On a Model for a Solar Updraft Tower
Transcription
On a Model for a Solar Updraft Tower
Kinetic and Mean-Field Models in the Socio-Economic Sciences, ICMS, Edinburgh, July 2009 On a Model for a Solar Updraft Tower Ingenuin Gasser Department Mathematik, University of Hamburg, Germany Overview: Solar Updraft Towers • Introduction • Modelling • Analysis • Numerical Simulations • Validation of the Model Solar Updraft Towers: Manzanares (Spain) J. Schlaich, R. Bergermann, W. Schiel, G. Weinrebe, Journal of Solar Energy Engineering 127 (1), 117-124, 2005 J. Schlaich, R. Bergermann, W. Schiel, G. Weinrebe, Journal of Solar Energy Engineering 127 (1), 117-124, 2005 Wikipedia Quelle: J. Schlaich, R. Bergermann, W. Schiel, G. Weinrebe, Journal of Solar Energy Engineering 127 (1), 117-124, 2005 J. Schlaich, R. Bergermann, W. Schiel, G. Weinrebe, Journal of Solar Energy Engineering 127 (1), 117-124, 2005 Solar Updraft Towers: History: • 1903 - Isidoro Cabanyes: Idea • 1931 - Hanns Günther: Precise description • 1982 - Jörg Schlaich: Prototye in Manzanares (Spain) Facts: • • • • • Renewable solar energy No water required Low-tech plant Little maintenance Low efficiency Modelling issues : Velocities: ≈ 0 − 20 m/s Temperatures: ≈ 10◦ − 50◦ Celsius ? • Gas dynamics • Energy source (greenhouse effect) • Dynamics is driven by small changes in density (chimney effect) • Small Mach number! • Need of a precise description of the energy transport • Compressible vs. incompressible model • Multi-d vs. 1 d model State of the art: • 3d CFD Models (Müller 02) • 3 different models (collector, turbine, chimney) (Dos Santos Bernardes, Voss, Weinrebe 03,04) Our aim: *) to set up a simple (1d) model for the full plant, *) which decribes the main features *) which allows control and optimisation procedures. Order of magnitude of the buoyancy forces in the chimney • Height/radius of the chimney 200 m/5 m • Volume of the chimney 15707 m3 • Pressure difference per meter altitude 0.12 mbar • Buoyancy force: an elevation of the temperature of 10 Grad Celsius gives about 0, 32 Newton buoyancy force for 1 m3 air. • the full chimney volume gives 5026 Newton • this corresponds to the weight of 500kg • i.e. 64 Newton per square meter cross section • i.e. an overpressure of 0, 64 mbar Starting point: 1d compressible Euler equations (Ãρ̃)t̃ + (Ãρ̃ũ)x̃ = 0, (Ãρ̃ũ)t̃ + (Ã(ρ̃ũ2 + p̃))x̃ = Ãx̃p̃ − ˜ turbine (Ãũ) −Ãgρ̃ sin(α) + ∆p λco λch p à + π à ρ̃ũ|ũ| 4hc 4 ρ̃ũ2 ρ̃ũ2 = Ã(cv ρ̃T̃ + + gρ̃h̃) + Ãũ(cv ρ̃T̃ + + gρ̃h̃)) + Ãũp̃ 2 2 t̃ x̃ p à à αs Q̃s − αco 2 (T̃ − T̃co ) − αch2 π Ã(T̃ − T̃ch) hc hc Variables: x̃, t̃, ρ̃ = ρ̃(x̃, t̃), ũ = ũ(x̃, t̃), p̃ = p̃(x̃, t̃), T̃ = T̃ (x̃, t̃) Variable cross section: à = Ã(x̃) • ideal gas law: p̃ = Rρ̃T̃ • collector and chimney pressure loss coefficients λco, λch • collector height hc • gravitational constant g • specific heat cv • ratio of absorbed solar energy αs • collector and chimney heat transfer coefficients αco, αch • collector and chimney temperature T̃co, T̃ch • solar power per surface aerea Q̃s • slope profile α = α(x), h̃x̃ = sinα Dimensional analysis: Quantity u ρ p T x, h t A hc λco,λch ˜ turbine ∆p αs Q̃s αco, αch Tco , Tch g cv Set ã = ar · a Reference value ur ρr pr r Tr = ρpr R L tr = L/ur Ar Machnumber: M 2 = ρr u2r pr Typical reference value 10 m s−1 1.17 kg m−3 101328 Pascal 300 K 320 m 32 s 100 m2 2 m 10−2 0-50 Pascal 0.3 1000 W m−2 s−1 40 W m−2 K−1 300 K 9.81 kgm s−2 718 m2 s−2 K−1 Scaled compressible Euler equations: ǫ = γM 2 (Aρ)t + (Aρu)x = 0 1 1 (Aρu)t + (A(ρu2 + p))x = Ax p + ∆pturbine ǫ ǫ √ −(ξcoA + ξch A)ρu|u| − 1 Aρ sin(α) F r2 ρu2 1 + A(ρT + ǫ(γ − 1)( ρh)) + 2 F r2 t 2 ρu 1 ρh)) + (γ − 1)Apu = Aq − kcoA(T − Tco) + Au(ρT + ǫ(γ − 1)( 2 F r2 x √ −kch A(T − Tch) Variables: space x, time t, density ρ = ρ(x, t), velocity u = u(x, t), temperature T = T (x, t), pressure p = ρT • Mach number M = q ǫ γ ≪1 • Froude number F r Stationary solution: adiabatic atmosphere formulas (not the barometric formulas) 1 1 γ−1 γ−1 ǫ γ−1 ρh = ρh0 1 − hhr h = ρh0 1 − γ F r2 γ γ γ−1 γ − 1 ǫ γ−1 h ph = ph0 1 − hr = ph0 1 − h γ F r2 γ − 1 ǫ Th = Th0 1 − hhr = Th0 1 − h γ F r2 Small Mach number asymptotics: p = p0 + ph + εp1 + O(ε2 ) Initial boundary value problem (I.G. ’09) Ax ρt + (ρu)x = − ρu A 1 Ax 1 ut + uux + (p1 )x = − u2 − (ξco + ξch √ )u|u| ρ A A 1 sin(α) 11 − ∆pturbine (ρ − 1) + ρ F r2 Aρ γp0 ux = − Ax 1 p0 p0 γp0u + q − kco ( − Tco ) − kch √ ( − Tch) A ρ A ρ Initial values: u(x, 0) = u0(x) ρ(x, 0) = ρ0(x) Boundary values: p1(0, t) = 1, p1(1, t) = 1 ρ(0, t) = ρ0 (u(0, t) > 0), ρ(1, t) = ρ1 (u(1, t) < 0) (inflow condtions) Alternative formulation (I.G. ’09) v(t) 1 u(x, t) = + A(x) γA(x) Z x A(y)q(y)dy. 0 We obtain a PDE for the density ρ 1 ρt + uρx = − ρq. γ and an ODE for the only time dependent part v of u Z 1 Z 1 Z 1 1 1 Ax 2 ρu dy + (ξco + ξch √ )ρu|u|dy vt = − R 1 ρuuxdy + A ρA−1dy 0 0 0 A 0 Z 1 Z 1 1 sin(α) ∆pturbine dy (ρ − 1)dy + (p − p ) − + r l 2 Fr 0 A 0 Analysis Very similar problem: Tunnel fire model (I.G., J. Struckmeier ’02, I.G., H. Steinrück ’06) • stationary problem with multiple solutions • transient problem: global existence and uniqueness Solutions of the type: v ∈ C 1 [0, T ] but in ρ we have to admit discontinuities. These are natural due to the inflow conditions. Idea of the proof: Fixed-point- argument in the ODE Use estimates on the density from the PDE in the ODE • (linear) stabilty anaylsis Numerical simulations: Manzanares Parameter Collector height Collector radius Chimney height Chimney radius Initial velocity Initial density ξco = ξch Solar radiation energy ∆pturbine Value 2m 120 m 200 m 5m 2 (20) ms−1 1, 17 kgm−1 0.1 1000 W m−2 0 (20 Pascal) velocity u [m/s] velocity u [m/s] t [minutes] 15 20 10 0 20 200 0 0 x [m] rho [kg/m³] 1.2 1.1 1 20 10 200 0 0 t [minutes] x [m] temperature T [C] 5 400 64 t [minutes] 10 t [minutes] 10 128 192 256 x [m] rho [kg/m³] 320 128 192 256 x [m] temperature T [C] 320 15 10 5 400 64 60 40 20 20 10 t [minutes] 0 0 200 x [m] 400 t [minutes] 15 10 5 64 128 192 x [m] 256 320 velocity u [m/s] velocity u [m/s] t [minutes] 15 20 10 0 20 200 0 0 x [m] rho [kg/m³] 1.2 1.1 1 20 10 200 0 0 t [minutes] x [m] temperature T [C] 5 400 64 t [minutes] 10 t [minutes] 10 128 192 256 x [m] rho [kg/m³] 320 128 192 256 x [m] temperature T [C] 320 15 10 5 400 64 100 50 0 20 10 t [minutes] 0 0 200 x [m] 400 t [minutes] 15 10 5 64 128 192 x [m] 256 320 Numerical simulations: Buronga (planned) Parameter Collector height Collector radius Chimney height Chimney radius Initial velocity Initial density ξco = ξch Solar radiation energy ∆pturbine Value 2m 3500 m 1000 m 65 m 2 ms−1 1, 17 kgm−1 0.1 1000 W m−2 0 Pascal velocity u [m/s] velocity u [m/s] t [minutes] 40 50 0 −50 40 5000 900 1800 2700 3600 4500 x [m] rho [kg/m³] 0 0 x [m] rho [kg/m³] t [minutes] 20 t [minutes] 20 1.5 1 0.5 40 20 t [minutes] 0 0 x [m] temperature T [C] 40 20 5000 900 1800 2700 3600 4500 x [m] temperature T [C] 400 200 0 40 20 t [minutes] 5000 0 0 x [m] t [minutes] 40 20 900 1800 2700 3600 4500 x [m] Outlook • Thermal model • Turbine model • Analysis • Optimisation • Down draft tower Source: T. Altman, D. Zaslavsky, R. Guetta, G. Czich, Preprint 2006 History: • 1975 - P.R. Carlson: US Patent No.3894393 • 1999 - D. Zaslavsky: Description and output estimates Facts: • • • • • • Renewable energy Water required No collector, big chimney required No existing prototype Discussion about the electrical output power Discussion about the costs for the construction of big chimney’s Thank you !
Similar documents
PRACE ORYGINALNE
can be assigned according to Kedem-Katchalsky thermodynamic formalism. This means that the KedemKatchalsky equations can be used for the analysis of transport in the concentration polarization cond...
More information