museum national d`histoire naturelle
Transcription
museum national d`histoire naturelle
MUSEUM NATIONAL D’HISTOIRE NATURELLE Ecole Doctorale Sciences de la Nature et de l’Homme – ED 227 Année 2008 N° attribué par la bibliothèque |_|_|_|_|_|_|_|_|_|_|_|_| THESE Pour obtenir le grade de DOCTEUR DU MUSEUM NATIONAL D’HISTOIRE NATURELLE Discipline : Recherche clinique en pathologie aviaire Présentée et soutenue publiquement par Yannick ROMAN Le 22 septembre 2008 Contribution à la validation de l’électrophorèse des protéines plasmatiques comme outil diagnostique en médecine aviaire appliquée à la conservation Sous la direction de : Madame le Professeur BOMSEL-DEMONTOY Marie-Claude Sous la co-direction de : Monsieur SAINT JALME Michel, Maître de conférences Composition du jury : Mme Jeanne BRUGERE-PICOUX, Professeur , ENVA, Président Mme Marie-Claude BOMSEL-DEMONTOY, Professeur, MNHN, DJBZ, Directeur de Thèse M. Michel SAINT JALME, Maître de conférences, MNHN, UMR 5173, Co-Directeur M. Jacques DUCOS DE LAHITTE, Professeur, ENVT, Rapporteur M. Karim ADJOU, Maître de conférences, ENVA, Rapporteur M. Jean-Yves JOUGLAR, Maître de conférences, ENVT, Examinateur on. REMERCIEMENTS Je remercie tout d’abord ma collègue et amie Marie-Claude BOMSEL-DEMONTOY pour avoir accepté d’occuper la charge de Directeur de cette Thèse. Merci de m’avoir défendu jusqu’au bout avec ton dynamisme habituel. Je tiens également à remercier mon collègue et ami Michel SAINT JALME, pour ses conseils, la rigueur de ses corrections et tous les bons moments que nous avons partagés ensemble. Je pense pouvoir dire que c’est lui qui m’a appris à regarder le monde avec un regard de « chercheur ». Je tiens à remercier tout particulièrement Mme Jeanne BRUGERE-PICOUX, M. Jacques DUCOS DE LAHITTE, M. Karim ADJOU et M. Jean Yves JOUGLAR, d’avoir accepté de faire partie de mon jury de thèse. Je remercie très chaleureusement mon collègue et ami Daniel CHASTE-DUVERNOY, biologiste en laboratoire de diagnostic médical à Torcy, qui a pris en charge la totalité des dosages des protéines totales et des bilans lipidiques de cette thèse, ainsi qu’un bon nombre d’électrophorèses. Sans lui, rien ne se serait fait, car c’est lui qui m’a appris tout ce que je sais en diagnostic de laboratoire, et c’est lui qui, le premier, a attiré mon attention sur ce formidable examen complémentaire qu’est l’électrophorèse des protéines plasmatiques chez les oiseaux. Merci encore pour toutes ces heures passées à répondre à mes questions retorses. Je suis également extrêmement reconnaissant de l’aide fournie gracieusement par le laboratoire SEBIA, et en particulier par Geneviève HENNACHE pour la réalisation des électrophorèses capillaires sur le Capillarys2©. Ma reconnaissance envers Patrick TROLLIET, n’a pas de bornes. Il a en effet toujours été là pour me donner au cours de milliers de coups de téléphone les bons conseils techniques. Je remercie chaleureusement Bertrand BED’HOM de la station INRA de Jouy en Josas pour son aide inestimable dans identification de l’apolipoprotéine A-I et dans l’investigation de la ponte, Alain GUILLOT de la station INRA de Jouy en Josas pour la réalisation pratique de la spectrométrie de masse et David GOURICHON de la station INRA de Tours-Nouzilly pour les prélèvements des poules pondeuses. Ma gratitude va également au Muséum national d’Histoire naturelle, ainsi qu’au Conseil Général Seine maritime pour leur support financier en termes de réactifs d’analyse et d’investissement matériel. Je tiens en particulier à remercier Geneviève BERAUDBRIDENNE, Directrice du Département des jardins botaniques et zoologiques du MNHN, ainsi que Isabelle MARAVAL, Directeur de la culture et de la jeunesse au CG76 et Benoit PROUST, directeur adjoint de la culture et de la jeunesse au CG 76, pour avoir accepté que je réalise cette thèse en parallèle à mon travail de Dr. vétérinaire au Parc de Clères. Toute ma gratitude va également à la Direction du Parc zoologique de Clères, et en particulier à Alain HENNACHE et à Paul ASTOLFI. Merci pour toutes ces années que nous avons passé ensemble, et pour tout ce que j’ai pu apprendre à votre contact. Je suis également très reconnaissant envers l’ensemble de l’équipe des soigneurs animaliers du Parc de Clères et en particulier Didier CATTEVILLE et Cyrille DUMAIS, à l’équipe du laboratoire Bio-VSM et en particulier à Karine NAUDIN qui a pris en charge les dosages de protéines totales et les lipidogrammes, à Jean-Louis LIEGEOIS de l’académie de fauconnerie du Puy du fou qui m’a permis de réaliser des prélèvements sur de nombreuses espèces de rapaces, à Dorothée ORDONNEAU du zoo de Lille pour sa collaboration à la première partie de la thèse et pour les prélèvements des amazones, à Norin CHAI et Charly PIGNON pour nos expériences communes et pour les prélèvements de pigeons. Je tiens, bien sûr à remercier mes amis Yan, coco, Manue, Pilouch, Laurent, Arnaud, Jean-Mi, Tapu, Norin, Charly, Ced pour leur indéfectible amitié. Une personne a été la clé de voute de cette thèse : Julie, mon amie dont le soutien moral, ainsi que l’aide concrète durant cette thèse auront été essentiels. Je remercie enfin toute ma famille et en particulier ma Mère, ma Grand-mère, mon Grandpère, ma tante Jacky, mon oncle Alain, mon cousin Florian et Delphine pour leur soutien. TABLE DES MATIERES INTRODUCTION GENERALE................................................................................................ 1 LES OISEAUX EN ELEVAGE CONSERVATOIRE ........................................ 1 Contexte général................................................................................................................. 1 Contexte sanitaire des élevages conservatoires d’oiseaux ................................................. 2 L’ELECTROPHORESE DES PROTEINES SANGUINES .............................. 3 Rappels ............................................................................................................................... 3 Historique ................................................................................................................... 3 Principes généraux de l’électrophorèse des protéines sanguines ............................... 5 Techniques d’électrophorèse utilisées en laboratoire de diagnostic .......................... 8 L’électrophorèse des protéines plasmatiques comme moyen diagnostique en médecine aviaire ............................................................................................................................... 13 Utilisation de l’électrophorèse des protéines sanguines dans le contexte de la médecine humaine et vétérinaire...................................................................................... 13 Contexte : une grande diversité d’espèces aviaires et de techniques électrophorétiques ............................................................................................................ 14 Définition des fractions protéiques et du rapport albumine / globuline ................... 16 Interprétation des électrophorégrammes .................................................................. 18 OBJECTIFS DE RECHERCHE .............................................................................. 25 CHAPITRE I : variations interspécifiques des électrophorégrammes aviaires ....................... 27 Article 1: Description et identification d’un pic en alpha de grande amplitude composé d’apolipoprotéine A-I, sur les profils d’électrophorèse des protéines plasmatiques réalisés sur gel d’agarose, chez le pigeon domestique (Columba livia), le milan noir (Milvus migrans) et l’amazone aourou (Amazona amazonica). ...................................... 27 Cet article a été soumis à la revue Veterinary Clinical Pathology. ............................................... 27 Article 2: Localisation du fibrinogène et de l’albumine sur les profils d’électrophorèse des protéines plasmatiques de cinq espèces d’oiseaux taxonomiquement distinctes. ............ 47 CHAPITRE II : variations physiologiques des électrophorégrammes aviaires ....................... 59 Article 3: Influence de la mue sur les profils d’électrophorèse des protéines plasmatiques de l’oie à tête barrée (Anser indicus). ................................................................................... 59 Article 4 : Influence de la ponte sur les profils d’électrophorèse des protéines plasmatiques de la poule pondeuse (Gallus gallus)................................................................................ 79 CHAPITRE III : variations des électrophorégrammes aviaires liées à des interférences analytiques................................................................................................................................ 97 Article 5: Effets de l’hémolyse sur la concentration en protéines totales et sur les profils d’électrophorèse des protéines plasmatiques chez les oiseaux. ....................................... 97 Article 6: Effets de la lipémie sur la concentration en protéines totales et sur les profils d’électrophorèse des protéines plasmatiques chez le milan noir (Milvus migrans)....... 113 CHAPITRE IV : Comparaison de techniques électrophorétiques ........................................ 127 Article 7: L’électrophorèse des protéines plasmatiques chez les oiseaux: comparaison d’une méthode semi-automatique d’électrophorèse en gel d’agarose, Hydrasys©, avec une méthode automatisée d’électrophorèse capillaire de zone, Capillarys2©...................... 127 DISCUSSION GENERALE : apport de nos travaux à la compréhension globale des électrophorégrammes aviaires................................................................................................ 149 DIVERSITE TAXONOMIQUE DES OISEAUX ............................................ 149 APPORTS A LA COMPREHENSION DES EFFETS DE LA PONTE ET DE LA MUE ....................................................................................................................... 151 APPORTS A LA COMPREHENSION DES EFFETS DE L’HEMOLYSE ET DE LA LIPEMIE ........................................................................................................ 153 COMPARAISON DE L’UTILISATION, DES DEUX TECHNIQUES LES PLUS UTILISEES ACTUELLEMENT EN LABORATOIRE DE DIAGNOSTIC MEDICAL : L’ELECTROPHORESE EN GEL D’AGAROSE ET L’ELECTROPHORESE CAPILLAIRE DE ZONE ......................................... 155 V CONCLUSION ...................................................................................................................... 157 REFERENCES BIBLIOGRAPHIQUES ............................................................................... 159 LISTE DES ABRÉVIATIONS UTILISÉES ......................................................................... 174 ILLUSTRATION DES ESPECES D’OISEAUX ETUDIEES.............................................. 175 INTRODUCTION GENERALE I. LES OISEAUX EN ELEVAGE CONSERVATOIRE A. Contexte général La perte de diversité biologique menace de nos jours le fondement même des processus permettant l’équilibre de la vie sur Terre. La biosphère est actuellement confrontée à un taux d’extinction 10 à 100 fois supérieur au taux naturel d’extinction (UICN 1, 2008). Ayant démarré approximativement il y a 100000 ans, et coïncidant étroitement avec la croissance démographique et la répartition des être humains sur terre, l’extinction des espèces a ainsi progressé à un rythme sans précédent depuis la dernière grande extinction du Crétacé (Leakey & Lewin, 1996). Ce phénomène est connu sous le nom d’extinction de l’Holocène et constitue la sixième extinction massive. Certains biologistes estiment que plus de la moitié des espèces vivantes aujourd’hui pourraient s’éteindre d’ici 2100 (Leakey & Lewin, 1996 ; Wilson, 2002). En 2007, l'UICN considérait que 16306 espèces de plantes et d’animaux sur une liste de 41415 espèces évaluées étaient menacées et confrontées à un sérieux risque d’extinction dans un proche avenir, ce qui représentait approximativement une espèce de mammifère sur quatre, une espèce d'oiseau sur huit, et un tiers des amphibiens (UICN, 2008). Les menaces pesant sur la diversité biologique in situ s’accroissent sans cesse et les espèces doivent survivre dans des environnements de plus en plus anthropisés (Hannah & Bowles, 1995). Elles incluent les changements climatiques (Migley et al., 2002 ; Thomas et al., 2004), l’utilisation non durable des ressources, l’introduction d’espèces allochtones à caractère invasif (Williamson, 1996), l’émergence de maladies (Berger et al., 2004), la chasse intensive (Benett et al., 2002). Cependant, la plus importante est la destruction des habitats entraînant la fragmentation, la simplification et la disparition des biotopes (Sauders et al., 1991 ; Debinski & Holt, 1999 ; Koh et al., 2004). La perte et la dégradation des habitats touchent 89% des oiseaux, 83% des mammifères et 91% des plantes, inscrits dans la liste rouge de l’UICN (UICN 2008). Le taux d’extinction est si important, que certaines espèces disparaitront avant même d’être découvertes (UICN, 2008). D’ici 2050, suivant les scénarii, les changements climatiques pourraient en outre entrainer une disparition de 15 à 37% des espèces vivantes (Thomas et al., 2004). La mise en danger de la biodiversité est difficile à contrôler à court ou à moyen terme, si bien qu’un nombre croissant d’espèces pourraient être condamnées à disparaitre, malgré les mesures de conservation in situ. C’est de ces constatations qu’est né le concept de conservation ex situ reposant sur le principe de l’«Arche de Noé ». La convention sur la diversité biologique, adopté lors du Sommet de la Terre à Rio de 1 UICN : International Union for Conservation of Nature 1 Janeiro en 1992 par 168 pays la définit comme la « préservation d’une composante de la diversité biologique en dehors de son habitat naturel ». Les parcs zoologiques à travers le monde constituent une des principales réserves de populations captives dont le but est la conservation ex-situ. Ils sont organisés en réseaux dans le cadre d’associations internationales comme l’EAZA 2 en Europe et gèrent ainsi des populations captives à visée d’élevages conservatoires qui pourront, à moyen ou long terme, servir de support à des programmes de réintroduction (Olney, 2005). Ils sont désormais considérés comme des maillons de la fragile chaine qui s’est constituée pour tenter d’endiguer l’extinction de nombreuses espèces. Les parcs zoologiques peuvent de plus être de véritables laboratoires de recherche pour des espèces conservées ex situ, tant dans le domaine de l’éthologie que de la zoologie ou de la génétique… mais aussi de la pathologie qui peut être plus facilement étudiée, évaluée et souvent jugulée. Ce sont ainsi des modèles expérimentaux que l’on peut pour partie transposer dans la nature. La médecine vétérinaire y a sa place et son intérêt à tout niveau de la conservation et de la réintroduction d’espèces menacées. B. Contexte sanitaire des élevages conservatoires d’oiseaux L’établissement de populations captives à visée conservatoire implique inévitablement des modifications importantes de conditions de vie, comme par exemple pour les oiseaux, une sédentarisation. D’autre part, la rationalisation des élevages conjuguée à la problématique de présentation des collections animales en parc zoologique conduit souvent à des densités importantes d’animaux. Ces deux facteurs, facilitent la transmission des agents pathogènes (Fowler, 1996). D’autres facteurs tels le stress favorisent l’apparition de maladies inhérentes à la captivité et aux manipulations. Le stress peut être responsables de l’élévation des taux de corticostéroïdes sanguins, et ainsi entrainer une immunodépression (Fowler, 1996). Malgré les précautions prises dans le cadre des programmes d’élevage, les taux de consanguinité sont souvent plus élevés que dans la nature, ce qui peut concourir à affaiblir les défenses naturelles des animaux. Enfin, le mélange d’individus de sensibilités différentes aux maladies (animaux d’espèce ou d’âge différent) est souvent néfaste puisqu’il permet la mise en contact d’animaux plus ou moins naïfs d’un point de vue immunitaire avec des réservoirs potentiels de germes pathogènes (Fowler, 1996). Les conditions inhérentes aux élevages conservatoires sont donc grandement propices à l’apparition et à la transmission de maladies pouvant s’avérer dévastatrices pour les populations captives. La prévention de ces maladies est une préoccupation quotidienne du personnel scientifique travaillant dans ces institutions (Miller, 1999). Il est indispensable que les animaux conservés ex situ jouissent d’une bonne santé. En effet, la problématique de réintroduction en milieu naturel ne peut être menée à bien sans un contrôle des 2 EAZA : European Association of Zoo and Aquaria 2 problèmes sanitaires. Il faut impérativement éviter de répandre dans des populations dont les effectifs sont déjà affaiblis des agents pathogènes dont les impacts seraient catastrophiques (Woodford, 201). La mise en place de mesures de prophylaxie sanitaire, destinées à prévenir l’apparition et la propagation de maladies repose sur un certain nombre de moyens diagnostiques (Wolff, 1996), surtout chez les oiseaux qui n’expriment, en général, que très tardivement des symptômes. Or il apparait qu’un grand nombre d’examens complémentaires (Radio-immuno assay, ELISA) sont caractéristiques d’espèces. Dans le cadre des élevages d’oiseaux en parc zoologique, la variété des taxons détenus, ainsi que leur éloignement phylogénétique par rapport aux espèces à intérêt économique majeur (poulet, faisan, canard) en limite souvent l’usage. Le cout des analyses, ainsi que la possibilité de les réaliser en grand nombre dans le cadre de protocoles de dépistage ont également leur importance. C’est dans ce contexte que l’électrophorèse de protéines plasmatiques est utilisée en routine au Parc zoologique de Clères depuis maintenant sept ans. Cet examen complémentaire s’est révélé extrêmement utile dans le cadre de mesures de prophylaxie offensive et défensive contre la tuberculose aviaire et nous a permis de faire baisser la prévalence de la maladie. L’électrophorèse des protéines plasmatiques présente de nombreux avantages : possibilité de réaliser de grandes séries d’analyses, faible cout, etc. II. L’ELECTROPHORESE DES PROTEINES SANGUINES A. Rappels 1. Historique L'invention de l'électrophorèse est issue de la convergence de multiples travaux en physique, en chimie et en biologie. Historiquement, les premières lois de l’électrostatique et de l’électricité apparaissent dès le début du XVIIIe siècle avec les travaux de Charles de Coulomb (1736-1806) qui définit les premières lois de l'électrostatique, Alessandro Volta (1745-1827) qui invente la première pile électrique, André Marie Ampère (1775-1836) qui définit les notions de tension et d'intensité d'un courant électrique et établit en 1827 les lois de l'électrodynamique. En 1859, l’allemand Georg Hermann Quincke (1834-1924) découvre qu’il est possible de déplacer des particules colloïdales sous l’action d’un champ électrique : ce phénomène est appelé la cataphorèse. Par la suite, Hermann Von Helmholtz (1821-1894) met en évidence un phénomène similaire en milieu liquide, l'électro-osmose : dans un champ électrique, il observe que des particules chargées se déplacent vers le pôle de signe opposé à leur charge. En 1892, S.E Linder et H. Picton imaginent exploiter cette observation pour la séparation de particules chargées : des molécules portant plus de charges doivent migrer plus vite que celles en portant moins. En 1937, le biologiste suédois Arne Wilhelm Kaurin Tisélius (1902-1971) concrétise cette idée en séparant les protéines contenues dans des liquides biologiques complexes comme du sérum sanguin et du lait, ce qui lui vaut le prix Nobel en 1948 (Tiselius, 1937; Kyle & Shampo, 2005). Au départ, la séparation des protéines se faisait donc en milieu liquide dans un tube en verre 3 et le repérage des substances séparées était réalisé par des moyens optiques complexes et coûteux (Tiselius, 1937; Mahenc & Sanchez, 1980). Dès le début des années 50, la technique est améliorée stabilisant la phase liquide sur un support solide. C’est l’électrophorèse sur support. Le premier support utilisé est tout d’abord un support de papier (Kunkel & Tiselius, 1951), vite remplacé par J. Kohn en 1957 par l’acétate de cellulose (Kohn, 1957; Rocco, 2005). Cette amélioration permet l’utilisation de voltages plus élevés, ce qui permet une séparation électrophorétique plus rapide. La détection des protéines, par coloration est plus simple et moins couteuse que dans l’appareil de Tiselius (Mahenc & Sanchez, 1980). Dès 1955, O. Smithies propose l’utilisation d’un gel d’amidon pour stabiliser la phase aqueuse (Smithies, 1955). L’intérêt d’un gel réside dans une plus grande porosité limitant le tamisage moléculaire. Ce type de support combine les avantages des techniques précédentes et permet d’obtenir une résolution accrue. Les améliorations suivantes ont été apportées par l’utilisation de gels de polyacrylamide (Raymond & Wang, 1960) et d’agarose (Elevitch, 1966). Ces supports sont plus faciles à préparer et permettent encore une amélioration de la résolution (Mahenc & Sanchez, 1980; Bienvenu et al., 1998). En 1967, Hjerten est le premier à décrire l’utilisation de l’électrophorèse capillaire de zone, qui est en fait une variante améliorée du système de Tiselius (Hjerten, 1967). La séparation des protéines est effectuée dans des tubes capillaires, ce qui permet l’utilisation de très hauts voltages, sans échauffement de l’échantillon, puisque la chaleur produite se dissipe aisément. La quantification des fractions protéiques est réalisée directement par mesure de l’absorbance à travers la paroi du tube (Feuilloley et al., 1999; Bossuyt, 2003). Depuis ses débuts en 1937 l’électrophorèse n’a ainsi eu de cesse de s’améliorer et est devenue un outil indispensable dans de nombreux laboratoires de recherche et dans l’industrie. L’électrophorèse est actuellement couramment utilisée en médecine humaine et en médecine vétérinaire des mammifères, où on l’utilise en particulier pour séparer les protéines présentes dans les fluides biologiques. La technique la plus utilisée actuellement en laboratoire de diagnostic est l’électrophorèse en gel d’agarose (Daunizeau, 2003). Elle tend à être supplantée dans les laboratoires ayant des débits d’analyse importants, par l’électrophorèse capillaire. Notre étude a donc été basée exclusivement sur l’utilisation de l’électrophorèse en gel d’agarose et de l’électrophorèse capillaire en médecine aviaire, cette dernière n’ayant a ce jour encore jamais été étudiée chez l’oiseau. Ces deux méthodes, d’utilisation fréquente en milieu médical sont ainsi facilement accessibles à tout praticien vétérinaire. 4 2. Principes généraux de l’électrophorèse des protéines sanguines Du latin scientifique electricitas, dérivé du grec êlektron (ambre jaune ayant la propriété d’attirer les corps légers lorsqu’on l’a frotté), relatif à l’électricité et du grec pherein porter, l'électrophorèse est une méthode de séparation de particules chargées électriquement par migration différentielle sous l'action d'un champ électrique (Dauzat et al, 1988). Des particules chargées placées dans un champ électrique créé par une tension continue se déplacent vers le pôle de signe opposé à leur charge à une vitesse proportionnelle à cette charge. Cette opération, s'appliquant à un ensemble hétérogène de particules chargées, entraîne la séparation de ces particules : c'est la séparation électrophorétique ou électrophorèse. a. Charge électrostatique d’une protéine Les protéines sont des molécules amphotères. Elles possèdent à la fois des fonctions acides (groupement carboxylique : R - COOH) et basiques (groupement amine : R – NH2). Selon le pH du milieu dans lequel elles se trouvent, les protéines vont se comporter plutôt comme des acides ( R – COOH Ù R – COO- + H+) ou comme des bases ( R – NH2 + H+ Ù R – NH3+), acquérant ainsi une charge nette plutôt négative ou positive en fonction du pH (Lassus, 2001). Pour chacune de ces molécules il existe un pH caractéristique de la molécule, où la charge nette est nulle puisque les charges négatives et positives des fonctions acides et basiques s’annulent. C’est le pH isoélectrique ou pHi. La charge q d'une protéine est donc fonction de son pH isoélectrique et du pH de la solution tampon (Lafont, 2005). Une molécule en solution à un pH supérieur à son pHi, se comporte comme un acide et cède des protons. Il y a donc prédominance des groupements COO-. Elle acquiert une charge apparente négative et se comporte comme un anion. La différence pH - pHi détermine l'intensité de la charge q d'une particule : plus cette différence est grande en valeur absolue, plus la charge est importante (Lafont, 2005). Dans le cadre de l’électrophorèse des protéines sanguines, les pH utilisés sont basiques. Les protéines, chargées négativement, migrent donc vers l’anode. b. La force coulombienne et la force de friction, principaux acteurs de l’électrophorèse La force coulombienne F subie par une particule de charge électrique q soumise à un champ électrostatique E se définit comme suit: F = q . E avec F en Newtons, q en Coulombs et E en V.m-1. Soumise à cette force électrostatique, cette particule va se déplacer à une vitesse v constante de telle sorte que: F = qE = γv où γ est un cœfficient de friction. La mobilité électrophorétique µ de la particule est définie comme étant telle que v = µ E (Mahenc & Sanchez, 1980). 5 Très rapidement, lors de son déplacement, la particule va se déplacer à vitesse constante, la force coulombienne s’équilibrant avec des forces de frottements. Ces forces de frottement visqueux sont proportionnelles au diamètre de la particule et à la viscosité du milieu. La mobilité électrophorétique d'une particule est donc proportionnelle à sa charge et inversement proportionnelle à la viscosité du milieu et à sa taille. c. Autres phénomènes complexes intervenant lors de l’électrophorèse: Le courant d'électro-endosmose est un phénomène intervenant dans l’électrophorèse sur support et dans l’électrophorèse capillaire. Dans les conditions expérimentales de pH imposées par l’utilisation de la solution tampon, le support ou le tube capillaire se charge dans la plupart des cas négativement. Cette charge négative attire les cations du tampon et crée ainsi une double couche électrique dite double couche de Stern. Sous l’effet du champ électrique, les cations excédentaires de la double couche se mettent en mouvement vers la cathode en entraînant l’apparition d’un courant liquidien dirigé du pôle positif vers le pôle négatif. Ce courant liquidien est lié à la migration des cations entraînant le solvant par effet d’osmose. Il accélère ou ralentit la migration des molécules, suivant qu'elles migrent vers la cathode ou vers l'anode (Feuilloley et al., 1999; Daunizeau, 2003; Lafont, 2005; Perrin, 2006). Il peut même dans le cas de l’électrophorèse capillaire, être plus puissant que les forces électriques, ce qui fait que des protéines chargées négativement peuvent globalement migrer vers la cathode (Feuilloley et al., 1999 ; Bossuyt, 2003). Le passage du courant dans tout matériau conducteur s'accompagne de son échauffement par effet Joule. Ce dégagement de chaleur entraîne la formation de courants liquidiens de convection. Ces courants élargissent les zones de séparation et diminuent ainsi la résolution de la séparation électrophorétique (Mahenc & Sanchez, 1980 ; Perrin, 2006). Pour limiter l’impact des courants de convection, le support est en général réfrigéré. Dans le cas de l’électrophorèse capillaire, les dégagements de chaleur sont facilités par la surface de contact importante du tube capillaire avec l’air environnant (Feuilloley et al., 1999; Bossuyt, 2003). Dans l’électrophorèse sur support, l’utilisation d’un support destiné à stabiliser la phase liquide du système s’accompagne également de l’apparition de quelques phénomènes pouvant modifier la mobilité électrophorétique des protéines à séparer : • Le phénomène de tamisage moléculaire : lors de l’électrophorèse, les molécules qui se déplacent ont tendance à heurter les mailles du support. Plus le substrat est poreux, moins le phénomène est important. Dans le cas d’un support peu poreux, les pores du support sont de petite taille et les molécules ont tendance à être ralenties, voire même arrêtées à l’endroit de leur dépôt pour les plus grosses d’entre elles. Ce phénomène est négligeable lors d’utilisation de gels d’agarose pour les électrophorèses de protéines (Daunizeau, 2003). • Les phénomènes d’adsorption : les charges apparues sur le support, de même que des interactions hydrophobes peuvent parfois attirer, voire fixer des molécules sur le support (Mahenc & Sanchez, 1980; 6 Daunizeau, 2003). Ces phénomènes ont tendance à diminuer la résolution de la séparation électrophorétique. Ils sont limités dans le cas de l’utilisation de certains supports comme les gels d’agarose. • Les courants d'évaporation : le passage du courant dans tout matériau conducteur s'accompagne de son échauffement par effet Joule. Dans le cas d'une électrophorèse sur support, cet effet peut entraîner un échauffement du support de migration conduisant à une évaporation de l'eau de la solution tampon. Cet effet est maximal au milieu de la bande. Il s'établit ainsi un courant liquidien depuis chaque extrémité vers le centre de la bande (Daunizeau, 2003 ; Lafont, 2005). A l’extrême, il peut se produire au centre du support une hyper concentration saline et un resserrement des mailles lorsque le support est un gel. Pour limiter ce phénomène, on utilise en général des cuves réfrigérées. d. Paramètres influant le résultat d’une électrophorèse De toutes les notions précédentes, il est possible de déduire que la migration électrophorétique d'une molécule dépend de très nombreux facteurs parmi lesquels on peut citer : • Les caractéristiques intrinsèques des molécules de l’échantillon comme leur charge électrique et leur encombrement stérique. • La quantité de l’échantillon qui doit être de quelques microgrammes dans le cadre de l’électrophorèse de zone à proprement parler. Dans le cas contraire, il existe des risques que le champ électrique ne soit plus uniforme après un temps de migration donné, comme c’est le cas dans l’isotachophorèse (Mahenc & Sanchez, 1980) • L’intensité du champ électrique doit être adaptée à la nature des molécules à séparer. La séparation de grosses molécules requiert plutôt des champs électriques de faibles ampleur (quelques V/cm) alors que celle de petites molécules requiert des champs plus forts (jusqu’à 100 V/cm) (Mahenc & Sanchez, 1980). Le champ électrique doit être suffisamment puissant pour que le temps de séparation soit court. Il est cependant important de garder à l’esprit que l’utilisation de champs électriques forts entraîne des dégagements de chaleur par effet Joule (Mahenc & Sanchez, 1980). • La température doit être maintenue la plus basse possible. Elle a en effet tendance à augmenter du fait de l’effet Joule (Daunizeau, 2003). Une température élevée augmente la diffusion des molécules par mouvement brownien et par les courants de convection et diminue ainsi la résolution d’une électrophorèse. En électrophorèse des protéines, il est important que la température n’atteigne pas la limite fatidique de 60°C où ces dernières sont irréversiblement dénaturées (Mahenc & Sanchez, 1980). • Les caractéristiques physico-chimiques du solvant : Le pH conditionne la charge des protéines en fonction de leur pHi. Il est donc important qu’il soit constant pour que le déplacement des molécules soit reproductible. On utilise donc une solution tampon dont le pH est fixé. La viscosité du solvant conditionne l’importance des forces de frottement. Comme nous l’avons vu précédemment, la mobilité électrophorétique d’une molécule est inversement proportionnelle au cœfficient 7 de viscosité du solvant. Plus une molécule est volumineuse, plus l’effet de la viscosité du solvant est important. Plus la viscosité est importante et plus les phénomènes de convection et de diffusion sont limités (Mahenc & Sanchez, 1980). La force ionique du tampon dépend de la concentration des différents ions et de leur valence (Daunizeau, 2003). Une concentration en électrolytes élevée dans la solution tampon par rapport à la concentration en électrolytes de l’échantillon permet de maintenir un pH constant et un gradient de potentiel uniforme dans le système (Viera-Nunes, 1999). Lorsque la force ionique du tampon augmente, la mobilité électrophorétique des molécules à séparer diminue (Mahenc & Sanchez, 1980). Il est important que le tampon soit homogène et que sa composition reste identique pendant toute la durée de la migration. Pour cela, il suffit que les compartiments anodiques et cathodiques soient de volumes suffisamment élevés pour que l’on puisse négliger l’évolution de la composition de l’électrolyte par phénomène d’électrolyse au cours de l’électrophorèse (Mahenc & Sanchez, 1980). Certains ions minéraux peuvent se fixer sur les protéines, diminuer leur charge nette et entraîner leur floculation. Le choix d’une solution tampon est primordial pour une séparation donnée (Mahenc & Sanchez, 1980). • Les caractéristiques physico-chimiques du support vont conditionner l’intensité des phénomènes de tamisage moléculaire, d’adsorption et de courants liquidiens. Un bon support d’électrophorèse doit présenter les caractéristiques suivantes (Daunizeau, 2003) : bonne résistance mécanique, porosité adaptée aux molécules à séparer, inertie chimique et insolubilité, phénomènes d’électro-endosmose et d’adsorption mineurs, structure et composition adapté au mode de révélation. Seule la maîtrise parfaite de l'ensemble de ces paramètres permet l'obtention de résultats répétables, et donc utilisables. 3. Techniques d’électrophorèse utilisées en laboratoire de diagnostic a. L’électrophorèse de zone en gel d’agarose Une installation d’électrophorèse de base compte 4 unités principales (Daunizeau, 2003) : - Un générateur de courant continu. - Une cuve contenant deux bacs de tampon dans lesquels plongent les électrodes reliées au générateur, ainsi qu’un système permettant d’installer le gel de telle sorte qu’il baigne dans les bacs de tampon à chacune de ses extrémités. - Des bacs permettant la coloration et la décoloration des gels une fois la migration terminée. - Un système de lecture, le densitomètre intégrateur. Les cuves commerciales disponibles sont de deux grands types : verticales ou horizontales. Dans tous les cas, le système est rempli avec un électrolyte doué de propriétés tampon suffisantes pour maintenir un pH constant. De l’électrolyte en large excédent est contenu dans les compartiments anodiques et cathodiques dans lesquels plongent l’anode et la cathode permettant d’établir un champ électrique aux bornes du support 8 dont les extrémités sont immergées dans la solution. La concentration de l’analyte est en général très faible par rapport à la quantité d’électrolyte, ce qui garantit un champ électrique constant pendant la durée de la migration (Mahenc & Sanchez, 1980; Daunizeau, 2003). La migration est réalisée dans la phase liquide qui imprègne le milieu gélifié d’agarose, la matrice, dont le rôle est de stabiliser la phase liquide (Mahenc & Sanchez, 1980; Daunizeau, 2003; Lafont, 2005; Guyot-Ferreol, 2006). Celle-ci permet de limiter les courants de convection, de réduire l’influence des vibrations et de faciliter la manipulation (Daunizeau, 2003). L'agarose est constitué de longues chaînes où alternent deux monomères (le β D galactose lié en 1-3 et le 3-6 anhydro αL galactose lié en 1-4). Il se gélifie à basse température par formation d'une multitude de ponts hydrogènes entre les longues molécules linéaires de monomères qui le composent (pas de liaison covalente). ll est très hydrophile et peut, à très basse concentration (de l'ordre de 1%) former des gels solides et très poreux dont la taille des pores dépend de la concentration en agarose (Lassus 2001; Gautier 2006). Sa grande porosité le rend très utile pour séparer les molécules ou les complexes moléculaires de grande taille. A la concentration de 1 %, ce système est d’ailleurs proche de la veine liquide, l’effet de tamisage moléculaire étant quasi-inexistant. Les tensions appliquées sont de l’ordre de 200 à 300 V pendant une vingtaine de minute. On utilise en général un tampon TRIS-Véronal à pH d’environ 8,6. Les points isoélectriques des protéines sont généralement compris entre 2,7 et 7,3 (Lassus, 2001). Dans du tampon TRIS-Véronal, les protéines se comportent comme des anions et migrent vers l’anode (Kaneko, 1997; Daunizeau, 2003). Après migration, les protéines présentes sur le gel sont précipitées à l’aide d’acide acétique. Les précipités protéiques se trouvent imbriqués dans les mailles du support, ce qui a pour intérêt de les fixer à l’endroit qu’elles occupaient au moment de l’arrêt du générateur (Daunizeau, 2003). Les protéines fixées sur le support sont ensuite colorées au rouge ponceau ou à l’amidoschwarz, puis le support est décoloré et séché. La lecture des gels est effectuée à l’aide d’un densitomètre intégrateur. La courbe obtenue par lecture densitométrique du support permet la détermination des différents pourcentages de fractions protéiques. Après mesure de la concentration en protéines totales par la réaction du biuret, il est donc possible de calculer les valeurs absolues de chaque fraction (Daunizeau, 2003). L’électrophorèse en gel d’agarose est la technique la plus fréquemment utilisée en biologie médicale pour la séparation des protéines sériques ou plasmatiques. Elle n’a cependant été que relativement rarement abordée dans les publications sur les oiseaux par rapport à des techniques aujourd’hui abandonnées en diagnostic, comme l’électrophorèse sur acétate de cellulose. Les méthodes totalement manuelles d’électrophorèses, manquant de répétabilité et de reproductibilité sont de plus progressivement abandonnées au profit de méthodes semi-automatiques. Notre étude de l’électrophorèse des protéines plasmatiques chez les oiseaux a donc été basée sur les toutes dernières techniques semi-automatiques qui ont permis à cette méthode de diagnostic de se simplifier et de gagner en fiabilité. 9 b. Utilisation d’un système semi-automatisé d’électrophorèse sur gel d’agarose Sebia Hydrasys © dans le cas de notre étude L’Hydrasys est un système semi-automatique créé et commercialisé en 1997 par la société SEBIA, leader sur le marché de l’électrophorèse en laboratoire médical. L’intérêt majeur de l’utilisation de ce système repose sur la grande répétabilité et reproductibilité des résultats obtenus grâce à l’automatisation de la plupart des étapes de l’électrophorèse : application de l’échantillon sur le gel, migration, séchage du gel, puis coloration (Bossuyt, 1998a). Cette grande répétabilité, ainsi que le fait que ce système permette la gestion semi-automatique de grandes séries d’échantillons le rendent tout à fait adapté comme outil de recherche dans notre étude. Cet automate est composé de deux compartiments : un compartiment de migration dans lequel a lieu le dépôt des échantillons sur le gel, la migration, puis le séchage du gel, et un compartiment de coloration dans lequel le gel est coloré au noir amidon, décoloré, puis séché. Un fois coloré, le gel est lu par un scanner haute résolution piloté par un logiciel qui permet l’acquisition des courbes d’électrophorèse (Phoresis © version 5.50). Dans notre étude, les courbes ont été redécoupées manuellement. Figure 1 : Automate Sebia Hydrasys©. Le fonctionnement de ce système est semi-automatique. Il comporte un compartiment de migration et de séchage du gel (A) et un compartiment de coloration (B). 10 Figure 2 : Exemple de gel 15/30 Hydragel protein © après migration et coloration au noir amidon. De 1 à 10 : coq (Gallus gallus) ; de 11 à 18 : pigeon domestique (Columba livia) ; de 19 à 26 : Milan noir (Milvus migrans). Figure 3 : Découpage d’une courbe de colombiforme à l’aide du logiciel Phoresis ©. 11 Par rapport au système traditionnel d’électrophorèse décrit précédemment, le système Hydrasys présente quelques variantes : • L’application de l’échantillon est réalisée par l’automate à l’aide d’applicateurs microporeux. • Les cuves sont remplacées par des mèches en éponge imprégnées d’une solution tampon. Ces mèches sont elles-même au contact des électrodes. Elles sont remplacées à chaque analyse. • Les gels sont fabriqués industriellement, et non de manière extemporanée comme dans les systèmes traditionnels. Un contrôle qualité garantit que les caractéristiques physico-chimiques des gels sont rigoureusement identiques. • Le maintien des gels à température constante durant la migration et le séchage sont assurés par un système à effet Peltier associé à un échangeur thermique. Ceci permet d’obtenir des variations importantes de température en des temps extrêmement courts. • La fixation des protéines dans le gel est obtenue par séchage rapide. • La coloration est prise en charge automatiquement dans le compartiment de coloration. Il s’agit d’une coloration au noir amidon. Les interventions du technicien se résument donc à charger les applicateurs avec 10µL de plasma ou de sérum, à placer le gel et l’applicateur dans le compartiment de migration, à choisir et à démarrer le programme de migration, à transférer le gel séché dans le compartiment de coloration, à choisir et à démarrer le programme de coloration et à réaliser l’acquisition des courbes dans le scanner et leur découpage à l’aide du logiciel Phoresis ©. Les kits utilisés dans notre étude pour l’électrophorèse des protéines sanguines des oiseaux étaient des kits Hydragel 15/30 proteine ©. Ces kits comprenaient les gels, les râteaux d’application, les mèches tamponnées, ainsi que le colorant nécessaire. Ces consommables étaient donc remplacés systématiquement entre chaque analyse. La séparation électrophorétique était réalisée sur des gels d’agarose à 8g/L dans un tampon Tris-barbital à pH 9,2, à puissance constante de 22 W jusqu’à accumulation de 33V.h. Pendant la migration, la température était maintenue à 20°C. c. L’électrophorèse capillaire de zone L’électrophorèse capillaire de zone est réalisée dans des tubes de silice de très faible diamètre (25 à 100 µm), d’où une surface de contact proportionnellement très importante avec l’échantillon à analyser et avec la solution tampon (Viera-Nunes, 1999). Le faible diamètre des capillaires permet une dissipation très efficace de la chaleur générée par l’effet Joule et autorise l’utilisation de champs électriques très élevés (Bossuyt, 2003; Perrin, 2006). En présence d’un tampon aqueux de pH très alcalin, les groupements silanol de la paroi du capillaire sont chargés négativement et induisent un courant d’électro-endosmose important : le flux électro-osmotique. Celui-ci assure un « pompage » des molécules de l’anode vers la cathode sous la forme d’un front plat, d’où une efficacité séparative très élevée (Feuilloley et al., 1999; Bossuyt, 2003). Dans ce courant liquidien, les molécules cationiques voient leur mobilité propre s’ajouter au flux électro- 12 osmotique et gagnent rapidement la cathode. C’est le contraire pour les molécules anioniques qui sont ralenties par le flux électro-osmotique mais finissent tout de même par rejoindre l’extrémité cathodique du tube, le flux électro-osmotique surpassant leur vitesse de déplacement dans le tampon (Feuilloley et al., 1999; Bossuyt, 2003). La détection est réalisée tout le long de la migration, à l’extrémité cathodique du tube, par mesure de l’absorbance ou par fluorescence induite par un laser (Feuilloley et al., 1999; Bossuyt, 2003). L’électrophorèse capillaire est utilisée dans le domaine médical depuis 1994 (Bossuyt, 2003). Cette technique, complètement automatisée, surpasse l’électrophorèse de zone classique par sa rapidité d’exécution et sa répétabilité (Feuilloley et al., 1999; Bossuyt, 2003). Nous avons été les premiers, au cours de cette étude, a utiliser cette technique chez l’oiseau. B. L’électrophorèse des protéines plasmatiques comme moyen diagnostique en médecine aviaire 1. Utilisation de l’électrophorèse des protéines sanguines dans le contexte de la médecine humaine et vétérinaire Utilisée à des fins médicales chez l’homme depuis plus de 50 ans, l’électrophorèse des protéines sériques a bénéficié de toutes les améliorations acquises au fil des années. D’abord réalisées sur support de papier, puis sur acétate de cellulose, les électrophorèses sont maintenant couramment réalisées sur gel d’agarose, et en électrophorèse capillaire (Dimpopullus, 1961; Bossuyt, 1998a; Le carrer, 1998; Daunizeau, 2003). Chez l’homme, l’électrophorèse des protéines sériques peut aider au diagnostic de syndromes néphrotiques, de syndromes inflammatoires ou de cirrhoses hépatiques. Toutefois, son utilisation la plus importante demeure le diagnostic des gammapathies monoclonales accompagnant certains types d’hémopathies malignes (Dimpopullus, 1961; Bossuyt, 1998a; Le carrer, 1998; Daunizeau, 2003). Le fait d’utiliser du sérum au lieu de plasma permet d’éviter que le fibrinogène ne masque d’éventuels pics monoclonaux à la jonction beta-gamma (Daunizeau, 2003). Ce n’est qu’une dizaine d’années après le début de son utilisation en médecine humaine que cette technique est apparue dans le domaine de la médecine vétérinaire, principalement, des carnivores domestiques et des chevaux (Amog et al., 1977; Groulade, 1978, 1985 ; Trumel et al., 1996; ). L’utilisation de l’électrophorèse des protéines sériques des mammifères domestiques diffère peu de son utilisation chez l’homme. Cependant, si l’utilisation de l’électrophorèse est devenue complètement courante dans les laboratoires de médecine humaine, son usage dans les laboratoires vétérinaires demeure encore assez peu développé. Chez les oiseaux, l’électrophorèse des protéines sanguines est utilisée en tant que moyen diagnostic depuis une quinzaine d’années. Son utilisation en médecine aviaire est donc beaucoup plus récente que chez les mammifères (Cray & Tatum, 1998; Werner & Reavill, 1999; Cray et al., 2007). L’électrophorèse des 13 protéines sanguines est principalement utilisée dans le diagnostic de phénomènes inflammatoires liés à des affections bactériennes, virales ou parasitaires chez les oiseaux. Elle est donc le plus souvent réalisée sur plasma en médecine aviaire. Les plasmas sont en effet moins sujets à l’hémolyse que les sérums, et ils contiennent le fibrinogène, protéine caractéristique de la phase aiguë de l’inflammation (Hawkey & Hart, 1988; Hochleitner et al., 1994; Cray & Tatum, 1998 ; Fudge, 2000). L’électrophorèse des protéines permet chez l’oiseau, de combler l’absence totale de techniques de dosages de protéines spécifiques de l’inflammation tels que nous les connaissons chez les mammifères (dosage de la C Reactive Protein par exemple). Utilisée conjointement au dosage des protéines totales par la réaction du Biuret, l’électrophorèse des protéines est de plus reconnue en médecine aviaire comme étant la méthode la plus adaptée à la détermination de la concentration en albumine et en globulines d’un plasma (Spano et al., 1980 ; Lumeij et al., 1990 ; Lumeij et al., 1996 ; Harr, 2002). Le faible volume de plasma nécessaire pour réaliser une analyse rend cette technique utilisable, même chez des espèces de petite taille. Les indications de cet examen complémentaire sont donc, chez l’oiseau, proches de celles d’une numération / formule sanguine. En revanche, sa mise en œuvre est beaucoup plus simple et beaucoup plus rapide que celle de la réalisation d’un hémogramme, qui implique obligatoirement une numération manuelle par technique indirecte (Lucas & Jamroz, 1961 ; Campbell, 1995). Nombreux sont les auteurs qui considèrent cet examen complémentaire comme un outil diagnostic fiable en médecine aviaire (Cray & Tatum, 1998 ; Werner & Reavill, 1999 ; Cray et al. 2007). Certains auteurs attirent néamoins l’attention (sans donner de précision sur les paramètres utilisés) sur des différences de résultats entre laboratoires, en particulier pour des fractions de faible amplitude (Rosenthal et al. 2005). Malgré ses possibles indications, l’utilisation de l’électrophorèse des protéines plasmatiques en médecine aviaire est encore très marginale. Le praticien est en effet confronté à un manque cruel de données validées scientifiquement dans ce domaine. 2. Contexte : une grande diversité d’espèces aviaires et de techniques électrophorétiques Les oiseaux constituent une des classes les plus diversifiées du règne animal, avec selon Sibley and Monroe (1990) 9672 espèces réparties en 2057 genres, 144 familles et 23 ordres. Cette diversité taxonomique se reflète par une diversité des profils obtenus lors d’électrophorèse des protéines plasmatiques (Sibley & Hendrickson, 1970; Cray & Tatum 1998; Zaias et al., 2000; Blanco & Hofle, 2003). Certaines études montrent que des protéines de même nature peuvent migrer sur des distances différentes en fonction des espèces. Ainsi, bien que de poids moléculaires identiques, l’albumine de la perruche callopsite (Nymphicus hollandicus) migre au niveau des alpha-globulines du poulet (Gallus gallus) (Archer & Battison, 1997). De telles différences de mobilités électrophorétiques s’expliqueraient par des distributions de charge de surface différentes. Une telle variabilité est une source de difficulté dans l’interprétation de ces électrophorégrammes et est probablement responsable d’une sous-utilisation de cet examen complémentaire 14 chez les oiseaux. En absence de repères normatifs, l’utilisateur est en effet tenté de se détourner de l’électrophorèse pour des examens complémentaires d’apparence plus simple à interpréter. Il est donc important de pouvoir dégager les grandes lignes communes aux électrophorégrammes des oiseaux. Les résultats de cette thèse permettront ainsi de faciliter l’établissement d’un diagnostic pathologique et parfois systématique pour les oiseaux et en particulier ceux inscrits dans les programmes de conservation. Des valeurs de références ont d’ores et déjà été établies, pour de nombreux taxons, comme les Psittaciformes (Clubb et al., 1991; Margolin, 1995; Cray et al., 2007), les Falconiformes (Ivins et al., 1986; Ferrer et al., 1987; Lumeij et al., 1998; Tatum et al., 2000; Del Pilar Lanzarot et al., 2001; Blanco & Hofle, 2003 ; Spagnolo et al., 2006), les Columbiformes (Balasch et al., 1974; Lumeij & De Bruijne, 1985; Gayathri & Hegde, 2006), les Galliformes (Torres-Medina et al., 1971; Balash et al. 1973; Filipovic et al., 2007), les Anseriformes (Balash et al. 1974; Driver et al. 1981), les Ciconiiformes (Del Pilar Lanzarot et al. 2005), les Pelicaniformes (Balash et al., 1974 ; Zaias et al. 2000). Cependant, il apparait que de nombreuses publications sont contradictoires en ce qui concerne le nombre de fractions séparées, les valeurs de concentration de ces fractions, voire même l’aspect général des courbes d’électrophorèse. Chez les pigeons et les rapaces, par exemple des publications récentes font état de manière plus ou moins explicite d’une fraction alpha d’intensité importante (Tatum et al., 2000 ; Blanco & Hofle, 2003 ; Gayathri & Hegde, 2006). Cette fraction n’est pas mentionnée dans la plupart des référence antérieures. De telles différences semblent liées à l’utilisation de paramètres électrophorétiques, voire de techniques différentes. Ceci est parfaitement illustré par l’exemple de la poule chez qui cinq bandes ont été séparées par électrophorèse à frontière mobile (Moore, 1948), cinq à six par électrophorèse sur support de papier (Common & Mc Kinley, 1953 ; McKinley et al, 1953; Torres-Medina et al., 1971), six sur gel d’agarose (Filipovic et al., 2007), six à huit sur support d’acétate de cellulose (Longenecker et al., 1967 ; Beg & Clarkson, 1970 ; Torres-Medina et al., 1971; Balash et al. 1973), 12 à 15 avec des gels d’amidon (Amin, 1961 ; Ogden et al., 1962) et jusqu’à de 10 à 19 à l’aide de gels de polyacrylamide (Glick, 1968 ; Harris & Sweeney, 1969 ; Torres-Medina et al., 1971). Notre étude sera donc basée sur l’utilisation de l’électrophorèse en gel d’agarose, technique actuellement la plus répandue dans les laboratoires de diagnostic médical. L’utilisation d’un système semiautomatisée également largement répandu en laboratoire médical, tel que l’Hydrasys © permettra à tout praticien de s’y référer directement. Nous aborderons également l’utilisation de l’électrophorèse capillaire, technique émergente en médecine humaine, dont l’utilisation n’a jamais été étudiée chez l’oiseau. 15 3. Définition des fractions protéiques et du rapport albumine / globuline Les publications les plus nombreuses concernent principalement les Psittaciformes et les Falconiformes. Les électrophorégrammes de ces espèces d’oiseaux sont le plus souvent découpés en une fraction pré-albumine, une fraction albumine, une ou deux fractions alpha, une fraction beta et une fraction gamma (Werner & Reavill, 1999 ; Cray, 2000 ; Harr, 2002). Les fractions alpha, beta et gamma sont qualifiées de globulines (Kaneko, 1997 ; Cray, 2000). Chez le poulet 84 protéines ont été identifiées dans le plasma (Corzo et al., 2004). Hormis la fraction albumine présentant un pic d’allure monoclonale, les fractions séparées par électrophorèse sont donc composées, de plusieurs protéines. Figure 4: Exemple d’électrophorégramme chez l’oie à tête barrée (Anser indicus). L’albumine constitue la fraction anodique la plus intense. La finesse de ce pic est un bon indicateur de la qualité de l’électrophorèse (Kaneko, 1997). L’albumine représente approximativement 30 à 70 % des protéines totales chez les Psittacidés et les rapaces diurnes (Tatum et al., 2000 ; Cray et al., 2007). Synthétisée par le foie, elle joue un rôle important de réservoir protéique et de transport des acides aminés entrant dans sa composition (Kaneko, 1997). En raison de son abondance et de sa petite taille, cette protéine joue de plus un rôle fondamental dans le maintien de la pression oncotique sanguine. Elle a enfin un rôle majeur en tant que protéine de transport. L’albumine permet de solubiliser dans le plasma des molécules qui seraient peu ou pas solubles en milieu aqueux et d’éviter leur élimination par le rein (Kaneko, 1997). Chez 16 l’oiseau, comme chez l’homme, l’albumine est considérée comme une protéine négative de la phase aiguë de l’inflammation, c'est-à-dire que sa concentration diminue en cas de processus inflammatoire (Wicher et al., 1991; Monnet et al., 2002 ; Upragarin, 2005). La fraction pré-albumine se situe en position anodique par rapport au pic d’albumine. Cette fraction représente de 0 à 4 % des protéines totales chez les rapaces (Tatum et al., 2000). Il s’agit le plus souvent d’une fraction de faible intensité pouvant cependant ponctuellement atteindre des valeurs avoisinant 20 à 30 % des protéines totales dans certaines espèces de psittacidés comme les inséparables (Agapornis sp.), les loris (Lorius sp.), les eclectus (Eclectus sp.) et les cacatoès (Cacatua sp.) (Cray, 2000 ; Cray et al., 2007). La fraction pré-albumine est en particulier composée de transthyrétine, une protéine de transport des hormones thyroïdiennes et du retinol (Cookson et al., 1998 ; Harr, 2002). La transthyrétine est, comme l’albumine considérée comme une protéine négative de la phase aiguë de l’inflammation (Cray et al., 2007). Les alpha-globulines constituent la fraction la « plus rapide » des globulines. Elles sont pour la plupart synthétisées par le foie (Kaneko, 1997). Elles représentent 8 à 10 % des protéines totales chez les Psittacidés (Cray et al., 2007), et de 10 à 25% chez les rapaces (Tatum et al., 2000). La fraction alpha est une fraction de protéines très hétérogène présentant des rôles biologiques variables (Alpha lipoprotéines, alpha-1 antitrypsine, alpha-1 glycoprotéine acide, alpha-2 macroglobuline, haptoglobine) (Cray, 1997 ; Cray & Tatum, 1998 ; Chamanza et al., 1999). Hormis l’alpha-lipoprotéine qui correspond aux High Density Lipoproteins (HDL) responsables principalement du transport du cholestérol et des phopholipides, ces protéines sont des protéines positives de la phase aiguë de l’inflammation (Chamanza et al., 1999). Leur concentration augmente en cas de phénomène inflammatoire. Les beta-globulines sont elles aussi principalement synthétisées par le foie (Kaneko, 1997). Cette fraction représente 10 à 25 % des protéines totales chez les psittacidés et les rapaces (Tatum et al., 2000 ; Cray et al., 2007). La fraction beta est, comme la fraction alpha, une fraction très hétérogène constituée de protéines présentant des rôles biologiques différents (fibrinogène, transferrine, beta-lipoproteine, complément) (Cray & Tatum, 1998). Là aussi, hormis la beta-lipoproteine qui correspond aux Very Low Density Lipoproteins (VLDL) responsables du transport des lipides, ces protéines sont pour la plupart des protéines positives de la phase aiguë de l’inflammation. La transferrine, protéine négative de l’inflammation chez les mammifères est une protéine positive de l’inflammation chez les oiseaux (Chamanza, 1999). Le fibrinogène est un très bon indicateur de l’inflammation (Hawkey & Hart, 1988). C’est pourquoi la plupart des auteurs choisissent d’utiliser du plasma plutôt que du sérum pour réaliser les électrophorèses des protéines sanguines chez les oiseaux (Lumeij, 1987 ; Hochleitner et al., 1994; Cray & Tatum, 1998) La fraction gamma représente environ cinq à 15 % des protéines totales (Tatum et al., 2000 ; Cray et al., 2007). Elle est constituée d’immunoglobulines mais elle peut, chez certaines espèces, contenir des protéines migrant normalement dans la fraction beta (beta-lipoprotéines…) (Cray & Tatum, 1998 ; Werner & Reavill, 1999). Il s’agit principalement chez les oiseaux des IgM, des IgA et des Ig Y (correspondant aux IgG des mammifères) synthétisées par les lymphocytes B et les plasmocytes (Glick, 2000). Leur élévation est la preuve d’une stimulation antigénique Kaneko, 1997). 17 Par convention, chez les oiseaux, le rapport albumine / globuline (A/G) est calculé en divisant la somme des fractions albumine et pré-albumine par la somme des globulines (Lumeij, 1987; Cray & Tatum, 1998 ; Werner & Reavill, 1999). Un tel rapport est en général supérieur à 1 (Tatum et al., 2000 ; Cray et al., 2007). Dans les heures qui suivent le début d’un processus inflammatoire, le foie recrute des hépatocytes destinés à la synthèse des protéines positives de l’inflammation. Ces protéines, principalement présentes dans les fractions alpha et beta permettent la mise en place de la première ligne de défense non spécifique de l’organisme. En même temps, la synthèse des protéines négatives de l’inflammation, comme l’albumine ou la transthyrétine à tendance à être régulée à la baisse pour faciliter la synthèse des protéines positives de l’inflammation par le foie (Kushner & Feldman, 1976; Wicher et al., 1991). De plus, au bout de quelques jours, la présence d’une stimulation antigénique entraine la synthèse d’immunoglobulines et donc l’augmentation des gamma-globulines (Ivins et al. 1986). Le rapport A/G est donc le paramètre le plus fiable à interpréter d’un point de vue clinique (Lumeij, 1987), puisque tout processus inflammatoire entraine très rapidement une inversion caractéristique de ce rapport. 4. Interprétation des électrophorégrammes De nombreux phénomènes peuvent induire des modifications des électrophorégrammes plasmatiques des oiseaux. Or il est capital, pour pouvoir poser un diagnostic de distinguer ce qui est réellement pathologique, de ce qui est physiologique voire artéfactuel. a. Modifications pathologiques des électrophorégrammes aviaires : Les modifications pathologiques des électrophorégrammes aviaires sont surtout connues à travers des publications reposant sur des cas cliniques. Comme le soulignent Cray et Tatum (1998), l’électrophorèse des protéines plasmatiques semble permettre de poser un diagnostic précoce, puisque dans le cas de la chlamydophilose, par exemple, des changements importants au niveau des électrophorégrammes des oiseaux malades apparaissent avant que les sérologies ne se révèlent positives. La lecture d’un électrophorégramme débute tout d’abord par le calcul et l’interprétation du rapport A/G et de la concentration en protéines totales. En général, une diminution du rapport A/G signe un processus inflammatoire en cours (Lumeij, 1987; Cray & Tatum, 1998 ; Werner & Reavill, 1999). Cette baisse peut être liée à une hypo-albuminémie et/ou à une hyperglobulinémie. Une hypo-albuminémie peut être observée dans les premiers stades d’une hypoprotéinémie (Cray et al., 1995 ; Kaneko, 1997 ; Werner & Reavill, 1999). Dans le cas d’un rapport A/G normal, l’observation d’une hyperprotéinémie signe le plus souvent un état de déshydratation de l’animal (Cray et al., 1995; Kaneko, 1997). La mise en évidence d’une hypoprotéinémie peut être liée à un défaut de synthèse protéique (malnutrition, malabsorption, insuffisance 18 hépatique), à des fuites protéiques (diarrhée, insuffisance rénale, hémorragie ou exsudation massive), ou à une hyperhydratation (Lumeij, 1987 ; Cray et al, 1995 ; Kaneko, 1997). En l’absence de normes établies, l’interprétation plus fine, fraction par fraction est plus délicate chez l’oiseau. Le praticien doit donc se référer à un électrophorégramme normal de l’espèce concernée, ou mieux à des valeurs de références personnelles. La fraction pré-albumine est une fraction de très faible intensité dont les variations sont peu interprétables. L’albumine est une protéine négative de l’inflammation, dont la concentration diminue en cas de processus inflammatoire. La diminution de la fraction albumine caractérise en général une affection chronique. Des hypo-albuminémies peuvent également être constatées lors d’hypoprotéinémie (Kaneko, 1997 ; Werner & Reavill, 1999). Une augmentation de la fraction alpha est le plus souvent liée à un état inflammatoire de l’oiseau, voire à une insuffisance rénale (Cray et al, 1995 ; Kaneko, 1997 ; Werner & Reavill, 1999). L’augmentation de la fraction beta est, comme pour la fraction alpha, le plus souvent lié à une inflammation systémique (Hawkey & Hart, 1987 ; Cray et al., 1995 ; Kaneko, 1997 ; Werner & Reavill, 1999). Elle s’observe particulièrement en cas d’hépatite (Werner & Reavill, 1999). Des diminutions des fractions alpha et beta peuvent être observées en cas d’hypoprotéinémie. La fraction gamma étant principalement constituée d’immunoglobuline, une augmentation de cette fraction signe en général la présence d’une infection accompagnée d’une stimulation antigénique du système immunitaire (Cray et al., 1995 ; Kaneko, 1997 ; Werner & Reavill, 1999). L’installation d’une réaction immunitaire signe donc la présence d’un phénomène inflammatoire qui dure au moins depuis plusieurs jours (Ivins et al., 1986). Plus rarement chez l’oiseau, un pic monoclonal dans la région gamma peut être le signe d’une hémopathie maligne (Werner & Reavill, 1997). Une diminution de la fraction gamma peut être constatée en cas d’immunodépression, ou dans le cadre plus général d’une hypoprotéinémie (Jacobson et al., 1986 ; Kaneko, 1997 ; Werner & Reavill, 1999). Les modifications des électrophorégrammes observées dépendent du stade d’évolution de la maladie. Lors d’aspergillose respiratoire chez l’oiseau, on constate ainsi en début d’évolution de la maladie une diminution du rapport A/G liée principalement à une diminution de l’albuminémie et à une hyper-beta globulinémie (Cray et al., 1995 ; Reidarson & McBain, 1995 ; Werner & Reavill, 1999 ; Ivey , 2000). Le passage à la chronicité se traduit par une hypo-albuminémie aggravée et par une augmentation de la fraction gamma (Cray et al., 1995 ; Werner & Reavill, 1999). Une fois les défenses de l’hôte submergées, on observe une diminution de toutes ces fractions (Reidarson & McBain, 1995). Le rapport A/G, et notamment l’intensité de l’hypoalbuminémie sont un bon paramètre pour estimer le pronostic de la maladie (Reidarson & McBain, 1995). Des affections bactériennes chroniques comme la tuberculose aviaire à Mycobacterium avium sont également décrites comme entrainant une hypo-albuminémie (Blanco & Hofle, 2003), ainsi qu’une augmentation importante des fractions alpha (Tatum et al., 2000 ; Blanco & Hofle, 2003), beta (Hoefer, 1996 ; Cray et al., 1995, Werner & Reavill, 1999 ; Tatum et al., 2000 ; Blanco & Hofle, 2003) et gamma (Cray et al., 1995, Werner & Reavill, 1999 ; Tatum et al., 2000 ; Blanco & Hofle, 2003). Lors de chlamydophilose aviaire aiguë à Chlamydophila psittaci, on constate chez les rapaces, comme chez les 19 psittacidés, une hypo-albuminémie associée à une augmentation marquée de la fraction beta et à une augmentation modérée de la fraction gamma (Cray et al., 1997 ; Werner & Reavill, 1999 ; Blanco & Hofle, 2003). Le passage à la chronicité s’accompagne d’un retour du profil électrophorétique vers la normalité, les fractions beta et gamma demeurant plus élevées que la normale (Cray et al., 1997 ; Werner & Reavill, 1999). Lors d’hépatite chronique, on observe une diminution des fractions albumines et alpha-2 et une augmentation globale de la fraction beta (Cray et al., 1995). Des maladies virales entrainant une immunodépression de l’oiseau, comme la PBFD 3 chez les psittacidés sont connues pour entrainer une hypoprotéinémie liée entre autres à une hypo-gamma globulinémie (Jacobson et al., 1986). Des affections parasitaires comme la sarcosporidiose à Sarcocystis falcatula, coccidie dont le cycle passe par une forme enkystée au niveau des muscles striés chez les perroquets de l’ancien monde ont été décrites comme étant responsables d’une augmentation polyclonale modérée de la fraction beta et d’une hyper-gamma globulinémie d’intensité moyenne (Cray et al., 1996). Enfin en cas de maldigestion, chez des jeunes cacatoès noirs (Probosciger aterrimus), Romagnano et al. (1996) ont décrit une hypoprotéinémie liée à une hypo-albuminémie et à une hypo-gamma globulinémie. b. Modifications physiologiques des électrophorégrammes chez les oiseaux Le cycle de vie de tout oiseau est marqué par des événements comme la croissance, la mue ou la ponte. De tels phénomènes ont des répercussions métaboliques importantes et sont donc susceptibles d’être responsables de modifications substantielles des électrophorégrammes aviaires. La prise en compte de telles modifications est capitale pour éviter toute confusion avec des modifications liées à des processus pathologiques. Le phénomène de mue implique une augmentation importante du métabolisme basal, en raison du cout énergétique lié au renouvellement des plumes, de la diminution de l’isolation thermique du plumage et de modifications comportementales de l’oiseau qui recherche une alimentation plus riche en acides aminés soufrés destinés à la synthèse de la kératine (King, 1981 ; Walsberg, 1983; Klaassen, 1995). Les plumes sont composées de 95% de protéines, et représentent 25% de la matière sèche d’un oiseau (King, 1981; Murphy & King, 1992). Leur renouvellement s’accompagne d’une augmentation significative des synthèses protéiques de l’organisme, et d’une dépression passagère de l’immunité à médiation humorale (Mrosovsky & Sherry, 1980; Murphy & Todd, 1995; Kuenzel, 2003). Les effets de la mue sur l’électrophorèse des protéines plasmatiques n’ont jusqu’à maintenant été abordés que dans une étude réalisée sur le canard colvert mâle (Driver, 1981). Cet auteur observe que la mue s’accompagne d’une diminution des protéines totales. Les taux plasmatiques d’albumine semblent 10 à 20 % plus bas durant la mue qu’après, tandis que les valeurs de la fraction alpha 2 semblent plus faibles au moment de la mue qu’avant. Cependant, cette publication est la seule existant sur ce sujet, et les techniques ont évolué depuis 25 ans. 3 PBFD : Psittacine Beak and Feather Disease 20 La ponte constitue une perturbation métabolique majeure au cours de la vie de l’oiseau. Au cours de la ponte, l’oiseau exporte ainsi des quantités importantes de lipides et de protéines destinées à la fabrication des œufs. Les protéines présentes dans le blanc d’œuf sont synthétisées directement au niveau des différentes portions de l’oviducte. En revanche, aucun des lipides et des protéines du jaune d’œuf ne sont synthétisées dans l’ovaire. Tous sont apportés par le sang et proviennent en majorité du foie dont l’activité de synthèse protéique est multipliée par 3 et la lipogenèse multipliée par 10 lors de la maturité sexuelle (Sauveur & De Revier, 1988a). De nombreuses protéines plasmatiques, comme les Very Low Density Lipoproteins (VLDL) ou les vitellogénines, ainsi que des protéines précurseur du blanc d’œuf sont présentes en quantité importante dans le sang durant la période de ponte (Hermier et al., 1989). De tels phénomènes ont été étudiés dès les années 50 dans un but de recherche en utilisant différentes techniques d’électrophorèse des protéines sanguines. Pour certains auteurs, la ponte ne s’accompagne d’aucune modification de la concentration en protéines totales du plasma (Sturkie & Newman, 1951). D’autres auteurs, en revanche ont noté une élévation des protéines totales une semaine avant la ponte, suivi d’un retour à la normale dès la ponte du premier oeuf (Vanstone et al., 1955 ; Gayathri & Edge, 2006). Les modifications les plus régulièrement observées sur les électrophorégrammes d’oiseaux en ponte sont une augmentation de la fraction pré-albumine (Brand et al., 1951; Kristjanson et al., 1963; Lush, 1963; Kuryl & Gasparska, 76,85). Au niveau de la fraction alpha, Vanstone et al. (1955) et Polat et al. (2004) décrivent que la fraction alpha-1 diminue, pour devenir quasiinexistante chez les oiseaux en ponte, ce qui est en contradiction avec Kuryl & Gasparska (1976) qui décrivent une augmentation de la fraction post-albumine durant la même période. Certains auteurs décrivent l’apparition d’un pic monoclonal au niveau de la fraction beta durant la ponte (Cray & Tatum, 1997; Werner & Reavill, 1999). Ceci n’est pas en accord avec les affirmations de Kuryl & Gasparska (1985) qui ont décrit la diminution des fractions pré et post transferrine lors de la ponte, ou de Lush (1963) qui a décrit la présence de deux fractions post-transferrine évoluant en sens inverse durant la même période. Enfin, plusieurs auteurs ont décrit une augmentation de la fraction gamma au cours de la ponte (Vanstone et al., 1955; Elliott & Bennet, 1971; Kuryl 1985). La ponte semble de plus s’accompagner d’une diminution du rapport A/G (Sturkie & Newman, 1951; Kaneko, 1989). Les études citées ci-dessus présentent ainsi de nombreuses contradictions, ce qui est très probablement lié au fait que ces études sont basées sur des techniques électrophorétiques différentes. La plupart des études sont très anciennes et les techniques ont bien évolué dans les 15 dernières années. Il serait donc intéressant de réactualiser ces données avec des techniques telles que l’électrophorèse en gel d’agarose, dont l’usage est actuellement le plus répandu comme outil diagnostique. La croissance d’un organisme implique une utilisation importante d’acides aminés transportés sous la forme de protéines dans le sang. En raison des besoins accrus lors de la croissance, le foie accélère la synthèse de protéines plasmatiques (Filipovic et al., 2007). Enfin, la maturation progressive du système immunitaire avec l’âge permet la production accrue d’immunoglobulines (Filipovic et al., 2007). Tous les auteurs s’accordent à dire que la concentration en protéines totales augmente de manière constante durant la croissance d’un oiseau (Vanstone et al., 1955 ; Cuenca, et al., 1995 ; Muller, 1995 ; Work, 1996 ; Filipovic 21 et al., 2007). La concentration en albumine semble suivre étroitement celle des protéines totales (Clubb, 1991 ; Cuenca et al, 1995 ; Work, 1996 ; Filipovic et al., 2007), bien que pour Muller (1995) il n’y ait pas de différence significative entre des oiseaux jeunes et adultes chez le faisan de Colchide (Phasianus colchicus). Chez le fuligule à dos blanc (Aythya valisineria ), Kocan & Pitt (1976) ont mis en évidence que la fraction pré-albumine était plus faible chez les jeunes oiseaux que chez les adultes. D’autres auteurs n’ont enregistré aucune différence significative chez le grand tétras (Tetrao urogallus) (Cuenca et al, 1995). D’une manière générale, les globulines semblent également augmenter lors de la croissance d’un oiseau (Medway & Kare, 1958 ; Muller et al., 1995 Work, 1996 ; Filipovic et al., 2007). Ceci semble être le résultat de l’augmentation des fractions alpha (Kocan & Pitt, 1976 ; Clubb, 1991 ; Muller et al., 1995 ; Filipovic et al., 2007), beta (Kocan & Pitt, 1976 ; Muller et al., 1995 ; Filipovic et al., 2007) et gamma (Clubb, 1991 ; Muller et al., 1995 ; Filipovic et al., 2007). Cependant, chez le grand tétras, Cuenca et al. (1995) n’ont mis en évidence aucune différence significative entre les jeunes et les adultes pour les fractions alpha et beta. Certains auteurs rapportent que le rapport A/G tend à augmenter au cours de la croissance chez les psittacidés (Clubb, 1991) alors que d’autres décrivent une diminution de ce rapport durant la même période chez le poulet (Medway & Kare, 1958 ; Muller et al., 1995 ; Filipovic et al., 2007). Pour d’autres auteurs, il n’existe aucune différence significative entre des oiseaux jeunes et adultes (Cuenca et al, 1995). Les taux de protéines contenues dans la ration alimentaire d’un oiseau sont connus pour avoir un impact sur la concentration en protéine totale et sur les différentes fractions protéiques (Leveille & Sauberlich, 1961 ; Polat et al., 2004 ; Bunchasak et al., 2005). Une ration protéique concentrée s’accompagne en effet d’une augmentation de la concentration plasmatique en protéines totales (Leveille & Sauberlich, 1961 ; Polat et al., 2004 ; Bunchasak et al., 2005). Cependant, les effets de la richesse en protéines de la ration sur les différentes fractions ne font pas l’unanimité. Pour Leveille & Sauberlich (1961), chez le poulet, une augmentation du pourcentage de protéines dans la ration s’accompagne d’une augmentation de la concentration en albumine sans augmentation des globulines. Pour Bunchasak et al. (2005), elle s’accompagne d’une augmentation de toutes les fractions protéiques à l’exception de la fraction alpha qui diminue, et d’une diminution du rapport A/G. Enfin, pour Polat et al. (2004), chez l’autruche, elle s’accompagne uniquement d’une augmentation des fractions alpha et d’une diminution de la fraction gamma. c. Effet d’interférences analytiques sur les électrophorégrammes des oiseaux On définit une interférence analytique comme l’effet d’une substance présente dans l’échantillon à analyser, qui entraine une erreur de mesure de la concentration ou de l’activité d’un analyte (Kroll & Elin, 1994). Chez les oiseaux, deux sources d’interférences sont très fréquentes : l’hémolyse et la lipémie. L’hémolyse se définit comme la rupture des cellules sanguines et la libération de leur contenu intracellulaire dans le plasma. La libération d’hémoglobine dans le plasma lui donne une coloration caractéristique rosée à rouge. L’hémolyse est le plus courant des artéfacts rencontrés en électrophorèse des protéines (Werner & Reavill, 1999). Chez les oiseaux, environ 4,5% des prélèvements réalisés sont 22 hémolysés (Fudge, 2000). Dans cette classe, les hématies sont plus volumineuses que celles des mammifères (Lucas & Jamroz, 1961) et souffrent probablement plus du passage dans l’aiguille durant la prise de sang. Les cas d’hémolyse intra-vasculaires sont rares chez les oiseaux (0,3% des prélèvements), et l’hémolyse est donc le plus souvent lié à des mauvaises manipulations du prélèvement par l’opérateur durant la phase préanalytique ou analytique : passage du sang sous pression dans le fût de l’aiguille lors de la prise de sang, délai trop important entre la collection de l’échantillon et sa centrifugation, homogénéisation brutale du prélèvement sanguin, congélation du sang total (Guder, 1986 ; Fudge, 2000). L’hémolyse est connue pour entrainer des erreurs de dosage des protéines totales. Elle est le plus souvent responsable de valeurs artéfactuellement trop hautes (Andreasen et al., 1996, 1997). Chez les oiseaux, les effets de l’hémolyse sur l’électrophorèse des protéines sont relativement peu documentés. Ils sont décrits par Werner & Reavill (1999) dans un article de synthèse, et ont été étudiés dans une publication plus générale sur l’utilisation de l’électrophorèse chez les psittacidés (Cray et al. 2007). La présence d’hémoglobine libre dans un plasma semble entrainer une augmentation de la fraction gamma. Cependant, ces deux études étaient respectivement basées sur la description de cas isolés et sur un effectif expérimental faible. Chez l’oiseau, les principales causes de lipémie sont la lipémie postprandiale et la lipémie de ponte. Dans les deux cas, la présence de lipoprotéines dans le plasma diffracte la lumière et lui donne une apparence trouble, voire franchement lactescente. La lipémie postprandiale est un phénomène courant chez les oiseaux que l’on met rarement à jeun avant une prise de sang (Meinkoth & Allison, 2007). Les prélèvements lipémiques représentent 2,87% des prélèvements réalisés chez les oiseaux (Fudge, 2000). La lipémie est connue chez l’homme pour entrainer des erreurs de dosage des protéines totales par la méthode du biuret. Elle est décrite comme étant responsable de valeurs artéfactuellement trop hautes ou trop basses en fonction du matériel d’analyse utilisé (Meinkoth & Allison, 2007). Cependant, peu de références décrivent les effets de la lipémie sur l’électrophorèse des protéines plasmatiques chez les oiseaux. Comme pour les effets de l’hémolyse, ils sont décrits succinctement par Werner & Reavill (1999) dans leur article de synthèse, et ont été étudiés dans une publication plus générale sur l’utilisation de l’électrophorèse chez les psittacidés (Cray et al. 2007). La lipémie serait responsable de l’apparition d’un pic au niveau de la fraction beta. Mais, comme pour la description de l’hémolyse, ces études s’appuient sur des effectifs expérimentaux faibles. De plus, ils ne donnent aucune indication quand à l’origine de la lipémie étudiée. Or il est très probable que les effets de la lipémie de ponte, liés principalement à la présence de VLDL (Hermier et al., 1989), soient fort différents de ceux de la lipémie postprandiale, liée principalement à la présence de portomicrons chez les oiseaux (Klasing, 2000). 23 24 III. OBJECTIFS DE RECHERCHE Les recherches menées dans le cadre de cette thèse visent à renforcer les connaissances sur l’électrophorèse des protéines pour permettre l’utilisation de cette technique en tant qu’outil diagnostique dans les élevages conservatoires d’oiseaux où l’approche sanitaire est primordiale pour une bonne gestion de ces espèces en captivité et une possible réintroduction dans leur milieu naturel. Ce travail s’articule autour de sept articles réunis en quatre chapitres qui ont pour objectif de combler point par point les carences que nous avons soulignées lors de notre analyse bibliographique. De notre étude bibliographique, il est ressorti que la classe des oiseaux est très diversifiée. En l’absence d’approche globale et de repères normatifs, il est difficile pour un utilisateur éventuel de mettre en pratique, chez l’oiseau, un examen complémentaire tel que l’électrophorèse des protéines plasmatiques. Notre premier chapitre est donc consacré à l’étude des différences interspécifiques des électrophorégrammes des oiseaux. Ce chapitre s’articule lui-même autour de deux articles. Le premier article s’est attaché à identifier la composition d’un pic monoclonal de grande amplitude situé au niveau des alpha-globulines chez les colombiformes, les falconiformes et les psittaciformes. L’identification de la protéine responsable d’un tel pic permet une meilleure interprétation des electrophorégrammes dans ces taxa. Le deuxième article a visé à localiser la bande correspondant au fibrinogène sur des électrophorégrammes de cinq espèces d’oiseaux phylogénétiquement éloignées. Nous avons proposé que cette protéine facile à localiser serve de point de comparaison des espèces les unes par rapport aux autres. Le deuxième chapitre a été consacré aux modifications des électrophorégrammes aviaires en relation avec différents état physiologiques. Le cycle annuel de vie d’un oiseau passe par diverses phases, comme la ponte et la mue. Ces étapes modifient profondément le métabolisme des individus, avec un impact peu connu sur les électrophorégrammes. Or il est capital de pouvoir distinguer les modifications liées à de tels phénomènes, de celles liées à un véritable processus pathologique. Ce chapitre s’articule autour de deux articles. Le premier a visé à décrire les modifications des électrophorégrammes au cours de la mue chez l’oie à tête barrée (Anser indicus), tandis que le deuxième a abordé les modifications liées à la ponte chez la poule domestique (Gallus gallus). Le troisième chapitre traite de l’influence des interférences analytiques sur les résultats de l’électrophorèse en gel d’agarose chez les oiseaux. En effet, à l’heure actuelle, peu de données bibliographiques traitent des interférences analytiques liées aux phénomènes d’hémolyse ou de lipémie. Or, ces phénomènes sont fréquents lors d’un prélèvement sanguin chez l’oiseau. Ce chapitre s’appuie sur deux articles. Dans le premier, nous avons comparé les effets de l’hémolyse sur les électrophorégrammes de deux espèces phylogénétiquement éloignées, comme le milan noir (Milvus migrans) et l’oie à tête barrée (Anser indicus). Le deuxième article a été consacré à l’étude de l’interférence de la lipémie postprandiale sur les électrophorégrammes du milan noir (Milvus migrans). Notre synthèse bibliographique a enfin mis en évidence que la grande majorité des publications traitant de l’électrophorèse des protéines chez les oiseaux sont basées sur des techniques qui ne sont plus 25 utilisées en laboratoire médical de nos jours. Or les résultats obtenus en utilisant des techniques différentes sont difficilement comparables. Dans la quatrième et dernière partie nous nous sommes donc employés à remettre à jour les connaissances concernant l’utilisation, chez l’oiseau, des techniques les plus modernes utilisées actuellement en diagnostic médical : électrophorèse en gel d’agarose et électrophorèse capillaire. Cette dernière partie repose sur un article dont le but était de comparer les résultats obtenus par électrophorèse en gel d’agarose à l’aide d’un système semi-automatisé avec ceux obtenus par électrophorèse capillaire de zone à l’aide d’un système complètement automatisé. La double approche, à la fois appliquée et fondamentale de ce travail s’inscrit parfaitement dans la problématique de gestion de collections du Département des Jardins Botaniques et Zoologiques du Muséum national d’Histoire naturelle. Il correspond également aux attentes réglementaires en terme de recherche appliquée à la conservation, telles qu’énoncées dans l’arrêté du 25 Mars 2004 réglementant le fonctionnement des parcs zoologiques. Enfin, il apporte les informations nécessaires à une utilisation raisonnée de l’électrophorèse des protéines plasmatiques dans le diagnostic et le screening des maladies en élevage conservatoire. Les articles de cette thèse sont présentés dans la mise en forme correspondant à la revue dans laquelle ils ont été soumis. 26 CHAPITRE I : variations interspécifiques des électrophorégrammes aviaires Article 1: Description et identification d’un pic en alpha de grande amplitude composé d’apolipoprotéine A-I, sur les profils d’électrophorèse des protéines plasmatiques réalisés sur gel d’agarose, chez le pigeon domestique (Columba livia), le milan noir (Milvus migrans) et l’amazone aourou (Amazona amazonica). Cet article a été soumis à la revue Veterinary Clinical Pathology. Résumé Notre utilisation courante de l’électrophorèse des protéines plasmatiques en tant qu’outil diagnostique nous a permis d’observer la présence d’un pic monoclonal dans la région alpha des électrophorégrammes de nombreuses espèces d’oiseaux, ce qui n’est qu’exceptionnellement évoqué dans la littérature. Le but de cette étude était d’étudier l’intensité et la position d’un tel pic et de déterminer sa composition chez l’amazone aourou (Amazona amazonica), le milan noir (Milvus migrans) et le pigeon domestique (Columba livia). Cette étude a été conduite sur 12 oiseaux de chaque espèce. Les profils obtenus en électrophorèse sur gel d’agarose ont été utilisés pour quantifier la fraction alpha. L’électrophorèse en gel d’agarose haute résolution a été utilisée pour isoler et exciser la bande alpha à étudier. Cette bande a été analysée par spectrométrie de masse afin de déterminer sa composition. Les profils électrophorétiques des trois espèces étudiées étaient tous caractérisés par la présence d’un pic fin et intense au niveau de la région alpha. Cette fraction représentait approximativement 20% des protéines totales chez l’amazone aourou et jusqu’à 36% chez le milan noir et le pigeon. L’analyse spectrométrique de ce pic nous a permis d’identifier sans aucune ambigüité l’apolipoprotéine A-I dans ces trois espèces. La protéine identifiée correspondait à la forme mature circulante de cette protéine. Cette apolipoprotéine joue un rôle clé dans le métabolisme du cholestérol via les High Density Lipoproteins. L’importance des taux plasmatiques d’apo A-I observés dans cette étude pourrait être liée au fait que chez les oiseaux, contrairement aux mammifères, la synthèse de cette protéine a lieu dans la plupart des tissus. Ceci pourrait constituer une adaptation à leur métabolisme particulier des lipides. L’apo A-I est connue comme étant une protéine négative de la phase aiguë de l’inflammation, c'està-dire que son taux plasmatique diminue lors d’un phénomène inflammatoire. L’interprétation des électrophorégrammes et le calcul du rapport A/G chez ces espèces doivent par conséquent tenir compte de telles particularités. 27 28 Description and identification of a high amplitude alpha globulin peak of Apolipoprotein A-I in agarose gel plasma electrophoresis of rock pigeons (Columba livia), black kites (Milvus migrans) and orange-winged parrots (Amazona amazonica). RH: an apolipoprotein A-I peak in avian plasma proteinograms Yannick ROMAN, Bertrand BED’HOM, Alain GUILLOT, Julie LEVRIER, Daniel CHASTEDUVERNOY, Marie-Claude BOMSEL-DEMONTOY and Michel SAINT JALME. From the Museum national d’Histoire naturelle (MNHN), DJBZ, Le Parc de Clères, Clères, France (Roman, Levrier) ; the INRA, AgroParisTech, UMR1236 GDA, Domaine de Vilvert, 78352 Jouy en Josas, France (Bed’Hom), the INRA, PAPSS, Domaine de Vilvert, 78352 Jouy en Josas, France (Guillot), the Laboratoire Bio-VSM, Torcy, France (Chaste-Duvernoy), the Museum national d’Histoire naturelle (MNHN), DJBZ, Ménagerie du Jardin des Plantes, Paris, France (Bomsel-Demontoy) and the Museum national d’Histoire naturelle (MNHN), EGB, UMR 5173 - CERSB - MNHN, CNRS, Paris IV, Paris, France (Saint Jalme). Corresponding author: Yannick Roman (yannick.roman@cg76.fr). 29 Background: The common use of plasma protein electrophoresis as a diagnostic tool in our institute has allowed us to notice the presence of a strong monoclonal alpha peak in the proteinograms of many bird species, which is seldom found in the literature. Objective: Our aim was to analyse the intensity and position of such a peak and to identify its composition in orange-winged parrots (Amazona amazonica), black kites (Milvus migrans) and rock pigeons (Columba livia). Methods: This study was conducted on 12 birds of each species. Electrophoresis patterns were used to quantify the alpha fraction. High resolution agarose gels were used to isolate and sample the protein band of interest and to identify it by de novo sequencing approach using an ion trap mass spectrometer. Results: Electrophoresis patterns of the three species displayed a strong and thin peak in the alpha region. This fraction represented about 20% of the total proteins in parrots, and up to 36% in kites and pigeons. Analysis of the alpha peak unequivocally identified apolipoprotein A-I in all three species. This protein corresponded to the mature circulating form. Conclusions: Apo A-I plays a pivotal role in cholesterol homeostasis. High levels of apo A-I could be related to the fact that in birds, contrary to mammals, apo A-I synthesis occurs in most tissues. This could be the result of an adaptation to their peculiar fat metabolism. Apolipoprotein A-I is a negative acute phase protein. Interpretation of electrophoregrams and A/G ratios in these species should therefore take this information into account. Keywords: Plasma protein electrophoresis, agarose gel electrophoresis, apolipoprotein A-I, alpha globulin, bird. 30 Within the last 15 years, the application of protein electrophoresis to clinical avian medicine has received the attention of several publications, and it is now commonly recognized to be a reliable diagnostic tool for the evaluation, diagnosis, and monitoring of a variety of diseases and conditions.1-4 Plasma proteins are traditionally identified according to their electrophoretic mobility and immuno-reactivity as either albumin or globulins.4 Albumin is the most abundant plasma protein. Globulins are traditionally separated into fractions called alpha, beta and gamma. The alpha and beta fractions contain acute phase proteins whose concentrations increase in the presence of an inflammatory condition. The gamma fraction contains immunoglobulins.2,4 Some authors have demonstrated high intertaxonomic variations of plasma electrophoresis patterns.3,5-7 In order to improve interpretation of avian electrophoregrams, several authors established reference ranges in bird taxa such as Psittaciformes,8-10 Falconiformes,7, 11-16 Columbiformes,17-19 Galliformes,20-22 Anseriformes,17,23 Ciconiiformes,24 and Pelicaniformes.6,17 Our regular use of plasma protein electrophoresis as a diagnostic tool led to the observation of a significant peak in the vicinity of alpha globulins, in various taxa such as Columbiformes, Falconiformes, Strigiformes, Psittaciformes, Phoenicopteriformes, Charadriiformes and Ciconiiformes (Yannick Roman, unpublished data). Although the amplitude of this peak seems to be a specific feature of each species, such particularities are not even mentioned in most publications relevant to this topic. The presence of a very significant peak in some species could thus lead to electrophoregram interpretation errors. Nevertheless, three recent publications have more or less explicitly mentioned the existence of this peak. In Falconiformes and Strigiformes, Tatum et al. described a high-amplitude monoclonal alpha-1 globulin fraction that was positioned just at the edge of the albumin peak.14 In the case of Falconiformes, Blanco & Hofle did not clearly point out the presence of such a peak,7 although the reference values they published confirm the significance of the alpha fraction, which alone could have represented between 22% and 31% of the total protein content. More recently, Gayathri & Hegde found that pigeons have relatively high alpha globulin content, in comparison with ducks and turkeys.19 However, none of these publications sheds any light on the molecular origin of this peak. The purpose of the present study was thus to verify the presence, and determine the composition of a strong peak in the vicinity of the alpha globulins, in the agarose gel electrophoregram of three phylogenetically distant bird species: rock pigeons (Columba livia), black kites (Milvus migrans) and orangewinged parrots (Amazona amazonica). 31 Materials and methods Experimental animals The study was conducted on 12 rock pigeons, Columba livia (5.7) held at the zoological park of Clères (France), 12 black kites, Milvus migrans (7.5) held at the Académie de fauconnerie du Puy du fou (France) and 12 orange-winged parrots (Amazona amazonica) of unknown sex. All birds were clinically examined, and determined to be healthy. Samples Blood samples were taken outside the breeding season, from September to December depending on the species. Blood samples were taken from the right jugular vein of the black kites and orange-winged parrots, and from the brachial vein of the rock pigeons, using 23 G needles and 2 ml syringes (respectively: Terumo Neolus 23 G, and Terumo Syringe 2 ml, Terumo Europe N.V., Leuven, 3001, Belgium). Two millilitres of blood were drawn from each bird, collected on lithium heparin (Venosafe vacutainers, Terumo, Leuven, Belgium), and centrifuged at 3000 g for 5 minutes. Analyses were carried out on the resulting plasma, since it is commonly accepted that this medium is preferable to serum, for protein electrophoresis in birds. Plasma is indeed less prone to haemolysis than serum, and contains fibrinogen, a protein characteristic of the acute phase of inflammatory conditions.3,25 Two aliquots of each plasma sample were then stored in cryotubes (20°C) until they were analysed (Micronic systems, Lelystad, Holland). They were then thawed and rehomogenised by gentle mixing 1 hour before analysis. Total plasma protein concentration measurements Total protein concentration was determined by the Biuret reaction, using a Roche Integra 400 wet chemistry analyser (Roche Integra 400©, Roche diagnostics, Meylan, 38242, France). Readings were made at a wavelength of 552 nm. Agarose gel electrophoresis Agarose gel electrophoresis of plasma proteins was carried out using a Hydrasys© semi-automated system (Sebia, Evry, France), using the Hydragel protein 15/30© set (Sebia, Evry, France) which is the most commonly used kit for blood protein electrophoresis in medical laboratories. The system was operated according to the manufacturer’s instructions, using version 7.00 F0.1 of the system software. Ten microlitres of plasma samples were distributed manually onto the sample template applicator and were allowed to diffuse for a period of 5 minutes in a wet chamber. Application of the samples to the gel (30s), electrophoresis (~ 7 min) and drying of the gel (65°C for 10 min) were all performed automatically in the migration compartment of the instrument. The temperature was maintained at 20°C using a Peltier device during the complete migration process, and drying was obtained by heating the gels to 65°C. Electrophoretic separation was obtained on 8 g/l agarose gels in a Tris-barbital buffer at pH 9.2 and a constant power level of 20W, until 33 Vh had been accumulated. Once dried, the gels were manually transferred to the staining 32 compartment of the instrument in which staining (4 min with 4 g/l amidoblack in an acidic solution), destaining (3 times, for 3 min, 2 min and 1 min respectively, with 0.5 g/l of citric acid solution) and drying (75°C for 8 min) were carried out automatically. Once these operations had been completed, the gels were scanned with a high resolution Epson perfect V700 photo scanner (Epson France, Nanterre, France). Electrophoretic curves and dosages of the different fractions were acquired using Phoresis© software, version 5.50 (Sebia, Evry, France). If present, pre-albumin was included to the albumin fraction. Albumin was identified as the strongest anodal peak. The beta peak was defined as the fibrinogen peak.26 Globulins were divided into 5 fractions. Alfa fractions were located between the albumin and beta peaks, and gamma fractions were located beyond the beta peak. As previously described in other studies relevant to avian protein electrophoresis, the A/G ratio was calculated by dividing the sum of the prealbumin and albumin fractions by the sum of the globulin fractions.1,3 Sampling of alpha bands from the gels For each species, one plasma sample was chosen randomly. The electrophoresis was performed on Hydragel 15HR© high resolution gels (Sebia, Evry, France) in order to separate the fractions from each other as well as possible, and to avoid sampling errors. Accurate positioning of the alpha fraction to be extracted from a non-dried gel was achieved by superimposing it with a coloured gel. The Sebia hydrasys© system was indeed shown to have excellent reproducibility, thanks to the automation of most steps of the analytical procedure, including sample application, migration and staining.27 With the gel used for sampling of the alpha fraction, the semi-automatic process was interrupted before drying. The gel used to locate the band corresponding to the alpha fraction was dried and stained according to the normal procedure. Gels strips containing the protein band of interest were sampled, placed in Eppendorf tubes (Eppendorf GA, Hambourg, Germany), and sent under refrigerated conditions (3°C) to the the PAPSS proteomic platform at INRA in Jouy en Josas, for peptide de novo sequencing and protein identification by homology search. In-gel digestion and sample preparation Each gel slice was washed twice with 200 µl 50mM ammonium carbonate in a 50% acetonitrile solution, dried at room temperature, and digested overnight at 37°C with 100 ng of sequencing grade modified trypsin (Promega, Madison, WI, USA) in 2 µl of 50 mM NH4HCO3. The resulting peptides were extracted as follows: the supernatant from trypsin hydrolysis was first transferred into a new tube, and the gel slices were extracted once with 25 µl of buffer extract-B (50 mM ammonium carbonate), and twice with 25 µl of buffer extract-C (formic acid 0.1% acetonitrile 50%). For each extraction, the gel slices were incubated for 15 min at room temperature under gentle shaking conditions. The three extracts were pooled with the original trypsin digest supernatant, and dried for 1 h in a Speed-Vacuum concentrator (Savan, Thermo Fisher, 33 Illkirch, France). The peptides were then re-suspended in 25 μl of precolumn loading buffer (0.08% trifluoroacetic acid and 2% acetonitrile in water), prior to LC-MS/MS analysis. Mass spectometry analysis LC-MS/MS analysis (Liquid Chromatography with tandem Mass Spectrometry) was performed with an Ultimate 3000 LC system (Dionex, Voisins le Bretonneux, France) connected by means of a nanoelectrospray interface to a linear ion trap mass spectrometer (LTQ, Thermo Fisher, USA), thus enabling peptide separation, ionisation and fragmentation to be carried out. Four microliters of tryptic peptide mixtures were loaded at a flow rate of 20 μl/min onto a precolumn (Pepmap C18; 0.3 X 5 mm, 100Å, 5 µm; Dionex). After 4 minutes, the precolumn was connected to the separating Pepmap C18 nanocolumn (0.075 X 15 cm, 100Å, 3 μm, Dionex) and the gradient was set to 300 nl/min. All peptides were separated in the nanocolumn, using modified buffer elut-B with a linear gradient of acetonitrile ranging between 2% and 36 %, for a period of 18 minutes. The eluting buffers were: buffer elutA: 0.1% formic acid, 2% acetonitrile and buffer elut-B: 0.1% formic acid, 80% acetonitrile. The total runlength was 50 min, including the regeneration step. Ionization was performed at the liquid junction, with a spray voltage of 1.3 kV applied to a non-coated capillary probe (PicoTip EMITER 10 μm ID; New Objective, USA). The peptide ions were analysed using the Nth-dependent method as follows: (i) full Ms scan (m/z 300-2000), (ii) ZoomScan (scan of the 3 major ions), (iii) MS/MS on these 3 ions using classical peptide fragmentation parameters: Qz = 0.25, activation time = 30 ms, collision energy = 40%. Database search Protein identification was carried out using local Peaks Studio 4.2 software (Bioinformatic Solution, Waterloo, Ontario, Canada), together with the FASTS tools available at the website: http:www.ebi.ac.uk/fasta33/. The raw data was first loaded into Peaks Studio, and filtered in order to eliminate the noisy spectra. The filtered MS/MS spectra were rapidly translated into amino acid sequences, with several de novo sequencing parameters: parent and fragment-mass error tolerances of 0.5 Da, trypsin as the protease, with a maximum of one missed cleavage allowed, partial oxidation of methionine. All of the sequences produced by Peaks Studio were then filtered, so as to retain only those with peaks scoring higher than 50 % on doubly charged ions. These short sequences were analysed with FASTS against the Uniref100 protein database, with MDM20 as the selected matrix. The identified proteins were classified by homology scoring, according to their E value. Statistical analysis Descriptive statistical analysis was carried out using Microsoft Excel 2003©. Systat 7.0 software (Systat 7.0, Systat Software Inc., London, United Kingdom) was used for the investigation of intersexual differences. In 34 view of the small size of the studied population, the Kruskal and Wallis one way variance analysis test was used. Results Plasma protein electrophoresis The electrophoretic patterns of the three studied species were found to be relatively similar (Figures 1-3). Indeed, they were all characterised by a significant alpha fraction peak, whose intensity represented approximately 20% of the total proteins for the orange-winged parrots, and approximately 36% of the total proteins for both the black kites and the rock pigeons (Table 1). These peaks were intense and narrow, similar to those of albumin, thus giving the impression that only one protein was overwhelmingly present. The electrophoregrams of the orange-winged parrots and rock pigeons contained a prealbumin fraction of very weak amplitude which was included in the albumin fraction. No significant difference was found between males and females, in the case of black kites. In the case of pigeons, the females had significantly lower total protein concentration and gamma-1 fraction values than the males (p < 0.05). Figure 1: Example of plasma electrophoresis patterns for an orange-winged parrot (Amazona amazonica). The alpha band of interest is indicated with an arrow in both the electrophoresis pattern and the gel. 35 Figure 2: Example of plasma electrophoresis patterns for a black kite (Milvus migrans). The alpha band of interest is indicated with an arrow in both the electrophoresis pattern and the gel. Figure 3: Example of plasma electrophoresis patterns for a rock pigeon (Columba livia). The alpha band of interest is indicated with an arrow in both the electrophoresis pattern and the gel. 36 Table 1: Plasma protein electrophoresis results in orange-winged parrots, black kites and rock pigeons. Results are expressed in g/l, in the form of their mean ± SD. Species Total protein Albumin Alpha-1 Rock pigeon 27.08 ± 1.70 10.57 ± 1.27 10.56 ± 0.71 Black kite 33.51 ± 3.50 14.54 ± 2.48 11.96 ± 0.82 43.49 ± 3.35 25.85 ± 2.36 8.55 ± 2.57 Orangewinged parrot Alpha-2 Beta Gamma-1 Gamma-2 3.01 ± 0.46 0.70 ± 0.41 1.23 ± 0.38 0.61 ± 0.08 3.45 ± 0.80 0.97 ± 0.37 2.00 ± 0.67 1.25 ± 0.43 4.51 ± 1.66 3.33 ± 0.86 Identification of alpha-1 peaks by LC-MS/MS analysis There was no difficulty with any of the species in sampling the band corresponding to the alpha peak, since this band was clearly distinguishable from the others (Figures 1-3). LC-MS/MS analysis of peptides resulting from trypsin digestion of proteins located in the alpha region is presented in figure 4. The search of homology with the sequences translated by peaks studio software on FASTS against the Uniprot database allowed us to unequivocally identify the apolipoprotein A-I as the only protein in the alpha peak for the three studied bird species. The sequences obtained in this work showed the highest similarity with pro-apo-lipoproteins from duck, chicken and quail. The alignment of our sequences with that of chicken, duck and quail revealed that we did not detect any peptide containing the 24 N-terminal amino acids. 37 Figure 4: Sequence alignment of pro-apoliprotein A-I from Human (Homo sapiens, UniProt P02647), Chicken (Gallus gallus, UniProt P08250), Quail (Coturnix japonica, UniProt P32918) and Duck (Anas platyrhynchos, UniProt O42296), with peptides resulting from trypsin digestion of the protein contained in the alpha band in the orange-winged parrot (Amazona amazonica), the black kite (Milvus migrans) and the rock pigeon (Columba livia). The peptide sequences displayed here correspond to the peptide sequences determined by LC-MS/MS and de novo sequencing approach. 38 Discussion The striking result of this study is that, for the first time, a high amplitude monoclonal peak identified as the apolipoprotein A-I has been pointed out in the alpha globulin region of three different species, belonging to three distant bird taxa (Psittaciformes, Falconiformes and Columbiformes). Of all the publications written in the past 30 years on the subject of Falconiformes and Columbiformes, only three have more or less explicitly mentioned the existence of a significant alpha fraction, in agreement with the findings described in the present paper.7,14,19 It is interesting to note that these three papers are also the only ones to have used agarose gel electrophoresis with Falconiformes and Columbiformes, since the analysis of all other references was based on cellulose acetate electrophoresis. The poorer resolution of the latter technique could be the reason for which the alpha peak was not observed. As far as the Psittaciformes are concerned, no previous publication has described the presence of a peak in the vicinity of the alpha globulins. In their recent paper on the topic of plasma protein electrophoresis in Psittacidae, although they made use of agarose gel electrophoresis, Cray et al. did not publish any reference values for which the alpha fractions exceeded 7% of the total protein content.10 This could be due to the fact that their electrophoretic parameters were different to those used in our study, thus highlighting the variability of results, according to the chosen electrophoretic technique. The comparison of peptide sequences obtained in the present work with protein sequences present in Uniprot database allowed apolipoprotein A-I to be unequivocally identified as the only protein contained in the alpha peak of the three studied species. The absence of identification of the expected 24 N-terminal amino acids, based on the alignment with the chicken sequence, could mean that the apolipoprotein found in the three species we worked on were present in a mature circulating form. This lacking sequence corresponds to a 18 amino-acid prepeptide, which may act as a signal peptide, and to a 6 amino-acid propeptide.28-30 Indeed, the conversion of proapo A-I to mature apo A-I requires the proteolytic cleavage of these 24 aminoacids.29 Some sequences were not identified. Indeed, trypsin systematically cuts the peptides at the Cterminal of lysine or arginine and, if they are too small, some peptides can not be identified by mass spectrometry. Apolipoprotein A-I is known to be the most common apolipoprotein, of the high density lipoproteins (HDL) found in both birds and mammals.29,31,32 With hydrophilic regions interacting with polar surface lipids, as well as many hydrophobic regions interacting with core lipids, such an amphipathic protein contributes to the lipoprotein’s structure and stability, and facilitates the solubilisation of hydrophobic lipids in the aqueous environment of the blood.33 High density lipoproteins are composed mainly of phospholipids, cholesteryl esters and cholesterol.34-37 In birds, they are responsible for the redistribution of cholesterol, cholesterol esters and other non polar lipids to the peripheral tissues, and for returning them to the liver for reuse or excretion via the bile.33,38 Apo A-I therefore plays a pivotal role in cholesterol homeostasis, through reverse cholesterol transport.33,39 39 In the present study, apo A-I appeared to be very abundant, since alpha peaks were shown to represent up to 1/3 of the total protein content in pigeons and black kites. This is consistent with other publications which have observed that HDL and cholesterol levels in pigeons are higher than those in most other animal species, with total plasma cholesterol levels averaging 300 mg/dl, and 75-80% of this cholesterol being present in the form of HDL.34,35 However, until now similar results have never been published for the case of Psittaciformes and Falconiformes. When compared to mammals, the large quantities of observed apo A-I could be attributed to the fact that the expression patterns of apo A-I in birds are significantly different to those in mammals. Indeed, it has been demonstrated that in chickens, apo A-I synthesis occurs in most tissues (notably the liver, intestine, kidney, ovary, heart, muscles, brain and skin), whereas in mammals, its synthesis is limited to the liver and the intestine.39-42 Apolipoprotein A-I has furthermore been demonstrated to be present in the Very Low Density Lipoproteins of chickens,32 and the Low Density Lipoproteins of geese,37 whereas this is not the case in mammals. High levels of apo A-I could be the result of an adaptation to the birds’ peculiar fat metabolism. Indeed, in birds, the fat metabolism plays a key role, since fatty acids are known to be their primary source of fuel during long distance flights.43,44 This could therefore explain the lower peak observed in orange-winged parrots (a sedentary species), when compared to black kites and pigeons which are migrant birds. Cholesterol is furthermore known to be a major constituent of cell membranes.45 Such a high apo A-I level could also be the result of an adaptation to potentially high cell membrane turnover, in animals which are known to have a significantly higher metabolism than mammals of the same weight.46-48 Further studies should be carried out in order to investigate apo A-I peaks in other bird species, and should be made over a range of physiological conditions requiring strong metabolic changes, such as egg laying, moulting, premigratory hyperphagia and migration. Such investigations should lead to a more thorough understanding of the role of apo A-I in birds. The fact that apo A-I is found in such large quantities in the three studies species, and that it is responsible for a peak in the alpha region, must be taken into account when interpreting their electrophoregrams. Such a peak could in fact be incorrectly interpreted as resulting from an inflammatory phenomenon, since numerous positive acute phase proteins (positive APP) such as alpha-1 antitrypsin or alpha-2 macroglobulin have been reported to migrate into the alpha region.3 In addition, it seems that apo AI, like albumin, is considered to be a negative acute phase protein (negative APP) in chickens,49-51 showing that, contrary to positive APP, its plasmatic concentration decreases in the presence of an inflammatory phenomenon. Indeed, acute inflammation involves alterations to the metabolism and changes in gene regulation in the liver, which recruits increasing numbers of hepatocytes for the synthesis of acute phase proteins within the first hours of the inflammatory condition. At the same time, negative APP synthesis tends to be down-regulated, thereby increasing the liver’s capacity to synthesize positive APP.50,52 In addition, it has been demonstrated that during the course of an inflammatory reaction in humans, the Amyloid A Serum displaces the apo A-I from the HDL. This release of apo A-I into the bloodstream is accompanied by an acceleration of its catabolism.53 40 By convention in birds, the A/G ratio is defined as the sum of the prealbumin and albumin fractions divided by the sum of the globulin fractions.1,3 Clinically speaking, this parameter is very relevant since both prealbumin and albumin correspond to negative APP in birds,10,49,50 whereas globulins contain mainly positive APP.3 Any inflammatory condition therefore leads to a rapid and strong inversion of the A/G ratio. In the three species studied here, the strong apo A-I peak corresponds to a negative APP. For these species a new ratio, defined by the sum of the prealbumin, albumin and apo A-I fractions, divided by the sum of the other globulins, may therefore be more clinically relevant than the classical A/G ratio. Acknowledgements We wish to thank the « Plateau d’Analyse Protéomique par Séquençage et Spectrométrie de masse» (PAPSS, INRA, Jouy-en-Josas) which performed the mass spectrometry experiments, J. L. LIEGEOIS from the Académie de fauconnerie du Puy du fou (France) for the black kite blood samples, P. TROLLIET from Sebia for his invaluable technical support, the Museum national d’Histoire naturelle and the Conseil Général de Seine Maritime (France) for their financial support, and Glenn Lund from Techtrans Consulting for the english proofreading. 41 References 1. Lumeij JT. The diagnostic value of plasma protein and non-protein nitrogen substances in birds. Vet Quart. 1987; 9: 262 - 267. 2. Kaneko JJ. Serum proteins and the dysproteinemias. In: Kaneko JJ, ed. Clinical Biochemistry of Domestic Animals, 4th ed. San Diego, California: Academic Press; 1989: 142-165. 3. Cray C, Tatum L. Application of protein electrophoresis in avian diagnostic testing. J Av Med Surg. 1998; 12: 4 -10. 4. Werner LL, Reavill DR. The diagnostic utility of serum protein electrophoresis. Vet Clin North Am Exot Anim Pract. 1999; 2: 651-662 5. Sibley CG, Hendrickson HT. A comparative Electrophoretic study of avian plasma proteins. The condor. 1970; 72: 43-49. 6. Zaias J, Fox WP, Cray C, et al. Hematologic, plasma protein, and biochemical profiles of brown pelicans (Pelecanus occidentalis). Am J Vet Res. 2000; 61: 771-774. 7. Blanco JM, Hofle U. Plasma protein electrophoresis as diagnostic and prognostic tool in Raptors. In: Proceeding of the 7th EAAV conference, Tenerife, Spain; 2003: 256-261. 8. Clubb SL, Schubot RM, Joyner K, et al. Hematologic and serum biochemical reference intervals in juvenile cockatoos. J Assoc Avian Vet. 1991; 5: 16-26. 9. Margolin T. Normal Electrophoretic values in cockatiels (Nymphicus hollandicus) and factors affecting these values. In: Proceedings of the 16th AAV conference, Philadelphia, Pennsylvania; 1995: 65-66 10. Cray C, Rodriguez M, Zaias J. Protein electrophoresis of psittacine plasma. Vet Clin Pathol. 2007; 36: 64-72. 11. Ivins GK, Weddle GD, Halliwel WH. Hematology and serum chemistry in birds of prey. In: Fowler ME, ed. Zoo and wild animal medicine, 2nd edition, Philadelphia, Pennsylvania, WB Saunders Co; 1986: 434437. 42 12. Ferrer M, Garcia-Rodriguez T, Carrillo JC, et al. Hematocrit and blood chemistry values in captive raptors (Gyps fulvus, Buteo buteo, Milvus migrans, Aquila heliaca). Comp Biochem Physiol A. 1987; 87: 1123-1127. 13. Lumeij JT, Remple JD, Riddle KE. Plasma chemistry in peregrine falcons (Falco peregrinus): reference values and physiological variations of importance for interpretation. Avian Path. 1998; 27: 129-132. 14. Tatum LM, Zaias J, Mealey B, et al. Protein electrophoresis as a diagnostic and prognostic tool in raptor medicine. J Zoo Wildl Med. 2000; 31: 497-502. 15. Del Pilar Lanzarot PM, Montesinos A, San Andrès MI, et al. Hematological, protein electrophoresis and cholinesterase values of free-living nestling peregrine falcons in Spain. J Wildl Dis. 2001; 37: 172-177. 16. Spagnolo V, Crippa V, Marzia A, et al. Reference intervals for hematologic and biochemical constituents and protein Electrophoretic fractions in captive common buzzards (Buteo Buteo). Vet Clin Pathol. 2006; 35: 82-87. 17. Balasch J, Palomeque J, Palacios L, et al. Hematological values of some great flying and aquatic-diving birds. Comp Biochem Physiol A. 1974; 49: 137-145. 18. Lumeij JT, De Bruijne JJ. Blood chemistry reference values in racing pigeons (Columba livia domestica). Avian pathol. 1985; 14: 401-408. 19. Gayathri KL, Hegde SN. Alteration in haematocrit values and plasma protein fractions during the breeding cycle of female pigeons, Columba livia. Anim Reprod Sci. 2006; 91: 133-141. 20. Torres-Medina A, Rhodes MB, Mussman HC. Chicken serum proteins: a comparison of electrophoretic techniques and localisation of transferrin. Poult Sci. 1971; 50: 1115-1121. 21. Balash J, Palacios L, Musquera S, et al. Comparative haematological values of several galliformes. Poult Sci. 1973; 52: 1531-1534. 22. Filipovic N, Stojevic Z, Milinkovic-Tur S, et al. Changes in concentration and fractions of blood serum proteins of chickens during fattening. Vet Archiv. 2007; 77: 319-326. 23. Driver EA. Hematological and blood chemical values of mallard, Anas p. platyrhynchos, drakes before, during and after remige moult. J Wildl Dis. 1981; 17: 413-421. 43 24. Del Pilar Lanzarot PM, Barahona MV, San Andrès MI, et al. Hematologic, protein electrophoresis, biochemistry, and cholinesterase values of free-living black stork nestlings (Ciconia nigra). J Wildl Dis. 2005; 379-386. 25. Hochleithner M. Biochemistries. In: RitchieBW, Harrisson GH, Harrisson LR, eds. Avian medicine: principles and application. Lake Worth, Florida: Wingers Publishing; 1994: 237-238. 26. Roman Y, Levrier J, Ordonneau D, et al. Location of the fibrinogen fraction in plasma protein electrophoresis agarose gels of five taxonomically distinct bird species. In: Proceeding of the 9 th EAAV conference, Zurich, Switzerland; 2007: 264-272. 27. Bossuyt X, Bogaert A, Schiettekatte G, et al. Serum protein electrophoresis and immunofixation by a semi-automated electrophoresis system. Clin Chem. 1998; 44: 944-949. 28. Cheung P, Chan L. Nucleotide sequence of cloned cDNA of human apolipoprotein A-1. Nucleic Acids Res. 1983; 11: 3703-3715. 29. Karathanasis SK, Zannis VI, Breslow JL. Isolation and characterization of the human apolipoprotein A-I gene. Proc Natl Acad sci USA. 1983; 80: 6147-6151. 30. Byrnes L, Luo CC, Li WH, et al. Chicken apolipoprotein A-1: cDNA sequence, tissue expression and evolution. Biochem Biophys Res Commun. 1987; 148: 485-492. 31. Barnerjee D, Redman C. Biosynthesis of high density lipoprotein by chicken liver: conjugation of nascent lipids with apoprotein A1. J Cell Biol. 1984; 99: 1917-1926. 32. Douaire M, Le Fur N, El khadir-Mounier C, et al. Identifying genes involved in the variability of genetic fatness in the growing chicken. Poult Sci. 1992; 71: 1911-1920. 33. Kiss RS, Ryan RO, Francis GA. functional similarities of human and chicken apolipoprotein A-I: dependence on secondary and tertiary rather than primary structure. Biochim Biophys Acta. 2001; 1531: 251259. 34. Chapman MJ. Animal lipoproteins: chemistry, structure, and comparative aspects. J Lipid Res. 1980; 21: 789-853. 44 35. Barakat HA, St Clair RW. Characterization of plasma lipoproteins of grain- and cholesterol-fed White Carneau and Show Racer pigeons. J Lipid Res. 1985; 26: 1252-1268. 36. Hermier D, Forgez P, Chapman MJ. A density gradient study of the lipoprotein and apolipoprotein distribution in the chicken, Gallus domesticus. Biochim Biophys Acta. 1985; 836: 105-118. 37. Hermier D, Forgez P, Laplaud PM, et al. Density distribution and physicochemical properties of plasma lipoproteins and apolipoproteins in the goose, Anser anser, a potential model of liver steatosis. J Lipid Res. 1988; 29: 893-907. 38. Klasing KC. Chapter 7: lipids. In: Klasing KC, ed. Comparative avian nutrition. New York, NY: CAB International; 2000: 171-200. 39. Blue M-L, Ostapchuk P, Gordon JS, et al. Synthesis of apolipoprotein A-I by peripheral tissue of the rooster. A possible mechanism of cellular cholesterol efflux. J Biol Chem. 1981; 257: 11151-11159. 40. Shackelford JE, Lebberz HG. Synthesis of apolipoprotein A1 in skeletal muscles of normal and dystrophic chickens. J Biol Chem. 1985; 260: 288-291. 41. Rajavashisth TB, Dawson PA, Williams DL, et al. Structure, evolution, and regulation of chicken Apolipoprotein A-I. J Biol Chem. 1987; 262: 7058-7065. 42. Hermann M, Lindstedt KA, Foisner R, et al. 1998. Apolipoprotein A-I production by chicken granulosa cells. FASEB J. 12: 897-903 43. Butler PJ. Exercise in birds. J Exp Biol. 1991; 160: 233 - 262. 44. Butler PJ, Bishop CM. Flight. In: Whittow GC, ed. Sturkie’s avian physiology. San Diego, CA: Academic Press; 2000: 391-435. 45. Lustenberger P, André J. Le métabolisme du cholesterol et des sterols. In : Sabloniere N, ed. Biochimie et biologie moléculaire pour les sciences de la vie et de la santé. Sophia Antipolis, France: Omniscience; 2006: 213 - 234. 46. Rodnan GP, Ebaugh FG, Spivey Fox MR, et al. The life span of the red blood cell and the red blood cell volume in the chicken, pigeon and duck as estimated by the use of Na2Cr51O4: with observation on red cell turnover rate in the mammal, bird and reptile. Blood. 1957; 12: 355-366. 45 47. Walsberg GE. Avian ecological energetics. In: Farner DS, King JR, ParkesKC, eds. Avian Biology, vol. 7, New York, USA, Academic Press; 1983: 161-220 48. Hulbert AJ. Membrane fatty acids as pacemakers of animal metabolism. Lipids. 2007; 42: 811-819. 49. Upragarin N, Toussaint MJM, Tooten PCJ, et al. Acute phase protein reaction in layer chickens. A calculated acute phase protein index as measure to assess health during the rearing period. In: proceedings of the 5th Colloquium on animal acute phase proteins, Dublin, Ireland. 2005: 40. 50. Wicher T, Bienvenu J, Price CP. Molecular biology, measurement and clinical utility of the acute phase proteins. Pure and Appl Chem. 1991; 63: 1111-1116. 51. Monnet D, Edjeme NE, Ndri K, et al. Lipoprotein (a) in relation to acute phase reaction protein levels in patients with homozygous sickle cell disease. Ann Biol Clin. 2002; 60: 101-103. 52. Kushner I, Feldman G. control of the acute phase response, Demonstration of C-reactive protein synthesis and secretion by hepatocytes during acute inflammation in the rabbit. J Exp Med. 1976; 148: 466477. 53. Benditt EA, Eriksen N. Amyloid protein SAA is associated with high density lipoprotein from human serum. Proc Natl Acad Sci USA. 1977; 74: 4025-4028. 46 Article 2: Localisation du fibrinogène et de l’albumine sur les profils d’électrophorèse des protéines plasmatiques de cinq espèces d’oiseaux taxonomiquement distinctes. Cet article a fait l’objet d’une conférence lors du 9° congrès de la European Association of Avian Veterinarians (EAAV), Zurich, Suisse, 2007. Il a été soumis à la Revue de Médecine Vétérinaire. 47 48 Location of the fibrinogen and albumin fractions in plasma protein electrophoresis agarose gels of five taxonomically distinct bird species Localisation du fibrinogène et de l’albumine sur les profils d’électrophorèse des protéines plasmatiques de cinq espèces d’oiseaux taxonomiquement distinctes Y. ROMAN1*, J. LEVRIER1, D. ORDONNEAU2, D. CHASTE-DUVERNOY3, M.C. BOMSELDEMONTOY4, M. SAINT JALME5. 1 Muséum national d’Histoire naturelle (MNHN), DJBZ, Le Parc de Clères, 32 avenue du Parc, 76690 Clères, France 2 Zoo de Lille, avenue Mathias Delobel, 59800 Lille, France 3 Laboratoire Bio-VSM, 3 bis rue Pierre Mendès France, 77200 Torcy, France 4 Muséum national d’Histoire naturelle (MNHN), DJBZ, Ménagerie du Jardin des Plantes, 57 rue Cuvier, 75005 Paris, France 5 Muséum national d’Histoire naturelle (MNHN), EGB, UMR 5173 - CERSB - MNHN, CNRS, Paris IV, 57 rue Cuvier, 75005 Paris, France *Corresponding author: Yannick Roman (yannick.roman@cg76.fr). Summary Although plasma protein electrophoresis is an invaluable diagnostic tool in bird medicine, but high intertaxonomic variations sometimes make their interpretation difficult for practitioners. The purpose of this study was to improve global understanding of avian plasma electrophoresis patterns by locating the fibrinogen and albumin, and by comparing migration distances of the latter in different bird species. This study was conducted on 80 birds from five different species: 15 peafowls (Pavo cristatus), 18 bar-headed geese (Anser indicus), 12 rock doves (Columba livia), 21 black kites (Milvus migrans) and 14 orange-winged parrots (Amazona amazonica). Protein electrophoresis was performed on both plasma and serum. For each bird, significant differences between fraction concentrations were taken into account to determine the position of the fibrinogen peak on both electrophoresis curves and agarose gels in each species. Once the fibrinogen was located, measurements were performed on the gels with a calliper square in order to determine the migration distances of both fibrinogen and albumin. Albumin was observed to migrate to different locations in different species. On the other hand, comparison of the fibrinogen migration distance between species allowed us to split the five studied species into two groups, corresponding to the avian phylogenetic classification. In the Galloanserae infraclass including, in the case of the present study, the peafowls and bar headed geese, the fibrinogen migrated over a significantly greater distance than in the case of the Neoaves infraclass, which includes the pigeons, black kites and orange-winged parrots. Fibrinogen may thus be a useful feature for the conventional naming of different protein fractions in avian species. 49 Keywords Protein electrophoresis, Fibrinogen, Albumin, Serum, Plasma Running title Fibrinogen and albumin in avian plasma protein electrophoresis Résumé L’électrophorèse des protéines plasmatiques est un outil diagnostique très utile chez l’oiseau, bien que d’importantes variations inter-taxonomiques rendent parfois l’interprétation des profils quelque peu difficile pour le praticien. Le but de cette étude était d’améliorer la compréhension globale des profils électrophorétiques chez les oiseaux par la localisation du fibrinogène et de l’albumine et par la mesure des distances de migration de ces protéines sur gel d’agarose. Cette étude a été menée sur 80 oiseaux appartenant à cinq espèces différentes : 15 paons bleus (Pavo cristatus), 18 oies à tête barrée (Anser indicus), 12 pigeons domestiques (Columba livia), 21 milans noirs (Milvus migrans) et 14 amazones aourou (Amazona amazonica). Les différences des valeurs brutes des différentes fractions mesurées sur plasma et sur sérum ont permis de localiser la position du fibrinogène sur les profils électrophorétiques et les gels d’agarose. Une fois le fibrinogène localisé, les distances de migration du fibrinogène et de l’albumine ont été mesurées directement sur le gel à l’aide d’un pied à coulisse. L’albumine a migré sur des distances différentes pour les différentes espèces. La comparaison des distances de migration du fibrinogène nous a en revanche permis de scinder les cinq espèces étudiées en deux groupes distincts correspondant à la classification phylogénétique des oiseaux proposée par Lecointre et Le Guyader (2001). Dans l’infraclasse des Galloanserae comprenant dans notre cas l’oie à tête barrée et le paon bleu, le fibrinogène a migré significativement plus loin que dans l’infraclasse des Neoaves comprenant ici le pigeon, le milan noir et l’amazone aourou. Le fibrinogène pourrait être un bon point de repère pour nommer les fractions de manière conventionnelle dans les différentes espèces d’oiseaux. Mots clés Electrophorèse des protéines, Fibrinogène, Albumine, Serum, Plasma Titre courant Fibrinogène et Albumine sur les electrophorégrammes des protéines chez l’oiseau 50 INTRODUCTION Plasma protein electrophoresis is an invaluable diagnostic tool in avian medicine [1, 15]. However, high intertaxonomic variations have been observed in avian electrophoresis patterns [14, 16], which make their interpretation difficult for practitioners. A previous study of avian albumin has shown that the same proteins can migrate over different distances, depending on species. For albumin, these differences have been attributed to variations in conformation and surface charge distribution [1]. Fibrinogen is one of the most abundant acute phase proteins in birds. In the case of an inflammatory condition, its increase is fast and massive [6]. Plasma is obtained by immediate centrifugation of a blood sample mixed with an anticoagulant, whereas serum is prepared by allowing the blood sample to clot before centrifugation. Serum and plasma are thus quite similar, except for the fact that plasma contains clotting factors, fibrinogen and an anticoagulant, which are not present in the serum [7]. Total protein values have been demonstrated to be about 1,5g/L higher in plasma than in serum, due to the presence of fibrinogen [10]. This significant difference can be helpful in locating fibrinogen, by comparing plasma versus serum electrophoresis patterns in the same species. The aim of this study was thus to locate fibrinogen in the electrophoresis patterns of five different species, and to compare migration distances of this protein on electrophoresis gel. The location of this protein may then improve our understanding of protein electrophoresis in birds. To this end, agarose gel protein electrophoresis was carried out on the sera and plasmas of 15 peafowls (Pavo cristatus), 18 bar-headed geese (Anser indicus), 12 rock doves (Columba livia), 21 black kites (Milvus migrans) and 14 orange-winged parrots (Amazona amazonica). MATERIAL AND METHODS The study was conducted on 80 healthy birds from five different species: 15 peafowls (Pavo cristatus) and 18 bar-headed geese (Anser indicus) held at the Zoological Park of Clères (France), 12 rock doves (Columba livia) held at the Menagerie du Jardin des plantes (France), 21 black kites (Milvus migrans) held at the Académie de fauconnerie du Puy du fou (France), and 14 orange-winged parrots (Amazona amazonica) held at the Zoological Park of Lille (France). Protein electrophoresis was carried out on both plasma and serum. Four millilitres of blood were drawn from each bird, using 23 G needles and five millilitre syringes (respectively: Terumo Neolus 23 G, and Terumo 5 ml Syringe, from Terumo Europe N.V., Leuven, Belgium). For the plasma, two millilitres of blood were collected in lithium heparin tubes (Venosafe vacutainers, Terumo, Leuven, Belgium) and immediately centrifuged at 3000 g for 5 minutes. Lithium heparin was used as the anticoagulant of choice for plasma chemistry determinations, because of its low biological activity and lack of interference with analyte detection (HRUBEC et al, 2002). For the sera, two millilitres of blood were collected in dry tubes which were coated with a clotting activator (Venosafe vacutainers, Terumo, Leuven, Belgium) and were then incubated at 30°C for 1h30, before being centrifuged 51 at 2000 g for 10 minutes. The plasmas and sera were then immediately stored in cryotubes for several weeks at -20°C (-4°F) in order to guarantee that all measurements be carried out under the same conditions. The samples were then thawed and rehomogenised, by gentle mixing one hour before analysis. Total protein concentration was determined using the Biuret method with the Roche Integra 400 wet chemistry analyser (Roche diagnostics GmbH, Mannheim, Germany). Readings were made at a wavelength of 552 nm. Agarose gel electrophoresis was carried out using a Hydrasys© semi-automated system (Sebia, Evry, France), using the Hydragel protein 15/30© set (Sebia, Evry, France) which is the most commonly used kit for protein electrophoresis in medical laboratories. Plasma aliquots were loaded onto the gel and electrophoretic separation was obtained on 8 g/l agarose gels in a Tris-barbital buffer (pH 9.2), at 20°C and a constant power level of 20W, until 33 V-h had been accumulated. Once dried and coloured with amidoblack in the same system, the gels were scanned with a high resolution Epson expression 1680 pro flat scanner. The electrophoretic curves and quantification of the different fractions were carried out with version 7.00 F0.1 of Sebia’s Phoresis software. Albumin was identified as the biggest and most anodal peak, and it was not decided to assess the pre-albumin fraction separately because of its negligible contribution. The globulins were divided into several fractions, depending on species, in order to study each peak separately. Since their composition was unknown, these fractions were given arbitrary denominations (G1 to G6). Migration distances were measured directly on the gels. These measurements were made from the edge of the gels with a 6 inch (15 cm) dial calliper square (General, Montreal, Canada). Systat 7.0 software (SPSS inc© 1997) was used for all analyses. Because of the small size of the studied population, we used Wilcoxon’s signed rank test for the comparison of serum and plasma electrophoresis patterns in the same species, and Mann and Whitney’s U test for the comparison of fibrinogen and albumin migration distances between the studied species. 52 RESULTS a. Fibrinogen localisation: intraspecific differences between plasma and serum protein electrophoresis. Due to inter-taxonomic differences, the globulins were scattered into four fractions for the Amazon parrots, bar-headed geese and rock doves, five fractions for the black kites, and six fractions for the peafowls. These fractions were arbitrarily named G1 to G6 (Figure 1). For each species, significant differences between plasma and serum protein electrophoresis fractions were investigated. The values of the G2 fraction in Rock doves, the G3 fraction in bar headed geese, black kites and orange winged parrots, and the G4 fraction in peafowls appeared to be significantly higher in the plasma than in the serum (respectively: Z= -3.059, p ≤ 0.01; Z = -3.724, p ≤ 0.01; Z = -4.015, p ≤ 0.01; Z = -3.296, p ≤ 0.001; Z= -3.408, p ≤0.01). For the G3 fraction in rock doves, the albumin, G2 and G4 fractions in bar headed geese, the G5 fraction in black kites, the albumin and G1 fractions in orange winged parrots, and the albumin, G1, G2 and G3 fractions in peafowls, the measured plasma values appeared to be significantly lower than those measured in serum (p ≤ 0.01). b. Comparison of albumin and fibrinogen migration distances between bird species. Fibrinogen was located in each species by comparing the results from plasma and serum protein electrophoresis (Figures 2). No interspecific difference was found in the fibrinogen migration distances between peafowls and bar-headed geese, on the one hand, and between black kites, orange-winged parrots and rock doves, on the other hand. We found significant differences in fibrinogen migration distance between peafowls and black kites (p ≤ 0.01, U=0,), between peafowls and orange-winged parrots (p ≤ 0.01, U = 2), between peafowls and rock doves (p ≤ 0.01, U = 180), between bar-headed geese and black kites (p ≤ 0.01, U = 0), between bar-headed geese and orange-winged parrots (p ≤ 0.01, U = 2.5), and between barheaded geese and rock doves (p ≤ 0.01, U = 216). No interspecific difference was found in albumin migration distance between bar-headed geese and black kites. We found significant differences in albumin migration distance between peafowls and black kites (p ≤ 0.01, U = 296), between peafowls and orange-winged parrots (p ≤ 0.01, U=0), between peafowls and rock doves (p ≤ 0.01, U=180), between peafowls and bar-headed geese (p ≤ 0.01, U = 268), between bar-headed geese and orange-winged parrots (p ≤ 0.01, U=0), between bar-headed geese and rock doves (p ≤ 0.01, U=216), between black kites and pigeons (p ≤ 0.01, U=240), between orange-winged parrots and pigeons (p ≤ 0.01, U=12.5), and between orange-winged parrots and black kites (p ≤ 0.01, U = 14). 53 Figure 1: examples of plasma and serum protein electrophoresis patterns of five bird species. Plasma (Grey curve) and serum (Black curve) patterns are superimposed. Asterisks represent significant differences between plasma and serum (Wilcoxon's test: p ≤ 0.01), due to fibrinogen loss during the clotting process. 54 Figure 2: plasma (P) and serum (S) protein electrophoresis agarose gels of five avian species. The location of the fibrinogen peaks is indicated by the two arrows. The albumin location is indicated by the letter "A". DISCUSSION This study demonstrates that in all of the studied species, only one fraction appears to have plasma values higher than those found in serum. This difference is due to fibrinogen, which is present in plasma, but not in serum, because of the clotting process [7]. In the present study, this difference allowed us to locate fibrinogen in electrophoresis patterns and gels. For practitioners dealing with poorly known avian species, the fibrinogen can thus be easily located, by comparing plasma and serum patterns. The location of fibrinogen, which is a major acute phase protein in birds [6], will enable practitioners to improve their interpretation of observed electrophoresis patterns. Depending on species, other differences were found between the plasma and serum values of some of the protein fractions. However, concerning the latter, the serum values were only slightly higher than those found in the plasma. These small differences may have been induced by artefactual changes, related to haemolysis and protein leakage from blood cells in the case of sera. Indeed, due to the longer period required for clotting, the fluid components were in contact with blood cells for a longer period of time for sera than for plasmas [5, 7]. The comparison of fibrinogen migration distances between the studied species supports the conclusion that fibrinogen migrates to the same locations, for peafowls and bar-headed geese, on the one hand and for black kites, orange-winged parrots and rock doves, on the other hand. By considering the fibrinogen migration distances, we can therefore split the five species into two groups. By comparison with the avian phylogenetic tree shown in Figure 3 [9], these two groups appear to be well matched with two distinct monophyletic groups: galliformes and anseriformes, corresponding to the Galloanserae infraclass on the one hand, and psittaciformes, columbiformes and falconiformes, corresponding to the Neoaves infraclass 55 on the other hand. This distinction could be related to differences in the structure or surface charge distribution of fibrinogen between the two infraclasses. As far as the authors are aware, such a result has never been documented in previous studies. This phenomenon thus merits further investigation, in order to examine a greater variety of bird taxa than in the present study. The comparison of albumin migration distances reveals that this protein seems to migrate to different locations, depending on species, except for the case of the black kite and the bar-headed goose. Furthermore, the migration distance standard deviations were very high for albumin, by comparison with those of fibrinogen, which were very low. Contrary to albumin, fibrinogen thus seems to migrate to almost the same location in agarose gels. This could be related to the fact that albumin is a small and fast migrating molecule, whereas fibrinogen is a large and slow migrating one [8]. This makes it easier to read albumin variations than those of fibrinogen. All authors familiar with this topic agree with the observation that fibrinogen migrates to a beta location on bird electrophoregrams [2, 3, 5, 8, 13, 15]. In order to establish a standardised method of defining protein fractions in avian plasma protein electrophoresis patterns, this protein, which is easy to identify by comparing plasma and serum electrophoregram patterns, could be used as a reference for the naming of the different fractions. In this way, fibrinogen would correspond to the "Beta" peak, the fractions located between the albumin and fibrinogen peaks would therefore be named "Alfa" peaks, and the fractions beyond the fibrinogen peak would be referred to as "Gamma" peaks. Figure 3: avian phylogenetic tree (LECOINTRE and LE GUYADER, 2001). 56 AKNOWLEDGMENTS We wish to thank the Académie de fauconnerie du Puy du fou, in particular J.L. LIEGEOIS, for supplying the kites' blood samples, the Parc zoologique de Lilles, in particular D. ORDONNEAU for supplying the amazon parrots' blood samples, the Ménagerie du jardin des plantes (MNHN), in particular N. CHAI and C.P. PIGNON for supplying the rock doves' blood samples. We are also grateful to P. TROLLIET from Sebia for his invaluable technical support, to the Museum national d’Histoire naturelle and to the Conseil Général de Seine Maritime (France) for their financial support, and to Techtrans Consulting for the English proofreading. REFERENCES 1. ARCHER F.J. BATTISON AL. : Differences in electrophoresis patterns between plasma albumins of the cockatiel (Nymphicus hollandicus) and the chicken (Gallus gallus domesticus), Avian Path., 1997, 26, 865870. 2. CRAY C., BOSSART G., HARRIS D.: Plasma protein electrophoresis: principles and diagnosis of infectious diseases. In Proceedings of the 17th AAV conference, Lake Worth, 1995, 55-59. 3. CRAY C., TATUM L.: Application of protein electrophoresis in avian diagnostic testing, J. Avian Med. Surg., 1998, 12, 4 -10. 4. FUDGE A.M.: Avian laboratory medicine. In: A.M. FUDGE (éd) : Laboratory medicine; avian and exotic pets, W.B. Saunders company, Philadelphia, 2000, 1-184. 5. FUDGE A.M., SPEER B.: Selected controversial topics in avian diagnostic testing, Seminars Avian Exot., Pet Med., 2001, 10, 96-101. 6. HAWKEY C., HART M.G.: An analysis of the incidence of hyperfibrinogenemia in birds with bacterial infections, Avian Path., 1988, 17, 427-432. 7. HRUBEC T.C., WHICHARD J.M., LARSEN C.T., PIERSON F.W.: Plasma versus serum: specific differences in biochemical analyte values, J. Avian Med. Surg., 2002, 16, 101-105. 8. KANEKO J.J.: Serum proteins and the dysproteinemias. In: J.J. KANEKO (éd): Clinical biochemistry of domestic animals, Academic press, New York, 1989, 142-164. 57 9. LECOINTRE G., LE GUYADER H. : Oiseaux; annexe 6. In G. Lecointre and H. Le Guyader (éds): Classification phylogénétique du vivant 2° edition, Belin, Paris, 2001, 515. 10. LUMEIJ J.Y., MC LEAN B.: Total protein determination in pigeon plasma and serum: comparison of refractometric methods with the Biuret method, J. Avian Med. Surg, 1996, 10, 150-152. 11. ORDONNEAU D., ROMAN Y., CHASTE-DUVERNOY D., BOMSEL M.C.: Plasma electrophoresis reference ranges in various bird species. In Proceedings of the 8th EAAV conference, Arles 2005: 283-289. 12. ROMAN Y., ORDONNEAU D., CHASTE-DUVERNOY D., SAINT JALME M., BOMSEL M.C., HINGRAT Y.: Early detection of an acute inflammatory condition by plasma protein electrophoresis an haematology in peafowls. In Proceedings of the 8th EAAV conference, Arles, 2005, 290-297. 13. ROSENTHAL K.L.: Avian protein disorders. In A.M. FUDGE (ÉD): Laboratory medicine; avian and exotic pets, W.B. Saunders company, Philadelphia, 2000, 171-173. 14. SIBLEY C.G., HENDRICKSON H.T.: A comparative Electrophoretic study of avian plasma proteins, The Condor, 1970, 72, 43-49. 15. WERNER L.L., REAVILL D.R.: The diagnostic utility of serum protein electrophoresis, Vet clin. North Am. Exot. Anim. Prac., 1999, 2, 651-662. 16. ZAIAS J., FOX W.P., CRAY C., ALTMAN N.H.: Hematologic, plasma protein, and biochemical profiles of brown pelicans (Pelecanus occidentalis), Am. J. Vet. Res., 2000, 61, 771-774. 58 CHAPITRE II : variations physiologiques des électrophorégrammes aviaires Article 3: Influence de la mue sur les profils d’électrophorèse des protéines plasmatiques de l’oie à tête barrée (Anser indicus). Cet article a été soumis au Journal of Wildlife diseases. Résumé L’électrophorèse des protéines plasmatiques est actuellement reconnue comme étant un examen complémentaire fiable en médecine aviaire. Cependant, l’influence de phénomènes physiologiques circannuels tels que la mue, sur les électrophorégrammes aviaires, sont peu connus. Pourtant, la mue représente une période de changements hormonal et métabolique drastiques. L’objectif de cette étude était d’observer de manière détaillée chez l’oiseau les effets de la mue sur la concentration en protéines totales et sur les profils électrophorétiques. A cet effet, des prélèvements sanguins ont été réalisés tous les 15 jours, sur 19 oies à tête barrée (Anser indicus), de la mi-mai à la mi-août. Ces prélèvements ont été utilisés pour déterminer les concentrations en protéines totales et réaliser des électrophorèses des protéines plasmatiques sur gel d’agarose. Les stades de mue des oiseaux ont été évalués à l’occasion des prélèvements. L’oie à tête barrée a été choisie comme modèle dans cette étude, car ces oiseaux renouvellent simultanément la totalité de leurs rémiges sur une période très brève. La concentration en protéines totales et les valeurs absolues des fractions albumine, alpha-2, beta et gamma ont été observées comme étant à leur minimum durant la mue, tandis que celles des fractions pré-albumine et alpha-1 étaient à leur maximum durant la même période. Cette étude constitue, une publication de référence des effets de la mue sur les profils électrophorétiques des oiseaux. L’augmentation des fractions pré-albumine et alpha-1 est vraisemblablement liée à une augmentation des taux plasmatiques des hormones thyroïdiennes durant la période de mue. La diminution des fractions albumine, alpha-2, beta et gamma est probablement liée à une mobilisation des réserves protéiques et énergétiques en faveur du renouvellement des plumes, ainsi qu’à une expansion du système circulatoire au niveau des follicules en croissance. D’un point de vue clinique, les changements des profils électrophorétiques associés à la mue se sont révélés moins significatifs que prévus et ne semblent pas être assez importants pour induire en erreur le praticien vétérinaire. 59 60 Roman, Bomsel-Demontoy,,Levrier, Chaste-Duvernoy and Saint Jalme Molt and plasma protein electrophoresis in bar headed geese Influence of molt on plasma protein electrophoresis in bar-headed geese (Anser indicus) Yannick ROMAN1,6, Marie-Claude BOMSEL-DEMONTOY2, Julie LEVRIER1 , Dorothée ORDONNEAU3, Daniel CHASTE-DUVERNOY4 and Michel SAINT JALME5 1 Muséum national d’Histoire naturelle (MNHN), DJBZ, Le Parc de Clères, 32 avenue du Parc, 76690 Clères, France 2 Muséum national d’Histoire naturelle (MNHN), DJBZ, Ménagerie du Jardin des Plantes, 57 rue Cuvier, 75005 Paris, France 3 Zoo de Lille, avenue Mathias Delobel 59800 Lille 4 Laboratoire Bio-VSM, 3 bis rue Pierre Mendès-France, 77200 Torcy, France 5 Muséum national d’Histoire naturelle (MNHN), EGB, UMR 5173 - CERSB - MNHN, CNRS, Paris IV, 57 rue Cuvier, 75005 Paris, France 6 Corresponding author (tel: +33(2)35332308, fax: +33(2)35331166, e-mail: yannick.roman@cg76.fr) 61 ABSTRACT Plasma protein electrophoresis is now commonly recognized to be a very reliable diagnostic tool in avian medicine. However, the influence of circannual phenomena such as molt on protein electrophoregrams is poorly documented. Yet, the molt is a period of heavy hormonal and metabolic change in birds. The purpose of this study was to investigate the effects of molt on total protein concentration and electrophoresis patterns in birds. Nineteen bar headed geese (Anser indicus) were blood sampled from mid May to mid August, at 15 day intervals. At the same time, the birds’ molting stage was checked. Total protein concentrations were measured and plasma agarose gel electrophoresis were performed on these samples. The geese were chosen as a model, because these birds molt over a very short period. The total protein concentration, albumin, alpha-2, beta and gamma fractions were at their minimum values during molt, whereas the prealbumin and alpha-1 fractions rose to their maximum levels. This study provides baseline information relevant to changes occurring in avian proteinograms throughout the molt. The increase in the prealbumin and alpha-1 fractions may be related to an increase in plasma thyroid hormones during molt. The decrease observed in albumin, alpha-2, beta and gamma fractions may be related to a protein and energy shift, directed towards feather growth, as well as to an expansion of the circulatory system located around the feather follicles. From a clinical point of view, the observed changes associated with molting were less significant than initially expected, and are not likely to be strong enough to mislead the practitioner. KEYWORDS Molt, Plasma, Protein, Electrophoresis, Bird 62 INTRODUCTION Serum protein electrophoresis is commonly used in human laboratory medicine. Over the last 15 years, its use has been extrapolated to avian medicine and it is now commonly recognized as a very reliable diagnostic tool in this field (Cray and Tatum, 1998; Werner and Reavill, 1999). However, some circannual physiological events, such as molting, may be liable to induce changes that could potentially mislead the practitioner. Feathers are indeed composed of 95% protein and represent nearly 25 % of a bird’s dry mass (Murphy and King, 1992). The loss and regeneration of feathers during the molt occurs over a period of a few weeks to a few months, and may therefore be associated with heavy protein transport and synthesis. The molt is furthermore a period of intensive energy demand (Klaassen, 1995). Oxygen consumption has been shown to be nine to 46 % greater in molting birds than in non molting birds (Walsberg, 1983). This energy expenditure arises from several components: the energy content of feathers, the cost of biosynthesis of feather material, body temperature regulation due to decreased insulation and changes in activity, and the energy intake required to supply the sulphur-containing amino acids necessary for feather synthesis (Klaassen, 1995). In addition to this metabolic aspect, studies have shown that a significant increase in total body protein synthesis, osteoporosis, loss of body fat, and depletion of the immune system occur during this event (Mrosovsky and Sherry, 1980; Murphy and Todd, 1995; Kuenzel, 2003). Finally, at this period of time, heavy hormonal changes occur. Thyroid hormones increase concomitantly with a decrease in sexual steroids (Sauveur and De Reviers, 1988). In ducks and geese, the post-nuptial molt coincides with high triiodothyronin (T3) and tetraiodothyronin (T4) plasma levels, and low levels of circulating luteinising hormone (LH) and testosterone (Assenmasher and Jallageas, 1978; John et al., 1983). In Canada geese, the growth hormone (GH) was observed to be at its highest level during molt (John et al. 1983). Corticosterone levels were shown to be either stable (Rehder et al. 1986; Otsuka et al. 1998; Piersma and Ramenofsky, 1998), or to decrease, according to which species was studied (Romero and Remage-Healey, 2000; Rich and Romero, 2001). A great deal has been written about molting within the last 40 years, with particular attention having been paid to addressing the specific types of molt of various birds species(Delacour, 1964; Oring, 1968; Saint Jalme et al. 1995; Todd, 1996), the comprehension of the physiological mechanisms of molting (Assenmasher and Jallageas, 1978; John et al., 1983; Walsberg, 1983; Rehder et al. 1986; Klaassen, 1995; Piersma and Ramenofsky, 1998; Johnson, 2000; Romero and Remage-Healey, 2000; Rich and Romero, 2001; Otsuka et al. 2004), and the evaluation of methods used to induce molting in domestic birds (Brake, 1993, Berry, 2003; Park et al. 2004). However, our review of the literature identified only one reference dealing with plasma electrophoretic changes occurring during molt, from the point of view of the veterinary practitioner. This study, conducted on mallard ducks, reported changes in the albumin and α2 globulin fractions determined using cellulose acetate electrophoresis (Driver, 1981). This is however the only study to have dealt with this topic, and electrophoretic techniques have improved considerably over the last 20 years. 63 The purpose of the present study was therefore to more thoroughly investigate changes in the electrophoresis patterns in birds during molt, through the example of the bar headed goose (Anser indicus). Understanding these changes could help the practitioner with the interpretation of avian electrophoregrams, and improve understanding of avian molt physiology. To this end, geese were chosen as a model, because these birds molt only once a year, at the end of the reproductive season (Delacour, 1964). This prebasic (or postnuptial) molt leads to the growth of both flight and body feathers. All of the wing feathers are shed and replaced simultaneously, to such an extent that, in general, geese completely loose their flight capacity for five to six weeks (Delacour, 1964; Todd, 1996). In barnacle and Canada geese, wing feather elongation was showed to last 35 to 40 days, with growth speeds averaging 7.5 mm daily (Owen and Ogilvie, 1979; Todd, 1996). One could therefore expect such an intense phenomenon to have a significant impact on plasma protein electrophoresis patterns. This study was conducted in 2004, on a group of 19 one year old bar headed geese, which were blood sampled at 15-day intervals, from mid May to mid August. These samples were used to investigate the influence of molting on agarose gel plasma protein electrophoresis. MATERIAL AND METHODS Experimental animals The present study was conducted in 2004, on 19 bar headed geese (Anser indicus) held at the Clères zoological park (France). The group of geese was composed of 7 males and 12 females, which had been hand reared one year before the study, in order to limit the effects of handling stress resulting from blood sampling. All these birds were furthermore sexually immature at the time this study was performed, which allowed us to get rid of potential changes related to the reproduction status. The geese were housed outdoors in a two hectare meadow, and were dewormed with ivermectin (200µg/kg), twice a year in spring and autumn. In mid June, one male goose fell ill and was excluded from the study. Samples Bar headed geese were blood sampled at intervals of 15 days, from mid May to mid August. Two milliliters of blood were drawn from each bird at the brachial vein and collected on lithium heparin (Venosafe vacutainers, Terumo Europe, Leuven, Belgium). Since hemoglobin is known to interfere with protein concentration determination and plasma electrophoresis, care was taken to avoid hemolysis by taking blood samples with 21 G needles and 2 ml syringes (Terumo Europe, Leuven, Belgium). Heparinised blood samples were centrifuged at 3000 g for 5 minutes and the plasma samples were stored in cryotubes (Micronic systems, Lelystad, Holland) at a temperature of -20°C (-4°F) until they were analysed. The samples were then thawed and rehomogenised by gentle mixing 1 hour before analysis. Analyses were carried out on plasma, since for protein electrophoresis in birds this medium is less prone to hemolysis than serum, and 64 because it contains fibrinogen, which is a characteristic acute phase protein (Cray and Tatum, 1998; Hochleithner, 1994). Molt investigation Members of the Anserinae subfamily are known to molt only once a year, at which time both body and flight feathers are replaced (Delacour, 1964). Samples were sorted into four chronological stages, which were devised for the purposes of our study. These stages were based on the molt chronology described by Delacour (1964): A. Basic plumage I; B. Molt of the body feathers; C. Primary and secondary remige development (blood feathers measuring 1/3 to 2/3 of the final feather length); D. Basic plumage II. Heinroth (cited by ROMERO et al. (2005)) described three phases of feather growth: “firstly, a slow initial phase confined to the feather germ at the base of the follicle, secondly a long phase of daily elongation during the major part of which growth is more or less linear, thirdly a progressive slowing down of growth, a withdrawal of pulp from the calamus and the cornification of the feather base”. Stage “B and C” therefore respectively corresponded to body and wing feather elongation. Molt was assessed every 15 days at the times when the birds were captured for blood sampling. Molt score was not investigated more precisely in order to limit the handling of the birds and therefore to limit the potential stress artifacts on protein electrophoresis (Grieninger, 1978; Chamanza et al. 1999). Geese were all synchronous in molting. During the sample collection in mid June and at the beginning of July all of them were respectively at the growth phase of body feathers (B) and flight feathers (C). The other samples corresponded to birds with basic plumage (A or D). Total protein concentration Total protein concentration was determined by the Biuret reaction, using a Roche Integra 400 wet chemistry analyser (Roche diagnostics GmbH, Mannheim, Germany). Readings were made at a wavelength of 552 nm. Plasma protein agarose gel electrophoresis Agarose gel electrophoresis of plasma proteins was carried out using a Hydrasys© semi-automated system (Sebia, Evry, France), using the Hydragel protein 15/30© set (Sebia, Evry, France). It was operated according to the manufacturer’s instructions, using version 7.00 F0.1 of the system software. Ten microlitres of plasma samples were manually distributed onto the sample template, and were allowed to diffuse for a period of 5 minutes in a wet chamber. Application of the samples to the gel, electrophoresis, and drying of the gel were all performed automatically in the migration compartment of the instrument. The temperature was maintained at 20°C (68°F) using a Peltier device during the complete migration process, and drying was obtained by heating the gels to 65°C. Electrophoretic separation was obtained on 8 g/l agarose gels in a Trisbarbital buffer (pH 9.2), at a constant power level of 20W, until 33 Vh had been accumulated. Once dried, the gels were manually transferred to the staining compartment of the instrument where amido-black staining, destaining and drying were performed automatically. Once these operations had been completed, 65 the gels were scanned with a high resolution Epson perfect V700 photo scanner (Epson France, Nanterre, France). Electrophoretic curves and dosages of the different fractions were acquired using Phoresis© software, version 5.50 (Sebia, Evry, France). Albumin was identified as having the strongest anodal peak. The beta peak was defined as the fibrinogen peak (Roman et al., 2007). Globulins were divided into 5 fractions. The alfa fractions were located between the albumin and beta peaks, and the gamma fraction was located beyond the beta peak. As previously described in other studies of avian protein electrophoresis, the A/G ratio was calculated by dividing the sum of the prealbumin and albumin fractions by the sum of the globulin fractions (Lumeij, 1987; Cray and Tatum, 1998). Statistical analysis Systat 7.0 software (SPSS inc. © 1997) was used for all analyses. Because of the small size of the studied population, we used Friedman’s two-way variance analysis and Wilcoxon’s signed rank test. 66 RESULTS The bar headed geese electrophoresis patterns were divided into six fractions (Figure 1): one prealbumin fraction, one albumin fraction, two alpha fractions, one beta fraction and one gamma fraction. Figure 1: example of plasma electrophoresis patterns of a Bar headed goose (Anser indicus). In both sexes, total protein concentration appeared to vary significantly as a function of time (Friedman’s test: p = 0). In both males and females, total protein concentration significantly decreased from mid June to early July (respectively: Z = -2.366, p < 0.02; Z = -2.667, p < 0.01) (Figure 2). Thereafter, total protein concentration remained at a low value until the end of the study. 67 Figure 2: variation of total plasma protein concentration during the molt in males ( females ( ) and ) bar headed geese (Anser indicus). This graph makes use of measurements based on bi-monthly blood samples, taken between mid May and mid August. Molt stages are indicated as: A. Basic plumage I; B. Molt of the body feathers; C. primary and secondary flight feathers development; D. Basic plumage II. The data points are expressed as: mean ± SEM. All fractions appeared to vary significantly as a function of time, from the beginning to the end of the study, in both sexes (Friedman’s test: p < 0.01). Several fractions were observed to increase during molt, in both males and females. The pre-albumin fraction increased from mid June to early July (Figure 3a,). This increase was significant in females (Z = 2.981, p < 0.05) and only marginally significant in males (Z = 1.859, p = 0.063). Thereafter, it significantly decreased in both sexes, from early July to mid July (Z = -2.201, p < 0.05 and Z = -2.824, p < 0.01, for males and females respectively). The alpha-1 fraction tended to be higher, around the molt period (Figure 3c). However, it reached its maximum value earlier in females than in males. Alpha-1 fraction increased significantly from early June to mid June in females (Z = 2.824, p < 0.05), reaching its maximum value during the molt of the body feathers. Thereafter, it decreased significantly from early July to mid August (Z = -1.961, p < 0.05). In males, the alpha-1 fraction tended to increase from mid May to early July, reaching a maximum during molt of the flight feathers. This increase was only marginally significant (Z = 1.859, p = 0.063). The alpha-1 fraction then remained stable from early June to early August, and significantly decreased until the end of the study (Z = -2.201, p < 0.05). Some other fractions decreased at the time of molting. The albumin concentration decreased from mid June to early July, in both males and females (respectively: Z = -2.366, p < 0.02; Z = -3.059, p < 0.01) (Figure 3b). The albumin fraction then increased significantly for males (Z = 2.201, p < 0.05), from early July to mid 68 July. The alpha-2 fraction decreased significantly in males and females from early July to mid July (respectively: Z = -2.366, p < 0.02; Z = -2.903, p < 0.01), reached its minimum value during molt, and then increased significantly from early July to mid July (respectively: Z = 2.201, p < 0.05; Z = 3.059, p <0.01) (Figure 3d). The gamma fraction decreased significantly in both males and females from early June to early July (respectively: Z = -2.366, p < 0.02; Z = -2.118, p < 0.05), and again increased significantly from early July to early August (respectively: Z = 1.992, p < 0.05; Z = 2.040, p < 0.05) (Figure 3f). The beta fraction significantly decreased in both males and females, from mid June to early July (respectively: Z = -2.366, p < 0.02; Z = -2.824, p < 0.05) and then remained stable until the end of the study (Figure3e). In both sexes, the A/G ratio did not appear to fluctuate in relation to the molt period. Except for the alpha-1 and gamma fractions, no significant difference was found between males and females for any of the measured parameters. In general, the alpha-1 fraction was observed to be significantly higher in females than in males (p < 0.02), except from early June to early August when no significant difference was found. The gamma fraction was observed to be significantly higher in females than in males (p < 0.05). 69 Figure 3: variation of (a) pre-albumin, (b) albumin, (c) alpha-1, (d) alpha-2, (d) beta and (e) gamma fractions concentration during the molt in males ( ) and females ( ) bar headed geese (Anser indicus). This graph makes use of measurements based on bi-monthly blood samples, taken between mid May and mid August. Molt stages are indicated as: A. Basic plumage I; B. Molt of the body feathers; C. primary and secondary flight feathers development; D. Basic plumage II. The data points are expressed as: mean ± SEM. 70 DISCUSSION The present study provides baseline information relevant to the changes which occur in avian proteinograms throughout the molt. It clearly stresses that the molt coincides with an indisputable decrease in total protein concentration, and albumin, alpha-2, beta and gamma fractions, followed by an increase in total protein, and albumin, alpha-2 and gamma fractions once the molt is finished. In addition, our study reveals an increase in the prealbumin during the molt. In the same manner, alpha-1 fraction was higher around the molt, than after or before. This study is the first to have investigated the effects of molt in plasma proteins of both male and female birds. Our results match those of previous publications, which also showed a decrease in albumin and total protein concentrations during the molt of chickens (Gildersleeve et al., 1983), passerine birds (De Graw and Kern, 1985) and tropical seabirds (Work, 1996). For the case of mallard ducks, Driver (1981) demonstrated that the total protein concentration decreased significantly, reaching a minimum during molt, and then increased. The albumin concentration was described to be 10 to 20 % lower during, than after molt, whereas the alpha-2 fraction was shown to be lower during molt than beforehand. However, no change was found in the other fractions. This could be due to the fact that this particular study was based on a smaller sample size, and made use of a less accurate electrophoresis technique (cellulose acetate electrophoresis), than the work presented here. Our results therefore provide additional data concerning changes observed in the prealbumin, alpha-1, beta, and gamma fractions. In the study reported here, total protein concentration decreased mainly as the result of reduced albumin, alpha 2 and gamma fractions during the molt. Albumin is the most abundant plasma protein. Besides other important roles as a carrier protein, or in the control of osmotic pressure of the blood, albumin also plays the role of a mobile source of amino acids in a nutritional emergency (Butler, 1971; Kaneko, 1989). The observed decline in albumin concentration thus suggests that this amino acid reserve was used for feather production. In molting passerine birds, Murphy and Todd (1995) demonstrated an acceleration of the whole body protein turnover, which could enable an increase in the animal’s metabolic plasticity and allow such adaptations. The fact that the albumin values increased again after the molt in male birds, before decreasing again, could be explained by a “rebound” effect related to the competition between the homeostatic phenomenon aiming at restoring albumin to its original concentration, and the consumption of this latter as an amino-acid reserve used for feather production. Our study highlights the fact that the gamma fraction, which is known to contain immunoglobulins (Kaneko, 1989; Cray and Tatum, 1998; Werner and Reavill, 1999), tended to decrease during the molt, which is a period of intense energy expenditure (Klaassen, 1995). Energetically expensive conditions which are not directly related to molting, such as immune responses (OTS et al., 2001; Martin et al., 2003), may be temporarily reduced (Raberg et al., 1998). Depletion of the immune system during molt was first demonstrated in the Smyth line (SL) chicken, which expresses the gene of an auto-immune disease similar to vitiligo, resulting in the loss of melanocytes from the feathers. During molt, some of the new emerging feathers are pigmented, suggesting that the autoimmune disease is not completely expressed during this 71 period, because the immune system is transiently depleted (Boyle and Smyth, 1984). This is in agreement with a recent publication which showed that triiodothyronine (T3) has an immunosuppressive effect on humoral immunity in Eider ducks (Somateria mollissima) (Bourgeon and Raclot, 2007). A dramatic increase in the concentration of this hormone, which is well known to occur throughout the molt (Assenmacher and Jallageas, 1978; John et al., 1983), is probably responsible for a transfer of energy towards feather replacement, resulting (in the case of our study) in a decrease in the gamma fraction, followed by an increase once the molt was over. A decrease in some protein fractions may also be related to hemodilution effects, resulting from expansion of the circulatory system located around the feather follicles. Some studies have indeed showed that in passerine birds, molting causes an increase in the plasma volume (Chilgren and De Graw, 1977; De Graw and Kern, 1985). The changes observed in the alpha-2 or beta fractions may be related to one or more of the phenomena described above. Our study also shows that prealbumin and alpha-1 fractions tend to increase during the molt. Increases in the plasma levels of thyroid hormones, which appear to function by promoting feather replacement and regulating the impaired homeothermy of the defeathered bird (Johnson, 2000), may have contributed to the increase in these fractions. Indeed, it has been demonstrated that in the chicken, both triiodothyronine (T3) and thyroxine (T4) selectively stimulate the synthesis of four major plasma proteins in hepatocyte cultures, including fibrinogen and α1-globulin M (hemopexin) both of which are acute phase proteins, lipoproteins, and prealbumin B (Hertzberg et al. 1981; Grieninger et al., 1986). A short period of exposure, of the order of 30 minutes, is sufficient to trigger a nearly full thyroid hormone effect on plasma protein synthesis (Hertzberg et al. 1981). On the other hand, in 1987, another study demonstrated for the first time the existence of an association between an increase in the concentration of plasma transthyretin and molting in birds (Cookson et al. 1988). This carrier protein, also called thyroxine binding pre-albumin, may be responsible for the increase in the prealbumin fraction during remige molt observed in this study. The fact that we observed the beta fraction, which is known to contain fibrinogen, to decrease during the molt remains unexplained. Except for the alpha-1 fraction, main changes observed herein in the plasma protein fractions closely coincided with the molt of the flight feathers and may correspond to maximum changes in the geese’s protein metabolism. The alpha-1 fraction reached its maximum value 15 days earlier in females than in males. This could be related to a slightly earlier molt in females than in males that our relatively rough molt investigation method was not able to point out. However, a thorough investigation of feather molt would not have been feasible in this kind of study, since the potential stress induced by frequent handlings of the birds would have resulted in changes in the proteinograms (Grieninger, 1978; Chamanza et al. 1999). The main differences observed between males and females occurred in the alpha-1, beta and gamma fractions. The values of these fractions were in fact shown to be greater in females than in males. Such differences between males and females have seldom been investigated in birds, outside the breeding season. In black storks (Ciconia nigra) higher gamma values were observed in females than in males, but 72 this finding remains unexplained (Lanzarot et al., 2005). In the study reported here, such differences might have been caused by the presence, unbeknown to the authors, of underlying inflammatory conditions in some of the birds in the female group. Further studies should be carried out in order to investigate differences between male and female electrophoregrams, outside the breeding season. In any case, from the clinical point of view, changes related to the molt were less significant than initially expected, and may not be strong enough to mislead the practitioner, since the variations recorded during the course of the molt were weak in comparison with the observed inter-individual variations. ACKNOWLEDGEMENTS We wish to thank P. Trolliet from Sebia for his invaluable technical support, the team from bio VSM, and more especially Mrs. K. Naudin from bio VSM, who carried out the total protein measurements. We wish to thank the team from the Parc Zoologique de Clères, and in particular D. Catteville and C. Dumais who provided us with invaluable help in handling and rearing the birds. We are grateful to the Muséum National d’Histoire Naturelle and the Conseil Général de Seine Maritime (France) for their financial support. We also appreciate the proofreading assistance provided by Techtrans Consulting. LITTERATURE CITED ASSENMASHER, I., and A. JALLAGEAS. 1978. Comparative study of the annual cycles in sexual and thyroid function in male Peking ducks (Anas platyrhynchos) and teal (Anas crecca). General and Comparative Endocrinology. 36: 201-10. BERRY, W.D. 2003. The physiology of induced molting. Poultry Science. 82: 971-980. BOURGEON, S., and T. RACLOT. 2007. Triiodothyronine suppresses humoral immunity but not T-cell mediated immune response in incubating female eiders (Somateria mollissima). General and Comparative Endocrinology. In press. BOYLE, M.L., and J.R. SMYTH. 1984. Remelanization of feathers inseverely amelanotic adult DAM line chickens. Poultry Science. 63: 102. BUTLER, E.J. Plasma proteins. 1971. In Physiology and biochemistry of the domestic fowl, BELL, D.J., and B.M. FREEMAN (eds.). Academic Press, London, England, pp. 934-961. BRAKE, J. 1993. Recent advances in induced molting. Poultry Science. 72: 929-931. 73 CHAMANZA, R., VAN VEEN, L., TIVAPAZI, M.T., and M.J.M TOUSSAINT. 1999. Acute phase proteins in the domestic fowl. Worls’s poultry science. 55: 61 - 71 CHILGREN, J.D., and W.A. DE GRAW. 1977. Some blood characteristics of white-crowned sparrows during molt. Auk. 94: 169-171. COOKSON, E.J., HALL, M.R. and J. GLOVER. 1988. The transport of plasma thyroxine in white storks (Ciconia ciconia) and the association of high levels of plasma transthyretin (thyroxine-binding prealbumin) with moult. Journal of Endocrinology. 117: 75-84. CRAY, C., and L. TATUM. 1998. Application of protein electrophoresis in avian diagnostic testing. Journal of Avian Medicine and Surgery. 12: 4-10. CURTIS, M.J., and E.J. Butler. 1980. Response of ceruloplasmin to Escherichia coli endotoxin and adrenal hormones in the domestic fowl. Research in Veterinary Science. 22: 267-270. DE GRAW, W.A., and M.D. KERN. 1985. Changes in the blood and plasma volume of Harris’ sparrows during postnuptial molt. Comparative Biochemistry and Physiology part A. 81: 889-893. DELACOUR, J. Plumage succession. 1964. In The waterfowl of the world; volume four, DELACOUR, J. (ed.). Country life limited, London, England, pp. 175-180. DRIVER, E.A. 1981. Hematological and blood chemical values of mallard, Anas p. platyrhynchos, drakes before, during and after remige moult. Journal of Wildlife Diseases. 17: 413-421. GILDERSLEEVE, R.P., SATTLE, D.G., JOHNSON, W.A., and T.R. SCOTT. 1983. The effects of forced molt treatment on blood biochemicals in hens. Poultry Science. 52: 755-762. GRIENINGER, G., HERTZBERG, K.M., and J. PINDYCK. 1978. Fibrinogen synthesis in serum-free hepatocyte cultures: stimulation by glucocorticoids. Proceedings of the National Academy of Science of the USA. 75: 5506-5510. GRIENINGER, G., LIANG, T.J., BEUVING, G., GOLDFARB, V., METCALFE, S.A., and U. MULLEREBERHARD. 1986. Hemopexin is a developmentally regulated, acute-phase protein in the chicken. Journal of Biological Chemistry. 261: 15719-15724. 74 HERTZBERG, K.M., PINDYCK, J., WOSESSON, W., and G. GRIENINGER. 1981. Thyroid hormoes stimulation of plasma protein synthesis in cultured hepatocytes. Journal of Biological Chemistry. 256: 553566. HOCHLEITHNER, M. 1994. Biochemistries. In Avian medicine: principles and application, B. W. RITCHIE, G. H. HARRISSON and L. R. HARRISSON (eds.). Wingers Publishing Inc., Lake Worth, Florida, pp. 237-238. JOHN, T.M., GEORGE, J.C., and C.G. SCANES. 1983. Seasonal changes in circulating levels of luteinising hormone and growth hormone in the migratory Canada goose. General and Comparative Endocrinology. 51: 44-49. JOHNSON, A.L. 2000. Chapter 22. Reproduction in the female. In Sturkie’s avian physiology, Fifth edition. WHITTOW, G.C. (ed.). Academic Press, San Diego, California, pp. 569-596. KANEKO, J.J. 1989. Serum proteins and the dysproteinemias. In Clinical biochemistry of domestic animals, KANEKO, J.J. (ed.). Academic press, New York, USA, pp. 142-164. KLAASSEN, M. 1995. Molt and basal metabolic costs in males of two subspecies of Stonechats: the European (Saxicola torquata rubicola) and the African (S. t. axillaries). Oecologia. 104: 424-432. KUENZEL, W.J. 2000. Chapter 7. The autonomic nervous system. In Sturkie’s avian physiology; Fifth edition, WHITTOW, G.C (ed.). Academic Press, San Diego, California, pp. 101-122. KUENZEL ,W.J. 2003. Neurobiology of molt in avian species. Poultry Science. 82: 981-991. MARTIN, L.B., SCHEUERLEIN, A., and M. WIKELSKI. 2003. Immune activity elevates energy expenditure of house sparrow: a link between direct and indirect costs. Proceedings of the Royal Society of London Biological Science. 270: 153-158. LANZAROT, M.P., BARAHONAS, M.V., SAN ANDRÉS, M.I., FERNANDEZ-GARCIA, M., and C. RODRIGUEZ. 2005. Hematologic, protein electrophoresis, biochemistry, and cholinesterase values of freeliving black storks nestlings (Ciconia nigra). Journal of Wildlife Diseases. 42: 379-386. MURPHY, M.E., and J.R. KING. 1992. Energy and nutrient use during moult by white-crowned sparrows (Zonotrichia leucophrys gambelii). Ornis Scandinavica. 23: 304-313. 75 MURPHY, M.E., and G.T. TODD. 1995. Sparrows increase their rates of tissue and whole body protein synthesis during the annual molt. Comparative Biochemistry and Physiology part A. 111: 385-396. ORING, L.W. 1968. Growth, molts and plumages of the gadwall. Auk. 85: 355-380. OTS, I., KERIMOV, A.B., IVANKINA, E.V., ILINA, T.A., and P. HORAK. 2001. Immune challenge affects the basal metabolic activity in wintering great tits. Proceedings of the Royal Society of London Biological Science. 268: 1-7. OTSUKA, R., AOKI, K., HORI, H., and M. WADA. 1998. Changes in circulating LH, sex steroid hormones and corticosterone in relation to breeding and molting in captive Humbolt penguins (Spheniscus humbolti) kept in an outdoor open display. Zoological Science. 15: 103-109. OTSUKA, R., MACHIDA, T., and M. WADA. 2004. Hormonal correlation at transition from reproduction to molting in an annual life cycle of Humbolt penguins (Spheniscus humbolti). General and Comparative Endocrinology. 135: 175-185. OWEN, M., and M.A OGILVIE. 1979. Wing molt and weights of barnacle geese in Spitsbergen. Condor. 81: 42-52. PARK, S.Y., BIRKHOLD, S.G., KUBENA, L.F., NISBET, D.J., and S.C. RICKE. 2004. Effects of high zinc diets using zinc propionate on molt induction, organs, and postmolt egg production and quality in laying hens. Poultry Science. 83: 24-33. PIERSMA, T., and M. RAMENOFSKY. 1998. Long term decreases of corticosterone in captive migrant shorebirds that maintain seasonal mass and moult cycles. Journal of Avian Biology. 29: 97-104. REHDER, N.B., BIRD, D.M., and P.C. LAGUE. 1986. Variations in plasma corticosterone, estrone, estradiol-17B, and progesterone concentrations with forced renesting, molt, and body weight of captive female American kestrels. General and Comparative Endocrinology. 62: 386-393. ROMERO, L.M., and L. REMAGE-HEALEY. 2000. Daily and seasonal variation in response to stress in captive starlings (Sturnus vulgaris). General and Comparative Endocrinology. 119: 52-59. 76 ROMERO, L.M., STROCHLIC, D., and J.C. WINGFIELD. 2005. Corticosterone inhibits feather growth: potential mechanism explaining seasonal down regulation of corticosterone during molt. Comparative Biochemistry and Physiology part A. 142: 65-73. RICH, E.L., and L.M. ROMERO. 2001. Daily and photoperiod variations of basal and stress-induced corticosterone concentrations in house sparrows (Passer domesticus). Journal of Comparative Physiology part B. 171: 543-547. ROMAN, Y., LEVRIER, J., ORDONNEAU, D., CHASTE-DUVERNOY, D., SAINT JALME, M. and M.C. BOMSEL-DEMONTOY. 2007. Location of the fibrinogen fraction in plasma protein electrophoresis agarose gels of five taxonomically distinct bird species. In Proceedings of the 9th EAAV conference, Zurich, Switzerland, pp. 264-272. SAINT JALME, M., and J.C GUYOMARC'H. 1995. Plumage development and moult in the European quail (Coturnix c. coturnix): criteria for age determination. Ibis. 137: 570-581. SAUVEUR, G., and M. DE REVIERS. 1988. Chapitre 5 : mues naturelles et mues provoquées. In Reproduction des volailles et production d’œufs. SAUVEUR, G., and M. DE REVIERS (eds.). : INRA, Tours Nouzilly, France, pp. 89-100. TODD, F.S. 1996. Molt. In Natural history of the waterfowl. TODD, F.S (ed.). Ibis publishing company, Vista, California, pp. 15-17. WALSBERG, G.E. 1983. Avian ecological energetics. In Avian biology Vol 7. FARNER, D.S., and J.R. KING (eds.). Academic press, New York, USA, pp. 161-220 WERNER, L.L., and D.R. REAVILL. 1999. The diagnostic utility of serum protein electrophoresis. Veterinary Clinics of North America Exotic Animal Practice. 2: 651-662. WORK, T.M. 1996. Weights, haematology, and serum chemistry of seven species of free-ranging tropical pelagic seabirds. Journal of Wildlife Diseases. 32: 643-657. 77 78 Article 4 : Influence de la ponte sur les profils d’électrophorèse des protéines plasmatiques de la poule pondeuse (Gallus gallus) Cet article a été soumis à la revue Veterinary Clinical Pathology. Résumé L’électrophorèse des protéines plasmatiques est de plus en plus communément admise comme étant un examen complémentaire fiable en médecine des oiseaux. Cependant, l’influence de phénomènes circannuels tels que la ponte, sur les électrophorégrammes aviaires sont méconnus. Pourtant, la période de ponte est une période d’intense bouleversement métabolique et hormonal pour l’oiseau. L’objectif de cette étude était donc d’aborder les effets de la ponte sur les électrophorégrammes aviaires. La poule pondeuse a été prise pour modèle dans notre étude car cette dernière est capable de pondre en moyenne un œuf toutes les 25 heures pendant plusieurs mois. Vingt poules (Gallus gallus) ont été prélevées mensuellement de la mi-octobre à la mi-mars. Ces poules ont commencé à pondre début janvier. Les œufs ont été ramassés et comptabilisés chaque jour. Les concentrations plasmatiques en triglycérides, en cholestérol et les valeurs absolues des fractions alpha-1, beta-1 et beta-2 ont augmenté de manière importante dès l’entrée en ponte. Pendant la même période, la fraction alpha-3, ainsi que la concentration en cholestérol HDL ont fortement diminué. Les concentrations en albumine et en protéines totales ont augmenté régulièrement du début à la fin de l’étude. Cette étude constitue une publication de référence des effets de la ponte sur les profils électrophorétiques des oiseaux. L’augmentation des fractions beta-1 et beta-2 est liée à la mise en circulation de VLDLy à destination des follicules chez la poule pondeuse. La diminution de la fraction alpha-3 correspond à une diminution de la concentration plasmatique en HDL durant la même période. D’un point de vue clinique, les changements observés sont susceptibles d’induire des erreurs d’interprétation des électrophorégrammes aviaires en simulant la présence d’un processus inflammatoire aigu conduisant à une augmentation de la fraction gamma. 79 Effects of egg-laying on plasma protein electrophoresis in hens (Gallus gallus) RH: egg-laying and plasma protein electrophoresis in hens Yannick Roman, Bertrand Bed’Hom, David Gourichon, Julie Levrier, Daniel Chaste-Duvernoy and Marie-Claude Bomsel-Demontoy, Michel Saint Jalme. From the Muséum national d’Histoire naturelle (MNHN), DJBZ, Le Parc de Clères, Clères, France (Roman, Levrier), the INRA, AgroParisTech, UMR1236 GDA, Domaine de Vilvert, 78352 Jouy en Josas, France (Bed’Hom), the INRA, Pôle Expérimental Avicole de Tours, UE1295, centre de Tours-Nouzilly, 37380 Nouzilly (Gourichon), the Laboratoire Bio-VSM, Torcy, France (Chaste-Duvernoy), the Muséum national d’Histoire naturelle (MNHN), DJBZ, Ménagerie du Jardin des Plantes, Paris, France (Bomsel-Demontoy), and the Muséum national d’Histoire naturelle (MNHN), EGB, UMR 5173 - CERSB - MNHN, CNRS, Paris IV, Paris, France (Saint Jalme). Corresponding author: Yannick Roman (yannick.roman@cg76.fr). 80 Background: plasma protein electrophoresis is now commonly recognized to be a very reliable diagnostic tool in avian medicine. However, the influence of circannual phenomena such as egg-laying on protein electrophoregrams is poorly documented. Yet, the laying period is a period of heavy hormonal and metabolic change in birds. Objective: The purpose of this study was to investigate the effects of egg-laying on total protein concentration and electrophoresis patterns in birds. Methods: 20 hens (Gallus gallus) were blood sampled monthly from mid October to Mid March. Hens started to lay eggs in early January. Eggs were collected each day. Total protein, triglyceride, total cholesterol and HDL-cholesterol concentrations and sample turbidity were measured and plasma agarose gel electrophoresis were performed on these samples. The hens were chosen as a model, because these birds are able to lay one egg every 25 hour for several months. Results: Triglyceride, cholesterol, alpha-1, beta-1 and beta-2 fraction concentrations started to increase as soon as hens began to lay eggs. During the same period, the alpha-3 fraction and HDLCholesterol concentration were observed to decrease. Total protein and albumin concentrations appeared to increase throughout this study. Conclusions: This study provides baseline information relevant to changes occurring in avian proteinograms throughout the egg-laying. Increases in the beta-1 and beta-2 fractions were related to the release in the bloodstream of VLDLy targeted to the vitellus in laying hens. The decrease in the alpha-3 fraction corresponds to a decrease in the HDL plasma concentration during the same period. From a clinical point of view, the observed changes associated with egg-laying could have completely misled the practitioner by simulating an acute inflammatory condition leading to increases in the beta fraction. Keywords: Egg-laying, Plasma, Protein, Electrophoresis, bird 81 Plasma protein electrophoresis has proven to be very useful in avian medicine, as a routine screening test and diagnostic tool. Used in conjunction with total protein measurements, with the Biuret reaction, it permits the evaluation, diagnosis, and monitoring of a variety of diseases and conditions in birds.1-4 However, some circannual physiological events such as egg-laying may induce heavy changes in plasma proteinograms, which could potentially mislead the practitioner. Indeed, egg-laying is an event which, during the life of a bird, produces a major metabolic perturbation. Egg-laying has been demonstrated to be responsible for a 22% increase in the basal metabolic rate in European starlings (Sturnus vulgaris),5 and for an increase of up to 38-51% in laying hens.6 This energy expenditure is probably due to the synthesis of fatty acids, yolk precursors and egg white proteins, the transport of these precursors to the egg, the laying down of the shell, transfer of the egg through the oviduct, and maintenance of the reproductive organs.6 Heavy hormonal changes occur within this period of time. The release of a gonadotropin-releasing hormone (GnRH) by the hypothalamus induces the release of a follicle-stimulating hormone (FSH) and a luteinising hormone (LH) by the pituitary gland. The latter stimulates the production of oestrogen by the ovary, which then triggers the production of egg-yolk precursors.7-9 During egg-laying, the bird thus exports significant quantities of lipids and proteins, which are needed for the production of eggs. In laying hens, eggs are indeed composed of an average of 12% proteins and 12% lipids.10 While egg-white proteins are directly synthesized by the oviduct wall, the lipids and proteins contained in the vitellus are synthesized by the liver and transported to the vitellus by the bloodstream. When hens reach sexual maturity, liver protein synthesis increases threefold, and lipid synthesis increases by a factor of 10.7 In domestic fowls, ducks and pigeons, the follicles undergo a rapid growth phase 6 to 11 days prior to ovulation (up to 16 days in some penguin species).9,11 During this period in hens, 2 g of protein per day are deposited in the yolk, which increases in volume by a factor of 3500 to 8000.9 Multiple serum proteins, including Very Low Density Lipoproteins (VLDL) and vitellogenins, are therefore present in large quantities in the bloodstream of chickens during the laying period.12,13 Such a phenomenon has been investigated by plasma and serum protein electrophoresis for research purposes. For some authors, egg-laying does not correspond to an increase in total protein concentration.14 On the other hand, some other authors have noticed an increase in total protein quantity, one week before egg-laying, followed by a return to normal levels at the inception of egg-laying.15,16 The most commonly observed modification in the electrophoregrams of egg-laying birds is an increase in the pre-albumin fraction.17-20 Concerning the alpha fraction, McKinley et al. (1953) and Polat et al. (2004) described a decrease in alpha-1 fraction, until it becomes virtually inexistent, in egg-laying birds.21,22 This is contradictory to the findings of Kuryl and Gasparska (1976), who described an increase in post-albumin fraction during this same period.20 Some authors have documented a monoclonal increase in beta fraction associated with egg-laying.3,4 This is contradictory to the statements of Kuryl and Gasparska (1985), who described a decrease in pre- and post-transferrin fractions during egg-laying,20 and to the findings of Lush (1963) who described two post-transferrin fractions which varied with opposite tendencies during the same period.19 Finally, some authors have observed an increase in the gamma fraction during egg-laying.15,20,23 82 Egg-laying also appears to be associated with a decrease in the A/G ratio.14,24 The above-mentioned studies thus present numerous contradictions, which can probably be accounted for by significant differences in the electrophoretic techniques used. Most of these studies were made many years ago, and the techniques used for the analysis of serum and plasma proteins have significantly progressed over the last 15 years. The only study carried out using agarose gel produced results which differ from those of other studies, since it found that in ostriches (Struthio camelus) the only changes which occurred during egg-laying were a reduction in the alpha-1 fraction.22 The purpose of the present study was therefore to use agarose gel electrophoresis to implement a more thorough investigation of the changes which occur in avian plasma proteins during egg-laying, through the example of the chicken (Gallus gallus domesticus). A detailed understanding of these changes may help the practitioner in future interpretations of avian electrophoregrams, and improve our understanding of egglaying physiology in birds. To this end, chickens were chosen as a model. In this particular species, the domestication process has led to birds whose egg-laying is spread over a long cycle (40 to 50 weeks, with up to 300 eggs per year), and for which brooding is eliminated through daily collection of the eggs.7 One could therefore expect such an intense phenomenon to have a significant impact on plasma protein electrophoresis patterns. Our study was conducted on 20 hens which were blood sampled monthly, from October 2007 to March 2008. The hens were 45 days old at the beginning of the study, and started to lay eggs in January. The effects of egg-laying were studied by using agarose gel plasma protein electrophoresis to analyse the collected samples. Materials and methods Experimental animals The study was conducted on 20 White Leghorn laying hens, (Gallus gallus) held by the UE997 INRA, Génétique Factorielle Avicole, Tours-Nouzilly (France), who were all born on September the 6th 2007. At the beginning of the study, they were housed in collective cages (13 to 14 birds per cage), with simulated 10hour days. Egg-laying was triggered on January 6th by transferring the hens into individual cages, with simulated 16 hour days. The hens started to lay eggs 10 days after their transfer into the laying cages and the eggs were collected manually every day at 10 am in real time. The hens were fed on commercial chick starter at first, and then on broiler pellets until they reached maturity. They were then given laying hen pellets, as soon as they had been transferred to the laying battery. In all cases, feeding was provided ad libitum. The chicks were vaccinated with attenuated vaccines, by intramuscular injection for Marek’s disease (Nobilis Rismavac©, Nobilis, Beaucouze, France) on September 6th 2007, and orally for infectious bronchitis (Nobilis H120©, Nobilis, Beaucouze, France) on the same day. They were vaccinated for infectious bronchitis (Nobilis IB 4-91©, Nobilis, Beaucouze, France) on September 16th, for infectious bursal disease (Nobilis Gumboro D78©, Nobilis, Beaucouze, France) on September 23rd, for the Newcastle disease (Pestos 83 HB1©, Merial, Villeurbanne, France) on October 1st, for infectious bursal disease (Bursine 2©, Fort Dodge, Tours, France) on October 14th, for the Newcastle disease and infectious bronchitis (Respectively: Nobilis ND clone 30 © and Nobilis IB 4-91©, Nobilis, Beaucouze, France) on October 28th, for swollen head syndrome (Aviffa RTI©, Merial, Villeurbanne, France) on November 11th, and for encephalomyelitis (Encephalo nobilis ©, Nobilis IB 4-91©, Nobilis, Beaucouze, France) on December 9th. At the time of their transfer to the laying cages, the hens were given intramuscularly booster doses of inactivated vaccine against the Newcastle disease, infectious bronchitis, egg drop syndrome, swollen head syndrome (Gallimune 407 ND+IB+EDS+ART ©, Merial, Villeurbanne, France) and infectious bursal disease (Gumboriffa ©, Merial, Villeurbanne, France). Samples Blood samples were taken monthly in 2007, on October 23rd, November 20th, December 17th, and in 2008, on January 21st, February 18th and March 10th, each time at 9 am. The blood samples were taken from the brachial vein, using 22 G needles and 2 ml syringes (respectively: Terumo Neolus 22 G, Leuven, Belgium and BD Plastipack, Octeville, France). Two millilitres of blood were drawn from each bird, collected in lithium heparin tubes (Venosafe vacutainers, Terumo, Leuven, Belgium) and centrifuged at 3000 g for 10 minutes. Analyses were carried out on the resulting plasma. The plasma samples were split into two aliquots, of which one was immediately sent by refrigerated parcel post (4°C) to the Bio-VSM laboratory for plasma chemistry analysis and turbidity measurements. The analyses were thus carried out the day after the samples were taken. The other aliquots were stored in cryotubes (-20°C) until they were needed for protein and lipoprotein analysis (Micronic systems, Lelystad, Holland). All samples were thawed and re-homogenised by gentle mixing on March 20th, one hour before analysis. Total protein, triglyceride, total cholesterol and HDL-cholesterol (HDL-C) concentrations, and turbimetry measurements Total protein concentration was determined with the Biuret reaction, using a Roche Integra 400 wet chemistry analyser (Roche Integra 400©, Roche diagnostics, Meylan, 38242, France). Readings were made at a wavelength of 552 nm. Triglyceride concentrations were determined with the same analyser, at a wavelength of 512 nm, using Trinder’s reaction (GOP/PAP). Total cholesterol concentration was determined by an enzymatic colorimetric method: cholesterol esters were cleaved by the action of cholesterol esterase in order to yield free cholesterol and fatty acids. Cholesterol oxidase then catalyzed the oxidation of cholesterol, producing cholest-4-en-3-one and hydrogen peroxide. In the presence of peroxidase, the hydrogen peroxide reacted with phenol and 4-aminoantipyrine to form a red quinone-imine dye, whose colour intensity was directly proportional to the cholesterol concentration. The readings were taken at 512 nm. The same principle was used to measure HDL-C concentrations, except for the fact that in this case, enzymes coupled with polyethylene glycol (PEG) to the amino groups were used. In the presence of magnesium ions and dextran sulfate, water-soluble complexes are formed with LDL, VLDL, and chylomicrons, which become resistant to 84 PEG-modified enzymes, contrary to HDL. Turbidity measurements were carried out with the same analyser at 659 nm, since other forms of interference (such as hemolysis) are known to be low at this wavelength.25 Light of a known intensity “I0” was passed through the sample, on the other side of which the transmitted intensity “I” (“I0” less the absorbed light) was measured. The turbidity τ = ln (I0/I) was recorded in nephelometric turbidity units (NTU).26,27 Plasma protein and lipoprotein agarose gel electrophoresis Agarose gel electrophoresis were carried out using a Hydrasys© semi-automated system (Sebia, Evry, France), using the Hydragel protein 15/30© set for plasma protein electrophoresis, and the Hydragel 30 lipoprotein © set for plasma lipoprotein electrophoresis (Sebia, Evry, France). It was operated according to the manufacturer’s instructions, using version 7.00 F0.1 of the system software. Ten microlitres of plasma samples were manually distributed onto the sample template applicator, and were allowed to diffuse for a period of 5 minutes in a wet chamber. Application of the samples to the gel, electrophoresis, and drying of the gel were all performed automatically in the migration compartment of the instrument. The temperature was maintained at 20°C using a Peltier device during the complete migration process, and drying was obtained by heating the gels to 65°C. Electrophoretic separation was obtained on 8 g/L agarose gels, in a Tris-barbital buffer, at pH 9.2 and a constant power level of 20W, until 33 Vh had been accumulated, for protein electrophoresis, and at pH 8.5 and a constant voltage of 160V for lipoprotein electrophoresis. For plasma protein electrophoresis, once they had been dried, the gels were manually transferred to the staining compartment of the instrument where amido-black staining, destaining and drying were performed automatically. For plasma protein lipoprotein electrophoresis, the gels were manually coloured with Sudan black stain provided in the Hydragel 30 lipoprotein © set (Sebia, Evry, France). Once these operations had been completed, the gels were scanned with a high resolution Epson perfect V700 photo scanner (Epson France, Nanterre, France). Electrophoretic curves and quantification of the different fractions were acquired using version 5.50 of the Phoresis© software (Sebia, Evry, France). Statistical analysis Descriptive statistical analysis was carried out using Microsoft Excel 2003©. Systat 7.0 software (Systat 7.0, Systat Software Inc., London, United Kingdom) was used for all aother analysis. In view of the small size of the studied population, Friedman’s two way analysis of variance and Wilcoxon’s signed rank test were used to investigate parameters of the same birds at different times. Kruskal and Wallis’ one way variance analysis test was used to investigate the differences between hens, which laid eggs on the day the sample was drawn, and the other hens, and between the hens which laid eggs on the day following that of the sample, and the other hens. Correlations were investigated using Spearman’s rank correlation test. 85 Results The Egg-laying curve is displayed in Figure 1. The hens began laying eggs on January 16th. Figure 1: egg laying curve of the hens. This graph is represents the mean number of eggs layed per hen and per day from January 15th to March 31st. The hens’ plasma protein electrophoresis patterns were divided into eight fractions, which were then classified into one prealbumin fraction, one albumin fraction, three alpha fractions, two beta fractions and one gamma fraction (Figure 2). Figure 2: examples of plasma electrophoresis patterns of a hen (Gallus gallus). Patterns from the same bird before the laying period (Grey curve) and during the laying period (Black curve) were superimposed. The time samples when were drawn is indicated with arrows. 86 Figure 3: variation of (a) albumin, (b) alpha-1, (c) alpha-3, (d) beta-1, (d) beta-2 and (e) gamma fraction concentrations around the beginning of egg-laying in hens (Gallus gallus). This graph is based on measurements of monthly blood samples, taken between mid October 2007 and mid March 2008. The data points are expressed as: mean ± SEM. Asterisks represent significant differences between two successive measures (Wilcoxon’s test: p<0.05). 87 Figure 4: example of protein and lipoprotein electrophoresis agarose gels of hens before and during the laying period. Figure 5: variation of (a) total plasma protein, (b) triglyceride, (c) total cholesterol and (d) HDLcholesterol concentrations around the beginning of egg-laying in hens (Gallus gallus). This graph is based on measurements of monthly blood samples, taken between mid October 2007 and mid March 2008. The data points are expressed as: mean ± SEM. Asterisks represent significant differences between two successive measures (Wilcoxon’s test: p<0.05). 88 Some of the measured parameters appeared to show dramatic changes, corresponding to the periods (in January) during which the hens began to lay eggs. The beginning of the laying period was thus associated with significant increases in alpha-1 (3-4 fold), beta-1 (1.3-1.5 fold) and beta-2 (1.5-2 fold) fractions, and with a significant decrease in alpha-3 fraction (1.2-1.3 fold) (Figure 2 and 3). The gamma fraction appeared to be significantly higher in March than in December (p < 0.05; Z = 2.539), indicating an increase between these two dates (Figure 3). Increases in beta-1 and beta-2 fractions were due to the appearance, as soon as egg-laying had begun, of a new band located in the beta fraction (Figure 4). This band was characterised by its variable position, which ranged from that of the beta-1 peak to that of the beta-2 peak, and by its irregular anodal front. It resulted in a monoclonal peak, migrating between, and partially obscuring, the beta-1 and beta-2 peaks (Figure 2). On the other hand, some fractions, such as pre-albumin and alpha-2, did not appear to be subject to variations related to the reproductive status of the birds, since no significant change was recorded at the time when the hens began laying eggs. The total protein and albumin concentrations were generally observed to increase as a function of time, throughout this study (Figure 5). The A/G ratio decreased significantly from October to November, following which it then increased significantly until December, and then decreased again when the hens began to lay, as a result of the presence of increased alpha-1, beta-1 and beta-2 fractions. The hens’ lipidograms were divided into two fractions: fast migrating lipoproteins and slow migrating lipoproteins (Figure 4). The fast migrating lipoproteins may correspond to the High Density Lipoproteins (HDL). However, in the case of the slow migrating lipoproteins, it was difficult or even impossible, in laying hens, to distinguish between the Very Low Density Liprotein (VLDL), and the Low density Lipoprotein (LDL) fractions. The beginning of the laying period also corresponded to major changes in lipid measurements values and lipidograms. This is the case for triglyceride and total cholesterol, whose concentrations increased significantly at the beginning of egg-laying (Figure 5). During this period, the triglyceride concentration increased 20-30 fold, and the total cholesterol concentration increased 1.7 fold. At the same time, the HDL-C concentration decreased significantly, by 3 to 8 fold. Such changes were also observed in the hens’ lipidograms (Figure 4). Slow migrating lipoproteins, which represented only 31.4 ± 7.7 % of the blood’s lipoproteins before egg-laying, represented 86 ± 9% of the latter after egg-laying had begun. In the meantime, the fast migrating lipoproteins dramatically decreased in the same proportions. Plasma samples drawn during the laying period usually had a milky visual appearance. Their turbidity tended to increase, from the beginning of the study in October until the month of February. However, changes recorded after the beginning of egg-laying in January did not appear to be significant, due to wide interindividual variations. In October, November and December, before egg-laying had begun, the total cholesterol and HDL-C concentrations were strongly correlated (Respectively: p < 0.01, n = 20, Rs = 0.875; p < 0.01, n = 20, Rs = 0.837; p < 0.02, n = 20, Rs = 0.527). Once egg-laying began, these correlations disappeared. On the other 89 hand, the triglyceride and total cholesterol concentrations appeared to be strongly related in January, February and March (Respectively: p < 0.01, n = 20, Rs = 0.576; p < 0.01, n = 20, Rs = 0.750; p < 0.01, n = 20, Rs = 0.750), which was not the case before egg-laying. The correlation between HDL-C concentrations and the alpha-3 fraction was highly significant throughout this study, indicating that HDL could migrate to the alpha-3 fraction (respectively: p < 0.01, n = 20, Rs = 0.654; p < 0.01, n = 20, Rs = 0.794; p < 0.02, n = 20, Rs = 0.533; p < 0.01, n = 20, Rs = 0.823; p < 0.02, n = 20, Rs = 0.558; p < 0.02, n = 20, Rs = 0.530). On the other hand, the triglyceride concentration appeared to be strongly correlated with the sum of the beta-1 and beta-2 fractions, from January to March (Respectively: p < 0.01, n = 20, Rs = 0.720; p < 0.02, n = 20, Rs = 0.548; p < 0.01, n = 20, Rs = 0.750), although this was not the case from October to December. No significant difference was found, for any of the parameters, between those hens, which laid eggs on the day the sample was drawn, and the other hens, or between the hens which laid eggs on the day following that of the sample, and the other hens. The HLD-C, Albumin, and beta-2 fraction concentrations appeared to be correlated to the “laying intensity”, which was expressed by the average number of eggs laid per hen, per day, for the period ranging from 5 days before until 5 days after the drawing of samples. (Respectively: p < 0.02, n = 52, Rs = -0.334; p < 0.01, n = 52, Rs = 0.369; p < 0.05, n = 52, Rs = 0.305). Discussion The present study provides baseline information relevant to the changes which occur in avian proteinograms throughout the egg-laying period. It clearly stresses that egg-laying coincides with an indisputable increase in alpha-1, beta-1 and beta-2 fractions. In addition, our study reveals a decrease in the alpha-3 fraction during the same period. Total protein and albumin concentrations increased throughout this study. Some of these recorded changes are likely to completely mislead the practitioner. Indeed, increases in the beta fraction and subsequent decreases in the A/G ratio are usually characteristic of an ongoing inflammatory condition.3,4,24 It is therefore essential to take into account a bird’s physiological status, at the time samples are drawn, in order to correctly interpret its plasma protein electrophoregrams. The changes observed in the alpha-1, alpha-3, beta-1 and beta-2 fractions, as well as in the triglyceride, total cholesterol and HDL-C concentrations, appeared suddenly at the beginning of the birds’ egg-laying process. In addition, it was found that the variations in HDL-C, albumin, and beta-2 fraction concentrations are correlated with egg-laying intensity. Throughout our study, increases in total protein concentration occurred monotonically, from the beginning to the end of the study period, and may be related mainly to the growth of the chickens. Indeed, in growing chickens and pheasants, total protein concentration has already been described to significantly increase with growth, due to increases in most of the protein fractions.15,28,29 This result matches that reported by Sturkie and Newman (1951), who did not observe any increase in total protein concentration directly related to the egg-laying condition in hens.14 Contrary to other numerous publications,17-20 we did not observe any change in the pre-albumin fraction. Nevertheless, the increase in alpha-1 fraction observed in the present study could 90 correspond to the increases in pre-albumin fraction reported in the other studies. Changes in electrophoretic mobility related to the use of agarose gel electrophoresis, instead of other techniques such as moving boundary, starch gel and polyacrylamide electrophoresis, could have been responsible for such a phenomenon. Indeed, the presence or absence of the pre-albumin fraction has been described to be partially determined by the nature of the buffer solution used.15 The decrease in alpha-3 fraction found in the present study may correspond to the decrease in pre-transferrin fraction described by Kuryl and Gasparka (1985), using polyacrylamide gel electrophoresis.20 Concerning the changes found in the beta fraction, our results closely match the suggestions of Cray and Tatum (1997) and Werner and Reavill (1999).3,4 Changes in the beta fraction during egg-laying occur in the form of a monoclonal peak which merges with the beta-1 and beta-2 fractions. The slight increase in gamma fraction observed in the present study, during the egg-laying period, is also consistent with the findings of several previous studies.15,20,23 The decreases observed in the A/G ratio during egg-laying have already been documented by other authors,24,24 and may be related to the dramatic increase in globulin fractions, in particular the alpha-1, beta-1 and beta-2 fractions, in the case of our study. The observed decrease in A/G ratio, between the sample taken in October and that taken in November, could possibly be attributed to the vaccinations carried out on the 1st and 14th of October. As far as we know, our study is only the second to have investigated the effects of egg-laying in birds, using plasma protein electrophoresis performed on agarose gel. In a previous study carried out on ostriches (Struthio camelus), Polat et al. (2004) found no changes in any of the protein fractions, except for the alpha-1 fraction.22 In addition, these authors described a significant decrease in this latter fraction, as opposed to the increase found in the present study. The small sample size used by Polat et al. could explain the fact that no changes were recorded in fractions other than alpha-1. However, such significant differences may also be due to inter-species differences. Changes in plasma protein levels which occur during egg-laying may depend on the balance between the rate of serum protein production by the liver and the rate at which these proteins are used for egg production.15 The hen model used in our study had the advantage of being unaffected by the potential influences associated with hatching of the eggs, since the eggs were collected as they were laid. However, laying hens are able to lay up to 300 eggs per year, at mean intervals of 25 hours.7 It would thus be of considerable interest, in future studies, to study the effects of egg-laying under natural conditions, in wild species whose broods are less prolific than in the case of the laying hen (e.g. an average of 10 eggs per clutch for anseriformes, wild galliformes, or struthionidae).30-33 In the present study, we have revealed dramatic changes in avian lipidograms. Triglyceride concentrations increased strongly as soon as egg-laying began. This increase in triglyceride concentration is a result of a dramatic estrogen-induced increase in VLDL levels, which become the main lipoprotein class involved in the transport of triglycerides in laying birds.13,34,35 Indeed, in laying hens, Hermier et al. (1989) have reported that the VLDL concentration increases from 2 to 300-900 mg/dl.13 During egg-laying, the liver packages and secretes triglycerides and phospholipids in special yolk-targeted VLDL called VLDLy.36,37 In our study, such VLDLy may have migrated between the beta-1 and beta-2 fractions, as suggested by the 91 excellent correlation between the triglyceride concentration and the beta fraction value during the laying period. The VLDLy have half the size of normal VLDL, and are more uniform in diameter,35 which may explain the thin monoclonal band reported in the beta fraction of laying hens. The appearance of this thin band closely corresponds to the description of the beta-lipoprotein band in human electrophoregrams: its anodal front is irregular, and its position varies, depending on its plasma concentration.38 Herein, the decrease of HDL-C concentration during the laying period is consistent with the changes reported in the lipidograms, and with other publications which describe a strong decrease in HDL plasma concentration and apolipoprotein A-I synthesis by the liver.13,39,40 The very high correlation between the HDL-C concentration and the alpha-3 fraction value throughout this study may indicate that HDL migrate to the alpha-3 fraction in hens. The excellent correlation between total cholesterol and HDL-C concentrations is a reflection of the fact that this class of lipoprotein has been shown to contain up to 75-80% of the circulating cholesterol in some bird species.34,41 After egg-laying has begun, the excellent correlation between total cholesterol and triglyceride concentrations may indicate that most of the cholesterol is transported by VLDLy during egg-laying. Vitellogenins, whose concentrations is also known to increase during egg-laying, and whose density is lower than that of HDL,12,34 could be responsible for the increase in alpha-1 fraction observed in this study. However, further studies would be needed before this hypothesis can be confirmed. The fact that, in the current study, no difference was found between hens which had laid an egg on the day of the blood sample, and the other hens, appears to be normal since other authors have already observed changes related to egg-laying in hens, as early as two weeks before laying of the first egg.15 The laying hens used in this study seem to have provided a good model for the investigation of changes related to egg-laying. However, we cannot exclude that some of the changes observed in our study might have resulted from the vaccination protocol, or from the stress induced by the transfer of the hens into individual cages. Both of these phenomena could have contributed to an increase in the alpha or beta fractions, and the vaccinations could have been at least partly responsible for the observed increase in gamma fraction.42-44 However, the changes in lipid measurements values and lipidograms recorded in our study closely match those described in the literature relevant to egg-laying.13,34,35,39,40 This may also be the case for the strong changes recorded in the proteinograms, which are furthermore very well correlated with the latter measurements. Acknowledgements We wish to thank P. TROLLIET from Sebia, for his invaluable technical support, as well as the team from bio VSM, in particular Mrs. K. Naudin, who carried out the total protein measurements. We thank the Museum national d’Histoire naturelle and the Conseil Général de Seine Maritime (France) for their financial support. We also appreciate the assistance provided by Techtrans Consulting, in the proofreading of this document. 92 References 1. Lumeij JT. The diagnostic value of plasma protein and non-protein nitrogen substances in birds. Vet Quart. 1987; 9: 262-267. 2. Cray C. Plasma protein: an update. In: Proceedings of the 18th AAV conference, Reno, Nevada. 1997: 209-212. 3. Cray C and Tatum L. Application of protein electrophoresis in avian diagnostic testing. J Av Med Surg. 1998; 12: 4-10. 4. Werner LL and Reavill DR. The diagnostic utility of serum protein electrophoresis. Vet Clin North Am Exot Anim Pract. 1999; 2: 651-662 5. Vézina F and Williams TD. Metabolic costs of egg production in the European starlings (Sturnus vulgaris). Physiol Biochem Zool. 2002; 75: 377-385. 6. Scanes CG, Campbell R and Griminger P. Control of energy balance during egg production in the laying hen. J Nutr. 1987; 117: 605-611. 7. Sauveur G and De Reviers M. Chapitre 2 : Reproduction femelle, formation de l’œuf. In : Sauveur G and De Reviers M, eds. Reproduction des volailles et production d’œufs. Tours-Nouzilly, France: INRA; 1988a. 13-49. 8. Ottinger MA and Bakst MR. Endocrinology of the avian reproductive system. J Avian Med Surg. 1995; 9: 242-250. 9. Johnson AL. Chapter 22: reproduction in the female. In: Whittow GC, ed. Sturkie’s avian physiology; 5th edition. San Diego, California: Academic Press; 2000: 569-595. 10. Sauveur G and De Reviers M. Chapitre 13 : Structure, composition et valeur nutritionnelle de l’oeuf. In : Sauveur G and De Reviers M, eds. Reproduction des volailles et production d’œufs. Tours-Nouzilly, France: INRA; 1988b. 347-375. 11. Grau CR. Egg formation in Fiorland crested penguins (Eudyptes pachyrhynchus). Condor. 1982; 84: 172-177. 93 12. Kudzma DJ, Swaney JB and Ellis EN. Effects of estrogen administration on the lipoproteins and apoproteins of the chicken. Biochim Biophys Acta. 1979; 572: 257-268. 13. Hermier D, Forgez P, Williams J and Chapman MJ. Alterations in plasma lipoproteins and apolipoproteins associated with estrogen-induced hyperlipidemia in the laying hen. Eur J Biochem. 1989; 184: 109-118. 14. Sturkie PD and Newman HJ. Plasma protein of chickens as influenced by time of laying, ovulation, number of blood samples and plasma volume. Poult Sci. 1951; 30: 240-248. 15. Vanstone WE, Maw WA and Common RH. Levels and partition of the fowl’s serum protein in relation to age and egg production. Can J Biochem Physiol. 1955; 33: 891-903. 16. Gayathri KL, Hegde SN. Alteration in haematocrit values and plasma protein fractions during the breeding cycle of female pigeons, Columba livia. Anim Reprod Sci. 2006; 91: 133-141. 17. Brand LW, Clegg RE and Andrews AC. The effect of age and degree of maturity on the serum proteins of the chicken. J Biol Chem. 1951; 191: 105-111. 18. Kristjansson FK, Taneja GC and Gowe RS. Variations in a serum protein of the hen during egg formation. British Poult Sci. 1963; 4: 239-241. 19. Lush IE. The relationship of egg-laying to changes in the plasma proteins of the domestic fowl. British Poult Sci. 1963; 4: 255-261. 20. Kuryl J and Gasparska J. The differences in plasma protein pattern between laying and non-laying chickens, quails and geese. Comp Biochem Physiol part B. 1985; 80: 309-313. 21. Mc Kinley WP, Oliver WF, Maw WA and Common RF. Filter paper electrophoresis of serum proteins in the domestic fowls. Proc Soc Exp Biol Med. 1953; 84: 356. 22. Polat U, Cetin M, Ak I and Balci F. Detection of serum protein fractions and their concentrations in laying and non-laking ostriches (Struthio camelus) fed with different dietary protein levels. Revue Méd Vét. 2004; 155: 570-574. 23. Elliott JW, and Benett J. Genic determination of a protein in the immunoglobulin region of the chicken. Poult Sci. 1971; 50: 1365-1370. 94 24. Kaneko JJ. Serum proteins and the dysproteinemias. In: Kaneko JJ, ed. Clinical Biochemistry of Domestic Animals, 4th ed. San Diego, CA: Academic Press; 1989: 142-165. 25. Luoma, J., J. Seago, T. Bates, and D. Campbell. Reduced turnaround time for hemolysis/icterus/lipemia (HIL) interferent indices on architect© chemistry analysers. In: Proceeding of the American Association for Clinical Chemistry Annual Meeting, San Diego, California. 2007: 15-19. 26. Rivard DC, Stricker LA, and Neogi P. Turbimetry of two aqueous phase emulsions and related systems. J Colloid Interf Sci. 1991; 149: 521-527. 27. Kroll MH. Evaluating interference caused by lipemia. Clin Chem. 2004; 50: 1968-1969. 28. Morgan GW and glick B. A quantitative stury in serum proteins in birsectomized and irradiated chickens. Poult Sci. 1995; 108: 261-263. 29. Filipovic N, Stojevic Z, Milinkivic-Tur S, Ljubic BB and Zdelar-Tuk M. changes in concentration and fractions of blood serum proteins of chickens during fattening. Vet Archiv. 2007; 77: 319-326. 30. Delacour J. Clutch size. In: Delacour J, ed. The waterfowl of the world; volume four. London, England: Country life limited; 1964: 58-60. 31. Del HoyoJ, Elliott A and Sargatal J. Class Aves. In: Del HoyoJ, Elliott A and Sargatal J.Handbook of the birds of the world, volume 1; Ostrich to ducks. Barcelona, Spain: Lynx editions. 1992: 36-73. 32. Hennache A and Ottaviani M. Monographie des faisans, volume 1. Clères, France : Edition WPA France ; 2005 : 357 pp. 33. Hennache A and Ottaviani M. Monographie des faisans, volume 2. Clères, France : Edition WPA France ; 2006 : 492 pp. 34. Chapman, MJ. Animal lipoproteins: chemistry, structure, and comparative aspects. J Lipid Res. 1980 ; 21: 789-853. 35. Walzem, RL. Lipoproteins and the laying hen: form follows function. Poult Avian Biol Rev. 1996; 7: 3164. 95 36. Walzem RL, Davis PA and Hansen RJ. Overfeeding increases very low density lipoprotein diameter and causes the appearance of a unique lipoprotein particle in association with failed yolk deposition. J Lipid Res. 1994; 35: 1354-1366. 37. Klasing KC. Chapter 7: lipids. In: Klasing KC, ed. Comparative avian nutrition. New York, NY: CAB International; 2000: 171 - 200. 38. Keren DF. Beta-1 lipoprotein. In: Keren DF, ed. High resolution electrophoresis and immunofixation, techniques and interpretation; 2nd edition. Butterworth-Heinemann, Washington, USA; 1994: 72-73 39. Cho BH and Park JR. Compositional changes and apoprotein A-I metabolism of plasma high density lipoprotein in estrogenized chicks. Lipids. 1991; 26: 819-823. 40. HermanM, Foisner R, Schneider W and Ivessa NE. regulation by estrogen of synthesis and secretion of apolipoprotein A-I in the chicken hepatoma cell line, LMH-2A. Biochim Biophys Acta. 2003; 1641: 25-33. 41. Barakat HA and St Clair RW. Characterization of plasma lipoproteins of grain- and cholesterol-fed White Carneau and Show Racer pigeons. J Lipid Res. 1985; 26: 1252-1268. 42. Khare ML, Kumar S, Khana ND and Grun J. Serum Electrophoretic pattern of chickens vaccinated with R2B (Mukteswar) and F strains of newcastle disease virus. Poult Sci. 1975; 54(6): 1946-1952. 43. Grieninger G, Hertzberg KM and Pindyck J. Fibrinogen Synthesis in Serum-Free Hepatocyte Cultures: Stimulation by Glucocorticoids. Proc Natl Acad Sci USA. 1978; 75: 5506-5510. 44. Mayahi M, Khadjeh GH and Saghafi S. Electrophoretic changes of serum proteins in broiler chicks vaccinated with IBD vaccine. Indian Vet J. 2006; 83(3): 256-258. 96 CHAPITRE III : variations des électrophorégrammes aviaires liées à des interférences analytiques Article 5: Effets de l’hémolyse sur la concentration en protéines totales et sur les profils d’électrophorèse des protéines plasmatiques chez les oiseaux. Cet article a été soumis au Journal of wildlife diseases. Résumé Durant les 15 dernières années, l’utilisation de l’électrophorèse des protéines plasmatiques en médecine aviaire a fait l’objet de quelques publications scientifiques et cet examen complémentaire est actuellement reconnu comme étant un outil fiable dans le diagnostic de nombreuses maladies. Malheureusement, cette technique est toujours sous-utilisée en médicine aviaire en raison de nombreux facteurs pouvant interférer avec les profils électrophorétiques, dont l’hémolyse. L’hémolyse se définit comme la libération du contenu cellulaire des érythrocytes et d’autres cellules sanguines dans le liquide extracellulaire. Ce phénomène est commun, particulièrement en médecine aviaire et trouve principalement son origine dans des fautes de manipulation des prélèvements sanguins. En médecine humaine l’hémolyse est connue pour constituer une des principales interférences analytiques pouvant conduire à l’obtention d’un résultat erroné. L’influence d’une telle interférence sur les électrophorégrammes aviaire n’est que succinctement décrite dans un article de synthèse bibliographique et n’a fait que brièvement l’objet d’une publication traitant plus largement de l’utilisation de l’électrophorèse des protéines plasmatiques chez les psittacidés. L’objectif de cette étude était donc d’étudier de manière plus approfondie l’effet de cette interférence sur les électrophorégrammes des oiseaux et d’analyser d’éventuelles différences interspécifiques. A cet effet, des prélèvements sanguins ont été réalisés sur 28 milans noirs (Milvus migrans) et 19 oies à tête barrée (Anser indicus) et séparés en deux aliquotes. L’un des deux a été plongé dans de l’azote liquide durant cinq secondes pour entrainer une hémolyse par congélation-décongélation avant centrifugation. Les plasmas hémolysés et non hémolysés ont été utilisés pour mesurer les concentrations en protéines totales et en hémoglobine plasmatique et déterminer les profils d’électrophorèse des protéines. Dans les deux espèces étudiées, l’hémolyse a entrainé une surestimation de la quantification des protéines totales. Chez l’oie à tête barrée, l’hémolyse s’est soldée par une augmentation de la fraction gamma. Chez le milan noir, cette augmentation a été observée, non seulement dans la fraction gamma, mais également dans la fraction beta, ce qui met en évidence des différences interspécifiques avec l’oie à tête barrée. Dans les deux espèces, les changements observés lors de l’hémolyse des prélèvements évoquent fortement ceux qui sont décrits lors de processus inflammatoires chroniques. Ils seraient donc susceptibles d’induire en erreur le praticien dans l’établissement d’un diagnostic. 97 98 Roman, Bomsel-Demontoy, Levrier, Chaste-Duvernoy and, Saint Jalme Hemolysis effects on avian plasma protein concentration and electrophoresis Effect of hemolysis on plasma protein levels and plasma electrophoresis in birds Yannick ROMAN1,5, Marie-Claude BOMSEL-DEMONTOY2, Julie LEVRIER1 , Daniel CHASTEDUVERNOY3 and Michel SAINT JALME4 1 Muséum national d’Histoire naturelle (MNHN), DJBZ, Le Parc de Clères, 32 avenue du Parc, 76690 Clères, France 2 Muséum national d’Histoire naturelle (MNHN), DJBZ, Ménagerie du Jardin des Plantes, 57 rue Cuvier, 75005 Paris, France 3 Laboratoire Bio-VSM, 3 bis rue Pierre Mendès-France, 77200 Torcy, France 4 Muséum national d’Histoire naturelle (MNHN), EGB, UMR 5173 - CERSB - MNHN, CNRS, Paris IV, 57 rue Cuvier, 75005 Paris, France 5 Corresponding author (tel: +33(2)35332308, fax: +33(2)35331166, e-mail: yannick.roman@cg76.fr) 99 ABSTRACT Within the last 15 years, application of protein electrophoresis in clinical avian medicine has been the focus of several publications and it is now commonly recognized to be a reliable diagnostic tool for many pathologic conditions in birds, even though it is seldom pathognomonic for a specific disease. Unfortunately, this technique is still underused in avian medicine because many factors may interfere with electrophoresis patterns. Hemolysis is one of these factors. Hemolysis can be defined as the release of intracellular components from erythrocytes and other blood cells into the extracellular fluid. This phenomenon is common, especially in birds, and is mainly related to improper specimen handling. In human laboratory medicine, it is known to be an interference factor that can lead to erroneous results. The influence of hemolysis on protein electrophoresis in birds has only been quoted in a review article and investigated in a single study in psittacidae. The aim of this study was therefore to investigate more thoroughly this effect and to analyse potential interspecific differences. Blood samples were drawn from 28 black kites (Milvus migrans) and 19 bar headed geese (Anser indicus) and separated into two aliquots. One of them was dipped into liquid nitrogen for five seconds in order to cause freeze-thawing hemolysis before centrifugation. Total plasma protein concentration, plasma hemoglobin concentration and plasma protein electrophoresis patterns were determined for both hemolysed and non hemolysed samples. In both species, hemolysis resulted in falsely high total plasma protein concentration. In bar headed geese, hemolysis caused a rise in the gamma fraction. In black kites, this rise involved not only gamma fraction but also beta fraction stressing interspecific differences. In both species, these changes could have mimicked a chronic inflammatory condition with its resulting antigenic stimulation, and could have therefore completely misled a practitioner. KEYWORDS Hemolysis, Interference, Protein Electrophoresis, Bird. 100 INTRODUCTION Serum protein electrophoresis has been extensively used for decades with human specimens for diagnostic purposes (Dimpopullus, 1961; Daunizeau, 2003). It consists in a separation of serum proteins into different protein fractions by an electric field. The acquisition of the electrophoregrams using a densitometer allows technicians to obtain electrophoretic curves. The concentrations of the different fractions are then calculated by multiplying the percentage of the area under a given curve times the total protein concentration determined by the Biuret reaction (Daunizeau, 2003). In human laboratory medicine, this technique is commonly used to evaluate, diagnose, and monitor a variety of diseases and conditions. Indeed levels of different serum proteins rise or fall in response to such disorders as cancer, intestinal or kidney protein-wasting syndromes, disorders of the immune system, liver dysfunction, impaired nutrition, chronic fluid-retaining conditions and inflammatory conditions (Le Carrer, 1998; Daunizau, 2003). The use of protein electrophoresis in veterinary medicine and especially in avian medicine is far more recent than in human medicine. Within the last 15 years, application of protein electrophoresis in clinical avian medicine has been the focus of several publications and some avian veterinarians have recognized plasma protein electrophoresis to be a reliable diagnostic tool for many pathologic conditions (Lumeij, 1987; Cray and Tatum, 1998; Werner and Reavill, 1999). Unfortunately, this technique is still underused in avian medicine because many factors may interfere with electrophoresis patterns. Hemolysis is one of these factors needing to be investigated more thoroughly. In human laboratory medicine, hemolysis is considered as one of the main interference factors, which is defined by Kroll and Elin (1994) as “the effect of a substance present in the sample that alters the correct value of the result usually expressed as concentration or activity for an analyte”. It mainly consists of the release into the extracellular fluid of hemoglobin and other intracellular components from erythrocytes, following damage or disruption of the cell membranes. Release of hemoglobin usually gives a characteristic pink to red tinge to the plasma or the serum (Kirschbaumweg, 2001; Lippi et al., 2006). Hemolysis is quite a common phenomenon in both human and veterinary medicine (Andreasen et al. 1996, 1997; Benlakehal et al., 2000; Thomas, 2001). In avian medicine, 4.55% of the samples were demonstrated to be hemolysed (Fudge, 2000). In birds, in vivo hemolysis is scarce (0.3% of the samples) (Fudge, 2000). It can be a feature during acute lead toxicosis, and has been described in shore birds, after ingestion of crude oil (Fry and Addiego, 1987; Fudge, 2000). In vitro hemolysis is more common in birds, since it has been described to affect up to 4.25 % of the specimens (Fudge, 2000). Hemolysis is related to improper specimen handling during all steps of the pre-analytical phase, like forcing blood through small needles during sampling, long storage of the blood before centrifugation or excessive agitation when mixing (Guder, 1986). Constituents released in the plasma or in the serum from broken blood cells can interfere with laboratory analysis in several ways which are already heavily documented in human medicine (Benlakehal et al., 2000; Pontet, 2000; Vermeer et al., 2007) and have been investigated in birds in only two studies (Andreasen et al. 101 1996, 1997). Dealing with plasma or serum total protein concentration measurements, hemolysis is known to lead to artefactual high values (Andreasen et al., 1996, 1997; Pontet, 2000; Vermer et al., 2007). Fewer studies report to the influence of hemolysis in agarose gel protein electrophoresis. In mammals, and especially in humans, hemolysis is known to generate artefacts in serum electrophoresis: hemoglobinhaptoglobin complexes move to the alpha 2 fraction and free hemoglobin migrates to the beta fraction (Bossuyt et al., 1998; Benlakehal et al., 2000; Thomas, 2001). In some circumstances, this mistake can completely mislead the practitioner (Alanio-Brechot et al., 2006). In birds this phenomenon is poorly documented. It has only been described by Werner and Reavill (1999) in a review article and recently investigated in psittacine birds by Cray et al. (2007). It is described to cause an increase in the gamma fraction. However, these studies were respectively based on isolated cases and were only investigated in psittacine birds. The purpose of the study reported here was therefore to investigate more thoroughly the effects of hemolysis in plasma protein concentration measurements and electrophoresis patterns and to investigate potential interspecific differences basing on two distant taxa. MATERIALS AND METHODS This study was conducted with 19 bar headed geese (Anser indicus) held at the Clères zoological park (France) and 28 black kites (Milvus migrans) held at the Académie de fauconnerie du Puy du fou (France). The blood samples were performed on the occasion of a veterinary screening protocol conducted in October and November 2007 respectively. All the birds looked clinically healthy. All analyses were carried out on plasma. Blood samples were taken from the brachial vein for bar headed geese and from the right jugular vein for black kites, using 21 G needles and 5 ml syringes (respectively: Terumo Neolus 23 G, and Terumo Syringe 5 ml, Terumo Europe N.V., Leuven, 3001, Belgium). Four millilitres of blood were drawn from each bird and collected in lithium heparin tubes (Venosafe vacutainers, Terumo, Leuven, Belgium). Heparinised blood samples were immediately split into two dry tubes (Venosafe vacutainers, Terumo, Leuven, Belgium). Once all blood samples were performed, one of them was centrifuged at 3000 g for 5 minutes while the other one was first dipped into liquid nitrogen for 5 seconds in order to cause freeze-thawing hemolysis (Thomas, 2001; Lippi et al., 2006). Plasmas were then stored in cryotubes (Micronic systems, Lelystad, Holland) until analysis, at -20°C (-4°F), for one month in black kites and two month in bar headed geese. Samples were thawed and rehomogenised by gentle mixing 1 hour before analysis. Total plasma protein concentration was determined by the Biuret reaction using a Roche Integra 400 wet chemistry analyser (Roche Integra 400©, Roche diagnostics, Meylan, 38242, France). Readings were made at a wavelength of 552 nm. Agarose gel electrophoresis was carried out using a Hydrasys© semi-automated system (Sebia, Evry, France), using the Hydragel protein 15/30© set (Sebia, Evry, France) which is the most commonly used kit for protein electrophoresis in medical laboratories. Plasma aliquots were loaded onto the gel and 102 electrophoretic separation was obtained on 8 g/l agarose gels in a Tris-barbital buffer (pH 9.2), at 20°C at constant power level of 20W, until 33 Vh had been accumulated. Once dried and coloured with amidoblack in the same system, gels were read with a densitometer Preference (Sebia, Evry, France). This densitometer enabled us to obtain electrophoresis patterns, to define protein fractions and to measure Area Under the Curve (AUC) for each fraction. Albumin was identified as the biggest and most anodal peak and was decided to include pre-albumin fraction. The beta peak was defined as corresponding to the fibrinogen peak. Globulins were divided into 4 to 5 fractions depending on the species. Alpha fractions were located between albumin and beta peaks, and gamma peaks were located beyond the beta peak. As previously described in other studies about avian protein electrophoresis, the A/G ratio was calculated by dividing the sum of prealbumin and albumin by the sum of the globulin fractions (Lumeij, 1987; Cray and Tatum 1998). Effect of hemolysis in electrophoresis patterns was investigated by comparing Areas Under the Curves (AUC) for each fraction rather than protein concentration values, since in hemolysed samples total protein concentration was supposed to be erroneous (Andreasen et al. 1996, 1997). Hemoglobin concentration was estimated by the oxy-hemoglobin method, as described by Howlett (2000), except we used 40 µl of plasma instead of 20 µl of blood. Plasma were diluted in 5 ml of a 0.04 % ammonia solution and placed on a roller mixer for 3 minutes. Samples were then transferred in spectrophotometric cuvettes for immediate reading. Absorbances were read at 540 nm with a Helios Delta spectrophotometer (Thermo electron corporation, Courtaboeuf, France). Before processing the samples, the spectrophotometer was set to zero using the dilution solution alone as a blank. Machine readings were then directly converted into g/l referring to a calibration graph established thanks to a commercially available hemoglobin standard (Coulter 5C control, Beckman Coulter inc., Roissy, France). Migration distances were measured directly on the gels. These measures were made from the edge of the gels with a 6’’ dial calliper square (General, Montreal, Canada). Systat 7.0 software (SPSS inc. © 1997) was used for all analyses. Considering the small size of the population studied, Wilcoxon’s signed rank test, Mann and Whitney’s U test and Spearman rank correlation were used. RESULTS In both species tested, freeze-thawing hemolysis resulted in a significant increase in plasma hemoglobin (Tables 1 and 2). After hemolysis, mean hemoglobin concentration values raised from 0.07 to 1.13 g/l in bar headed geese and from 0.08 to 0.5 g/l in black kites. In both species, freeze-thawing hemolysis resulted in a significant increase in total protein concentration and total Area Under the Curve (AUC). Total protein concentration furthermore appeared to be very well correlated to plasma hemoglobin concentration (Spearman’s test: n = 19, Rs = 0.859, p < 0.01; n = 28, Rs = 0.486, p < 0.01). 103 Bar headed geese electrophoresis patterns were divided into five fractions (Fig. 1) and black kite electrophoresis patterns into six (Fig. 2). Black kites’ patterns showed a high alpha 1 peak and two gamma peaks. In both species tested, freeze-thawing hemolysis resulted in a significant increase in total Area Under the Curve (AUC) (Tables 1 and 2). Main changes related to hemolysis occurred in the albumin and gamma fractions. Table 1: effects of hemolysis on total protein concentration, hemoglobin concentration and electrophoresis patterns of bar headed geese (Anser indicus). Parameter Total protein concentration (g/l) Hemoglobin concentration (g/l) Total AUCb Albumin AUCb Alpha 1 AUCb Alpha 2 AUCb Beta AUCb Gamma AUCb A/G a Mean ± SD b Non-hemolysed samplea Hemolysed samplea 56.4 ± 3.6 67 ± 8.1 Wilcoxon Wilcoxon matched pairs matched pairs p value Z value 3.783 < 0.01* 0.07 ± 0.03 1.13 ± 0.58 3.823 < 0.01* 1707.6 ± 288.1 950.9 ± 169.2 92.9 ± 17.3 243.5 ± 63.2 331.5± 60.8 88.8 ± 22.9 1.26 ± 0.14 1897.6 ± 328.9 805.8 ± 129.3 91 ± 15.5 236.3 ± 58 344.4 ± 72.6 420.1 ± 199.6 0.8 ± 0.25 2.575 -3.501 -0.805 -1.730 0.926 3.823 -3.823 0.01* < 0.01* 0.42 0.08 0.36 < 0.01* < 0.01* Area Under the Curve * Significant differences between groups; Wilcoxon’s test: p ≤ 0.05. Table 2: effects of hemolysis on total protein concentration, hemoglobin concentration and electrophoresis patterns of black kites (Milvus migrans). Parameter Total protein concentration (g/l) Hemoglobin concentration (g/l) Total AUCb Albumin AUCb Alpha 1 AUCb Alpha 2 AUCb Beta AUCb Gamma 1 AUCb Gamma 2 AUCb A/G a Mean ± SD b Non-hemolysed samplea Hemolysed samplea Wilcoxon matched pairs Z value Wilcoxon matched pairs p value 35.5 ± 3.5 37.7 ± 3.7 3.496 < 0.01* 0.08 ± 0.05 0.5 ± 0.42 4.623 < 0.01* 1352.5 ± 84.9 604.3 ± 33.6 450 ± 52 27.4 ± 5.5 171 ± 40 26.7 ± 8.7 69.8 ± 19 0.81 ± 0.09 1419.7 ± 99.1 557.2 ± 37.3 423.2 ± 43.7 30 ± 5.3 222.2 ± 37.4 89.9 ± 51.1 93.5 ± 19.4 0.65 ± 0.09 3.142 -3.803 -4.076 1.526 4.463 4.623 4.623 -4.623 0.02* < 0.01* < 0.01* 0.13 < 0.01* < 0.01* < 0.01* < 0.01 Area Under the Curve * Significant differences between groups; Wilcoxon’s test: p ≤ 0.05. 104 Figure 1: examples of plasma electrophoresis patterns of a bar headed goose (Anser indicus). Patterns from the non hemolysed sample (Grey curve) and the hemolysed sample of the same bird (Black curve) were superimposed. Asterisks represent significant differences between hemolysed and non hemolysed samples (Wilcoxon’s test: p ≤ 0.05). Figure 2: examples of plasma electrophoresis patterns of a Black kite (Milvus migrans). Patterns from the non hemolysed sample (Grey curve) and the hemolysed sample of the same bird (Black curve) were superimposed. Asterisks represent significant differences between hemolysed and non hemolysed samples (Wilcoxon’s test: p ≤ 0.05). 105 The hemolysed samples showed a significant decrease in the albumin fraction AUC in both species. Changes in these fractions represented a 17 % average decrease in bar headed geese and a 8 % average decrease in black kites. In both species, hemolysed samples showed a significant increase in the gamma fraction AUC. Changes in this fraction represented a 441 % average increase of the gamma fraction in bar headed geese and a 235 % average increase in the gamma 1 fraction in black kites. In addition, these values appeared to be very well correlated to hemoglobin concentration (Spearman’s test: n = 19, Rs = 0.900, p < 0.01; n = 28, Rs = 0.561, p < 0.01). Hemolysis resulted in a significant decrease in the A/G ratio in the both species tested. While In bar headed geese, hemolysis didn’t show any significant impact in fractions other than albumin or gamma, in black kites hemolysed samples also showed a significant decrease in the alpha 1 fraction AUC and a significant increase in the beta and the gamma 2 fraction AUC. Changes in these fractions represented a 8 % average decrease in the alpha1 fraction, a 30 % increase in the beta fraction and a 32 % average increase in the gamma 2 fraction. In addition, alpha 1 fraction was shown to be negatively correlated to hemoglobin concentration (Spearman’s test: n = 28, Rs = -0.588, p < 0.01) while beta fraction appeared to be positively correlated to hemoglobin concentration (Spearman’s test: n = 28, Rs = 0.412, p < 0.05). Measures on the gels showed that hemoglobin migrated over a significantly longer distance in black kite than in bar headed goose (Mann and Whitney’ test: U = 474, p = 0). In addition, the band corresponding to the beta peak appeared to migrate over a significantly shorter distance in black kite than in bar headed goose (Mann and Whitney’s test: U = 0, p = 0). This resulted in a significantly shorter distance between beta peak and hemoglobin peak in black kite than in geese (Mann and Whitney’s test: U = 0, p = 0). DISCUSSION This study clearly stresses that hemolysis is an important interference factor in both total plasma protein concentration measurement and plasma protein electrophoresis in birds. Hemolysed samples show higher total protein concentration. In bar headed geese, hemoglobin migrates to the gamma fraction. In black kites, hemolysis results in an increase in both beta, gamma1 and gamma 2 fractions, denoting interspecific differences. This increase appears to primarily concern the gamma 1 fraction, as suggested by its high average increase. In black kites, hemoglobin may therefore mainly migrate to the gamma1 fraction, the more immediate vicinity between hemoglobin and beta peaks being responsible for the significant increase in beta fraction. In both species, these changes may mimic a chronic inflammatory condition with a resulting antigenic stimulation (Kaneko, 1989; Werner and Reavill 1999). Hemolysis interference may therefore mislead the practitioner. Further studies should investigate this phenomenon in other species and try to define a threshold value for hemoglobin concentration in birds beyond which samples should be preferably rejected. In this study, measuring PCV before and after hemolysis could have helped us to assess the proportion of lysed cells following the freezing of the samples. 106 In a hemolysed sample, constituents released in the plasma or serum from broken blood cells can interfere with laboratory results in three ways: 1. Addition interference: this interference applies to analytes which intracellular concentration is far more important than plasma concentration. Leakage of these intracellular components lead to increased concentration in plasmas or sera (Kirschbaumweg, 2001; Lippi et al., 2006). 2. Chemical interference: constituents released from blood cells can interfere with chemical reactions used to analyse for plasma or serum components (Kirschbaumweg, 2001; Lippi et al., 2006). 3. Optical interference: hemoglobin strongly absorbs light at 540 nm. Hemolysis therefore increases absorption in this wavelength range and causes an apparent increase in the concentration of analytes measured in this range. In wet reagent analysers, endpoint assays read between 505 and 570 nm have been demonstrated to be subjected to interference by hemoglobin (Dorner et al., 1983; Kirschbaumweg, 2001; Lippi et al., 2006). Total protein concentration measurement may therefore be prone to both addition and optical interferences, since on the one hand hemoglobin itself is a protein (Pontet, 2000), and on the other hand the Biuret reaction used to carry on this measurement was based on an endpoint assay read at 553 nm. This phenomenon has been quite well documented in birds (Andreasen et al., 1996, 1997). Hemolysis is described to induce artefactually higher total protein values (Lippi et al., 2006), even if this analysis is not extremely sensitive to interference by hemoglobin (Andreasen et al., 1996, 1997). However, effects of this interference can vary from one chemical analyser to another (Andreasen et al., 1996, 1997; Meinkoth and Allison, 2007). In our study, total protein concentration was measured with a Biuret blanked method which was said not to be significantly affected by sample hemolysis as long as hemoglobin concentration was under 5 g/l (Cobas integra 400 users manual 2006-10 V1 FR). Nevertheless, in both species, plasmas coming from frozenthawed blood samples showed increased amounts of total proteins. This may be mainly related to addition interference, since optical interference may have been reduced by the blanking procedure. This may explain the good correlation between hemoglobin and total protein concentrations. As demonstrated in this study, electrophoresis patterns of hemolysed bird’s sample mainly show a rise in the gamma fraction. These changes differ from those observed in mammals in which hemoglobinhaptoglobin complexes move to the alpha 2 fraction whereas free hemoglobin migrates to the beta 1 fraction (Bossuyt et al., 1998; Benlakehal et al., 2000; Thomas, 2001). In mammals, moderate hemolysis levels first lead to increases in the alpha 2 fraction while beta fraction starts to increase through heavier hemolysis as soon as haptoglobin binding capacity is overtaken (Benlakehal et al., 2000). Haptoglobin is a protein that binds hemoglobin with high affinity in order to inhibit its strong oxidative activity (Gutteridge, 1987) and to avoid it to pass through the glomeruli which may lead to renal failure (Lim et al., 2000). However, a recent publication shows that haptoglobin does not exist in chickens and may be replaced by another hemoglobin binding protein called PIT54 in the neognathae subclass. PIT 54 has been identified to be a soluble member of the family of scavenger receptor cystein-rich proteins and seems to exist only in birds, basing on the currently available genomic data (Wicher and Fries, 2006). This protein is completely different from 107 haptoglobin, which may partly explain that no rise in alpha fraction was observed in electrophoresis of hemolysed samples in this study. The significant decreases observed in albumin fraction in bar headed geese and in albumin and alpha 1 fractions in black kites may be related to a dilution phenomenon. Indeed, blood cell lysis leads to intracellular fluid release in the plasma (Lippi et al., 2006).However, these variations may not be clinically relevant, since they are lower than inter-individual variability in both species (see table 1 and 2). As for any biochemical parameter, good quality of the sample warrants reliability of the results and care must be taken during both sample collection and processing. In human medicine, in vitro hemolysis has been documented to occur with mechanical destruction, freezing, hyperosmotic shock, detergents, exhaustion of glucose in the sample or increased fragility due to inherited diseases (Guder, 1986). The practitioner should therefore avoid rapidly forcing blood through small needles, long storage of the blood before centrifugation or excessive agitation when mixing. Furthermore, as suggested by other authors, plasma should be used preferably to serum, for protein electrophoresis in birds (Lumeij, 1987; Cray and Tatum, 1998; Werner and Reavill; Hochleithner, 1994). Indeed, the inevitable hemolysis occurring during the processing of a serum can be a significant problem, since the fluid component of the blood is in contact for a longer period of time than for plasma (two hours according to the National Committee for Clinical Laboratory Standards) (Fudge, 2000; Hrubec et al., 2002). The presence of fibrinogen in the plasma is an advantage rather than an inconvenient in birds, since the fibrinogen has been demonstrated to be to be a very good indicator of inflammation in birds (Hawkey and Hart, 1988). In the field of avian medicine, electrophoresis is mainly used in the diagnosis of inflammatory condition. The presence of a fibrinogen peak in avian electrophoregrams, may therefore not be considered to be an issue, as it is the case in the human medicine field where it is currently used for the diagnosis of monoclonal gammapathies (Le carrer, 1998; Daunizeau, 2003). In case of sample hemolysis, another blood sample should preferably be performed (Kirschbaumweg, 2001; Martinez-Subiela, 2002; Meinkoth and Allison, 2007). As shown in this study, effects of hemolysis not only depend on the analyser and the method used, but also on the species. It is therefore difficult to suggest hard and fast guidelines about sample management. Samples should always be collected in transparent containers so that the practitioner could estimate sample hemolysis after centrifugation. Hemolysed samples may preferably be discarded since it is visible to the naked eye as a pink to red hue of the plasma or the serum as soon as extracellular concentration of hemoglobin is above 0.6 g/l (9.3 mol/l) (Lippi et al., 2006) and since at this concentration it was demonstrated in this study to induce significant changes. In case it is impossible to get another sample, results may be given back with a warning about hemolysis artefacts addressed to the clinician: “warning, hemolysed sample: total protein concentration and gamma fraction may be overestimated”. 108 ACKNOWLEDGEMENTS We wish to thank J. L. LIEGEOIS from the Académie de fauconnerie du Puy du fou (France) for the black kite blood samples, P. TROLLIET from Sebia for his invaluable technical support, the team from bio VSM, and more especially K. Naudin from bio VSM, who carried out the total protein measurements, the team from the Parc Zoologique de Clères, the Museum national d’Histoire naturelle and the Conseil Général de Seine Maritime (France) for their financial support, and Glenn Lund from Techtrans Consulting for the English proofreading. LITTERATURE CITED ANDREASEN, J. R., ANDREASEN, C. B., SOON, A. B., and D. C. ROBESON. 1996. The effects of haemolysis on serum chemistry measurement in poultry. Avian pathology 25: 519-536. ANDREASEN, C. B., ANDREASEN, J. R., and J. S. THOMAS. 1997. Effects of haemolysis on serum chemistry analytes in ratites. Veterinary clinical pathology 26: 165-171. ALANIO-BRECHOT, C., GIRARD-LAMOULERE, D., ABBED, K., TAOUFIK, Y., RAPHAEL, M., and C. BESSON. 2006. A propos d’un profil électrophorétique atypique. Hematologie 12: 424-428. BENLAKEHAL, M., LE BRICON, T., FEUGEAS, J-P., and B. BOUSQUET. 2000. Influence de l’hémolyse sur le dosage et l’électrophorèse des protéines sériques. Annales de biologie clinique 58: 367371. BOSSUYT, X., SCHIETTKATTE, G., BOGAERTS, A., and N. BLANCKAERT. 1998. Serum protein electrophoresis by CZE 2000 clinical capillary electrophoresis system. Clinical Chemistry 44: 749-759. CARPENTER, J. W., MASHIMA, T. Y., and D. J. RUPIPER. 2001. Exotic animal formulary, 2nd edition, W.B. Saunders company, Philadeplhia, Pensilvania. 423 pp. CRAY, C., and L. TATUM. 1998. Application of protein electrophoresis in avian diagnostic testing. Journal of Avian Medicine Surgery 12: 4-10. CRAY, C., RODRIGUEZ, M., and J. ZAIAS. 2007. Protein electrophoresis of psittacine plasma. Veterinary clinical pathology 36: 64-72. 109 DAUNIZAU, A. 2003. Electrophorèse des protéines du sérum. In immunoglobulines monoclonales, Cahier de formation N°28, B. N. PHAM and J. L. PREUD’HOM (ed.). Bioforma, Paris, France, pp. 26-46. DIMPOPULLUS, G. T. 1961. Serum protein in health and disease. Annals of the New York Academy of Science 94: 1-8. DORNER, J. L., HOFFMAN, W.E., and M. M. FILIPOV. 1983. Effect of in vitro hemolysis on values for certain porcine constituents. Veterinary clinical pathology 12: 470-475. FRY, D. M., and L. ADDIEGO. 1987. Hemolytic anemia complicated the clearing of oiled seabirds. Wildlife Journal. 10: 3-6. FUDGE, A. M. 2000. Avian laboratory medicine. In Laboratory medicine; avian and exotic pets, FUDGE, A. M. (ed.). W. B. Sauders company, Philadelphia, Pensylvania, pp. 1-184. GUDER, W. G. 1986. Haemolysis as an influence and interference factor in clinical chemistry. Journal of Clinical Chemistry and Clinical Biochemistry 24: 124-126. GUTTERIDGE, J. M. 1987. The antioxidant activity of haptoglobin towards haemoglobin-stimulated lipid peroxidation. Biochimica et Biophysica Acta 917: 219-223. HAWKEY, C., and M. G. HART. 1988. An analysis of the incidence of hyperfibrinogenemia in birds with bacterial infections. Avian Pathology 17: 427-432. HOCHLEITHNER, M. 1994. Biochemistries. In Avian medicine: principles and application, B. W. RITCHIE, G. H. HARRISSON and L. R. HARRISSON (eds.). Wingers Publishing Inc., Lake Worth, Florida, pp. 237-238. HOWLETT, J. C. 2000. Clinical diagnostic procedures. In Avian medicine, J. SAMOUR (ed.). Mosby, London, United Kingdom, pp. 28-73. HRUBEC, T. C., WHICHARD, J. M., LARSEN, C. T., and F. W. PIERSON. 2002. Plasma versus serum: specific differences in biochemical analyte values. Journal of Avian Medicine and Surgery 16: 101-105. KANEKO, J. J. 1989. Serum proteins and the dysproteinemias. In Clinical Biochemistry of Domestic Animals, 4th edition, J. J. KANEKO (ed.). Academic Press Inc., San Diego, California, pp. 142-165. 110 KIRSCHBAUMWEG, L. T. 2001. Haemolysis as an influence and interference factor. The Journal Of The International Federation Of Clinical Chemistry And Laboratory Medicine 13: 1-4. KROLL, M. H., and R. J. ELIN. 1994. Interference with clinical laboratory analysis. Clinical Chemistry 40: 1996-2005. LE CARRER, D. 1998. Chapitre 1 L’électrophorèse de zone. In Electrophorèse et immunofixation des protéines sériques ; interprétations illustrées, D. LE CARRER (ed.). Laboratoires Sebia, Issy-lesMoulineaux, France, pp. 13-34. LUMEIJ, J. T. 1987. The diagnostic value of plasma protein and non-protein nitrogen substances in birds. Veterinary Quarterly 9: 262-267. LIM, Y. K., JENNER, A., ALI, A. B., WANG, Y., HSU, S. I., CHONG, S. M., BAUMMAN, H., HALLIWELL, B. and S. K. LIM. 2000. Haptoglobin reduces renal oxidative DNA and tissue damage during phenylhydrazine-induced hemolysis. Kidney international 58: 1033-1044. LIPPI, G., SALVAGNO, G. L., MONTAGNANA, M., BROCCO, G and G. C. GUIDI. 2006. Influence of hemolysis on routine clinical chemistry testing. Clinical Chemistry and Laboratory Medicine 44: 311-316. MEINKOTH, J. H., and R. W. ALLISON. 2007. Sample collection and handling : getting accurate results. Veterinary Clinics Small Animal Practice 37: 203-219. MARTINEZ-SUBIELA, S., TECLES, F., MONTES, A., GUTIERREZ, G. and J. J. CERON. 2002. effects of haemolysis, lipemia, bilirubinemia and fibrinogen on protein electrophoregram of canine samples analysed by capillary zone electrophoresis. The Veterinary journal 164: 261-268. PONTET, F. 2000. Hémolyse et proteins sériques. Annales de biologie clinique 58: 637-638. THOMAS, L. 2001. Haemolysis as influence and interference factor. The journal of the internal federation of clinical chemistry and laboratory medicine 13: 1-4. VERMEER, H. J., STEEN, G., NAUS, A. J. M., GOEVAERTS, B., AGRICOLA, P. T. and C. H. H. SHOENMAKERS. 2007. Correction of patient results for Beckmann Coulter LX-20 assays affected by interference due to haemoglobin, bilirubin or lipids: a practical approach. Clinical Chemistry and Laboratory Medicine 45: 114-119. 111 WERNER, L. L. and D. R. REAVILL. 1999. The diagnostic utility of serum protein electrophoresis. Veterinary clinics of North America: exotic animal practice 2: 651-662. WICHER, K.B . and FRIES, E. 2006. Haptoglobin, a hemoglobin binding plasma protein, is present in bony fish and mammals, but not in frogs and chicken. Proceedings of the National Academy of Sciences of the USA. 103: 4168-4173. 112 Article 6: Effets de la lipémie sur la concentration en protéines totales et sur les profils d’électrophorèse des protéines plasmatiques chez le milan noir (Milvus migrans). Cet article a été soumis au Journal of zoo and wildlife medicine. Résumé De nos jours, l’électrophorèse des protéines plasmatiques est reconnue comme un outil diagnostique fiable en médecine aviaire. Cependant, les effets d’interférences analytiques telles que la lipémie sont peu documentés dans la littérature. Ce phénomène est fréquent lors de prélèvements sanguins chez les oiseaux. Le but de cette étude était donc de déterminer les effets de la lipémie postprandiale sur les électrophorégrammes aviaires. A cet effet, 21 milans noirs (Milvus migrans) ont été prélevés à deux reprises à 24 heures d’intervalle : une première fois après un jeûne de 24 heures et une deuxième fois dans les trois heures après un nourrissage. Un groupe de 10 milans noirs n’a pas été nourri durant les 48 heures de cette étude afin de constituer un lot témoin non lipémique. Les plasmas lipémiques et non lipémiques obtenus ont été utilisés pour quantifier les concentrations plasmatiques en protéines totales et en triglycérides, mesurer la turbidité des prélèvements et déterminer les profils d’électrophorèse des protéines plasmatiques. Le fait de nourrir les milans avant les prélèvements a entrainé une augmentation de la turbidité et de la concentration en triglycérides du plasma, ainsi qu’une diminution de la concentration en protéines totales. La lipémie postprandiale n’a en revanche eu aucun effet sur l’aspect des profils électrophorétiques obtenus. Ces résultats sont en contradiction avec ceux d’une publication précédente réalisée chez les psittacidés. Dans notre cas, la lipémie postprandiale chez les milans a probablement été causée principalement par la mise en circulation de portomicrons. Le fait que ce type de lipémie n’ait pas entrainé de changements au niveau des profils électrophorétiques observés est très probablement lié au fait que les portomicrons étaient de trop grande taille pour pouvoir pénétrer dans les pores du gel. Ils sont donc restés au point de dépôt. Leur faible composition en protéines ne leur a pas permis d’être colorés correctement par le noir amidon, ce qui explique le fait qu’ils n’apparaissent pas sur les électrophorégrammes. L’interférence analytique liée à la lipémie d’un prélèvement semble donc relativement difficile à appréhender et dépend très probablement de nombreux paramètres, tels la technique de laboratoire utilisée, l’espèce d’oiseau prélevé et le type de lipoprotéine impliquée. 113 RH: LIPEMIA AND PLASMA PROTEIN ELECTROPHORESIS IN BIRDS INTERFERENCE OF LIPEMIA IN PLASMA PROTEIN CONCENTRATION MEASUREMENTS AND AGAROSE GEL ELECTROPHORESIS IN BLACK KITES (MILVUS MIGRANS) Yannick Roman, D.V.M., M.Sc., Michel Saint Jalme, Ph.D, Julie Levrier, M.Sc, Daniel ChasteDuvernoy and Marie-Claude Bomsel-Demontoy, D.V.M., Ph.D. From the Muséum national d’Histoire naturelle (MNHN), DJBZ, Le Parc de Clères, 32 avenue du Parc, 76690, Clères, France (Roman, Levrier) ; the Muséum national d’Histoire naturelle (MNHN), DJBZ, Ménagerie du Jardin des Plantes, 57 rue Cuvier 75005 Paris, France (BomselDemontoy), the Laboratoire Bio-VSM, 3 bis rue Pierre Mendès France, 77200, Torcy, France (Chaste-Duvernoy) and the Muséum national d’Histoire naturelle (MNHN), EGB, UMR 5173 CERSB - MNHN, CNRS, Paris IV, 57 rue Cuvier, 75005 Paris, France (Saint Jalme) Corresponding author: Yannick Roman, Muséum national d’Histoire naturelle (MNHN), DJBZ, Le Parc de Clères, 32 avenue du Parc, 76690, Clères, France. E-mail : yannick.roman@cg76.fr. Tel: 33 -2 35 33 23 08. Fax: 33 -2 35 33 11 66. 114 Abstract: Protein electrophoresis is nowadays recognized as being a reliable diagnostic tool for many pathologic conditions in birds. On the other hand, lipemia is considered to be a form of analytical interference which can lead to potentially erroneous results. This frequently occurring phenomenon has only once been investigated in birds. The purpose of this study was to determine the influence of postprandial lipemia in the plasma protein concentration and agarose gel electrophoresis patterns in birds. Twenty one black kites (Milvus migrans) were blood sampled twice, once after fasting for 24 hours, and once three hours after being fed. Birds from a control group (10 birds) were not fed during the course of this study. Total protein and triglyceride concentrations, and sample turbidity and plasma protein electrophoresis patterns were determined for both lipemic and non lipemic samples. Feeding black kites resulted in an increase in their triglyceride concentration and sample turbidity, and in a decrease in total protein concentration. Lipemia did not have any impact on electrophoresis patterns. Our results are not in agreement with those of a previous study dealing with psittacine plasma electrophoresis. In our case, postprandial lipemia in raptors is thought to have been caused mainly by the presence of portomicrons in the bloodstream. No significant impact was found on electrophoresis patterns, probably because the large size of such lipoproteins did not permit them to enter the agarose pores. Since their protein composition is very low they may not have been well stained by the protein specific dye amido-black, such that they did not appear in the electrophoresis patterns. Lipemia interference is therefore quite unpredictable, and may depend on many parameters such as the laboratory techniques used, the species sampled, and the kind of lipoproteins involved in the specific form of lipemia. Keywords: Black kite, interference, lipemia, Milvus migrans, plasma proteins, protein electrophoresis. 115 INTRODUCTION Serum protein electrophoresis has been extensively used in human diagnostics for nearly 40 years to evaluate, diagnose, and monitor a variety of diseases.11,25 The use of protein electrophoresis in veterinary medicine and especially in bird medicine is far more recent, but plasma protein electrophoresis is nowadays commonly recognized to be a very reliable diagnostic tool for many pathologic conditions in birds.9,21,39 However many factors, such as lipemia, which may potentially interfere with electrophoresis patterns, still need to be investigated. Lipemia is one of the main interference factors, and has been defined by Kroll and Elin as “the effect of a substance present in the sample that alters the correct value of the result usually expressed as concentration or activity for an analyte”.24 However, interference from lipemia is fundamentally different from other forms of interference: chylomicrons and large lipoprotein molecules, called Very-Low-Density Lipoproteins (VLDL), form suspended particles which produce cloudiness (through scattering), thereby interfering with the transmission of light.1,23,38 The resulting turbidity can range in appearance from a slightly opaque to a translucent, turbid or milky solution.10,31 Lipemia usually occurs when a blood sample has been collected too soon after a fatty meal10,29,31, however its magnitude and duration are variable: in humans, triglycerides are present in the plasma in the form of chylomicrons and their metabolites as early as 2 hours after intestinal absorption,31 and persist for 6 to 12 hours.2,14,36 Lipemia can also be associated with some pathological conditions affecting the lipid metabolism, such as diabetes mellitus, hypothyroidism and acute pancreatitis, and may thus be unavoidable.29,31 In birds, lipemia is very frequent because, in general, the need to obtain samples for laboratory testing is not anticipated, and the birds are not fasted before blood sampling31. Furthermore, some physiological conditions such as egg laying are associated with high lipoprotein concentrations in the blood.17 In addition, birds are quite peculiar in that fatty acids are their primary source of fuel during long distance flight, which implies the need for high fatty acid transport in the bloodstream.16,17 In humans, the measured total protein concentration in lipemic samples is known to indicate either falsely low or falsely high values, depending on various factors.10,31 Although lipemia interference in plasma protein electrophoresis has been investigated, mainly in capillary zone electrophoresis,3,5,29 data on the effects of lipemia in agarose gel electrophoresis is very scarce. In humans, lipoproteins are of the alpha and beta type. They migrate in respectively alpha-2 and beta fractions, and correspond respectively to High Density Liproteins (HDL) and Low Density Lipoproteins (LDL).25 In the case of mammals, Groulade recommends to avoid performing gel electrophoresis with non-fasting samples, since the alpha and beta fractions are mainly comprised of carrier proteins.13 As far as we know, lipemia interference in laboratory results has been investigated only once for the case of birds. In a recent study, Cray et al. indeed investigated this phenomenon in plasma electrophoresis with psittacine birds.9 Lipemia is described as being responsible for an artifact located in the beta fraction, although no details are given concerning the cause of lipemia. 116 The purpose of the study reported here was therefore to determine the effects of postprandial lipemia on plasma protein concentration and agarose gel electrophoresis patterns in birds. Black kites (Milvus migrans) were chosen as a model, since raptors are generally very prone to postprandial lipemia (personal observation) and because, according to previous studies, it is preferable to use real lipemic patient samples rather than samples supplemented with an artificial lipid emulsion such as Intralipid ©.4,32 Twenty one black kites were blood sampled twice, after a 24 hours fasting period, and then three hours after feeding. Non lipemic and lipemic samples obtained under these conditions were used to determine the influence of lipemia on triglyceride and total protein concentrations, turbidity and electrophoresis patterns. Ten black kites were not fed during the study and were used as a control group in order to verify that none of the recorded variations were the result of hemodilution. MATERIAL AND METHODS Experimental animals This study was conducted outside the breeding season, in September 2006, with 31 black kites (Milvus migrans) held at the Académie de fauconnerie du Puy du fou (France). This group was composed of 18 males and 13 females. All these falconry birds were used to handlings. The black kites were all fasted for 24 hours, before the beginning of the study, and were randomly distributed into two groups. The experimental group (21 birds) was blood sampled twice: after a 24 hour fasting period, and 3 hours after the birds had been fed with one day-old-chicks. In order to avoid potential dilution artifacts,12,35 the two blood samples were taken at a 24 hour interval. The birds in the control group (10 birds) were not fed at all during this study. Since the aim of the study was to investigate the influence of lipemia on total protein concentration and protein electrophoregrams, two male birds, one from the experimental group and one from the control group, were excluded from the study because these two birds had lipemic plasmas while they were fasted. Samples Blood samples were taken from the right jugular vein, using 23 G needles and 5 ml syringes (respectively: Terumo Neolus 23 G, and Terumo Syringe 5ml, Terumo Europe N.V., Leuven, 3001, Belgium). Two millilitres of blood were drawn from each bird, collected on lithium heparin (Venosafe, Terumo Europe N.V., Leuven, 3001, Belgium), and centrifuged at 3000 g for 5 minutes. Analyses were carried out on the resulting plasma, since it is commonly accepted that plasma is preferable to serum, for protein electrophoresis in birds. Plasma is less prone to haemolysis than serum, and contains fibrinogen which is a protein characteristic of the acute phase.8,19 The plasma samples were then stored in cryotubes (20°C; -4°F) until they were analysed (1.4 ml U-Tubes, Micronic B.V., Lelystad, 8211, Holland). They were 117 then thawed and re-homogenised, by gentle mixing, one hour before analysis. All of the blood samples were collected on the same day, and therefore underwent similar freezing conditions. Total protein and triglyceride concentration and turbimetry measurements Total protein concentration was determined by the Biuret reaction, using a Roche Integra 400© wet chemistry analyser (Roche Integra 400©, Roche diagnostics, Meylan, 38242, France). Readings were performed at a wavelength of 552 nm. Triglyceride concentrations were determined with the same analyser, using Trinder’s reaction (GOP/PAP), and the readings were taken at 512 nm. Turbidity measurements were carried out with the same analyser at 659 nm, since other forms of interference (such as hemolysis) are known to be low at this wavelength.27 Light of a known intensity “I0” was passed through the sample, on the other side of which the transmitted intensity “I” (“I0” less the absorbed light) was measured. The turbidity τ = ln (I0/I) was reported in nephelometric turbidity units (NTU).23,33 Protein electrophoresis Agarose gel electrophoresis of plasma proteins was performed with a Hydrasys© semiautomated system (Hydrasys©, Sebia, Evry, 91008, France), using the Hydragel protein 15/30© set (Hydragel protein 15/30©, Sebia, Evry, 91008, France). It was operated according to the manufacturer’s instructions, using version 7.00 F0.1 of the system software. Ten microlitres of plasma samples were manually distributed onto the sample template, and were allowed to diffuse for a period of 5 minutes in a wet chamber. Application of the samples to the gel, electrophoresis and drying of the gel, were all performed automatically in the migration compartment of the instrument. The temperature was maintained at 20°C (68°F) using a Peltier device during the whole migration process, and drying was obtained by heating the gels to 65°C. Electrophoretic separation was obtained on 8 g/l agarose gels in a Tris-barbital buffer (pH 9.2), at constant power 20W, until 33 Vh had accumulated. Once dried, the gels were manually transferred to the staining compartment of the instrument where amidoblack staining, destaining and drying were performed automatically. Once dried, the gels were read with a Sebia Preference© densitometer (Preference©, Sebia, Evry, 91008, France), which enabled us to acquire electrophoresis patterns, define protein fractions and measure Areas under the Curves (AUC). Albumin was identified to have the strongest anodal peak. The beta peak was identified as fibrinogen.34 Globulins were divided into 5 fractions. The Alfa fractions were located between the albumin and beta peaks, and the gamma fractions were located beyond the beta peak. As previously described in other studies of avian protein electrophoresis, the A/G ratio was calculated by dividing the albumin content by the sum of the globulin fractions.8,26 The influence of lipemia on electrophoresis patterns was studied by comparing the areas under the curves, in addition to the protein concentrations of each fraction, in order to avoid possible errors in total protein dose.10,31 118 Statistical analysis Systat 7.0 software (Systat 7.0, Systat Software Inc., London, TW4 6JQ, United Kingdom) was used for all analyses. In view of the small size of the studied population, Wilcoxon’s signed rank test and Spearman’s rank correlation were used. RESULTS The black kite electrophoresis patterns were divided into six fractions (Figure 1). None of these showed any pre-albumin fraction. Figure 1: example of plasma electrophoresis patterns of a Black kite (Milvus migrans). In the experimental group, all plasma derived from postprandial blood samples had a turbid to milky visual appearance. Blood samples drawn after the birds were fed showed significant increases in both triglyceride concentrations and turbidity (Table 1). However, the turbidity and triglyceride levels were not directly related, as shown by the Spearman rank correlation coefficient (n = 20, Rs = 0.416, p > 0.05). In the control group, no significant difference was found in either turbidity or triglyceride concentration. In the experimental group, the total protein concentration appeared to decrease significantly after feeding (Table 1), whereas no significant difference was found between the two blood samples in the control group. The authors observed no significant difference in the AUC of any fraction, between the first and second blood samples, neither in the experimental group nor in the control group. Postprandial lipemia thus appears to have no impact on the electrophoresis patterns of back kites. 119 In the experimental group, the albumin, alpha 1, beta and gamma 2 fraction concentrations decreased significantly after the meal, as a result of the decrease in total protein concentration (Table 1). No significant difference in concentration of the fractions was found in the control group, between the first and second blood samples. Finally, no significant difference was found between males and females for any of the parameters measured in this study, in both the experimental and control groups. Table 1: total protein and triglyceride concentrations, and turbidity and electrophoresis patterns of black kites (Milvus migrans) from the experimental group (n = 20), 24 h after fasting and 3 h after a fatty meal. Results are expressed as mean ± SD. Postprandial Wilcoxon Z sample values 35.13 ± 4.55 33.68 ± 4.22 -2.632 0.008 Triglyceride concentration (g/l) 0.38 ± 0.09 1.86 ± 1.08 3.92 0 Turbidity (NTU) 0.03 ± 0.03 0.26 ± 0.1 2.504 0.012 Albumin (g/l) 15.31 ± 1.83 14.83 ± 1.80 -2.053 0.040 Alpha 1 (g/l) 11.64 ± 1.69 11.12 ± 1.70 -2.427 0.015 Alpha 2 (g/l) 0.76 ± 0.23 0.72 ± 0.19 -1.829 0.067 Beta (g/l) 4.79 ± 2.36 4.54 ± 2.28 -2.576 0.010 Gamma 1 (g/l) 0.76 ± 0.30 0.73 ± 0.25 -0.373 0.709 Gamma 2 (g/l) 1.86 ± 0.58 1.72 ± 0.52 -2.875 0.04 A/G (g/l) 0.8 ± 0.13 0.8 ± 0.13 1.867 0.062 Parameter Fasting sample Total protein concentration (g/l) p DISCUSSION Our study shows that lipemic samples had a lower total protein concentration than non lipemic ones. Postprandial lipemia did not appear to have any effect in plasma electrophoresis patterns. However, the decrease in total protein concentration related to lipemia had repercussions on fraction concentrations. Such a decrease may not be clinically relevant for the practitioner, because the inter-individual variability of these parameters was higher than changes related to lipemia. Therefore, in the work reported here, postprandial lipemia in raptors does not appear to be an important impact factor in total protein concentration and plasma protein electrophoresis. Feeding black kites with one-day-old chicks resulted in significant increases in both triglyceride concentration and turbidity, showing that these birds can be good models for the study of lipemia interference. Indeed, this kind of diet contains a high level of fat. Dietary lipids are the primary energy 120 source for carnivorous birds such as raptors, to such an extent that the capacity of their liver to synthesise fatty acids is low, compared with grain-consuming birds.22 Contrary to mammals, the intestinal lymphatic system is poorly developed in birds. Lipoproteins are therefore secreted directly into the portal system from enterocytes, and are termed portomicrons instead of chylomicrons.17,18 These portomicrons are released into the bloodstream and cleared by the liver, which repackages dietary lipids and adds lipids synthesized by hepatocytes to give Very Low Density Lipoproteins (VLDL) which are secreted into the blood stream.22 Portomicrons and VLDL in chickens are very similar in size and density to chylomicrons and VLDL in mammals.15,16,20 Their role in light scattering may therefore be quite similar to that described in mammals.23 Lipemia in mammals is known to interfere with laboratory results in three different ways: 1. Optical interference. Turbidity interferes by scattering light in all directions, thereby decreasing the intensity of the light reaching the detector of the spectrophotometer.23 The light scattering strength is affected by the number and size of particles suspended in the solution, by the refractive index of the solution depending itself on the particle concentration, and by the wavelength of the scattered light.23 2. Volume depletion effect. After centrifugation, lipids are concentrated in the upper phase of the sample.14 Since the volume occupied by lipoproteins in plasma or serum is included in the calculation of analyte concentration, the lipids decrease the apparent value of the latter, by reducing the available water in the sample volume.14,23 When the lipoproteins are not homogeneously distributed in the serum or plasma, the concentration of an analyte dissolved in the aqueous phase is lower in the upper layer than in the lower phase of the sample.14 3. Interference by physico-chemical mechanisms. A constituent that is extracted by lipoproteins may not be accessible to the reagent. In the same way, electrophoretic procedures may be affected by lipoproteins present in the sample.14,23 In our study, the total protein concentration was measured with a Biuret blanked method, which was known to be only weakly affected by sample lipemia (Cobas integra 400, User’s Manual 2006-10 V1 FR). However, the postprandial total protein levels appeared to be significantly lower than in fasting samples. This may be related mainly to the volume depletion effect, since optical interference may have been reduced by the blanking procedure. In any case, the clinician must be fully aware of the fact that lipemia interference is quite difficult to predict, and may be highly dependant on the analyser or even on the sample itself.23 In any case, changes observed in the experimental group may not be related to hemodilution artifacts, nor to the stressed condition of the birds following blood sampling, since none of the parameters measured in the control group showed any significant difference between the two blood samples. In the present study, turbidity did not appear to be correlated to triglyceride concentrations, as reported in previous articles relevant to humans.4,23,37 This is probably related to the fact that portomicrons and VLDL particles can vary in size, number and triglyceride content.16,17 Therefore, direct triglyceride content is not a good tool for predicting lipemia interference in birds. Lipemia interference in plasma protein electrophoresis has been investigated mainly in capillary zone electrophoresis in humans and dogs, where it has been reported to produce an interference peak in the 121 alpha 2 fraction.3,5,29 However, capillary electrophoresis makes use of UV detection for direct protein quantification, via the peptide bonds. Consequently, any substance in the serum, which absorbs light at this measurement wavelength, has the potential to produce an artifact, contrary to conventional gel-based methods in which quantification of the protein fractions is based on dye binding (Amido-black in our case), which has a great affinity for proteins.5 Our results do not match those of a recent study dealing with protein electrophoresis of psittacine plasma.9 The authors assessed the effects of lipemia in plasma agarose gel electrophoresis, using five psittacine birds. They clarified lipemic samples by ultracentrifugation, and added the resulting supernatant lipid layer to the clarified samples, in order to mimic heavy lipemia. The sample lipemia was showed to result in an increase of the beta fraction. However, in this particular study, no information was provided concerning the lipemia’s origin, although (for instance) lipemia resulting from egg laying, which corresponds mainly to circulating VLDL, may be different from postprandial lipemia.17 As previously described, in the case of the present study the presence, within hours after a fatty meal, of postprandial lipemia in raptors such as black kites may have been induced largely by the presence of portomicrons in the bloodstream, even though some of their metabolites may have been present.22 One hypothesis is that the large size of these lipoproteins (150 nm)15 may have prevented them from entering the agarose pores of the electrophoretic gels. The portomicrons may have remained where the samples were deposited onto the gels. Since their protein composition is very low (1-2%),15,16 they may not have been well stained by the protein specific dye amido-black, such that they did not appear in the electrophoresis patterns. Furthermore, in our study, postprandial lipemia was obtained under physiological conditions, and may therefore be less significant than in the study reported by Cray et al.9 Further studies should be carried out in order to investigate the effects of lipemia resulting from different kinds of lipoproteins. Interspecific differences may also have played an important role. This study is only the second to have dealt with lipemia interference in birds. Further studies should investigate the impact of postprandial lipemia in other avian species, in particular non carnivorous ones such as pigeons or chickens, in which de novo fatty acid synthesis in the liver is mainly based on the use of dietary carbohydrates and in which postprandial lipemia may mainly resulting from circulating VLDL.22 At the present time, it is too early to suggest detailed guidelines for sample management, since as previously described, effects of lipemia may depend on the kind of lipoproteins involved. Samples should always be collected in transparent containers, so that the practitioner can estimate the sample’s lipemia after centrifugation. If possible, lipemic samples should preferably be rejected and taken again later, once the animal has been fasted.31 If such a procedure is not possible, lipemia may be successfully reduced by high speed centrifugation (> 10000 g).4,10,38 Although clearing agents such as lipoclear © may be useful in determining total protein concentration,38 the impact of this type of reagent should be investigated in further studies before it is used for plasma protein electrophoresis. 122 Acknowledgements: We wish to thank JL Liegeois from the Académie de fauconnerie du Puy du fou (France) for the black kite blood samples he provided, P Trolliet from Sebia for his invaluable technical support, and the Muséum national d’Histoire naturelle and the Conseil Général de Seine Maritime (France) for their financial support. We also appreciate the help provided by Glenn Lund from Techtrans consulting, for proofreading this document. LITTERATURE CITED 1. Alleman, A.R. 1990. The effects of hemolysis and lipemia on serum biochemical constituents. Vet. Med. 85: 1272 - 1274. 2. Berkovitz, D. 1964. Blood lipid responses to feeding of a polyunsatured fat nutritional preparation and milk-cream mixture. Am. J. Clin. Nutr. 13: 218 - 222. 3. Bienvenu, J., M.S. Graziani, F. Arpin, H. Bernon, C. Blessum C, Marchetti C, Righetti G, M. Somenzini, G. Verga, and F. Aguzzi. 1998. Multicenter evaluation of the Paragon CZETM 2000 capillary zone electrophoresis and monoclonal component typing. Clin. Chem. 44: 599 - 605. 4. Bornhorst, J.A., R.F. Roberts, and W.L. Roberts. 2004. Assay-specific differences in lipemic interference in native and intralipid-supplemented samples. Clin. Chem. 50: 2197 - 2201. 5. Bossuyt, X. Separation of serum proteins by automated capillary zone electrophoresis. 2003. Clin. Chem. Lab. Med. 41: 762 - 772. 6. Butler, P.J. Exercise in birds. 1991. J. Exp. Biol. 160: 233 - 262. 7. Butler, P.J., and C.M. Bishop. 2000. Flight. In: Whittow, G.C. (ed.). Sturkie’s avian physiology. Academic Press, San Diego, California. Pp. 391 - 435. 8. Cray, C., and L. Tatum. 1998. Application of protein electrophoresis in avian diagnostic testing. J. Av. Med. Surg. 12: 4 -10. 9. Cray, C., M. Rodriguez, and J. Zaias. 2007. Protein electrophoresis of psittacine plasma. Vet. Clin. Pathol. 36: 64-72. 10. Cvitkovic, L., and R. Mesic. 1999. Various preanalytical variables and their effects on the quality of laboratory results. Diabetologia croatica. 28: 281 - 292. 123 11. Daunizau, A. 2003. Electrophorèse des protéines du sérum. In: Pham, B.N., and J.L. Preud’hom (eds.). Cahier de formation N°28, immunoglobulines monoclonales. Bioforma, Paris, France. Pp. 26 - 46. 12. Dressen, P.J., J. Wimsatt, and M.J. Burkhard. 1999. The effects of isoflurane anesthesia on hematologic and plasma biochemical values of American kestrels (Falco sparverius). J. Av. Med. Surg. 13: 173 - 179. 13. Groulade, P. 1985. Aperçus sur l’électrophorèse des protéines sériques en médecine vétérinaire, et en particulier chez le chien. Bull. Soc. Vet. Prat. De France. 69 : 235 - 268. 14. Guder, W.G., W. Ehret, F. Fonseca-wollheim, Heil W. H., Darmstadt Y.S., Topfer G., H. Wisser, and B. Zawta. 2002. Use of anticoagulants in diagnostic laboratory investigations; stability of blood, plasma and serum samples. World Health organization, Geneva, Switzerland. Pp. 15 - 17. 15. Hermier, D., P. Forgez, and M.J. Chapman. 1985. A density gradient study of the lipoprotein and apolipoprotein distribution in the chicken, Gallus domesticus. Biochim. Biophys. Acta. 836: 105 - 118. 16. Hermier, D., P. Forgez, P.M. Laplaud, and M.J. Chapman. 1988. Density distribution and physicochemical properties of plasma lipoproteins and apolipoproteins in the goose, Anser anser, a potential model of liver steatosis. J. Lipid Res. 29: 893 - 907. 17. Hermier, D., P. Forgez P, J. William, and M.J. Chapman. 1989. Alterations in plasma lipoproteins and apolipoproteins associated with oestrogen-induced hyperlipidemia in the laying hen. Eur. J. Biochem. 184: 109 - 118. 18. Hermier, D. 1997. Conference: avian lipoprotein metabolism: an update; lipoprotein metabolism and fattening in poultry. J. nutr. 127: 805 - 808. 19. Hochleithner, M. 1994. Biochemistries. In: Ritchie, B.W., G.H. Harrisson, and L.R. Harrisson (eds.). Avian medicine: principles and application. Wingers Publishing, Lake Worth, Florida. Pp. 237 - 238. 20. Iffin, H., G. Grant, and M. Perry. 1982. Hydrolysis of plasma triacylglycerol-rich lipoproteins from immature and laying hens (Gallus domesticus) by lipoprotein lipase in vitro. Biochem. J. 206: 647 654. 124 21. Kaneko, J.J. 1989. Serum proteins and the dysproteinemias. In: Kaneko, J.J (ed.). Clinical Biochemistry of Domestic Animals, 4th ed. Academic Press, San Diego, California. Pp. 142 - 165. 22. Klasing, K.C. 2000. Chapter 7: lipids. In: Klasing, K.C. (ed.). Comparative avian nutrition. CAB International, New York, New York. Pp. 171 - 200. 23. Kroll, M.H. 2004. Evaluating interference caused by lipemia. Clin. Chem. 50: 1968 - 1969. 24. Kroll, M.H., and R.J. Elin. 1994. Interference with clinical laboratory analysis. Clin. Chem. 40: 1996 - 2005. 25. Le Carrer, D. 1998. Chapitre 1 L’électrophorèse de zone. In : Le Carrer, D. (ed.). Electrophorèse et immunofixation des protéines sériques, interprétations illustrées. Laboratoires Sebia, Issy-les-Moulineaux, France. Pp. 13 - 34. 26. Lumeij, J.T. 1987. The diagnostic value of plasma protein and non-protein nitrogen substances in birds. Vet. Quart. 9: 262 - 267. 27. Luoma, J., J. Seago, T. Bates, and D. Campbell. 2007. Reduced turnaround time for hemolysis/icterus/lipemia (HIL) interferent indices on architect© chemistry analysers. In: Proceeding of the American Association for Clinical Chemistry Annual Meeting, San Diego, CA. Pp. 15 - 19. 28. Man, E.B., and E.F. Gildea. 1932. The effect of a large amount of fat and of balanced meal on the blood lipids of normal man. J. Biol. Chem. 99: 61 - 61. 29. Martinez-Subiela, S., F. Tecles, A. Montes, G. Gutierrez, and J.J. Ceron. 2002. Effects of haemolysis, lipemia, bilirubinemia and fibrinogen on protein electrophoregram of canine samples analysed by capillary zone electrophoresis. Vet. J. 164: 261 - 268. 30. Maziere, C., J.C. Maziere, and P. Benlian. 2006. Digestion et transport des lipides – bêta oxydation des acides gras. In : Sabloniere, N. (ed.). Biochimie et biologie moléculaire pour les sciences de la vie et de la santé. Omniscience, Sophia Antipolis, France. Pp. 213 - 234. 31. Meinkoth, J.H., and R.W. Allison. 2007. Sample collection and handling: getting accurate results. Vet. Clin. Small Anim. 37: 203 - 219. 125 32. Nanji, A.A., R. Poon, and I. Hinberg. Lipaemic interference: effects of lipaemic serum and intralipid. J. Clin. Pathol. 41: 1026 - 1027. 33. Rivard, D.C., L.A. Stricker, and P. Neogi. 1991. Turbimetry of two aqueous phase emulsions and related systems. J. Colloid Interface. Sci. 149: 521 - 527. 34. Roman, Y., J. Levrier J, D. Ordonneau, D. Chaste-Duvernoy, M. Saint Jalme, and M.C. BomselDemontoy. 2007. Location of the fibrinogen fraction in plasma protein electrophoresis agarose gels of five taxonomically distinct bird species. In: Proceeding of the European Association of Avian Veterinarians, Zurich, Switzerland. Pp. 264 - 272. 35. Schindler, S., R.P. Gildersleeve, J.P. Thaxton JP, and D.I. McRee. 1987. Hematological response of Japanese quail after blood volume replacement with saline. Comp. Biochem. Physiol. part A. 87: 933 - 945. 36. Sullivan, J.F. 1962. The effect of fasting lipid levels on alimentary lipemia. American J. Clin. Nutr. 11: 317 - 323. 37. Twomey, P.J., A.C. Don-Wauchope, and D. McCullough. 2003. Unreliability of triglyceride measurement to predict turbidity induced interference. J. Clin. Pathol. 56: 861 - 862. 38. Vermeer, H.J., G. Steen, A.J. Naus, B. Goevaerts, P.T. Agricola, and Shoenmakers C.H. 2007. Correction of patient results for Beckmann Coulter LX-20 assays affected by interference due to haemoglobin, bilirubin or lipids: a practical approach. Clin. Chem. Lab. Med. 45: 114 - 119. 39. Werner, L.L., and D.R. Reavill. 1999. The diagnostic utility of serum protein electrophoresis. Vet. Clin. North. Am. Exot. Anim. Pract. 2: 651-662. 126 CHAPITRE IV : Comparaison de techniques électrophorétiques Article 7: L’électrophorèse des protéines plasmatiques chez les oiseaux: comparaison d’une méthode semi-automatique d’électrophorèse en gel d’agarose, Hydrasys©, avec une méthode automatisée d’électrophorèse capillaire de zone, Capillarys2©. Cet article a été soumis à la revue Veterinary Clinical Pathology. Résumé L’électrophorèse des protéines plasmatiques est de nos jours reconnu comme étant un examen complémentaire fiable pour le diagnostic des maladies des oiseaux. Durant les 10 dernières années, de nouvelles techniques électrophorétiques telles que l’électrophorèse capillaire de zone (CZE) ont vu le jour dans le domaine de la médecine humaine. Cependant, l’utilisation de telles techniques n’a jamais été abordée chez l’oiseau. Le but de cet article est donc d’étudier la CZE chez les oiseaux et de comparer les profils obtenus en CZE avec ceux obtenus en électrophorèse en gel d’agarose (AGE), technique la plus utilisée à ce jour. Cette étude a été conduite sur 30 coqs (Gallus gallus), 20 milans noirs (Milvus migrans) et 10 pigeons domestiques (Columba livia). Les plasmas obtenus ont permis de comparer les profils électrophorétiques obtenus en AGE et en CZE, ainsi que de calculer la répétabilité et la reproductibilité de ces deux techniques. Dans les trois espèces étudiées, les valeurs des fractions obtenus par AGE et CZE étaient significativement différentes, bien que les fractions albumine, beta et gamma soient apparues bien corrélées entre les deux techniques. Les valeurs des fractions alpha-3 chez le coq, alpha-1 chez le milan noir et alpha chez le pigeon obtenues par AGE se sont révélées très bien corrélées avec les fractions pré-albumines obtenues en CZE. La répétabilité et la reproductibilité des résultats étaient meilleures pour la CZE que pour l’AGE. Bien que l’interprétation des profils électrophorétiques obtenus en CZE paraisse relativement similaire à celle des profils électrophorétiques obtenus par AGE, le praticien doit prendre en compte le fait que certaines protéines des fractions alpha en AGE migrent au niveau de la fraction pré-albumine en CZE. Chez le pigeon le phénomène est si important, pour les profils électrophorétiques obtenus par CZE, qu’il pourrait facilement conduire le praticien à prendre la fraction pré-albumine pour une fraction albumine. Bien que la CZE requière la mise en place d’intervalles de références propres à cette méthode, cette technique présente des avantages par rapport à l’AGE, tels qu’une meilleure répétabilité et reproductibilité, et une cadence d’analyse plus importante. 127 128 Plasma protein electrophoresis in birds: comparison of Hydrasys©, a semiautomated agarose gel electrophoresis system, with Capillarys2©, an automated capillary electrophoresis system RH: Agarose gel and capillary plasma protein electrophoresis in birds Yannick ROMAN, Marie-Claude BOMSEL-DEMONTOY, Julie LEVRIER, Daniel CHASTEDUVERNOY and Michel SAINT JALME. From the Museum national d’Histoire naturelle (MNHN), DJBZ, Le Parc de Clères, Clères, France (Roman, Levrier) ; the Museum national d’Histoire naturelle (MNHN), EGB, UMR 5173 - CERSB - MNHN, CNRS, Paris IV, Paris, France (Saint Jalme), the Laboratoire Bio-VSM, Torcy, France (Chaste-Duvernoy) and the Museum national d’Histoire naturelle (MNHN), DJBZ, Ménagerie du Jardin des Plantes, Paris, France (Bomsel-Demontoy). Corresponding author: Yannick Roman (yannick.roman@cg76.fr). 129 Background: Plasma agarose gel electrophoresis (AGE) is nowadays recognised to be a very reliable diagnostic tool in avian medicine. Within the last 10 years, new electrophoresis techniques such as capillary zone electrophoresis (CZE) have emerged in the field of human laboratory medicine. Such techniques have never been investigated in birds. Objective: The purpose of this study was to investigate the use of CZE in birds and to compare it with AGE. Methods: The study was conducted on 30 roosters (Gallus gallus), 20 black kites (Milvus migrans) and 10 racing pigeons (Columba livia). Plasma obtained from these samples was used to carry out both AGE and CZE. Results: Fraction values obtained by AGE and CZE were significantly different, although for the three species studied they appeared to be well correlated for albumin, beta and gamma fraction values. With AGE, alpha-3 fraction values in the rooster, alpha-1 fraction values in the black kite and alpha fraction values in the pigeon were very well correlated with the prealbumin fraction values obtained using CZE. Repeatability and reproducibility appeared to be higher with CZE than with AGE. Conclusions: Although the interpretation of CZE electrophoresis patterns seems to produce results quite similar to those obtained with AGE, the practitioner must take into account the fact that some proteins present in the alpha fraction, measured with AGE, migrate to the prealbumin fraction found with CZE. In pigeon CZE patterns, this phenomenon is so significant that the practitioner could mistake the prealbumin fraction for the albumin fraction. Although it requires the use of specific reference ranges, CZE has many advantages when compared to AGE, including better repeatability and reproducibility, and higher analysis throughput. Keywords: Agarose gel electrophoresis, capillary zone electrophoresis, plasma proteins, protein electrophoresis, bird. 130 In human medicine, serum protein electrophoresis techniques have been used for five decades.1-3 Although the use of protein electrophoresis in avian medicine is far more recent and is still in its infancy, publications made during the last 15 years show that it is a very reliable diagnostic test in birds.4-6 Indeed, plasma proteins have many functions in health and disease. In the case of an inflammatory condition acute phase protein plasma levels increase, and are of clinical interest in the diagnosis of various diseases in birds.7,8 Within the last 10 years, new electrophoresis techniques, such as Capillary Zone Electrophoresis (CZE) have emerged in the field of human medicine.2,9 Such advances should also be investigated in birds. Since Tiselius’s pioneering work, human laboratory clinical medicine has always closely followed advances in protein electrophoresis.10 Nowadays, Agarose Gel Electrophoresis (AGE) is the most currently used technique.3,11 In 1997, Sebia developed a semi-automated electrophoresis system: Hydrasys©. This system further improved the reproducibility of agarose gel electrophoresis by automating most steps of the procedure, including sample application, migration and staining.12 However, despite such semi-automated systems, AGE remains quite labour-intensive, resulting in limited analytical performance and throughput.13 Over the last decade, CZE has emerged as a powerful diagnostic tool in the field of human diagnostics, and represents a major advance in electrophoresis technology for clinical applications.9,13-15 This technique, first introduced by Hjerten in 1967, consists in the separation of charged molecules in small capillary tubes. Since heat can readily radiate from the tubes, extremely high voltages can be used without overheating the samples.16 The use of such high voltages shortens the analysis times.17 Protein analysis is performed in a free buffered solution, and with this system, the electro-osmotic velocity exceeds the electrophoretic mobility of the proteins, which therefore migrate towards the cathode instead of the anode. Real time detection and quantification of protein fractions is based on the direct detection of peptide bonds by way of UV light absorption through the capillary wall.9,13-15,17 The first automated capillary electrophoresis system, the Paragon CZE2000© (Beckman) was commercialized in 1994. In 2001, Sebia developed its own CZE system, Capillarys©. Such systems are particularly helpful in clinical laboratories which have to deal with a large daily workload of serum protein electrophoresis (up to 100/h with Sebia Capillarys2©).12 CZE systems are indeed fully automated and require only minimal human intervention. In human medicine, various publications have dealt with the topic of CZE and compared its technique with that of AGE. These studies show good correlations between the results obtained with both techniques, with the exception of alpha-1 and beta fractions. The reproducibility of CZE appears to be superior to that of AGE.2,9,11,13,15 CZE is at least equivalent to AGE, and the interpretation of its electrophoregrams is similar to that for AGE.15 In birds, various publications have documented the use of paper, cellulose acetate or agarose gel electrophoresis for research purposes or as diagnostic tools.18-29 Comparative studies of these techniques have also been made.18 However, our review of the literature has failed to reveal any study in which the use of CZE has been studied for birds. 131 The objective of the present study was therefore to describe the use of Sebia Capillarys2© CZE for birds, and to compare its results with those obtained using Sebia Phoresis© AGE. The study was also designed to produce the first CZE reference values for birds, and to measure the reproducibility of this technique. To this end, plasma samples from 30 roosters (Gallus gallus), 20 black kites (Milvus migrans) and 10 pigeons (Columba livia) were analysed using Sebia AGE and CZE systems. Material and methods Experimental animals The study was conducted on 30 SY33 line roosters (Gallus gallus), held at the INRA Tours-Nouzilly research station (France). These birds were three years old and were housed in individual cages. In order to broaden the scope of our investigation of capillary electrophoresis in birds, 20 black kites (Milvus migrans), held at the Académie de fauconnerie du Puy du fou (France), and 10 rock doves (Columba livia), held at the zoological park of Clères (France), were included in the study. Both the pigeons and the black kites were housed in aviaries. All birds were clinically examined, and found to be healthy. Samples Blood samples were taken from the right jugular vein of the roosters and black kites, and from the brachial vein of the rock doves, using 23 G needles and 5 ml syringes (respectively: Terumo Neolus 23 G, and Terumo Syringe 5ml, Terumo Europe N.V., Leuven, Belgium). Two millilitres of blood were drawn from each bird, collected on lithium heparin (Venosafe vacutainers, Terumo, Leuven, Belgium), and centrifuged at 3000 g for 5 minutes. Analyses were carried out on the resulting plasma, since it is commonly accepted that it is preferable to serum, for protein electrophoresis in birds. Plasma is indeed less prone to hemolysis than serum and contains fibrinogen, a protein characteristic of the acute phase of inflammatory conditions.4,30 Samples did not show any hemolysis nor lipemia. Two aliquots of each plasma sample were then stored in cryotubes (-20°C; -4°F) until they were analysed (Micronic systems, Lelystad, Holland). They were then thawed and re-homogenised, by gentle mixing, one hour before analysis. All blood samples were collected on the same day, and were therefore exposed to similar freezing conditions. Measurement of total protein concentration Total protein concentration was determined by the Biuret reaction, using a Roche Integra 400 wet chemistry analyser (Roche diagnostics GmbH, Mannheim, Germany). Readings were made at a wavelength of 552 nm. Agarose gel electrophoresis (AGE) Agarose gel electrophoresis of plasma proteins was carried out using a Hydrasys© semi-automated system (Sebia, Evry, France), using the Hydragel protein 15/30© set (Sebia, Evry, France). It was operated according to the manufacturer’s instructions, using version 7.00 F0.1. of the system software. Ten microlitres of plasma samples were manually distributed onto the sample template, and were allowed to diffuse for a 132 period of 5 minutes in a wet chamber. Application of the samples to the gel, electrophoresis and drying of the gel, were all performed automatically in the migration compartment of the instrument. The temperature was maintained at 20°C (68°F) using a Peltier device during the complete migration process, and drying was obtained by heating the gels to 65°C. Electrophoretic separation was obtained on 8 g/l agarose gels in a Trisbarbital buffer (pH 9.2), at a constant power level of 20W, until 33 V-h had been accumulated. Once dried, the gels were manually transferred to the staining compartment of the instrument where amido-black staining, destaining and drying were performed automatically. Once these operations had been completed, the gels were scanned with a high resolution Epson perfect V700 photo scanner (Epson France, Nanterre, France). Electrophoretic curves and dosages of the different fractions were acquired using Phoresis© software, version 5.50 (Sebia, Evry, France). Protein fractions were determined by referring to other publications.24,27,29 By convention, the A/G ratio in birds is calculated by dividing the sum of the prealbumin and albumin fractions by the sum of the globulin fractions.4,31 Capillary zone electrophoresis (CZE) Capillary zone electrophoresis of plasma proteins was carried out on a Capillarys2© automated system (Sebia, Evry, France). This system was operated according to the manufacturer’s instructions under version 6.00 of the supplied Software. Sample tubes were manually installed into racks (up to 13 racks of 8 sample tubes). A minimum volume of 140 µl was used. All of the following steps were performed automatically. The samples were diluted to a 1:5 ratio with the migration buffer in dilution segments (40 µl of plasma to a final volume of 200 µl). The samples were then hydrodynamically injected using an anodic depression of 80 millibars for 4 s (< 1 nl, representing less than 1% of the total volume of the capillary tube). With the Capillarys protein 6© reagent set (Sebia, Evry, France), electrophoretic separation of the protein fractions was obtained by applying a 7.5 kV voltage, for about 4 minutes, to eight fused-silica capillaries (17.5 cm in length, 15.5 cm in effective length; 25 µm internal diameter) in a pH 10 buffer. The temperature was maintained at 35.5 °C (95.9°F) using a Peltier controller. Real time detection and quantification of protein fractions was based on the direct detection of peptide bonds, resulting from UV light absorption through the capillary wall. Detection was performed at 200 nm, in an optical cell placed at the cathodic end of the capillary tube and connected to the detector by means of eight optical fibers. Electrophoretic curves and dosages of the different fractions were acquired using version 6.00 of the Phoresis© software (Sebia, Evry, France). Repeatability and reproducibility One rooster sample was chosen at random, and was used to investigate the repeatability and reproducibility of AGE and CZE. 133 For AGE, repeatability within a run was estimated by interpreting the plasma patterns of 30 aliquots of the same sample run on the same gel. Inter-run reproducibility was estimated by interpreting the plasma patterns of 8 aliquots of the same sample run on separated gels. For CZE, repeatability within a run was estimated by interpreting the plasma patterns of 8 aliquots of the same sample run on the same rack. Inter-run reproducibility was estimated by interpreting the plasma patterns of 6 aliquots of the same sample run on different racks. The mean, SD and CV were calculated for each fraction. Statistical analysis Systat 7.0 © software (SPSS inc. © 1997) was used for all analyses but Passing-Bablok and Bland-Altman tests. The study of AGE and CZE accuracy was made by calculating the coefficients of variations (CV). Other authors have indeed stated that CV analysis is the recommended approach for the assessment repeatability and reproducibility in chemistry tests.6 In view of the small size of the studied population, Wilcoxon’s signed rank was used to compare the two different electrophoresis techniques. The normality of the rooster data was tested with the Kolmogorov-Smirnov procedure. As the data was found to be normally distributed, it was decided to use Pearson’s correlation matrix to test correlations between the two techniques, in all of the studied species. Passing-Bablok regression analysis and Bland-Altman difference plot were carried on with the Medcalc 9.5.2 © software (Medcalc software, Mariakerke, Belgium). These tests were used to compare the discrepancies between AGE and CZE for the fraction which appeared to be well correlated. Results Protein electrophoresis patterns The rooster’s AGE patterns were divided into eight fractions, which were then classified into one prealbumin fraction, one albumin fraction, three alpha fractions, two beta fractions and one gamma fraction (Figure1, Table 1). The electrophoresis patterns obtained with CZE were found to be quite similar to those obtained with AGE, and fractions were defined the same way (Figure 1, Table 1). The values obtained, using both CZE and AGE for the albumin, alpha-1, beta-1, beta-2 and gamma fractions, were found to be well correlated (respectively: n = 30, R = 0.939, p < 0.01; n = 30, R = 0.555, p < 0.01 ; n = 30, R = 0.815, p < 0.01 ; n = 30, R = 0.670, p < 0.01 ; n = 30, R = 0.784, p < 0.01). On the other hand, although the alpha-3 fractions obtained with AGE were only weakly correlated with the alpha-3 fraction values obtained with CZE (n = 30, R = 0.420, p < 0.05), they were very well correlated with the prealbumin values obtained using CZE (n = 30, R = 0.656, p < 0.01). With the exception of the gamma-1 fraction, although the values obtained with AGE and CZE for the remaining fractions were correlated, they were found to be significantly different (Wilcoxon’s test: p = 0). Passing-Bablok regression analysis and Bland-Altman difference plot were carried on to compare the discrepancies between AGE and CZE for the fraction which appeared to be well correlated (Table 2). No 134 significant deviation from linearity was found, whatever the fraction may be. Both techniques appeared to differ significantly for the quantification of alpha-1, alpha-3, and gamma fractions. Except for the alpha-1, alpha-3, and gamma fractions, the differences between the two techniques did not vary in any systematic way over the range of measurement. For alpha-1 and gamma fractions, the discrepancy between the two studied techniques increased with the magnitude of the measurement. The A/G ratios obtained from the two techniques were slightly different (average A/G ratio of 0.62 ± 0.08 for AGE and 0.76 ± 0.11 for CZE), but were well correlated (n = 30, R = 0.952, p < 0.01). The AGE and CZE patterns of the black kites were divided into six fractions (Figure1, Table 1). These were classified into one prealbumin fraction, one albumin fraction, two alpha fractions, one beta fraction and one gamma fraction. The albumin fraction was identified as having the strongest anodal peak. However, with AGE, the electrophoresis patterns of the black kites were characterised by the presence of a strong alpha-1 peak, similar in intensity to the albumin peak. Such a strong peak was not observed in CZE patterns (Figure 1, Table 1). The values of the albumin, beta and gamma fractions determined using CZE and AGE were found to be very well correlated (respectively: n = 20, R = 0.723, p < 0.01; n = 20, R = 0.701, p < 0.02; n = 20, R = 0.912, p < 0.01). The values of the alpha-1 fraction determined using AGE were found to be correlated both with those of the CZE alpha-1 fraction (n = 20, R = 0.571, p < 0.01), and with those of the CZE prealbumin fraction (n = 20, R = 0.780, p < 0.01). Even when the values of the fractions obtained using AGE and CZE were correlated, they were found to be significantly different (Wilcoxon’s test: p = 0). Passing-Bablok regression analysis and Bland-Altman difference plot were carried on to compare the discrepancies between AGE and CZE for the fraction which appeared to be well correlated (Table 3). No significant deviation from linearity was found, whatever the fraction may be. Both techniques appeared to differ significantly for the quantification of alpha-1 and gamma fractions. For albumin and beta fractions, the differences between the two techniques did not vary in any systematic way over the range of measurement. For alpha-1 and gamma fractions, the discrepancy between the two studied techniques increased with the magnitude of the measurement. The average of the A/G ratios was 0.63 ± 0.04 with AGE and 1.56 ± 0.16 with CZE, with no direct relationship between the values obtained by the two techniques. The AGE patterns of the pigeons were divided into six fractions (Figure 1, Table 1). These were then classified into one prealbumin fraction, one albumin fraction, one alpha fraction, two beta fractions and one gamma fraction. The albumin fraction was identified as having the strongest anodal peak. As for the case of the black kites with AGE, the electrophoresis patterns of the pigeons were characterised by the presence of a second anodic peak at the alpha-1 position, comparable in intensity with the albumin peak (Figure 1). The CZE electrophoresis patterns of the pigeons were divided into nine fractions (Figure 1, Table 1). These electrophoresis patterns were then also found to present two intense anodic peaks. By comparing the height of the peaks obtained using AGE and CZE, we chose to class the most anodic peak with the prealbumins, and the second peak with the albumin. The correlations confirmed this choice, since the resulting albumin fraction was found to be very well correlated with that determined by AGE (n = 10, R = 0.951, p < 0.01). 135 The prealbumin fraction obtained using CZE was found to be very well correlated with the alpha fraction obtained with AGE (n = 10, R = 0.944, p < 0.01; n = 10). The beta and gamma fractions were named by comparison with the electrophoresis patterns obtained on agarose gel. The beta-1 and beta-2 fractions were found to be very well correlated with the beta-1 and beta-2 fractions obtained on agarose gel (n = 10, R = 0.922, p = 0.01; n = 10, R = 0.927, p < 0.01). The sum of the gamma-1 and gamma-2 fractions was found to be very well correlated with the gamma fraction obtained on agarose gel (n = 10, R = 0.941, p < 0.01).Although the values of the fractions obtained using AGE and CZE were correlated, they were all found to be significantly different (Wilcoxon’s test: p = 0). Passing-Bablok regression analysis and Bland-Altman difference plot were carried on to compare the discrepancies between AGE and CZE for the fraction which appeared to be well correlated (Table 4). No significant deviation from linearity was found, whatever the fraction may be. Both techniques appeared to differ significantly for the quantification of the beta-2 fraction. For all of the fractions, the differences between the two techniques did not vary in any systematic way over the range of measurement. For the beta2 fraction, the discrepancy between the two studied techniques increased with the magnitude of the measurement. The average value of the A/G ratios was 0.62 ± 0.07 for AGE and 2.51 ± 0.22 % for CZE. The ratios obtained with these two techniques are thus markedly different, and were not found to be correlated to each other. 136 Figure 1. Agarose gel electrophoresis tracings of a rooster (A), a Black kite (B), and a racing pigeon (C). Capillary zone electrophoresis tracings of a rooster (D), a Black kite (E), and a racing pigeon (F). 137 Table 1: Plasma protein electrophoresis fraction values in roosters, black kites and racing pigeons obtained by Agarose Gel Electrophoresis (AGE) and Capillary Zone Electrophoresis (CZE). Results are expressed as median and ranges of the fraction values. Species Rooster (n = 30) Rooster (n = 30) Black kite (n = 20) Black kite (n = 20) Pigeon (n = 10) Pigeon (n = 10) 138 Technique AGE CZE AGE CZE AGE CZE Pre albumin Albumin α1-globulin α2-globulin α3-globulin β1-globulin β2-globulin γ1-globulin γ2-globulin (g/l) (g/l) (g/l) (g/l) (g/l) (g/l) (g/l) (g/l) (g/l) 0.77 13.40 0.74 1.21 6.31 9.73 2.8 2.38 [0.26-1.90] [10.52-16.81] [0.51-1.78] [0.87-1.86] [5.57-7.66] [6.56-14.68] [1.59-3.97] [1.65-4.48] 1.99 13.98 2.19 1.08 3.51 7.69 2.55 4.60 [1.29-2.80] [10.92-18.02] [1.62-3.33] [0.84-1.50] [2.84-5.15] [4.61-11.54] [1.43-4.10] [2.29-8.02] 0.49 14.07 12.54 0.98 5.16 5.09 [0.25-0.84] [10.78-18.43] [9.16-15.91] [0.80-1.38] [4.09-6.31] [3.23-6.79] 5.88 16.91 3.70 1.31 4.25 5.89 [3.60-8.66] [13.14-21.97] [2.46-5.02] [1.01-1.73] [3.02-5.38] [3.39-8.44] 0.73 9.44 10.81 3.33 1.56 1.52 [0.56-1.01] [8.08-12.89] [9.04-14.08] [2.66-4.54] [1.23-2.52] [0.67-1.83] 11.22 8.47 1.00 1.18 0.78 2.52 0.71 0.50 1.13 [9.11-14.52] [7.30-11.77] [0.73-1.26] [1.00-1.99] [0.46-0.93] [1.68-3.48] [0.52-1.42] [0.40-0.68] [0.42-1.90] Table 2: Slopes and intercepts calculated by the Passing-Bablok regression analysis, and Mean differences calculated by the Bland-Altman difference plot, in roosters for the fractions which values assessed by AGE and CZE appeared to be correlated. Albumin Alpha-1 Alpha-3 Beta-1 Beta-2 Gamma Slope B 0.90 0.45 1.29 1.15 1.19 0.44 Confidence [0.82 to 1.00] [0.23 to 0.75] [0.95 to 1.60 [0.99 to 1.48] [0.92 to 1.51] [0.31 to 0.56] Intercept A 0.7890 -0.2129 1.9595 1.3068 -0.4139 0.5068 Confidence [-0.53 to 1.88] [-0.85 to 0.28] [0.95 to 3.06] [-1.35 to 2.38] [-1.30 to 0.33] [-0.00 to 1.02] -0.65 -1.40 2.90 2.18 0.12 -2.09 [0.37 to -1.67] [-1.92 to -0.89] [2.27 to 3.53] [0.74 to 3.63] [-0.56 to 0.81] [-3.88 to -0.31] interval 95% interval 95% Mean difference Confidence interval 95% Table 3: Slopes and intercepts calculated by the Passing-Bablok regression analysis, and Mean differences calculated by the Bland-Altman difference plot, in black kites for the fractions which values assessed by AGE and CZE appeared to be correlated. Albumin Alpha-1 Beta Gamma Slope B 0.90 3.17 0.88 0.65 Confidence [0.75 to 1.06] [2.10 to 4.70] [0.68 to 1.21] [0.50 to 0.76] Intercept A -1.0903 0.6012 1.4090 1.2741 Confidence [-3.85 to 1.57] [-5.06 to 4.90] [-0.02 to 2.13] [0.66 to 1.97] -2.93 8.8 0.87 -0.83 [-4.30 to -1.56] [6.2 to 11.5] [0.29 to 1.44] [-1.94 to 0.28] interval 95% interval 95% Mean difference Confidence interval 95% 139 Table 4: Slopes and intercepts calculated by the Passing-Bablok regression analysis, and Mean differences calculated by the Bland-Altman difference plot, in pigeons for the fractions which values assessed by AGE and CZE appeared to be correlated. Albumin Beta-1 Beta-2 Gamma Slope B 1.09 1.06 1.93 0.87 Confidence [0.97 to 1.28] [0.74 to 1.48] [1.22 to 10.72] [0.55 to 1.15] Intercept A 0.26 0.71 0.16 -0.02 Confidence [-1.28 to 1.49] [-0.31 to 1.46] [-6.29 to 0.70] [-0.57 to 0.45] 1.14 0.87 0.95 -0.31 [0.65 to 1.64] [0.44 to 1.30] [0.43 to 1.47] [-0.64 to 0.02] interval 95% interval 95% Mean difference Confidence interval 95% Repeatability and reproducibility The results of the intra-run repeatability and inter-run reproducibility, obtained for both AGE and CZE, are given in Table 5. The coefficients of variations (CV) ranged from 1.8 to 9.9% for AGE, and 0.9 to 4.2 % for CZE. The accuracy therefore appeared to be higher in the case of CZE than with AGE. With each technique, both repeatability and reproducibility were very good for strong and well defined fractions. On the other hand, they were lower for badly defined fractions, i.e. alpha-1, alpha-2, beta-2 and gamma fractions in AGE, and alpha fractions in CZE. The repeatability and reproducibility achieved for the fractions of weak intensity were also generally weak, as was the case for example with the prealbumin and alpha-2 fractions obtained with both techniques. 140 Table 5: Intra-run repeatability and inter-run reproducibility of Agarose Gel Electrophoresis (AGE) and Capillary Zone Electrophoresis (CZE) in roosters. For AGE, repeatability within a run was estimated by interpreting the plasma patterns of 8 aliquots of the same sample run on the same rack. Inter-run reproducibility was estimated by interpreting the plasma patterns of 6 aliquots of the same sample run on different racks. For CZE, repeatability within a run was estimated by interpreting the plasma patterns of 8 aliquots of the same sample run on the same rack. Inter-run reproducibility was estimated by interpreting the plasma patterns of 6 aliquots of the same sample run on different racks. Agarose gel electrophoresis Fraction Capillary zone electrophoresis Intra-run Intra-run repeatability Inter-run Inter-run reproducibility Intra-run Intra-run repeatability Inter-run Inter-run reproducibility Mean (g/l) * CV (%) Mean (g/l) * CV (%) Mean (g/l) * CV (%) Mean (g/l) CV* (%) (n = 30) (n = 30) (n = 8) (n = 8) (n = 8) (n = 8) (n = 6) (n = 6) Prealbumin 0.51 9.1 0.5 8.3 1.81 4.2 1.87 4.6 Albumin 12.53 1.8 12.65 2.2 13.89 0.9 13.75 1.1 α1-globulin 0.59 8 0.58 9.1 2.3 2.6 2.34 2.8 α2-globulin 1.00 9.9 1.08 11.1 1.59 3.4 1.6 2.9 α3-globulin 6.74 1.7 6.75 1.5 1.11 3.3 1.14 4.5 β1-globulin 9.78 2.5 9.35 3.9 7.15 0.8 7.17 1.5 β2-globulin 3.04 7.5 3.35 8.9 3.4 1.7 3.46 4.1 γ-globulin 3.01 6.5 2.94 6.3 5.94 1.9 5.88 2.4 A/G ratio 0.54 2.7 0.55 3.2 0.73 1.9 0.72 2.1 * Coefficient of variations 141 Discussion This study is, as far as we know, the first to have dealt with plasma protein capillary electrophoresis in birds. Our data therefore represents the first set of baseline information relative to the use of CZE in avian medicine. Generally speaking, for the three studied species we found a good degree of correlation between the results obtained from the two techniques, in particular for the albumin, beta and gamma fractions. These correlations do not mean that these fractions are exactly the same, but that some of the most abundant proteins constituting them are the same. The interpretation of CZE electrophoresis patterns therefore seems to be quite similar to that of AGE patterns. However, the results from correlations between fractions indicate that, for the three species studied, some of the alpha fraction proteins in AGE could migrate to the prealbumin fraction in CZE. Indeed, we observed a high degree of correlation between the alpha-3 fraction values in AGE and those corresponding to the prealbumin fraction in CZE for the rooster, and between the alpha-1 fraction values and those corresponding to the prealbumin fraction in CZE for the black kites. This phenomenon is even more obvious in the pigeon with the alpha fraction. In this species, the strenght of the resulting prealbumin peak obtained with CZE can lead to confusion. Such an intense anodic fraction could in effect be mistakenly identified as the fraction corresponding to albumin. Such a phenomenon has, as far as we know, never been documented in humans, as AGE and CZE patterns are considered to be very similar.2,9,11,13,15 Indeed, for human laboratory medicine, buffered solutions have been specially designed so that CZE patterns have the same general aspect as AGE patterns.17 Additional studies should be undertaken in birds in order to identify the protein(s) present in the alpha fraction of AGE. Their identification would lead to an improved understanding of avian electropherograms, using both AGE and CZE. For some fractions, such as the alpha-2 fraction in roosters and black kites, the values obtained with AGE and CZE were not correlated. This is probably due to the fact that manual separation of such poorly defined fractions of such weak intensity is highly subjective for the technician.6,32 As a consequence, for such fractions the resulting relative error margin is significant. Passing-Bablok regression analysis and Bland-Altman difference plot show significant discrepancies between the two techniques, for alpha, beta and gamma fraction values, depending on the species. The numerical values for the CZE fractions are furthermore in general very different to those obtained with AGE, thus exposing the need for specific reference intervals for the correct interpretation of capillary electropherograms. As previously discussed, such differences could be related to differences in electrophoretic mobility between certain proteins, depending on which technique is used. They could also be related to differences in the affinity of certain proteins for the dyes used in AGE. Indeed, in human laboratory medicine, comparisons between CZE, immunonephelometry and colorimetry suggest that direct quantification of albumin and alpha-1 globulin by UV absorption is more accurate than protein staining.2.9 In the alpha-1 fraction, for instance, the high sialic acid content of the alpha-1 142 acid glycoprotein has been shown to interfere with the binding of dyes in gel-based methods, whereas UV absorption used in CZE is not affected by these sugar moieties.33 Due to the higher resolution of CZE compared with AGE,2 some fractions were separated by CZE and not identified in AGE. The interpretation of such fractions is currently unknown and would be investigated in further studies. By convention, the A/G ratio in birds is defined as the sum of the prealbumin and albumin fractions divided by the sum of the globulin fractions.4,31 Taking into account the localisation at the level of the prealbumin fraction in CZE, of proteins initially present in the AGE alpha fraction, the A/G ratios defined for AGE can not be compared with those obtained with CZE. It may therefore be more appropriate to define the A/G ratio in birds as that given by the albumin fraction divided by the sum of the globulin fractions, including the prealbumin in the globulins.6 The study reported here stresses that in roosters, the repeatability and reproducibility of CZE are found to be higher than those of AGE. This is consistent with publications concerning human laboratory medicine.2,9,33 As reported by Bienvenu in humans, the resolution achieved with CZE is higher, and the clarity of the electrophoresis bands is better than with classical methods.2 The improved repeatability and reproducibility may furthermore be related to the complete automation of the analytical procedure, and to the fact that in CZE, protein absorbance is measured directly by UV absorption, instead of being determined indirectly from the amount of dye adsorbed onto the protein.33 Further studies should however assess more thoroughly repeatability and reproducibility of CZE in pathological avian samples. For both techniques, the repeatability and reproducibility figures determined in this study are generally poorer than those given in publications related to human electrophoresis using the same equipment,12,13,33 or in the user’s manuals of the Protein 6© and Hydragel protein© kits published by Sebia (Hydragel 7, 15 and 30 protein – 2005/5; Capillarys protein 6 – 2007/06). This is probably related to the fact that the fractions are better separated from one another on the human electropherograms, than on those obtained from birds, reported in our study. The weak and poorly separated fractions are also those determined with the lowest accuracy. Manual separation of such fractions by the technician may indeed be more subjective, and the smaller the fraction is, the comparatively more significant the error becomes.6,32 This may explain why, in contrast, the repeatability and reproducibility of strong and well-defined fractions such as albumin are excellent. With regard to the poor accuracy with which the prealbumin fraction is determined using AGE, it was found that in certain cases, despite the care taken to clean the gels before curve acquisition, the electrophoresis curve did not completely return to the baseline, thus leading to over-estimation of this fraction. This phenomenon was not noticed with CZE. The analysis of electrophoresis patterns obtained from both techniques has finally enabled significant inter-species differences to be revealed. The electrophoresis patterns of the three species chosen for this study are in effect very different. Some authors have already discussed these significant 143 inter-species differences for classical techniques,4,26,34,35 and all practitioners should be aware that the electropherogram of an individual must always be interpreted by comparing it with a normal electrophoregram for the given species, or better still with personal reference values. Further studies should be carried out in order to analyse plasma protein electrophoresis in other bird taxa with CZE, in particular for the case of species regularly seen in veterinary practices or zoological gardens. Further studies should also investigate the effects of hemolysis and lipemia as interference factors, and the effects of sample conservation on avian capillary electrophoregrams, like it has been already assessed in humans.9 Although the use of CZE requires establishing reference ranges for each species, it allows considerable advantages over traditional gel-based methods. Capillary zone electrophoresis doesn’t require any matrix for protein separation. Apart from its improved repeatability and reproducibility, when compared with agarose gel or cellulose acetate methods, it can therefore offer considerable technological progress to the laboratories. CZE systems such as Capillarys2© are indeed fully automated and thus require almost no technical manipulation (bar-code identification of the samples, automation of all analytical steps). Such automated machines allow very high analysis rates to be used, and are thus very well suited to laboratories having to deal with high work loads. Indeed, in our study, the Capillarys2© had a throughput of 80 samples / h when the samples were analysed in a single batch, whereas in the case of the Hydrasis© system, processing of the first series took 45 min, and 25 min for the following series, with 30 plasma samples being simultaneously analyzed per batch. Capillary electrophoresis nevertheless suffers from some drawbacks. It requires a bigger sample size than AGE (14 fold more in our case), which can be a major disadvantage when dealing with small birds. Furthermore, because it makes use of UV detection for direct protein quantification, via the peptide bonds, any substance in the plasma, such as a radio-opaque agent or sulfamethoxazole, which absorbs light at this wavelength, has the potential to produce an artifact. This is not the case with conventional gel-based methods, where quantification of the protein fractions is based on dye binding (Amido-black in our case), which has a great affinity for proteins.33,36,37 In the case of birds, it would be highly interesting to verify whether the supplementation of certain species held in captivity, such as flamingos or the Scarlet Ibis, using synthetic carotenoids such as canthaxanthin, is not responsible for the presence of artefacts found with CZE. 144 Acknowledgements We wish to thank the INRA in Tours-Nouzilly for the rooster blood samples they provided, Mr. JL Liegeois from the Académie de fauconnerie du Puy du fou (France) for the black kite blood samples he provided, Sebia for all the CZE analyses they performed, and P Trolliet from Sebia for his invaluable technical support, the team from bio VSM, Mrs. K Naudin from bio VSM who carried out total protein measurements. We are grateful to the Muséum National d’Histoire Naturelle and the Conseil Général de Seine Maritime (France) for their financial support. We also appreciate the help provided by Glenn Lund from Techtrans consulting, for proofreading this document. References 1. Dimpopullus GT. Serum protein in health and disease. Ann NY Acad Sci. 1961; 94: 1-8. 2. Bienvenu J, Graziani MS, Arpin F, et al. Multicenter evaluation of the paragon CZETM 2000 capillary zone electrophoresis system for serum protein electrophoresis and monoclonal component typing. Clin Chem. 1998; 44: 599-605. 3. Daunizau A. Electrophorèse des protéines du sérum. In: Pham BN, Preud’hom JL, eds. Cahier de formation N°28, immunoglobulines monoclonales. Paris, France: Bioforma; 2003 : 26-46. 4. Cray C, Tatum L. Application of protein electrophoresis in avian diagnostic testing. J Av Med Surg. 1998; 12: 4-10. 5. Werner LL, Reavill DR. The diagnostic utility of serum protein electrophoresis. Vet Clin North Am Exot Anim Pract. 1999; 2: 651-662. 6. Cray C, Rodriguez M, Zaias J. Protein electrophoresis of psittacine plasma. Vet Clin Pathol. 2007; 36: 64-72. 7. Kaneko JJ. Serum proteins and the dysproteinemias. In: Kaneko JJ, ed. Clinical Biochemistry of Domestic Animals, 4th ed. San Diego, CA: Academic Press; 1989: 142-165. 8. Chamanza R, Van Veen L, Tivapazi MT, et al. Acute phase proteins in the domestic fowl. World Poult Sci. 1999; 55: 61-71. 145 9. Bossuyt X, Schiettekatte G, Bogaerts, et al. Serum protein electrophoresis by CZE 2000 clinical capillary electrophoresis system. Clin Chem. 1998; 44: 749-759. 10. Tiselius A. A new apparatus for continuous for electrophoretic analysis of colloïdal mixtures. Trans Faraday Soc. 1937; 33: 525-531. 11. Lissoir B, Wallemach P, Maisin B. Electrophorèse des protéines sériques: comparaison de la technique en capillaire de zone Capillarys© (Sebia) et de l’électrophorese en gel d’agarose Hydrasys© (Sebia). Ann Biol Clin. 2003; 61: 557-562. 12. Bossuyt X, Bogaert A, Schiettekatte G, et al. Serum protein electrophoresis and immunofixation by a semiautomated electrophoresis system. Clin Chem. 1998; 44: 944-949. 13. Gay-Bellile C, Bengoufa D, Houze P, et al. Automated multicapillary electrophoresis for analysis of human serum proteins. Clin Chem. 2003; 49: 1909-1915. 14. Feuilloley MGJ, Merieau A, Orange N. Applications biomédicales de l’électrophorèse capillaire. Med Sci. 1999; 15: 1419-1426. 15. Bossuyt X. Separation of serum protein by automated capillary zone electrophoresis. Clin Chem Lab Med. 2003; 41: 762-772. 16. Hjerten S. Free zone electrophoresis. Chromatog Rev. 1967; 9: 122-219. 17. Perrett D. Capillary electrophoresis in clinical chemistry. Ann Clin Biochem. 1999; 36: 133-150. 18. Torres-Medina A, Rhodes MB, Mussman HC. Chicken serum proteins: a comparison of electrophoretic techniques and localisation of transferrin. Poult Sci. 1971; 50: 1115-1121. 19. Balash J, Palacios L, Musquera S, et al. Comparative haematological values of several Galliformes. Poult Sci. 1973; 52: 1531-1534. 20. Lumeij JT, De Bruijne JJ. Blood chemistry reference values in racing pigeons (Columba livia domestica). Avian path. 1985. 14: 401-408. 146 21. Ivins GK, Weddle GD, Halliwel WH. Hematology and serum chemistry in birds of prey. In: Fowler ME, ed. Zoo and wild animal medicine, 2nd edition, Philadelphia, Pennsylvania, WB Saunders Co; 1986: 434-437. 22. Ferrer M, Garcia-Rodriguez T, Carrillo JC, et al. Hematocrit and blood chemistry values in captive raptors (Gyps fulvus, Buteo buteo, Milvus migrans, Aquila heliaca). Comp Biochem Physiol A. 1987; 87: 1123-1127. 23. Lumeij JT, Remple JD, Riddle KE. Plasma chemistry in peregrine falcons (Falco peregrinus): reference values and physiological variations of importance for interpretation. Avian Path. 1998; 27: 129-132. 24. Tatum LM, Zaias J, Mealey B, et al. Protein electrophoresis as a diagnostic and prognostic tool in raptor medicine. J Zoo Wildl Med. 2000; 31: 497-502. 25. Del Pilar Lanzarot M, Montesinos A, San Andrès MI, et al. Hematological, protein electrophoresis and cholinesterase values of free-living nestling peregrine falcons in Spain. J Wildl Dis. 2001; 37: 172177. 26. Blanco JM, Hofle U. Plasma protein electrophoresis as diagnostic an prognostic tool in Raptors. In: Proceeding of the European Association of Avian Veterinarians, Tenerife, Spain; 2003: 256-261. 27. Gayathri KL, Hegde SN. Alteration in haematocrit values and plasma protein fractions during the breeding cycle of female pigeons, Columba livia. Anim Reprod Sci. 2006; 91: 133-141. 28. Spagnolo V, Crippa V, Marzia A, et al. Reference intervals for hematologic and biochemical constituents and protein Electrophoretic fractions in captive common buzzards (Buteo Buteo). Vet Clin Pathol. 2006; 35: 82-87. 29. Filipovic N, Stojevic Z, Milinkovic-Tur S, et al. Changes in concentration and fractions of blood serum proteins of chickens during fattening. Vet Archiv. 2007; 77: 319-326. 30. Hochleithner M. Biochemistries. In: RitchieBW, Harrisson GH, Harrisson LR, eds. Avian medicine: principles and application. Lake Worth, FL: Wingers Publishing; 1994: 237-238. 31. Lumeij JT. The diagnostic value of plasma protein and non-protein nitrogen substances in birds. Vet Quart. 1987; 9: 262-267. 147 32. Rosenthal KL, Johnston MS, Shofer FS. Assessment of the reliability of plasma electrophoresis in birds. Am J Vet Res. 2005; 66: 375-378. 33. Bossuyt X, Lissoir B, Marien G, et al. Automated serum protein electrophoresis by Capillarys ©. Clin Chem Lab Med. 2003; 41: 704-710. 34. Sibley CG, Hendrickson HT. A comparative Electrophoretic study of avian plasma proteins. The condor. 1970; 72: 43-49. 35. Zaias J, Fox WP, Cray C, et al. Hematologic, plasma protein, and biochemical profiles of brown pelicans (Pelecanus occidentalis). Am J Vet Res. 2000; 61: 771-774. 36. Bossuyt X, Marien A, Blanckaert N. Interference of radio-opaque agents in clinical capillary zone electrophoresis. Clin Chem. 1999; 45: 129-131. 37. Brouwers A, Marien G, Bossuyt X. Interference of sulfamethoxazole in Capillarys © electrophoresis. Clin Chem Lab Med. 2006; 44: 910-911. 148 DISCUSSION GENERALE : apport de nos travaux à la compréhension globale des électrophorégrammes aviaires I. DIVERSITE TAXONOMIQUE DES OISEAUX Dans la totalité des études que nous avons menées sur plusieurs espèces, nous avons pu constater que la diversité taxonomique de la classe des oiseaux se traduisait par une grande diversité des électrophorégrammes obtenus. De telles variations interspécifiques dans l’aspect des profils électrophorétiques des oiseaux ont d’ores et déjà été signalées par de nombreux auteurs (Sibley & Hendrickson, 1970; Cray & Tatum 1998; Zaias et al., 2000; Blanco & Hofle, 2003). Elles sont un des principaux obstacles à l’utilisation de l’électrophorèse des protéines plasmatiques dans le diagnostic des maladies des oiseaux. Certaines particularités telles que la présence d’un pic important dans la région des alphaglobulines chez certains taxons comme les Colombiformes, les Falconiformes, les Strigiformes, les Psittaciformes, les Phénicoptériformes, les Charadriiformes ou les Ciconiiformes que nous avons pu observer lors de l’utilisation courante de l’électrophorèse à des fins diagnostiques sont particulièrement surprenantes. L’importance de ce pic en alpha est variable et semble être une caractéristique d’espèce. Cependant, mis à part Tatum et al. (2000) qui mentionnent chez les strigiformes et les falconiformes la présence d’un pic monoclonal accolé au pic d’albumine, dans la région des alpha-1 globulines, aucune autre publication à l’heure actuelle n’en fait clairement état. Tout au plus, certains auteurs publient chez les rapaces diurnes ou le pigeon des valeurs de références mettant en exergue une fraction alpha pouvant atteindre 30% des protéines totales (autant que l’albumine). Ils ne font aucun commentaire au sujet d’un pic important dans cette zone (Blanco & Hofle, 2003; Gayathri & Hegde, 2006). L’étude par spectrométrie de masse de portions de gels excisées correspondant au pic monoclonal présent dans la région des alpha-globulines du pigeon domestique (Columba livia), du milan noir (Milvus migrans) et de l’amazone aourou (Amazona amazonica) nous a permis d’identifier ce pic comme étant constitué d’apolipoproteines A-I chez ces trois espèces. Cette apolipoprotéine joue un rôle capital dans le transport et le transport « reverse » de cholestérol et de phospholipides sous la forme des High Density Lipoproteines (HLD) (Blue et al., 1981 ; Klasing, 2000 ; Kiss et al., 2001). L’abondance de cette protéine chez certaines espèces pourrait être liée au métabolisme particulier des graisses chez les oiseaux, pour qui les lipides constituent la principale source d’énergie utilisée lors de vols sur de longues distances (Butler, 1991 ; Butler & Bishop, 2000). Des publications ultérieures permettront d’approfondir cette étude en élargissant l’éventail des espèces et des statuts physiologiques étudiés (hyperphagie prémigratoire, migration, ponte, mue, etc.). 149 Le fait que l’apolipoprotéine A-I soit présente en quantité aussi importante au niveau de la fraction alpha chez certaines espèces d’oiseaux doit être pris en considération lors de l’interprétation de leurs électrophorégrammes plasmatiques. En effet, la présence d’un pic d’une telle intensité peut être une source d’erreur diagnostique grave, puisque jusqu’à présent, la plupart des auteurs s’accordaient à dire que la fraction alpha était principalement composée de protéines de la phase aiguë de l’inflammation, telles que l’alpha-1 antitrypsine ou l’alpha-2 macroglobuline, dont l’augmentation du taux plasmatique indique la présence d’un phénomène inflammatoire (Cray, 1997 ; Cray & Tatum , 1998 ; Werner & Reavill, 1999). Or il a été démontré chez l’homme et chez le poulet que l’apolipoproteine A-I est, tout comme l’albumine, une protéine négative de la phase aiguë de l’inflammation, puisque son taux plasmatique diminue lors d’un phénomène inflammatoire (Wicher et al., 1991 ; Monnet et al., 2002 ; Upragarin, 2005). Ceci doit être pris en compte, tant pour l’interprétation des profils électrophorétiques que pour le calcul du rapport albumine / globulines (A/G). Chez les espèces ayant des pics en alpha important, un rapport défini par la somme des fractions albumine et alpha 1 divisée par le reste des globulines serait en effet probablement plus puissant dans le diagnostic d’une inflammation, que le rapport A/G classique. Comme nous l’avons dit précédemment, notre utilisation courante de l’électrophorèse des protéines plasmatiques, ainsi que les travaux d’autres auteurs ont permis de mettre en évidence de nombreuses variations interspécifiques des électrophorégrammes chez les oiseaux (Sibley & Hendrickson, 1970; Cray & Tatum 1998; Zaias et al., 2000; Blanco & Hofle, 2003). Nous avons donc entrepris d’étudier de manière plus approfondie ces différences inter-taxonomiques en nous basant sur des espèces d’oiseaux phylogénétiquement éloignées, telles que le paon bleu (Pavo cristatus), l’oie à tête barrée (Anser indicus), le pigeon domestique (Columba livia), le milan noir (Milvus migrans) et l’amazone aourou (Amazona amazonica). La mesure des distances de migration sur gel d’agarose de l’albumine et du fibrinogène chez ces espèces nous a permis d’aborder de manière quantifiable les disparités pouvant exister entre les profils électrophorétiques de ces cinq taxa. La comparaison des distances de migration de l’albumine a montré que cette protéine migre à des endroits différents en fonction de l’espèce concernée. Ceci avait déjà été décrit chez la perruche ondulée (Nymphicus hollandicus) et le poulet (Gallus gallus), et attribué à des différences de répartition des charges de surface de cette protéine en fonction de l’espèce concernée (Archer & Battison, 1997). La comparaison des distances de migration du fibrinogène nous a également permis de scinder les cinq espèces étudiées en deux groupes distincts correspondant à la classification phylogénétique des oiseaux proposée par Lecointre et Le Guyader (2001). Dans l’infraclasse des Galloanserae comprenant dans notre cas l’oie à tête barrée et le paon bleu, le fibrinogène migre significativement plus loin que dans l’infraclasse des Neoaves comprenant ici le pigeon, le milan noir et l’amazone aourou. Dans chacune des deux infraclasses, aucune différence interspécifique de la distance de migration du fibrinogène n’a pu être mise en évidence. La structure ou la répartition des charges de surface du fibrinogène semblerait ainsi être différente dans les deux infraclasses. Il sera nécessaire de 150 tester cette hypothèse dans des études ultérieures basées sur un nombre plus important d’espèces appartenant aux deux groupes taxinomiques. Le fibrinogène est l’une des principales protéines de la phase aiguë de l’inflammation (Hawkey & Hart, 1988). Tous les auteurs s’accordent à dire qu’il migre en position beta sur les électrophorégrammes des oiseaux (Kaneko, 1997 ; Cray & Tatum, 1998 ; Werner and Reavill 1999 ; Rosenthal, 2000 ; Fudge and Speer, 2001). Nous proposons donc que cette protéine, facile à identifier par la comparaison des profils d’électrophorèse plasmatique et sérique puisse servir de repère pour nommer les autres fractions de manière conventionnelle chez les oiseaux. Le pic correspondant au fibrinogène pourrait ainsi être nommé «beta », tandis que les globulines présentes entre l’albumine et le fibrinogène seraient nommées alpha, et les globulines situées en position cathodique par rapport au fibrinogène, gamma. II. APPORTS A LA COMPREHENSION DES EFFETS DE LA PONTE ET DE LA MUE Bien que la mue soit indéniablement la cause de changements radicaux au niveau du métabolisme protéique des oiseaux, son impact sur les électrophorégrammes aviaires n’est pas apparu comme très important. Les changements observés chez les oies à tête barrée (Anser indicus) en periode de mue se sont en effet révélés significatifs, mais peu importants par rapport aux variations interindividuelles. Le modèle utilisé dans cette étude avait de plus été choisi en raison de la brièveté et de l’intensité du phénomène de mue au cours duquel la repousse simultanée des rémiges impose à l’oiseau de rester au sol pendant 35 à 40 jours (Delacour, 1964; Todd, 1996). Il est donc très probable que, dans d’autres taxons où la mue s’étale sur plusieurs mois, comme chez les falconiformes, les psittaciformes, ou les gruiformes (Mirande et al., 1994 ; Brown & Amadon, 1989 ; Forshaw & Cooper, 1989), l’impact de la mue soit négligeable. Les oiseaux en mue ont présenté une diminution de la concentration en protéines totales, principalement liée à une diminution des fractions albumine, alpha-2 et gamma. Parallèlement, durant la même période, nous avons observé une augmentation de la fraction pré-albumine. Autour de la période de mue, les valeurs des fractions alpha-1 étaient plus élevées qu’avant ou après la mue. Les seules modifications décrites par les études précédentes concernaient les protéines totales et les fractions albumine et alpha-2 (Driver, 1981; Gildersleeve et al., 1983; De Graw & Kern, 1985; Work, 1996). Notre étude a donc permis pour la première fois la mise en évidence de variations des fractions préalbumine, alpha-1 et gamma chez l’oiseau. Chez l’oiseau en mue, l’accélération du turn-over des protéines (Murphy & Todd, 1995) permet une plus grande souplesse dans la mobilisation des acides aminés contenus dans des protéines comme l’albumine, ce qui permet de favoriser la pousse des 151 plumes composées à 95% de protéines (Murphy & King, 1992). Ceci, ainsi que l’augmentation de la volémie liée à l’expansion du système circulatoire autour des follicules plumeux (Chilgren & De Graw, 1977; De Graw & Kern, 1985) a très vraisemblablement contribué à la diminution des taux plasmatiques des fractions albumine, alpha-2 et gamma. De plus, l’augmentation des taux de triiodothyronine lors de la mue s’accompagne d’une diminution de l’activité du système immunitaire à médiation humorale (Bourgeon & Raclot, 2007) expliquant la diminution des taux plasmatiques de la fraction gamma. L’augmentation des taux plasmatiques d’hormones thyroïdiennes s’accompagne également de l’augmentation de la synthèse de protéines présentes dans la fraction alpha-1, et de protéines de transport de la thyroxine, comme la transthyrétine (Grieninger, 1978; Chamanza et al. 1999, Lanzarot et al., 2005), ce qui explique respectivement l’augmentation que nous avons observée chez les oiseaux en mue pour les fractions alpha-1 et pré-albumine. Les effets de la ponte sur les électrophorégrammes aviaires se sont révélés plus importants que ceux liés à la mue. Ils sont donc plus susceptibles d’induire le praticien en erreur. Le modèle choisi dans notre étude, pour évaluer l’impact de la ponte sur l’électrophorèse des protéines plasmatiques chez l’oiseau est la poule pondeuse (Gallus gallus). Ce modèle nous a permis de pouvoir observer simultanément un grand nombre d’oiseaux en ponte et de nous soustraire aux effets potentiels de la couvaison, puisque les œufs étaient ramassés quotidiennement. Les profils électrophorétiques des oiseaux en ponte se sont caractérisés par une augmentation des fractions alpha-1, beta-1 et beta-2 et une diminution de la fraction alpha-3. L’augmentation de la fraction beta était liée à l’apparition, chez les pondeuses, d’une bande supplémentaire dans cette zone, d’aspect monoclonale et de mobilité électrophorétique relativement variable. La très forte corrélation entre cette fraction et le taux de triglycéride chez les oiseaux en ponte laisse à penser que cette fraction est principalement constituée de VLDLy, principale forme de transport des lipides synthétisés dans le foie et à destination des follicules en croissance (Hermier et al.,1989; Walzem et al., 1994; Klasing, 2000). La diminution de la concentration en HDL, décrite par certains auteurs chez les oiseaux en ponte (Hermier et al., 1989; Cho & Park, 1991; Hermann et al., 2003) est très probablement responsable de la diminution de la fraction alpha-3, comme l’indique la très forte corrélation entre les valeurs de cette fraction et le taux de cholestérol HDL dans cette étude. L’identité de la protéine présente dans la fraction alpha-1, et dont la concentration plasmatique augmente lors de la ponte reste inconnue, mais pourrait correspondre aux vitellogénines, complexes moléculaires de densité supérieure aux HDL (Kudzma et al., 1979; Chapman, 1980). L’étude de l’influence de la ponte sur l’aspect des profils électrophorétiques des oiseaux met en évidence qu’il est capital, lors du recueil des commémoratifs, d’apprécier l’état physiologique d’un oiseau, pour pouvoir interpréter correctement son électrophorégramme. L’apparition du pic de VLDLy chez un oiseau en ponte peut, en effet être interprétée à tort par un praticien non averti comme un pic de fibrinogène signant l’existence d’un processus inflammatoire. 152 III. APPORTS A LA COMPREHENSION DES EFFETS DE L’HEMOLYSE ET DE LA LIPEMIE Notre utilisation courante de l’électrophorèse des protéines plasmatiques à des fins diagnostiques chez les oiseaux, a permis de mettre en évidence que des interférences analytiques telles que l’hémolyse ou la lipémie sont fréquentes. Elles représenteraient respectivement 4,55 et 2,87 % des prélèvements réalisés (Fudge, 2000). Cependant, l’impact de telles interférences analytiques n’a jamais été étudié spécifiquement. Dans notre étude, les effets de l’hémolyse sur les profils électrophorétiques des oiseaux ont été analysés chez deux espèces phylogénétiquement éloignées, l’oie à tête barrée (Anser indicus), et le milan noir (Milvus migrans). Il est apparu que la présence d’hémoglobine libre dans le prélèvement s’accompagnait de l’augmentation de la fraction gamma. Cette observation correspond à la description succincte des effets de l’hémolyse sur l’électrophorèse des protéines effectuée par Werner & Reavill (1999) et Cray et al. (2007) chez les psittacidés. Cependant, il semble qu’en fonction des espèces, la présence d’hémoglobine dans le prélèvement s’accompagne également d’une augmentation de la fraction beta. En effet, bien que l’hémoglobine migre indubitablement en gamma, chez certaines espèces, comme le milan noir dans notre cas, le voisinage immédiat sur le gel d’agarose de la fraction beta et de la bande correspondant à l’hémoglobine entraine une augmentation artéfactuelle de la fraction beta lors de l’hémolyse, ce qui n’est pas le cas chez l’oie à tête barrée. L’interférence de l’hémolyse sur les profils électrophorétiques est donc bien différente de celle qui est décrite chez les mammifères où l’hémoglobine libre est connue pour migrer en beta-1, tandis que les complexes hemoglobine-haptoglobine migrent en alpha-2 (Bossuyt et al., 1998b; Benlakehal et al., 2000; Thomas, 2001). Chez l’oiseau, la différence réside probablement dans le fait que l’haptoglobine ne semble pas exister dans la sous-classe des neognathae, où elle est remplacée par une autre protéine porteuse de l’hémoglobine, la protéine PIT 54 (Wicher & Fries, 2006). Les effets de la lipémie sur les profils électrophorétiques des oiseaux sont plus complexes à aborder. La nature des lipoprotéines mises en jeu peut en effet être très variable en fonction de son origine (posprandiale ou ponte) (Hermier et al. 1989, Klasing, 2000), ou en fonction du moment où le prélèvement a été réalisé (Klasing, 2000). Le modèle choisi ici pour l’étude des interférences liées à la lipémie postprandiale est le milan noir (Milvus migrans). Il est en effet facile chez la plupart des rapaces d’obtenir une lipémie postprandiale dans les deux heures après un nourrissage (observation personnelle). De notre étude, il ressort que celle-ci n’a aucun effet sur les profils d’électrophorèse des protéines plasmatiques chez l’oiseau. Elle entraine tout au plus une diminution des protéines totales par un effet de dilution de ces dernières par l’afflux de triglycérides (Guder et al., 2002 ; Kroll , 2004), cette diminution des protéines totales se répercutant significativement sur les valeurs brutes des différentes fractions. Mais ces variations sont peu significatives d’un point de vue clinique, car 153 inférieures à la variabilité interindividuelle. Les lipides sont la source d’énergie la plus importante pour les rapaces, à tel point que leur capacité de synthèse hépatique des acides gras est faible, comparé aux oiseaux granivores (Klasing, 2000). Les oiseaux ont d’une manière générale un système lymphatique peu développé. Les lipoprotéines issues de la digestion sont donc directement sécrétés dans la circulation sanguine sous la forme de portomicrons, proches, sur le plan structurel des chylomicrons des mammifères (Hermier, 1989 ; Klasing, 2000). Ces portomicrons sont ensuite progressivement captés par le foie qui les reconditionne sous la forme de Very Low Density Lipoproteins (VLDL) (Hermier, 1997 ; Klasing, 2000). Dans notre cas, la lipémie postprandiale a donc probablement été principalement le fait de la mise en circulation massive de portomicrons. Or, la grande taille de ces lipoprotéines (150 nm) n’a très probablement pas permis leur pénétration et leur migration dans le gel d’agarose. Ces portomicrons seraient donc restés au point de dépôt, sans être colorés correctement par le noir amidon, en raison de leur très faible teneur en protéines (1-2%) (Hermier et al., 1985, 1988). Il importera dans des études ultérieures de déterminer les effets de la lipémie sur les électrophorégrammes d’oiseaux granivores. En effet, leur capacité de synthèse hépatique d’acides gras est principalement basée sur l’utilisation des hydrates de carbones de la ration et résulte donc en une lipémie liée majoritairement à la présence de VLDL dans le plasma (Klasing, 2000). Revenons pour finir à l’importance de l’origine de la lipémie. Les effets liés à la lipémie de ponte ont déjà été développés dans la partie précédente traitant des changements liés à des phénomènes physiologiques. Or, ils sont beaucoup plus importants que ceux liés dans notre étude à la lipémie postprandiale, puisqu’ils entrainent chez la poule pondeuse une augmentation des fractions alpha-1 et beta et une diminution de la fraction alpha-3. Ces modifications des profils électrophorétiques correspondent à celles évoqués par Werner & Reavill (1999) ou par Cray et al. (1999) dans le cadre plus général de leur étude de la lipémie. Elles illustrent parfaitement que les effets d’un artéfact comme la lipémie sont largement dépendants des lipoprotéines mises en jeu (VLDLy dans le cas de la ponte). Dans la mesure où il parait difficile de prévoir les perturbations observées sur les électrophorégrammes aviaires sur la base de la seule observation de l’état lipémique d’un prélèvement, il semble plus raisonnable d’écarter systématiquement les prélèvements lipémiques. 154 IV. COMPARAISON DE L’UTILISATION, DES DEUX TECHNIQUES LES PLUS UTILISEES ACTUELLEMENT EN LABORATOIRE DE DIAGNOSTIC MEDICAL : L’ELECTROPHORESE EN GEL D’AGAROSE ET L’ELECTROPHORESE CAPILLAIRE DE ZONE L’électrophorèse en gel d’agarose (AGE) est actuellement la technique la plus utilisée en diagnostic de laboratoire (Daunizeau, 2003 ; Lissoir et al., 2003). Elle a cependant tendance à être peu à peu supplantée dans les gros laboratoires par l’électrophorèse capillaire de zone (CZE). Nous avons étés les premiers à utiliser cette technique chez les oiseaux. Notre étude a été réalisée chez le coq domestique (Gallus gallus), le milan noir (Milvus migrans) et le pigeon domestique (Columba livia). Les profils obtenus en CZE ont paru, au premier abord, assez similaires à ceux obtenus par AGE. Hormis pour certaines fractions alpha et pour la fraction pré-albumine, les fractions obtenues par AGE et CZE étaient bien corrélées. Les résultats bruts, étaient, cependant significativement différents d’une méthode à l’autre. Il semble donc nécessaire, pour l’interprétation des électrophorégrammes obtenus en CZE d’établir des valeurs de références propres à cette méthode. Pour les fractions alpha et préalbumine, l’étude des corrélations entre les deux méthodes met en évidence que certaines protéines des fractions alpha en AGE (alpha-3 chez le coq, alpha-1 chez le milan noir, alpha chez le pigeon) migrent en position pré-albumine en CZE. Cette protéine, précédemment identifiée comme apolipoprotéine A-I chez le pigeon et le milan semble donc avoir une mobilité électrophorétique radicalement différente dans les conditions de l’AGE et de la CZE. Dans des espèces comme le pigeon, l’importance de la fraction pré-albumine résultant de ce phénomène est telle, qu’elle peut conduire le praticien non averti à se tromper dans l’identité du pic d’albumine. Le passage de l’apolipoprotéine A-I au niveau de la fraction pré-albumine en CZE entraine de plus une différence importante dans la définition du rapport A/G tel qu’utilisé conventionnellement chez les oiseaux. Enfin, l’électrophorèse capillaire permet la séparation de fractions supplémentaires, dont la signification clinique reste à définir. L’électrophorèse capillaire présente des avantages certains par rapport à l’AGE, tels une répétabilité et une reproductibilité des résultats accrues, une cadence d’analyse supérieure et l’absence de support qui permet la quantification directe des différentes fractions par mesure d’absorbance à travers la paroi du capillaire. Cependant, elle présente aussi quelques inconvénients. Le volume de plasma nécéssaire pour la CZE est beaucoup plus important pour la CZE que pour l’AGE (14 fois plus important dans le cadre de notre étude). De plus, la quantification directe des protéines par mesure d’absorbance rend cette méthode plus sensible à la présence artéfactuelle de molécules absorbant les mêmes longueurs d’onde que les protéines (sulfaméthoxazole, produits de contrastes iodés, hémoglobine, lipoprotéines) (Bossuyt et al., 1999, 2003 ; Brouwers et al., 2006). Des études supplémentaires devront donc être menées pour estimer l’influence de telles interférences sur les électrophorégrammes aviaires. Il sera de 155 même intéressant d’évaluer l’effet de pigments tels que les caroténoïdes présents, parfois en quantité importante dans les plasmas des oiseaux, en particulier chez les flamants roses (Phoenicopterus sp.) ou les ibis rouges (Eudocimus ruber) maintenus en captivités et supplémentés avec des caroténoïdes de synthèse comme la canthaxanthine. 156 CONCLUSION Cette étude avait pour objectif de contribuer à valider l’électrophorèse des protéines plasmatiques comme outil diagnostique en médecine aviaire appliquée à la gestion des élevages conservatoires, cela en analysant l’impact de la diversité taxinomique, de phénomènes physiologiques comme la mue ou la ponte, d’artéfacts potentiels comme l’hémolyse ou la lipémie sur les profils obtenus. Notre étude s’est principalement basée sur l’utilisation de l’électrophorèse en gel d’agarose, technique actuellement la plus utilisée en laboratoire médical. Ces travaux ont de plus été l’occasion d’aborder pour la toute première fois chez l’oiseau l’utilisation de l’électrophorèse capillaire de zone, technique émergente en médecine humaine. Que ce soit dans le cadre de la gestion à long terme des populations ou dans un but de réintroduction, la problématique de conservation en parc zoologique et en élevage conservatoire nécessite de travailler avec un nombre important d’oiseaux répartis dans des taxons très variés. La densité importante des collections animales et la promiscuité qui en découle, ainsi que les conditions de stress inhérentes à la captivité sont favorables à la transmission de nombreuses maladies et imposent par conséquent la mise en place de mesures de prophylaxie offensive et défensive. De même, les échanges fréquents d’oiseaux entre institutions dans le but de minimiser les effets de la consanguinité impliquent un contrôle sanitaire rigoureux reposant sur le respect de mesures de quarantaine. La perspective de réintroduction in situ des animaux, à court ou à moyen terme, impose de plus une gestion sanitaire stricte afin d’éviter de répandre de nouveaux agents pathogènes dans des populations déjà fragilisées. Contrairement à la médecine aviaire en élevage de rente, la médecine aviaire en élevage conservatoire est donc une médecine individuelle de pointe dans laquelle la survie et la reproduction d’individus à forte valeur patrimoniale est capitale. La conduite des mesures de police sanitaire génère de manière récurrente des volumes importants de prélèvements sur des espèces différentes. Il est donc essentiel de disposer d’examens complémentaires permettant d’estimer rapidement l’état de santé d’un individu quelle que soit son espèce. Dans ce contexte l’électrophorèse des protéines plasmatiques présente de nombreux avantages. Il s’agit en effet d’une technique dont l’usage en laboratoire médical est répandu, ce qui la rend par conséquent accessibles à tout praticien. L’automatisation des systèmes disponibles sur le marché permet de traiter simultanément un grand nombre d’échantillons et autorise des débits d’analyse importants (jusqu’à 30 électrophorèses toutes les 20 minutes avec l’Hydrasys ©). Notre utilisation courante de l’électrophorèse des protéines plasmatiques au Parc Zoologique de Clères, ainsi que les études de différents auteurs (Cray & Tatum, 1998 ; Werner & Reavill, 1999 ; Cray et al., 2007) tendent à montrer que cet examen complémentaire est fiable et permet d’orienter rapidement un diagnostic par la mise en évidence d’un processus inflammatoire. 157 Nos travaux ont mis en évidence que l’interprétation des électrophorégrammes doit tenir compte de l’état physiologique de l’oiseau au moment du prélèvement. Certains phénomènes physiologiques, tels que la ponte sont en effet susceptibles d’induire en erreur le praticien. L’impact d’autres paramètres tels la croissance, la composition du régime alimentaire, l’hyperphagie prémigratoire, la couvaison, l’élevage des jeunes et le stress devront faire l’objet de recherches futures. Nous avons montré également que la qualité du prélèvement, et par-dessus tout l’absence d’hémolyse conditionnent la fiabilité du résultat d’analyse et de son interprétation. La diversité taxinomique de la classe des oiseaux se reflète par une grande diversité des profils électrophorétiques. Il sera donc important, dans des études ultérieures de poursuivre ces recherches en se basant sur un panel plus large d’espèces, afin de dégager les grandes lignes de l’interprétation des électrophorégrammes aviaires. Il sera enfin nécessaire d’étudier de manière systématique l’impact des différentes classes d’agents pathogènes sur les électrophorégrammes (bactérie, virus, parasite). Cette thèse nous a permis de jeter des bases solides qui permettront d'utiliser en routine l’électrophorèse des protéines plasmatiques chez les oiseaux sauvages, qu'ils soient en élevage conservatoire, en voie de réintroduction, ou vivant dans leur milieu naturel. Ces résultats ont ouvert des perspectives intéressantes et bien sûr conduit à de nouveaux questionnements, principe même de l’avancée de la science. 158 REFERENCES BIBLIOGRAPHIQUES Amog VM, Bull RW & Michel RL. Comparison of electrophoregrams of normal canine serum and plasma and of serum and plasma of hemolyzed specimens. Am J Vet Res. 1977; 38: 387-390. Andreasen CB, Andreasen JR & Thomas JS. Effects of haemolysis on serum chemistry analytes in ratites. Vet Clin Pathol. 1997; 26: 165-171. Andreasen JR, Andreasen CB, Soon AB & Robeson DC. The effects of haemolysis on serum chemistry measurement in poultry. Avian Path. 1996; 25: 519-536. Amin A. Comparison of the serum protein fractions of the newly hatched chick with those of adult birds using starch gel electrophoresis. Nature. 1961; 191: 708. Archer FJ & Battison AL. Differences in electrophoresis patterns between plasma albumins of the cockatiel (Nymphicus hollandicus) and the chicken (Gallus gallus domesticus). Avian path. 1997; 26: 865-870. Balash J, Palacios L, Musquera S, Palomeque J, Jumenes M & Alemany M. Comparative haematological values of several galliformes. Poult Sci. 1973; 52: 1531-1534. Balasch J, Palomeque J, Palacios L, Musquera S & Jimenez M. Hematological values of some great flying and aquatic-diving birds. Comp Biochem Physiol A. 1974; 49: 137-145. Beg MK & Clarkson MJ. Effects of histomoniasis on the serum proteins of the fowl. J Comp Path. 1970; 80: 281-285. Bennett L, Milner-Gulland EJ, Bakarr M, Eves HE, Robinson JG & Wilkie DS. Hunting the world's wildlife to extinction. Oryx. 2002 ; 36 : 326-329. Benlakehal M, Le Bricon T, Feugeas JP & Bousquet B. Influence de l’hémolyse sur le dosage et l’électrophorèse des protéines sériques. Ann Biol Clin. 2000. 58: 367-371. Berger L, Speare R, Hines HB, Marantelli G, Hyatt D, McDonald KR, Skerratt LF, Olsen V, Clarke JM, Gillespie G, Mahony M, Sheppard N, Williams C & Tyler MJ (2004). Effect of season and temperature on mortality in amphibians due to chytridiomycosis. Austr Vet J. 2004; 82: 31-36. 159 Bienvenu J., Graziani MS, Arpin F, Bernon H, Blessum C, Marchetti C, Righetti G, Somenzini M, Verga G & Aguzzi F. Multicenter evaluation of the paragon CZETM 2000 capillary zone electrophoresis system for serum protein electrophoresis and monoclonal component typing. Clin Chem. 1998; 44: 599-605. Blanco JM & Hofle U. Plasma protein electrophoresis as diagnostic and prognostic tool in Raptors. In: Proceeding of the European Association of Avian Veterinarians, Tenerife, Spain; 2003: 256-261. Blue ML, Ostapchuk P, Gordon JS & Williams DL. Synthesis of apolipoprotein A-I by peripheral tissue of the rooster. A possible mechanism of cellular cholesterol efflux. J Biol Chem. 1981; 257: 11151-11159. Bossuyt X. Separation of serum protein by automated capillary zone electrophoresis. Clin Chem Lab Med. 2003; 41: 762-772. Bossuyt X, Bogaert A, Schiettekatte G & Blanckaert N. Serum protein electrophoresis and immunofixation by a semiautomated electrophoresis system. Clin Chem. 1998a; 44: 944-949. Bossuyt X, Lissoir B, Marien G, Maisin D, Vunckx J, Blanckaert N & Pierre Wallemacq. Automated serum protein electrophoresis by Capillarys ©. Clin Chem Lab Med. 2003; 41: 704-710. Bossuyt X, Marien A, Blanckaert N. Interference of radio-opaque agents in clinical capillary zone electrophoresis. Clin Chem. 1999; 45: 129-131. Bossuyt X, Schiettkatte G, Bogaerts A & Blanckaert N. Serum protein electrophoresis by CZE 2000 clinical capillary electrophoresis system. Clin Chem. 1998b ; 44: 749-759. Brand LW, Clegg RE & Andrews AC. The effect of age and degree of maturity on the serum proteins of the chicken. J Biol Chem. 1951; 191: 105-111. Brouwers A, Marien G, Bossuyt X. Interference of sulfamethoxazole in Capillarys © electrophoresis. Clin Chem Lab Med. 2006; 44: 910-911. Brown L & Amadon D. Egg and incubation. In: Brown L & Amadon D, eds. Eagles, hawks and falcons of the world. Secausus: Wellfleet Press; 1989: 108-111. 160 Bunchasak C, Poosuwan K, Nukraew, Markvitchitr K & Choothesa A. Effects of dietary protein on egg production and immunity responses of laying hens during peak production period. Int J Poult Sci. 2005; 4: 701-708. Butler, PJ. Exercise in birds. J Exp Biol. 1991; 160: 233-262. Butler PJ & Bishop CM. Flight. In: Whittow GC, ed. Sturkie’s avian physiology. San Diego, California: Academic Press; 2000: 391-435. Camfield A. Animal Diversity Web; University of Michigan; Class Aves (birds). http://animaldiversity.ummz.umich.edu/site/accounts/information/Aves.html. 03/04/08. Campbell TW. Avian hematology. In: Campbell TW, ed. Avian hematology and cytology second edition. Ames, Iowa: Iowa State University Press/Ames; 1995: 3-29. Chamanza R, Van Veen L, Tivapazi MT & Toussaint MJM. Acute phase proteins in the domestic fowl. World Poult Sci. 1999; 55: 61-71. Chapman, MJ. Animal lipoproteins: chemistry, structure, and comparative aspects. J Lipid Res. 1980 ; 21: 789-853. Chilgren JD & De Graw WA. Some blood characteristics of white-crowned sparrows during molt. Auk. 1977; 94: 169-171. Cho BH & Park JR. Compositional changes and apoprotein A-I metabolism of plasma high density lipoprotein in estrogenized chicks. Lipids. 1991; 26: 819-823. Clubb SL, Schubot RM, Joyner K, Zinkl JG, Wolf S, Escobar J & Kabbur MB. Hematologic and serum biochemical reference intervals in juvenile cockatoos. J Assoc Avian Vet. 1991; 5: 16-26. Common RH & McKinley WP. Filter paper electrophoresis of avian serum proteins. Science. 1953: 118: 86-89. Cookson EJ, Hall MR & Glover J. The transport of plasma thyroxine in white storks (Ciconia ciconia) and the association of high levels of plasma transthyretin (thyroxine-binding prealbumin) with moult. J Endocrinol. 1988; 117: 75-84. 161 Corzo A, Kidd MT, Pharr GT & Burgess SC. Initial mapping of the chicken blood plasma proteome. Int J Poult Sci. 2004; 3: 157-162. Cray CC, Greiner E & Zielezienski K. Serological diagnosis of sarcocysticosis. In: Proceedings of the 17th AAV conferences, Lake Worth, Florida. 1996: 205-208. Cray C. Plasma protein: an update. In: Proceedings of the 18th AAV conference, Reno, Nevada. 1997: 209-212. Cray C. Diagnostic use of protein electrophoresis in birds. In : Bonagura JD, ed. Kirk’s current veterinary therapy XIII, small animal practice. Philadelphia, Pensylvania : WB Saunders company; 2000 :1107-1109. Cray C, Bossart G, Harris D. Plasma protein electrophoresis, principles and diagnosis of infectious diseases. In: Proceedings of the 16th AAV conference, Philadelphia, Pensylvania. 1995: 55-59. Cray C, Rodriguez M & Zaias J. Protein electrophoresis of psittacine plasma. Vet Clin Pathol. 2007; 36: 64-72. Cray C & Tatum L. Application of protein electrophoresis in avian diagnostic testing. J Av Med Surg. 1998; 12: 4-10. Cuenca R, Marco I, Espada Y, Pastor J & Lavin S. A comparison of the total serum protein and electrophoretic fractions of young and adult captive reared Capercaillie (tetrao urogallus). J Zoo Wildl Med. 1995; 26: 269-271. Curtis MJ & Butler EJ. Response of ceruloplasmin to Escherichia coli endotoxin and adrenal hormones in the domestic fowl. Res Vet Sci. 1980; 22: 267 - 270. Daunizeau A. Electrophorèse des protéines du sérum. In : Hermand JP, Daunizeau A, Pham BN, Intrator L, Bienvenu J & Preud’homme JL, eds. Cahier de formation N°28; immunoglobulines monoclonales. Paris, France : Bioformat ; 2003. 26-46. Dauzat A, Dubois J. & Mitterant H. Dictionnaire étymologique et historique ; références Larousse. Paris, France : Librairie Larousse; 1988 : 805 pp. 162 Debinski, D.M. & Holt, R.D. A survey and overview of habitat fragmentation experiments. Cons Biol. 1999 ; 14 : 342-355. De Graw WA & Kern MD. Changes in the blood and plasma volume of Harris’ sparrows during postnuptial molt. Comp Biochem Physiol A. 1985; 81: 889-893. Del Pilar Lanzarot PM, Barahona MV, San Andrès Min Fernandès-Garcia M & Rodriguez C. Hematologic, protein electrophoresis, biochemistry, and cholinesterase values of free-living black stork nestlings (Ciconia nigra). J Wildl Dis. 2005; 379-386. Del Pilar Lanzarot PM, Montesinos A, San Andrès MI, Rodriguez C & Barahona MV. Hematological, protein electrophoresis and cholinesterase values of free-living nestling peregrine falcons in Spain. J Wildl Dis. 2001; 37: 172-177. Dimpopullus GT. Serum protein in health and disease. Ann NY Acad Sci. 1961; 94: 1-8. Driver EA. Hematological and blood chemical values of mallard, Anas p. platyrhynchos, drakes before, during and after remige moult. J Wildl Dis. 1981; 17: 413-421. Elevitch, FR. Thin gel electrophoresis in agarose. J Clin Path. 1966; 46:692-697 Elliott JW, & Benett J. Genic determination of a protein in the immunoglobulin region of the chicken. Poult Sci. 1971; 50: 1365-1370. Ferrer M, Garcia-Rodriguez T, Carrillo JC & Castroviejo J. Hematocrit and blood chemistry values in captive raptors (Gyps fulvus, Buteo buteo, Milvus migrans, Aquila heliaca). Comp Biochem Physiol A. 1987; 87: 1123-1127. Feuilloley MG J, Meriau A & Orange. Applications biomédicales de l’électrophorèse capillaire. Med Sci. 1999 ; 15 :1419-1426. Filipovic N, Stojevic Z, Milinkovic-Tur S, Ljubic BB & Zdelar-tuk M. Changes in concentration and fractions of blood serum proteins of chickens during fattening. Vet Archiv. 2007; 77: 319-326. Forshaw JM & Cooper WT. Nesting habits. In: Forshaw JM & Cooper WT, eds. Parrots of the world, 3rd edition. London, England: Blandford Press; 1989: 32-34 163 Fowler ME. An overview of wildlife husbandry and diseases in captivity. Rev Sci Tech. 1996; 15: 1542. Fudge AM. Avian laboratory medicine. In: Fudge AM, ed. Laboratory medicine; avian and exotic pets. Philadelphia, Pensylvania: W.B. Saunders company; 2000: 1-184. Fudge AM and Speer B. Selected controversial topics in avian diagnostic testing. Seminars Avian Exot Pet Med. 2001; 10: 96-101. Gayathri KL & Hegde SN. Alteration in haematocrit values and plasma protein fractions during the breeding cycle of female pigeons, Columba livia. Anim Reprod Sci. 2006; 91: 133-141. Gildersleeve RP, Sattle DG, Johnson WA & Scott TR. The effects of forced molt treatment on blood biochemicals in hens. Poult Sci. 1983; 52: 755-762. Glick B. Serum protein electrophoretic patterns in acrylamide gel: patterns from normal and bursaless birds. Poult Sci. 1968; 41: 807-814. Glick B. Immunophysiology. In : Whittow GC, ed. Sturkie’s avian physiology. San Diego, California: Academic Press; 2000: 657-670. Groulade P. Aperçus sur l’électrophorèse des protéines sériques en médecine vétérinaire et en particulier chez le chien. Bull Soc Vét Prat De France. 1978 ; 69 : 235-268. Grieninger G, Hertzberg KM & Pindyck J. Fibrinogen synthesis in serum-free hepatocyte cultures: stimulation by glucocorticoids. Proc Natl Acad Sci USA. 1978; 75: 5506-5510. Groulade P. L’électrophorèse des protéines sériques dans les affections chroniques chez le chien, aperçus. Prat Méd Chir Anim Cie. 1985 ; 20 : 569-576. Guder WG. Haemolysis as an influence and interference factor in clinical chemistry. J Clin Chem Clin Biochem. 1986 ; 24: 124-126. Guder WG, Ehret W, Fonseca-wollheim F, Heil WH, Darmstadt YS, Topfer G, Wisser H & Zawta B. Use of anticoagulants in diagnostic laboratory investigations; stability of blood, plasma and serum samples. Geneva, Switzerland: World Health organization; 2002: 15-17. 164 Guyot-Ferreol V. Electrophorèse. http://www-cep.ensmp.fr/scpi/Accueil.htm. 12/08/2006. Hannah L & Bowles I. Letters: Global priorities. Biosci. 1995; 45: 122. Harr KE. Clinical chemistry of companion avian species : a review. Vet Clin Pathol. 2002; 3: 140-151. Harris GC & Sweeney MJ. Electrophoretic evaluation of blood sera proteins of adult male chickens. Poult Sci. 1969; 48: 1590-1593. Hawkey C & Hart MG. An analysis of the incidence of hyperfibrinogenemia in birds whith bacterial infections. Avian Path. 1987; 17: 427-432. Herman M, Foisner R, Schneider W & Ivessa NE. Regulation by estrogen of synthesis and secretion of apolipoprotein A-I in the chicken hepatoma cell line, LMH-2A. Biochim Biophys Acta. 2003; 1641: 25-33. Hermier D. Conference: avian lipoprotein metabolism: an update; lipoprotein metabolism and fattening in poultry. J Nutr. 1997; 127: 805-808. Hermier D, Forgez P & Chapman MJ. A density gradient study of the lipoprotein and apolipoprotein distribution in the chicken, Gallus domesticus. Biochim Biophys Acta. 1985; 836: 105-118. Hermier D, Forgez P, Laplaud PM & Chapman MJ. Density distribution and physicochemical properties of plasma lipoproteins and apolipoproteins in the goose, Anser anser, a potential model of liver steatosis. J Lipid Res. 1988; 29: 893-907. Hermier D, Forgez P, William J & Chapman MJ. Alterations in plasma lipoproteins and apolipoproteins associated with oestrogen-induced hyperlipidemia in the laying hen. Eur J Biochem. 1989; 184: 109-118. Hjerten S. Free zone electrophoresis. Chromatogr Rev. 1967; 9: 122-219. Hochleithner M. Biochemistries. In: RitchieBW, Harrisson GH & Harrisson LR, eds. Avian medicine: principles and application. Lake Worth, FL: Wingers Publishing; 1994: 237-238. Hoefer HL, Kiehn TR & Friedan TR. Systemic Mycobacterium tuberculosis in a green winged macaw. In: Proceedings of the 17th AAV conference, Lake Worth, Florida. 1996: 167-168. 165 IUCN. http://www.iucnredlist.org. 15/03/08. Ivey ES. Serologic & plasma protein electrophoresis findings in 7 psittacine birds with aspergillosis. J Avian Med Surg. 2000; 14: 103-106. Ivins GK, Weddle GD & Halliwel WH. Hematology and serum chemistries in birds of prey. In: Fowler ME, ed. Zoo and wildlife animal medicine, 2nd edition. Philadelphia, Pensylvania : WB Saunders company; 1986: 434-437. Jacobson ER, Clubb S & Simpson C. Feather and beak dystrophy and necrosis in cockatoos: clinical pathologic evaluations. J Am Vet Med Assoc. 1986; 189: 999-1005. Kaneko JJ. Serum proteins and the dysproteinemias. In: Kaneko JJ, ed. Clinical Biochemistry of Domestic Animals, 4th ed. San Diego, CA: Academic Press; 1989: 142-165. King JR. Energetics of avian molt. In: Proceedings of the 17th international ornithology congress, Berlin, Germany. 1981: 312-317. Klaassen M. Molt and basal metabolic costs in males of two subspecies of Stonechats: the European (Saxicola torquata rubicola) and the African (S. t. axillaries). Oecologia. 1995; 104: 424-432. Klasing KC. Chapter 7: lipids. In: Klasing KC, ed. Comparative avian nutrition. New York, USA: CAB International; 2000: 171-200. Kiss RS, Ryan RO & Francis GA. Functional similarities of human and chicken apolipoprotein A-I: dependence on secondary and tertiary rather than primary structure. Biochim Biophys Acta. 2001; 1531: 251-259. Kocan RM & Pitt SM. Blood values of the canvasback duck by age, sex and season. J Wildl Dis. 1976; 12: 341-346. Koh LP, Dunn RR, Sodhi NS, Colwell RK, Proctor HC & Smith VS. Species Coextinctions and the Biodiversity Crisis. Science. 2004 ; 305 : 1632-1634 Kohn J. A new supporting medium for zone electrophoresis. Biochem J. 1957; 65: 9. 166 Kristjansson FK, Taneja GC & Gowe RS. Variations in a serum protein of the hen during egg formation. British Poult Sci. 1963; 4: 239-241. Kroll MH. Evaluating interference caused by lipemia. Clin Chem. 2004 ; 50: 1968 - 1969. Kudzma DJ, Swaney JB & Ellis EN. Effects of estrogen administration on the lipoproteins and apoproteins of the chicken. Biochim Biophys Acta. 1979; 572: 257-268. Kuenzel WJ. Neurobiology of molt in avian species. Poult Sci. 2003; 82: 981-991. Kunkel HG & Tiselius A. Electrophoresis of proteins on filter paper. J Gen Physiol. 1951; 35: 89-118. Kuryl J & Gasparska J. Observations on blood plasma postalbumins and hatchability of chickens. Anim Blood Groups Biochem Genet. 1976. 7: 241-246. Kuryl J & Gasparska J. The differences in plasma protein pattern between laying and non-laying chickens, quails and geese. Comp Biochem Physiol part B. 1985; 80: 309-313. Kushner I & Feldman G. Control of the acute phase response, Demonstration of C-reactive protein synthesis and secretion by hepatocytes during acute inflammation in the rabbit. J Exp Med. 1976; 148: 466-477. Kyle RA & Shampo MA. Arne Tiselius, father of electrophoresis. Mayo Clin Proc. 2005; 80: 302. Lafont R. Méthodes physiques de séparation et d'analyse et méthodes de dosage des biomolécules. http://www.snv.jussieu.fr/bmedia/index.htm. 28/06/2005. Lanzarot MP, Barahonas MV, San Andrés MI, Fernandez-Garcia M, & Rodriguez C. Hematologic, protein electrophoresis, biochemistry, and cholinesterase values of free-living black storks nestlings (Ciconia nigra). J Wildl Dis. 2005; 42: 379-386. Lassus C. Intérêts de l’électrophorèse des protéines urinaires chez le chien. Thèse de doctorat vétérinaire. Ecole Nationale Vétérinaire de Lyon ; 2001 : 47 pp. Leakey RE & Lewin R. The sixth extinction: patterns of life and the future of humankind. New York, USA: Anchor book edition; 1996: 288 pp. 167 Le Carrer D. Chapitre 1 L’électrophorèse de zone. In : Le Carrer D., ed. Electrophorèse et immunofixation des protéines sériques, interprétations illustrées. Issy-les-Moulineaux, France : Laboratoires Sebia ; 1998 : 13-34. Lecointre G & Le Guyader H. Oiseaux; annexe 6. In: Lecointre G & Le Guyader H, eds. Classification phylogénétique du vivant 2° edition. Paris, France: Belin ; 2001 : 515. Leveille GA & Sauberlich HE. Influence of dietary protein level on serum protein components and cholesterol in the growing chick. J Nutr. 1961; 74: 500-504. Lissoir B, Wallemach P, Maisin B. Electrophorèse des protéines sériques: comparaison de la technique en capillaire de zone Capillarys© (Sebia) et de l’électrophorese en gel d’agarose Hydrasys© (Sebia). Ann Biol Clin. 2003; 61: 557-562. Longenecker BM, Breitenbach RP & Farmer JN. Plasma protein changes in normal, thymectomized and bursectomized chickens during a Plasmodium lophurae infection. Exp Parasitol. 1967; 21:292309. Lucas AM & Jamroz C. Circulating blood of the hatched chicken. In: Lucas AM & Jamroz C, eds. Atlas of avian haematology. Washington, USA: Agriculture monograph 25; 1961: 17-104. Lumeij JT. The diagnostic value of plasma protein and non-protein nitrogen substances in birds. Vet Quart. 1987; 9: 262 - 267. Lumeij JT & De Bruijne JJ. Blood chemistry reference values in racing pigeons (Columba livia domestica). Avian pathol. 1985; 14: 401-408. Lumeij JT & De Bruijne JJ, Kwant MM. Comparison of different methods of measuring protein and albumin in pigeon sera. Avian Path. 1990; 19: 255-261. Lumeij JY & McLean B. Total protein determination in pigeon plasma and serum: comparison of refractometric methods with the Biuret method. J Avian Med Surg. 1996; 10: 150-152. Lumeij JT, Remple JD & Riddle KE. Plasma chemistry in peregrine falcons (Falco peregrinus): reference values and physiological variations of importance for interpretation. Avian Path. 1998; 27: 129-132. 168 Lush IE. The relationship of egg-laying to changes in the plasma proteins of the domestic fowl. British Poult Sci. 1963; 4: 255-261. Mahenc J & Sanchez V. Séparations electrochimiques, electrophorèse. Paris, France: Technique de l’ingénieur. 1980: 1-17 . Margolin T. Normal Electrophoretic values in cockatiels (Nymphicus hollandicus) and factors affecting these values. In: Proceedings of the 16th AAV conference, Philadelphia, Pennsylvania. 1995: 65-66 McKinley WP, Oliver WF, MAW WA & Common FH. Filter paper electrophoresis of serum proteins of the domestic fowl. Proc soc Exp Biol Med. 1953; 84:346-351. Medway W & Kare MR. Blood and plasma volume, hematocrit, blood specific gravity and serum protein electrophoresis of the chicken. Poult Sci. 1958: 38: 624-630. Meinkoth JH & Allison RW. Sample collection and handling: getting accurate results. Vet Clin Small Anim. 2007; 37: 203-219. Midgley GF, Hannah L, Millar D, Rutherford MC & Powrie LW. Assessing the vulnerability of species richness to anthropogenic climate change in a biodiversity hotspot. Glob Ecol Biog. 2002; 11: 445-451. Miller RE. Quarantine: a necessity for zoo and aquarium animals. In Fowler ME & Miller RE, eds. Zoo and wild animal medicine, current therapy 4. Philadelphia, Pensylvania: WB Saunders company; 1999: 13-17. Mirande CM, Gee GF, Burke A & Whitlock P. Egg and semen production. In: Ellis DH, Gee GF & Mirande CM, eds. Cranes: their biology, husbandry, and conservation. Blaine, USA: Hancock house publishers; 1994: 45-57. Monnet D, Edjeme NE, Ndri K, Hauhouot-Attoungbre ML, Ahibo H, Sangare A & Yapo AE. Lipoprotein (a) in relation to acute phase reaction protein levels in patients with homozygous sickle cell disease. Ann Biol Clin. 2002; 60: 101-103. 169 Moore DH. Effect of reciprocal steroid treatment on the electrophoretic patterns of fowl sera. Endocrinology. 1948; 42:35-45. Morgan GW & glick B. A quantitative study in serum proteins in birsectomized and irradiated chickens. Poult Sci. 1995; 108: 261-263. Mrosovsky N & Sherry DF. Animal anorexia. Science. 1980; 207: 837-842. Muller H. Normal blood serum levels of pheasants total proteins and protein fractions. Berl Munch Tierarztl Wochenschr. 1995; 108: 261-263 (abstr.). Murphy ME & King JR. Energy and nutrient use during moult by white-crowned sparrows (Zonotrichia leucophrys gambelii). Ornis. Scand. 1992; 23: 304-313. Murphy ME & Todd GT. Sparrows increase their rates of tissue and whole body protein synthesis during the annual molt. Comp. Biochem. Physiol. 1995; 111: 385-396. Ogden AL, Morton JR, Gilmour DG & Mc Dermid EM. Inherited variants in the transferrins and conalbumins of the chicken. 1962; 195: 1026-1028. Olney PJS and Dollinger P. Building a future for wildlife, the world zoo and aquarium conservation strategy. Bern, Switzerland, WAZA 2005. 2005; 72 pp. Perrin J. Mobilités électrophorétiques (pour les électrophorèses de zones). http://jef.perrin.free.fr.biochanalys/mobilite-electroph.php. 05/06/2006. Polat U, Cetin M, Ak I & Balci F. Detection of serum protein fractions and their concentrations in laying and non-lacking ostriches (Struthio camelus) fed with different dietary protein levels. Revue Méd Vét. 2004; 155: 570-574. Raymond S & Wang YJ. Preparation and properties of acrylamide gel for use in electrophoresis. Ann. Biochem. 1960; 1: 391-396. Reidarson TH & McBain J. Serum protein electrophoresis and aspergillus antibody titers as an aid to diagnosis of aspergillus in penguins. Proceedings of the AAV. 1995: 61-64. 170 Rocco RM. Joachim Kohn (1912-1987) and the origin of cellulose acetate electrophoresis. Clin Chem. 2005; 51:1896-1901. Romagnano A, Cray C & Bond M. Maldigestion and hypoproteinemia in palm cockatoo chicks. In: Proceedings of the 17th AAV conference, Lake Worth, Florida. 1996: 89-95. Rosenthal KL. Avian protein disorders. In: Fudge AM, ed. Laboratory medicine; avian and exotic pets. Philadelphia, Pensylvania: W.B. Saunders company; 2000: 171-173. Rosenthal KL, Johnston MS, Shofer FS. Assessment of the reliability of plasma electrophoresis in birds. Am J Vet Res. 2005; 66: 375-378. Saunders DA, Hobbs RJ & Margules CR. Biological consequences of ecosystem fragmentation: a review. Cons Biol. 1991; 5: 18-32. Sauveur G & De Reviers M. Chapitre 2 : Reproduction femelle, formation de l’œuf. In : Sauveur G & De Reviers M, eds. Reproduction des volailles et production d’œufs. Tours-Nouzilly, France: INRA; 1988. 13-49. Sibley CG & Hendrickson HT. A comparative Electrophoretic study of avian plasma proteins. The condor. 1970; 72: 43-49. Sibley CG & Monroe BL. Distribution and Taxonomy of Birds of the World, New Haven and London, England: Yale University Press; 1990: pp 1111 Smithies O. Zone electrophoresis in starch gels: group variations in the serum proteins of normal human adults. Biochem J. 1955; 61: 629-41 Spagnolo V, Crippa V, Marzia A & Sartorelli P. Reference intervals for hematologic and biochemical constituents and protein Electrophoretic fractions in captive common buzzards (Buteo Buteo). Vet Clin Pathol. 2006; 35: 82-87. Spano JS, Whiteside JF, Pedersoli WM, Krista LM & Ravis WM. Comparative albumin determinations in ducks, chickens and turkeys by Electrophoretic and dye-binding methods. Am J Vet Res. 1980; 3: 325-326. 171 Sturkie PD & Newman HJ. Plasma protein of chickens as influenced by time of laying, ovulation, number of blood samples and plasma volume. Poult Sci. 1951; 30: 240-248. Tatum LM, Zaias J, Mealey B, Cray C & Bossart GD. Protein electrophoresis as a diagnostic and prognostic tool in raptor medicine. J Zoo Wildl Med. 2000; 31: 497-502. Thomas L. Haemolysis as influence and interference factor. J Intern Fed Clin Chem Lab Med. 2001; 13: 1-4. Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Colligham YC, Erasmus BFN, De Siqueira MF, Grainger A, Hannah L, Hughes L, Huntley B, Van Jaarveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Peterson AT, Phillips OL & Williams SE. Extinction risk from climate change. Nature. 2004 ; 427: 145-148. Tiselius A. A new apparatus for continuous for electrophoretic analysis of colloïdal mixtures. Trans Faraday Soc. 1937; 33: 525-531. Torres-Medina A, Rhodes MB & Mussman HC. Chicken serum proteins: a comparison of electrophoretic techniques and localisation of transferrin. Poult Sci. 1971; 50: 1115-1121. Trumel C, Schelcher F, Braun JP & Guelfi JF. L’électrophorèse des protéines sériques : principes d’interprétation chez le chien, le chat et le cheval. Rev Med Vét. 1996 ; 147 : 123-130. Upragarin N, Toussaint MJM, Tooten PCJ, Van Asten AJAM, Wajjwalku W & Gruys E. Acute phase protein reaction in layer chickens. A calculated acute phase protein index as measure to assess health during the rearing period. In: 5th Colloquium on animal acute phase proteins, Dublin, Ireland. 2005: 40. Vanstone WE, Maw WA & Common RH. Levels and partition of the fowl’s serum protein in relation to age and egg production. Can J Biochem Physiol. 1955; 33: 891-903. Viera-Nunes AI. Transport d’ions sous l’effet d’un champ électrique en milieu poreux : application à la séparation de terres rares par électrophorèse à focalisation. Thèse de doctorat de l’institut national polytechnique de Lorraine ; 1999 : 230 pp. Walsberg GE. Avian ecological energetics. In: Farner DS & King JR, eds. Avian biology Vol 7. New York, USA: Academic press; 1983: 161-220 172 Walzem, RL. Lipoproteins and the laying hen: form follows function. Poult Avian Biol Rev. 1996; 7: 31-64. Werner LL & Reavill DR. The diagnostic utility of serum protein electrophoresis. Vet Clin North Am Exot Anim Pract. 1999; 2: 651-662 Wicher KB & Fries E. Haptoglobin, a hemoglobin binding plasma protein, is present in bony fish and mammals, but not in frogs and chicken. Proc Natl Acad Sci USA. 2006; 103: 4168-4173. Wicher T, Bienvenu J & Price CP. Molecular biology, measurement and clinical utility of the acute phase proteins. Pure and Appl Chem. 1991; 63: 1111-1116. Williamson M. Biological invasions. London, UK : Chapman & Hall ; 1996 : 256 pp. Wilson EO. The future of life. New York, USA: Random House Inc; 2002: 256 pp. Wolff PL. Husbandry practices employed by private aviculturists, bird markets and zoo collections, which may be conducive to fostering infectious diseases. Rev Sci Tech. 1996; 15: 55-71. Woodford MH. Quarantine and health screening protocols for wildlife prior to translocation and release into the wild. Paris, France: Office International des Epizooties; 2001: 99pp. Work TM. Weights, haematology and serum chemistry of some species of free ranging tropical seabirds. J Wildl Dis. 1996; 32: 643-657. Zaias J, Fox WP, Cray C, Altman NH. Hematologic, plasma protein, and biochemical profiles of brown pelicans (Pelecanus occidentalis). Am J Vet Res. 2000; 61: 771-774. 173 LISTE DES ABRÉVIATIONS UTILISÉES AAV: Association of Avian Veterinarians AGE: Agarose Gel Electrophoresis A/G (rapport): rapport Albumine / Globuline APP : Acute Phase Protein CZE : Capillary Zone electrophoresis EAAV : European Association of Avian Veterinarians EAZA : European Association of Zoo and Aquaria EDTA : Ethylène diamine Tetra Acetate ELISA : Enzyme-Linked ImmunoSorbent Assay HDL : High Density Lipoprotein LDL : Low Density Lipoprotein PBFD : Psittacine Beak and Feather Disease UICN : International Union for Conservation of Nature VLDL : Very Low Density Lipoprotein 174 ILLUSTRATION DES ESPECES D’OISEAUX ETUDIEES Milan noir (Milvus migrans) Amazone aourou (Amazona amazonica) Oie à tête barrée (Anser indicus) Pigeon domestique (Columba livia) Paon bleu (Pavo cristatus) 175 Contribution à la validation de l’électrophorèse des protéines plasmatiques comme outil diagnostique en médecine aviaire appliquée à la conservation Résumé : à l’heure actuelle, les menaces pesant sur la diversité biologique in situ s’accroissent sans cesse et les espèces doivent survivre dans des environnements de plus en plus anthropisés. La survie de certaines espèces dont le biotope est extrêmement dégradé est actuellement assurée par des programmes de conservation ex situ. Les parcs zoologiques font partie de ces institutions pouvant jouer un rôle important dans la conservation d’espèces en voie de disparition, notamment via l’élevage en captivité. Cependant, dans ces élevages conservatoires toutes les conditions de l’émergence des maladies sont réunies : grande concentration d’animaux et sédentarité des collections. La constitution et le maintien d’effectifs d’oiseaux dans un objectif de conservation ex-situ est par conséquent indissociable d’une gestion sanitaire efficace reposant sur des examens complémentaires fiables. L’utilisation de l’électrophorèse des protéines plasmatiques dans le diagnostic des phénomènes inflammatoires présente de nombreux avantages dans ce domaine. Cependant, la classe des oiseaux est très diversifiée. En absence de repère normatif, il peut donc être difficile d’interpréter finement les résultats obtenus. Le cycle annuel de vie d’un oiseau passe par diverses phases, comme la ponte et la mue, qui modifient profondément leur métabolisme, mais dont l’impact sur les électrophorégrammes n’est connu que de manière très superficielle. De même, les effets d’interférences analytiques telles que l’hémolyse et la lipémie sont mal connus. Enfin, à l’heure actuelle, l’électrophorèse en gel d’agarose (AGE) est la technique électrophorétique la plus utilisée en laboratoire médical. Elle tend cependant à être peu à peu remplacée par l’électrophorèse capillaire de zone (CZE), dont l’utilisation n’a jamais été abordée chez l’oiseau. Ces problématiques ont été successivement étudiées dans cette thèse afin d’améliorer l’utilisation de l’électrophorèse des protéines plasmatiques pour le diagnostic des maladies des oiseaux en élevage conservatoire. De notre étude, il ressort que certains taxons d’oiseaux, comme les psittaciformes, les falconiformes et les colombiformes se caractérisent par la présence d’un pic important d’apolipoprotéine A-1 dans la région alpha. Le fibrinogène, dont la distance de migration est différente dans l’infraclasse des galloanserae et des neoaves pourrait servir de point de repère dans la dénomination des fractions électrophorétiques. Les effets de la mue sur les electrophorégrammes sont peu significatifs d’un point de vue clinique, tandis que ceux de la ponte, impliquant notamment une augmentation de la fraction beta liée à la mise en circulation de VLDLy peut être source d’erreur pour le praticien. La lipémie postprandiale ne semble pas avoir d’effet notoire sur les profils électrophorétiques. L’hémolyse entraine par contre une augmentation de la fraction gamma pouvant conduire à un diagnostic erroné d’inflammation chronique. Enfin, les profils électrophorétiques obtenus par CZE et par AGE ne sont pas comparables, certaines protéines de la fraction alpha en AGE migrant au niveau de la fraction pré-albumine en CZE. L’utilisation de la CZE présente des avantages en termes de précision et de cadence d’analyse par rapport à l’AGE, mais nécessite l’établissement d’intervalles de références propres à cette technique. L’ensemble des connaissances acquises par le biais de nos travaux constituera une base solide permettant d’utiliser en routine l’électrophorèse des protéines plasmatiques en élevage conservatoire. Mots clés : électrophorèse, protéine, plasma, agarose, oiseau, inflammation.