Stressökologie (SOE 1) - Der WWW2
Transcription
Stressökologie (SOE 1) - Der WWW2
Fachkurs für das Hauptstudium Stressökologie (SOE 1) Molekularbiologie, Genetik und Informatik mit C. elegans 09.– 19. Januar 2007 Dr. Ralph Menzel Institut für Biologie - Gewässerökologie HUMBOLDT UNIVERSITÄT zu BERLIN Arboretum, Späthstr.80/81, 12437 Berlin 2 CONTENTS Page Contents 2 Eckdaten für die Protokolle (in German) 3 Schedule 4 Talks 5 Sicherheitsbestimmungen (in German) 6 Module 1 Manipulating worms, recognizing stages, life cycle 7 Module 2 Demonstration test-crosses 10 Module 3 Recognizing standard mutant phenotypes 11 Module 4 Decontaminating cultures by bleaching 13 Module 5 Freezing worms for long-term storage 14 Module 6 Examining worms by Nomarski DIC microscopy 15 Module 7 Use of Green Fluorescent Protein reporters 16 Module 8 Gene inactivation by RNAi (bacterial feeding) 17 Module 9 Extraction of RNA from worms 19 Module 10 Temperature shifts on temperature-sensitive mutants 21 Module 11 lacZ staining of reporter transgene strains 22 Module 12 Ballistic transformation of C .elegans (in German) 23 Module 13 Single worm PCR (in German) 25 Module 14 Reproduction and thermo-tolerance (in German) 27 Module 15 Informatics resources 29 References 31 3 ECKDATEN FÜR DIE PROTOKOLLE • Es muss von jedem Studenten ein individuelles Protokoll angefertigt werden. • Gliederung: Modulbezogen mit jeweils kurzer Einleitung, Ergebnisse und Diskussion. • Letzter Abgabetermin: 5.03. 15°°Uhr 8.03. 9-15°°Uhr 12.03. 15°° Uhr • Abholung der Protokolle für möglicherweise notwendige Verbesserungen: • Letzte endgültige Abgabe /Scheinausgabe: Keine Scheinvergabe mehr nach den genannten Terminen! SCHEDULE Day Time 9.00 Tuesday09/01 Wednesday, 10/01 Thursday, 11/01 Friday, 12/01 Day 1 Day 2 Day 3 Introduction (Belehrung) Lecture 8, 1 Sa Su Mo Tuesday, 16/01 Wednesday, 17/01 Thursday, 18/01 Friday, 19/01 Day 4 Day 8 Day 9 Day 10 Day 11 2 student talks 2 student talks 13 2, 4, 5 2 student talks Lecture Lecture Guest Lecture Nadine Saul Kerstin Pietsch Birgit Gerisch 12, 14 1, 2 1, 2 2, 4, 5 Ralph Menzel Lecture 10.00 1 11.00 12 8, 14 6 7 2 4, 5 9 10 15 12.00 12 3 6 7 8 10 9 11 15 2, 4, 5, 11 13.00 Lunch Lunch Lunch Lunch Lunch Lunch Lunch 14.00 12 8 7 6 14 14 10 14 11 15.00 12 9 7 6 14 14 12 15 14 13, 10 16.00 1 9 14 12 15 12 17.00 7, 8 18.00 14 Christian Steinberg Lunch 1, 3 13 Summation and Clean-up 5 TALKS Always at 9 am in the seminar room (3th floor) Tuesday (09/01) Dr. Ralph Menzel "The nematode C. elegans as model organisms - Introduction to the course" Wednesday (10/01) Prof. Dr. Christian Steinberg (10 am !) "Humic substances as ecological driving forces in inland water" Thursday (11/01) Nadine Saul "The phenomenon of hormesis" Friday (12/01) Kerstin Pietsch "Blueberry polyphenols increase lifespan and thermo-tolerance in C. elegans" Tuesday (16/01) Dr. Birgit Gerisch, MPI für Molekulare Genetik, Berlin “Aging in C. elegans” Student talks: - on January 17th, 18th, (at 9 am) and 19th. (at 10 am) assignment of topics during the course meeting on December 18th 20 min talk, 10 min discussion MS Powerpoint presentation 6 SICHERHEITSBESTIMMUNGEN Zum Umgang mit potentiell gefährlichen Stoffen Im Kurs wird mit einer Reihe potentiell gefährlicher Stoffe umgegangen, deren Handhabung entsprechende Vorsichtsmaßnahmen erfordert. • potentiell karzinogene Stoffe: Ethidiumbromid (DNA Farbstoff in Agarosegelen, Auszug aus dem Datensicherheitsblatt hängt im Labor aus) • potentiell gefährliche Chemikalien: β-Mercaptoethanol (reduzierend, giftig, SH-Gruppen Schutz), alle Arbeiten unter dem Abzug, Handschuhe verwenden Natriumhypochloritlösung (12% Cl → ätzend), Handschuhe und Schutzbrille verwenden ! Chloroform bzw. Trizol (enthält das Lösungsmittel Phenol), alle Arbeiten unter dem Abzug, Handschuhe verwenden Ethanol (leicht brennbar, Lösungsmittel). Grundregeln für biochemische und gentechnische Arbeiten: • • • • • • • • • • Gentechnische Arbeiten dürfen nur in den Räumen durchgeführt werden, die zur genehmigten gentechnischen Anlage gehören. Der Arbeitsplatz sollte möglichst aufgeräumt sein und sauber gehalten werden. Am Arbeitsplatz darf grundsätzlich nicht gegessen, geraucht oder getrunken werden. Im Labor ist personenbezogene Schutzbekleidung (Kittel, bei Bedarf Handschuhe bzw. Mundschutz) zu tragen. Vor Verlassen der Laborräume ist die Schutzbekleidung abzulegen. Die Arbeitskleidung ist getrennt von normaler Kleidung aufzubewahren Mundpipetieren ist grundsätzlich untersagt. Es sind vorhandene Pipentierhilfen zu verwenden. Türen und Fenster der Arbeitsräume sind während der Arbeiten verschlossen zu halten. Das für die Arbeiten nicht mehr benötigte biologische Material wird in den dafür vorgesehen Behältnissen gesammelt und durch mindestens 20 min autoklavieren bei 121°C unschädlich gemacht. Kontaminierte Geräte sowie benutztes Einwegmaterial wird in gleicher Weise behandelt. Während einer Schwangerschaft dürfen keine gentechnischen Arbeiten durchgeführt werden! Mit Lösungsmitteln bzw. β-Mercaptoethanol ist unter einem Abzug zu arbeiten. Mögliche Verletzungen müssen umgehend dem Kursleiter gemeldet werden. Zur Vorsorge immer bei den Betreuern nachfragen und sich Anweisungen holen. 7 Module 1 Manipulating worms, recognizing stages and sexes, life cycle Worms are normally grown on NGM agar, using OP50, a uracil-requiring strain of E. coli as a food source. NGM plates are inoculated with OP50 and incubated at 37°C for 1 day, to create a bacterial lawn. Worms can then be added to the lawn and grown. In a few days, they will eat up all the food and begin to starve. A starved stock plate can be kept for 8 weeks or more at 15°C, without losing viability in the worm population. The main limitation is desiccation: the agar medium eventually dries out completely (“potato chip” state) and the worms die. Sealing the plate with parafilm will delay this. Worms can be transferred to a fresh culture plate on an individual basis, using a worm pick, or by loop transfer (using a standard bacteriological inoculating loop to scoop up a small amount of worm-infested agar), or by chunk transfer (using a flamed scalpel blade to cut out a chunk of the starved plate). Transferring a single starved worm by means of a pick is not always reliable, so the latter two methods are both more reliable and easier. Individual worms are usually manipulated using a worm pick. This is a short length of platinum wire (we use 0.3 mm diameter), mounted in a glass handle, with the end flattened into a curved scoop. The pick should always be flamed in a gas or alcohol burner before use, in order to ensure sterility. Let the pick cool before touching a worm with it, either in air for a few seconds, or by touching the pick against the agar surface of the plate. A worm can be picked up by using the pick like a spoon. When doing this, try not to break the surface of the agar -- if there are many breaks or gouges in the surface, the worms will burrow into the agar, rather than living on the top surface. Once a worm has been picked, it will begin to dry out, so place it on its destination plate within 30 seconds or so. An alternative and usually superior procedure is to scoop up a gob of sticky bacteria on the end of the platinum wire, and pick worms by adhesion to the sticky gob. This has the advantage of reducing the risk of damaging either worms or agar surface, and it also allows one to pick up several worms at once, all adhering to the sticky gob. Keep a small plate of old OP50 as a source of sticky bacteria (supplied). Recognizing stages and sexes: L1 to L3 larvae cannot easily be sexed by inspection with a dissecting microscope, and the stages look superficially similar, except in size. At L4 stage, both males and hermaphrodites have a distinctive marbled appearance. At this stage, males have a swollen white patch at the tail end of the body, where the male copulatory organs are developing. Hermaphrodites have a small white patch in the middle of the body, where the vulva is developing. At the adult stage, sexes are more easily distinguished: hermaphrodites are longer and fatter, with a visible vulva and eggs developing inside the uterus. Males are thinner and have a modified tail, which looks like a hook at low power. Adult males are also behaviorally recognizable, constantly sliding over hermaphrodites in mating attempts. At the end of each larval stage, worms enter lethargus, a period of inactivity when they undergo molting. The lethargus at the end of L4 is a convenient synchronization point. Dauer larvae, which are executing the alternative third stage of development, have a thin, dark, whip-like appearance. They sometimes accumulate in 8 water droplets on the lids of culture plates. Unlike all other stages except the egg, they are resistant to harsh treatments such as washing in 1% SDS, which kills both adults and non-dauer larvae, but leaves dauers unharmed. Recognizing sexes and stages Day 1 1. Spreading plates. You will be supplied with a suspension of E. coli OP50, grown to saturation in nutrient broth. Drop or spread about 10 µl of this suspension on each small NGM plate, using a 1ml pipette. Try not to scratch the agar surface, or to spread the bacteria too close to the edge of the plate. Spreading the lawn in loops or pretzel shapes creates lots of edges, which the worms like. The lawn will be dense enough to use after overnight incubation at room temperature, or a few hours at 37°C. 2. Practice picking up worms and transferring them to fresh plates. You will be supplied with some pre-spread plates, and plates of a wild type hermaphrodite culture, and a wild type male/hermaphrodite culture. 3. From wild type male plate, pick to three separate small plates: A. 10 adult hermaphrodites B. 10 L4 hermaphrodites C. 10 adult males Incubate at 25°C. Day 2 4. Check plates: On plate A there should be many eggs and hatchling larvae. On plate B there should be a few eggs. On plate C, if you have correctly picked only males, there will be no eggs or larvae present. Probably some or all of the males will have tried to swim up the side of the plate and will be visible on the plastic wall as desiccated corpses. Males tend to do this if there are no hermaphrodites around. The lifecycle Day 1 1. Pick two single eggs from the hermaphrodite culture to a small plate, incubate at 25°C. Day 2 2. Examine these plates, observe L1/L2 larvae. Both eggs should have hatched. Day 3 3. Observe L3/L4 larva. Day 4 4. Observe egg-laying adults, first progeny larvae hatching Day 8 5. Observe progeny larvae developing, exponential increase in population with next generation, leading to eventual consumption of all bacterial food, and a starving worm population. 9 Note that the clear patch observed in L4 animals differs from that seen in L2 and L3 animals. Also, L4 animals are clearly larger in size than L2 and L3 animals. 10 Module 2 Demonstration test-crosses Two demonstration crosses will be carried out, one involving two unlinked recessive mutations (A), the other involving two linked recessive mutations (B). Cross A: This uses a dumpy mutation on chromosome V (dpy-11) and an uncoordinated (unc-7) mutation on the X chromosome. Double mutant hermaphrodites (dpy-11; unc-7, Dumpy and Uncoordinated in phenotype) will be crossed with wild type males (P0). This will give rise to F1 heterozygous hermaphrodite progeny (dpy-11/+; unc-7/+), which will be phenotypically wild type (WT), and to male progeny which will be Uncoordinated but non-Dpy (dpy-11/+; unc-7/O), because the unc-7 mutation is sex-linked. The F1 hermaphrodite progeny will be selfed, and the two phenotypes Dpy and Unc will be observed to segregate in the F2 generation, in a Mendelian ratio of 9 WT : 3 Dpy : 3 Unc : 1 Dpy Unc. Cross B: This uses the same dpy-11 mutation on chromosome V, and an unc mutation on the same chromosome (unc-42), located about 2 centiMorgans (2% recombination) away. Double mutant hermaphrodites (dpy-11 unc-42 , Dpy Unc in phenotype) will be crossed with wild type males (P0). The F1 cross-progeny will be WT in phenotype, both hermaphrodites and males (dpy-11 unc-42/+ +). The F1 hermaphrodites will be selfed, and the F2 progeny examined: these will be mostly WT and Dpy Unc, with a few rare Dpy non-Unc and Unc non-Dpy recombinants. Day 4 1. For each cross, place 3 adult hermaphrodites (Dpy Unc) on a small plate and add 6 WT adult males. Incubate at 25°C. Day 8 2. Examine crosses: for cross A, observe WT hermaphrodite progeny and Unc male progeny. For cross B, observe WT hermaphrodite and WT male progeny. From each cross, pick a single young adult hermaphrodite to a separate small plate. Incubate at 25°C. Day 9 and 10 3. Transfer each hermaphrodite to a fresh plate, so that only one day’s worth of eggs is laid on each plate. This makes the population more synchronous and easier to score. Day 11 4. Examine F2 progeny. For cross A, observe independent segregation of Dpy and Unc phenotypes. For cross B, observe that most animals are either WT or doubly mutant, DpyUnc. Rare recombinants (Dpy non-Unc or Unc non-Dpy) will be visible as a few percent of the population. Reference: Brenner (1974) 11 Module 3 Recognizing standard mutant phenotypes This module demonstrates some of the common mutant phenotypes that are used in C. elegans genetics. Some are easy to recognize, on the basis of gross morphology. Others can only be recognized at certain stages, or by simple behavioral testing. Day 2 and onward Each pair will be provided with stock plates for 10 commonly used mutants, and two wild-type strains. Examine by dissecting microscope. Tap the plate, or prod the worms with a worm-pick, in order to elicit responses and test for reverse and forward movement. Mutants: 1. dpy-10, allele e128. “Dumpy”: animals are much shorter than wild-type, at all stages. There are about 25 other dumpy genes so far defined in C. elegans, which have similar but not identical phenotypes. This gene, like some but not all of the other dpy’s, encodes a cuticle collagen. 2. rol-1, allele e91. “Roller”: adult animals roll about their long axes as they move, and as a result tend to move in circles. Note that larvae do not roll. This mutant is left-handed roller, because it rotates in a anti-clockwise direction. The rolling arises from a helical twist imparted to the cuticle by a defective collagen. This roller mutation is recessive. Certain other roller mutations are dominant, and one of these is used as a standard transformation marker. 3. bli-2, allele e768. “Blister”: adult animals develop fluid filled blisters on the body surface, resulting from accumulation of fluid in the space between the two layers of the adult cuticle. Larvae are not blistered, because they have a singlelayered cuticle. This gene, like dpy-10 and rol-1, encodes a collagen, probably a component of the struts separating the layers of the adult cuticle. 4. lon-2, allele e678. “Long”: animals are about 50% longer than wild-type. This gene encodes a growth-factor related molecule. 5. sma-2, allele e502. “Small”: animals are shorter and thinner than wild-type, but do not have the fat appearance of Dpy mutants. sma-2 males also have distinctive defects in the development of the tail (not visible in this hermaphrodite stock). sma-2 encodes a Smad family member, involved in TGFbeta signaling. 6. unc-17, allele e245. “Uncoordinated, Coiler”: animals are unable to move well, and spend most of their time curled up. They are able to lay eggs, however. Mutants are resistant to cholinesterase inhibitors such as aldicarb, and in fact move much better in the presence of such drugs. unc-17 encodes the transporter molecule that loads acetylcholine into synaptic vesicles. It forms part of a compound gene together with cha-1, which encodes the synthetic enzyme choline acetyltransferase. Strong cha-1 mutants are unable to make acetylcholine, and die as abnormal L1 larvae. 12 7. lin-1, allele e1777. “Lineage defect, Muv (Multi-vulva)”: adult hermaphrodites have up to six ventral protrusions, or pseudo-vulvae, resulting from vulval divisions by all six P3.p -P6.p vulval precursor cells. lin-1 encodes a putative transcription factor, belonging to the ETS family. It is regulated by a ras protein kinase cascade, responding to extracellular signaling by the LIN-3 signal, received by the LET-23 receptor tyrosine kinase. 8. mec-3, allele e1338. “Mechanosensory defect”: animals are defective in the response to light touch. This is a subtle phenotype, assayed by stroking worms with a fine hair (e.g. eyebrow hair mounted on a toothpick, as supplied). Wild type animals will respond to touch on the anterior body by reversing, and to touch on the posterior body by going forward. Mec animals fail to respond to light touch, and are generally lethargic, but will respond to a more vigorous stimulus, such as a prod from a wire pick. mec-3 encodes a LIM class homeoprotein, required for the proper differentiation of the six touch receptor neurons. 9. him-8, allele e1489. “High Incidence of Males”: populations contain many males as well as hermaphrodites, because of X chromosome loss in hermaphrodite gametogenesis. WT hermaphrodites produce only 0.2 % XO male progeny, whereas him-8 hermaphrodites produce about 38% XO, as well as 6% XXX hermaphrodites (these are shorter than normal XX hermaphrodites). him mutants provide a useful source of males. him-8 encodes a novel protein. 10. Wild-type strain: N2. This is the wild-type Bristol strain, originally isolated from an English mushroom farm in the 1950’s. Almost all C. elegans is based on derivatives of this original strain. 13 Module 4 Decontaminating cultures by bleaching (Alkaline hypochlorite treatment) Alkaline hypochlorite or Bleaching Solution (BS2X) conveniently dissolves all worm tissues except eggs, which are largely resistant, and will also destroy almost all bacterial and fungal contaminants, with the exception of certain resistant spores. Bleaching is used to decontaminate cultures (this module) and also in preparing bulk preparations of pure eggs. Day 8 1. Place 5 µl of bleach (sodium hypochlorite, 12 - 15% available chlorine) and 5 µl of 2 N NaOH on a small seeded NGM plate, between the bacterial lawn and the edge of the plate. From the contaminated plate provided, pick 6 - 10 gravid hermaphrodites (adults containing lots of eggs) and deposit them in the drop of solution. Incubate at room temperature. Day 9 2. Inspect the cleaning plate: the picked worms should have completely dissolved, leaving only cellular debris. The resistant eggs should have hatched, and the resulting larvae will have crawled over to the bacterial lawn and begun feeding and developing. Some resistant bacterial spores may have survived bleaching, so take a scalpel, flame it and cut out the region of the plate including the bleaching spot. Also, move some worms to a fresh plate. Day 10 and 11 3. Inspect the cleaning plates; compare the decontaminated population with the original contaminated population. ------------------------------------------------------------------------------Bleaching solution For 50 ml: Sodium hypochlorite (bleach) (12 - 15% available chlorine; < 6 months old) 2 N sodium hydroxide H2O 20 ml 25 ml 5 ml 14 Module 5 Freezing and thawing worms for long-term storage Wild type and mutant strains of C. elegans can be stored frozen at –70°C or in liquid nitrogen. They remain viable indefinitely in this state. The freezing protocol involves slow cooling (about 1 degree per minute) in a 15 % glycerol solution. In order to revive a frozen sample, it is warmed to room temperature rapidly, and spread on a large NGM plate, in order to dilute the glycerol, which is somewhat toxic to the worms. A thawed sample cannot be refrozen. The fraction of the population that survives freezing depends on the state of the culture and sometimes on the genotype, but under optimal conditions over 90 % survive. Starved cultures with lots of larval worms (but not dauers) are the best material for freezing. Day 8 1. Label one 1.5 ml freezing vials. Wash off a plate of starving N2 (wild type) worms with about 1.5 ml M9 buffer. Take 0.75 ml of this suspension and add 0.75 ml FS (freezing solution). Mix by vortexing and transfer into the freezing vial. Put it in a styrofoam block and place the block in a -70° freezer. The Styrofoam provides sufficient insulation to permit slow cooling (the exact rate is not critical). After six hours or more, the tubes can be transferred to a liquid nitrogen tank, if available. Day 9 2. Check viability: take the frozen tube and thaw by rolling between the palms of your hands. When the sample has partly or completely melted, empty the contents of the tube onto a large spread NGM plate. Examine the plate by dissecting scope, while the liquid sample soaks into the agar. Notice that the worms appear initially very crumpled, shrunken and immobile. After a few minutes, they will begin to recover normal morphology, and can be seen to twitch and begin to swim. Day 10 and 11 3. Check thaw plate; estimate what percentage of the sample survived freezing. ------------------------------------------------------------------Freezing solution (FS), for 100 ml) NaCl KH2PO4 Glycerol NaOH (1 M) Add H2O to: 0.585 g 0.68 g 30 g 0.56 ml 100 ml Autoclave, then sterilely add 0.3 ml MgSO4, 0.1M. 15 Module 6 Examining worms by Nomarski DIC microscopy Living worms can be conveniently examined by Nomarski differential interference contrast microscopy, which permits visualization of all nuclei and many other anatomical features. Worms are mounted on an agar or agarose pad, under a coverslip. Worms will continue to swim in these conditions, so they are anaesthetized for detailed examination. Day 3 1. Making agarose pads: Take a drop of molten 3 % agarose (in M9 buffer) and place it on a clean glass microscope slide, placed between two other slides thickened with tape. Place another glass slide on the drop, at right angles to the first, and press down to spread the agarose into a thin disc, 1 - 2 cm in diameter (see Figure below). Wait a minute or so to for the agarose to set and then remove the top slide by sliding laterally. 2. Mounting worms: Place a small drop (5 - 10 µl) of 20 mM sodium azide on the agarose. Pick up 1 - 10 worms from a culture plate, using a wire worm-pick, and place in the drop of buffer. The worms should be visible in the drop, thrashing about vigorously. Carefully place a cover slip on top, trying not to create airbubbles. 3. Examine by Nomarski: Locate worms at low power (4.5 x). A 40x dry objective is convenient for seeing many details of the anatomy. For more detailed examination, a 63x or 100x objective is used, which requires oil immersion. ------------------------------------------------------------------------------------------------------------------- 16 Module 7 Use of Green Fluorescent Protein reporters Green Fluorescent Protein provides an extremely useful in vivo reporter for C. elegans. Some reporters are sufficiently bright that they can be seen and scored using an epifluorescence dissecting microscope. However, much more detailed examination is possible using a compound microscope fitted with fluorescence optics. Day 1 1. Transfer worms of the provided strains by chunk transfer to a fresh seeded NGM plate - use a flamed scalpel blade to cut out a chunk of the starved plate. Incubate the plates at 25°C. Day 3 2. Examine plates of worms using fluorescence compound microscope (use only the 4.5x and 10x magnification). Compare image with transmitted light, blue light, or both. Five strains are provided: Strain GFPA: Almost all nuclei, apart from those in the germ-line, are brightly fluorescent. These animals carry an extrachromosomal array expressing a sur5::GFP fusion, which is ubiquitously expressed and carries a strong nuclear localization signal. Intestinal nuclei are especially bright because they are large and polyploid. Occasional animals are non-fluorescent, because they have lost the transgene array. Rare animals are genetic mosaics, with some fluorescent nuclei and some non-fluorescent nuclei, because they have lost the array in part of the cell lineage. Strain GFP D: (DP132) These animals are fluorescent in all neurons as result of an inserted transgene unc-19::GFP. The animals roll because the transgene was coinjected with the rol-6 transformation marker. Strain GFP E: (PD4792) Strong fluorescence in pharyngeal muscle, weak fluorescence in some other tissues. Carries mIs11, a mixed transgene array, which includes myo-1::GFP (pharyngeal myosin) Strain GFP F: These animals have fluorescence in all body wall muscle nuclei. This carries a transgene expressing myo-3::GFP with a nuclear localization signal. Myo-3 is a body wall muscle myosin gene. Strain P450: These animals are fluorescent in all gut cells as result of an inserted transgene CYP35A3 promotor::GFP. This is an integrated line. 3. Mount (as for Nomarski, Module 6) and examine strains by epifluorescence using higher magnifications (20x and 40x). 17 Module 8 Gene inactivation by RNAi (bacterial feeding) Timmons and Fire (1998) (see also Timmons et al., 2001) demonstrated that it is possible to elicit RNAi effects by feeding worms bacteria expressing genespecific dsRNAs. In this module we will explore the effects of feeding worms bacteria expressing dsRNAs corresponding to the C. elegans sex determining genes fem-1and tra-2. In addition RNAi effects of unc-22 were tested. (Detailed methods for growth and propagation of feeding constructs can be obtained at the Fire lab web site: http://www.ciwemb.edu). unc-22 The unc-22 gene encodes a serine-threonine protein kinase that may regulate contraction. The enzyme is involved in myosin regulation may be involved in regulating final stages of sarcomere assembly. Mutants are uncoordinated and exhibit uncontrolled twitching of body-wall muscle cells, muscle cells have disordered myofilament lattices. fem-1 The fem-1 mutant is a sex-determination mutant, defective in spermatogenesis. Consequently, XX animals grown at the restrictive temperature mature into females rather than hermaphrodites: they fail to make sperm. As a result, they are self-sterile, and will produce no progeny by themselves, but they can be fertilized by males. This is one way of ensuring out-crossing, as opposed to selfing. tra-2 The tra-2 gene normally promotes XX hermaphrodite development; lossof-function mutations in the tra-2 gene transform XX hermaphrodites into non-mating males, but does not affect XO male development. P450 31A2 This cytochrome P450 form is expressed in the embryogenesis, loss-offunction mutation in the gene results in a embryonic lethal phenotype. The function of the encoded protein and the regulatory pathway are still unknown. Day 1 1. Inoculate overnight cultures of the different strains HT115(DE3) + plasmid in LB+antibiotics (75 µg/ml ampicillin for amp-resistant plasmids and 12.5 µg/ml tetracycline for selection of the HT115 strain). Incubate at 37°C with shaking overnight. 18 Day 2 2. Dilute culture 1:50 in LB + antibiotics and grow to OD600 = 0.4. (A 10 ml culture is usually enough for a small experiment). Induce by adding sterile IPTG (1 M stock soöution) to 0.4 mM. Incubate 37°C with shaking for 4 hours. 3. Harvest cells by centrifugation (10 min, 4000 rpm), discard 5 ml of the supernatant and resuspend the bacterial pellet in the remaining 5 ml. Spike the suspension with additional antibiotics (another 75 µg/ml ampicillin and 12.5 µg/ml tetracycline) and IPTG (to final total concentration of 0.8 mM) 4. Seed small agar plates with 70 µl of the prepared culture, let air dry the plates under sterile box. 5. Place 4 L1/2 hermaphrodites on NGM-FEM, NGM-TRA, NGM-UNC and NGMP450 that have been seeded with bacteria expressing fem-1, tra-2 unc-22, P45035C1 dsRNAs, respectively. Place in addition 4 L1/2 hermaphrodites on a control plate. Put plates in 25°C and incubate over the weekend. Day 4 and onward. 6. Examine parental worms and progeny for the following phenotypes: NGM-UNC: NGM-FEM: NGM-TRA: NGM-P450 Control: Hermaphrodites show an UNC (uncoordinated) phenotype. Hermaphrodites that have been transformed into females. Hermaphrodites that have been partly or completely masculinized. Hermaphrodites show wild type phenotype, but all eggs are dead Wild type 19 Module 9 Extraction of RNA from worms In this module, total RNA is prepared from a frozen pellet of worms, using TRIZOL extraction. TRIZOL reagent is a solution of guanidine isothiocyanate and phenol which simplifies the original method published by Chomczynski and Sacchi (1987). Day 2 1. Take packed frozen worms in a 15 ml polypropylene Falcon, add 1 Vol. RNasefree glass beads and taw the sample at 37°C water bath. 2. Vortex 6 x for 30 s, with occasional inversion of the tube to solubilize and lyse the worms. Freeze (liquid nitrogen) 7 taw the worm after each votex step. Leave at RT for 5 min. 3. Add 2 Vol. chloroform / ml worm pellet. Invert/vortex for 15 sec. 4. Spin 4,000 rpm for 10 min to remove insoluble material and separate phases. 5. Transfer supernatant to a fresh tube, add the same Vol. of chloroform. Invert/vortex for 15 sec. 6. Spin 4,000 rpm for 10 min. 7. Transfer upper aqueous phase to a sterile centrifugation tube. Add 0.7 Vol. isopropanol, invert, incubate at least 1 h at –20°C to precipitate RNA. 8. Spin 20,000 rpm for 20 min at 4°C. 9. Carefully remove supernatant. (Pellet will be very white). 10. Wash pellet with 15 ml of 75% ethanol. Vortex briefly. NOTE: Pellet will often float free. Also RNA pellets can be stored in the 75% ethanol at –80°C for up to one year safely. 11. Spin at 20,000 rpm for 5 min. 12. Remove supernatant and air dry pellets for 5-10 min. 13. Dissolve pellets in 50 µl RNase-free -H2O and freeze in the -70°C deep-freezer. Day 9 Now the RNA has to be purified using an RNeasy plus mini kit from Qiagen including a DNase step. Please note: Add 1/100 Vol. β-Mercaptoethanol to the RLT buffer before use. Work under the hood! 14. Taw the RNA sample on ice, add 300 µl RLT buffer (β-Me added). 20 15. Transfer the sample to a gDNA Eliminator spin column placed in a 2 ml collection tube (supplied in the kit). Incubate for 5 min. Centrifuge for 30 s at 10,000 rpm. Reload the flowthrough and repeat this step 1x. 16. Discard the column, and save the flowthrough. Make sure that no liquid remains on the column membrane after centrifugation. If necessary, repeat the centrifugation until all liquid has passed through the membrane. 17. Add 1 volume (350 µl) of 70% ethanol to the flowthrough, and mix well by pipetting. Do not centrifuge. 18. Transfer up to 700 µl of the sample, including any precipitate that may have formed, to an RNeasy spin column placed in a 2 ml collection tube (supplied in the kit). Close the lid gently, and centrifuge for15 s at 10,000 rpm. Discard the flow-through. 19. Add 700 µl Buffer RW1 to the RNeasy spin column. Close the lid gently, and centrifuge for 15 s at 10,000 rpm to wash the spin column membrane. Discard the flow-through. 20. Add 500 µl Buffer RPE to the RNeasy spin column. Close the lid gently, and centrifuge for 15 s at ≥8000 x g (≥10,000 rpm) to wash the spin column membrane. Discard the flow-through. 21. Repeat step 20 22. Centrifuge the empty tube including the column at full speed for 1 min. (Perform this step to eliminate any possible carryover of Buffer RPE, or if residual flow-through remains on the outside of the RNeasy spin column) 23. Place the RNeasy spin column in a new 1.5 ml collection tube (supplied). Add 30 µl RNase-free water directly to the spin column membrane. Close the lid gently, and centrifuge for 1 min at 10,000 rpm to elute the RNA. 24. Repeat the last step using the eluate from step 23; reuse the collection tube. 25. Freeze the sample in the -70°C deep-freezer. 21 Module 10 Temperature-shifts on temperature-sensitive mutants C. elegans can grow productively at any temperature between 12°C and 25.6°C. 15°C and 25°C are used as the standard high and low temperatures. Temperature-sensitive mutations provide a useful means of propagating mutations in essential genes, and can also be used to generate populations consisting entirely of inviable or sterile animals, by means of a temperature-shift. This module demonstrates this, using two commonly-used ts-mutants, glp-4(bn2) and fem-1(hc17). The glp-4 mutant is specifically defective in germline proliferation. Consequently, animals grown at the restrictive temperature (25°C) develop into adults with normal somatic development, but no germ cells. They are completely sterile. The fem-1 mutant is a sex-determination mutant, defective in spermatogenesis. Consequently, XX animals grown at the restrictive temperature mature into females rather than hermaphrodites: they fail to make sperm. As a result, they are self-sterile, and will produce no progeny by themselves, but they can be fertilized by males. This is one way of ensuring out-crossing, as opposed to selfing. The fer-1 mutant is fertilization defective. Sperm are produced but are non-functional. Phenotypically mutant XX fer-1 animals resemble fem-1 mutants, but the presence of sperm causes oogenesis to continue constitutively. Consequently unfertilized oocytes are laid in large numbers. Laid oocytes are brownish and nonrefractile, unlike fertilized eggs. DAPI staining would reveal the presence of endomitotic oocytes in the uterus. Strains such as this can be used for producing preparations of pure oocytes in biochemical quantities. Day 8 1. You will be provided with plates of WT, glp-4(ts), fem-1(ts) and fer-1(ts) which have been maintained at 15°C. From each plate, pick 3 L4 hermaphrodites to a single small spread NGM plate. Incubate at 25°C. Day 9 2. Check that eggs are being laid by the hermaphrodites Day 10 3. Examine the adult population. For both mutants, observe that there are many adults, but these are all sterile or infertile, in contrast to the control WT population. In the glp-4 mutant, the absence of a developed germline can be seen with a good dissecting microscope. In the fem-1 mutant, stacks of unferilized oocytes accumulate in the gonad, and can give a recognizable “stripy” appearance to the ventral side of the animal. On the plates of fer-1 mutants, unfertilized oocytes can be seen in large numbers 4. Add 5 - 10 wild type males to each of the two mutant plates, leave at 25°C. Day 11 5. Examine the two plates. There should still be no eggs on the glp-4(ts) plate, but many eggs on the fem-1(ts) and fer-1(ts) plate. 22 Module 11 lacZ staining of reporter transgene strains lacZ staining is used to reveal expression patterns from reporter genes carrying lacZ fusions. In this module, a strain carrying lacZ fused to a heat-shock promoter (PK118) is induced before staining. Also, two strains carrying assorted lacZ reporters are provided. Day 10 1. Heat-shock strain PK118 for 45 min in 33°C waterbath, preferably late in the day. Day 11 2. Heat shock strain PK118 again; wait a few hours 3. Stain PK118, UL6 and UL8 strains for beta-galactosidase (see below). UL strains: UL6 excretory cell, and nuclei of the hypodermis that lie close to the excretory cell branches UL8 spermathecae, 3 rectal epithelial cells Staining worms (all stages) • Wash worms off plate with 2 ml water, place in 2 ml microfuge 30 sec 2000 rpm, remove most of supernatant. Add 2 ml water and repeat spin. Carefully remove as much as possible of supernatant with a pipetman. Freeze tubes on dry ice. When all teams have placed their tubes on dry ice, they will be lyophilized (45 min). [Alternatively, worms can be transferred to a glass slide in a minimal volume of water, frozen on dry ice, and desiccated.] • Add a drop of cold acetone, allow evaporating. Add 200 µl staining solution, incubate at 37°C. Periodically take a small volume of worm suspension and examine by dissecting scope to monitor the progress of the staining (check about timing). Some constructs may require 24 hr to develop blue color. [Alternatively, if using the slide method, slides containing worms will be incubated with staining solution in a humid chamber at 37°C.] 23 Module 12 Ballistic transformation of C .elegans Vorbereitung der Würmer zum Schießen: 2-3 Wochen vor dem eigentlichen Schussexperiment werden kleine (35 mm) verhungerte Platten für das Animpfen großer (90mm) Platten vorbereiten um möglichst viele gleichaltrige Würmer zu bekommen: Dafür je 5 L4 Würmer auf eine kleine beimpfte Platte setzen und verhungern lassen (viele L1 Würmer). Die großen Platten werden mit 1/4 bzw. 1/6 einer kleinen verhungerten Platte angeimpft. Pro Schuss benötigt man etwa 1 große gut bewachsene Platte mit jungen, adulten Tieren (sie sollten 3-10 Eier enthalten). Für den Schuss werden kleine Platten benötigt, die in der Mitte einen kreisrunden 25 μl großen und nicht zu stark angewachsenen OP50-Tropfen besitzen, (auf denen werden später die Würmer zum Beschießen pipettiert). Es wird eine kleine Platte pro Schuss benötigt. Day 1 DNA-Gold Vorbereitung: • 1 mg Goldpartikel in ein 1,5 ml Eppendorfgefäß einwiegen. • 100 μl einer 50 mM Spermidinlösung dazugeben, vortexen und für 5-10 sec in ein Ultraschallbad geben (volle Intensität). • anschließend 16 μg DNA dazu pipettieren, 10 min inkubieren und dabei öfter das Eppendorfgefäß mit dem Finger “aufschnippen“. • danach wir das DNA-Goldgemisch auf 360 μl mit A. dest. aufgefüllt, gevortext und für weitere 10 min inkubiert, dabei wieder einige Male das Eppendorfgefäß mit dem Finger „aufschnippen“. • nach der Inkubation 100 μl 1M CaCl2-Lösung tropfenweise dazugeben (es darf nicht klumpen) und für 10 Minuten präzipitieren. • anschließend 15-30 sec bei 13000 rpm abzentrifugieren und den Überstand mit Hilfe einer Pipette entfernen. Den restlichen Überstand (ca. 10 μl) vorsichtig aufmischen. • zum Schluss 3x mit 1 ml 96% Ethanol waschen und in 200 μl PVP-Lösung aufnehmen. • pro Schuss werden 20 μl eingesetzt (1 Ansatz reicht für 7-8 Schüsse) Transformation: • Die kleinen beimpften Platten vom Vortag auf Eis stellen. 24 • Pro Schuss benötigt man etwa 1 große (90mm) gut bewachsene Platte mit jungen Adulten. Sind die Würmer im richtigen Alter, sie sollten 3-10 Eier enthalten, werden sie mit 4-5 ml M9 Puffer von den Platten gespült und in ein 50 ml Falconröhrchen überführt, wo man sie bei RT sedimentieren lässt. Der Überstand wird abgenommen und verworfen. • Für das Schießen werden die Würmer vom Boden des Pellets mit einer abgeschnittenen Eppendorfspitze abgenommen, in ein großes Eppendorfgefäß überführt und mit M9 Puffer 2:1 verdünnt. Mit der gleichen Spitze (hoch- und runterziehen!) werden 20 μl dieser Verdünnung auf den OP50-Tropfen der vorgekühlten Platten pipettiert. Die Platten werden anschließend für weitere 2-3 Minuten auf Eis inkubiert, so dass das Wurmpellet fest wird. • in 80 % Alkohol eingelegte Düsen + Filterplättchen (pro DNA Probe ein Set) 15 min vor dem Schießen herausnehmen und trocknen lassen, kurz vor dem Schuss zusammenbauen und 2-3x mal leer schießen. Parameter: Heliumdruck: Pulszeit: Vakuum: Abstand Platte-Düse: 8 bar 10-30 ms < 0,5-0,6 bar ≈12 cm • Düse wieder abbauen und auseinander schrauben, 20 µl (durchmischte) DNAGold Probe auf das Plättchen pipettieren, Düse wieder anbauen. • vorgekühlte und vorbereitete Platte ohne Deckel zentrisch auflegen, Kanone schließen, Vakuum anlegen und anschließend den Schuss auslösen. • Platte entnehmen, mit Deckel schließen und bei 15°C inkubieren. • Nach Abschluss aller Transformationen die Agarschicht jeder beschossenen Platte in acht gleiche Teile zerschneiden und einzeln auf große mit Bakterien versehene Platte überführen, bei 15°C inkubieren Day 3 • Platten in den 25°C Brutschrank stellen. Day 8 and onward • Suche nach deutlich kleinen Würmern (L1-L3), einzeln auf eine kleine Platte abpicken und jeweils bei 25°C inkubieren. Referenz: Wilm et al., 1999 25 Module 13 Single worm PCR Für die Auswertung des Moduls 14 (Ballistic transformation) erfolgt der Nachweis über das Vorhandensein der GFP-DNA in den potentiell transgenen Tieren mittel Single worm PCR. Mit dieser Methode ist es möglich, den transgenen Status der Nematoden auch ohne eine direkten Nachweis der GFP Produktion nachzuweisen. Dies ist insbesondere bei solchen Varianten von entscheidender Bedeutung, von denen es noch unbekannt ist, ob überhaupt ein GFP Produktion möglich ist. Protokoll: Day 11 In Abhängigkeit der Anzahl von pha-1 positiven Nematoden (lebende F1 bei der restriktiven Temperatur von 25°C) werden möglichst viele der nun adulten Tiere wider von der Selektionsplatte abgepickt. 1. Einen adulten Wurm von der Platte abpicken und in ein mit 2 µl Single worm lysis Mix versehenes mittleres PCR-Eppi überführen. (Überprüfung mit dem Mikroskop) 2. Eppis für 30 min bei – 80°C einfrieren 3. jeweils Zugabe von 1-2 Tropfen Mineralöl und Proben für 1 h bei 60°C und anschließend 15 min bei 95°C erwärmen (im Thermozykler) 4. Proben auf Eis stellen, Zugabe von 23 µl PCR-Mix je Tube in die untere Phase, nur diese wässrige Phase anschließend 2x hoch und runter pipettieren. 1,8 µl 1,5 µl 0,5 µl 0,25 µl 0,25 µl 0,12 µl 18,58 µl ----------23,00 µl 10x PCR Puffer (QIAGEN) MgCl2 (25 mM) dNTP-Mix (10 mM) sense Primer GFP antisense Primer GFP HotStarTaq-Polymerase (QIAGEN) A. dest (steril) 5. PCR nach folgendem Regime ablaufen lassen: 95°C 5 min 1 cycle 95°C 56°C 72°C 45 sec 45 sec 45 sec 35 cycles 72°C 10 min 1 cycle 6. Gelauswertung: 10-20 µl der unteren wässrigen Phase zusammen mit 1/6 Vol. Probenverdünnungspuffer auf ein Agarosegel auftragen und auswerten. • Agarose in der Mikrowelle erwärmen und vollständig schmelzen (Achtung: Vorsicht bei Siedeverzug !) • Elektrophorese-Apparatur zusammensetzen, Agarose auf rund 60°C abkühlen lassen 26 ETHIDIUMBROMID IST KANZEROGEN; Arbeiten mit Nitril-Handschuhen ! • Ethidiumbromid Stammlösung zum Agarose-Gel hinzufügen (3,75 µl / 50 ml); Gel in die Apparatur hineingießen • Agarose-Gel 30 min bei Raumtemperatur abkühlen und fest werden lassen. • Begrenzungsblöcke und Kämme vorsichtig entfernen, Gel samt Gelträger in die Elektrophoresekammer einsetzen. • Elektrophoresekammer soweit mit 1 x TAE Puffer füllen, bis das Gel gerade bedeckt ist. • Aufzutragende DNA-Probe im Verhältnis 1:6 mit Probenverdünnungspuffer mischen und von oben gerade in den einzelnen Slot hineinpipettieren • Elektrophoresekammer schließen und bei einer Spannung von rund 100 V für 15-40 min laufen lassen. (Polung: – nach +) • Gel unter dem AlphaImager auswerten. Puffer: Wurm-Lysispuffer 10 mM Tris-HCl 50 mM KCl 2.5 mM MgCl2 0,45% NP40 0,45% Tween 20 0,01% Gelatine Single worm lysis Mix (frisch ansetzen) 100 µl Wurm-Lysispuffer 1 µl Proteinase K Lösung (10mg/ml) Agarose 0,7-2,0 % Agarose für 400 ml: gelöst in 1x TAE Puffer 8 ml 50 x TAE Puffer 2,0 M Tris / Acetat 50 mM EDTA Ethidiumbromid Stammlösung 10 mg Ethidiumbromid / ml Aqua dest. 6x Probenverdünnungspuffer auf 1l pH 8,3 3,4- 8,0 g Agarose 50 x TAE Puffer 242 g Tris 57.1 ml Essigsäure (konz., Eisessig) 100 ml 0,5 M EDTA (pH = 8,0) (Endkonzentration 0,75 mg/ml Gel) 40 % Sacharose 10 mM Bromphenolblau 27 Module 14 Reproduction and thermo-tolerance Reproduktionstest Einige Substanzen beeinflussen die Reproduktion von C. elegans hinsichtlich der Nachkommenszahl und des Zeitpunkts der Haupt-Eiablage. Häufig wird die These vertreten, dass Substanzen, die eine längere Lebensspanne hervorrufen zugleich eine verminderte Reproduktion bewirken. Um eine derartige Wirkung nachzuweisen, werden Würmer dem jeweiligen Stoff ausgesetzt. Dies geschieht, indem man einerseits die zu untersuchende Konzentration der Substanz beim Gießen in den Agar gibt und andererseits den Futterbakterien, die auf die Platten gegeben werden, zusetzt (Compound-Platten mit Futterbakterien werden jeweils bereitgestellt) Die Nachkommen werden pro Tag und pro behandelten Tier gezählt und mit der Zahl der F1 von Kontrolltieren (unbehandelt) verglichen. Es werden folgende Substanzen getestet: Rosmarinsäure und Catechin jeweils in drei verschiedenen Konzentrationen (100, 200, 300 µM). Jeder Student testet dabei nach Absprache nur eine Konzentration eines Stoffes (10 Platten) und eine Kontrollcharge (10 Platten). Der Zeitpunkt, an dem die Würmer in der 1 .Generation auf die Platten mit der Substanz gebracht werden, beeinflusst die Wirkung maßgeblich. Daher wird hier mit der 2.Generation gearbeitet um so die Zeitkomponente abzuschwächen und den Versuch zu vereinfachen. Bei dem Versuch hier wird mit L4 Larven begonnen. Tag 1: 10 behandelte L4-Würmer auf je eine Compound-Platte setzen und 10 unbehandelte L4-Würmer auf je eine unbehandelte NGM-Platte setzen. Platten beschriften und im Wärmeschrank bei 20 °C aufbewahren. Tag 2: Jeden adulten Wurm auf eine neue Platte transferieren und sowohl die alten als auch die neuen Platten bei 20 °C inkubieren. Tag 3: Jeden adulten Wurm auf eine neue Platte transferieren und sowohl die alten als auch die neuen Platten bei 20 °C inkubieren. Platten von Tag 1 kontrollieren (in wieweit sind F1 entwickelt, welches Stadium?) und gegebenenfalls (ab L3/L4) abends in den Kühlschrank stellen, damit sich die Entwicklung verzögert und die Platten am nächsten Tag ausgezählt werden können. Tag 4: Jeden adulten (parentalen) Wurm auf eine neue Platte transferieren und sowohl die alten (Tag 3) als auch die neuen Platten (Tag 4) bei 20 °C inkubieren. Die Nachkommen auf den ersten Platten (Tag 1) mit auszählen. Die Platten vom Tag 2 überprüfen, gegebenenfalls (s. o.) abends in den Kühlschrank stellen oder direkt auszählen. (Am Wochenende: Die Platten der Tage 3 und 4 in den Kühlschrank stellen, wird veranlasst) Tag 8: Die Nachkommen der Platten von den Tagen 2 bis 4 werden ausgezählt. 28 Thermotoleranz Häufig ist verlängertes Leben assoziiert mit einer erhöhten Stresstoleranz. Zudem kann sich der Hormesis-Effekt auch bei Fehlen einer lebensverlängernden Wirkung durch eine höhere Toleranz gegenüber verschiedenen Stressoren bemerkbar machen. Um die Stresstoleranz zu testen, werden die Tiere mehrere Stunden einer erhöhten, lebensbedrohlichen Temperatur ausgesetzt und die Überlebenden in der behandelten Charge mit denen der Kontrolle verglichen. Es werden die gleichen Substanzen wie beim Reproduktionstest verwendet (Rosmarinsäure und Catechin). Jeder Student testet wieder die gleiche Konzentration des Stoffes, die er auch beim Reproduktionstest hatte (2 Platten). Zusätzlich hat jeder wieder eine Kontrollcharge (2 Platten). Auch hier werden Würmer verwendet, die in zweiter Generation auf dem jeweiligen Stoff wachsen. Dadurch kann ebenfalls mit L4 Larven begonnen werden. Tag 4: 2 x 30 L4-Würmer von Compound-Platten auf 2 neue Compound-Platten setzen und 2 x 30 Kontroll-Tiere auf 2 neue NGM-Platten setzen. (Am Wochenende: tägliches Umsetzen der Tiere auf neue Platten) Tag 8: Umsetzen der Tiere auf 4 neue Platten. Die Anzahl der Würmer pro Platte notieren. (In der Nacht von Tag 9 zu Tag 10: Alle Platten in den 35 °C Brutschrank stellen, wird veranlasst) Tag 10: Nach 10-stündigem thermalen Stress werden tote und lebende Würmer ausgezählt. Jedes Tier, was sich auch nach Berührung mit dem Picker nicht bewegt, wird als tot gewertet. 29 Module 15 Informatics resources There will be a general introduction to Wormbase and some special internet resources (individually at Day 9 or 10) with demonstration exercises. C. elegans Databases AceDB - A C. elegans Database (acedb.org) ACeDB was written by Richard Durbin and Jean Thierry-Mieg as part of the C. elegans genome mapping and sequencing project. This hugely successful genome database program has replaced the paper versions of the genetic and physical maps in many C. elegans labs. In addition, the AceDB database engine has become the standard for other genomic mapping projects. In addition to genetic and physical map data AceDB contains: • • • • • genomic sequence gene predictions worm literature ESTs in situ hybridisation data AceDB can be installed on Windows but it runs best on the UNIX/Linux platform. There are two official AceDB distribution FTP sites at which you can get the latest full release of the software as source code or pre-compiled executables. • • ftp://ftp.sanger.ac.uk/pub/acedb/ ftp://ncbi.nlm.nih.gov/repository/acedb/ Wormbase (www.wormbase.org) WormBase is a repository of mapping, sequencing and phenotypic information about the C. elegans nematode. This prototype of the final database is layered on top of ACeDB, and has not been subjected to the rigorous curation expected of the ultimate product. The data available correspond to the July 2001 release and contain the "essentially complete" genomic sequence. This site is updated regularly. Wormbase vs AceDB: Advantages • • • Wormbase uses a web-browser such as Netscape/Internet Explorer. There is no need install or update software/data. Links to other relevant sites Disadvantages • • Need web access Less flexible than AceDB for displaying data. 30 WWW Resources C. elegans WWW Server (www.c.elegans.leeds.ac.uk or elegans.swmed.edu) This site is the central C. elegans web resource. It is maintained by Leon Avery in the US and mirrored in the UK by David Coates. It contains links to most C. elegans resources as well as a worm literature search engine, a researcher list, collections of recent worm papers, worm community announcements and general information about C. elegans and the worm community. The Caenorhabditis Genetic Center at the University of Minnesota (biosci.umn.edu/CGC/CGChomepage.htm) The Caenorhabditis Genetics Center (CGC) is supported by the National Institute of Health National Center for Research Resources. The CGC has been in operation since 1978, first at the University of Missouri, Columbia and since 1992 at the University of Minnesota, St. Paul. The main operations of the CGC are at the University of Minnesota in St. Paul. Robert K. Herman is the director; Theresa Stiernagle is the curator. The CGC also has two subcontractors: Jonathan Hodgkin in England, and Leon Avery at the University of Texas Southwestern Medical Center in Dallas, TX. The St. Paul team is responsible for collecting, maintaining, and distributing stocks of C. elegans, maintaining a C. elegans Bibliography, and publishing and distributing the Worm Breeder's Gazette. The UK team is responsible for coordinating genetic nomenclature and maintaining the C. elegans genetic map. The Dallas team is responsible for maintaining the C. elegans web server. This web-site has a search engine to search for strains of bacteria or nematodes available from the CGC as well as nomenclature guidelines, a C. elegans bibliography and the Worm Breeder’s Gazette Archives. The CGC maintains several thousand stocks representing most of the standard mutants and genomic rearrangements, which are made available free to academic researchers. The C. elegans EST database (www.ddbj.nig.ac.jp/c-elegans/html/CE_INDEX.html) This database contains cDNA information generated by Yuji Kohara’s lab in Japan. It also includes the “The Nematode Expression Pattern DataBase”. The Kohara lab has been constructing an expression pattern map of the 100Mb genome of the nematode Caenorhabditis elegans through EST analysis and systematic whole mount in situ hybridization. NEXTDB is the database to integrate all information from our expression pattern project. Information available in the current version is as follows; • • • • Map: Visual expression of the relationships among the cosmids, predicted genes and the cDNA clones. Image: In situ hybridization images arranged by developmental stages. Sequence: Tag sequences of the cDNA clones are available. Homology: Results of BLASTX search are available. 31 Jim Kent's (Zahler Lab) Intronerator (www.cse.ucsc.edu/~kent/intronerator) A collection of tools for exploring the molecular biology and genomics of C. elegans with a special emphasis on alternative splicing. The Intronerator also provides alternate gene predictions in addition to aligning cDNAs with gene predictions. WormPD TM by Proteome (www.proteome.com/databases/WormPD) A commercial web-site that collates biological information about worm proteins. Information can be queried by protein name, sequence or data category. WormPD contains : • • • • • Total Proteins 19675 Total References 2724 Proteins Characterized by Genetics or Biochemistry 1936 Proteins Known by Homology to Characterized Proteins 9346 Proteins of Unknown Function 8393 RNAi Experiments The results of most RNAi experiments can be found in Wormbase or AceDB. Microarray Data (cmgm.stanford.edu/~kimlab/wmdirectorybig.html) Microarray data and techniques can be found at Stewart Kim’s web-page. It links to the Stanford microarray database. The bionet.celegans newsgroup To subscribe, see http://www.elegans.swmed.edu/ 32 References Reference Books Wood, W.B. et al. (eds.) (1988). The nematode C. elegans. Cold Spring Harbor Laboratory Press Riddle, D.L. et al. (eds.) (1997). C. elegans II. Cold Spring Harbor Laboratory Press Epstein, H.F., and Shakes, D.C. (eds.) (1995). Caenorhabditis elegans: Modern Biological Analysis of an Organism. Methods in Cell Biology Vol. 48, Academic Press Hope, I. (ed.) (1999) Caenorhabditis elegans: A Practical Approach Oxford University Press Specific References Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71-94 Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156-159 Jakubowski J, Kornfeld K (1999) A local high-density, single-nucleotide polymorphism map used to clone Caenorhabditis elegans cdf-1. Genetics 153: 743752. Timmons L, Fire A (1998) Specific interference by ingested dsRNA. Nature 395: 854. Timmons L, Court DL, Fire A (2001) Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 263: 103-112. Wicks SR, Yeh RT, Gish WR, Waterston RH, Plasterk RH (2001) Rapid gene mapping in Caenorhabditis elegans using a high density polymorphism map. Nat Genet 28: 160-164. Williams BD, Schrank B, Huynh C, Shownkeen R, Waterston RH (1992) A genetic mapping system in Caenorhabditis elegans based on polymorphic sequence-tagged sites. Genetics 131: 609-624 Wilm T, Demel P, Koop HU, Schnabel H, Schnabel R (1999) Ballistic transformation of Caenorhabditis elegans. Gene 229: 31-35. Manual Reference This manual is mainly based on protocols from the 31st Wellcome Trust Advanced Course “Genetic, Molecular and Informatic, Methods for C. elegans”. http://www.wellcome.ac.uk/en/1/bioseradv31.html