Earth-Fault Compensation Controller EFC50 / EFC50i
Transcription
Earth-Fault Compensation Controller EFC50 / EFC50i
Earth-Fault Compensation Controller EFC50 / EFC50i THE PROVEN POWER. Application In high impedance grounded power distribution networks the neutral point of the network is connected to earth by means of a stepless adjustable inductor. If the resonance circuit formed by the adjustable inductive coil and the earth capacitance of the network is tuned to or close to resonance, the fault current is greatly reduced in case of a line-to-earth fault (earth fault). In most cases the arc caused by the fault current is extinguished without the need to switch off the faulty part of the network. As the Arc Suppression Coil (ASC) and the earth capacitance form a resonance circuit, the neutral-to-ground voltage of the network depends on the value of the inductance of the ASC and reaches a maximum when the ASC is tuned to resonance. This dependence of the neutral-to-ground voltage is utilised by the EFC50 and EFC50i Earth-Fault Compensation Controller for automatic tuning of on load adjustable ASCs. Control Algorithm Minimal Coil Movement- EFC50 During a tuning operation the ASC is adjusted by a small amount. Measuring the coil-position as well as the neutral-to-ground voltage during the adjustment operation, the controller computes the detuning value v, the asymmetry value k and the damping value d, which determine the resonance curve of the neutralto-ground voltage. Taking into consideration a customer settable under- or overcompensation, the controller calculates the necessary position and directly adjusts the ASC to the calculated value. THE PROVEN POWER. Determining the Resonance Peak by Going Beyond It - EFC50 This method may be used if the asymmetry of the network is small, which results in very low neural-toground voltages. In this case, network reactions may cause fluctuations of the neutral-to-ground voltage. Therefore it is not possible to compute reliably the parameters of the network by means of a small detuning of the ASC. So the controller adjusts the ASC over a wider range, which must include the resonance peak. It stores the measured values and calculates out of these the resonance curve. Taking into consideration the desired under- or overcompensation, it computes the necessary position and adjusts the ASC to that value. Determination of the Resonance Point by Current Injection - EFC50i The EFC50i calculates the resonance curve by injecting a current into the zero sequence system of the network and measuring the vectors of both the neutral-to-ground voltage and the injected current. Where a network is essentially symmetrical and the neutral-to-ground voltage extremly low, and no reliable control signal is readily available, it is possible to increase the neutral-to-ground voltage by using the permanent current injection in a way that changes of the network configuration provide a reliable signal for the controller (inverse operation mode). In case of an outage of the current injection, the EFC50i automatically changes to a redundancy control mode whereby the resonance curve is determined via a slight adjustment of the ASC. 2 Conception - EFC50 / EFC50i Hardware Hardware Options • microprocessor based controller 19‘‘-rack mounted (3 HU), width 42 TE • housing for wallmounting • alternative power supply • optimized operation by means of a graphic LCD display, keypad and scroll wheel • extended operation via PC by means of a terminal program • optical serial port • IEC 61850 modul • indication of the digital outputs via customer labeled and parameterized LED’s at the front • central acquisition and display of arc suppression coil alarms via LEDs at the front • serial interfaces and Ethernetport • analogue output modules 0 ... 20 mA outputs for external indication of coil position and neutral-tog round voltage • EFC50: prepared for easy upgrade to the Earth-Fault Compensation Controller EFC50i (see page 2) Fig. 1 Earth-Fault Compensation Controller EFC50i with 19¨-rack mounted Current Injection Device ECI THE PROVEN POWER. 3 Operating • easy operation by means of an integrated 20 line display and the scroll wheel • easy adaptation to individual conditions via network adjustable parameters • clear menu guide with „help“ - text • Windows terminal program EFCTerm for parameter setting and on-site operation via PC as well as for remote control by means of modem • automatic, adaptive menu according to activated software options THE PROVEN POWER. Fig. 2 operating panel Fig. 3 EFCTerm 4 Software Software Options • easy parameter setting, since pre-set factory values can be adjusted by the user as required • several controllers within the same network (reliable control without mutual influences), no remote connection necessary • high flexibility through software controlled inputs and outputs, free assignment of digital outputs to different state functions as well as free assignment of digital inputs to different control functions • adjusting the ASC to a predefined value when the ASC is switched off • automatic resistor control • powerful PLC - the functions of a modern PLC are available • control of an additional fixed coil (automatic switching on/off of the fixed coil) • indication of operating status via text messages • counting of various events (e.g. transient earth fault) and controller conditions for statistical evaluations • remote parameter changes by means of a PC connected via modem to the serial interface • several parameter levels for adaptive user settings • control back to ideal compensation (v=0) if an earth fault occurs • SCADA SPABus IEC 60870-5-101/103/104 IEC 61850 (with optional hardware modul) • automatic switching of a damping resistor during search operation if U exceeds Umax • software-update via serial interface or Ethernet port THE PROVEN POWER. 5 Technical Data – EFC50 / EFC50i EFC50 EFC50i x x x x x (x)* x x x (x)* x x 3 3 analogue current inputs 0 ... 1 A AC 50 Hz 3 3 analogue outputs for Vo, coil position 0 ... 20 mA DC, software programmable 3 3 1 1 21 21 digital outputs potential free change over contacts, 230 V AC/DC, max 5 A continuous max switching capacity AC1 - 1000 VA max switching capacity AC15 (230 V AC) - 300 VA max switching capacity DC1 (30/110 V DC) - 5 A / 0,2 A 2 2 digital outputs potential free make contacts, 230 V AC/DC, max 5 A continuous max switching capacity AC1 - 1000 VA max switching capacity AC15 (230 V AC) - 300 VA max switching capacity DC1 (30/110 V DC) - 5 A / 0,2 A 19 19 x x Hardware operating 20 line display, 26 characters per line scroll wheel, keypad serial interface for SCADA, PC or modem 2 pieces RS-232, 9 pin, 1x front and 1x rear 1 piece RS-485 (alternative optical port) Ethernet port 1 piece RJ-45 analogue voltage inputs 3 mV ... 110 V AC 50 Hz rated burden < 0,5 VA coil position linear potentiometer 0 ... 200 ohms resp 0 ... 2 kOhm or 0 ... 20 mA DC input signal digital inputs potential free contacts 24 ... 230 V AC/DC, auxiliary voltage 100 ... 240 V AC/DC (other voltages on request) *(…) Option THE PROVEN POWER. 6 EFC50 EFC50i Option (EFC50 / EFC50i) Software automatic earth fault compensation control of stepless adjustable plunger core coils x automatic earth fault compensation control of stepless adjustable plunger core coils by means of the current injection into the zero-sequence system x terminal program EFCTerm for Windows x x automatic, adaptive menu x x measurement memory x x 3 menu access levels for users x x software-update via serial interface or Ethernet port x x several controllers within the same network system x predefined coil position x automatic resistor control x fixed coil control x control back to ideal compensation (v=0) at earth fault condition x SCADA x automatic switching if U exceeds Umax x Mechanical Data dimensions EFC50/50i module width 213.3 mm (42 TE) height 132.5 mm (3 HE) depth 270.0 mm 19’’ Rack width 483.0 mm height 132.5 mm depth 320.0 mm weight approx 3 kg approx 2 kg temperature operating 0°C ... +40°C storage -25°C ... +55°C transport -25°C ... +70°C max installation altitude ≤ 2000 m. a. m. s. l. humidity (24h average) from 5% to 95% acc. to IEC 60255-1 protection class IP20 THE PROVEN POWER. 7 ECI Current Injection Device The Current Injection Device ECI is used to produce differential measurement values by means of the current injection into the zero-phase sequence sytem. This approach is used by both the Earth-Fault Compensation Controller EFC50i (see page 2) and the Earth-Fault Detection Device EFD (see brochure E667). Where a network is essentially symmetrical and the neutral-to-ground voltage extremely low, and no reliable control signal is readily available, it is possible to increase the neutral-to-ground voltage by using the permanent current injection in a way that changes of the network configuration ensuring a reliable signal for the controller (inverse operating mode implemented in the EFC50i control algorithm). The current injection into the zero-phase sequence system is usually done via a power auxiliary winding of the Arc Suppression Coil. The Current Injection Device ECI essentially consists of a transformer, capacitors for current limiting, relays, control- and signal contacts. Fig. 4 Fig. 5 ECI in conventional design (indoor design, outdoor design and design on mounting plate available) Fig. 6 ECI 19˝-rack mounted Increase of the zero-sequence voltage by means of continuous current injection THE PROVEN POWER. The following designs are available: indoor design, outdoor design, mounting plate for installation in an existing cubicle, 19˝-rack mounting. 8 3 2 X10/1 U1 X10/2 V1 Verlagerungsspannung Neutral to earth voltage AI X10/3 U2 X10/4 V2 F Potenti ometer AI Potenti ometer 0-20 mA Ipos AO1 0-20 mA Ipos E X6/3 0-110V AC V01 X7/1 +Pot. X5/2 X7/3 sPot, mA X5/1 X7/2 -Pot. X5/3 X8/2 - X8/1 + X1/2 X1/6 X9/3 ECOM.1 X1/22 Endschalter min. Strom Final pos. swi tch min. current DI X9/1 E1.1 X1/24 Endschalter max. Strom Final pos. switch max. current DI X9/2 E2.1 X1/7 X1/19 max Strom max current min Strom min current -UH -SV +UH +SV mi n Strom mi n current +UH +SV max Strom max current X1/21 X4/3 KCOM.1 X1/15 Motor: Strom kl einer Motor: current decreasi ng DO X4/2 K2.1 X1/18 Motor: Strom größer Motor: current i ncreasing DO X4/1 K1.1 X4/12 KCOM.3 D (Widerstand ei n) (Resistor on) DO Reserve DO Spare X4/9 K6.3NO X4/10 K7.3NO X4/11 K7.3NC X1/17 +UH +SV X7/1 -UH -SV Strom kleiner Current decreasing Strom größer Current increasing X4/8 KCOM.2 K5.2 Automati k ein Automatic on DO X4/6 K4.2 Keine Störung No mal funct. DO Störung Malfunction X4/4 K3.2NO X4/5 K3.2NC X9/8 ECOM.2 Automatik aus Automati c off DI X9/7 E6.2 Automatik ei n Automatic on DI X9/6 E5.2 di gitaler Eingang DI Digi tal input Automatik bl ockiert Automati c blocked DI X9/5 E4.2 digi tal er Ausgang DO Digi tal output Widerstand Auslösung DI Resi stor forced trigger X9/4 E3.2 X11/1 PE X11/2 L(+) X11/3 N(-) B (...) Opti on Opti on anal oger Ei ngang AI Analog input - UH - SV B Toleranzen nach Oberfläche ISO 2768-ÖNORM M1365 Teil1 Teil2 standard f m c v HK L Abm.: mm ; 0-500 3% 500-2000 2% ; >2000 1% Datum Name Bearb. 24.11.2009 MPK-Sch Gepr. 9.12.2009 C anal oger Ausgang AO Analog output +/-UH Hilfsspannung +/-SV Signal voltage Die Weit ergabe oder Vervielfältigung dieser Unterlage sowie die Verwert ung und Mitt eilung ihres Inhaltes ist ohne ausdrückliche Genehmigung nicht gestatt et. Zuwiderhandlungen verpflichten zu Schadenersatz. Alle Rechte vorbehalt en. TRENCH AUSTRIA GMBH THE PROVEN POWER. D +UH +SV CAD erstellte Zeichnung. Keine manuellen Änderungen durchführen. EFC50/50i wiring diagram - Motorschütze Motor contactors (Widerstandssteuerung) (Widerstand Ein) (Resistor control) (Resistor on) X4/7 Versorgungsspannung Power suppy 100-240V AC/DC (20-70V DC) E +UH +SV Erdschluss DO Earthfault C Fig. 7 -UH -SV F Verlagerungsspannung Neutral to earth voltage X6/4 Stellungspot. Position pot. (Referenzspannung) (Mi t ECI oder vektorieller Auslösung) AI (Reference voltage) (Wi th ECI or vectorial tri gger) 1 Endschalter Final position switch 4 TE-Si Maßstab: Material: Kunde: A.Nr.: F.Nr.: Erdschluss Kompensationsregler EFC50 Earthfault Compensation Controller EFC50 A B AO 1 geändert 14.01.2013 Krw 01 div. Anpassungen 9.7.2010 Sch ENOAG01 B Änd. Zust. Blatt 9 A 1 3 Bl. 3 4 2 1 Erdschluss Löschspule / TA- Standard Arc SuppressionCoil / TA- Standard F (Verlagerungsspannung 2) (Neutral to earth voltage) AI (nur für Kupplungserkennung) (Only for coupling detection) X14/1 U3 X14/2 V3 X14/3 k1 X14/4 l1 X14/5 k2 X14/6 l2 X14/7 k3 Messung Einspeisestrom Measurement injected current AI Reserve Stromeingang Spare current input AI Reserve Stromeingang Spare current input AI X14/8 (Nur für Master / Slave) (Only for master / slave) E 0- 110V AC V02 1A Ieci1 l3 X6 /3 Andere Spule Other coil X6 /4 l k F X1 /2 4 X1 /2 5 1A ECI-Stromeinspeisegerät ECI-Current Injection Device 1A E X12/12 KCOM4 Regler ist Master Controller is Master DO X12/11 K12.4NO ECI-1 negative Einspeisung ECI-1 negative injection DO X12/10 K11.4NO ECI-1 positive Einspeisung ECI-1 positive injection DO X12/9 K10.4NO X12/8 K9.4NO Verwendung - Eing. anderer EFC50 Used - input other EFC50 X12/7 K8.4NO Anforderung - Eing. anderer EFC50 Request - input other EFC50 ECI Verwendung DO ECI used ECI Anforderung DO ECI request + UH +SV -UH -S V Slave - Ein g. an de rer EFC5 0 Slave - inp ut oth er EFC 50 X1 /1 6 X1 /1 7 X1 /8 X1 /9 D D Regler ist Slave DI Controller is Slave ECI-1 negative Einspeisung ECI-1 negative injection DI ECI-1 positive Einspeisung ECI-1 positive injection DI ECI Verwendung DI ECI used ECI Anforderung DI ECI request X 12 /6 E C OM .3 X 12 /5 E 11.3 X 12 /4 E 1 0.3 -UH -S V Ma ster - Au sg . a nd ere r EFC 50 Ma ster - ou tp ut oth er EFC5 0 X1 /2 0 X1 /2 1 + UH +SV X 12 /3 E 9 .3 X 1 2/2 E 8 .3 Ve rwe nd un g - Au sg . a nd ere r EFC 5 0 Used - o utp ut othe r EFC 50 X 12 /1 E 7 .3 An forde run g - Au sg . a nd ere r EFC 5 0 Re qu est - ou tpu t o th er EFC 5 0 X1 /1 2 X1 /1 3 C C (0-2 0 mA Verla ge ru ng ssp an nu ng 2)AO3 (0-2 0 mA n eu tral to ea rth vo lta ge 2) 0-2 0 mA Verla ge ru ng ssp an nu ng 1 AO2 0-20 mA n eu tra l to ea rth volta ge 1 X13 /4 - X13 /3 + (...) nur für 2SS-Betrieb only for 2BB-operation X13 /2 - an alog er Ein ga ng AI An alog inp ut X13 /1 + an alog er Ausga ng AO An alog ou tp ut digita le r Eing an g D I D igital inp ut digita le r Au sg an g D O D igital o utpu t + /-U H H ilfsspa nn un g + /-SV Sign al voltag e B Fig. 8 EFC 50i wiring diagram - control with Toleranzen current nachinjection CAD erstellte Zeichnung. Keine manuellen Änderungen durchführen Oberfläche Die Weitergabe oder Vervielfältigung dieser Unterlage sowie die Verwertung und Mitteilung ihres Inhaltes ist ohne ausdrückliche Genehmigung nicht gestattet. Zuwiderhandlungen verpflichten zu Schadenersatz. Alle Rechte vorbehalten. TRENCH AUSTRIAGMBH THE PROVEN POWER. A ISO 2768-ÖNORM M1365 Teil1 Teil2 f m c v H K L Abm.: mm ; 0-500 3% 500-2000 2%; >2000 1% Datum Maßstab: Material: Kunde: A.Nr.: Name Bearb. 24.11.2009 MPK-Sch Gepr. 9.12.2009 TE-Si F.Nr.: EFC50 mit ECI 10 Ein/Ausgänge EFC50 with ECI in/outputs A 4 2 3 X5/12 ECO M.5 X5/11 E21.5 X5/10 E20.5 X5/9 E19.5 X5/8 E18.5 X5/7 E17.5 X5/6 ECO M.4 X5/5 E16.4 X5/4 E15.4 X5/3 E14.4 X5/2 E13.4 X5/1 E12.4 X6/12 KCOM.7 X6/11 K21.7NO X6/10 K20.7NO X6/9 K19.7NO F (externer Leistungsschalter) (External power switch) DI (Kommando Widerstand blockieren) (Command resistor blocked) DI Reserve Spare DI Kommando Strom tiefer Command current down DI Kommando Strom höher Command current up DI E Meldung Fixspule ein Message fixcoil on DI Temperatur trip Temperature trip DI Temperatur Warnung Temperature warning DI Buchholz Trip Buchholz trip DI Buchholz Warnung Buchholz warning DI D Netzunsymmetrie > Zf Net-asymmetry > Zf DO Abgestimmt, nicht kompensiert Tuned, not compensated DO Abgestimmt, kompensiert DO Tuned, compensated C X6/8 KCOM.6 Temperatur trip Temperature trip DO X6/7 K18.6NO Temperatur Warnung DO Temperature warning X6/6 K17.6NO Buchholz Trip Buchholz trip DO X6/5 K16.6NO Buchholz Warnung Buchholz warning DO X6/4 K15.6NO X6/3 KCOM.5 (Kommando Fixspule ein) DO (Command fixcoil on) X6/2 K14.5NO (Kommando Fixspule aus) (Command fixcoil off) DO X6/1 K13.5NO 1 -UH -SV F -UH -SV E D +UH +SV +UH +SV C (...) Software opti on Software opti on analoger Eingang AI Analog i nput analoger Ausgang AO Analog output +UH +SV digitaler Ei ngang DI Digital input digitaler Ausgang DO Digital output +/-UH Hilfsspannung +/-SV Signal voltage B Digitale Ein- und Ausgänge können vom Kunden frei definiert werden. (Menü: SPS programmieren) Digital in- and outputs may be freely defined by the client. (menu: PLC programming) oleranzen nach Keine manuellen durchführen Fig. CAD 9 erstellte EFCZeichnung. 50/50i wiringÄnderungen diagram - DI /TDO Die Weitergabe oder Vervielfältigung dieser Unterlage sowie die Verwertung und Mitteilung ihres Inhaltes ist ohne ausdrückliche Genehmigung nicht gestattet. Zuwiderhandlungen verpflichten zu Schadenersatz. Alle Rechte vorbehalten. TRENCH AUSTRIAGMBH THE PROVEN POWER. ISO 2768-ÖNORMM1365 Teil1 Teil2 f m c v HKL Abm.: mm ; 0-500 3% 500-2000 2% ; >2000 1% Datum Oberfläche Material: Kunde: A.Nr.: Name Bearb. 24.11.2009 MPK-Sch Gepr. TE-Si 9.12.2009 Maßstab: F.Nr.: 11 EFC50: zusätzliche digitale Ein/Ausgänge EFC50: additional digital in/outputs A Blatt A The Trench Group is your partner of choice for electrical power transmission and distribution solutions today and for the development of your new technology solutions of tomorrow. For more information check out our website at www.trench-group.com or send an e-mail to sales@trench-group.com E 656 THE PROVEN POWER. www.trench-group.com