Spatial Discretisation

Transcription

Spatial Discretisation
Spatial Discretisation
Markus Widhalm
Folie > Vortrag > Autor
Dokumentname > 23.11.2004
Content
spatial discretisation
upwind scheme
central scheme
upwind flux
basic
gradient computation
central flux
basic
artificial dissipation
turbulence flux
full viscous discretization
thin shear layer approximation
Folie > Vortrag > Autor
Dokumentname > 23.11.2004
Road Map
Spatial discretisation
for flux computation
Inviscid
1st
order
2nd
order
viscous
1st or
2nd
order
Upwind Verfahren
Central scheme +
artificial dissipation
Full viscous flux
Gradient
computation
Thin layer
approximation
Folie > Vortrag > Autor
Dokumentname > 23.11.2004
Central scheme
Folie > Vortrag > Autor
Dokumentname > 23.11.2004
Central scheme
Basics
e.g. the continuity equation
ρt + uρx = 0
discretization of the continuity equation
n
"
ρn+1
−
ρ
u ! n
i
n
i
=−
ρi+1 − ρi−1
∆t
2∆x
second - order central scheme
n ... time step, i ... spatial step
Folie > Vortrag > Autor
Dokumentname > 23.11.2004
Central scheme
Basics
Flux computation
+&*(



F! = 


density
x-momentum
y-momentum
z-momentum
energy
F!f ace






012,
/.
$& $'
&
$
!
$
($
&
%
$
!"#
)(
'
($$
&
$
!
$
&$
&
%
$
!"# -.,
,
)&
" 1
1 !!
Fl + F!r − α̃ (w
=
!r − w
! l)
2
2
Folie > Vortrag > Autor
Dokumentname > 23.11.2004
Central scheme
Basics
What is α?
α decides about the dissipation scheme
scalar dissipation - α becomes the maximum eigenvalue
matrix dissipation - α becomes a matrix with 3 eigenvalues
Folie > Vortrag > Autor
Dokumentname > 23.11.2004
Central scheme
Basics
What is α?
α decides about the dissipation scheme
scalar dissipation - α becomes the maximum eigenvalue
matrix dissipation - α becomes a matrix with 3 eigenvalues
How do we compute the difference?
(w
!r − w
! l)
Pj5
Pj4
Pj6
Pj2
Pj0
!
D
= (w
!r − w
! l)
Pj3
Pj7
Fi
Pj8
Pj1
Pj9
dual
control
volume
= "2 (!ur − !ul ) − "4 (L(!ur ) − L(!ul ))
Folie > Vortrag > Autor
Dokumentname > 23.11.2004
Scalar dissipation
Parameter
Parameter input
Inviscid flux discretization type: Central
Folie > Vortrag > Autor
Dokumentname > 23.11.2004
Scalar dissipation
Parameter
Parameter input
Inviscid flux discretization type: Central
Central dissipation scheme: Scalar_dissipation
2nd order dissipation coefficient: 0.5
Inverse 4th order dissipation coefficient: 64
Folie > Vortrag > Autor
Dokumentname > 23.11.2004
Scalar dissipation
Parameter
Why do we need two parameters?
2nd order dissipation coefficient: 0.5
handles discontinuities
Folie > Vortrag > Autor
Dokumentname > 23.11.2004
Scalar dissipation
Parameter
-1.5
Z
k2 = 0.25
k2 = 0.5
k2 = 0.8
-1
shock
capturing
low
-0.5
cp
M = 0.74
α = 2.0°
Why do we need two parameters?
2nd order dissipation coefficient: 0.5
handles discontinuities
0
0.5
high
1
1.5
0
0.2
0.4
X
0.6
0.8
2nd order
coefficient
1
= 0.25
4
1
= 0.5
2
1
= 0.66
1.5
1
= 0.8
1.25
1
Folie > Vortrag > Autor
Dokumentname > 23.11.2004
Scalar dissipation
Parameter
M = 0.74
α = 2.0°
Why do we need two parameters?
2nd order dissipation coefficient: 0.5
handles discontinuities
k2 = 0.25
k2 = 0.5
k2 = 0.8
shock
capturing
low
high
2nd order
coefficient
1
= 0.25
4
1
= 0.5
2
1
= 0.66
1.5
1
= 0.8
1.25
Folie > Vortrag > Autor
Dokumentname > 23.11.2004
Scalar dissipation
Parameter
dissipation
high
0.1
z
k4
k4
k4
k4
0.05
pl
M = 0.74
α = 2.0°
Why do we need two parameters?
Inverse 4th order dissipation coefficient
dissipation in smooth regions
64 →
low
0.2
0.4
x
0.6
0.8
16 →
32 →
= 16
= 32
= 64
= 128
0
0
Inverse 4th
order coefficient
128 →
1
16
1
32
1
64
1
128
1
Folie > Vortrag > Autor
Dokumentname > 23.11.2004
Matrix dissipation
Parameter
Parameter input
Inviscid flux discretization type: Central
Central dissipation scheme: Matrix_dissipation
2nd order dissipation coefficient: 0.5
Inverse 4th order dissipation coefficient: 64
Matrix dissipation terms coefficient: 0.5
Minimum artificial dissipation for acoustic waves: 0.2
Minimum artificial dissipation for velocity: 0.2
Folie > Vortrag > Autor
Dokumentname > 23.11.2004
Matrix dissipation
Parameter
For robustness reasons we need extra parameters:
Matrix dissipation terms coefficient: 0.5
Minimum artificial dissipation for acoustic waves: 0.2
Minimum artificial dissipation for velocity: 0.2
Folie > Vortrag > Autor
Dokumentname > 23.11.2004
Matrix dissipation
Parameter
For robustness reasons we need extra parameters:
Matrix dissipation terms coefficient: 1.0
Minimum artificial dissipation for acoustic waves: 0.2
Minimum artificial dissipation for velocity: 0.2
α̃("ul , "ur , λ) = kCM · T |λ|T −1
|λ| = diag(|λ1 |, |λ2 |, |λ3 |)
|λ1 | = max(|vn + Af |), δa (|vn | + Af )
|λ2 | = max(|vn − Af |), δa (|vn | + Af )
|λ3 | = max(|vn |), δv (|vn | + Af )
Folie > Vortrag > Autor
Dokumentname > 23.11.2004
Matrix dissipation
Parameter
Parameter input
With the matrix dissipation - change from matrix to scalar !!!
Minimum artificial dissipation for acoustic waves: 0.2
Minimum artificial dissipation for velocity: 0.2
Acoustic
Velocity
Scalar
Matrix
0.0
0.0
0%
100%
0.2
0.2
20%
80%
0.7
0.3
70%
30%
1.0
1.0
100%
0%
Folie > Vortrag > Autor
Dokumentname > 23.11.2004
Scalar & Matrix dissipation
What is the main difference between both dissipation schemes ?
scalar dissipation:
very stable
very less parameters needed
matrix dissipation:
scales with all three eigenvalues of the flux jacobian
less dissipative than scalar dissipation
mainly seen in the boundary layer region
needs experience for the extra parameters to run a stable
computation
Folie > Vortrag > Autor
Dokumentname > 23.11.2004
Upwind scheme
Folie > Vortrag > Autor
Dokumentname > 23.11.2004
Upwind scheme
Basics
e.g. the continuity equation
ρt + uρx = 0
discretization of the continuity equation
n
"
ρn+1
−
ρ
u ! n
i
n
i
=−
ρi − ρi−1
∆t
∆x
first - order upwind scheme
n ... time step, i ... spatial step
Folie > Vortrag > Autor
Dokumentname > 23.11.2004
Upwind scheme
Basics
Flux computation



!
F =


density
x-momentum
y-momentum
z-momentum
energy
F!f ace






+&*(
012,
/.
$& $'
&
$
!
$
($
&
%
$
#
"
!
)(
'
($$
&
$
!
$
$
&
&
$%
#
"
!
,
.
,
)&
" 1#
#
1 !!
!
#
Fl + Fr − Ā (w
=
!r, w
! l , !nl,r )# (w
!r − w
! l)
2
2
Folie > Vortrag > Autor
Dokumentname > 23.11.2004
Upwind scheme
Basics
2nd ( higher order) discretization explanatory for ρ:
ρf ace
!
"
1 #
= ρnode + ψ ∇ρnode #li − #li−1
2
+&*(
012,
/.
&$& $'
$
!
&$($
%
$
!"#
)(
'
$&($$
!
$
%&$&
$
#
!"
,
,-.
)&
Folie > Vortrag > Autor
Dokumentname > 23.11.2004
Upwind scheme
Basics
2nd ( higher order) discretization explanatory for ρ:
A
ρf ace
!
"
1 #
= ρnode + ψ ∇ρnode #li − #li−1
2
B
A) We need the gradients from the state variables!
+&*(
B) We need a limiter for discontinuities!
012,
/.
&$& $'
$
!
&$($
%
$
!"#
)(
'
second - order upwind scheme
$&($$
!
$
%&$&
$
#
!"
,
,-.
)&
Folie > Vortrag > Autor
Dokumentname > 23.11.2004
Upwind scheme
Parameter
How do we control this features through the parameterfile?
Considerations have to be done for:
First order upwind
Second order upwind
Gradient computation
Limiters used
Folie > Vortrag > Autor
Dokumentname > 23.11.2004
Upwind scheme
Parameter
Parameter input
Inviscid flux discretization type: Upwind
Folie > Vortrag > Autor
Dokumentname > 23.11.2004
Upwind scheme
Parameter
Parameter input
Inviscid flux discretization type: Upwind
Upwind flux:
Roe
Van_Leer
AUSMDV
AUSMP
AUSM_Van_Leer
EFM
MAPS+
Folie > Vortrag > Autor
Dokumentname > 23.11.2004
Upwind scheme
Parameter
Roe: Roe, P.L., Approximate Riemann Solvers Parametric Vectors and
Differences Schemes. JCP, Vol. 43, 1981
AUSM (Advective upstream splitting mehtod) : Liou, M.S.; Steffen, C.J.,
A new flux splitting scheme. JCP, Vol. 107, 1993
AUSMP: Wada, Y.; Liou, M.S., A flux splitting scheme with highresolution and robustness for discontinuities. AIAA 94-0083, 1994
EFM (Equilibrium flux method) : Pullin, D.I., Direct simulation methods
for compressible inviscid ideal gas flow, JCP, Vol. 34, 1980
MAPS+ (Mach number based Advection Pressure Splitting): Rossow,
C.C., A flux splitting scheme for compressible and incompressible flows.
JCP, Vol. 164, 2000
Folie > Vortrag > Autor
Dokumentname > 23.11.2004
Upwind scheme
Parameter
Parameter input
Inviscid flux discretization type: Upwind
Upwind flux:
Order of upwind flux (1-2): 2
Order of additional euqations (1-2): 2
Roe
Van_Leer
AUSMDV
AUSMP
AUSM_Van_Leer
EFM
MAPS+
Folie > Vortrag > Autor
Dokumentname > 23.11.2004
Upwind scheme
Parameter
Parameter input
Inviscid flux discretization type: Upwind
Upwind flux:
Order of upwind flux (1-2): 2
Order of additional equations (1-2): 2
Reconstruction of gradients:
Green_Gauss
Least_square
Roe
Van_Leer
AUSMDV
AUSMP
AUSM_Van_Leer
EFM
MAPS+
Folie > Vortrag > Autor
Dokumentname > 23.11.2004
Upwind scheme
Parameter
Reconstruction of gradients:
Green_Gauss
n
!
1
1
!
∇φ =
(φi + φ0 ) !ni Si
V i 2

Least_square

φx
! =  φy  = x ∼
∇φ
= R−1 QT b
φz
Folie > Vortrag > Autor
Dokumentname > 23.11.2004
Upwind scheme
Error of the reconstruction on hybrid meshes
φ=x+y
Folie > Vortrag > Autor
Dokumentname > 23.11.2004
Upwind scheme
Error of the reconstruction on hybrid meshes
φ=x+y
Folie > Vortrag > Autor
Dokumentname > 23.11.2004
Upwind scheme
Parameter
Reconstruction of gradients inside structured part of a hybrid mesh Automatically with a MUSCL scheme
lines found during the preprocessing step
hl
h
pll
hr
pr
pl
prr
face
h
pr
pl
face
hl
hr
prr
pll
h
pl
pr
face
Folie > Vortrag > Autor
Dokumentname > 23.11.2004
Upwind scheme
Parameter
Parameter input
Inviscid flux discretization type: Upwind
Upwind flux:
Order of upwind flux (1-2): 2
Order of additional equations (1-2): 2
Reconstruction of gradients:
Green_Gauss
Least_square
Limiter freezing convergence: 0
Mach number limit for limiter: 0
Venkatakrishnan limiter constant: 1
Lowest pressure for 2nd order: 0
Roe
Van_Leer
AUSMDV
AUSMP
AUSM_Van_Leer
EFM
MAPS+
Folie > Vortrag > Autor
Dokumentname > 23.11.2004
Upwind scheme
Limiters
Limiter freezing convergence:
Folie > Vortrag > Autor
Dokumentname > 23.11.2004
Upwind scheme
Limiters
Mach number limit for limiter:
Detail !
Folie > Vortrag > Autor
Dokumentname > 23.11.2004
Upwind scheme
Limiters
Venkatakrishnan limiter constant
Folie > Vortrag > Autor
Dokumentname > 23.11.2004
Upwind scheme
Limiters
Venkatakrishnan limiter constant
-1.5
-1.5
M = 0.74
α = 2.0°
-1
-1
0
-0.5 Z
0.5
cp
cp
-0.5
Venkata 0
Venkata 0.5
Venkata 1
0 Venkata 2
1
0
0.2
0.4
0.5
X
0.6
0.8
Z
Venkata 0
1 Venkata 0.5
Venkata 1
Folie > Vortrag > Autor
Dokumentname > 23.11.2004
Upwind scheme
Stability
Lowest pressure for 2nd order: 0.001
Folie > Vortrag > Autor
Dokumentname > 23.11.2004
Viscous flux computation
Folie > Vortrag > Autor
Dokumentname > 23.11.2004
Viscous flux computation
Basics
Consider friction of the fluid



F! = 


density
x-momentum
y-momentum
z-momentum
energy



 F
!inviscid + F!viscid
 ! =F

+
n × T ransportequations
(n Equation T urbulencemodel)
Folie > Vortrag > Autor
Dokumentname > 23.11.2004
Viscous flux computation
Basics
Consider friction of the fluid



F! = 


density
x-momentum
y-momentum
z-momentum
energy



 F
!inviscid + F!viscid
 ! =F

+
n × T ransportequations
(n Equation T urbulencemodel)
Folie > Vortrag > Autor
Dokumentname > 23.11.2004
Viscous flux computation
Basics
Viscous part effective for momentum and energy equation
momentum
D"v
= ∇P + ρf"
Dt
 
0
σxx - p
0  +  τyx
p
τzx
ρ

p
P = − 0
0
0
p
0
ρf" ... volumef orces
τxy
σyy - p
τyz

τxz

τyz
σzz - p
σ ... normal stress
How do we model P ?
τ ... shear stress
!
"
Newtonian fluid
∂vi
∂vj
2
pij = −pδij + µ
+
− δij ∇
∂xj
∂xi
3
δi,j ... Kronecker tensor
Folie > Vortrag > Autor
Dokumentname > 23.11.2004
Viscous flux computation
Parameter
Parameter input
Viscous flux type TSL/Full (0/1): 1
Full viscous
Face
Pi
Pj
!
"
1
! j + ∇w
! i
! =
∇w
∇w
2
Folie > Vortrag > Autor
Dokumentname > 23.11.2004
Viscous flux computation
Parameter
Parameter input
Viscous flux type TSL/Full (0/1): 0
(Full) Thin Shear Layer
Face
Pi
Pj
wj − wi
!
∇w ≈
∆x
Folie > Vortrag > Autor
Dokumentname > 23.11.2004
Viscous flux computation
Parameter
some comments on Thin Shear Layer approximation:
more stable
almost same solution
maybe less accurate
High-Lift computation (SAE, SA)
error was negligible
viscous flux jacobian depends on p0 and p1 only
some comments on Full Viscous approximation
exact formulation
complex limiting of gradients
Folie > Vortrag > Autor
Dokumentname > 23.11.2004
Viscous flux computation
Parameter
Parameter input
Turbulent convection scheme for central RANS scheme:
Central
AUSMDV
Roe
ConsVarAveragedRoe
default settings:
laminar and one equation turbulence models: Central
probably less stable but more accurate
all other turbulence models: Roe
more stable but less accurate
Folie > Vortrag > Autor
Dokumentname > 23.11.2004
Thank you for your attention.
Have fun with TAU
Folie > Vortrag > Autor
Dokumentname > 23.11.2004