slides
Transcription
slides
Estimation of Spatially Correlated Random Fields in Heterogeneous Wireless Sensor Networks Ido Nevat Sense & Sense-Abilities (S&S) I2R A*STAR Joint work with Gareth Peters (UCL), Francois Spetier (Telecom1 Lille) and Tomoko Matsui (ISM) July 29, 2014 Ido Nevat Random Field Reconstruction in WSN Outline 1 Introduction to random processes 2 Wireless sensor network system model 3 Estimation goals and criteria 4 Algorithms development 5 Simulations 6 Conclusions Ido Nevat Random Field Reconstruction in WSN Stochastic Processes and Random Fields Definition (Stochastic process) Given a parameter space X , a stochastic process f over X is a collection of random variables {f (x) : x ∈ X } . Ido Nevat Random Field Reconstruction in WSN Stochastic Processes and Random Fields Definition (Stochastic process) Given a parameter space X , a stochastic process f over X is a collection of random variables {f (x) : x ∈ X } . Definition (Gaussian Random Field) A random field f on a parameter set X for which the (finite dimensional) distributions of (f (x1 ) , · · · , f (xk )) are multivarite Gaussian for each 1 ≤ k ≤ ∞ and each (x1 , . . . , xk ) ∈ X k . Ido Nevat Random Field Reconstruction in WSN Stochastic Processes and Random Fields Definition (Stochastic process) Given a parameter space X , a stochastic process f over X is a collection of random variables {f (x) : x ∈ X } . Definition (Gaussian Random Field) A random field f on a parameter set X for which the (finite dimensional) distributions of (f (x1 ) , · · · , f (xk )) are multivarite Gaussian for each 1 ≤ k ≤ ∞ and each (x1 , . . . , xk ) ∈ X k . Gaussian random fields are determined by their mean and covariance functions: µ (·; θ) , E [f (·)] : Rn 7→ R C (·, ·; Ψ) , E [(f (·) − µ (·; θ)) (f (·) − µ (·; θ))] : Rn × Rn 7→ R Ido Nevat Random Field Reconstruction in WSN Covariance functions The covariance function is a measure of similarity and smoothness of the random field. Some common covariance functions: 1 2 3 C (x1 , x2 ; Ψ) = xT 1 x2 θ |x2 −x1 | 2 Exponential: C (x1 , x2 ; Ψ) = exp − θ1 Linear: Matérn: C (x1 , x2 ; Ψ) = 21−ν Γ(ν) √ 2ν|x2 −x1 | l ν Kν √ 2ν|x2 −x1 | l James Mercer Bertil Matérn Ido Nevat Random Field Reconstruction in WSN Example: Gaussian Processes with exponential kernel θ |x2 −x1 | 2 C (x1 , x2 ; Ψ) = exp − θ1 1 Correlation 0.8 0.6 0.4 0.2 0 2 4 6 8 10 12 14 16 18 20 8 9 10 Lag 3 2 Value 1 0 −1 −2 −3 0 1 2 3 4 5 6 7 x Ido Nevat Random Field Reconstruction in WSN Example: 2-D Gaussian Processes Ido Nevat Random Field Reconstruction in WSN Why Gaussian ? A few good reasons for using Gaussian Random Fields: Good approximation for many physical phenomena found in nature (ecology, geology, epidemiology, geography, image analysis, meteorology, forestry, geosciences....) Ido Nevat Random Field Reconstruction in WSN Why Gaussian ? A few good reasons for using Gaussian Random Fields: Good approximation for many physical phenomena found in nature (ecology, geology, epidemiology, geography, image analysis, meteorology, forestry, geosciences....) Fully characterized with two moments Ido Nevat Random Field Reconstruction in WSN Why Gaussian ? A few good reasons for using Gaussian Random Fields: Good approximation for many physical phenomena found in nature (ecology, geology, epidemiology, geography, image analysis, meteorology, forestry, geosciences....) Fully characterized with two moments Likelihood accessible (conjugate model) Ido Nevat Random Field Reconstruction in WSN Why Gaussian ? A few good reasons for using Gaussian Random Fields: Good approximation for many physical phenomena found in nature (ecology, geology, epidemiology, geography, image analysis, meteorology, forestry, geosciences....) Fully characterized with two moments Likelihood accessible (conjugate model) Conditional expectation is linear Ido Nevat Random Field Reconstruction in WSN Why Gaussian ? A few good reasons for using Gaussian Random Fields: Good approximation for many physical phenomena found in nature (ecology, geology, epidemiology, geography, image analysis, meteorology, forestry, geosciences....) Fully characterized with two moments Likelihood accessible (conjugate model) Conditional expectation is linear Stability under linear combinations, marginalization and conditioning Ido Nevat Random Field Reconstruction in WSN The problem The Random Field Reconstruction problem: Given observations from sensors which are deployed in the field, to perform estimation regarding some attributes of the field at un-monitored locations. Ido Nevat Random Field Reconstruction in WSN The problem The Random Field Reconstruction problem: Given observations from sensors which are deployed in the field, to perform estimation regarding some attributes of the field at un-monitored locations. If the observations are “Analog” (linear transformation of the intensity of the field + additive Gaussian noise), inference via Gaussian Process regression is trivial to perform. Ido Nevat Random Field Reconstruction in WSN The problem The Random Field Reconstruction problem: Given observations from sensors which are deployed in the field, to perform estimation regarding some attributes of the field at un-monitored locations. If the observations are “Analog” (linear transformation of the intensity of the field + additive Gaussian noise), inference via Gaussian Process regression is trivial to perform. In many cases, it’s impossible to place “Analog” sensors in locations of interest, due to transmission power constraint etc. Ido Nevat Random Field Reconstruction in WSN The problem The Random Field Reconstruction problem: Given observations from sensors which are deployed in the field, to perform estimation regarding some attributes of the field at un-monitored locations. If the observations are “Analog” (linear transformation of the intensity of the field + additive Gaussian noise), inference via Gaussian Process regression is trivial to perform. In many cases, it’s impossible to place “Analog” sensors in locations of interest, due to transmission power constraint etc. Instead, it is possible to place “Digital” sensors in problematic locations. Ido Nevat Random Field Reconstruction in WSN Heterogeneous sensor network deployment Ido Nevat Random Field Reconstruction in WSN Heterogeneous sensor network deployment Our goal is to develop a new approach to fuse mixed analog/digital observations in order to perform spatial field reconstruction. Ido Nevat Random Field Reconstruction in WSN System Model A1 A random spatial phenomenon defined over a 2-dimensional space X ∈ R2 . The mean of the physical process is modelled by a smooth continuous spatial function f(·) : X 7→ R, modelled a-priori as a Gaussian Process: F := f (·) : R2 7→ R s.t. f (·) ∼ GP (µ (·; θ) , C (·, ·; Ψ)) , with µ (·; θ) : R2 7→ R, and C (·, ·; Ψ) : R2 × R2 7→ R . Ido Nevat Random Field Reconstruction in WSN System Model A1 A random spatial phenomenon defined over a 2-dimensional space X ∈ R2 . The mean of the physical process is modelled by a smooth continuous spatial function f(·) : X 7→ R, modelled a-priori as a Gaussian Process: F := f (·) : R2 7→ R s.t. f (·) ∼ GP (µ (·; θ) , C (·, ·; Ψ)) , with µ (·; θ) : R2 7→ R, and C (·, ·; Ψ) : R2 × R2 7→ R . A2 Let N be the number of sensors that are deployed over a 2-D region X ⊆ R2 , with xn ∈ X , n = {1, · · · , N}, the physical location of the n-th sensor, assumed known by the FC. The number of analog and digital sensors is NA and ND , respectively, so that N = NA + ND . Ido Nevat Random Field Reconstruction in WSN System Model A1 A random spatial phenomenon defined over a 2-dimensional space X ∈ R2 . The mean of the physical process is modelled by a smooth continuous spatial function f(·) : X 7→ R, modelled a-priori as a Gaussian Process: F := f (·) : R2 7→ R s.t. f (·) ∼ GP (µ (·; θ) , C (·, ·; Ψ)) , with µ (·; θ) : R2 7→ R, and C (·, ·; Ψ) : R2 × R2 7→ R . A2 Let N be the number of sensors that are deployed over a 2-D region X ⊆ R2 , with xn ∈ X , n = {1, · · · , N}, the physical location of the n-th sensor, assumed known by the FC. The number of analog and digital sensors is NA and ND , respectively, so that N = NA + ND . A3 Sensors measurement model: each sensor collects a noisy observation of the spatial phenomenon f (·). At the n-th sensor, the observation is expressed as: Z (xn ) = f (xn ) + Wn , n = {1, · · · , N} 2 . where Wn is i.i.d Gaussian noise Wn ∼ N 0, σW Ido Nevat Random Field Reconstruction in WSN System Model A4 Analog sensors processing: each of the NA analog sensors transmits its noisy observation to the FC over AWGN channels: YnA = Z (xn ) + Vn , n = {1, . . . , NA } , where Vn is i.i.d Gaussian noise Vn ∼ N 0, σV2 . Ido Nevat Random Field Reconstruction in WSN System Model A4 Analog sensors processing: each of the NA analog sensors transmits its noisy observation to the FC over AWGN channels: YnA = Z (xn ) + Vn , n = {1, . . . , NA } , where Vn is i.i.d Gaussian noise Vn ∼ N 0, σV2 . A5 Digital Sensors processing: 1 Thresholding: at the n-th digital sensor, n = {1, . . . , ND }, a thresholding process is given as follows: B(xn )=1 Z (xn ) ≥ < λ, B (xn ) = −1 2 where λ is a pre-defined threshold. Wireless Communications to Fusion Centre Model: the decision B (xn ) is transmitted to the FC over imperfect binary wireless channels, with transition probabilities p0,0 , p0,1 , p1,0 , p1,1 . Ido Nevat Random Field Reconstruction in WSN Example −1.5 −2 −2.5 −3 −3.5 −4 0 2 4 6 8 10 Sensors deployment: black - analog sensors, red - digital sensors Ido Nevat Random Field Reconstruction in WSN Example 2 1.5 1 0.5 0 −0.5 −1 −1.5 −2 0 1 2 3 4 5 6 7 8 9 Realisation from a 1-D Gaussian Process Ido Nevat Random Field Reconstruction in WSN 10 Example 2 1.5 1 0.5 0 −0.5 −1 −1.5 −2 0 1 2 3 4 5 6 7 8 9 Noisy observations of Analog and Digital sensors Ido Nevat Random Field Reconstruction in WSN 10 Example 2 1.5 1 0.5 0 −0.5 −1 −1.5 −2 0 1 2 3 4 5 6 7 8 9 Wireless channel effects Ido Nevat Random Field Reconstruction in WSN 10 Example 2 1.5 1 0.5 0 −0.5 −1 −1.5 −2 0 2 4 6 8 10 Analog and Digital observations Ido Nevat Random Field Reconstruction in WSN Example 2 1.5 1 0.5 0 −0.5 −1 −1.5 −2 0 1 2 3 4 5 6 7 8 9 Field reconstruction Ido Nevat Random Field Reconstruction in WSN 10 Estimation Objectives Estimation Objectives Ido Nevat Random Field Reconstruction in WSN Estimation Objectives 1 Objective I: MMSE spatial random field reconstructionAccurately reconstruct (i.e. estimate) the spatial random field at un-monitored locations, x∗ ∈ Ω, from samples collected by the N sensors . The Minimum Mean Squared Error (MMSE) utilises the following distortion metric: 2 b b D f∗ , f∗ := E f∗ − f∗ . The optimal solution in the sense of minimising this distortion metric is the posterior predictive mean, given by the solution to the following integral: Z b f∗ = E [f∗ |xN , x∗ , YN ] = f∗ p (f∗ |x∗ , xN , YN ) df∗ . Ido Nevat Random Field Reconstruction in WSN Estimation Objectives 2 Objective II: spatial exeedance mapConstruct a spatial exceedance map estimation is quantified by the following metric: find a region De ⊂ Ω such that, with a certain given probability, f (x) ≥ T for all x ∈ De for a given level T : De = {x : P (f∗ ≥ T |xN , x∗ , YN ) ≥ 1 − α} Z ∞ p (f∗ |xN , x∗ , YN ) df∗ ≥ 1 − α , = x: T where T is a pre-defined threshold and α is the confidence level and De is the domain or set of x values satisfying the exceedance of the spatial field. Ido Nevat Random Field Reconstruction in WSN Estimation Objectives 3 Objective III: Spatial ClassificationPredict the confidence for each class at un-monitored locations, x∗ ∈ Ω. That means that we find the classifier b∗ : Ω ↔ {0, 1} that minimizes the error probability B b∗ , at an arbitrary location x∗ ∈ X . P B∗ 6= B This requires the calculation of the binary conditional predictive distribution in closed form, given by: P (B∗ = 0|x∗ , xN , YN , λ) = P (B∗ = 1|x∗ , xN , YN , λ) = Z Z P (B∗ = 0|f∗ , x∗ , xN , YN , λ) p (f∗ |x∗ , xN , YN ) df∗ , P (B∗ = 1|f∗ , x∗ , xN , YN , λ) p (f∗ |x∗ , xN , YN ) df∗ . and the classifier b∗ = B ( 1 0 , P (B∗ |x∗ , xN , YN ) ≥ λ , P (B∗ |x∗ , xN , YN ) < λ. Ido Nevat Random Field Reconstruction in WSN Estimation Objectives The common feature of Objectives 1 − 3 is the posterior predictive distribution p (f∗ |x∗ , xN , YN ). Ido Nevat Random Field Reconstruction in WSN Estimation Objectives The common feature of Objectives 1 − 3 is the posterior predictive distribution p (f∗ |x∗ , xN , YN ). Z Z p (f∗ |x∗ , xN , YN ) = . . . p (f∗ |fN , x∗ , xN ) p (fN |xN , YN ) dfN N Z ZR = ... p (f∗ |fN , x∗ , xN ) p (fA |fD , xN , YN ) p (fD |xN , YN ) dfN RN 1 p (f∗ |fN , x∗ , xN ): conditional predictive prior distribution. 2 p (fA |fD , xN , YN ): posterior distribution for the spatial phenomenon at the analog sensor locations given observations. 3 p (fD |xN , YN ): posterior distribution for the spatial phenomenon at the digital sensor locations given observations. Ido Nevat Random Field Reconstruction in WSN Z Z p (f∗ |x∗ , xN , YN ) = . . . p (f∗ |fN , x∗ , xN )p (fA |fD , xN , YN ) p (fD |xN , YN ) dfN RN Lemma The conditional predictive prior distribution, p (f∗ |fN , x∗ , xN ), is given by: p (f∗ |fN , x∗ , xN ) = N f∗ ; µf∗ |fN , σf2∗ |fN µf∗ |fN : = µ (x∗ ) + k (x∗ , xN ) K−1 (xN , xN ) (fN − µ (xN )) σf2∗ |fN : = k (x∗ , x∗ ) − k (x∗ , xN ) K−1 (xN , xN ) k (xN , x∗ ) Ido Nevat Random Field Reconstruction in WSN Z Z p (f∗ |x∗ , xN , YN ) = . . . p (f∗ |fN , x∗ , xN ) p (fA |fD , xN , YN )p (fD |xN , YN ) dfN RN Lemma The conditional distribution, p (fA |fD , xN , YN ), is given by: p (fA |fD , xN , YN ) = N fA ; µfA |fD ,YN , ΣfA |fD ,YN −1 −2 −1 −2 µfA |fD ,YN := Σ−1 + σ µ I Σ + σ Y A f |f W W fA |fD fA |fD A D −1 −2 . ΣfA |fD ,YN := Σ−1 fA |fD + σW I Ido Nevat Random Field Reconstruction in WSN The posterior distribution Z Z p (f∗ |x∗ , xN , YN ) = . . . p (f∗ |fN , x∗ , xN ) p (fA |fD , xN , YN ) p (fD |xN , YN )dfN RN Using Bayes’ law, the posterior distribution for the spatial phenomenon at the digital sensor locations is given by p (fD |xN , YN ) = Ido Nevat Random Field Reconstruction in WSN The posterior distribution Z Z p (f∗ |x∗ , xN , YN ) = . . . p (f∗ |fN , x∗ , xN ) p (fA |fD , xN , YN ) p (fD |xN , YN )dfN RN Using Bayes’ law, the posterior distribution for the spatial phenomenon at the digital sensor locations is given by p (fD |xN , YN ) = P (YN |xN , fD ) p (fD |xN ) P (YN |xN ) Ido Nevat Random Field Reconstruction in WSN The posterior distribution Z Z p (f∗ |x∗ , xN , YN ) = . . . p (f∗ |fN , x∗ , xN ) p (fA |fD , xN , YN ) p (fD |xN , YN )dfN RN Using Bayes’ law, the posterior distribution for the spatial phenomenon at the digital sensor locations is given by P (YN |xN , fD ) p (fD |xN ) P (YN |xN ) P (YN |xN , fD ) p (fD |xN ) =R R . . . RN P (YN |xN , fD ) p (fD |xN ) dfD p (fD |xN , YN ) = The numerator can be easily evaluated. However, the denominator cannot be evaluated pointwise. Ido Nevat Random Field Reconstruction in WSN Saddle Point Approximations for the predictive distribution We approximate p (fD |xN , YN ) using using a series expansion of the Saddle-point (Laplace) type via a Gaussian basis. Ido Nevat Random Field Reconstruction in WSN Saddle Point Approximations for the predictive distribution We approximate p (fD |xN , YN ) using using a series expansion of the Saddle-point (Laplace) type via a Gaussian basis. This transforms the intractable multiple integrals to produce simple closed form expressions. Based on these expressions we derive new algorithms and provide closed form solutions. Ido Nevat Random Field Reconstruction in WSN Saddle Point Approximations for the predictive distribution The series expansion becomes: p (fD |xN , YN ) Ido Nevat Random Field Reconstruction in WSN Saddle Point Approximations for the predictive distribution The series expansion becomes: p (fD |xN , YN ) = exp log (p(fD |xN ,YN )) Ido Nevat Random Field Reconstruction in WSN Saddle Point Approximations for the predictive distribution The series expansion becomes: p (fD |xN , YN ) = exp = exp log (p(fD |xN ,YN )) T MAP + 1 f −b fD g (b ) 2 ( D fDMAP ) ∇2 g |bf MAP (fD −bfDMAP ) D Ido Nevat e expR3 (fD ) Random Field Reconstruction in WSN Saddle Point Approximations for the predictive distribution The series expansion becomes: p (fD |xN , YN ) = exp = exp = log (p(fD |xN ,YN )) T MAP + 1 f −b fD g (b ) 2 ( D fDMAP ) ∇2 g |bf MAP (fD −bfDMAP ) D 1 N 1/2 1 bMAP exp− 2 (fD −fD ) T e expR3 (fD ) MAP fD H −1 (fD −b ) (2π) |H| N 1/2 e bMAP × exp(g (fD )+R3 (fD )+log((2π) |H| )) Ido Nevat Random Field Reconstruction in WSN Saddle Point Approximations for the predictive distribution The series expansion becomes: p (fD |xN , YN ) = exp = exp = log (p(fD |xN ,YN )) T MAP + 1 f −b fD g (b ) 2 ( D fDMAP ) ∇2 g |bf MAP (fD −bfDMAP ) D 1 N 1/2 1 bMAP exp− 2 (fD −fD ) T e expR3 (fD ) MAP fD H −1 (fD −b ) (2π) |H| N 1/2 e bMAP × exp(g (fD )+R3 (fD )+log((2π) |H| )) where H −1 := −∇2 g |bf MAP . D Ido Nevat Random Field Reconstruction in WSN Saddle Point Approximations for the predictive distribution The series expansion becomes: p (fD |xN , YN ) = exp = exp = log (p(fD |xN ,YN )) T MAP + 1 f −b fD g (b ) 2 ( D fDMAP ) ∇2 g |bf MAP (fD −bfDMAP ) D 1 N 1/2 1 bMAP exp− 2 (fD −fD ) T e expR3 (fD ) MAP fD H −1 (fD −b ) (2π) |H| N 1/2 e bMAP × exp(g (fD )+R3 (fD )+log((2π) |H| )) where H −1 := −∇2 g |bf MAP . D We obtain that the posterior distribution can be expressed as N 1/2 bMAP e MAP p (fD |xN , YN ) = N fD ; bfD , H exp(g (fD )+R3 (fD )+log((2π) |H| )) Ido Nevat Random Field Reconstruction in WSN Saddle Point Approximations for the predictive distribution Theorem The posterior distribution at the digital sensors, p (fD |xN , YN ): MAP log p (fD |xN , YN ) = log q fD ; bfD , H + R3 (fD ) . where MAP MAP q fD ; bfD , H = N fD ; bfD , H −1 , bf MAP = arg max p (fD |xN , YN ) , D fD ∂2 p (fD |xN , YN ) |bf MAP , [H]i,j = − D ∂fi ∂fj MAP e3 (fD ) + log (2π)n |H|1/2 +R R3 (fD ) = g bfD Ido Nevat Random Field Reconstruction in WSN Obtaining the MAP estimate The MAP estimate is given by: bf MAP = arg max p (fD |YN , xN ) D fD = arg max P (YN |fD , xN ) p (fD ) fD = arg max P (YD |fD , YA , xN ) p (YA |fD , xN ) p (fD ) fD = arg max fD X ND n=1 1 X P YnD |Bn = l P (Bn = l|fn ) log l=0 ! 2 INA + ΣfA |fD + log N YA ; µfA |fD , σV2 + σW + log N (fD ; µ (xD ) , K (xD , xD )) . Ido Nevat Random Field Reconstruction in WSN Obtaining the MAP estimate To solve this N-dimensional optimisation problem, we show that the objective function is quasi-convex and can therefore be solved exactly using any gradient based approach. We utilse the Iterated Conditional on the Modes (ICM) of Besag to solve this problem. Ido Nevat Random Field Reconstruction in WSN Obtaining the MAP estimate Using ICM algorithm, the MAP estimate of the n-th component of MAP fD , bfn = arg maxfn p fn |xN , bf1:ND \n , YN , can be evaluated by solving the following one-dimensional non-linear equation: 2 (P (Y |B = 0) − P (Y |B = 1)) φ λ, f (xn ) , σW n n n n 2 P (Yn |Bn = 1) + Φ λ, f (xn ) , σW (P (Yn |Bn = 0) − P (Yn |Bn = 1)) −1 T 2 K (xA , xD ) K −1 (xD , xD ) σV2 + σW INA + ΣfA |fD = µfA |fD − YA f (xn ) − µxn|fD \n + σx2n|f \n D Ido Nevat Random Field Reconstruction in WSN The posterior predictive distribution Putting it all together. Ido Nevat Random Field Reconstruction in WSN The posterior predictive distribution The posterior predictive distribution is approximated by Z Z p (f∗ |x∗ , xN , YN ) = . . . p (f∗ |fN , x∗ , xN ) p (fN |xN , YN ) dfN RN Ido Nevat Random Field Reconstruction in WSN The posterior predictive distribution The posterior predictive distribution is approximated by Z Z p (f∗ |x∗ , xN , YN ) = . . . p (f∗ |fN , x∗ , xN ) p (fN |xN , YN ) dfN RN Z Z = ... p (f∗ |fN , x∗ , xN ) p (fA |fD , xN , YN ) p (fD |xN , YN ) dfN RN Ido Nevat Random Field Reconstruction in WSN The posterior predictive distribution The posterior predictive distribution is approximated by Z Z p (f∗ |x∗ , xN , YN ) = . . . p (f∗ |fN , x∗ , xN ) p (fN |xN , YN ) dfN RN Z Z = ... p (f∗ |fN , x∗ , xN ) p (fA |fD , xN , YN ) p (fD |xN , YN ) dfN N Z ZR MAP , H −1 dfN ≈ ... N f∗ ; µf∗ |fN , σf2∗ |fN N fA ; µfA |fD ,YN , ΣfA |fD ,YN N fD ; bfD RN Ido Nevat Random Field Reconstruction in WSN The posterior predictive distribution The posterior predictive distribution is approximated by Z Z p (f∗ |x∗ , xN , YN ) = . . . p (f∗ |fN , x∗ , xN ) p (fN |xN , YN ) dfN RN Z Z = ... p (f∗ |fN , x∗ , xN ) p (fA |fD , xN , YN ) p (fD |xN , YN ) dfN N Z ZR MAP , H −1 dfN ≈ ... N f∗ ; µf∗ |fN , σf2∗ |fN N fA ; µfA |fD ,YN , ΣfA |fD ,YN N fD ; bfD N R = N f∗ ; µf∗ |YN , σf2∗ |YN where µf∗ |YN = µ (x∗ ) + k (x∗ , xN ) K −1 (xN , xN ) µfN |YN − µ (xN ) , σf2∗ |YN = Σ22 f∗ ,fN |YN . Ido Nevat Random Field Reconstruction in WSN Spatial field reconstruction, exceedance level estimation and spatial classification Objective I: spatial MMSE random field reconstructionb f∗ = E [f∗ |xN , x∗ , YN ] Z p (f∗ |x∗ , xN , YN ) df∗ ≃ f∗ b = µ (x∗ ) + k (x∗ , xN ) K −1 (xN , xN ) µfN |YN − µ (xN ) . Objective II: spatial exeedence map: b f∗ = P (f∗ ≥ λ|xN , x∗ , YN ) ≃ 1 − Φ λ, µf∗ |YN , σf2∗ |YN . Spatial Classification: 2 + σf2∗ |YN , P (B∗ = 0|x∗ , xN , YN , λ) = Φ λ, µf∗ |YN , σW 2 + σf2∗ |YN . P (B∗ = 1|x∗ , xN , YN , λ) = 1 − Φ λ, µf∗ |YN , σW Ido Nevat Random Field Reconstruction in WSN Simulations Simulations Ido Nevat Random Field Reconstruction in WSN Simulations Spatial field reconstruction Ido Nevat Random Field Reconstruction in WSN Spatial Field Reconstruction 100 analog sensors and 5 digital sensors 0 10 20 30 y 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 x Ido Nevat Random Field Reconstruction in WSN Spatial Field Reconstruction 0 100 10 90 20 80 30 70 40 60 50 50 y y 100 analog sensors and 5 digital sensors 60 40 70 30 80 20 90 100 10 0 10 20 30 40 50 60 70 80 90 x 100 0 0 10 20 30 40 50 60 70 80 x Ido Nevat Random Field Reconstruction in WSN 90 100 Spatial Field Reconstruction 100 90 20 80 30 70 40 60 50 50 y 0 10 60 40 70 30 80 20 90 100 10 0 10 20 30 40 50 60 70 80 90 0 100 0 10 20 30 40 x 50 60 70 80 x 0 10 20 30 40 y y 100 analog sensors and 5 digital sensors 50 60 70 80 90 100 0 10 20 30 Ido Nevat 40 50 x 60 70 80 90 100 Random Field Reconstruction in WSN 90 100 Spatial Field Reconstruction 0 100 10 90 20 80 30 70 40 60 50 50 y y 100 analog sensors and 5 digital sensors 60 40 70 30 80 20 90 100 10 0 10 20 30 40 50 60 70 80 90 100 0 0 10 20 30 40 0 10 10 20 20 30 30 40 40 50 50 60 60 70 70 80 80 90 100 50 60 70 80 90 100 60 70 80 90 100 x 0 y y x 90 0 10 20 30 40 50 x 60 70 80 90 Ido Nevat 100 100 0 10 20 30 40 50 x Random Field Reconstruction in WSN Spatial Field Reconstruction 0 100 10 90 20 80 30 70 40 60 50 50 y y 100 analog sensors and 10 digital sensors 60 40 70 30 80 20 90 100 10 0 10 20 30 40 50 60 70 80 90 100 0 0 10 20 30 40 0 10 10 20 20 30 30 40 40 50 50 60 60 70 70 80 80 90 100 50 60 70 80 90 100 60 70 80 90 100 x 0 y y x 90 0 10 20 30 40 50 x 60 70 80 90 Ido Nevat 100 100 0 10 20 30 40 50 x Random Field Reconstruction in WSN Spatial Field Reconstruction 0 100 10 90 20 80 30 70 40 60 50 50 y y 100 analog sensors and 20 digital sensors 60 40 70 30 80 20 90 100 10 0 10 20 30 40 50 60 70 80 90 100 0 0 10 20 30 40 0 10 10 20 20 30 30 40 40 50 50 60 60 70 70 80 80 90 100 50 60 70 80 90 100 60 70 80 90 100 x 0 y y x 90 0 10 20 30 40 50 x 60 70 80 90 Ido Nevat 100 100 0 10 20 30 40 50 x Random Field Reconstruction in WSN Spatial Field Reconstruction 0 100 10 90 20 80 30 70 40 60 50 50 y y 100 analog sensors and 50 digital sensors 60 40 70 30 80 20 90 100 10 0 10 20 30 40 50 60 70 80 90 100 0 0 10 20 30 40 0 10 10 20 20 30 30 40 40 50 50 60 60 70 70 80 80 90 100 50 60 70 80 90 100 60 70 80 90 100 x 0 y y x 90 0 10 20 30 40 50 x 60 70 80 90 Ido Nevat 100 100 0 10 20 30 40 50 x Random Field Reconstruction in WSN Simulations Spatial Classification Ido Nevat Random Field Reconstruction in WSN Spatial Classification 100 analog sensors and 5 digital sensors 0 10 20 30 y 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 x Ido Nevat Random Field Reconstruction in WSN Spatial Classification 0 0 10 10 20 20 30 30 40 40 50 50 y y 100 analog sensors and 5 digital sensors 60 60 70 70 80 80 90 100 90 0 10 20 30 40 50 60 x Ido Nevat 70 100 80 0 90 10 10020 30 40 50 60 70 80 x Random Field Reconstruction in WSN 90 100 Spatial Classification 0 0 10 10 20 20 20 30 30 30 40 40 40 50 50 50 y 0 10 y y 100 analog sensors and 5 digital sensors 60 60 60 70 70 70 80 80 80 90 90 100 0 10 20 30 40 50 60 70 100 80 0 90 90 10 10020 x 30 40 50 60 70 100 80 0 90 10 10020 30 40 x Ido Nevat Random Field Reconstruction in WSN 50 x 60 70 80 90 100 Spatial Classification 0 0 10 10 20 20 20 30 30 30 40 40 40 50 50 50 y 0 10 y y 100 analog sensors and 10 digital sensors 60 60 60 70 70 70 80 80 80 90 90 100 0 10 20 30 40 50 60 70 100 80 0 90 90 10 10020 x 30 40 50 60 70 100 80 0 90 10 10020 30 40 x Ido Nevat Random Field Reconstruction in WSN 50 x 60 70 80 90 100 Spatial Classification 0 0 10 10 20 20 20 30 30 30 40 40 40 50 50 50 y 0 10 y y 100 analog sensors and 20 digital sensors 60 60 60 70 70 70 80 80 80 90 90 100 0 10 20 30 40 50 60 70 100 80 0 90 90 10 10020 x 30 40 50 60 70 100 80 0 90 10 10020 30 40 x Ido Nevat Random Field Reconstruction in WSN 50 x 60 70 80 90 100 Spatial Classification 0 0 10 10 20 20 20 30 30 30 40 40 40 50 50 50 y 0 10 y y 100 analog sensors and 50 digital sensors 60 60 60 70 70 70 80 80 80 90 90 100 0 10 20 30 40 50 60 70 100 80 0 90 90 10 10020 x 30 40 50 60 70 100 80 0 90 10 10020 30 40 x Ido Nevat Random Field Reconstruction in WSN 50 x 60 70 80 90 100 Simulations Real deployment in Singapore Ido Nevat Random Field Reconstruction in WSN Field Reconstruction Wireless sensor network deployed in Clementi to monitor acoustic intensity (”noise”) Ido Nevat Random Field Reconstruction in WSN Field Reconstruction Sensors deployment Ido Nevat Random Field Reconstruction in WSN Field Reconstruction Sensors deployment 68 53 52 63 46 52 67 44 52 44 41 68 37 57 55 50 58 49 54 72 52 59 46 58 55 54 51 52 68 55 63 46 47 47 Ido Nevat 65 61 55 62 55 46 Random Field Reconstruction in WSN Field Reconstruction Random field reconstruction 35 analog sensors Ido Nevat 35 analog + 5 digital sensors Random Field Reconstruction in WSN Conclusions 1 Developed a new model for sensors networks with mixed analog and digital (binary) sensors. 2 Derived the Laplace approximation to obtain the predictive posterior density. 3 Developed the spatial field reconstruction, spatial classification and spatial exceedance algorithms. 4 Simulations show the benefits of using digital sensors. Ido Nevat Random Field Reconstruction in WSN Questions? Thanks very much! Questions? Ido Nevat Random Field Reconstruction in WSN