2 N+L-==i|. total .hount of nerat ioh tNlr, and tis.nd Ir1t! and (b
Transcription
2 N+L-==i|. total .hount of nerat ioh tNlr, and tis.nd Ir1t! and (b
20 2 2.O.O TFEIIIIENT OF OATA I. ord€r to evltu.te th€ stabltlly congtant, K, tor a €jnol6 ayat6n .uch !6 N+L-==i|. It 13 in thsory, pr€par€ onty 60tullon conrlinjnE a kno{n total .hount of nerat ioh tNlr, and tis.nd Ir1t! and Fau.rng on€ of rh6 thr* rominins unkndn conc€ntrltion6. Ths6€....free n€u!rat ion cohc€nrrarion! th€ fr€. tj9.nd conc€ntr.tion end rhe mt.l ]lsand conpl6x c@cen!.atjon. This.xcaa6 of d!t. allds to do (a) !o ch.ck th6 valtdity of the chdical nod.t chos6n ino.d€r ro contirh th. system (b) !h. larg€ nunb€r of vatus€ of both !h..i.biliry con6iant K .nd the erperimn!.] v..i!bl€ €€t,in.t€s of th€ or.cision of K.nd th€ ovo..tt cohsi6r.ncy ot rh6 q!s.6€t can o€ Fd€. such information l6 vital It w6 ar. to evatu!!€ th6 reljlbllity of strbility consr.nt, ir i€ n.c€66.ry ro rJs€ lr to crlcul.te rh€riEdyn4ic D...mt€r3. Th. la.s€ !fiount of data ra knon .3 econdary conc.otratlon v.ri.bt€. 2.1-o aEc(xo Ry cot{cElTMttot vanIASLE Ih ord.r !o evltuar€ !h€ Ft.b ily conEtrnt j! js nece€aary to find a r€tatjonship b.tn€€n rh.m and rh€ ll d.t mln.d v.rl.bl.. ([Nl, [U,6tc) trl. rhl. ..latlon r. ..t.bl.l.h.d vir th. d.ltnttion ol eecordlry con.€ntrrllon vlrl.bl.. thr.. ty!.. of functlon€ can b. 6r(!€.1r€ntrl lY 2,1.1 THC @lPlEX FOil| ttot Frrcltd n- Th. coDrl!x tor||rt'lon tunctlon n- 116 flrai int.oduc.tl by N. sJ.rru. |nd J. gJarrui [2-31. Let u. @n6ld.r a r.trl lon L.nd. lta.nd ! ln I aolutlon of corEt{t lo.rac .tr.neth, th. .qulrlbrl. or.€..1 aB: N+r<Ejl.A|! 12-r, xL+L€,Il)x!2 (2.2' ||!n-t +L15 Th. no(lrun valu. r|ln ( ot n, x.itt n la N, tlill 2.3) b€ . funclion ol both th. i5x1flxr ooordln.tion nur|ber of !h€ rb!.] ion and th. flultld.ntl.n ol th. 1it.nd, Th. n$3 balanc. equ.lion lor both !h. n.t.l conc€nl;r.t lon o.n b. rrltt.n txlr: Irl + 0lll + [xl2l ion .nd lotal +, , , , , , , . . , f|.ln] i ig..d ( 2-4) ttlr : tU +tNL1 + +........,ntrln 2tx!2 (2.5) A tunction n_ ts d.ttn.d aa .v.rlse nunb.r of liaanda, L, attlch..t !o !h. mt.l, x, |||y Tot.l tur - lll tound Lts@d lotal ||tll .ubrtiluting tn. vatue t. frit!6n txtr ot (2,6) Eo(2.ir) .nd Ee(2.5) tn Eq(?,6 ) lll+ttlLl+2tlrlzi r ..,...,.......n(xtnl _ [Ll txl + tr,rl! + tNt-2I +..,........txr]n tr|ll + 2t|r2l t|'|l + lNLl + tr!21 IN .,n(xht + + ''''''" " 'l|,tlln (2.?) |U|r|tion t m Eq(z,r) D.cc-. tntxL^1 (2.4) 1r1 rh.r. * fr*.nr. ls th€ m)(trun coo.dtnlrion nrnb.r lor th. n trl tf L i. monod€ntale iiarnd, ft. €q(2.s) .hoN. tnrt tr rill nor h.lp I er..r d.al tn.valurt,tna n-, as (rhl and INJ t.i nor N in g.n.r.t ..rdlly cbtalnrtla, Th.rarora xn and En rr. 23 tNht (2.s) lxLn-tltu IN!n (2. i o) txl(un = Kt K2 Oa (3 .... . . '.. Kn (2.rr) .ubatitxllns Eq(2.9) in Ea(2.?) eiv.. xttxltLt + ?xrx2trtt!I2 r .....nxrxz...xntxttrtn txl + r(1tMl_lrt + (1K2tM]tLl2 + ...,,Kr(a...(n0iltrln \2.12' tx1{KtlLl + 2KtrgtLt2 + ..,..nkttg...xrt!ln} tltl{r + Kilrl + Krx2lLl2 +,,...Kira...XntUn} l(rIL] + 2(1lgtLt2 + .....nxre...t$tr-tn i.+ (rtrJ * Krx2tll2 + .....rrrt...(nt!tn (2. r3) (2.1/t) fh. Eq(z.rt) elv.s 6itr-l + 2aztll2 +....nonlLln i + !ttrl Th. Eq(2. t5) mY + !2tlts +,...onlun (2.r5) b.,rltt r ln !u-.tlon t rB a tnB"tLln X*.,.r" (2. ra) r *{enrr.rn X"*"" 21 Th€ Eq(2.14) 6ho{s that lhe n- i6 d€p€ndenr on ir€€ llsand conc€ntr.tion and ia inds0end6nt of t{lT, [L]T and f.e6 reral ron conc€nt.ation. lhe contt.x fornltjon funcijon n- rls fira! jniroduc€d by N. Bj€rrun [2] .nd lar€. d€votop€d by J. 8j€r.um I3l. !l j6 rh€ .tarting point, for h.ny of th€ ibthoda u6€d in !h3 catcut.tion of stabillly con3t..r6. T}IE OEGREE OF FOiI4ATION Fo. a.y individu.r cdoonen! of sysr€n ! variable dc can be d€tin€d a6 TMLC] Ixl 12.1r ) r qhsr€ d,c is Dlrri!t rclE fract,jon deqr6e of fo.mtion of 6y6t€m G a o- conpone.t |hot€ mr b. lLc. Th€ coneidered .nd !noih.. varl.bto can b€ d.fin6d 4r = 2,<e rz. ra) /T is th. fr.crion ot tot.l rrlt bound to tigand tn iho fo.n of a cohpt€x. 6injtar p.oc€our€ ^ Eq(2.16) wa€ .dopt€d to. cltcut.tjng th. Eq(2.it). !i nay b€ Nhsr€ tc6- t Llc ' *'ie.rrr t6-(L1c (2. r9) ) Bc I r-tc 2a The int..6tln9 Bolurron of Eq(t.17) i3 xh€. c = o 0rl {2.20) [ ]r rhe <o siv.6 rh6 Ep€ci.E dt.t.iburion for th€ fr66 @t!l ion in !h€ 60lution. rlhsn no conpt€x formtion !ak66 pta.€ rhan do 1. unity, beca$€ [Nlr = Il|1. rh€..<c funcrion is ua6d rn. r€c€nt atlas of fttlt ligand €quilibri! in aqu€ous solution to 6how ar a elance th€ retarjve propo.tjons of of th€ aD6.1€6 D.€5ent jn sotutjoh {al. €ach THE OE@EE OF @IIPIEX FOfU'ATIq{ The 3.d vlriabte 0 i6 dofin€d o o ja lxlT tl as 1+ >6nILln of cdpt€r fo.miion. \2.21) alm.rizjng thea6 a€cond.ry conc€nt.ltion v.riabt6s th. n- i6 th6 @st oe.d 1n ihe catcltation of stabil 2-2-O d€g.€e On CAICULATION OF STABILIIY @NSTANI BAAED IHE COIiPLEX FORXATION FUNCIIOII N- o6t atability consrant calcut.rions !r€ ba6€d on Bj€rrqn'6 conpl€x formalion funciion n-, the conpl.x fo.nrilon luhctlon jnvotv. . pto! ol n_ lsrinrr fr.€ ris..d 26 Such Dlor c.n bo !rep!r.d by thre6 marn {.) Il ih€ fr.o lisand conc..i..tion ie m.3ur€d di.ectty, for 6r.rple by an 6t6ctrod6 rev€rsibl6 to that liglnd, theh kno{lng the totat concenrraijon of mtal and tigand present n- c6n b€ catcutatsd, This mgthod cah not b€ u€ed for f€at coheter6s or xhsd tbt.l n€rar ion conc€ntrrljon js v€.y lor, sinc€ jn €irh€r c.s€ tLlr -[11 rjr] be cto6. to 2610 and h.nco n will al6o b6 cto6€ ro 2610. (b) R€a.ranrenenr or Eq(2.0) siv€6 ILlT = n-tMlT + tr] \2.22) A se.1€e ot sotutions coutd be pr6p!r6d 1n Bhtch n_ .nd [L] {.r€ consr.nt althoush unknorn, . ptot, of tLlT against [{ly rou]d b€ a st..ight li.e of etop€ n.nd r.r€rcspr IL]. such aol uii ona r.. catt€d !s corr€spondin9 6otutjonsr th16 can be us€d for 6ubssqq€.t 6varuat ion of 6tabi I iry consiant's. Th6 corr6spondi ns mthod c.. b€ qsed ,hen ItlT - [t] i6 s...ter than 2€.o and reas than I r]T, (c) By follorin! soE prop€rty th.t j6 h. proporrion.t to lc, 6t'ch a6 rhe 6hf of rut6t ion r.v€r.1bt. €t€cr.od. or th€ dtstribution ot h€!!t lon bslr€.n rro irniscill€ solvshts! n- can be €v.tult€d fron equllion iros,n _ a lo9l l-l Thie approach can b€ u6.d {h€n 2[ then Eq(2.7) r€duc.s tLl + 2(t1(2t[]2 1 + KI ILl + KtK2tLl2 121 Kt Ir'rl+lxLl+lttt21 12.23) tLlT - [Ll i6 clos€ to zero. Con€idor th6 c.sc wh.n il :2 IML] + as (2.2.) it th€ .v€ras6 .{mb€r of tigand per n6!al 0.5 !hd, n- = O,s .nd .r any fr€€ tisahd only tuo fr€tat containins €pecigs ... the Eq(2.2a) reduc€s a. I (1[L] r,tL] IM] + IML] 2 1 + KtlLl \2,26 ) tLl l!.9., furth6. tE sh*n th.t KnlKn+l ia (n c.n De obtaln€d from th€ valu6 0f lLl cor.espondihs to n-:n-1l2 tha! i6 l1r \ l-I;|.t; ThjB r€lation6hip at th. pointE n_ : n - js €asi = ly O.E th€n 12.26) 2g : [|aLn-11 I ratnt in.p.ctl6 of €q(2.9r, th. ..tlo ol th. con@nt.itlon ot tio coh..ct'lv. corpl.ru l! gie$ by ay .- Ixlnl 11 - n if nrn_)n-1 txh+11 On sutotltlt'lon ol EC(2.211 ln Eq(2.t) rr n-+t-n I Kn : (-l{-} tor !y.t n Kr ' 12.21) hrye (2.28t N = 2 Eq(2.26) b.oones n_I ............'_t_) to.i)n-rO = (l-n-) M lz.Za, (2 = +{_}-r) r for 2)n-)t (2.30) (2 - n-) tll Frd Eq(2.2t) ud Eq(2.40) in ce !. .v.lu.!.d ar .I polntr b.tr..n n_: n .nd n_: n - i. Ar.lt rutiv. a9Dro.ch l. to find !h. .toe. of tli. ?orutlon functton cu.v. thd l. ih. elot ot n- .astFt [Ll G (n- 6: -+n- -0,4941 arn[l] By dltt.r.fltldinr ol -: an- aPl Eq(2.211 - r.lth (2.3t) r..p.ct ro ltg.nd 6 ^t n' 2xx_tll + 4X-2[U2 -|2*1_31113 12.32' (r+2xx-M+rzlL]2rz = rrlz th€n ralll E r .nd €lop€ i. (2.33) (l+x) Eq(2.33) la obtrln d d.l..ci,ry ?rd.. Eq(2,32) aubstltuttne r-tLl=t, ri onty c@€ider |rhen x ts l.rsD, il x i. anall th€n v.lE of |(- t. .oproxjn.te, rf Eq(2.16) j! r€srjtlen .. + (n--t)ttlKt + (h--2)atlzKlK2 + ...(n--N)t!lNKrq...tq : o (2.3ll) r|q thla valu€ of xn ,. ir.t t Mr KtX2(3 'tI t - + i " )trll i( jlr i 'Kn-r '......Xn-1 in+t Ke2 ....,.Xn+t tu :::(2.34) ln!€i.r.nd h.ve vrl6 b.t..n o dd lnt n -=n-1/2inEq(2.34) I +t N-n, l+?i fr trl rrt n=n-tl?KtX?X3 ...Krt...Xn-t ,:rt I + 2r)(tLti atn:n-!/2 xfttKni2,,,.l(n +i ::==:;===::::=(2.3! ) 30 Tht. is !h. cdv6rs.dc. lo.frl.! i. ce u{ th. h.tl lnt erar v.tr6 ol n- !o o6tlin Xn, th. Eq(2,35) t3 (2.30) r. D€tio. Qproxin tto?| ol Kn trcto. t€ndlne tor.rd3 . constant v.rue 15,61, ] . vari.nt. h.v€ us.d conc€.n.d int.s..l vrlu.. of the torDarton th. n_ is .lnd.Ccnd.ni ot rhe 2.3.O cR P{tcat rGDItt BAqED (lr n_ s..Phlc D€lhod i6 avail.bl. rhen .nd .llnirrtion ol Eq(2.ra) th.t .t! (r - n-)tuKt + (2 - n-)tl!2!tt - n-)It-l + (2 I rt n_ )tll + n_) tLl akz) (2.37 ) (2 - n-)trlzi? (2.14) (1 - n-)tLl n-)ILl2 { (a - n-)(lt ! x, (2 (l - - n-)tLi? -t_ (2.36 ) (t - n-) (2 - n-) t Ll + (2) t2 (2.39) (2.40 ) 3l (r - n_) (2 - n-)tll th. r.tt h.nd tz - n_) 2 tL! .i.L or Eq(z./() l--- I 'Kq ts th. Y i.trfc.pt gtv.€ -x2 ihil.3toD. (2.ar ) Fliiiir" gjv.. (1(2. Th. olh€r m.lhod of €q(2.36)qd divtd. by n- qr.n (i -'i)tLl(i (l - n_ + (2 )trlxt - n-)t!12(tq (2 (2.121 - n-)t!12(itt ( ( (2 lub.tjtutlns th.i. varuo! in 2..3) r-n-,IL] - n_lttl2 Eq( 2.,rs ) r : ltx + f2Y (2.11' rtr... tt .nd t2 .r. runcrion. ot f .rE (Lt. rnts t. lolvo.t by plottine t/11 .eaiEt 1112, trt potn! ot lnt.rrecljon yi.ld. K1 .nd (iK2. Thi3 n lhod is t(norn ts .iininalid 32 It r€ con.ld.r th. .y.t5forx|3 f u-:-_:IU th.n Eq( 2. tn- -'rontr-:n = o 6r-2 n--x+2 "'9"1n ll1.1n-*.t qltll x-1-n: ;. N-t-n qr GN-t = (2 th. .45 ) |u llm.r, I glot ot l.ft hard e.ide 2)/(N-t-n)ILl13 dr.isht lim, th€ Cq(2.45) BN-t 2.1,O t5) I'MTERIC /qt I and llni!ins slop. l! 6[_2/ql !s ILI xE?|toltA AlaEo ot{ B'rEtUtt ,t FUlcTtOt €qu.rion (2.15) ihioh i6 non ltnllr Fy b..olv6d ytr.n tha d.t. 9olnia .r. grxt . iho o. aqurl to i,h. nq.!€r ol unknorn6, to. N = 3 ih. Eq(2.33!) c|n Dl. ..irt!r.n o n- : (1-n_)tLl6t + {2-n_)tr12q + (3-n-)M36! {2.46) ,hich ia slv.bls It s h.v. thrs. s.t, o? drt. !h.t i. I016263l -)rtlt fr'-_)tLt1 - ttlr ll:.: ) (r-n_)[L]3 l-n- ) t!12 (2-n-)tl"l z (2-n-)ILl, )tLlz (3-n- ) tLts ( ( 3-n- (2.11t 33 In nat.ix th13 i. re9r.3.rt d by BA = c (2.49) B = AC-1 \2.19) rh!s B crn b. rosnd by inv.rrins th. A nltrtx .nd p.€mltipling by colurh v.otor c. Ther. is . .t.pt. Fthod due t! Btoct( lnd rGrntyrc t7l to. &rvtnr gq(2,40) rhich ir b*ed on C..rr.rr3 rure [6]. !? r. rerrit. Eq(2.r8] ; = 9,,-"-',, 'r". Jn = and (h - n_)trln subalitut tli. Eq(2,6r) tn n- (2.81) Eq(2.50) = J.r,s, Fo. thla mlhod thr€3 cFl!3fia must b. |b!: (r) th. .!9.rlrint.l <hr. nu.! b. g@d, .. .y.n 12,62) {r!tl €..or yt.ld.r.66ou. or m.||t,iv. arEi.r., (b) th. n- v!lu.3 ctb€€n gholtd lt. id.ltly tn ur. lolrortne can r.2<n2-(1.6 2,2<n3-<2.6 34 2-5.O CALCULATIq{ OF SIABILTIY cotsT^fta 6asEo THE OEGRE€ OF THE COfIEX 2.5. I lEDEil'S Lend€n I,IETHOD [s] d6finod ! function txjr - Ixl Irl TI,II T (2.53) L1 ihe Eq(2.53) with herp of Eq(2.21) can b€ writr.n .6 61 12.5a) ifN=2th6nEq(2.s4) F(t) = st + B2trl (2,b5) F(L) iB ptott€d .o!in€! tL1, a str.ieh! tjne sraph re3ul!6, int€rc€pr is Bt whit€ 6tope j6 62. For sy€t6m whe.€ N 2 3 th. relation6hip is .ot tin6a. .nd Bt has to be found by €x!..Dol.tjo. to zero fr.. tigand concaolr.lron. A ne, function cln bo d€finod IL] a6 :6, + t B,trtl-r ( 2.56) Tho procedu.e can be cohtinuld unrit 6n is found, The nerhod h6e di3.dv!n!!s. bBcaugs th. tll and lxl n.v6 io b€ kho*n. r! is po$ibl€ ro round thi3 systdn rhers il:2.nd d6fini.9 . nd va.iabl. t(t))x2 by tLlr - (Ll (2.6t) [rlr - Irl rh6r€ t, l! aveaag€ nuib.. ot lle.||d p.r |.l.l ld .nd N : rnd Kt )) K2, rlll b. allghtly s..at€r th.n unlly. It t : [Ltr- tLl : [rlT_ txJ (2.!6) l'rLl + 2[ 12! (2,5s) Irlr - txt : [xU + [xt2] (2. ao) th€ bound lie.nd i6 tllr conplex m.lal _ tLlr -ILl tt'l = repr6s6nt! sub6titulln! Eq(z.59) and Eq(2..o) in Ea(2,57) t|rll + 2lrtzl lMLl + th. fi.at t .. tHU IrJ IHLl lLl2l'|l ol (2.61) [Xt-2 ) r.xt by tam by Eq(2,n1) ztxl2ltttlllll [xl] + ____:_--:-____l/t________ I LI -t_____- [xlIrI .a@nd lxrl tLI zlrt ''' thlch on sinpl itlcat,ion eiv.. t||ltLI tN!,1(NucLl trLttLtztNt' t2.42) o, + 2a2 [!l (2.63) 6i + 6?tll Eq(2.aS) l. u..d to d.rive Bt .nd 62 troi tro. lisand 2.4.2 F!X,|EA,'Atc:a|{ttt Fron au tlol u..rt x(L) = o: , !. a atralehi lumtld I +56.ILtr fi \2-64) rh. dltl.r.niirl forr| ol Eq(e.a4), o r.arr.nltEnt siv6 tnx(t) : Fn(2-a5) L 'tu-dlll Fron h.r! tho ibthod Drocxd. .t.tllrty to !.nd.n'. Ethod, aa alip1. in!.rr€lation.hip .xl.!!: )((l): F(t)tL! + I (2.d0) liffv.r, ttr.. l! n6.tDl. r.t.tto. b.trxn.tth.r of rlr.2"4.0 lllE |.tSEn lt{) s0tuTIotl t TUiE OF rB€ apECtEa llt B.for€ an .t,trhpt, ls .ad€ ro drt..r.tne rho .qulll!.lun ol .'|y .otutlon ..!orton, . cl.r?ly ch...tcrt 37 @del N.t be *6uBd. lnordor ro do rhi€, both !h€ nu.b€. and nltur. ol th€ va.iorrs ch6nic.t speci6s in .olution 6hould of mlhod! lor d€t€rninlna th.a€ d.t! a.e avajlabl€, it my not bo possjbt. ro der6rnjn€ th. nunb6r of chemic.l apocis6 and th.ir fo.nula€ directty .nd recou..6 nust b€ nad€ to cheric.l r€.60nlbteness lnd !o st.tistical evalo.tion of the d.ra using varjous rcd€t.sy.!.m. b€ known, a nunb€r 2-6-1 THE NUIiBER OF APECIEA IN SOLUTIOI{ I^ order to fjnd rh€ t,otat nunbor of sp6cie3 pr6.nt in the solution .i oquitibiim, th. t.chnjqu€ ru6t physlc6i D.rrno!..6, for !his..ch so.ciog should mk6 i!6 o*n uniqu. contribution to th. observ.bte param€lar a6 rn intgnsiv€ tactor. Fo. thi6 DurDos. th€ no3t widely u6€d techniqu€ is !p.c!ropho!d.r.y. In sp€ct.oohotd.t.y r. conc€r. ,ith tha lb&rbanc€ A, ihich ia a lih€a. lunclion ol conc.ntrlljon of.giv€n sD.ci63 .! apecified r.v€t€nsth, ihlt i5 "tr. "1., -.i. - .......i"" (2.67 ) A!b./l i6 th€ ob3!rv.d abaorbanc. p.r unit p.!h t€nsth lrr al rlv€l.heth, .,,.r,.: .......r; is mtar lb.o.ptivily ot ap.ciaa l, 2, 3 ahd n at, rav.lengih l .nd ci, cZ, 63 ...,.cn uher. 3a a.€ their .€6p€ctjve conc€ntratjon. Th€ Eq(2.67) i6 rin€ar d€pend€nc6 0f A.bs on the conc€nrration ot th€ va.io!B at€cie5 pr€aonl. If d sDocie has z€.o ml!. abso.ptjvit, th€n it doss not absorb jh sp6.rral r€gion.nd do€s not ihfluence on r€ve length. In 6quiribriun 6tudie€ to rJ6€ constaht ionic backsround to adjust th6 €quitibrja rlth solut,ion of alrons nineral .cid6 and .tt!t.i€ is u€u.l in aolqt,ion. Th66€ 6p€cie6 do not absorb in !h. 6p.ctrat .6gion. In the sinpl€Bt c.66 th€ Uv-Vi6ible.pectrlh is.ecord€d ?or a nunber of solutiohs contsjnlng a conslaht anouht of .n6!.1 with incre!6ing tigand concantrations, Th€ spectr. ar€ alp€rinposgd by the pre66nc€ ot anr sp€ctr!tty invaria.t points, Ihe6€ points ar€ knorn a6 isob€e!ic poinis. Tho6o polnt3 indlcAt6 the pr6E€nc€ of at tea6t iro ind€p€ndeht j, L€t !5 consider a €e.t66 0f 60tution nuhber€d r b 6.ch ha. ite absorb.nce m.sured ar a nuhb.. of diff6r6nt, wavelonsth. 1 to i th6. dat. s6! o.y b6 t.id jn the forh ot "i" t1j a ,23 'i taJ 'l' 39 Bh€re aij r€p.6E€nrs th€ .b6o.banc€ ot 5ol!tion J .t wavelensth i. va.ious rerhod6 a.e avaitabl€ in th€ .literaturo to determin€ lh€ number of sp€cjes t14-15j jn eoiurion. 2.6.2 @|IPUTATIONAI IiETHOO FOR DETERNIIINC TH! llUtlBER OF SPECIES IN 6OLUTIO|{ It the.6 a.e nor€ speci€s j.votvina jn 6q!jtibria the computation.l n€rhod€ are used ro d€t€rmine rh6 .!nk natrix [16-19]. conpurer pro!rans t2o-211 catcurats !he nlnber of sp6cjes ih sotulion. mat.ix j6.educ6d by. s€ri€€ of e opera!rohs to an squivat6nt, r6duced n.!.ix in Th6 largest. et6renr. are on rh€ teading djagonal and al belo, this are z€ro. 2.1-O STEP SISE FORIIATIdI OF @|IPL€XES It is fundameni. y assumed th.t conptex form.tion is a st6p riEe proc€ss. rl it js t,ru€ lh€n ihe rario o, various stabitiry consranrs co!td in rheory be pr6dlct6d by 6iat,rstical considerarjons. rhe exDerin€n!.t ratio wi]] b€ dep6ndeht upon ihe et6ct,ronic and steric flctor in addition io a sinpl€ staristicat effect, for conpt€x MLn Bh6.€ L i6 uhidehtat€ ligand, jt Is ueqatly assum6d th!t: a0 (.) arr poa.tbl. coo.diEtid ..1t 6 (x) .r. lrLntic.l, (b) th. tsd.ncy o?. corolex NLn to t$. . ltsand, I, t3 Frorortlonrl t,o lhe nunb.r ol li€aod occupj.d 61t.. (n), (c) th. i6hd.rcy to. G4Dlo. rln to trk uD mther ltaard l. groDo.tlon l to rh€ nu*ar o? v&ur ctr65 0{-n)r n r. Ma€cuttv. .r.btltly con tant, xl,t2,,.....,xN rill b. pr€dict d t6 tE gropo.tlon to N/t, (X-t)/2, ,...,(Nn+r )/n, (tr-n)/(.+r ),.. ....21 ltr-1 t, i/ r..p6!iv.ly, .o th. r.tio ol aucc€s.lv. cri.r!t!nt5 du. to atltisttcrl (rFn+l )(n+1) (2.44) (|Fn)n (|.neral]y to quot6 th. toacrithiic r.tlo of 3trDi tjtt .oBr.nt r it c.n b€ d.lln.d s ( -n+r )(n+r) ( (x-n)n 2. a9) .o Ec(2.64) b.c.|r.s .. (2.70 ) loih+t : loetx l. cd b. .xpaot.d, it irtliC.nt t ratlo dltfara oonsldambly. tieand. ar. u..d th. REFERINCES 1. F.R, HErt6ly, C, Aurg.6a .nd R. Atcocr, sotution €quilibria , EtIra Hor*ood Chichester, rohn krle, N€v York {1940) pp 54. 2. 3. N. Bj€..um, Z. Anorg, A|gsn. Chem., tl9, t79 {t921). J. Bje..un, " Metal Amine Fo.Btion jh Aqu6ou6 Solution ", cooenhag6n, p. H.ase and 6on, (r941) and (1957). 4. J. Kragteni Artas of M€ral Lisand Equitibria in Solution , chich.sr€r, E j6 Ho.wood (1976), 5. M,T. Beck, Ch6mjstry of ConDtex Eq!itjbrj. , Vah No6trand, rondon (1970). 0. 7. a. t.s. Ro66otti, - Th€ D€!€rnjnatlon of Stability Constantg , trccrar-Hiit! London (t96j). 8.p. Blolh and G.H. ltclnlyre, J. An. Ch6n. Soc., 75, 5667 ( t953) c,s, chaDra and R.p, c.nale, Eds. ' Nurerrc.t Methods ror rngrneer6 , 2nd Edn., l{ccr.t_Htll, N€, york ( 1949) F,J.C.. Rossottj and !D 21a-221 . 9. l. Lgnden, z, Physjk, Ch€n., Atss, 160 (1941). 1O. A, Froneau, Acta, ch6n. scand.,4, 72 {1950). r1. T,-Noxicka-JEnkorEk., J. Inorg, Nucl. Ch€n,,33,2Ot3 (r97r). 12. ,3. chyle$ki, AnOrd, to, 1s5 (t971)- Ch. Ch. grynestad .nd 72, 296 ( 1963). Ch€m. ht., c.p. snith, J. phys. cheh. 14. F€f. 2.1 pp 45-50. r5. H.M. Irving ahd H,s, Ro.6otti, J. (19s3). 3397 Edn., t ch6n. aoc., a2 t6. R.tl. hll&e dd a,t (ltz, J, phya. chir., at, 3690 ( | 96,1). 17. l.P. v.r9a lnd F.c. v.rtcht An!t. chon., 39, I tOl (r96?), 18. 0. Krllkie, an!1. ch.n.,37,376 (19a!). 19. Z.Z. Husa ffd A.A.EI, Aildy, J. pht.. Ch.h., r!. ( tttl ). 20. Ral. I DD 3t5-3i7. 2r. A.1l.l(. Khah:.da .nd A.t. Iutti,- Proeru. " in ot-g^atc !.neu!!€. Unpubti.tEd Z95ra Caur€r