Seite als PDF downloaden - Max-Planck
Transcription
Seite als PDF downloaden - Max-Planck
Jahrbuch 2012/2013 | Felser, Claudia; Chadov, Stanislav; Müchler, Lukas; Yan, Binghai; Kübler, Jürgen; Zhang, Shou-Cheng1 | Topologische Isolatoren aus chemischer Sicht Topologische Isolatoren aus chemischer Sicht Topological insulators from a chemical point of view Felser, Claudia; Chadov, Stanislav; Müchler, Lukas; Yan, Binghai; Kübler, Jürgen; Zhang, Shou-Cheng1 Max-Planck-Institut für Chemische Physik fester Stoffe, Dresden Korrespondierender Autor E-Mail: Claudia.Felser@cpfs.mpg.de Zusammenfassung Topologische Isolatoren (TIs), Materialien mit einem neuen Quantenzustand, sind ein hochaktuelles Thema in der Festkörperforschung. TIs sind Halbleiter mit kleinen Bandlücken, aber mit stabilen metallischen Oberflächenzuständen. Bemerkensw ert ist, dass sich topologische Isolatoren durch ab initio Berechnungen hervorsagbar und über chemische Konzepte identifizierbar sind. Eine systematische Suche nach neuen topologischen Isolatoren ist durch unser einfaches Rezept, basierend auf Bindungen, Bandstrukturen, Symmetrien, Orbitalen und Kernladungen, möglich. Summary Topological insulators (TIs) are a new quantum state of matter, w hich have attracted interest of condensed matter science. The materials are small band gap insulators w ith robust gapless surface states. Remarkable is that topological insulators can be predicted by ab initio theory and even understood from a chemist’s perspective. Herein, a simple recipe based on bonds, bands, symmetry, and nuclear charge w ill be given to motivate a systematic search for new topologically nontrivial materials. Topologie im Festkörper und die daraus resultierenden neuen Quantenzustände sind ein „hot topic“ in den Festkörperw issenschaften [1,2]. Das bekannteste Beispiel für unterschiedliche Topologien sind Torus und Kugel, zw ei Objekte, die nicht durch eine stetige Operation ineinander überführt w erden können. In der Chemie begegnet uns die Topologie im Zusammenhang mit der Händigkeit chiraler Moleküle. Ein Paar spiegelbildlicher Enantiomere – ein „rechtshändiges“ und ein „linkshändiges“ Molekül – kann nicht zur Deckung gebracht w erden. Das faszinierende Phänomen der Chiralität w urde kürzlich auch in kondensierter Materie gefunden, und zw ar in magnetischen Materialien mit nicht-zentrosymmetrischen Strukturen (Skyrmionen) [3] und auf der Oberfläche topologischer Isolatoren [2]. Topologische Isolatoren sind Materialien, die im Volumen isolierend oder halbleitend sind, auf der Oberfläche oder an Kanten aber metallisches Verhalten zeigen [2]. Topologisch geschützte Kantenzustände w urden in HgTe-Quantentopf-Strukturen zum ersten Mal experimentell durch Laurens Molenkamp und sein Team bew iesen, nachdem sie theoretisch von Shou-Cheng Zhang und seinen Mitarbeitern vorhergesagt w urden. Fast alle bis heute identifizierten Verbindungen können in zw ei Materialklassen klassifiziert w erden, die HgTeund die Bi2 Se 3 -Familie. Die neuen Quantenzustände sind dissipationslose Spin-Ströme der beiden Spin© 2013 Max-Planck-Gesellschaft w w w .mpg.de 1/5 Jahrbuch 2012/2013 | Felser, Claudia; Chadov, Stanislav; Müchler, Lukas; Yan, Binghai; Kübler, Jürgen; Zhang, Shou-Cheng1 | Topologische Isolatoren aus chemischer Sicht Richtungen, die in entgegengesetzten Richtungen propagieren. Die geschützten Oberflächenströme sind ein Resultat der besonderen elektronischen Struktur. Die Oberflächenzustände sehen w ie der Dirac-Kegel (XForm) in Graphen aus, zusätzlich zu starker Spin-Bahn-Kopplung (SOC). Ein TI besitzt eine ungerade Zahl von Dirac-Kegel-artigen Oberflächenzuständen, vier Dirac-Kegel w ie in Graphen sind topologisch trivial. Ergebnisse A bb. 1: Sche m a tische Ba ndstruk tur e ine s k la ssische n Ha lble ite rs, wie z. B. Sb 2Se 3, de r a us topologische r Sicht trivia l ist (a ). Sche m a tische Ba ndstruk tur e ine s Ha lble ite rs, in de m sich Le itungs- und Va le nzba nd k re uze n und inve rtie re n (b). Aufgrund sta rk e r Spin-Ba hn-Kopplung ist de r Spin k e ine „gute Q ua nte nza hl“ und a n de n Ba ndk re uzungspunk te n öffne t sich e ine Ba ndlück e wie z. B. in Bi2Se 3 (c). In C dTe ode r de r Ha lbHe usle r Ve rbindung YNiSb ha t da s Le itungsba nd s- und da s Va le nzba nd p-C ha ra k te r (d), die Ba ndinve rsion in z. B. HgTe ode r La P tBi führt zu e ine m Ha lbm e ta ll (e ). Eine struk ture lle Ve rze rrung he bt die Enta rtung de r p-Zustä nde a uf. 2Se 3 ist a us topologische r Sicht trivia l (f). © MP I für C he m ische P hysik fe ste r Stoffe / Fe lse r Aus chemischer Sicht lassen sich halbleitende Verbindungen in der Diamant-Struktur und verw andten Strukturen in einer ersten Näherung über die Zahl der Valenzelektronen abschätzen. Magische Zahlen sind 8 (2s- und 6p-Elektronen) und 18 (2s-, 6p- und 10d-Elektronen) Valenzelektronen. Die Bandlücke zw ischen den bindenden und den antibindenden Zuständen der Band-Halbleiter lässt sich aus den Elektronegativitäten der Elemente abschätzen [2]. Anders als in Element-Halbleitern lassen sich die Bandlücken binärer und ternärer Halbleiter besser einstellen. Abbildung 1(a) zeigt die schematische Bandstruktur eines klassischen topologisch trivialen Halbleiters w ie Sb 2 Se 3 . Im Bi2 Se 3 ist zusätzlich zur größeren Spin-Bahn-Kopplung die Bindung zw ischen den Elementen schw ächer, daher ist die Bandlücke klein oder sogar negativ (Valenzband und Leitungsband kreuzen sich w ie in Abbildung 1(b) dargestellt). Aufgrund starker Spin-Bahn-Kopplung ist der Spin keine „gute Quantenzahl“ und an den Bandkreuzungspunkten öffnet sich eine Bandlücke w ie in Bi2 Se 3 (Abb. 1(c)) und ein „invertierter“ Halbleiter ist das Ergebnis. Im Falle von CdTe und der topologischtrivialen Halb-Heusler Verbindungen (Abb. 1(d)) ist das Leitungsband ein s-Band, w ährend das Valenzband ein dreifach entartetes p-Band ist. In HgTe und den topologisch interessanten Halb-Heusler-Verbindungen befindet sich das s-Band w egen der Bandinversion unterhalb der Fermi-Energie (E F), die Verbindungen sind © 2013 Max-Planck-Gesellschaft w w w .mpg.de 2/5 Jahrbuch 2012/2013 | Felser, Claudia; Chadov, Stanislav; Müchler, Lukas; Yan, Binghai; Kübler, Jürgen; Zhang, Shou-Cheng1 | Topologische Isolatoren aus chemischer Sicht daher halbmetallisch (Abb. 1(e)) und w eisen keine Bandlücke auf [2,4]. Allerdings kann die Entartung der Bänder durch strukturelle Verzerrung aufgehoben w erden und die Verbindung w ird halbleitend ( Abb. 1(f)). Halb-Heusler Verbindungen sind, w egen der Seltenerd-Elemente als Bausteine, multifunktionelle topologische Isolatoren. YbPtBi ist ein topologischer Isolator, aber w egen des Yb auch eine Kondo-Verbindung. LaPtBi zeigt die s-p-Bandinversion und zusätzlich Supraleitung. Anders als in den binären topologischen Isolatoren können in den Heusler Verbindungen zw ei Eigenschaften verknüpft w erden, die dann zu ganz neuen Quantenzuständen w ie Majorana Fermionen führen können [4]. A bb. 2: Krista llstruk tur topologische r Ve rbindunge n m it ZnSund Na C l- ve rwa ndte n Struk ture n. P uTe k rista llisie rt in de r Na C l Struk tur (a ), de r TI-P rototyp HgTe k rista llisie rt in de r nicht ze ntro-sym m e trische n Zink ble nde -Struk tur (b); zusä tzliche Be se tzung de r O k ta e de rlück e n in de r ZnS-Struk tur führt zur MgAgAs Struk tur, de r Fa m ilie de r Ha lb-He usle r Ve rbindunge n (La P tBi) (c); Ve rdoppe lung de r Zink ble nde struk tur m it te rnä re r Be se tzung de r Atom positione n führt zur C ha lk opyrit-Struk tur (AuTlTe 2) (d). Die AlB2 Struk tur ist e ine ve rwa ndte Struk tur de s Gra phits m it e ine r (e ) ode r zwe i Honigwa be n-Schichte n in e ine r Ele m e nta rze lle . © MP I für C he m ische P hysik fe ste r Stoffe / Fe lse r Es gibt zw ei verschiedene Arten von topologischen Isolatoren, die sogenannten zw eidimensionalen (2D) und dreidimensionalen (3D) TIs. Zu dem 3D TIs gehört halbleitendes Bi2 Se 3 , verw andte Strukturen [1] und PuTe (Na Cl-Struktur Abb. 2(a)) [5]. Halbmetallisches HgTe (ZnS-Struktur Abb. 2(b)) und die Halb-Heusler Verbindungen (MgAgAs-Struktur Abb. 2(c)) [4] zählen w egen der Entartung der Bänder an E F zu den 2D TIs [1,2,4]. Nur in Quantentopf-Strukturen zw ischen den korrespondierenden trivialen und topologischen Isolatoren lassen sich in den 2D TIs die robusten Zustände als Kantenzustände beobachten. Alternativ lässt sich auch ein 3D topologischer Isolator durch eine strukturelle Verzerrung, w elche die Entartung an E F aufhebt, realisieren. In der Chalkopyrit-Struktur (Abb. 2(d)) w ird w egen Verdoppelung der Elementarzelle relativ zur Zinkblende-Struktur, die Entartung der px-, py- und pz- Bänder aufgehoben. Hypothetisches AuTlS2 ist daher ein halbleitender 3D TI [2]. AuTlS2 zeigt w ie erw artet einen robusten Dirac-Kegel-artigen Oberflächenzustand [2]. Es gibt verschiedene theoretische Wege zu überprüfen, ob ein Halbleiter oder Halbmetall mit hoher SOC auch w irklich topologisch interessant ist. (1) Eine etw as aufw endige Möglichkeit ist die Berechnung der Oberflächenzustände von potenziellen Kandidaten. (2) Für zentro-symmetrische Strukturen haben Kane und Mele gezeigt, w ie man über die Paritäten der Wellenfunktion die Topologie bestimmen kann [6]. (3) Aber auch © 2013 Max-Planck-Gesellschaft w w w .mpg.de 3/5 Jahrbuch 2012/2013 | Felser, Claudia; Chadov, Stanislav; Müchler, Lukas; Yan, Binghai; Kübler, Jürgen; Zhang, Shou-Cheng1 | Topologische Isolatoren aus chemischer Sicht Mele gezeigt, w ie man über die Paritäten der Wellenfunktion die Topologie bestimmen kann [6]. (3) Aber auch über die Berechnung der Berry-Phasen kann die Chiralität und W indungszahl in topologischen Isolatoren sow ie auch in Skyrmionen bestimmt w erden. Um diese robusten Oberflächenzustände technologisch zu nutzen, müssen diese Zustände auch bei Raumtemperatur (RT) stabil sein. Dementsprechend sollte die aufgrund der Bandkreuzung entstandene Bandlücke größer als 30 meV sein. Die Bandlücke von Bi2 Se 3 beträgt 300 meV, theoretisch ausreichend für RTAnw endungen. Allerdings konnten bisher w egen der intrinsischen Defekte keine Proben ausreichender Qualität hergestellt w erden, die die Quantisierung der Oberflächenzustände in Transportmessungen gezeigt haben. Die Elemente mit der größten Spin-Bahn-Kopplung sind Actinide w ie Plutonium und Americium. Daher haben w ir unter den Plutonium und Americium-Verbindungen nach topologischen Halbleitern gesucht. PuTe und AmN gehören zu den identifizierten neuen TI mit der ionischen NaCl-Struktur; allerdings ist eine adäquate Beschreibung der elektronischen Struktur nur unter Berücksichtigung von Korrelationen möglich [5]. Unter Druck zeigt topologisches PuTe sogar eine Bandlücke von fast 400 meV. Die bisher diskutierten TIs basieren alle auf Varianten der Diamant-Struktur. Es liegt daher nahe, sich 8 und 18 Valenzelektronenverbindungen mit „schw eren“ Elementen und Graphit-Strukturen zuzuw enden. KHgSb, das hexagonale Analogon zum HgTe, zeigte allerdings bei der Berechnung der Oberflächenbandstruktur keinen robusten Dirac-Kegel. Grund hierfür ist die Tatsache, dass KHgSb eine Schichtstruktur aufw eist, und w egen der geringen Wechselw irkungen zw ischen den Schichten immer eine gerade Zahl von Bandinversionen bzw . DiracKegel (am Γ und am A Punkt) im reziproken Raum aufw eist [7]. Allerdings erlaubt die große Zahl von Verbindungen mit dieser und mit verw andten Kristallstrukturen auch ein Design neuer topologischer Materialien w ie die erst kürzlich vorhergesagten schw achen topologischen Isolatoren [8]. Topologische Isolatoren sind auch gute thermoelektrische Materialien, da die Anforderungen an die Bandstruktur ähnlich sind [9]. Allerdings gibt es gute thermoelektrische Materialien, die topologisch trivial sind w ie z. B. PbTe. Es ist daher nur konsequent, auch unter den thermoelektrischen Materialien, nach neuen topologischen Isolatoren zu suchen. In den gefüllten Skutteruditen koexistiert neben der Bandinversion ähnlich w ie in den Halb-Heusler Verbindungen - Supraleitung und Magnetismus [10]. Topologische Isolatoren bleiben auch für die nächsten Jahre ein spannendes Thema. Ein korreliertes Oxid mit topologischer Bandinversion oder Verbindungen mit Majorana-Fermionen sind Herausforderungen für die Festkörperforschung. Literaturhinweise [1] Qi, X. L.; Zhang, S. C. The quantum spin Hall effect and topological insulators Physics Today 63, 33-38 (2010) [2] Müchler, L.; Zhang, H. J.; Chadov, S.; Y an, B.; Casper, F.; Kübler, J.; Zhang, S. C.; Felser, C. Topological insulators from a chemist’s perspective Angew andte Chemie International Edition 51, 7221-7225 (2012) [3] Felser, C. Skyrmionen Angew andte Chemie International Edition 52, 1673-1676 (2013) © 2013 Max-Planck-Gesellschaft w w w .mpg.de 4/5 Jahrbuch 2012/2013 | Felser, Claudia; Chadov, Stanislav; Müchler, Lukas; Yan, Binghai; Kübler, Jürgen; Zhang, Shou-Cheng1 | Topologische Isolatoren aus chemischer Sicht [4] Chadov, S.; Qi, X.; Kübler, J.; Fecher, G. H.; Felser, C.; Zhang, S.-C. Tunable multifunctional topological insulators in ternary Heusler compounds Nature Materials 9, 541-545 (2010) [5] Zhang, X.; Zhang, H. J.; Wang, J.; Felser, C.; Zhang, S.-C. Actinide topological insulator materials with strong interaction Science 335, 1464-1466 (2012) [6] Fu, F.; Kane, C. L. Topological insulators with inversion symmetry Physical Review B 76, 045302 (2007) [7] Zhang, H.-J.; Chadov, S.; Müchler, L.; Y an, B.; Qi, X. L.; Kübler, J.; Zhang, S. C.; Felser, C. Topological insulators in ternary compounds with a honeycomb lattice Physical Review Letters 106, 156402 (2011) [8] Y an, B.; Müchler, L.; Felser, C. Prediction of weak topological insulators in layered semiconductors Physical Review Letters 109, 116406 (2012) [9] Müchler, L.; Casper, F.; Y an, B.; Chadov, S.; Felser, C. Topological insulators and thermoelectric materials physica status solidi (RRL) 7, 91-100 (2013) [10] Y an, B.; Müchler, L.; Qi, X.-L.; Zhang, S.-C.; Felser, C. Topological insulators in filled skutterudites Physical Review B 85, 165125 (2012) © 2013 Max-Planck-Gesellschaft w w w .mpg.de 5/5