _q o" L \\ \ 6.77) whereR71"is the covariance of ?L" andD; andD;are the derivativeofD and2 with respectto ri, respectively.If we denoteby Ba the kth P x P block on the diagonalof nn.Dn4LDRn",weget (cnI-n-1(z)),- : '4n{E @f$-n).,0) "r(n,i)\, (s.78) then we obtain the following expressionof the CRLB : CRLB(z) : #1.{f u'0-r)u."-}]-' tt2 (s.7e) I Under certainconditions,iD can be easily expressed. In fact, d(Lf ,At) is given by l27l: dAf.4,) : I_-J f ,r. Ltle-i2n^r'dr. (s.80) where $.(r, Lt) is the autocorrelationfunction of the channelimpulse response.If the differentpathshavea Rayleighdistribution,d"(t, Al) canbe writtenas : Q"(r,Lt! : J : /n+j2rL'fr4, I_cx r1r7lo(2rf pLt)e- Js(2rfpLt)er(Lf) (s.81) ThenQ : J I Fy whereFr(t, j) : Ft((i - j)AlT*c). We verify that in the absenceof time and frequencycorrelation,the expressionof the CRLB obtainedin(5.79) is the sameasin (5.66). 113 Bibliographie t 1 l K. Cheikhrouhou,S. Affes and P. Mermelstein,"Impact of synchronizationon performance in widebandCDMA networks",IEEE J. Select.Areasin Comm. of enhancedarray-receivers Dec.2001. vol. 19,no 12,pp.2462-2476, l2l I. Shakya,F. Ali, andE. Stipidis,"High UserCapacityCollaborativeCDMA," IET Commun., vol.5, no.3, pp. 307-3I9,Feb.20l1. t3l B. Suard,A. Naguib,G. Xu andA. Paulraj,"Performanceof a wirelessMC-CDMA system with an antennaarray in a fading channel: reverseLink,"IEEE Trans.on commun.,vol. 48, pp. 1257 -1261,Aug. 2000. l4l B. H. Khalaj, A. Paulrajand T. Kailath, "2D RAKE receiversfor CDMA cellular systems," Proc. GLOBECOM' 94, pp. 400-404,Nov. I 994. [5] "Performanceanalysisof multicarrier DS-CDMA with antennaarray in a fading channel," WirelessPers.Commun.vol. 52,pp.273-287,2010. 'A t6l S. Affes, P. Mermelstein, new receiverstructurefor asynchronousCDMA : STAR-the IEEE J. Select.Areas in Comm.,vol. 16, no. 8, pp. 1411spatio-temporal array-receiver", 1422,Ocl 1998. UI R. O. Schmidt, "Multiple emitter location and signal parameterestimation,"IEEE Trans. AntennasPropag.,vol. 34, no. 3, pp. 276-280,Mar. 1986. t8l R. Roy and T. Kailath, "ESPRlT-estimationof signal parametersvia rotational invariance techniques," IEEE Trans.Acoust.,Speech,Sign.Process.,vol. 37, no. 7, pp. 984-995,Jul. 1989. l9l M. Feder and E. Weinstein"Parameterestimationof superimposedsignalsusing the EM algorithm,"IEEE Trans.Acoust.,Speech,Sign.Process.,vol. 36, pp. 477-489,Apr. 1988. 'A tl0] M. Pincus, closedform solutionfor certainprogrammingproblems,"Oper Research,pp. 690-694,1962. 111l A. F. M. Smith and A. Gelfand,"Bayesianstatisticswithout tears: A sampling-resampling framework,"AmenStatist, vol. 46, pp. 84-88,May 1992. I14 'An exactmaximumlikelihoodnarrowbanddirectionof arrivalestimal12l S. Sahaand S. Kay, torl' IEEE Trans.Sign.Process.,vol. 56, pp. 1082-1092,Ocl 2008. 'A maximum likelihood angle-dopplerestimatorusing importance t13l H. Wang and S. Kay, sampling,"IEEE Trans.Aerospaceand Electro.Sys/.,vol. 46, pp. 610-622,Apr. 2010. 'A maximumlikelihood t14l A. Masmoudi,F. Bellili, S. Affes andA. St6phenne, non-data-aided time delay estimatorusing importancesamplingl'IEEE Trans.Sign.Process.,vol. 59, pp. 4505-4515, Oct.201l. 'Adaptivespace-time processing for wirelessCDMA," in Adapt15l S. Affes andP.Mermelstein, tive SignalProcessing: Applicationto Real-WorldPromblems,J. BenestyandA.H. Huang, Eds.,Springer,Berlin,Jan.2003. tl6l A. D. Dempster,N. M. Laird andD. B. Rubin,"Maximum likelihoodfrom incompletedata via the EM algorithml'J. Roy.Stat.Soc.,vol. B-39, pp. l-37,1977. 'A new method for resolution estimationof time delay,"Proc. ll7) Z. Q. Hou and Z. D. Wu, ICASSn pp. 420-423,1982. tlSl M. A. Hasan,M. R. Azimi-Sadjadiand G. J. Dobeck,"Separationof multiple time delays usingnew spectralestimationschemes," IEEE Trans.Sign.Process.,vol. 46,no.6, pp. 15801590,June1998. t19l M. I. Miller and D. R. Fuhrmann"Maximum-likelhoodnarrow-banddirectionfinding and the EM algorithm," IEEE Trans.Acoust., Speech,Sign. Process.,vol. 38, pp. 1560-1577, Sept.1990. t20l S. Kay,Intuitive Probability and RandomProcessesUsing MATLA4 New York : Springer, 2005. prot21l M. I. Miller and D. L. Snyder,"The role of likelihoodand entropyin incomplete-data blems : Applications to estimatingpoint-processintensitiesand Toeplitz constrainedcovariances,"Proceedings of theIEEE, vol.75, pp.892-907,July 1987. o'Maximumlikelihooddirectionfindingfor stochasticsources: A separable soI22l A. G. Jaffer, lution,"in Proc.IEEE Int. Conf.Acoust.,Speech,Sign.Process.,pp. 2893-2896,Apr. 1988,. t23l W. B. Bishop and P. M. Djuric, "Model order selectionof dampedsinusoidsin noiseby predictivedensities," IEEE Trans.Sign.Process.,vol. 44, pp. 6ll-6l9,Mar. 1996. 124) K. V. Mardia, Statisticsof Directional Data, New York : Academic,1972. 125) P. Stoica and A. Nehorai, "Performancestudy of conditional and unconditionaldirectionof-arrival estimation,"IEEE Trans.on Acoustics,Speechand Sign.Process.,pp. 1783-1795, Oct. 1990. 115 'A multicarrierCDMA t26l B. Smida,S. Affes, L. Jun, and P. Mermelstein, spectrum-efficient array-receiverwith diversity-basedenhancedtime and frequency synchronizationl'IEEE Trans.WirelessCommun,vol. 6, no. 6, pp. 2315-232'1, June.2007. J. G. Proakis,Digital Communications,4th ed.McGraw-Hill,2001. 116 Conclusion Dans ce m6moire,le probldmede synchronisationtemporelleen communicationnum6rique a 6t€ trait6.Nous avonsd6velopp6desproc6duresd'estimationdu d6lai de propagation bas6essur le critdre de maximum du vraisemblancepour diverssystbmesde communication.Le premier estimateurest ddvelopp6pour les signauxmodul6soir les symboles 6mis sontinconnus.La m6thode"importancesampling"(IS) est adaptdepour trouverl'estim6 h maximumde vraisemblance. Bien qu'il soit d6velopp6sousI'hypothbsed'un seul trajet de propagation,il trouve des applicationsdansplusieurssystdmestels que les communicationssatellitaires.Une extensionau casmulti-trajetsest aussiproposde.Danscette nousnousretrouvonsfaced plusieursd6laisd estimer.Bien quela fonction configuration, de vraisemblancesoit multidimensionnelle,I'IS offre une proc6dureattirantepour transformer le problbmemultidimensionnelen un probldmeunidimensionnel.Autre contribution, nousavonsd6velopp6deuxalgorithmesde synchronisationpour les systbmesCDMA mono-porteuse et multi-porteuses.Le premieralgorithmereprendle principede I'IS au niveaudu signalaprdsd6s6talement. L'autre algorithmesebasesur la m6thode"expectation maximization"(EM) qui transformele problbmemultidimensionnelen de simplesop6rations unidimensionnellesdont le nombreaugmentelindairementavecle nombrede trajets d6tect6s.Bien que les deux m6thodessoientdes impl6mentationsdu mOmecritdre, chacunepossddesesproprespoints forts. La m6thodeEM estimedes d6lais de propagation avecune complexitdrelativementfaible compar6ed dSautresalgorithmespuisque,tel que d6montrerdans ce mdmoire,l'estimation des diff6rentsd6laispeut se faire en parallble, ce qui r6duit le tempsde calcul. Les simulationsmontrentque cet algorithmepr6sentede queles techniques meilleurperformance de sous-espace tel quele Root-MUSICet ceci en utilisantde bonneinitialisations,qui doit 0tre soulign6commeun point faible de l'algorithme.La performancede I'algorithmeEM d6gradeconsid6rablement dansle casd'une seuleantenner6ceptricealors que I'algorithme Root-MUSIC 6chouecomplbtementd estimer les d6lais.D'un autrecot6,I'algorithmeIS ne n6cessite aucuneinitialisationet offre de bonneperformancemOmeen pr6senced'une seuleantenner6ceptrice,et ceci au prix d'unecomplexit6accrue.Nousmontronsaussipar simulationsqueles dimensionsespace, tempset fr6quence(pour les systbmesmulti-porteuses)ont le mOmeeffet sur les performancesde cesestimateurs. I-lautrevolet trait6 dansce rapportestla d6rivationdesexpressionsanalytiquesdesbornes It7 de Cram6r-Raodes estimateursnon biais6sdu retard pour les modulation BPSK, MSK et QAM carr6esen estimationaveugle.Ces expressionsanalytiquesr6vblentque les performancesd'estimationdu d6lai ne d6pendentpas de la valeur du parambtreen question, chosequ'on ne pouvait pas confirmer auparavanten dvaluantles bornesde Cram6r-Rao par desm6thodesempiriqueset que I'estimationdu ddlaiest independent de l'estimation de la phaseet de la fr6quence.On dit que le d6lai est d6coupl6de ces deux derniersparamdtres.Nous avonsaussid6riv6les expressions de cesbornespour les systbmesSC- et que les trois dimensions: spatiale,tempoMC-DS-CDMA. Dansce cas,nousconstatons relle et fr6quentielle,agissentde la mOmefagonsur les performancesd'estimation,se qui confirmeles r6sultatsobtenuspar simulations. Cependant,plusieursextensionsrestentd explorer.Dansce m6moire,nousavonstoujours suppos6que le bruit additif 6taitblanc et Gaussien.Ce seraintdressantde voir les modificationsh faire, que ce soit au niveaudesestimateursde desCRLBs, si le bruit est color6. De plus, le canalde propagationdansles chapitres1 et 3 est suppos6constant.UadaptaAussi,la CRLB tion d'un canalvariablerefldtemieux larlalitf du canalde transmission. est d6velopp6edansle chapitre2 sousI'hypothbsed'un seul trajet de propagation.La ddrivationde la CRLB dansun canal d multi-trajetsresteun bon sujet de recherche.En ce qui concernele 5em chapitre,nous avonssuppos6que les antennessont d6corr6l6es. U6valuationde la robustesse des estimateursd6velopp6sdansce chapitreen cas dSantennescorr6l6esreste d venir et le d6veloppementd'estimateursqui tiennentcompte de cettecorr6lationseraitpeu 6tre d'actualit6 si jamais nousremarquonsune d6gradationde performancedansce cas. 118