breit edda
Transcription
breit edda
Mitglied der Helmholtz-Gemeinschaft Physics Program at COSY-Jülich with Polarized Hadronic Probes Forschungszentrum Jülich October 9, 2008 | Andro Kacharava (JCHP/IKP, FZ-Jülich) Overview COSY (Cooler Synchrotron) at Jülich (Germany) • Introduction • Polarized Hadrons • COSY–Hardware • COSY–Research • Future Plans at COSY • New Projects • Hadronic probes: protons, deuterons • Polarization: beams & targets • Summary Hadron Physics: Understanding of all matter comprised of quarks and gluons: How does Nature make hadrons? Evolution of our view of the nucleon ⇒ Experimental program with polarized hadronic probes & strong theory support Hadron Physics: Why Spin ? • Fundamental degree of freedom • Crucial role in determining the basic structure of fundamental interactions Spin-dependent decays and scattering: ⇒ Powerful test of theory ⇒ Unique opportunity to probe the inner composite systems (e.g. proton) COSY Facility Characteristics: • Energy range: 0.045 – 2.8 GeV (p) 0.023 – 2.3 GeV (d) 10 m • • • • • • Max. momentum ~ 3.7 GeV/c Energy variation (ramping mode) Electron and Stochastic cooling Internal and external beams High polarization (p,d) Spin manipulation Polarized Hadrons at COSY • Beams: → → protons (p), deuterons (d) ⇔ Polarized colliding-beams source: COSY ABS+cesium beam source + Lamb-shift polarimeter • Targets: Hydrogen, Deuterium ⇔ Polarized Internal Target (PIT): ANKE ABS + Storage Cell (SC), EDDA ABS, HERMES ABS • → Reaction products: N ⇔ Self analysing (Λ, Σ decay) Polarimetry: ⇔ Low-Energy Polarimeter (LEP) Lamb-shift Polarimeter (LSP) Breit-Rabi Polarimeter (BRP) talks: by R. Engels and A. Nass (session on Oct. 7) COSY-Hardware (I): Polarized Internal Gas Target Main components of PIT: • Atomic Beam Source (ABS) • H or D • H beam intensity (2 HFS) 8 · 1016 atoms/s • Beam size at the IP σ = 2.85 ± 0.42 mm • Polarization for Hydrogen PZ = 0.89 ± 0.01 PZ = -0.96 ± 0.01 • Lamb-Shift Polarimeter (LSP) • Storage Cell (SC) in target chamber talk by R. Engels (session on Oct. 10) COSY- Hardware (III): Detectors ANKE ANKE (double polarization): - Magnetic spectrometer (3 dipoles) - Internal beam - (Un-), polarized target (PIT) TOF TOF (beam polarization): - Non-magnetic (t-o-f) spectrometer - Extracted beam - Large acceptance - Un- (polarized) cryo-targets ANKE and TOF: no photon detection COSY- Hardware (III): Detectors WASA (beam polarization): - Internal beam - Electromagnetic calorimeter - SC solenoid - Inner and forward tracking - Pellet target (unpolarized) Charged particle and WASA photon detection Relocation from CELSIUS to COSY in 2005 COSY- Hardware (III): Detectors WASA (beam polarization): - Internal beam - Electromagnetic calorimeter - SC solenoid - Inner and forward tracking - Pellet target (unpolarized) Charged particle and WASA-at-COSY photon detection Commissioning in 2006 – operational from 2007 on COSY- Research (I): An Overview Spectroscopy, Spin, Symmetry Nuclear Forces Hadronic Spectroscopy (N*´s, Exotics) Strangeness Role of s-Quark (OZI) Symmetries Symmetries and Symmetry Breaking (ChS, P, C, IS) In-medium Modifications Final State Interactions (Bound States) … isospin and polarization (beams, targets) as tools (final state) photons as a probe (WASA) COSY- Research (II): Selected Recent Results Topics: • NN-scattering • Deuteron break-up • Pion production • η-3He interaction (FSI) • Hyperon-Nucleon interaction • Symmetry breaking (1) NN – Interaction NN – Interaction (I): The EDDA Legacy • Ramping mode (Ep < 2.5 GeV) • Wide energy & angular range • High precision, consistency for pp (I=1)-system: dσ/dΩ PRL 78 (1997); EPJ A 22 (2004) AN PRL 85 (2000); EPJ A 23 (2005) A** PRL 90 (2003); PR C 71 (2005) Full characterization of elastic pp scattering (PWA) No dibaryon signal NN – Interaction (II): np System at ANKE np system: different isospin channel via Charge-Exchange duteron breakup: →→ deuteron beam: dp→{pp}S (00)+n →→ deuteron target: pd→{pp}S(1800)+n • d beam: Tn up to 1.1 GeV for np • d target: Tp up to 2.8 GeV for pn n → d D → ↑n p ↑p ↑ psp ↓ p dp observables: dσ/dΩ, T20, T22, Cy,y, quasi-free np observables: Ay, Ayy, Dyy, Cxy,y, Epp < 3 MeV NN – Interaction (III): np Results at ANKE → dp→(pp)1S0 n D.Chiladze et al. PLB 637, 170 (2006) Axx (T22) Transition from deuteron to (pp)1S0: pn → np spin flip Td = 1170 MeV np spin-dependent amplitudes: Ayy (T20) dσ 2 2 2 2 , T20 , T22 ⇒ γ + β , δ , ε dq Results: • Method works at Tn = 585 MeV • Application to higher energies • Td=2.23 GeV (in progress) New ! Tn = 585 MeV ⇒ SAID np amplitudes NN – Interaction (IV): np Results at ANKE → dp→(pp)1S0 n D.Chiladze et al. PLB 637, 170 (2006) Axx (T22) Transition from deuteron to (pp)1S0: pn → np spin flip Td = 1170 MeV np spin-dependent amplitudes: Ayy (T20) dσ 2 2 2 2 , T20 , T22 ⇒ γ + β , δ , ε dq Results: • Method works at Tn = 585 MeV • Application to higher energies • Td=2.23 GeV (in progress) Next step: • Double polarized → Cy,y, Cx,x => relative phases →→ dp Cy,y Cx,x COSY: from Pions to the Phi (2) Meson Production Meson production (II): Motivation • Derive chiral three-body forces from p-wave pion production pd elastic π δ RIKEN, KVI, ... Ch. Hanhart et al., PRL 85, (2000) • Very different kinematics, but same δ : consistency check of ChPT for NN → NNπ p π+ 1S δ Experiment is scheduled for 2009 3S 1p p p π- p (3S1 – 3D1) → 1S0p (unknown) δ p 0→ IUCF p • Model-independent extraction from ANKE data →→ pd → pspppπ- n n Role of 4Nπ contact term Meson production (III): Diproton final state Meson production: pN→{pp}sX X=π X=(2π) (ABC effect), η X=ω, φ (OZI) Deuteron: bound (p+n) system, very well studied • Diproton: free {pp}-pair in 1S0 state, E < 3 MeV pp • (ChPT) By-product: Inverse diproton photodisintegration pp→{pp}sγ ▶ Same kinematics as np→ →dγ γ ▶ M1 multipole is forbidden New tool to study hadron interactions ! Next Polarization observables (Ay, Ayy, Axx ) V.Komarov et al., PRL 101(2008) PLB 661 (2008); PLB 635 (2006) η- 3He Interaction (I): (Quasi-) bound state d+p→3He+η: Total C.S. T. Mersmann et al., PRL 98, 242301 (2007) quasi- bound state vwithin < 1MeV of threshold ? • Precison data, “step function”: 0→ 400 nb w/i 0.5 MeV • Implies large 3Heη scattering length (~ 10 fm) η- 3He Interaction (II): (Quasi-) bound state • d+p→ 3He+η:: Angular distr. C. Wilkin et al., PLB 654, 92 (2007) 0.4 A big phase variation of the s-wave 0.3 → d+p→ 3He+η: (analys. in progress) dσ 1 2 2 = pp pη A + 2 B dΩ 6 | A |2 = pp pη (1− 2T20 ) dσ dΩ B 2 − A2 T20 = 2 2 2 A + 2 B p 1 dσ | B |2 = p (1+ T20 ) pη dΩ 2 2 f s + pη2 C 2 0.2 0.1 -0 w/ phase variation -0.1 -0.2 -0.3 → → d+p→ 3He+η: (next step) Cy, y = asymmetry factor α indication for a quasi-bound state? α = 2 pη Re( f s*C ) 2 Re(A * B) 2 A +2B 2 Phase determination between A and B 0 20 40 60 80 η momentum pη [MeV/c] 100 η- 3He Interaction (III): η-Meson mass PLB 619 (2005) 281 Precision data – but inconsistency w/ new data !? Further investigations at COSY: → d+p→3He+η ; ∆m~50 keV (analysis in progress) New technique ! Barrier bucket RF solenoid d GEM: pd → 3Heη SATURNE: pd → 3Heη NA48: π− p → η n MAMI: γp → ηp KLOE: φ→ηγ CLEO: Ψ(2s) → η J/ψ RF-induced spin-resonance: ∆p/p ~ 3 · 10-5 γ= f · 1 § ⋅ ¨ 1 − res ¸ G © f0 ¹ EDDA talk by M. Leonova (session on Oct. 10) COSY-TOF: decay vertex (2 → 4) Λ (3) Strangeness DoF Strangeness production (I): YN Interaction p p K+ Y N (mostly COSY data) PLB 649 , 252 (2007): PLB 652, 245 (2007) ▲●○ pp → pK+Λ Importance of Final State Interaction Incoherent sum of 3S and 1S 1 0 FSI with unknown relative strengths Spin dependence of FSI unknown ■□ pp → pK+Σ0 without FSI with FSI Strangeness production (II): YN Interaction ΛN scattering length: singlet (as) and triplet (at) part separately • Poor data base: - ΛN little known - ΣN nothing known • YN scattering experiments difficult ⇒ large uncertainty in Λp scattering length Theory Model-free determination in production reactions Spin/isospin dependence • TOF: high-resolution single polarized Method: dispersion relations Theory precision is 0.3 fm ⇔ A. Gasparyan et al., PRC 69, 034006 (2004) → p+p→K+(Λp) at (θK,cm = 90°) ⇒ at →→ ANKE: double polarized p+n→K+(Λn) (1 – CNN)·σ at (θK,cm = 0°) ⇒ as 26 Future plans: Experiments with polarized probes 2005−2009 2010−2014 COSY proposal #152 ArXiv:nucl-ex/0511028 Future plans: Exploration WASA-at-COSY Charge Symmetry Breaking (subset of isospin symmetry) E. Stephenson et al., PRL 91, 142302 (2003) • Isospin violation in d+d→α+π0 d 0 + d → α 0 → 0 + π0 1 Goal: determination of p-wave contribution at Q=60 MeV (Td=350 MeV) • Pilot measurement: dd →3He+n+π0 (analysis in progress) → most severe background channel → probes the same partial waves → ▶ Next step: polarized beam experiment d+d→α+π0 Q ≈ 3.0 MeV New projects: at COSY • SPIN@COSY:Spin-Manipulating Polarized Deuterons and Protons ⇒ needed to maintain and SPIN-FLIP GeV to TeV stored polarized beams talk by M. Leonova (session on Oct. 10) • dEDM: deuteron Electric Dipole Moment ⇒ COSY task: polarimeter database and demonstration of concepts talk by Y. Semertzidis (session on Oct. 7) New projects: FAIR at GSI Existing Facility HESR: Hadron Physics with Anti-Proton Beams New Part: - Atomic Physics - Nuclear Physics (RIB) - Hadron Physics - Nucleus Nucleus Coll. -… Floor Plan FAIR-Facility at GSI (Darmstadt), Germany New projects: HESR upgrade (Polarized Antiprotons) Method: Spin Filtering ⇒ proton polarization due to multi-pass interaction with polarized targets (also works for antiprotons) talk by E. Steffens (session on Oct. 8) Physics: Transferse spin structure of the nucleon talk by M. Anselmino (session on Oct. 7) towards an asymmetric polarized antiproton-proton collider • Depolarization of beams with unpolarized targets (COSY) • Polarization build-up (COSY) • Antiprotons (AD at CERN) talks: by F. Rathmann and A. Nass (session on Oct. 7) 31 Summary COSY - unique opportunities for hadron physics with polarized hadronic probes (beam & target) ANKE, TOF, WASA: state-of-the-art, complementary Physics: “Spectroscopy, Spin, Symmetries” – selected examples and further plans at COSY Vision from COSY to: FAIR/HESR/PANDA – physics with polarized antiprotons (PAX) The END Thank you very much for your - attention – Many thanks to the conference organizers !