advanced uses of fluorescent proteins in the investigation of cells
Transcription
advanced uses of fluorescent proteins in the investigation of cells
advanced uses of fluorescent proteins in the investigation of cells Principles of Fluorescence Techniques & CONFOCAL 9 Fred S. Wouters Genoa, June 25-29, 2007 CBG Gottingen Molecular neurophysiology the Burgess nonsense book being a complete collection of the humerous masterpieces of Frank Gelett Burgess, Esq. (published by Frederick A. Stokes Company, New York (1901) Fluorescent Proteins origins colors properties labeling problems sensing manipulating multiplexing reactive oxygen species timer dynamic marking FRETbased conditional properties CALI photobleaching FRAP FLIP FLAP photoconversion complex assays reversible photoswitching pairs resolft pH, redox chaperone selective killing combination fluorescent proteins β-can structure • rel. insensitive to environment • proteolytically stable • denaturation stable • N- & C-terminus free allow fusion chromophore: aa 65-66-67 • post-translational oxidation • single gene • no co-factors required Rainbow Miyawaki (2005) Neuron 48: 189-199 Verkhusha (2004) Nat. Biotechnol. 22: 289-296 popularity of GFP GFP OR "fluorescent protein" GFP OR "fluorescent protein" 4000 4000 3000 3000 2000 2000 1000 1000 0 0 1990 1992 1994 1996 1998 2000 2002 microscopy 12 2004 microscopy 14 3 16 18 x10 increase in microscopy by GFP 0.7 x 1000 18 0.6 0.5 16 0.4 3 x10 0.3 14 0.2 12 0.1 0.0 1990 1992 1994 1996 1998 2000 2002 2004 1990 1992 1994 1996 1998 2000 2002 2004 Wouters (2006) Contemporary Physics 47: 239-255 Fluoraissance and dynamics Doing more with less colors GFP+YFP lifetime YFP5 GFP NA NLS Pepperkok (1999) Curr. Biol. 9: 269-272 NLS B1 NLS PDGFR NA: N-acetylglucosaminyltransferase (Golgi+ER) B1: Cyclin B1 (cytosol, microtubules) Lifetime contrasting CFP SYFP2-SCFP3A YFP fusion LT single 2.0 2.7 phase lifetime (ns) 3A 3A 1A 1A MIX 1.5 CFP LT 1A QYFRET = (1-E) • Q non-FRET 2.6 phase lifetime (ns) SCFP3A-NES (τΦ=2.6 ns) SCFP1A-NLS (τΦ=1.5 ns, QY=0.7) Kremers (2006) Biochemistry 45: 6570-6580 QY= τ obs τ rad changing lifetime by FRET mutational screening for changed lifetime 0 Lifetime (ns) 5 Lifetim 5 0 48 0 Brightness (a.u.) MAX ess B e Brightn we 100 0 48 ll # A we 32 ll # well # 32 5 1 1 well # Lifetime (ns) C 1 1 # 1. 2.634±0.002 ns (1%) 2. 3.743±0.003 ns (1%) 3. 1.380±0.002 ns (2%) 4. 1.548±0.002 ns (2%) # 5. 1.794±0.002 ns (2%) 6. 2.212±0.002 ns (1%) 7. 2.868±0.005 ns (2%) 8. 4.225±0.006 ns (2%) 1 2 3 4 5 6 7 8 Sample (#) 0 8 groups of 96 wells: EGFP, R6G+EGFP, R6G+KI (63, 50, 38, 25, 13,0 mM) 20 min. A C 14cm B D cytoplasmic 0 E Lifetime (ns) 5 0 Brightness (a.u.) MAX 9cm nucleolar targeting signal Esposito A & Wouters FS (2004) Fluorescence Lifetime Imaging (Unit 4.14). In Current Protocols in Cell Biology. J. Wiley & Sons, NY, USA. ±20,000 colonies of E. coli expressing EYFP on a 9x14 cm agar plate. 1900 FOV, ±1 h. Photobleaching tools: synchronizing populations Diffusion rates immobile fraction velocity Diffusion continuities Lippincott-Schwartz (2003) Science. 300: 87-91 aggregation of structurally-optimized tau Hyper-aggregating tau mutant was created by optimization of internal oligomerization sequences ±1/4 cells expressing hyper-aggregating tau exhibit WT tau immobilization Iliev (2006) J. Biol. Chem. 281(48): 37195-204. Fluorescence Localization After Photobleaching rapid actin transport during cell protrusion CFP-actin FLAP (CFP-YFP) rFLAP YFP-actin phase contrast 1- YFP CFP protrusion retraction Zicha (2003) Science 300: 142-145 Cpre Ypre Cpost Ypost mix mix Directional transport of Synaptophysin-FLAP Iliev (2007) J. Neurosci. Methods Nov 21 Epub ahead of print photoconversion GFP bleaching during observation under anearobic conditions produces a red-emitting form Elowitz (1997) Curr. Biol. 7: 809-812 GFP photoconversion put to (limited) use Brunet (2006) Traffic. 7: 1283-1289 exc 514 exc 458 exc. 405 exc 514 ∆F post-bleach pre-bleach exc. 405 photoconversion of YFP: bleaching of YFP leads to the formation of a CFP-like photoproduct 432.5 452.5 472.5 492.5 512.5 532.5 552.5 572.5 592.5 Gertrude Bunt (Stuttgart University) and Valentin (2005) Nat. Meth. 2: 801. Photoconversion: another lucky observation Kaede Ando (2002) PNAS 99: 12651-12656 dsRed maturation mutant: timer Drosophila neural fiber bundle formation Verkushka (2001) J. Biol. Chem. 276: 29621-29624 expression in C. elegans Terskikh (2000) Science 290: 1585-1588 Photoactivation of GFP Lippincott-Schwartz (2003) Science. 300: 87-91 Patterson (2002) Science. 297: 1873-1877 photoactivatable mRFP allows highly complex multi-color dynamic bioassays Verkusha (2006) Chem. Biol. 12: 279-285 EYFP-Dopamine transporter (plasma membrane) and PA-mRFP-Rab5 (endosomal surface) photolabeling photoconversion photoactivation photochromism photoswitching Dronpa photoswitching Ando (2004) Science 306: 1370-1373 and FRET wtGFP ratio Phluorin ecliptic Phluorin Miesenböck (1998) Nature 394:192-195 protonation sensing sensing redox potentials barrel destabilization Hanson (2004) J. Biol. Chem. 279: 13044-13053 Dooley (2004) J. Biol. Chem. 279: 22284-22293 chaperone folding biosensor chaperone bacterial phenotype cdYFP fluorescence (AU) cold ethanol shock in bact. culture 4 10 2 4 4 10 2 3 4 2 500 520 Liman (2005) Mol. Cell Biol. 25: 3715-3725 560 580 emission wavelength (nm) -3 x10 expression in Cos cells 12 37 deg. 10 frequency 540 8 6 25 deg. 4 4 2 (AU) 0 0 2 4 6 cdYFP fluorescence (AU) 8 0 600 the folding biosensor is sensitive for Hsp70 -3 x10 Folding efficiency (cdYFP/Cy5) WT CHO cells 80 60 40 Hsp70 co-expression 20 8 6 4 2 0 0 0 2 4 6 Folding efficiency (cdYFP/Cy5) 8 0 10 20 30 40 CFP-Hsp70 (AU) 50 5 (fold) frequency 10 0 WT- CHO CHO transient overexpression of Hsp70 chaperone Cellular folding capacity in cellular ALS models folding efficiency (fold) Förster Resonance Energy Transfer (FRET) FRET Methods ratio/ SE imaging Acceptor PB FLIM intensities "quenched" "sensitized" donor acceptor emission emission photons are emitted sooner Molecular microscopy in modern biology Pubmed keyword hits (per year) GFP OR "fluorescent protein" FRET 700 4000 600 Curr Biol 9: 1127-30 500 3000 EMBO J. 17: 7179-89 400 2000 300 200 1000 100 0 1990 1992 1994 1996 1998 2000 Localization Dynamics 2002 2004 1990 1992 1994 1996 1998 2000 2002 2004 + Biological function = Cellular physiology FRET-based physiological sensing "actuator" intermolecular "sensor" intramolecular more FRET no FRET conformation no FRET FRET interaction proteolysis FRET examples Control FRET Lifetime Distribution 1.0 Lifetime 1.0 0.6 0.6 0.4 0.4 0.2 0.2 0.0 0.0 2.2 2.3 2.4 2.5 2.7 2.6 Lifetime (ns) Overlay C Distribution D Colocalization 100% Lifetimes E α-Syn 0% 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Lifetime (ns) 1.4 favorite FRET test subject: polystyrene beads, covalently with GFP protein, chemically labeled with Cy3 α-Syn/Tau FRET resolution translates to sub-nanometre resolution!! Wouters (2006) Contemporary Physics 47: 239-255 see also: Bunt (2004) Int. Rev. Cytol. 237: 205-277 Esposito (2007) Neurobiol. Disease, in press Lifetime distributions (ns) 0.8 EYFP-Tau 2.5 0.8 Cerulean-αSynuclein A B Spectral Issues with FRET 100 1.2 60 1.0 0.8 0.6 -1 -1 ε (mM cm ) 80 40 DE SO 0.4 BT 20 0.2 0 0.0 300 350 400 450 500 wavelength (nm) 550 600 650 Relative emission intensity CFP Exc. CFP Em. YFP Exc. YFP Em. FRET-pairs • high overlap donor emission - acceptor excitation spectra • low overlap donor emission - acceptor emission (high Stoke"s shift) • high molar extinction coefficient acceptor • high fluorescence quantum yield donor • high photostability acceptor • donor lifetime > acceptor lifetime • NO dimerization! Bunt G & Wouters FS (2004) Internat. Rev. Cytology, 237, 205-277 Esposito A & Wouters FS (2006) Fluorescence lifetime imaging: Quality assurance and standards. In Methods and Applications of Fluorescence, Springer Verlag (in press) FRET-pairs • high overlap donor emission - acceptor excitation spectra • low overlap donor emission - acceptor emission (high Stoke"s shift) • high molar extinction coefficient acceptor • high fluorescence quantum yield donor • high photostability acceptor • donor lifetime > acceptor lifetime • NO dimerization! die Eierlegende Wollmilchsau! (the egg-laying woolly milk-pig) Bunt G & Wouters FS (2004) Internat. Rev. Cytology, 237, 205-277 Esposito A & Wouters FS (2006) Fluorescence lifetime imaging: Quality assurance and standards. In Methods and Applications of Fluorescence, Springer Verlag (in press) chromoprotein FRET acceptor 1.0 EYFP REACh 0.5 REACh 2 REACh 1 Emission 0.8 0.6 0.4 0.2 0.0 500 520 540 560 580 600 wavelength (nm) GFP-PEST + Ubq-REACh1 GFP τ YFP REACh Ganesan (2006) PNAS 103: 4089-4094 1.5 2.4 (ns) 490df30/530df35 540df10/580df25 546/488 ratio QSY-gelsolin Alexa-488 Actin Rhodamine-Actin NO FRET reference FRET emission quenched Gelsolin actin uncapping at ruffles Allen P.G. Nat. Cell Biol. 5, 972-979 (2003) Intensity-based FRET using a dark acceptor by application of a concentration reference dye Exc Exc Em Em Exc Exc FRET Em GFP/Cy3 Ratio Em Emission Ratio reduced GFP bandpass Lifetime 2.6 (ns) 0.5 GFP/Cy5 Protein ubiquitination by lifetime (FLIM) and normalised donor quenching (FqRET) HA-PEST-GFP GFP PEST-GFP REACh-Ubq Ubq no filter Lifetime REACh-Ubq HA-PEST-GFP low GFP/Cy5 (AU) high Why have a dark acceptor? 1: spectral advantages conventional collect all fluorescence photons increase spectral overlap: bigger R0 Why have a dark acceptor? 2: multiplexing FRET pairs 1 conventional: 1 FRET pair CFP-YFP 1 2 2 FRET pair with dark acceptors acc 1 acc 2 Why have a dark acceptor? 3: no frustration of FRET (no build-up of FRET-incompetent DA species, AND no contamination of FRET donor lifetime with non-FRET donor decay lifetime) A D A D kFRET kFRET ! A D ! Acc needs to depopulate (emit), takes a lifetime: refractory for FRET kFRET donor emission 25 ns 5 ns 1 ns 200 ps intensity FRET: Sens. A. em / D. em = saturation for each saturation level each color is a saturation level 200 ps 1 ns 5 ns 25 ns ideal case ideal case Build-up of the FRET-incompetent DA state causes : • the emission of photons with normal, unreduced, lifetime this has consequence for FLIM • the emission of photons that should have been quenched by FRET this has consequence for FLIM, but more so for intensity-based ratio methods because the ratio is highly unlinear and the error thus "explodes" this effect increases with acceptor lifetime and saturation-level of the donor! Why have a dark acceptor? 4: no sensitized acceptor photobleaching therefore no loss of FRET and persistent protection of donor for photobleaching A D kFRET kFRET D x This is the end of the road. Acceptor finito A D a poof! The problem of sensitized acceptor photobleaching in FRET photostability ratio donor/acceptor FRET efficiency GFP-labeled beads incubated with increasing concentrations of Rhodamin-6G leads to concentration-dependent FRET as the average distance between molecules decreases 0% 100 10 1 Donor emission 25% 50% 75% 0.1 0 0 sensitized Acceptor emission 99% 25 50 75 100 time (sec) 125 150 175 0 25 50 75 100 time (sec) 125 150 175 150 175 99% 75% 50% 25% 0% 0 (=donor decay) 0.1 1 10 100 0 25 50 75 100 time (sec) 125 150 175 0 25 50 75 100 time (sec) 125 and Other even more scary: Killer Red FP CALI selective killing • genetically-encoded photosensitizer • generates singlet oxygen ROS mechanism ? * * Bulina (2005) Nat. Biotechnol. 24: 95-99 killer-red Mito ±1 h. Turbo-GFP cytoplasma GFP and synthetic fluorophores Integrin Qdot CFP Fluorescein Wouters (2006) Contemporary Physics 47: 239-255 bioorthogonal chemical labeling GFP-APP, red Qdot-labeled sAPP GFP-FAK Cy3-ACP labeled APP (G. Bunt, Stuttgart University) REAsH-FAK GFP-EGFR, Qdot-EGF orange and blue Qdots followed each other by 20 min. reviews: Prescher (2005) Nat. Chem. Biol. 1: 13-21 Ting (2005) Curr. Opin. Biotechnol. 16: 35-40 Miller (2005) Curr. Opin. Chem. Biol. 9: 56-61 Qdot-EGF during actin-driven retrograde filopodial transport Arndt-Jovin (2003) Proc. SPIE 6096: 60960 fred.wouters@gwdg.de FRET upon photobleaching c n c n even the "monomerized" forms aggregate when expressed in transgenic mice as compared to their transient expression or their Aequoria counterparts Hirrlinger (2005) Mol. Cell. Neurosci. 30:291-303
Similar documents
flash cards!!! - Dalton Local Schools
Instructions • Print these flash cards in color on white card stock • Then glue them or clip them back to back.
More information