Earth-Fault Compensation Controller EFC50 / EFC50i

Transcription

Earth-Fault Compensation Controller EFC50 / EFC50i
Earth-Fault
Compensation Controller
EFC50 / EFC50i
THE PROVEN POWER.
Application
In high impedance grounded power distribution networks the neutral point of the network is connected to
earth by means of a stepless adjustable inductor. If the
resonance circuit formed by the adjustable inductive
coil and the earth capacitance of the network is tuned
to or close to resonance, the fault current is greatly
reduced in case of a line-to-earth fault (earth fault).
In most cases the arc caused by the fault current is extinguished without the need to switch off the faulty
part of the network.
As the Arc Suppression Coil (ASC) and the earth capacitance form a resonance circuit, the neutral-to-ground
voltage of the network depends on the value of the
inductance of the ASC and reaches a maximum when
the ASC is tuned to resonance. This dependence of the
neutral-to-ground voltage is utilised by the EFC50 and
EFC50i Earth-Fault Compensation Controller for automatic tuning of on load adjustable ASCs.
Control Algorithm
Minimal Coil Movement- EFC50
During a tuning operation the ASC is adjusted by a
small amount. Measuring the coil-position as well as
the neutral-to-ground voltage during the adjustment
operation, the controller computes the detuning value
v, the asymmetry value k and the damping value d,
which determine the resonance curve of the neutralto-ground voltage. Taking into consideration a customer settable under- or overcompensation, the controller calculates the necessary position and directly
adjusts the ASC to the calculated value.
THE PROVEN POWER.
Determining the Resonance Peak by
Going Beyond It - EFC50
This method may be used if the asymmetry of the
network is small, which results in very low neural-toground voltages. In this case, network reactions may
cause fluctuations of the neutral-to-ground voltage.
Therefore it is not possible to compute reliably the parameters of the network by means of a small detuning
of the ASC. So the controller adjusts the ASC over a
wider range, which must include the resonance peak.
It stores the measured values and calculates out of
these the resonance curve. Taking into consideration
the desired under- or overcompensation, it computes
the necessary position and adjusts the ASC to that
value.
Determination of the Resonance
Point by Current Injection - EFC50i
The EFC50i calculates the resonance curve by injecting a current into the zero sequence system of
the network and measuring the vectors of both the
neutral-to-ground voltage and the injected current.
Where a network is essentially symmetrical and the
neutral-to-ground voltage extremly low, and no reliable
control signal is readily available, it is possible to increase
the neutral-to-ground voltage by using the permanent
current injection in a way that changes of the network
configuration provide a reliable signal for the controller (inverse operation mode). In case of an outage of the
current injection, the EFC50i automatically changes to
a redundancy control mode whereby the resonance
curve is determined via a slight adjustment of the ASC.
2
Conception - EFC50 / EFC50i
Hardware
Hardware Options
• microprocessor based controller 19‘‘-rack
mounted (3 HU), width 42 TE
• housing for wallmounting
• alternative power supply
• optimized operation by means of a graphic LCD
display, keypad and scroll wheel
• extended operation via PC by means of a terminal
program
• optical serial port
• IEC 61850 modul
• indication of the digital outputs via customer
labeled and parameterized LED’s at the front
• central acquisition and display of arc suppression
coil alarms via LEDs at the front
• serial interfaces and Ethernetport
• analogue output modules 0 ... 20 mA outputs for
external indication of coil position and neutral-tog
round voltage
• EFC50: prepared for easy upgrade to the Earth-Fault
Compensation Controller EFC50i (see page 2)
Fig. 1
Earth-Fault Compensation Controller EFC50i with 19¨-rack mounted Current Injection Device ECI
THE PROVEN POWER.
3
Operating
• easy operation by means of an integrated 20 line
display and the scroll wheel
• easy adaptation to individual conditions via network
adjustable parameters
• clear menu guide with „help“ - text
• Windows terminal program EFCTerm for parameter
setting and on-site operation via PC as well as for
remote control by means of modem
• automatic, adaptive menu according to activated
software options
THE PROVEN POWER.
Fig. 2
operating panel
Fig. 3
EFCTerm
4
Software
Software Options
• easy parameter setting, since pre-set factory
values can be adjusted by the user as required
• several controllers within the same network
(reliable control without mutual influences), no
remote connection necessary
• high flexibility through software controlled inputs
and outputs, free assignment of digital outputs to
different state functions as well as free assignment
of digital inputs to different control functions
• adjusting the ASC to a predefined value when the
ASC is switched off
• automatic resistor control
• powerful PLC - the functions of a modern PLC are
available
• control of an additional fixed coil (automatic
switching on/off of the fixed coil)
• indication of operating status via text messages
• counting of various events (e.g. transient earth
fault) and controller conditions for statistical
evaluations
• remote parameter changes by means of a PC
connected via modem to the serial interface
• several parameter levels for adaptive user settings
• control back to ideal compensation (v=0) if an
earth fault occurs
• SCADA SPABus
IEC 60870-5-101/103/104
IEC 61850 (with optional hardware modul)
• automatic switching of a damping resistor during
search operation if U exceeds Umax
• software-update via serial interface or Ethernet
port
THE PROVEN POWER.
5
Technical Data – EFC50 / EFC50i
EFC50
EFC50i
x
x
x
x
x (x)*
x
x
x (x)*
x
x
3
3
analogue current inputs
0 ... 1 A AC 50 Hz
3
3
analogue outputs for Vo, coil position
0 ... 20 mA DC, software programmable
3
3
1
1
21
21
digital outputs
potential free change over contacts, 230 V AC/DC, max 5 A continuous
max switching capacity AC1 - 1000 VA
max switching capacity AC15 (230 V AC) - 300 VA
max switching capacity DC1 (30/110 V DC) - 5 A / 0,2 A
2
2
digital outputs
potential free make contacts, 230 V AC/DC, max 5 A continuous
max switching capacity AC1 - 1000 VA
max switching capacity AC15 (230 V AC) - 300 VA
max switching capacity DC1 (30/110 V DC) - 5 A / 0,2 A
19
19
x
x
Hardware
operating
20 line display, 26 characters per line
scroll wheel, keypad
serial interface for SCADA, PC or modem
2 pieces RS-232, 9 pin, 1x front and 1x rear
1 piece RS-485 (alternative optical port)
Ethernet port
1 piece RJ-45
analogue voltage inputs
3 mV ... 110 V AC 50 Hz
rated burden < 0,5 VA
coil position
linear potentiometer 0 ... 200 ohms resp 0 ... 2 kOhm
or 0 ... 20 mA DC input signal
digital inputs
potential free contacts 24 ... 230 V AC/DC,
auxiliary voltage
100 ... 240 V AC/DC
(other voltages on request)
*(…) Option
THE PROVEN POWER.
6
EFC50
EFC50i
Option
(EFC50 / EFC50i)
Software
automatic earth fault compensation control of stepless
adjustable plunger core coils
x
automatic earth fault compensation control of stepless
adjustable plunger core coils by means of the current
injection into the zero-sequence system
x
terminal program EFCTerm for Windows
x
x
automatic, adaptive menu
x
x
measurement memory
x
x
3 menu access levels for users
x
x
software-update via serial interface or Ethernet port
x
x
several controllers within the same network system
x
predefined coil position
x
automatic resistor control
x
fixed coil control
x
control back to ideal compensation (v=0) at earth fault condition
x
SCADA
x
automatic switching if U exceeds Umax
x
Mechanical Data
dimensions
EFC50/50i module
width 213.3 mm (42 TE)
height 132.5 mm (3 HE)
depth 270.0 mm
19’’ Rack
width 483.0 mm
height 132.5 mm
depth 320.0 mm
weight
approx 3 kg
approx 2 kg
temperature
operating 0°C ... +40°C
storage -25°C ... +55°C
transport -25°C ... +70°C
max installation altitude
≤ 2000 m. a. m. s. l.
humidity (24h average)
from 5% to 95% acc. to IEC 60255-1
protection class
IP20
THE PROVEN POWER.
7
ECI Current Injection Device
The Current Injection Device ECI is used to produce
differential measurement values by means of the
current injection into the zero-phase sequence sytem.
This approach is used by both the Earth-Fault Compensation Controller EFC50i (see page 2) and the
Earth-Fault Detection Device EFD (see brochure E667).
Where a network is essentially symmetrical and the
neutral-to-ground voltage extremely low, and no
reliable control signal is readily available, it is possible
to increase the neutral-to-ground voltage by using
the permanent current injection in a way that changes of the network configuration ensuring a reliable
signal for the controller (inverse operating mode
implemented in the EFC50i control algorithm). The
current injection into the zero-phase sequence system
is usually done via a power auxiliary winding of the
Arc Suppression Coil.
The Current Injection Device ECI essentially consists of
a transformer, capacitors for current limiting, relays,
control- and signal contacts.
Fig. 4
Fig. 5
ECI in conventional design (indoor design, outdoor
design and design on mounting plate available)
Fig. 6
ECI 19˝-rack mounted
Increase of the zero-sequence voltage by means of
continuous current injection
THE PROVEN POWER.
The following designs are available: indoor design,
outdoor design, mounting plate for installation in an
existing cubicle, 19˝-rack mounting.
8
3
2
X10/1
U1
X10/2
V1
Verlagerungsspannung
Neutral to earth voltage AI
X10/3
U2
X10/4
V2
F
Potenti ometer AI
Potenti ometer
0-20 mA Ipos AO1
0-20 mA Ipos
E
X6/3
0-110V AC
V01
X7/1
+Pot.
X5/2
X7/3
sPot, mA
X5/1
X7/2
-Pot.
X5/3
X8/2
-
X8/1
+
X1/2
X1/6
X9/3
ECOM.1
X1/22
Endschalter min. Strom
Final pos. swi tch min. current DI
X9/1
E1.1
X1/24
Endschalter max. Strom
Final pos. switch max. current DI
X9/2
E2.1
X1/7
X1/19
max Strom
max current
min Strom
min current
-UH
-SV
+UH
+SV
mi n Strom
mi n current
+UH
+SV
max Strom
max current
X1/21
X4/3
KCOM.1
X1/15
Motor: Strom kl einer
Motor: current decreasi ng DO
X4/2
K2.1
X1/18
Motor: Strom größer
Motor: current i ncreasing DO
X4/1
K1.1
X4/12 KCOM.3
D
(Widerstand ei n)
(Resistor on) DO
Reserve DO
Spare
X4/9
K6.3NO
X4/10
K7.3NO
X4/11
K7.3NC
X1/17
+UH
+SV
X7/1
-UH
-SV
Strom kleiner
Current decreasing
Strom größer
Current increasing
X4/8
KCOM.2
K5.2
Automati k ein
Automatic on DO
X4/6
K4.2
Keine Störung
No mal funct. DO
Störung
Malfunction
X4/4
K3.2NO
X4/5
K3.2NC
X9/8
ECOM.2
Automatik aus
Automati c off DI
X9/7
E6.2
Automatik ei n
Automatic on DI
X9/6
E5.2
di gitaler Eingang
DI Digi tal input
Automatik bl ockiert
Automati c blocked DI
X9/5
E4.2
digi tal er Ausgang
DO Digi tal output
Widerstand Auslösung DI
Resi stor forced trigger
X9/4
E3.2
X11/1
PE
X11/2
L(+)
X11/3
N(-)
B
(...) Opti on
Opti on
anal oger Ei ngang
AI Analog input
- UH
- SV
B
Toleranzen nach
Oberfläche
ISO 2768-ÖNORM M1365
Teil1
Teil2
standard
f m c v HK L
Abm.: mm ; 0-500 3%
500-2000 2% ; >2000 1%
Datum
Name
Bearb. 24.11.2009
MPK-Sch
Gepr.
9.12.2009
C
anal oger Ausgang
AO Analog output
+/-UH Hilfsspannung
+/-SV Signal voltage
Die Weit ergabe oder Vervielfältigung dieser Unterlage
sowie die Verwert ung und Mitt eilung ihres Inhaltes ist
ohne ausdrückliche Genehmigung nicht gestatt et.
Zuwiderhandlungen verpflichten zu Schadenersatz.
Alle Rechte vorbehalt en.
TRENCH AUSTRIA GMBH
THE PROVEN POWER.
D
+UH
+SV
CAD erstellte Zeichnung. Keine manuellen Änderungen durchführen.
EFC50/50i wiring diagram -
Motorschütze
Motor contactors
(Widerstandssteuerung)
(Widerstand Ein)
(Resistor control)
(Resistor on)
X4/7
Versorgungsspannung
Power suppy
100-240V AC/DC
(20-70V DC)
E
+UH
+SV
Erdschluss DO
Earthfault
C
Fig. 7
-UH
-SV
F
Verlagerungsspannung
Neutral to earth voltage
X6/4
Stellungspot.
Position pot.
(Referenzspannung)
(Mi t ECI oder vektorieller Auslösung) AI
(Reference voltage)
(Wi th ECI or vectorial tri gger)
1
Endschalter
Final position switch
4
TE-Si
Maßstab:
Material:
Kunde:
A.Nr.:
F.Nr.:
Erdschluss Kompensationsregler EFC50
Earthfault Compensation Controller EFC50
A
B
AO 1 geändert
14.01.2013 Krw
01
div. Anpassungen
9.7.2010
Sch
ENOAG01
B
Änd. Zust.
Blatt
9
A
1
3 Bl.
3
4
2
1
Erdschluss Löschspule / TA- Standard
Arc SuppressionCoil / TA- Standard
F
(Verlagerungsspannung 2)
(Neutral to earth voltage)
AI
(nur für Kupplungserkennung)
(Only for coupling detection)
X14/1
U3
X14/2
V3
X14/3
k1
X14/4
l1
X14/5
k2
X14/6
l2
X14/7
k3
Messung Einspeisestrom
Measurement injected current AI
Reserve Stromeingang
Spare current input AI
Reserve Stromeingang
Spare current input AI
X14/8
(Nur für Master / Slave)
(Only for master / slave)
E
0- 110V AC
V02
1A
Ieci1
l3
X6 /3
Andere Spule
Other coil
X6 /4
l
k
F
X1 /2 4
X1 /2 5
1A
ECI-Stromeinspeisegerät
ECI-Current Injection Device
1A
E
X12/12
KCOM4
Regler ist Master
Controller is Master DO
X12/11
K12.4NO
ECI-1 negative Einspeisung
ECI-1 negative injection DO
X12/10
K11.4NO
ECI-1 positive Einspeisung
ECI-1 positive injection DO
X12/9
K10.4NO
X12/8
K9.4NO Verwendung - Eing. anderer EFC50
Used - input other EFC50
X12/7
K8.4NO Anforderung - Eing. anderer EFC50
Request - input other EFC50
ECI Verwendung DO
ECI used
ECI Anforderung DO
ECI request
+ UH
+SV
-UH
-S V
Slave - Ein g. an de rer EFC5 0
Slave - inp ut oth er EFC 50
X1 /1 6
X1 /1 7
X1 /8
X1 /9
D
D
Regler ist Slave DI
Controller is Slave
ECI-1 negative Einspeisung
ECI-1 negative injection
DI
ECI-1 positive Einspeisung
ECI-1 positive injection
DI
ECI Verwendung DI
ECI used
ECI Anforderung DI
ECI request
X 12 /6
E C OM .3
X 12 /5
E 11.3
X 12 /4
E 1 0.3
-UH
-S V
Ma ster - Au sg . a nd ere r EFC 50
Ma ster - ou tp ut oth er EFC5 0
X1 /2 0
X1 /2 1
+ UH
+SV
X 12 /3
E 9 .3
X 1 2/2
E 8 .3
Ve rwe nd un g - Au sg . a nd ere r EFC 5 0
Used - o utp ut othe r EFC 50
X 12 /1
E 7 .3
An forde run g - Au sg . a nd ere r EFC 5 0
Re qu est - ou tpu t o th er EFC 5 0
X1 /1 2
X1 /1 3
C
C
(0-2 0 mA Verla ge ru ng ssp an nu ng 2)AO3
(0-2 0 mA n eu tral to ea rth vo lta ge 2)
0-2 0 mA Verla ge ru ng ssp an nu ng 1 AO2
0-20 mA n eu tra l to ea rth volta ge 1
X13 /4
-
X13 /3
+
(...) nur für 2SS-Betrieb
only for 2BB-operation
X13 /2
-
an alog er Ein ga ng
AI An alog inp ut
X13 /1
+
an alog er Ausga ng
AO An alog ou tp ut
digita le r Eing an g
D I D igital inp ut
digita le r Au sg an g
D O D igital o utpu t
+ /-U H H ilfsspa nn un g
+ /-SV Sign al voltag e
B
Fig. 8
EFC
50i wiring diagram - control with Toleranzen
current
nachinjection
CAD erstellte Zeichnung. Keine manuellen Änderungen durchführen
Oberfläche
Die Weitergabe oder Vervielfältigung dieser Unterlage
sowie die Verwertung und Mitteilung ihres Inhaltes ist
ohne ausdrückliche Genehmigung nicht gestattet.
Zuwiderhandlungen verpflichten zu Schadenersatz.
Alle Rechte vorbehalten.
TRENCH AUSTRIAGMBH
THE PROVEN POWER.
A
ISO 2768-ÖNORM M1365
Teil1
Teil2
f m c v H K L
Abm.: mm ; 0-500 3%
500-2000 2%; >2000 1%
Datum
Maßstab:
Material:
Kunde:
A.Nr.:
Name
Bearb.
24.11.2009
MPK-Sch
Gepr.
9.12.2009
TE-Si
F.Nr.:
EFC50 mit ECI
10
Ein/Ausgänge
EFC50 with ECI
in/outputs
A
4
2
3
X5/12
ECO M.5
X5/11
E21.5
X5/10
E20.5
X5/9
E19.5
X5/8
E18.5
X5/7
E17.5
X5/6
ECO M.4
X5/5
E16.4
X5/4
E15.4
X5/3
E14.4
X5/2
E13.4
X5/1
E12.4
X6/12
KCOM.7
X6/11
K21.7NO
X6/10
K20.7NO
X6/9
K19.7NO
F
(externer Leistungsschalter)
(External power switch) DI
(Kommando Widerstand blockieren)
(Command resistor blocked)
DI
Reserve
Spare DI
Kommando Strom tiefer
Command current down
DI
Kommando Strom höher
Command current up
DI
E
Meldung Fixspule ein
Message fixcoil on
DI
Temperatur trip
Temperature trip
DI
Temperatur Warnung
Temperature warning
DI
Buchholz Trip
Buchholz trip
DI
Buchholz Warnung
Buchholz warning
DI
D
Netzunsymmetrie > Zf
Net-asymmetry > Zf DO
Abgestimmt, nicht kompensiert
Tuned, not compensated
DO
Abgestimmt, kompensiert DO
Tuned, compensated
C
X6/8
KCOM.6
Temperatur trip
Temperature trip DO
X6/7
K18.6NO
Temperatur Warnung DO
Temperature warning
X6/6
K17.6NO
Buchholz Trip
Buchholz trip DO
X6/5
K16.6NO
Buchholz Warnung
Buchholz warning DO
X6/4
K15.6NO
X6/3
KCOM.5
(Kommando Fixspule ein) DO
(Command fixcoil on)
X6/2
K14.5NO
(Kommando Fixspule aus)
(Command fixcoil off) DO
X6/1
K13.5NO
1
-UH
-SV
F
-UH
-SV
E
D
+UH
+SV
+UH
+SV
C
(...) Software opti on
Software opti on
analoger Eingang
AI Analog i nput
analoger Ausgang
AO Analog output
+UH
+SV
digitaler Ei ngang
DI Digital input
digitaler Ausgang
DO Digital output
+/-UH Hilfsspannung
+/-SV Signal voltage
B
Digitale Ein- und Ausgänge können vom Kunden frei definiert werden. (Menü: SPS programmieren)
Digital in- and outputs may be freely defined by the client. (menu: PLC programming)
oleranzen nach
Keine manuellen
durchführen
Fig. CAD
9 erstellte
EFCZeichnung.
50/50i
wiringÄnderungen
diagram
- DI /TDO
Die Weitergabe oder Vervielfältigung dieser Unterlage
sowie die Verwertung und Mitteilung ihres Inhaltes ist
ohne ausdrückliche Genehmigung nicht gestattet.
Zuwiderhandlungen verpflichten zu Schadenersatz.
Alle Rechte vorbehalten.
TRENCH AUSTRIAGMBH
THE PROVEN POWER.
ISO 2768-ÖNORMM1365
Teil1
Teil2
f m c v HKL
Abm.: mm ; 0-500 3%
500-2000 2% ; >2000 1%
Datum
Oberfläche
Material:
Kunde:
A.Nr.:
Name
Bearb. 24.11.2009
MPK-Sch
Gepr.
TE-Si
9.12.2009
Maßstab:
F.Nr.:
11
EFC50: zusätzliche digitale Ein/Ausgänge
EFC50: additional digital in/outputs
A
Blatt
A
The Trench Group is your partner of choice for electrical
power transmission and distribution solutions today and
for the development of your new technology solutions
of tomorrow.
For more information check out our website at www.trench-group.com
or send an e-mail to sales@trench-group.com
E 656
THE PROVEN POWER.
www.trench-group.com