Lecture Notes Session 23
Transcription
Lecture Notes Session 23
EE247 Lecture 23 • Oversampled ADCs – 1-Bit quantization • Quantization error spectrum • SQNR analysis • Limit cycle oscillations – 2nd order Σ∆ modulator • Dynamic range • Practical implementation – Effect of various nonidealities on the Σ∆ performance EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 1 Oversampled ADCs Last Lecture • • • Why Oversampling? – Allows trading speed for resolution – Relaxed transition band requirements for analog antialiasing filters – Reduced baseband quantization noise power – Utilizes low cost, low power digital filtering – Issue of limit cycle oscillation (spurious inband tones) By simply increasing oversampling ratio: 2X increase in sampling ratio à 0.5-bit increase in resolution To achieve greater improvement in resolution: – Embed quantizer in a feedback loop à Predictive (delta modulation) à Noise shaping (sigma delta modulation) EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 2 Oversampling A/D Conversion Signal BW=fs/2M 1-bit @ fs n-bit @ fs/M • Analog front-end à oversampled noise-shaping modulator •Converts original signal to a 1-bit digital output at the high rate of (2MX fsignal) • Digital back-end à digital filter •Removes out-of-band quantization noise •Provides anti-aliasing to allow re-sampling @ lower sampling rate EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 3 Oversampled ADC Predictive Coding + vIN ADC _ dOUT Predictor • • • • • Quantize the difference signal rather than the signal itself Smaller input to ADC à Buy dynamic range Only works if combined with oversampling 1-Bit digital output Digital filter computes “average” àn-Bit output EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 4 Oversampled ADC f =Mf s1 N Signal “wide” transition Freq B Analog AA-Filter f = Mf s N E.g. Pulse-Count Modulator Sampler Modulator Decimator “narrow” transition Digital AA-Filter 1-Bit Digital f = f +δ s2 N DSP N-Bit Digital Decimator: • • • • • Digital (low-pass) filter Removes quantization error for f > B Provides most anti-alias filtering Narrow transition band, high-order 1-Bit input, N-Bit output (essentially computes “average”) EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 5 Modulator • Objectives: – Convert analog input to 1-Bit pulse density stream – Move quantization error to high frequencies f >>B – Operates at high frequency fs >> fN • M = 8 … 256 (typical)….1024 • Better be “simple” à Σ∆ = ∆Σ Modulator EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 6 Sigma- Delta Modulators Analog 1-Bit Σ∆ modulators convert a continuous time analog input vIN into a 1-Bit sequence dOUT fs + vIN H(z) dOUT _ DAC 1b Quantizer (a comparator) Loop filter EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 7 Sigma-Delta Modulators • The loop filter H can be either a switched-capacitor or continuous time • Switched-capacitor filters are “easier” to implement and scale with the clock rate • Continuous time filters provide anti-aliasing protection • Can be realized with passive LC’s at very high frequencies fs vIN + H(z) _ dOUT DAC EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 8 1st Order Σ∆ Modulator In a 1st order modulator, simplest loop filter à an integrator H(z) = + vIN z-1 1 – z-1 ∫ _ dOUT DAC EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 9 1st Order Σ∆ Modulator Switched-capacitor implementation φ1 φ2 φ2 - Vi dOUT 1,0 + +∆/2 -∆/2 EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 10 1st Order ∆Σ Modulator + vIN -∆/2≤vIN≤+∆/2 _ ∫ dOUT -∆/2 or +∆/2 • DAC Properties of the first-order modulator: – Analog input range is equal to the DAC reference – The average value of dOUT must equal the average value of vIN – +1’s (or –1’s) density in dOUT is an inherently monotonic function of vIN à linearity is not dependent on component matching – Alternative multi-bit DAC (and ADCs) solutions reduce the quantization error but loose this inherent monotonicity EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 11 1st Order Σ∆ Modulator Tally of quantization error Analog input -∆/2≤Vin≤+∆/2 1-Bit quantizer 1 2 3 X Q Y z-1 1-z-1 Sine Wave Integrator Comparator Instantaneous quantization error EECS 247 Lecture 23: Oversampling Data Converters 1-Bit digital output stream, -1, +1 Implicit 1-Bit DAC +∆/2, -∆/2 (∆ = 2) © 2004 H. K. Page 12 1st Order Modulator Signals 1st Order Sigma-Delta X Q Y 1.5 X analog input Q tally of q-error Y digital/DAC output Amplitude 1 0.5 Mean of Y approximates X 0 -0.5 T = 1/fs = 1/ (M fN) -1 -1.5 0 10 20 30 40 50 60 Time [ t/T ] EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 13 Σ∆ Modulator Characteristics • Quantization noise and thermal noise (KT/C) distributed over –fs/2 to +fs/2 à Total noise reduced by 1/M • Very high SQNR achievable (> 20 Bits!) • Inherently linear for 1-Bit DAC • Quantization error independent of component matching • Limited to moderate to low speed EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 14 Output Spectrum First order sigma-delta, A=0.79, fx=0.0628319, offset=0.020944, N=1024, K=30 30 • Definitely not white! Input 20 • Skewed towards higher frequencies Amplitude [ dBWN ] 10 • Tones 0 -10 -20 • dBWN (dB White Noise) scale sets the 0dB line at the noise per bin of a random -1, +1 sequence -30 -40 -50 0 0.1 0.2 0.3 Frequency [ f/f s ] 0.4 0.5 sigma_delta_L1_sin.m EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 15 Quantization Noise Analysis Integrator x(kT) Σ H( z ) = z −1 1 + z −1 Quantization Error e(kT) Σ y(kT) Quantizer Model • Sigma-Delta modulators are nonlinear systems with memory à very difficult to analyze directly • Representing the quantizer as an additive noise source linearizes the system EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 16 Signal Transfer Function z −1 H( z ) = x(kT) −1 1+ z ω H ( jω ) = 0 jω H Sig ( jω ) = 1 1+ s Integrator H(z) - y(kT) Magnitude Signal transfer function à low pass function: Σ ω0 Y ( z) H ( z) H Sig ( z ) = = = z −1 X ( z) 1 + H ( z) ⇒ f0 Delay EECS 247 Lecture 23: Oversampling Data Converters Frequency © 2004 H. K. Page 17 Noise Transfer Function Qualitative Analysis vn2 vi Σ vi ω0 jω - vn2 × f f0 Σ - 2 veq = vn2 × f f0 vi Σ - vo 2 veq 2 veq = vn2 × f f0 2 ω0 jω vo f0 2 ω0 jω Frequency vo EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 18 STF and NTF Quantization Error e(kT) Integrator x(kT) H( z ) = Σ z −1 1 + z −1 Σ y(kT) Quantizer Model Signal transfer function: Y (z) H ( z) STF = = = z −1 X ( z) 1 + H ( z) ⇒ Delay Noise transfer function: NTF = Y ( z) 1 = = 1 − z −1 E ( z) 1 + H ( z) ⇒ EECS 247 Lecture 23: Oversampling Data Converters Differentiator © 2004 H. K. Page 19 Noise Transfer Function NTF = 1 Y ( z) = = 1 − z −1 E ( z ) 1 + H ( z) e jωT / 2 − e − jωT / 2 NTF ( jω ) = (1 − e − jωT )=2e − jωT / 2 2 = 2e − jωT / 2 j sin ( ωT / 2 ) = 2e − jωT / 2 × e − jπ / 2 sin (ωT / 2 ) − j ωT −π ) / 2 = 2sin (ωT / 2 ) e ( where T = 1/ f s Thus: NTF ( f ) =2 sin ( ωT / 2 ) =2 sin (π f / f s ) 2 N y ( f ) = NTF ( f ) N e ( f ) EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 20 First Order Σ∆ Modulator Noise Transfer Characteristics 2 N y ( f ) = NTF ( f ) N e ( f ) = 4 sin (π f / f s ) 2 EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 21 First Order Σ∆ Modulator Simulated Noise Transfer Characteristic Sin input, A=0.79, fx=0.0628319, offset=0.020944, N=1024, K=30 30 Amplitude [ dBWN ] 20 output spectrum NTF Signal 10 0 -10 -20 -30 -40 -50 0 0.1 0.2 0.3 0.4 0.5 Frequency [f/fs] EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 22 Quantizer Error • For quantizers with many bits e2 (kT ) = ∆2 12 • Let’s use the same expression for the 1-Bit case • Only simulation can tell if the result is useful Experience: Often sufficiently accurate to be useful, with enough exceptions to be very careful EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 23 In-Band Quantization Noise z −1 H (z) = 1 − z −1 NTF ( z ) = 1 − z −1 NTF ( f ) = 4 sin (π f / f s ) 2 B SY = 2 for M >> 1 ∫ SQ ( f ) NTF ( z ) z =e 2 2 π jfT df −B fs ≅ 2M ∫ − fs ≈ 2M 1 ∆2 2 ( 2sin π fT ) df f s 12 π 1 ∆2 3 M 3 12 2 EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 24 Dynamic Range SX peak signal power DR = 10log = 10log peak noise power SY 1∆ SX = 2 2 2 sinusoidal input, STF = 1 π 2 1 ∆2 3 M 3 12 SX 9 = M3 SY 2π 2 SY = M DR 16 32 1024 33 dB 42 dB 87 dB 9 9 DR = 10log 2 M 3 = 10log 2 + 30log M 2 π 2π DR = −3.4dB + +30log M 2X increase in Mè9dB (1.5-bit) increase in DR EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 25 Oversampling and Noise Shaping • Σ∆ modulators have interesting characteristics – Unity gain for input signal VIN – Large attenuation of quantization noise injected at quatizer input – Performance significantly better than 1-Bit noise performance possible for frequencies << fs • Oversampling (M = fs/fN > 1) improves SQNR considerably – 1st-Order Σ∆: DR increases 9dB for each doubling of M – SQNR independent of circuit complexity and accuracy • Analysis assumes that the quantizer noise is “white” – Not true in practice, especially for low-order modulators – Practical modulators suffer from other noise sources also (e.g. thermal noise) EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 26 DC Input • DC input A = 1/11 First order sigma-delta, DC input, offset=0.0909091, N=1024, K=30 30 Amplitude [ dBWN ] 20 • Doesn’t look like spectrum of DC at all 10 0 • Tones frequency shape the same as quantization noise à more prominent at higher frequencies -10 -20 -30 -40 -50 0 0.1 0.2 0.3 0.4 à Quantization “noise” is periodic 0.5 Frequency [ f/fs] EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 27 Limit Cycle DC input 1/11 à Periodic sequence: First order sigma-delta, DC input 0.6 Output 0.4 1 +1 2 +1 3 -1 4 +1 0.2 5 -1 0 6 +1 7 -1 8 +1 9 -1 10 +1 11 -1 -0.2 -0.4 0 10 20 30 Time [t/T] 40 50 EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 28 Limit Cycle In-band spurious tone with f ~ DC input • Problem: quantization noise is periodic •Solution: ØDither: randomizes quantization noise - thermal noise à dither ØSecond order loop EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 29 1st Order Σ∆ Modulator ( ) Y ( z ) = z −1 X ( z ) + 1 − z −1 E ( z ) EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 30 2nd Order Σ∆ Modulator •Two integrators •1st integrator non-delaying •Feedback from output to both integrators •Tones less prominent compared to 1st order EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 31 2nd Order Σ∆ Modulator Yn = X n −1 + ( En − 2 En −1 + En −2 ) ( Y ( z ) = z −1 X ( z ) + 1 − z −1 EECS 247 Lecture 23: Oversampling Data Converters ) 2 E( z) © 2004 H. K. Page 32 2nd Order Σ∆ Modulator In-Band Quantization Noise z −1 1 − z −1 G =1 H (z) = ( NTF ( z ) = 1 − z −1 NTF ( f ) 2 ) 2 = = 2 4 sin (π f / f s ) B SY = 4 for M >> 1 ∫ SQ ( f ) NTF ( z ) z =e 2 2 π jfT df −B fs ≅ 2M ∫ − fs 2M 1 ∆2 ( 2sin π fT )4 df f s 12 π 4 1 ∆2 ≈ 5 M 5 12 EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 33 Quantization Noise 2nd Order Σ∆ Modulator EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 34 2nd Order Σ∆ Modulator Dynamic Range SX peak signal power DR = 10log = 10log peak noise power SY 1∆ SX = 2 2 2 sinusoidal input, STF = 1 π 4 1 ∆2 5 M 5 12 SX 15 = M5 SY 2π 4 SY = M DR 16 32 1024 49 dB 64 dB 139 dB 15 15 DR = 10log 4 M 5 = 10log 4 + 50log M 2 π 2π DR = −11.1dB + +50log M 2X increase in Mè15dB (2.5-bit) increase in DR EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 35 2nd Order Σ∆ Modulator Example •Digital audio application •Signal bandwidth 20kHz •Resolution 16-bit 16 − bit → 98dB Dynamic Range DR = −11.1dB + +50log M M min = 153 Mè256 to allow some margin à Sampling rate (2x20kHz + 5kHz)M = 12MHz EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 36 Higher Order Σ∆ Modulator Dynamic Range ( Y ( z ) = z −1 X ( z ) + 1 − z −1 1∆ SX = 2 2 ) L E( z) , L → Σ∆ order 2 sinusoidal input, STF = 1 1 ∆2 π 2L 2 L +1 2L + 1 M 12 S X 3 ( 2 L + 1) 2 L +1 M = 2π 2 L SY SY = 3 ( 2 L + 1) 2 L +1 DR = 10log M 2L 2π 3 ( 2 L + 1) DR = 10log + 2 L + 1) × 10 × log M 2L ( 2π 2X increase in Mè(6L+3)dB or (L+0.5)-bit increase in DR EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 37 Σ∆ Modulator Dynamic Range As a Function of Modulator Order • Stability issues for L>2 EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 38 Tones in 1st Order & 2nd Order Σ∆ Modulator •Higher oversampling ratio à lower tones 6dB •2nd order much lower tones compared to 1st •2X increase in M decreases the tones by 6dB for 1st order loop and 12dB for 2nd order loop 12dB Ref: B. P. Brandt, D. E. Wingard, and B. A. Wooley, "Second-order sigma-delta modulation for digital-audio signal acquisition," IEEE Journal of Solid-State Circuits, vol. 26, pp. 618 - 627, April 1991. R. Gray, “Spectral analysis of quantization noise in a single-loop sigma–delta modulator with dc input,” IEEE Trans. Commun., vol. 37, pp. 588–599, June 1989. EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 39 2nd Order Σ∆ Modulator Switched-Capacitor Implementation EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 40 Switched-Capacitor Implementation 2nd Order Σ∆ Phase 1 •Sample inputs •Compare output of 2nd integrator •At the end of phase1 S3 opens prior to S1 EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 41 Switched-Capacitor Implementation 2nd Order Σ∆ Phase 2 •Enable feedback •Integrate •Reset comparator •At the end of phase2 S4 opens before S2 EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 42 Practical Design Considerations for Σ∆ Implementation •Internal nodes scaling & clipping •Finite opamp gain & linearity •Capacitor ratio errors •KT/C noise •Opamp noise •Power dissipation considerations EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 43 Switched-Capacitor Implementation 2nd Order Σ∆ Nodes Scaled for Maximum Dynamic Range •Modification (gain of ½ in front of integrators) reduce & optimize required signal range at the integrator outputs ~ 1.7x input full-scale (∆) Ref: B.E. Boser and B.A. Wooley, “The Design of Sigma-Delta Modulation A/D Converters,” IEEE J. Solid-State Circuits, vol. 23, no. 6, pp. 1298-1308, Dec. 1988. EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 44 2nd Order Σ∆ Modulator Switched-Capacitor Implementation C2=2C1 EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 45 2nd Order Σ∆ Effect of Integrator Maximum Signal Handling Capability on SNR •Effect of 1st Integrator maximum signal handling capability on converter SNR Ref: B.E. Boser and B.A. Wooley, “The Design of Sigma-Delta Modulation A/D Converters,” IEEE J. Solid-State Circuits, vol. 23, no. 6, pp. 1298-1308, Dec. 1988. EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 46 2nd Order Σ∆ Effect of Integrator Maximum Signal Handling Capability on SNR •Effect of 2nd Integrator maximum signal handling capability on SNR Ref: B.E. Boser and B.A. Wooley, “The Design of Sigma-Delta Modulation A/D Converters,” IEEE J. Solid-State Circuits, vol. 23, no. 6, pp. 1298-1308, Dec. 1988. EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 47 2nd Order Σ∆ Effect of Integrator Finite DC Gain φ1 Cs Vi CI φ2 H ( z )ideal = - a + Vo H ( z ) Finit DC Gain EECS 247 Lecture 23: Oversampling Data Converters Cs z −1 × CI 1 − z −1 −1 a z Cs 1+ a + Cs CI = × CI 1 + a −1 1− z Cs 1+ a + CI © 2004 H. K. Page 48 2nd Order Σ∆ Effect of Integrator Finite DC Gain Max signal level a f0 /a •Low integrator DC gain à degrades noise performance •If a>M (oversampling ratio) à Insignificant degradation in SNR •Normally DC gain designed to be >> M in order to suppress nonlinearities EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 49 2nd Order Σ∆ Effect of Integrator Finite DC Gain •Simulation results •H0=a à finite DC gain • a> M à no degradation in SNR Ref: B.E. Boser and B.A. Wooley, “The Design of Sigma-Delta Modulation A/D Converters,” IEEE J. Solid-State Circuits, vol. 23, no. 6, pp. 1298-1308, Dec. 1988. EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 50 2nd Order Σ∆ Effect of Integrator Overall Integrator Gain Inaccuracy • Gain of ½ in front of integrators is a function of C1/C2 of the integrator •The effect of C1/C2 inaccuracy inspected by simulation EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 51 2nd Order Σ∆ Effect of Integrator Overall Gain Inaccuracy • Simulation show gain can vary by 20% w/o loss in performance à Confirms insensitivity of Σ∆ to component variations •Note that for gain >0.65 system becomes unstable & SNR drops rapidly Ref: B.E. Boser and B.A. Wooley, “The Design of Sigma-Delta Modulation A/D Converters,” IEEE J. Solid-State Circuits, vol. 23, no. 6, pp. 1298-1308, Dec. 1988. EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 52 2nd Order Σ∆ Effect of Integrator Nonlinearities Ref: B.E. Boser and B.A. Wooley, “The Design of Sigma-Delta Modulation A/D Converters,” IEEE J. Solid-State Circuits, vol. 23, no. 6, pp. 1298-1308, Dec. 1988. EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 53 2nd Order Σ∆ Effect of Integrator Nonlinearities • Simulation for single-ended topology •Even order nonlinearities can be significantly attenuated by using differential circuit topologies Ref: B.E. Boser and B.A. Wooley, “The Design of Sigma-Delta Modulation A/D Converters,” IEEE J. Solid-State Circuits, vol. 23, no. 6, pp. 1298-1308, Dec. 1988. EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 54 2nd Order Σ∆ Effect of Integrator Nonlinearities • Simulation for single-ended topology •Odd order nonlinearities (3rd in this case) Ref: B.E. Boser and B.A. Wooley, “The Design of Sigma-Delta Modulation A/D Converters,” IEEE J. Solid-State Circuits, vol. 23, no. 6, pp. 1298-1308, Dec. 1988. EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 55 2nd Order Σ∆ Effect of KT/C noise KT Cs kT 1 kT 2 v n/ f =2 × =4 Cs fs / 2 Cs × fs Total in-band noise: v 2n = 2 φ1 Cs Vi CI φ2 - a + Vo kT × f0 Cs × fs 2kT = Cs × M v 2n input = 4 •For the example of digital audio with 16-bit (100dB) & M=256 à Cs=1pF à 6µVrms noise àIf FS=4Vp-p-d then noise is -107dB à almost no degradation in overall SNR àCs=1pF, CI=2pF à small cap area compared to Nyquist ADC caps àSince thermal noise provides some level of dithering à better not choose much larger capacitors! EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 56 2nd Order Σ∆ Effect of Finite Opamp Bandwidth φ1 Vo CI φ2 settling error Cs Vi+ Vi- + Vo Unity-gain-freq. Input/Output z-transform = fu =1/τ φ2 time T=1/fs AssumptionOpamp à does not slew Opamp has only one pole à exponential settling EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 57 2nd Order Σ∆ Effect of Finite Opamp Bandwidth à Σ∆ does not require high opamp bandwidth fu ~ 2fs adequate EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 58 2nd Order Σ∆ Effect of Slew Limited Settling φ1 Clock φ2 Vo-ideal Vo-real Slewing Slewing EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 59 2nd Order Σ∆ Effect of Slew Limited Settling AssumptionOpamp settling à slew limited àMinimum slew rate of 1.2 (∆ x fs) required àLow slew rate degrade SNR rapidly EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 60 2nd Order Σ∆ Comparator Hysteresis Assumption1-bit A/D à Comparator has hysteresis Comparator offset similar effect EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 61 2nd Order Σ∆ Comparator Hysteresis à Comparator hysteresis < ∆/40 does not affect SNR à E.g. ∆=1V, comparator offset up to 25mV tolerable EECS 247 Lecture 23: Oversampling Data Converters © 2004 H. K. Page 62