Le tutorat 3 Générations de tuteurs
Transcription
Le tutorat 3 Générations de tuteurs
Le tutorat Roger Nkambou Roger Nkambou, DIC9340 3 Générations de tuteurs 1ère Génération – Sur le marché Technologie sous-jacente : Hypertexte & Behaviorisme Pédagogie: Feedback didactique sur les réponses de l’apprenant. 2ème Génération – Emergent sur le marché Technologie : Intelligence Artificielle & Psychologie Cognitive Pédagogie : Assistance sur les étapes de résolution d’un problème (et non seulement sur une réponse finale) 3ème Génération – Emergent dans les labos Technologie : Traitement du langage naturelle, plannification réactive, évaluation du continue de la pédagogie et du contenu Pédagogie : Dialogues permettant la construction des connaissances 1 La 1ère génération: Roger Nkambou, DIC9340 EAO (Enseignement Assisté par Ordinateur) (CAI – Computer-Based Instruction) Exemple Excellent! OK Solve 2+2x=12 x=5 x=3 x=7 Multiplication has a higher precedence than addition, so 2+2x is the same as 2+(2x), not (2+2)x. Try again. OK Roger Nkambou, DIC9340 La 1ère génération (suite) Exemple 2: 2 Roger Nkambou, DIC9340 La boucle fonctionnelle des EAO Pour chaque chapitre du curriculum Lire le chapitre Pour chaque exercice Boucle Prendre la réponse Donner la rétroaction et les conseils sur la réponse Sortir si bonne réponse Essayez de nouveau Fin boucle FinPour Passer un test sur le chapitre FinPour Roger Nkambou, DIC9340 2ème génération: Systèmes Tutoriels Intelligents Classiques Technologie sous-jacente: IA et Psycho. Cogn. Pédagogie: Assistance sur les étapes d’un problème Exemple: Student’s workspace: Tutor: Solve 2+2x=12 2 + 2x = 12 Student: <enters 4x=12> 4x = 12 Tutor: Not quite. Try again. 2x = 12 - 2 Student: <clicks on “hint” button> Hint Tutor: Think about operator precedence. Student: <enters 2x=12-2> Tutor: Good! Tutor: Good! 3 La boucle fonctionnelle des STI classiques Roger Nkambou, DIC9340 Pour chaque chapitre du curriculum Lire le chapitre Pour chaque exercice Boucle Pour chaque étape de l’exercice Boucle Prendre la réponse Donner la rétroaction et les conseils sur la réponse Sortir si bonne réponse Essayez de nouveau Fin boucle FinPour FinPour Passer un test sur le chapitre FinPour Roger Nkambou, DIC9340 3ème génération Technologie: Planification réactive & Traitement du langage naturel Pedagogie: Dialogues visant la construction des connaissances Exemple: Tutor: Solve 2+2x=12 Student: 4x=12 Tutor: Should this equation have the same solution as the first one? Student: Yes. Tutor: The solution to 4x=12 is 3, so let’s check for an error by trying x=3 in 2+2x=12. Student: 2+2*3=2+6=8 oops! Tutor: Right! Now look at the arithmetic steps you did … Student’s workspace: 2+2x=12 4x=12 Hint Dialog: S: 2+2*3=2+6=8 oops! T: Right! Now look... 4 Exempe: Algebra Cognitive Tutor Boucle fonctionnelle des tuteurs de 3ème génération Roger Nkambou, DIC9340 Pour chaque chapitre du curriculum Lire le chapitre Pour chaque exercice Boucle Pour chaque étape de l’exercice Boucle Prendre la réponse Sortir si bonne réponse Pour chaque inférence en relation avec le bon raisonnement - Eliciter cette inférence chez l’apprenant - Conseiller, ‘prompter’ - Sortir si l’étudiant complète l’étape FinPour Fin Boucle FinPour FinPour Passer un test sur le chapitre FinPour 5 Roger Nkambou, DIC9340 Limites des tuteurs de 2ème génération Beaucoup moins bons que les tuteurs humains! Ne permettent pas toujours une compréhension profonde de la matière Les symptômes d’un apprentissage superficiel: Peu de transfert de K dans de nouvelles situation de résolution de problèmes Peu d’habilité à expliquer (via une conversation abstraite cohérente sur le domaine) Roger Nkambou, DIC9340 Les tuteurs de 3e génération Dialogues pour la construction de connaissances “there is something about conversational dialog that plays an important role in learning”. Meilleure théorie sur la stratégie tutorielle visant à promouvoir l’apprentissage : “Good tutors tell less and ask more.” Ils guident les étudiants au fil de leur processus de construction de nouvelles connaissances. Ils les aide à faire des abstractions Ils les aide à créer des connections qui aide au transfert. 6 L’orientation des recherches sur les T3G Roger Nkambou, DIC9340 Sur le plan empirique Déterminer QUAND et POURQUOI le dialogue tutorielle est éfficace et utile. Sur le plan technique → Développer des systèmes qui supportent les apprenants dans la construction de connaissances à travers le dialogue tutoriel Evaluater l’efficacité de ces systèmes Le but est de rivaliser ou ‘surpasser’ l’efficacité des tuteurs humains Roger Nkambou, DIC9340 Exemples de T3G Andes/Atlas: Dialogue plutôt que Conseil Why/Atlas: Dialogues critiques CIRCSIM: Dialogue dans le but de corriger les erreurs dans les prédictions des étudiants sur la causalité physiologique AutoTutor: Dialogue sur le domaine des ordi Geometry Explanation Tutor : Dialogue pour la résolution de problème en géométrie. Ms. Lindquist: Dialogue concernant les méthodes pour l’analyse des mots algébriques 7 Roger Nkambou, DIC9340 Andes/Atlas: Le dialogue remplace les séquences de conseils Andes: If you are moving in a straight line and accelerate in the same direction, does your velocity increase or decrease? You: increase Andes: You’ve drawn the acceleration of the elevator in the same direction as the velocity. Is the velocity of the elevator increasing? Why/Atlas 8 CIRCSIM Roger Nkambou, DIC9340 Martha Evens, Reva Freedman, Michael Glass, Yujian Zou, et al., Illinois Institute of Technology Domaine: physiologie (contrôle de la pression sanguine) Emphase: dialogue dans le but de corriger les erreurs de prédictions des étudiants sur la cautsalité physiologique Questions à réponses courtes, stratégies de conseil Roger Nkambou, DIC9340 CIRCSIM-Tutor (Interface usager) Problem: Pacemaker malfunctions, increasing to 120 beats/min. DR RR SS Central Venous Pressure Inotropic State Stroke Volume Heart Rate Cardiac Output Total Peripheral Resistance Mean Arterial Pressure 0 + 0 + T> What variable is affected by HR? S> Cardiac Output. T> But you predicted that HR increases and CO decreases. S> 9 Roger Nkambou, DIC9340 Modèle causal dans CIRCSIM Transfusion (or Hemorrhage) + Central Venous Pressure + + Central Blood Volume Blood Volume − − + Stroke Volume Mean Arterial Pressure + Cardiac Output + + + + − Sino-Atrial Node Rate + Baroreceptor Pressure Total Peripheral Resistance Heart Rate Intracellular Ca++ Concentration + + + Inotropic State − + Arteriolar Resistance − − Arteriolar Diameter + Nervous System Response − Arteriolar Muscle Tone − Beta-Blocker (drug) − Pacemaker Rate Up (or Down) Alpha-Blocker (drug) Roger Nkambou, DIC9340 Famille de dialogues possible dans CIRCSIM (1 ) Ca n yo u te ll m e wh a t co n tro ls TPR? Nerv ou s sy s t em Rig h t Sy m p a t h et ic va socon st riction Rig h t. TPR is n e u ra l. Ra d iu s of a rt erioles I have n o id ea An d wh a t co n tro ls t h a t? TPR is n e u ra lly co n tro lle d Nerv ou s sys t em Rig h t <w r on g > POP (2 ) Re m e m b e r t h a t we ’re in DR n o w. (3 ) So wh a t m u s t b e th e va lu e o f TPR? 10 AutoTutor Roger Nkambou, DIC9340 Art Graesser, Derek Harter, Peter Wiemer-Hastings, Natalie Person, et al., University of Memphis Domaine: Architecture des ordinateurs Emphase: Simuler le tuteur humain moyen Dialogue à initiative mixte comportant des questions permettant le raisonnement profond Interface: Face parlante avec gestures et intonation Flot du dialogue Prompt, Conseil, Assertion Rétroaction Back channeling Feedback pédagogique (évaluation des réponses) Feedback correctif (remédiatif) Répond aux initiatives de l’étudiant AutoTutor avec la tête parlante Marco Roger Nkambou, DIC9340 11 Un exemple de dialogue tutoriel dans AutoTutor Roger Nkambou, DIC9340 TUTOR-1: Alright, let's go on. You want to take photos and send them over the Internet. Consider this problem. What hardware do you need to take photos and send them over the Internet? STUDENT-1: First of all you need to have access to the internet TUTOR-2: What else? STUDENT-2: a camera TUTOR-3: Yeah. For what type of connection do you need a network card? STUDENT-3: network card TUTOR-4: Okay. Now, if you have access to the Internet through a network card, then your connection is … STUDENT-4: I don't know. TUTOR-5: Is direct. Okay. A network card is needed if you have a direct connection to the Internet. Okay. How does the user get hooked up to the internet? STUDENT-5: by a plug. TUTOR-6: Once again, a network card is needed if you have a direct connection to the Internet. Okay, what does a modem do? STUDENT-6: connects network card and internet TUTOR-7: Okay. Try this. A modem is required when there is … STUDENT-7: a connection TUTOR-8: a dial up connection. ... TUTOR-30: Let’s review. To send your photos on the Internet, you need either a digital camera or a regular camera to take the photos. If you use a regular camera, you need a scanner to scan them onto a computer disk. If you have a direct connection to the Internet, then you need a network card. A modem is needed if you have a dial up connection. Roger Nkambou, DIC9340 Geometry Explanation Tutor But: Aider les étudiants à apprendre via un tutorat par explication Allant de : l’aprentissage par la pratique A: l’apprentissage par la pratique et l’explication Motivé par les recherches en Sciences Cognitives sur le “Self-Explanation Effect” Comment permettre aux tuteurs de mieux supporter l’Auto-Explication ? Les étudiants expliquent-ils avec leurs propres mots ? Est-il nécessaire de donner une rétroaction sur les explications ? 12 Roger Nkambou, DIC9340 Étude 1: Explication ‘par référence’ Le feedback du tuteur indique si l’explication est correcte. Roger Nkambou, DIC9340 Étude 2: Et l’autoexplication sans rétroaction du tuetur sur les explications de l’étudiant? 13 Roger Nkambou, DIC9340 Les étudiants produisent très peu de bonnes explications... Correct Explanations 9% Partially-Correct or Incorrect Explanations 26% Non-Attempts 64% Hypothèse: Les étudiants apprennent mieux lorsqu’ils expliquent dans leurs propres mots et le tuteur les aide à rafiner leurs explications par le doalogue. Un dialogue tutoriel pour supporter l’autoexplication dans GeometryExplanationTutor Roger Nkambou, DIC9340 14 Exemple de dialogue dans GeometryExplanationTutor Roger Nkambou, DIC9340 Student: angles are equal Tutor: Are any two angles congruent? What tells you that there are two congruent angles here? Student: angles in a triangle are equal Tutor: That is a bit imprecise. Are ALL angles in ALL triangles congruent? Student: angles in an isosceles triangle are equal Tutor: Correct, except for one thing: are all three angles in an isosceles triangle congruent? Student: base angles in an isosceles triangle are equal Tutor: CORRECT Architecture de GeometryExplanationTutor Roger Nkambou, DIC9340 INTERFACE USAGER Feedback or Help Message STUDENT MODEL (Numerical) Answer or Hint Request Ballpark Classification of Explanation Student Explanation STATISTICAL CLASSIFIER LCFLEX PARSER PRODUCTION ENGINE FEATURE STRUCTURES COGNITIVE MODEL TUTEUR COGNIF Detailed Classification of Explanation MODULE DE COMPRÉHENSION LA LN SEMANTIC REPRESENTATION of Explanation GRAMMAR & LEXICON FEATURE STRUCTURE UNIFIER LOGIC SYSTEM (Loom) KNOWLEDGE BASE —Ontology & Explanation Hierarchy 15 Connaissances pédagogiques: Hiérarchie d’explication Exemple d’hiérarchie partielle pour l’explication du théorème des triangles isocèles UNKNOWN CONGR-ANGLES “The angles are congruent.” BASE-ANGLES “These are base angles.” BASE-ANGLES-CONG “Base angles are congruent.” TRI-BASE-ANGLES “Base angles in a triangle are congruent.” CONGR-ANGLES-IN-TRI “Angles in a triangle are congruent.” CONGR-ANGLES-IN-ISOSTRI “Angles of an isosceles triangle are congruent.” ISOS-TRI-BASE-ANGLES “Base angles in an isosceles triangle are congruent.” OPPOSITE-ANGLES “Opposite angles are congruent.” ANGLES-OPP-SIDES “Angles opposite the sides are congruent.” ANGLES-OPP-CONGR-SIDES “Angles opposite congruent sides are congruent.” ISOS-TRIANGLE “The angles opposite congruent sides in an isosceles triangle are congruent.” 16 L’auto-explication en langage naturel améliore l’apprentissage car : Roger Nkambou, DIC9340 “There is something about NL dialog that is right ...” Le langage naturel est naturel pour l’apprenant Il est bien pour les étudiants d’expliquer en leurs propres mots… Pouquoi donc ? L’explication en LN nécessite la rétention (le rappel) plutôt que la reconnaissance (CONT. CHI) L’articulation force l’attention sur les facteurs pertinents L’usage du verbal et du visuel crée une dualité en mémoire. Le LN permet une flexibilité dans l’expression des connaissances partielles Les étudiants peuvent montrer ce qu’ils savent Le tuteur peut les aider à construire ce qu’ils ne savent pas L’aide peut être incrémentale Le tuteur peut supporter plusieurs chemins de construction de connaissances Roger Nkambou, DIC9340 Un autre cas : DIALOGUE INTERACTIF POUR DES FINS DE REFLEXION Le dialogue interactif dans ce contexte dépend de : (1) The goal of the diagnosis (deeper understanding (includes justified correction of an error), knowledge construction) (2) The nature of the skill (Concept, Principle, Law, etc./Basic, non Basic) (1) Generic Model of IDP based on the goal (1.1) The goal is deeper understanding? Articulate the features of the problem which elicit the skills (Implicit reflection) (2) The goal is knowledge construction? Instantiate the 5 stages of explicit reflective thinking as defined by Dewey (Dewey 1933) in the context of the nature of the skill Example of IDP for the principle related to a variable that is bound to a constant in the domain of Prolog Programming Skill: Principle If an element E is a Prolog Variable & this element is associated with a constant value V Then E can only be associated with a value equivalent to V in the same context (same Prolog command) 17 Roger Nkambou, DIC9340 Start 1 Plan de dialogue Research Background & Rationale Goals Generic Models & Challenges Implementation Related Work Evaluation & Future Work Done Tutor presents a problem Types of remediation targeted through interactive diagnosis Student Gives final answer/ performs next action, Asks for help YES Is the answer correct ? -General comprehension -Deep comprehension NO Tutor gives negative feedback -Knowledge construction Tutor takes the INTERACTIVE-DIAGNOSIS PLAN for the skill associated with the problem There are no more interactions Interactive diagnosis from which a general comprehension of the skills associated with a problem is expected trough implicit reflective thinking ((Flavell 1979, Hartman 2001) Tutor Triggers the NEXT interaction in the CURRENT diagnosis plan Is the learner’s answers during the interaction correct? YES Tutor sends a positive evidence to the learner model, for the skill associated with that interaction NO Tutor sends a negative evidence to the learner model, for the skill associated with that interaction Hypothesis (2) Tutor explains the skill associated with the interaction Hypothesis (1) Plan de dialogue Start 2 Roger Nkambou, DIC9340 Done + Show Skills tracing Tutor presents a problem Student Gives final answer/ performs next action, Asks for help YES Is the answer correct ? NO Tutor gives negative feedback -General comprehension Generate an Interactive Diagnosis PLAN to verify comprehension -Deep comprehension -Knowledge construction Hypothesis (1,2,3) Tutor takes the INTERACTIVE-DIAGNOSIS PLAN for the skill associated with the problem There are no more interactions Tutor triggers the NEXT interaction with the learner in the CURRENT diagnosis PLAN Are the learner’s answers during an interaction correct? The Skill associated with the interaction is Sk(i) YES NO Tutor sends a positive evidence to the learner model, for Sk(i) Types of remediation targeted through interactive diagnosis Interactive diagnosis from which a deep comprehension of the skills associated with a problem is expected through implicit reflective thinking (Flavell 1979, Hartman 2001) Tutor sends a negative evidence to the learner model, for Sk(i) Is Sk(i) a Basic Skill (does not necessitate the ellicitation of another intellectual skill) NO YES Tutor articulates Sk(i) Hypothesis (2) Hypothesis (1) and Hypothesis (3) Tutor takes an INTERACTIVE-Diagnosis Plan for Sk(i) 18 Plan de dialogue 3 Roger Nkambou, DIC9340 Start Tutor Challenges the student with two (or more) situations that are contradictory and asks the learner to make an appropriate inference Done + Show Skills tracing Types of remediation targeted through interactive diagnosis -General comprehension -Deep comprehension Student Proposes an inference -Knowledge construction Tutor takes the INTERACTIVE-DIAGNOSIS PLAN for the skills associated with the target Inference There are no more interactions Tutor triggers the NEXT interaction with the learner in the CURRENT diagnosis PLAN: Asks the learner to link an observation with a principle or the contradiction of a principle, rules, law: Sk(i)(Depending of the inference that he drew) Interactive diagnosis from which knowledge construction is expected through explicit reflective thinking as in Dewey (Dewey, 1933) Has the student made a correct link? YES Tutor sends a positive evidence to the learner model, for Sk(i) NO Tutor sends a negative evidence to the learner model, for Sk(i) Tutor explains Sk(i) by outlining its use in 2 conflicting situations (Dewey, 1933) Hypothesis (2) Hypothesis (1) To implement Hypothesis (3): Challenges the learner in that specific skill Roger Nkambou, DIC9340 Exemple de dialogue… ?- X= 37, Y= Z, Z=10, X=Y [T1] What is the result of this command? [L2] Success [T3] Hummmm, no not really IDP for deeper understanding (non basic skill) Tutor tries to outline the conditions of the principle in this particular context Tutor brings thelearner to a contradiction of the principle [T4] What are the variables in this command? [S5] X,Y,Z [Diagnosis: Students knows <identify a Variable>] [T6] Right. Is there a constant value associated with X (If yes, give it) [S7] 37 [T8] What are the other elements of the command associated with X? [S9] Y ..... ?- X= 37, Y= Z, Z=10, X=Y [T1] This command will provide the result “Fail” in Prolog while [?- X= 37, Y= Z, X=Y will result in “Success” IDP for deeper understanding (non basic skill) Tutor tries to outline a situation where a conflict occurs Tutor fosters the learner towards the induction of a principle, fact, procedure [T4] What are the variables in this command? [S5] X,Y,Z [Diagnosis: Students knows <identify a Variable>] [T6] Which variables are associated to constants in the first command? [S7] X,Z [T8] Hummm, not really, which variable is associated with Z? [Diagnosis: Students ¬knows <apply transitive binding of Variables>] [S9] Y ..... 19 Roger Nkambou, DIC9340 Implémentation dans Prolog-Tutor Prolog-Tutor: Logic Programming Concepts Skills of the domain in this context Correctly identify and Use of basic structures (variabgles, constant, compound terms, facts, Prolog-rules, etc.) Understand and apply the principle related to binding a Variable (Understand and perform Unification(1)) Understand Unification (Concept); Perform unification (Procedure) Understand Resolution (Concept). Perform resolution (procedure) Roger Nkambou, DIC9340 Learner model = Skills Domain Knowledge Elements 20 Roger Nkambou, DIC9340 Implementation (2) Prolog-Tutor: Logic Programming Concepts Teaching: an example with RESOLUTION as a procedure (the learner has to perform it) Dialogue initial plan: All the steps of the procedure Dialogue utterances: Tutor question: What the learner should do at that step? [Expected reflection: recall, organize, test the skills necessary at each step: Principles to apply, Concepts and Facts which define the conditions of the problem state and which will be used to test a principle] [Expected remedial state: deeper understanding, correction] Dialogue management: (see the paper of this workshop “Elaborating …”) The initial dialogue plan may be adapted, when the learner model used The discourse may be accommodated or elaborated when the adapted dialogue reflects some irregularities Roger Nkambou, DIC9340 Learner model: Skills of the domain with associated probabilities (Simulated) Interactions: Tutor: Asks question to the learner in each step of the procedure after that he has failed to answer to a question Explanation after failure to answer to a question during an interaction Application of Hypothesis (2) Application of Hypothesis(1) Diagnosis in Background: if the learner is unable to answer the question “What is the goal to prove”, the Tutor diagnoses the skill “Understand the meaning of a GOAL in resolution” Expectation of reflection when the tutor asks: “ What is the GOAL to prove in this problem”: Recall: What is the purpose of a RESOLUTION? What is a GOAL in a resolution? What is the role of Knowledge Base? Interactive Diagnosis in Prolog-Tutor (Scenario of Slide 10) Reflection Elicited: Implicit reflection through the articulation of a procedure Enhanced or remedial cognitive state expected: General understanding of the skill (Apply a Resolution or Procedure of Resolution) (Slide 10) 21 Roger Nkambou, DIC9340 Skills Traced by the tutor (at the end of all scenarios) Reflection Elicited: Implicit reflection through showing to the learner his cognitive state as viewed by the system in terms of skills (we should add the interaction which justifies the inference of that cognitive state) Enhanced or remedial cognitive state expected: General understanding of the elements of the domain Skills Tracing allows the tutor to generate an exercise for a specific skill, when the learner request it Conclusion Roger Nkambou, DIC9340 Les 3 générations de tuteurs diffèrent par Leur technologie sous-jacente Leur pédagogie Et les approches pour leur développement Un apprentissage superficiel (non profond) peut survenir lorsque l’étudiant n’a pas encoder les aspects pertinents de la tâche CIRSIM, AutoTutor, Ms. Lindquist, et Geometry Explanation Tutor sont des exemples de T3G (Tuteurs cognitifs), Prolog-Tutor aussi. Intuitivement, le dialogue en langage naturel parraît très efficace et utile dans l’apprentissage mais il reste à déterminer (par la recherche) le QUAND et le COMMENT. 22 Autres approches de tutorat: intégration du CBR Roger Nkambou, DIC9340 ELABORER RETROUVER PROBLEME Cas cible Cas appris MEMORISER Peut se faire Partout ou le Raisonnement Est nécessaire: -Planification -Coaching -Tutorat… Cas cible adapté, évalué, corrigé Cas Cas Source Cas Source Base de cas cible Connaissance générale ADAPTER Cas cible adapté Solution confirmée REVISER Roger Nkambou, DIC9340 Cas de la planification Planification à base de règles Entrée= but, situation initiale, actions Les plans sont toujours générés par la recherche Planification à base de cas Retrouve les plans ayant le couple (but, situation initiale) similaire Ré-utilise les parties des anciens plans et les complète Les ajuste jusqu’à ce qu’ils satisfont au couple (but, situation initiale) 23 Roger Nkambou, DIC9340 Planification à base de cas Partir du de la description du couple {But,État initial} pour Lequel on recherche un plan désiré Trouver un plan proche et l’adapter Espace des Instances {But,EI} Espace des plans Roger Nkambou, DIC9340 Planification dans les SABC Vassileva & Watson (1997) Nkambou & Kabanza (2001) 24 Roger Nkambou, DIC9340 IMS-Simple Sequence Arbre d’activités Chaque activité contient un ensemble de comportement de séquencement IMS-Simple Sequence (suite) Roger Nkambou, DIC9340 25 Roger Nkambou, DIC9340 Cadres tutoriels offerts par IMS-LD – Quelques use-cases Adapting Units of Learning to Learner Profile Obtaining Culturally Relevant Content for Problem-Solving Provide Remedial Units of Learning A Problem-Based Learning Task for Information Sciences and Technology Using Virtual Labs Adaptive Learning Delivery Exemple: Roger Nkambou, DIC9340 Provide Remedial Units of Learning Primary Actors: Learner Stakeholders and Interests: Learner - receives instruction specific to deficits in required knowledge and skill, and relevant to individual learning needs. Instructor - enables participation of students capable of functioning well in large-lecture course. Organization - increases efficiency and effectiveness of introductory courses. Preconditions: 1. The Learner has been registered with the system and has a learning profile. 2. The Learner has been registered for a qualifying course. Trigger: The Learner attempts to log in to the qualifying course for the first time. Main Success Scenario: 1. Learner logs into the System using an assigned id and password. 2. System recognizes the Learner, retrieves the correct profile, and offers the Learner a menu of options, based on access authorizations. 3. Learner makes a selection that corresponds to initiation of a qualifying course. 4. System notifies student that a pre-assessment is a course requirement and prompts the Learner for a decision whether or not to take the pre-assessment at this time. 5. Learner opts to take the pre-assessment. 6. System delivers the pre-assessment. 7. Learner takes the pre-assessment and submits the result to the system for grading. 8. Learner scores the pre-assessment, records the results, updates the learner's profile, and searches for learning activities that address those areas below criteria. 9. System assembles a unit of learning for course remediation, based on the deficiencies uncovered by the pre-assessment and activities aligned with the learner's profile. The unit of learning consists of a set of activity-structures whose sequence is based on the sequence of topics in the qualifying course. Each activity-structure contains a post-test used to verify effective completion of the activity-structure. 10. The Learner completes each activity-structure in order, takes the associated post-test, and submits the results to the system. 11. The System records the results, grades the post-test, and updates the learner's profile. 26