slides

Transcription

slides
Estimation of Spatially Correlated Random Fields
in Heterogeneous Wireless Sensor Networks
Ido Nevat
Sense & Sense-Abilities (S&S)
I2R
A*STAR
Joint work with Gareth Peters (UCL), Francois Spetier (Telecom1 Lille) and
Tomoko Matsui (ISM)
July 29, 2014
Ido Nevat
Random Field Reconstruction in WSN
Outline
1
Introduction to random processes
2
Wireless sensor network system model
3
Estimation goals and criteria
4
Algorithms development
5
Simulations
6
Conclusions
Ido Nevat
Random Field Reconstruction in WSN
Stochastic Processes and Random Fields
Definition (Stochastic process)
Given a parameter space X , a stochastic process f over X is a
collection of random variables
{f (x) : x ∈ X } .
Ido Nevat
Random Field Reconstruction in WSN
Stochastic Processes and Random Fields
Definition (Stochastic process)
Given a parameter space X , a stochastic process f over X is a
collection of random variables
{f (x) : x ∈ X } .
Definition (Gaussian Random Field)
A random field f on a parameter set X for which the (finite
dimensional) distributions of (f (x1 ) , · · · , f (xk )) are multivarite
Gaussian for each 1 ≤ k ≤ ∞ and each (x1 , . . . , xk ) ∈ X k .
Ido Nevat
Random Field Reconstruction in WSN
Stochastic Processes and Random Fields
Definition (Stochastic process)
Given a parameter space X , a stochastic process f over X is a
collection of random variables
{f (x) : x ∈ X } .
Definition (Gaussian Random Field)
A random field f on a parameter set X for which the (finite
dimensional) distributions of (f (x1 ) , · · · , f (xk )) are multivarite
Gaussian for each 1 ≤ k ≤ ∞ and each (x1 , . . . , xk ) ∈ X k .
Gaussian random fields are determined by their mean and
covariance functions:
µ (·; θ) , E [f (·)] : Rn 7→ R
C (·, ·; Ψ) , E [(f (·) − µ (·; θ)) (f (·) − µ (·; θ))] : Rn × Rn 7→ R
Ido Nevat
Random Field Reconstruction in WSN
Covariance functions
The covariance function is a measure of similarity and smoothness
of the random field.
Some common covariance functions:
1
2
3
C (x1 , x2 ; Ψ) = xT
1 x2
θ |x2 −x1 | 2
Exponential: C (x1 , x2 ; Ψ) = exp −
θ1
Linear:
Matérn:
C (x1 , x2 ; Ψ) =
21−ν
Γ(ν)
√
2ν|x2 −x1 |
l
ν
Kν
√
2ν|x2 −x1 |
l
James Mercer
Bertil Matérn
Ido Nevat
Random Field Reconstruction in WSN
Example: Gaussian Processes with exponential kernel
θ |x2 −x1 | 2
C (x1 , x2 ; Ψ) = exp −
θ1
1
Correlation
0.8
0.6
0.4
0.2
0
2
4
6
8
10
12
14
16
18
20
8
9
10
Lag
3
2
Value
1
0
−1
−2
−3
0
1
2
3
4
5
6
7
x
Ido Nevat
Random Field Reconstruction in WSN
Example: 2-D Gaussian Processes
Ido Nevat
Random Field Reconstruction in WSN
Why Gaussian ?
A few good reasons for using Gaussian Random Fields:
Good approximation for many physical phenomena found in
nature (ecology, geology, epidemiology, geography, image
analysis, meteorology, forestry, geosciences....)
Ido Nevat
Random Field Reconstruction in WSN
Why Gaussian ?
A few good reasons for using Gaussian Random Fields:
Good approximation for many physical phenomena found in
nature (ecology, geology, epidemiology, geography, image
analysis, meteorology, forestry, geosciences....)
Fully characterized with two moments
Ido Nevat
Random Field Reconstruction in WSN
Why Gaussian ?
A few good reasons for using Gaussian Random Fields:
Good approximation for many physical phenomena found in
nature (ecology, geology, epidemiology, geography, image
analysis, meteorology, forestry, geosciences....)
Fully characterized with two moments
Likelihood accessible (conjugate model)
Ido Nevat
Random Field Reconstruction in WSN
Why Gaussian ?
A few good reasons for using Gaussian Random Fields:
Good approximation for many physical phenomena found in
nature (ecology, geology, epidemiology, geography, image
analysis, meteorology, forestry, geosciences....)
Fully characterized with two moments
Likelihood accessible (conjugate model)
Conditional expectation is linear
Ido Nevat
Random Field Reconstruction in WSN
Why Gaussian ?
A few good reasons for using Gaussian Random Fields:
Good approximation for many physical phenomena found in
nature (ecology, geology, epidemiology, geography, image
analysis, meteorology, forestry, geosciences....)
Fully characterized with two moments
Likelihood accessible (conjugate model)
Conditional expectation is linear
Stability under linear combinations, marginalization and
conditioning
Ido Nevat
Random Field Reconstruction in WSN
The problem
The Random Field Reconstruction problem:
Given observations from sensors which are deployed in the
field, to perform estimation regarding some attributes of the
field at un-monitored locations.
Ido Nevat
Random Field Reconstruction in WSN
The problem
The Random Field Reconstruction problem:
Given observations from sensors which are deployed in the
field, to perform estimation regarding some attributes of the
field at un-monitored locations.
If the observations are “Analog” (linear transformation of the
intensity of the field + additive Gaussian noise), inference via
Gaussian Process regression is trivial to perform.
Ido Nevat
Random Field Reconstruction in WSN
The problem
The Random Field Reconstruction problem:
Given observations from sensors which are deployed in the
field, to perform estimation regarding some attributes of the
field at un-monitored locations.
If the observations are “Analog” (linear transformation of the
intensity of the field + additive Gaussian noise), inference via
Gaussian Process regression is trivial to perform.
In many cases, it’s impossible to place “Analog” sensors in
locations of interest, due to transmission power constraint etc.
Ido Nevat
Random Field Reconstruction in WSN
The problem
The Random Field Reconstruction problem:
Given observations from sensors which are deployed in the
field, to perform estimation regarding some attributes of the
field at un-monitored locations.
If the observations are “Analog” (linear transformation of the
intensity of the field + additive Gaussian noise), inference via
Gaussian Process regression is trivial to perform.
In many cases, it’s impossible to place “Analog” sensors in
locations of interest, due to transmission power constraint etc.
Instead, it is possible to place “Digital” sensors in problematic
locations.
Ido Nevat
Random Field Reconstruction in WSN
Heterogeneous sensor network deployment
Ido Nevat
Random Field Reconstruction in WSN
Heterogeneous sensor network deployment
Our goal is to develop a new approach to fuse mixed
analog/digital observations in order to perform spatial field
reconstruction.
Ido Nevat
Random Field Reconstruction in WSN
System Model
A1 A random spatial phenomenon defined over a 2-dimensional space
X ∈ R2 . The mean of the physical process is modelled by a smooth
continuous spatial function f(·) : X 7→ R, modelled a-priori as a
Gaussian Process:
F := f (·) : R2 7→ R s.t. f (·) ∼ GP (µ (·; θ) , C (·, ·; Ψ)) ,
with µ (·; θ) : R2 7→ R, and C (·, ·; Ψ) : R2 × R2 7→ R .
Ido Nevat
Random Field Reconstruction in WSN
System Model
A1 A random spatial phenomenon defined over a 2-dimensional space
X ∈ R2 . The mean of the physical process is modelled by a smooth
continuous spatial function f(·) : X 7→ R, modelled a-priori as a
Gaussian Process:
F := f (·) : R2 7→ R s.t. f (·) ∼ GP (µ (·; θ) , C (·, ·; Ψ)) ,
with µ (·; θ) : R2 7→ R, and C (·, ·; Ψ) : R2 × R2 7→ R .
A2 Let N be the number of sensors that are deployed over a 2-D region
X ⊆ R2 , with xn ∈ X , n = {1, · · · , N}, the physical location of the
n-th sensor, assumed known by the FC. The number of analog and
digital sensors is NA and ND , respectively, so that N = NA + ND .
Ido Nevat
Random Field Reconstruction in WSN
System Model
A1 A random spatial phenomenon defined over a 2-dimensional space
X ∈ R2 . The mean of the physical process is modelled by a smooth
continuous spatial function f(·) : X 7→ R, modelled a-priori as a
Gaussian Process:
F := f (·) : R2 7→ R s.t. f (·) ∼ GP (µ (·; θ) , C (·, ·; Ψ)) ,
with µ (·; θ) : R2 7→ R, and C (·, ·; Ψ) : R2 × R2 7→ R .
A2 Let N be the number of sensors that are deployed over a 2-D region
X ⊆ R2 , with xn ∈ X , n = {1, · · · , N}, the physical location of the
n-th sensor, assumed known by the FC. The number of analog and
digital sensors is NA and ND , respectively, so that N = NA + ND .
A3 Sensors measurement model: each sensor collects a noisy
observation of the spatial phenomenon f (·). At the n-th sensor, the
observation is expressed as:
Z (xn ) = f (xn ) + Wn , n = {1, · · · , N}
2
.
where Wn is i.i.d Gaussian noise Wn ∼ N 0, σW
Ido Nevat
Random Field Reconstruction in WSN
System Model
A4 Analog sensors processing: each of the NA analog sensors
transmits its noisy observation to the FC over AWGN channels:
YnA = Z (xn ) + Vn , n = {1, . . . , NA } ,
where Vn is i.i.d Gaussian noise Vn ∼ N 0, σV2 .
Ido Nevat
Random Field Reconstruction in WSN
System Model
A4 Analog sensors processing: each of the NA analog sensors
transmits its noisy observation to the FC over AWGN channels:
YnA = Z (xn ) + Vn , n = {1, . . . , NA } ,
where Vn is i.i.d Gaussian noise Vn ∼ N 0, σV2 .
A5 Digital Sensors processing:
1 Thresholding: at the n-th digital sensor, n = {1, . . . , ND }, a
thresholding process is given as follows:
B(xn )=1
Z (xn )
≥
<
λ,
B (xn ) = −1
2
where λ is a pre-defined threshold.
Wireless Communications to Fusion Centre Model: the
decision B (xn ) is transmitted to the FC over imperfect binary
wireless channels, with transition probabilities
p0,0 , p0,1 , p1,0 , p1,1 .
Ido Nevat
Random Field Reconstruction in WSN
Example
−1.5
−2
−2.5
−3
−3.5
−4
0
2
4
6
8
10
Sensors deployment: black - analog sensors, red - digital sensors
Ido Nevat
Random Field Reconstruction in WSN
Example
2
1.5
1
0.5
0
−0.5
−1
−1.5
−2
0
1
2
3
4
5
6
7
8
9
Realisation from a 1-D Gaussian Process
Ido Nevat
Random Field Reconstruction in WSN
10
Example
2
1.5
1
0.5
0
−0.5
−1
−1.5
−2
0
1
2
3
4
5
6
7
8
9
Noisy observations of Analog and Digital sensors
Ido Nevat
Random Field Reconstruction in WSN
10
Example
2
1.5
1
0.5
0
−0.5
−1
−1.5
−2
0
1
2
3
4
5
6
7
8
9
Wireless channel effects
Ido Nevat
Random Field Reconstruction in WSN
10
Example
2
1.5
1
0.5
0
−0.5
−1
−1.5
−2
0
2
4
6
8
10
Analog and Digital observations
Ido Nevat
Random Field Reconstruction in WSN
Example
2
1.5
1
0.5
0
−0.5
−1
−1.5
−2
0
1
2
3
4
5
6
7
8
9
Field reconstruction
Ido Nevat
Random Field Reconstruction in WSN
10
Estimation Objectives
Estimation Objectives
Ido Nevat
Random Field Reconstruction in WSN
Estimation Objectives
1 Objective I: MMSE spatial random field reconstructionAccurately reconstruct (i.e. estimate) the spatial random field at
un-monitored locations, x∗ ∈ Ω, from samples collected by the N
sensors . The Minimum Mean Squared Error (MMSE) utilises the
following distortion metric:
2 b
b
D f∗ , f∗ := E f∗ − f∗
.
The optimal solution in the sense of minimising this distortion
metric is the posterior predictive mean, given by the solution to the
following integral:
Z
b
f∗ = E [f∗ |xN , x∗ , YN ] = f∗ p (f∗ |x∗ , xN , YN ) df∗ .
Ido Nevat
Random Field Reconstruction in WSN
Estimation Objectives
2 Objective II: spatial exeedance mapConstruct a spatial exceedance map estimation is quantified by the
following metric: find a region De ⊂ Ω such that, with a certain
given probability, f (x) ≥ T for all x ∈ De for a given level T :
De = {x : P (f∗ ≥ T |xN , x∗ , YN ) ≥ 1 − α}
Z ∞
p (f∗ |xN , x∗ , YN ) df∗ ≥ 1 − α ,
= x:
T
where T is a pre-defined threshold and α is the confidence level and
De is the domain or set of x values satisfying the exceedance of the
spatial field.
Ido Nevat
Random Field Reconstruction in WSN
Estimation Objectives
3 Objective III: Spatial ClassificationPredict the confidence for each class at un-monitored
locations, x∗ ∈ Ω. That means that we find the classifier
b∗ : Ω ↔ {0, 1} that minimizes the error probability
B
b∗ , at an arbitrary location x∗ ∈ X .
P B∗ 6= B
This requires the calculation of the binary conditional
predictive distribution in closed form, given by:
P (B∗ = 0|x∗ , xN , YN , λ) =
P (B∗ = 1|x∗ , xN , YN , λ) =
Z
Z
P (B∗ = 0|f∗ , x∗ , xN , YN , λ) p (f∗ |x∗ , xN , YN ) df∗ ,
P (B∗ = 1|f∗ , x∗ , xN , YN , λ) p (f∗ |x∗ , xN , YN ) df∗ .
and the classifier
b∗ =
B
(
1
0
, P (B∗ |x∗ , xN , YN ) ≥ λ
, P (B∗ |x∗ , xN , YN ) < λ.
Ido Nevat
Random Field Reconstruction in WSN
Estimation Objectives
The common feature of Objectives 1 − 3 is the posterior
predictive distribution p (f∗ |x∗ , xN , YN ).
Ido Nevat
Random Field Reconstruction in WSN
Estimation Objectives
The common feature of Objectives 1 − 3 is the posterior
predictive distribution p (f∗ |x∗ , xN , YN ).
Z Z
p (f∗ |x∗ , xN , YN ) = . . .
p (f∗ |fN , x∗ , xN ) p (fN |xN , YN ) dfN
N
Z ZR
= ...
p (f∗ |fN , x∗ , xN ) p (fA |fD , xN , YN ) p (fD |xN , YN ) dfN
RN
1
p (f∗ |fN , x∗ , xN ): conditional predictive prior distribution.
2
p (fA |fD , xN , YN ): posterior distribution for the spatial phenomenon at
the analog sensor locations given observations.
3
p (fD |xN , YN ): posterior distribution for the spatial phenomenon at the
digital sensor locations given observations.
Ido Nevat
Random Field Reconstruction in WSN
Z Z
p (f∗ |x∗ , xN , YN ) = . . .
p (f∗ |fN , x∗ , xN )p (fA |fD , xN , YN ) p (fD |xN , YN ) dfN
RN
Lemma
The conditional predictive prior distribution, p (f∗ |fN , x∗ , xN ), is
given by:
p (f∗ |fN , x∗ , xN ) = N f∗ ; µf∗ |fN , σf2∗ |fN
µf∗ |fN : = µ (x∗ ) + k (x∗ , xN ) K−1 (xN , xN ) (fN − µ (xN ))
σf2∗ |fN : = k (x∗ , x∗ ) − k (x∗ , xN ) K−1 (xN , xN ) k (xN , x∗ )
Ido Nevat
Random Field Reconstruction in WSN
Z Z
p (f∗ |x∗ , xN , YN ) = . . .
p (f∗ |fN , x∗ , xN ) p (fA |fD , xN , YN )p (fD |xN , YN ) dfN
RN
Lemma
The conditional distribution, p (fA |fD , xN , YN ), is given by:
p (fA |fD , xN , YN ) = N fA ; µfA |fD ,YN , ΣfA |fD ,YN
−1 −2
−1
−2
µfA |fD ,YN := Σ−1
+
σ
µ
I
Σ
+
σ
Y
A
f
|f
W
W
fA |fD
fA |fD A D
−1
−2
.
ΣfA |fD ,YN := Σ−1
fA |fD + σW I
Ido Nevat
Random Field Reconstruction in WSN
The posterior distribution
Z Z
p (f∗ |x∗ , xN , YN ) = . . .
p (f∗ |fN , x∗ , xN ) p (fA |fD , xN , YN ) p (fD |xN , YN )dfN
RN
Using Bayes’ law, the posterior distribution for the spatial
phenomenon at the digital sensor locations is given by
p (fD |xN , YN ) =
Ido Nevat
Random Field Reconstruction in WSN
The posterior distribution
Z Z
p (f∗ |x∗ , xN , YN ) = . . .
p (f∗ |fN , x∗ , xN ) p (fA |fD , xN , YN ) p (fD |xN , YN )dfN
RN
Using Bayes’ law, the posterior distribution for the spatial
phenomenon at the digital sensor locations is given by
p (fD |xN , YN ) =
P (YN |xN , fD ) p (fD |xN )
P (YN |xN )
Ido Nevat
Random Field Reconstruction in WSN
The posterior distribution
Z Z
p (f∗ |x∗ , xN , YN ) = . . .
p (f∗ |fN , x∗ , xN ) p (fA |fD , xN , YN ) p (fD |xN , YN )dfN
RN
Using Bayes’ law, the posterior distribution for the spatial
phenomenon at the digital sensor locations is given by
P (YN |xN , fD ) p (fD |xN )
P (YN |xN )
P (YN |xN , fD ) p (fD |xN )
=R R
. . . RN P (YN |xN , fD ) p (fD |xN ) dfD
p (fD |xN , YN ) =
The numerator can be easily evaluated.
However, the denominator cannot be evaluated pointwise.
Ido Nevat
Random Field Reconstruction in WSN
Saddle Point Approximations for the predictive distribution
We approximate p (fD |xN , YN ) using using a series expansion of
the Saddle-point (Laplace) type via a Gaussian basis.
Ido Nevat
Random Field Reconstruction in WSN
Saddle Point Approximations for the predictive distribution
We approximate p (fD |xN , YN ) using using a series expansion of
the Saddle-point (Laplace) type via a Gaussian basis.
This transforms the intractable multiple integrals to produce
simple closed form expressions. Based on these expressions we
derive new algorithms and provide closed form solutions.
Ido Nevat
Random Field Reconstruction in WSN
Saddle Point Approximations for the predictive distribution
The series expansion becomes:
p (fD |xN , YN )
Ido Nevat
Random Field Reconstruction in WSN
Saddle Point Approximations for the predictive distribution
The series expansion becomes:
p (fD |xN , YN )
= exp
log (p(fD |xN ,YN ))
Ido Nevat
Random Field Reconstruction in WSN
Saddle Point Approximations for the predictive distribution
The series expansion becomes:
p (fD |xN , YN )
= exp
= exp
log (p(fD |xN ,YN ))
T
MAP + 1 f −b
fD
g (b
) 2 ( D fDMAP ) ∇2 g |bf MAP (fD −bfDMAP )
D
Ido Nevat
e
expR3 (fD )
Random Field Reconstruction in WSN
Saddle Point Approximations for the predictive distribution
The series expansion becomes:
p (fD |xN , YN )
= exp
= exp
=
log (p(fD |xN ,YN ))
T
MAP + 1 f −b
fD
g (b
) 2 ( D fDMAP ) ∇2 g |bf MAP (fD −bfDMAP )
D
1
N
1/2
1
bMAP
exp− 2 (fD −fD )
T
e
expR3 (fD )
MAP
fD
H −1 (fD −b
)
(2π) |H|
N
1/2
e
bMAP
× exp(g (fD )+R3 (fD )+log((2π) |H| ))
Ido Nevat
Random Field Reconstruction in WSN
Saddle Point Approximations for the predictive distribution
The series expansion becomes:
p (fD |xN , YN )
= exp
= exp
=
log (p(fD |xN ,YN ))
T
MAP + 1 f −b
fD
g (b
) 2 ( D fDMAP ) ∇2 g |bf MAP (fD −bfDMAP )
D
1
N
1/2
1
bMAP
exp− 2 (fD −fD )
T
e
expR3 (fD )
MAP
fD
H −1 (fD −b
)
(2π) |H|
N
1/2
e
bMAP
× exp(g (fD )+R3 (fD )+log((2π) |H| ))
where H −1 := −∇2 g |bf MAP .
D
Ido Nevat
Random Field Reconstruction in WSN
Saddle Point Approximations for the predictive distribution
The series expansion becomes:
p (fD |xN , YN )
= exp
= exp
=
log (p(fD |xN ,YN ))
T
MAP + 1 f −b
fD
g (b
) 2 ( D fDMAP ) ∇2 g |bf MAP (fD −bfDMAP )
D
1
N
1/2
1
bMAP
exp− 2 (fD −fD )
T
e
expR3 (fD )
MAP
fD
H −1 (fD −b
)
(2π) |H|
N
1/2
e
bMAP
× exp(g (fD )+R3 (fD )+log((2π) |H| ))
where H −1 := −∇2 g |bf MAP .
D
We obtain that the posterior distribution can be expressed as
N
1/2
bMAP
e
MAP
p (fD |xN , YN ) = N fD ; bfD
, H exp(g (fD )+R3 (fD )+log((2π) |H| ))
Ido Nevat
Random Field Reconstruction in WSN
Saddle Point Approximations for the predictive distribution
Theorem
The posterior distribution at the digital sensors, p (fD |xN , YN ):
MAP
log p (fD |xN , YN ) = log q fD ; bfD
, H + R3 (fD ) .
where
MAP
MAP
q fD ; bfD
, H = N fD ; bfD
, H −1 ,
bf MAP = arg max p (fD |xN , YN ) ,
D
fD
∂2
p (fD |xN , YN ) |bf MAP ,
[H]i,j = −
D
∂fi ∂fj
MAP
e3 (fD ) + log (2π)n |H|1/2
+R
R3 (fD ) = g bfD
Ido Nevat
Random Field Reconstruction in WSN
Obtaining the MAP estimate
The MAP estimate is given by:
bf MAP = arg max p (fD |YN , xN )
D
fD
= arg max P (YN |fD , xN ) p (fD )
fD
= arg max P (YD |fD , YA , xN ) p (YA |fD , xN ) p (fD )
fD
= arg max
fD
X
ND
n=1
1
X
P YnD |Bn = l P (Bn = l|fn )
log
l=0
!
2
INA + ΣfA |fD
+ log N YA ; µfA |fD , σV2 + σW
+ log N (fD ; µ (xD ) , K (xD , xD )) .
Ido Nevat
Random Field Reconstruction in WSN
Obtaining the MAP estimate
To solve this N-dimensional optimisation problem, we show that
the objective function is quasi-convex and can therefore be solved
exactly using any gradient based approach.
We utilse the Iterated Conditional on the Modes (ICM) of Besag
to solve this problem.
Ido Nevat
Random Field Reconstruction in WSN
Obtaining the MAP estimate
Using ICM algorithm, the
MAP estimate of the n-th component of
MAP
fD , bfn = arg maxfn p fn |xN , bf1:ND \n , YN , can be evaluated by
solving the following one-dimensional non-linear equation:
2 (P (Y |B = 0) − P (Y |B = 1))
φ λ, f (xn ) , σW
n n
n n
2
P (Yn |Bn = 1) + Φ λ, f (xn ) , σW (P (Yn |Bn = 0) − P (Yn |Bn = 1))
−1
T
2
K (xA , xD ) K −1 (xD , xD )
σV2 + σW
INA + ΣfA |fD
= µfA |fD − YA
f (xn ) − µxn|fD \n
+
σx2n|f \n
D
Ido Nevat
Random Field Reconstruction in WSN
The posterior predictive distribution
Putting it all together.
Ido Nevat
Random Field Reconstruction in WSN
The posterior predictive distribution
The posterior predictive distribution is approximated by
Z Z
p (f∗ |x∗ , xN , YN ) = . . .
p (f∗ |fN , x∗ , xN ) p (fN |xN , YN ) dfN
RN
Ido Nevat
Random Field Reconstruction in WSN
The posterior predictive distribution
The posterior predictive distribution is approximated by
Z Z
p (f∗ |x∗ , xN , YN ) = . . .
p (f∗ |fN , x∗ , xN ) p (fN |xN , YN ) dfN
RN
Z Z
= ...
p (f∗ |fN , x∗ , xN ) p (fA |fD , xN , YN ) p (fD |xN , YN ) dfN
RN
Ido Nevat
Random Field Reconstruction in WSN
The posterior predictive distribution
The posterior predictive distribution is approximated by
Z Z
p (f∗ |x∗ , xN , YN ) = . . .
p (f∗ |fN , x∗ , xN ) p (fN |xN , YN ) dfN
RN
Z Z
= ...
p (f∗ |fN , x∗ , xN ) p (fA |fD , xN , YN ) p (fD |xN , YN ) dfN
N
Z ZR
MAP
, H −1 dfN
≈ ...
N f∗ ; µf∗ |fN , σf2∗ |fN N fA ; µfA |fD ,YN , ΣfA |fD ,YN N fD ; bfD
RN
Ido Nevat
Random Field Reconstruction in WSN
The posterior predictive distribution
The posterior predictive distribution is approximated by
Z Z
p (f∗ |x∗ , xN , YN ) = . . .
p (f∗ |fN , x∗ , xN ) p (fN |xN , YN ) dfN
RN
Z Z
= ...
p (f∗ |fN , x∗ , xN ) p (fA |fD , xN , YN ) p (fD |xN , YN ) dfN
N
Z ZR
MAP
, H −1 dfN
≈ ...
N f∗ ; µf∗ |fN , σf2∗ |fN N fA ; µfA |fD ,YN , ΣfA |fD ,YN N fD ; bfD
N
R
= N f∗ ; µf∗ |YN , σf2∗ |YN
where
µf∗ |YN = µ (x∗ ) + k (x∗ , xN ) K −1 (xN , xN ) µfN |YN − µ (xN ) ,
σf2∗ |YN = Σ22
f∗ ,fN |YN .
Ido Nevat
Random Field Reconstruction in WSN
Spatial field reconstruction, exceedance level estimation
and spatial classification
Objective I: spatial MMSE random field reconstructionb
f∗ = E [f∗ |xN , x∗ , YN ]
Z
p (f∗ |x∗ , xN , YN ) df∗
≃ f∗ b
= µ (x∗ ) + k (x∗ , xN ) K −1 (xN , xN ) µfN |YN − µ (xN ) .
Objective II: spatial exeedence map:
b
f∗ = P (f∗ ≥ λ|xN , x∗ , YN ) ≃ 1 − Φ λ, µf∗ |YN , σf2∗ |YN .
Spatial Classification:
2
+ σf2∗ |YN ,
P (B∗ = 0|x∗ , xN , YN , λ) = Φ λ, µf∗ |YN , σW
2
+ σf2∗ |YN .
P (B∗ = 1|x∗ , xN , YN , λ) = 1 − Φ λ, µf∗ |YN , σW
Ido Nevat
Random Field Reconstruction in WSN
Simulations
Simulations
Ido Nevat
Random Field Reconstruction in WSN
Simulations
Spatial field reconstruction
Ido Nevat
Random Field Reconstruction in WSN
Spatial Field Reconstruction
100 analog sensors and 5 digital sensors
0
10
20
30
y
40
50
60
70
80
90
100
0
10
20
30
40
50
60
70
80
90
100
x
Ido Nevat
Random Field Reconstruction in WSN
Spatial Field Reconstruction
0
100
10
90
20
80
30
70
40
60
50
50
y
y
100 analog sensors and 5 digital sensors
60
40
70
30
80
20
90
100
10
0
10
20
30
40
50
60
70
80
90
x
100
0
0
10
20
30
40
50
60
70
80
x
Ido Nevat
Random Field Reconstruction in WSN
90
100
Spatial Field Reconstruction
100
90
20
80
30
70
40
60
50
50
y
0
10
60
40
70
30
80
20
90
100
10
0
10
20
30
40
50
60
70
80
90
0
100
0
10
20
30
40
x
50
60
70
80
x
0
10
20
30
40
y
y
100 analog sensors and 5 digital sensors
50
60
70
80
90
100
0
10
20
30
Ido Nevat
40
50
x
60
70
80
90
100
Random Field Reconstruction in WSN
90
100
Spatial Field Reconstruction
0
100
10
90
20
80
30
70
40
60
50
50
y
y
100 analog sensors and 5 digital sensors
60
40
70
30
80
20
90
100
10
0
10
20
30
40
50
60
70
80
90
100
0
0
10
20
30
40
0
10
10
20
20
30
30
40
40
50
50
60
60
70
70
80
80
90
100
50
60
70
80
90
100
60
70
80
90
100
x
0
y
y
x
90
0
10
20
30
40
50
x
60
70
80
90
Ido Nevat
100
100
0
10
20
30
40
50
x
Random Field Reconstruction
in WSN
Spatial Field Reconstruction
0
100
10
90
20
80
30
70
40
60
50
50
y
y
100 analog sensors and 10 digital sensors
60
40
70
30
80
20
90
100
10
0
10
20
30
40
50
60
70
80
90
100
0
0
10
20
30
40
0
10
10
20
20
30
30
40
40
50
50
60
60
70
70
80
80
90
100
50
60
70
80
90
100
60
70
80
90
100
x
0
y
y
x
90
0
10
20
30
40
50
x
60
70
80
90
Ido Nevat
100
100
0
10
20
30
40
50
x
Random Field Reconstruction
in WSN
Spatial Field Reconstruction
0
100
10
90
20
80
30
70
40
60
50
50
y
y
100 analog sensors and 20 digital sensors
60
40
70
30
80
20
90
100
10
0
10
20
30
40
50
60
70
80
90
100
0
0
10
20
30
40
0
10
10
20
20
30
30
40
40
50
50
60
60
70
70
80
80
90
100
50
60
70
80
90
100
60
70
80
90
100
x
0
y
y
x
90
0
10
20
30
40
50
x
60
70
80
90
Ido Nevat
100
100
0
10
20
30
40
50
x
Random Field Reconstruction
in WSN
Spatial Field Reconstruction
0
100
10
90
20
80
30
70
40
60
50
50
y
y
100 analog sensors and 50 digital sensors
60
40
70
30
80
20
90
100
10
0
10
20
30
40
50
60
70
80
90
100
0
0
10
20
30
40
0
10
10
20
20
30
30
40
40
50
50
60
60
70
70
80
80
90
100
50
60
70
80
90
100
60
70
80
90
100
x
0
y
y
x
90
0
10
20
30
40
50
x
60
70
80
90
Ido Nevat
100
100
0
10
20
30
40
50
x
Random Field Reconstruction
in WSN
Simulations
Spatial Classification
Ido Nevat
Random Field Reconstruction in WSN
Spatial Classification
100 analog sensors and 5 digital sensors
0
10
20
30
y
40
50
60
70
80
90
100
0
10
20
30
40
50
60
70
80
90
100
x
Ido Nevat
Random Field Reconstruction in WSN
Spatial Classification
0
0
10
10
20
20
30
30
40
40
50
50
y
y
100 analog sensors and 5 digital sensors
60
60
70
70
80
80
90
100
90
0
10
20
30
40
50
60
x
Ido Nevat
70
100
80 0
90 10 10020
30
40
50
60
70
80
x
Random Field Reconstruction in WSN
90
100
Spatial Classification
0
0
10
10
20
20
20
30
30
30
40
40
40
50
50
50
y
0
10
y
y
100 analog sensors and 5 digital sensors
60
60
60
70
70
70
80
80
80
90
90
100
0
10
20
30
40
50
60
70
100
80 0
90
90 10 10020
x
30
40
50
60
70
100
80 0
90 10 10020
30
40
x
Ido Nevat
Random Field Reconstruction in WSN
50
x
60
70
80
90
100
Spatial Classification
0
0
10
10
20
20
20
30
30
30
40
40
40
50
50
50
y
0
10
y
y
100 analog sensors and 10 digital sensors
60
60
60
70
70
70
80
80
80
90
90
100
0
10
20
30
40
50
60
70
100
80 0
90
90 10 10020
x
30
40
50
60
70
100
80 0
90 10 10020
30
40
x
Ido Nevat
Random Field Reconstruction in WSN
50
x
60
70
80
90
100
Spatial Classification
0
0
10
10
20
20
20
30
30
30
40
40
40
50
50
50
y
0
10
y
y
100 analog sensors and 20 digital sensors
60
60
60
70
70
70
80
80
80
90
90
100
0
10
20
30
40
50
60
70
100
80 0
90
90 10 10020
x
30
40
50
60
70
100
80 0
90 10 10020
30
40
x
Ido Nevat
Random Field Reconstruction in WSN
50
x
60
70
80
90
100
Spatial Classification
0
0
10
10
20
20
20
30
30
30
40
40
40
50
50
50
y
0
10
y
y
100 analog sensors and 50 digital sensors
60
60
60
70
70
70
80
80
80
90
90
100
0
10
20
30
40
50
60
70
100
80 0
90
90 10 10020
x
30
40
50
60
70
100
80 0
90 10 10020
30
40
x
Ido Nevat
Random Field Reconstruction in WSN
50
x
60
70
80
90
100
Simulations
Real deployment in Singapore
Ido Nevat
Random Field Reconstruction in WSN
Field Reconstruction
Wireless sensor network deployed in Clementi to monitor acoustic
intensity (”noise”)
Ido Nevat
Random Field Reconstruction in WSN
Field Reconstruction
Sensors deployment
Ido Nevat
Random Field Reconstruction in WSN
Field Reconstruction
Sensors deployment
68
53
52
63
46
52
67
44
52
44
41
68
37
57
55
50
58
49
54
72
52
59
46
58
55
54
51
52
68
55
63
46
47
47
Ido Nevat
65
61
55
62
55
46
Random Field Reconstruction in WSN
Field Reconstruction
Random field reconstruction
35 analog sensors
Ido Nevat
35 analog + 5 digital sensors
Random Field Reconstruction in WSN
Conclusions
1
Developed a new model for sensors networks with mixed
analog and digital (binary) sensors.
2
Derived the Laplace approximation to obtain the predictive
posterior density.
3
Developed the spatial field reconstruction, spatial
classification and spatial exceedance algorithms.
4
Simulations show the benefits of using digital sensors.
Ido Nevat
Random Field Reconstruction in WSN
Questions?
Thanks very much!
Questions?
Ido Nevat
Random Field Reconstruction in WSN

Similar documents