Addisson Salazar, Univ. Politècnica de València 1
Transcription
Addisson Salazar, Univ. Politècnica de València 1
Contents Instituto Telecomunicaciones y Aplicaciones Multimedia Procesado de señal y fusión de clasificadores: detección de fraude y otras aplicaciones Dr. Addisson Salazar Universitat Politècnica de València 24‐06‐2016 Contents Instituto Telecomunicaciones y Aplicaciones Multimedia Background of the GTS • Non‐Destructive Testing • Surveillance Systems • Biomedical Analysis • Financial Analysis Pattern Recognition Approach • Statement of the problem • Available platforms: in‐Fusion, Neurodyn • Application General Outline Recent Themes in Signal Processing Examples of Applications • Credit card fraud detection • Microarousal detection, neuropsychological tests 1 2 GTS Background Instituto Telecomunicaciones y Aplicaciones Multimedia Instituto Telecomunicaciones y Aplicaciones Multimedia Applications: Material quality control, Biomedical diagnosis, Bank card fraud, Surveillance, Image processing, … g Background of the GTS Research subjects: Statistical signal processing, Non‐ R h bj t St ti ti l i l i N Gaussian mixtures, Non‐linear processing, Dynamic modeling, Decision fusion, Machine learning, Signal processing on Graphs 3 GTS ‐ Non Destructive Testing Instituto Telecomunicaciones y Aplicaciones Multimedia Quality control of marble rocks (US, I‐E) 4 GTS ‐ Non Destructive Testing Instituto Telecomunicaciones y Aplicaciones Multimedia Material consolidation and thickness layer detection (US) Chronological classification of archaeological ceramics Foreign body (US) detection in food (US) 5 Addisson Salazar, Univ. Politècnica de València Flaw detection and material characterization in historical walls (US, I‐E, GPR) 6 1 GTS ‐ Surveillance Systems Multimodal Apnea Audio surveillance ? GTS – Biomedical analysis Instituto Telecomunicaciones y Aplicaciones Multimedia Visible video diagnosis (EEG, EMG, EOG) Fusion Expert 1.5 SICAMM 1.5 ICAMM 1.5 1 1 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400 2 1 sinus rhythm x 10 Atrial Intrusion detection 50 2 Infrared video fibrillation (ECG) 4 5 0 -5 0 0.5 1 1.5 2 time atrial fibrillation Early forest fire detection Instituto Telecomunicaciones y Aplicaciones Multimedia Epoch number 2 5 x 10 x 10 7 4 0 -5 0 0.5 1 1.5 2 time x 10 7 7 GTS – Biomedical analysis 8 GTS – Biomedical analysis Instituto Telecomunicaciones y Aplicaciones Multimedia Instituto Telecomunicaciones y Aplicaciones Multimedia Cognitive structures, Epilepsy, Alzheimer (EEG, ECoG, fMRI, DTI) 9 GTS ‐ Webmining 10 GTS ‐ Webmining IT Y Instituto Telecomunicaciones y Aplicaciones Multimedia CT IV Email Access RA 1 4 5 Chat Agenda IN TE Instituto Telecomunicaciones y Aplicaciones Multimedia 2 Forum Workgroup documents Exercises News ? ? ? Achievement 3 3 1 Contents O RS PE NA L A I CT TY VI + Global 4 + Deductive Understanding Organization 2 + Sequential + Active + Inductive Processing + Reflective 11 Addisson Salazar, Univ. Politècnica de València 12 2 GTS ‐ Credit Card Fraud Analysis GTS ‐ Credit Card Fraud Analysis Instituto Telecomunicaciones y Aplicaciones Multimedia Fraud detection 3 Fraud detection OLAP in bank cards operations Instituto Telecomunicaciones y Aplicaciones Multimedia 2 ? 20 10 0 0 commerce city codes identifyiers amount method 0 0.5 0.5 1 supervision Models 1 outliers Results 0.8 Model estimation 0.7 True Positive Rate R= KL distance 30 Operation record d ¿Fraud? 0.6 1 0.5 0.4 0.3 0.2 0.1 0 0.02 0.04 0.06 False Positive Rate 0.08 0.1 13 Contents 14 Problem statement from Pattern Recognition Instituto Telecomunicaciones y Aplicaciones Multimedia g pp Pattern Recognition Approach Feature extraction Classification Application domain ? Instituto Telecomunicaciones y Aplicaciones Multimedia Score s µ One method solving all M li l Multiple methods h d (collaborative working) Knowledge about each category Extreme case: • Much and diverse information about a category • A few information about the other category Sources ‐ Physical models ‐ Databases 15 Architecture based on Multiple Classifiers 16 Available platforms: in‐Fusion Instituto Telecomunicaciones y Aplicaciones Multimedia filtering General classifiers Specialized classifiers in different feature space zones (Mixture of experts) Multiple classifiers performing in sequence Specialized classifiers in each of the feature vector components Multiple classifiers performing in different space‐time coordinates Multiple classifiers performing in different space time coordinates Pool of competitive and collaborative weak classifiers (Boosting) channel 1 .. . time Feature extraction function Schemes of training: • Un‐supervised, semi‐supervised • Different historical dataset versions • Different localization dataset versions Pre‐ processing cleaning augmentation indirect features splitting dimension reduction ranking Early Fusion Priors Data modeling GMM PDF estimation parametric / non‐ parametric ICAMM Training / Testing ‐ 1 Late Fusion 17 Addisson Salazar, Univ. Politècnica de València statistics channel n Knowledge frequency Instituto Telecomunicaciones y Aplicaciones Multimedia ... Training / Testing ‐ n Final Representation 18 3 Available platforms: Neurodyn channel 1 Application General Outline Instituto Telecomunicaciones y Aplicaciones Multimedia in‐Fusion Feature extraction .. . s t, channel n Pre‐ processing SICAMM s t, UGSICAMM temporal / Spatial coding t, ... Training / Testing ‐ n s Final Representation Prototype New developments s t, Training / Testing ‐ 1 Adaptation & Development Neurodyn Early Fusion parametric / non‐ parametric Priors Instituto Telecomunicaciones y Aplicaciones Multimedia Late Fusion Objectives • To improve the detection capabilities of the system in use • To improve the predictive capabilities of the system in use • To provide results from single and fused methods • To provide several levels of spatial and temporal coding • To accomplish the required standards 19 Contents 20 Recent Themes in Signal Processing Instituto Telecomunicaciones y Aplicaciones Multimedia Massive scale Time/data adaptive Outliers, missing values Signal processing and learning for Big Data Challenges g g Recent Themes in Signal Processing Instituto Telecomunicaciones y Aplicaciones Multimedia Parallel, Descentralized Models and optimization Real‐time Real time constraints Robust Cloud storage Succint, sparse Prediction, forecasting Cleansing, imputation Dimensionality reduction Tasks Regression, classification, clustering 21 Possible Definitions given L NxT denotes a low rank matrix S MxT sparse matrix 22 Feature Life Cycle Instituto Telecomunicaciones y Aplicaciones Multimedia Feature Description D NxM dictionary V NxT Y NxT Instituto Telecomunicaciones y Aplicaciones Multimedia for modeling and measurement errors Representation large‐scale data set can be defined as Data Feedback Y L DS V Data Collection 1, N x 1,T no nulls index pairs n, t P Y P L DS V Feature Selection Example Feedback Learning Feature Evaluation Network anomaly detection: Y is traffic volume over N links and T slots; L is the nominal link‐level traffic; D is link x flow binary routing matrix; S is parse anomalous flow 23 Addisson Salazar, Univ. Politècnica de València 24 4 Algorithms and Data Signal Processing on Graphs Instituto Telecomunicaciones y Aplicaciones Multimedia Algorithms • Decentralized and parallel algorithms • Splitting, sequential algorithms Instituto Telecomunicaciones y Aplicaciones Multimedia vn , n 1... N Graph: set of connected nodes A n, m anm Adjacency matrix sn , n 1... N Signal on graph (each node is assigned certain number ) vn • Online algorithms for streaming analytics sn Activation signal of brain centers Periodic signal Large‐scale problems‐‐‐> Low‐complexity, real‐time algorithms capable of processing massive data sets in a parallelizable and/or fully decentralized fashion Data Signal on graph in semisupervised scenario (5 of 8 nodes are of unknown class) • Data sketching (subsampling) Y ar br cr • Big data tensors (parallel factor analysis) r 1 • Non‐linear modeling via kernel functions (tensor completion problem) 26 25 Multi‐Classifier Decision Contents Instituto Telecomunicaciones y Aplicaciones Multimedia Instituto Telecomunicaciones y Aplicaciones Multimedia p pp Examples of Applications 27 Fraud detection – General Outline Instituto Telecomunicaciones y Aplicaciones Multimedia 28 Fraud detection – Procedure Stages x Direct feature extraction Transactions CLASIF CLASIF DETECTOR 11 1 CLASIF CLASIF DETECTOR 11 N ... P1 PN Dimensionality reduction Record crossing Pn= Pn[H1/x] Labelled transactions 1-Pn= Pn[H0/x] Indirect feature extraction Confirmed Frauds Preprocessed transactions P P= P[H1/P] = FUSION ƒ(P/H1) ƒ(P/H1) + ƒ(P/H0) P Prototype fraud selection ∞ ∫ ƒ(P/H0)dp = PFA >< u Record selection u (0,1) H1 Instituto Telecomunicaciones y Aplicaciones Multimedia Preprocessed transactions H0 Fraud replicate generation Training transactions Testing transactions 29 Addisson Salazar, Univ. Politècnica de València Training transactions 30 5 Fraud detection – Procedure Stages Key Performance Indicators Instituto Telecomunicaciones y Aplicaciones Multimedia Testing transactions KPI Entry code selection VDR Training classifier 1 Test Classifier 1 PC 1 ADR Classifier -1 scores Training classifier 2 ADT Test Classifier 2 PC 2 AFPR 1 Training transactions Instituto Telecomunicaciones y Aplicaciones Multimedia Definition Value Detection Rate. The total fraud percentage saved by the system for a certain cutoff values of score Account Detection Rate. The percentage of detected cards Average Detected Transaction. The mean amount of transactions required for detecting a fraudulent card Account False to Positive Rate Classifier -2 scores Training classifier 3 Test Classifier 3 PC 3 AFPR= Classifier -3 scores 1 True positives + False positives False positives =1+ True positives True positives Result calculation Fusion Fusion scores Result tables Analysis graphs 31 Example of normalized KPI tables ROC Curves for a Given Dataset Instituto Telecomunicaciones y Aplicaciones Multimedia Instituto Telecomunicaciones y Aplicaciones Multimedia Mean FPR score (%) >= ADR (%) VDR (%) 0 100.00 100.00 1.0 100 49.90 1.6 ADT 4 FPR (%) ADR (%) VDR (%) 0 100.00 100.00 1.0 100 5 97.36 99.58 1.0 ADT 1 69 5 56.74 10 54.84 48.39 1.7 4 10 95.75 99.47 1.0 59 15 51.47 47.40 1.7 3 15 93.70 99.17 1.1 46 20 48.53 46.63 1.8 3 20 92.96 99.04 1.1 35 25 46.48 46.12 1.8 2 25 91.06 98.91 1.1 26 30 45.01 44.65 1.8 2 30 88.42 98.05 1.1 20 35 35 43.26 43.26 44.18 44.18 1.9 1.9 2 35 35 84.60 84.60 92.26 92.26 1.1 1.1 4 14 40 40.62 43.44 2.0 1 40 80.65 90.39 1.2 13 45 34.90 41.45 2.2 1 45 76.69 89.25 1.2 11 50 33.58 40.75 2.1 1 50 72.29 87.88 1.2 9 55 32.11 38.85 2.2 1 55 67.16 85.67 1.2 7 60 26.69 37.67 2.4 .8 60 61.58 80.90 1.3 6 65 23.02 35.03 2.4 .7 65 47.80 73.65 1.3 3 70 21.41 32.53 2.6 .6 70 31.52 39.84 2.2 1 75 20.38 31.82 2.2 .6 75 24.78 37.80 2.3 .8 80 17.74 30.58 2.3 .5 80 22.43 34.34 2.5 .6 85 15.84 27.06 2.6 .4 85 18.91 32.31 2.2 .5 90 14.08 25.50 2.5 .3 90 15.84 29.49 2.5 .4 95 10.70 22.22 2.8 .2 95 13.64 25.32 2.7 .2 0.8 0.7 0.8 True Positive Rate score >= True Positive Rate Minimum 32 0.6 LDA QDA NGM Fusion-MEAN Fusion-MEDIAN Fusion-MIN 0.4 0.2 0 0 0.2 0.4 0.6 False Positive Rate 0.6 0.5 0.4 0.3 0.2 0.8 0.1 0 1 0.02 0.04 0.06 False Positive Rate 0.08 0.1 33 Surrogate data from legitimate operations 1 0.2 4000 0 -1 50 100 150 200 250 300 350 400 450 500 0 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 0.1 0 5000 0.05 -2 0 50 100 150 200 250 300 350 400 450 500 0.5 0 -6 -5 -4 -3 -2 -1 0 -0.5 0 50 100 150 200 250 300 350 400 450 500 0.5 0 -1.5 3 0.06 0.04 0.02 0 -10 -1 -0.5 0 0.5 1 1.5 2 2.5 0.6 0.04 0.02 0 -10 5000 0 -0.5 0 50 100 150 200 250 300 350 400 450 500 0 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 -6 -4 -2 0 2 4 6 8 10 -0.1 -8 -6 -4 -2 0 2 4 6 8 10 -0.05 -20 -8 -6 -4 -2 0 2 4 6 8 10 -20 -8 -6 -4 -2 0 2 4 6 8 10 -0.1 0.02 0 0 0 50 100 150 200 250 300 350 400 450 500 10000 5000 0 50 100 150 200 250 300 350 400 450 500 0.5 -1 0 -0.4 -0.5 0 0.5 -0.2 0 0.2 0.4 0.6 0.8 1 5000 -0.5 0 50 100 150 200 250 300 350 400 450 500 0.5 0 -0.5 0 -0.8 10000 0 50 100 150 200 250 300 350 400 450 500 -8 -6 -4 -2 0 2 4 6 8 10 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 -0.4 -0.2 0 0.2 0.4 0.6 20 15 20 -10 -10 -10 -0.02 -8 -6 -4 -2 0 2 4 6 8 10 -0.05 -15 -10 -5 0 5 10 15 20 -4 -2 0 2 4 6 8 10 -0.02 -15 -10 -5 0 5 10 15 20 -6 -4 -2 0 2 4 6 8 10 250 300 350 400 450 500 -20 -15 -10 -5 0 5 10 15 20 0 0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500 -10 -5 0 5 10 15 20 -10 -5 0 5 10 15 20 50 100 150 200 250 300 350 400 450 500 -10 -5 0 5 10 15 20 Histograms (real and surro) Autocorrelation comparison Cross‐correlations Addisson Salazar, Univ. Politècnica de València 0.2 0.1 0 -10 -8 -6 -4 -2 0 2 4 6 8 10 1 0.1 0.05 0 -10 -1 0 -8 -6 -4 -2 0 2 4 6 8 10 0 -1.4 0 -0.8 0 -1.4 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500 0 -0.6 -1 -0.8 -0.6 -0.4 -0.2 0 0 0.2 0.2 0.4 -0.6 -0.4 -0.2 0.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0 -10 -8 -6 -4 -2 0 2 4 6 8 10 0.6 0.06 0.04 0.02 0 -10 -8 -6 -4 -2 0 2 4 6 8 10 0.4 0.04 0.02 0 -10 0.04 0.02 0 -10 -0.2 0 0.2 0.4 0.6 0.8 -0.4 -0.2 0 0.2 0.4 0.6 0.8 0 50 100 150 200 250 300 350 400 450 500 0 -0.8 -0.2 0 0.2 0.4 0.6 0 5 10 15 20 -5 0 5 10 15 -0.05 -20 20 -15 -10 -5 0 5 10 15 -0.05 -20 20 -15 -10 -5 0 5 10 15 20 -15 -10 -5 0 5 10 15 20 -15 -10 -5 0 5 10 15 20 -15 -10 -5 0 5 10 15 20 -15 -10 -5 0 5 10 15 20 0 -8 -6 -4 -2 0 2 4 6 8 10 -0.02 -20 0.01 0 -8 -6 -4 -2 0 2 4 6 8 10 -8 -6 -4 -2 0 2 4 6 8 10 -0.01 -20 0.01 0 0 -0.4 -5 -10 0 -10 -10 -0.01 -20 0.2 0.03 0.02 0.01 0 -0.6 -10 -15 0 02 0.02 0.02 100 0 -15 0.05 0.04 400 0 -0.6 200 -20 0 0.6 -0.4 -20 0 -0.02 0.05 0.05 -1.2 200 0 0 -0.05 0.02 0.1 200 0 500 surrogate samples 35 -2 0.1 400 0 -1 -15 -3 0 200 0 1 -20 -4 -0.1 400 0 -1 -15 -5 -0.2 100 1 -20 -6 -0.3 200 0 -1 -15 -0.4 200 0 1 -20 0 -0.5 400 -1 500 surrogate samples 200 1 0 -8 150 500 -1 0.1 -0.1 100 1000 -0.5 0 -6 50 0 -2 0.02 -8 0 2 0.05 0.2 200 0 -0.2 0 0.02 0.01 0 -0.6 15 10 0.05 0.02 0.01 0 5000 0 -0.8 -10 0.03 0.02 0.01 0 0 10 5 1 -20 0.04 0.02 0 5 0 0 4000 0 0 -5 0.1 2000 0.5 -5 -10 0.5 0 -0.5 -10 -15 0 0.5 -0.5 -15 0.02 -0.02 400 0.2 -20 0 0 -10 5000 -8 0.05 1 0 Instituto Telecomunicaciones y Aplicaciones Multimedia 0 0 -10 10000 Surrogate data from fraud operations Instituto Telecomunicaciones y Aplicaciones Multimedia 0.1 0.1 2000 0 2 34 0 -8 -6 -4 -2 0 2 4 6 8 10 -0.2 -20 Histograms (real and surro) Autocorrelation comparison Cross‐correlations 36 6 Surrogate joint distributions ROC curves: real and surrogates Instituto Telecomunicaciones y Aplicaciones Multimedia Instituto Telecomunicaciones y Aplicaciones Multimedia 1 -0.6 -0.4 -0.2 0 0.2 0.4 -0.5 0 0.5 -0.4 -0.2 -0.4 -0.2 0 0.2 -0.5 0 0.5 -0.4 -0.2 0 0.2 -0.5 -0.4 -0.2 0 0.5 -0.2 0 0 0 0.2 0.2 0.2 -0.5 0 0.5 -0.2 -0.5 0 0.5 -0.5 -0.2 0 0 0.2 0.2 -0.5 0 0.5 -0.2 -0.1 0 0.1 -0.5 0 0.5 0 0.5 -0.2 -0.1 0 0.1 -0.5 0 0.5 -0.5 0 0.5 0 -0.2 0 0 0 0 0 -0.05 0 0.05 -0.5 -0.5 1 0 0 2 2 0.5 0.5 -0.4-0.2 0 0.2 0.4 -0.4 -0.2 0 0.2 0.4 Comparison of Legitimate operation joint distribution -0.4 -0.2 0 0.1 0 0 0.1 -0.1 -0.4 -0.2 0 0.1 -0.4 -0.2 -0.2 0 0 -0.2 0 0 0.2 0.2 0 0 -0.4 04 -0.2 0 0.2 0.4 0.6 -0.2 -0.2 0.1 0.2 -0.1 -0.4 04 -0.2 0 0.2 0.4 0.6 -0.4 0 -0.2 0 0.05 -0.1 -0.4 0.2 -0.1 -0.05 0 0 1 0 -0.2 -0.1 -0.05 0 0.05 0 0.8 0.4 -0.1 -0.4 -0.4 04 -0.2 0 0.2 0.4 -0.1 -0.05 0.5 0.05 -0.4 -0.2 0 0.2 -0.1 -0.05 0 0.05 0.5 0 0.9 0.2 0.4 0.05 -0.4 04 -0.2 0 0.2 0.4 -0.5 0.2 0.2 -0.05 -0.4 -0.2 0 0.2 -0.5 0.5 -0.2 0 0.5 -0.2 -0.1 0 0.1 -0.5 -0.2 -0.1 0 0.1 0 -0.2 0 -0.2 0 0.2 -0.5 0.2 -0.2 True Possitive Rate -0.6 -0.4 -0.2 0 0.2 0.4 -0.2 0 0.2 Amount of surrogate data 0.7 0.6 05 0.5 0.4 0.3 0.2 0.2 0% 0% 50% 75% 100% Real data Surrogates 100% Surrogates 50% Surrogates 75% AUC calculated on the: Zoom in the Full ROC detection curves zone of interest 0.8708 0.0656 0 8708 0 0656 0.8641 0.0640 0.8563 0.0591 0.8678 0.0589 0.1 Comparison of Fraud operation joint distribution 0 0 0.2 0.4 0.6 False Positive Rate 0.8 1 37 True Posiitive Rate ROC curves in the zone of interest Instituto Telecomunicaciones y Aplicaciones Multimedia 38 Apnea (microarousal detection) 0.7 Kind of feature Amplitude 0.6 Spectral 0.5 Statistical 0.4 0.3 Real data Surrogates 100% Surrogates 50% Surrogates 75% 0.2 Instituto Telecomunicaciones y Aplicaciones Multimedia Feature Average amplitude Maximum amplitude Average power Centroid frequency Maximum frequency Spindles ratio TSI ASI Skewness Kurtosis Time reversibility Third‐order self‐covariance 0.1 0 0 0.02 0.04 0.06 False Positive Rate 0.08 0.1 39 Apnea (SICAMM paremeters) Instituto Telecomunicaciones y Aplicaciones Multimedia 41 Addisson Salazar, Univ. Politècnica de València 40 Apnea (SICAMM paremeters) Instituto Telecomunicaciones y Aplicaciones Multimedia 42 7 Neuropsychological Tests Instituto Telecomunicaciones y Aplicaciones Multimedia Neuropsychological Tests Instituto Telecomunicaciones y Aplicaciones Multimedia Response Memorize Response Response Audio stimuli Memorize Visual stimuli Test Fp1 AF7 AF3 F1 F3 F5 F7 FT7 FC5 FC3 FC1 C1 C3 33343536373839404142434445464748495051525354555657585960616263 EEG signal capture Signal processing analysis Time (s) Time 43 Neuropsychological Tests Instituto Telecomunicaciones y Aplicaciones Multimedia 44 Neuropsychological Tests Instituto Telecomunicaciones y Aplicaciones Multimedia DBN2 Figural Memory TAVEC DBN Subject #4 Subject #5 BNT G-SICAMM+VI G-SICAMM+BW G-SICAMM SICAMM+VI SICAM+BW SICAMM ICAMM True data 0 20 40 60 80 100 0 200 400 600 800 a) Time from the start of the test (s) b) Time from the start of the test (s) DBN2 DBN BNT G-SICAMM+VI G-SICAMM+BW G-SICAMM SICAMM+VI SICAM+BW SICAMM ICAMM True data Verbal Paired Associates Subject #5 0 TAVEC Subject #6 100 200 300 400 0 c) Time from the start of the test (s) 200 400 600 800 d) Time from the start of the test (s) 46 45 Contents Instituto Telecomunicaciones y Aplicaciones Multimedia Instituto Telecomunicaciones y Aplicaciones Multimedia JCR Journals • Vergara L., Soriano A., Safont G., Salazar A., On the fusion of non‐independent detectors, Digital Signal Processing, vol. 50, pp. 24‐33, 2016. • Safont G., Salazar A., Vergara L., Probabilistic Distance for Mixtures of Independent Component Analyzers, submitted to IEEE Transactions on Neural Networks and Learning Systems, 2016. • Safont G., Salazar A., Vergara L., Gomez E., Villanueva V., Multichannel Dynamic Modeling of Non‐Gaussian Mixtures, submitted to IEEE Transactions on Neural Networks and Learning Systems, 2016. • Igual J, Salazar A., Safont A., Vergara L., Semi‐supervised Bayesian classification of materials with impact‐echo signals, Sensors, vol. 15 no. 5, pp. 11528‐11550, 2015. • Soriano A., Vergara L., Bouziane A., Salazar A., Fusion of Scores in a Detection Context Based on Alpha Integration, Neural Computation, vol. 27 no. 9, pp. 1983‐2010, 2015. g p pp • Safont G., Salazar A., Rodriguez A., Vergara L., New prediction methods based on Independent Component Analyzers Mixture Models, submitted to Signal Processing, 2015. • Safont G., Salazar A., Rodriguez A., Vergara L., On Recovering Missing GPR Traces by Statistical Interpolation Methods, Remote Sensing, 6, pp. 7546‐7565, 2014. • Rodriguez A., Salazar A., Vergara L., Analysis of split‐spectrum algorithms in an automatic detection framework, Signal Processing, vol. 92, pp. 2293–2307, 2012. • Llinares R., Igual J., Salazar A., Camacho A., Semi‐blind source extraction of atrial activity by combining statistical and spectral features, Digital Signal Processing, vol. 21 no. 2, pp. 391‐403, 2011. • Salazar A., Vergara L., Serrano A., Igual J., A General Procedure for Learning Mixtures of Independent Component Analyzers, Pattern Recognition, vol. 43 no. 1, pp. 69‐85, 2010. • Salazar A., Vergara L., Miralles R., On including sequential dependence in ICA mixture models, Signal Processing, vol. 90, pp. 2314‐2318, 2010. References 47 Addisson Salazar, Univ. Politècnica de València References 48 8 References Instituto Telecomunicaciones y Aplicaciones Multimedia References Instituto Telecomunicaciones y Aplicaciones Multimedia • Salazar A., Igual J., Vergara L., Agglomerative Clustering of Defects in Ultrasonic Non‐destructive Testing using Hierarchical Mixtures of Independent Component Analyzers, IEEE 2014 International Joint Conference on Neural Networks, IJCNN, pp. 2042‐2049, Beijing, China, 2014. • Salazar A., Safont G., Vergara L., Surrogate techniques for testing fraud detection algorithms in credit card operations, 48th IEEE International Carnahan Conference on Security Technology, IEEE ICCST, pp. 1‐6, Rome, Italy, 2014. • Safont G., Salazar A., Vergara L., Gomez E., Villanueva V., Mixtures of Independent Component Analyzers for Microarousal Detection, IEEE Second International Conference on Biomedical and Health Informatics (BHI 2014), pp. 752‐755, Valencia, Spain, 2014. • Safont G., Salazar A., Vergara L., Vidal A., Gonzalez A., Assessment of historic structures based on GPR, ultrasound, and impact‐echo data fusion, Key Engineering Materials, vol. 569‐570, pp. 1210‐1217, Dublin, 2013. • Soriano A., Vergara L., Safont G., Salazar A., On comparing hard and soft fusion of dependent detectors, S i S f G S l O i h d d f f i fd d d Proceedings ‐ IEEE Int. Works.on Mach.Learn. for Sig. Proc., MLSP 2012, art no. 6349792, pp. 1‐6, Santander, 2012. • Safont G., Salazar A., Vergara L., Gonzalez A., Vidal A., Mixtures of independent component analyzers for EEG prediction, Communications in Computer and Information Science, vol. 338 CCIS, pp. 328‐335, 2012. • Salazar A., Safont G., Soriano A., Vergara L., Automatic Credit Card Fraud Detection based on Non‐linear Signal Processing, Proceedings ‐ International Carnahan Conference on Security Technology 2012, art no. 6393560, pp. 207‐212, Boston, USA, 2012. • Safont G., Salazar A., Soriano A., Vergara L., Combination of Multiple Detectors for EEG based Biometric Identification/Authentication, Proceedings ‐ International Carnahan Conference on Security Technology 2012, art no. 6393564, pp. 230‐236, Boston, USA, 2012. • Salazar A., Gosalbez J., Safont G., Vergara L., Data Fusion of Ultrasound and GPR Signals for Analysis of Historic Walls, Proceedings of International Simposium on Ultrasounds in the Control of Industrial Processes, UCIP 2012, IOP Conference Series: Materials Science and Engineering, Madrid, Spain, 2012. • Salazar A., Vergara L., Llinares R., Learning Material Defect Patterns by Separating Mixtures of Independent Component Analyzers from NDT Sonic Signals, Mechanical Systems and Signal Processing, vol. 24 no. 6, pp. 1870‐ 1886, 2010. • Salazar A., Vergara L., ICA Mixtures Applied to Ultrasonic Non‐destructive Classification of Archaeological Ceramics, Journal on Advances in Signal Processing, vol. 2010, Article ID 125201, 11 pages, doi:10.1155/2010/125201, 2010. • Vergara L., Moragues J. Gosalbez J., Salazar A., Detection of signals of unknown duration by multiple energy detectors, Signal Processing, vol. 90, pp. 719‐726, 2010. Books and Book Chapters • Salazar A., On Statistical Pattern Recognition in Independent Component Analysis Mixture Modelling, Springer‐Verlag, Berlin, 2013. • Safont G., Salazar A., Rodriguez A., Vergara L., An Experimental Sensitivity Analysis of Gaussian and Non‐ Gaussian based Methods for Dynamic Modeling in EEG Signal Processing, In Encyclopedia of Information Science and Technology, Third Edition, IGI Global, pp. 4028‐404, USA, 2014. • Salazar A., Vergara L., Perspectives on Pattern Recognition from ICA Mixture Modeling, in "Perspectives on Pattern Recognition", Nova Science Publishers, Inc., pp. 203‐223, USA, 2011. • Salazar A., Vergara L., Knowledge Discovery from E‐Learning Activities, in "Advances in E‐Learning: Experiences and Methodologies", IGI‐Global, pp. 173‐198, USA, 2008. International Conferences • Salazar A., Igual J., Safont G., Vergara L., Vidal A., Image applications of agglomerative clustering using mixtures of non‐Gaussian distributions, CSCI 2015, Int. Conf. on Comp. Sci. Comp. Intell., pp. 459‐463, USA, 2015. 49 50 Instituto Telecomunicaciones y Aplicaciones Multimedia Thanks asalazar@dcom.upv.es http://www.iteam.upv.es/group/gts.html 51 Addisson Salazar, Univ. Politècnica de València 9
Similar documents
SVM TFV
[2] Fatimah Wulandini, Anto Satriyo Nugroho, “Text Classification Using Support Vector Machine for Webmining Based Spatio Temporal Analysis of the Spread of Tropical Diseases”, International Confer...
More information