OPTIMORE-FINAL WS-P04-AVL City Car BEV_20140918
Transcription
OPTIMORE-FINAL WS-P04-AVL City Car BEV_20140918
OPTIMORE - Optimised Modular Range Extender for every day customer usage City BEV-Range Extender Vehicle Theodor Sams AVL Graz Final Meeting 18./19. September 2014 OPTIMORE - Optimised Modular Range Extender for every day customer usage Range Extender – BEV City Car Target Setting Priorities for RE development 1. Noise, Vibration and Harshness (NVH) 2. Package 3. Efficiency 4. Weight 5. Product Cost 18-09-2014 OPTIMORE –Final Meeting 2 OPTIMORE - Optimised Modular Range Extender for every day customer usage Range Extender – BEV City Car Concept Study: Selection of Combustion Engine Concept Design 18-09-2014 OPTIMORE –Final Meeting 3 OPTIMORE - Optimised Modular Range Extender for every day customer usage Concept Study: Serial Range Extender Integration Vehicle integration of a Range Extender system: System integration of RE-module for dedicated electric vehicle packaging and avoidance of exhaust-system tunnel RE System integration together with electric traction motor systems - similar axle-load distribution as conventional car - assembly similar to conventional vehicle - joint functional integration of electric propulsion system and RE (cooling, acoustic, HV system, …) 18-09-2014 OPTIMORE –Final Meeting 4 OPTIMORE - Optimised Modular Range Extender for every day customer usage Power Electronics for Traction E-motor P_peak = 75kW P_cont. = 45kW City BEV-Range Extender Demo Vehicle Vehicle concept with electric range for average daily need of approx. 50km. RE performance for average energy need at 100km/h vehicle speed. Reserve battery power required for full dynamic vehicle performance. Traction E-Motor HV battery: 12kWh battery charging time approx. 3h P electric motor: 75kW & 240Nm (peak) t All electric range: 50km P energy consumption: 16kWh/100km 15kW t RE performance: appr. 15kW electric ICE: rotary engine, 254ccm engine installation in the back fuel tank size for 250km total range fuel consumption 1.8l/100km (fleet testing average) Range Extender Pe = 15kW 18-09-2014 OPTIMORE –Final Meeting 5 OPTIMORE - Optimised Modular Range Extender for every day customer usage Range Extender with Wankel combustion engine 18-09-2014 OPTIMORE –Final Meeting 6 OPTIMORE - Optimised Modular Range Extender for every day customer usage City BEV-Range Extender Demo Vehicle Aims and Objectives of OPTIMORE The existing rotary engine based range extender should be developed to a level which meets actual and future customer requirements. • Elimination of expensive (prototype) materials and processes by using conventional materials • Evaluation of different design solutions for impact on packaging and effectiveness as countermeasures with respect to NVH • Development of next step power electronics regarding automotive requirements, volume and weight reduction • Optimisation of thermal management and heating strategies to improve emission level, fuel consumption and robustness; • Improved aftertreatment (50% of EU6 emission targets) • Customer comfort, heating/cooling improvements/optimizations under “real world” conditions 18-09-2014 OPTIMORE –Final Meeting 8 OPTIMORE - Optimised Modular Range Extender for every day customer usage Rotary Engine Range Extender Electric Integration Temperature sensors ICE control Power electronics Starter motor for ICE ICE thermodynamics thermal load Field control of E-machine Position sensor Housing mounting and cooling of stator E-machine design Magnetic flux NVH EMC package emissions Common shaft mechanics Balancing for ICE 18-09-2014 OPTIMORE –Final Meeting 9 OPTIMORE - Optimised Modular Range Extender for every day customer usage Overview of Measures to Optimise Gearing Overview of measures to avoid damages on gearing 1. Component geometry: • Radial clearence of piston optimised • Main bearing and piston bearing clearance reduced • Assemble tolerance optimised 2. Component strength: • Gearing of piston in pressed in steel – insert can • Gearing geometry optimised • Treatment quality of gearing improved 3. Load: • System inertia increased by heavier counter weights • Active generator controlling (balanced) sufficient fatique strength 18-09-2014 OPTIMORE –Final Meeting 10 OPTIMORE - Optimised Modular Range Extender for every day customer usage Measures to Optimise Gearing Example measure 3. Load: • Increase of the inertia by using heavy metal parts for the counterweight within the system, • Additional potential on the generator side or by changing the package (engine length) • active generator control –reduction of the rotational irregularities and consequently a reduction of the gearing load by 30 % 18-09-2014 OPTIMORE –Final Meeting 11 OPTIMORE - Optimised Modular Range Extender for every day customer usage Summary Active Damping the reduced angular vibrations significantly reduce mechanical loading of the drivetrain combustion-pressure induced rooling motion of the RE is reduced by 12dB (corresponds to - 75%). acoustic excitation of the RE mounting frame is reduced by 40 – 75% res. torque of eccentric shaft counter torque of the generator for the active vibration reduction Reduction shaft-angle dev. eccentric shaft PU15 ca. 1.0° 0.4° feasible OPTIMORE - Optimised Modular Range Extender for every day customer usage Production cost reduction – Range Extender Production cost assessment for Range Extender Unit incl. exhaust system for two different production scenarios: Scenario 1: Production volume: 20.000 units / year OEM production Brownfield approach Scenario 2: Production volume: 100.000 units / year Tier 1 Supplier for different OEM’s Brownfield approach 18-09-2014 OPTIMORE -Final Meeting 13 OPTIMORE - Optimised Modular Range Extender for every day customer usage Assessment Matrix of Production Processes – Range Extender Wankel Motor Technologie Matrix V e rf a hre n B e t ra c ht ung V e ra nt w. Prototypenherstellung Anzahl Prototypen Herstellungskosten (Rohteilherstellung) Bearbeitungsaufwand Toolingkosten Materialkosten Mögliche Werkstoffe Serientauglichkeit Werkstoffbewertung (z.B. Rp0.2 bei 250°) Prüfaufwand TROCHOIDE Assessment Criteria: - - Production cost - Handling cost - Tooling cost - Material cost Series production suitability Material assessment Test effort Functionality Sandguss (Basis) AVL / LKR ja 10 100% (70€) 100% (25min) ??? 100% (ca. 4,7€) GK-AlCu4Ti+X/ GKAlSi12CuNiMg (T64/T7) state of the art Alusil-Einsatz /Beschichtung AVL ?? 3 90%, ätzen 120 %, honen ??? 120 % AlSi17Cu4Mg state of the art, BMW, Audi, Kolbenschmidt Strangpressen 2-teilig LKR ja 27% (ca. 18,70€) inkl. FSW 25% (ca. 17,35€) inkl. EB 100% (25min) 12000€ je WZ-Satz 100% (ca. 4,50€ - 2618) AA2019/ Weldural 2618 Kombination zwei Serienprozesse Zusammeführung der Prozesse zur Serientauglichkeit notwendig Geometrieprüfung, Materialkennwerte (Stichprobe) Pulverstrangpress 2-teilig Mepura, LKR ja 27% (ca. 18,70€) inkl. FSW 25% (ca. 17,35€) inkl. EB 100% (25min) 12000€ je WZ-Satz 180% (ca. 8,5 €) AA2019/ Weldural PM4041, 2618 Kombination drei Serienprozesse Zusammeführung der Prozesse zur Serientauglichkeit notwendig Geometrieprüfung, Materialkennwerte (Stichprobe) Schmieden LKR BackupMöglichkeit x 30% (ca.21€) 110% (27,5min) 20000€ 150% (ca. 6,75€ -2618) 2xxx/4xxx/6xxx state of the art Geometrieprüfung, Materialkennwerte (Stichprobe) PEO-Beschichtung Rübig ja 8(5SP / 3 SG) 62% (16,44€) 90% (24,09€) 100% (trovalisiert 50%) 5000€ xx% (0,42€) xx% (0,63€) Alle Al-Werkstoffe - bei Gußlegierungen jedoch einbußen in der Schichthärte und Verlängerung der Prozessdauer - AA2019/ Weldural PM4041, 2619 state of the art Wolframcarbid WC/Co AVL ja 8(5SP / 3 SG) 110% (Termisches spritzen Sulzer) 150% 100000€ 110% AA2019/ Weldural PM4041, 2619 für diese Anwendung (Gehäuse) nicht state of the art Beschichtungen Trochoide Schichthärte 9002100HV0,05 Schichtdicke, Härteprüfung, Referenzprüfkörper (Stichprobemprüfung) ROTOR Herstellungskosten Bearbeitungsaufwand Invest-/Toolingkosten Materialkosten Mögliche Werkstoffe Serienreife Strangpressen mit Verzahnung / Ritzel Funktionskritisch Alu-Stahl-Paarung LKR Klärung AVL ja 130% (ca. 7€) 60% (19min) 10.000 85% (ca. 2,50€) AA2019/ Weldural, 2618 geringe Erfahrungswerte, Bauteilversuche erforderlich Strangpressen mit Verzahnung / Ritzel Pulverstrangpressen Funktionskritisch Alu-Stahl-Paarung Mepura, LKR Klärung AVL ja 170% (ca. 9€) 60% (19min) 10.000 130% (ca. 3,75€) PM4041 state of the art Strangpressen als Vorbearbeiten und Schmieden inkl. Verzahnung / Ritzel Funktionskritisch Alu-Stahl-Paarung Klärung AVL BackupMöglichkeit 130% 50% (16min) 20.000 100% (Al-Legierung) geringe Erfahrungswerte, Fertigungsversuche sowie Bauteilversuche erforderlich V e rf a hre n B e t ra c ht ung Strangpressen ohne Verzahnung/Ritzel und addiertem Stahlhohlrad (montiert) Pulverstrangpressen Mepura BackupMöglichkeit 120% 90% (29min) 25.000 125% AA2019/ Weldural PM4041, 2618, 42CrMo4 geringe Erfahrungswerte, Bauteilversuche erforderlich 160 ja 137% (7,22€) 80% (26min) 20.000 75% (2,18€) PM4041, PM2618 Für 4041 ist der Status der Serienreife mit der Herstellung von 3 Mio Stück lange erreicht 110 Geometrieprüfung, Materialkennwerte (Stichprobe) xx% (0,42€) xx% (0,63€) Alle Al-Werkstoffe - bei Gußlegierungen jedoch einbußen in der Schichthärte und Verlängerung der Prozessdauer - AA2019/ Weldural PM4041, 2619 state of the art Schichthärte 9002100HV0,05 Schichtdicke, Härteprüfung, Referenzprüfkörper (Stichprobemprüfung) Beschichtungen Kolben Rübig ja 5 16,44€ 24,09€ Verbundwerkstoff (MMC) - Strangpressen LKR, Mepura ja 12 Vorversuche Funktionsfähigkeit !!! Alu-Graphit - MMC - Infiltration LKR ja 12 selektiv dicke PEO Schicht (bei Alukolben Dichtleistennut, Verzahnung ) 160 100% (trovalisiert 50%) 5000€ DICHTLEISTE M a t e ria l Herstellungskosten B e t ra c ht ung Alu warmfest - Strangpressen LKR ja 12 Siliziumnitrid - Sintern AVL, Rübig Backup x Vorversuche Funktionsfähigkeit !!! Vorversuche Funktionsfähigkeit !!! 2,80€ (nur gesintert) 5,30€ (geschliffen) Lieferantenverfügbarkeit Invest-/Toolingkosten Materialkosten Serienreife 100% 15000€ 0,50€ state of the art 100% ??? 0,03€ state of the art state of the art RSP, SAW, 100% ?? ?? 100% 13.800 € < 2,80€ state of the art state of the art Schichthärte 9002100HV0,05 Schichtdicke, Härteprüfung, Referenzprüfkörper (Stichprobemprüfung) state of the art Schichtdicke ~2µm, Schichthärte 2000HV, Reibkoeffizient <0,1 Schichthaftung, Schichtdicke state of the art Schichtdicke bis ~ 5µm, Schichthärte ~2300HV Reibkoeffizient gegen Stahl bis 0,8 geben WC 0,3-0,4 Schichthaftung, Schichtdicke Beschichtungen Dichtleiste PEO Rübig ja 3 je Variante 0,60€ 0,90€ 100% (trovalisiert 50%) 5000€ xx% (0,02€) xx% (0,03€) Alle Al-Werkstoffe - bei Gußlegierungen jedoch einbußen in der Schichthärte und Verlängerung der Prozessdauer - AA2019/ Weldural PM4041, 2619 zus. Beschichtung z.B.: DLC (Aluminium sehr kritisch) Rübig ja 3 je Variante 0,70€ 0% im Preis incl. im Preis incl. Stahl od. Guss IKA33, AlMMC, Cermet evt. W, WC od. W/WC 18-09-2014 Rübig ja 3 je Variante 0,70€ 0 im Preis incl. OPTIMORE -Final Meeting im Preis incl. Stahl od Guss IKA33, Aluminium, Titan, karamische Werkstoffe 14 OPTIMORE - Optimised Modular Range Extender for every day customer usage Range Extender Production – Process Flows 18-09-2014 OPTIMORE -Final Meeting 15 OPTIMORE - Optimised Modular Range Extender for every day customer usage Example of Measures: Rotary Engine – Rotary Piston PROTOTYPING SITUATION Geometry of the rotary piston combined with tangential running sealing strip grooves is not ideal for production processes using a reamer and causes more burr formation. Production process using a circularly controlled end mill is more time and cost-consuming. The unfavorable circular segmentation additionally causes instable measurement results on the coordinate measuring system. Geometry of AVL piston with tangential running sealing strip grooves. Production with reamer turned out to be problematic. 18-09-2014 PROPOSAL FOR SOLUTION Geometry modification, e.g. radially running sealing strip grooves. The production process in this case is possible without any problems. equal circular segmentation Manufacture with circular controlled end mill OPTIMORE -Final Meeting 16 OPTIMORE - Optimised Modular Range Extender for every day customer usage Production Cost Reduction – Range Extender Extruded Piston and Trochoid: Target design piston Target design Trochoid Extruded single parts of Trochoid Trochoid -very high surface quality Machined Piston 18-09-2014 OPTIMORE -Final Meeting 17 OPTIMORE - Optimised Modular Range Extender for every day customer usage Operating system software industrialisation: EV Architecture and HV-Safety of the Range Extender City Car 18-09-2014 OPTIMORE -Final Meeting 18 OPTIMORE - Optimised Modular Range Extender for every day customer usage Operating system software industrialisation: Completed Power Inverter • Completed construction • Complete interpretation of the DC link capacitor • Parts are procured • All parts are integrated in vehicle 18-09-2014 OPTIMORE -Final Meeting 19 OPTIMORE - Optimised Modular Range Extender for every day customer usage Operating system software industrialisation: Vehicle Response Tests – Functional Safety Test Case: Inversion of demand on rotational direction Test No. TC_00001 Test No. TC_00001 Release recommendation AVL PTE-DEA Release recommendation AVL PTE-DEA 18-09-2014 Performing the test preconditions: 1) Vehicle ready to operate 2) WH D/R 3) with RE / without RE Terminal status: 1) KL15, engine is running actions: 1) Inverting the torque demand with the help of a CANalyzer 2) Inverting the demand of rotational direction with the help of the CANalyzer Definition of test objectives In both separately performed test cases an error shall be caused and: slow shutdown path Definition of test objectives Test results In both separately performed test cases an error shall be caused and: passend (green) Slow shutdown path not passed (red) OPTIMORE -Final Meeting 20 OPTIMORE - Optimised Modular Range Extender for every day customer usage Demonstrator Development CONCEPT & PROTOTYPE DEVELOPMEN T on-road development Subsystem Layout System definition Komponent Engineering Control System Development System validation 18-09-2014 Prototype built-up 21 OPTIMORE - Optimised Modular Range Extender for every day customer usage AVL ELECTRIC VEHICLE Model Based Operating Strategy Development Acoustic Operation Strategy Drivability Range 18-09-2014 OPTIMORE -Final Meeting 22 OPTIMORE - Optimised Modular Range Extender for every day customer usage Required Power [kW] Required Energy [kWh] Altitude [m] Vehicle Speed [km/h] Velocity, Altitude and Energy Profiles of the “AVL Real World Driving Route” 150 120 90 60 30 0 600 City Highway Extra Urban City 12% 40% 40% 8% 500 100 100 AVL % Drivetrain Testbed 5% a.. 5 400 cca ppee sslloo 300 10 8 6 4 2 0 60 40 20 0 -20 -40 m m 5 kk .. 555 a a cc 130 130 50 50 Vehicle System-Simul. 0 10 20 Distance [km] AVL Vehicle Data Logging 30 40 50 OPTIMORE - Optimised Modular Range Extender for every day customer usage NVH-Package – Example Constant speed with after-heating at RE standstill, Variant A 1 2 1 2 18-09-2014 At 230°C the RE is stopped and the speed is increased in order to reduce temperature. Temperature increase up to 100km/h, switching to the e-mode and cooling down to 125°C. 4 The RE is restarted and the speed reduced to 30km/h in order to continue the measurements. Switching to the lowest load point (3300 rpm, 27%TV) and reducing the speed results in a significant temperature increase up to 225°C. (relative temperature increase = 100°C within 4 minutes). 5 The speed again increases to approx. 100km/h and the RE is interrupted in order to reduce temperature to 125°C, with the help of this operating mode the SOC is reduced to 26% and the test run has to be stopped. 6 The vehicle is stopped and the temperature development is observed. After 4’30“, 240°C are exceeded, the temperature development is still being observed. The measurement is interrupted and the box surroundings are cooled down from outside. 5 6 At the lowest load point (3300 rpm, 27%TV) and with a speed reduction to 30km/h, the temperature increases significantly. 3 3 4 Start of the test run, first with slightly varying, later with constant speed at approx. 60km/h – RE with 4500 rpm, 50%TV. The temperature increases rapidly and constantly up to more than 180°C, the saw tooth profile results from the influences of the head- or tailwind. OPTIMORE -Final Meeting 24 OPTIMORE - Optimised Modular Range Extender for every day customer usage NVH-Package – Example Constant speed with after-heating at RE standstill, Variant A 18-09-2014 OPTIMORE -Final Meeting 26 OPTIMORE - Optimised Modular Range Extender for every day customer usage Thermal System Development Thermal System Model Compressor Wax TH E Fan Main 1 ICE OC E ICE Bypass (internal) AC COND LT HX HT HX 0 Pump CH ICE to cabin BV CH E PTC Pump ICE SOV OC Byp PE Pump PE Pump Battery E 0 BV Battery E CP…Cooling Pack SOV… Shut-off valve BV… Bypass valve TXV… Expansion valve 20-03-2014 Fan HVAC EVAP E Functionalities: Chiller DC/DC 1 AC…Air condition LT… Low Temperature HT… High Temperature OC… Oil Cooler Air Flap Charger HV Battery EM-WM 1 0 SOV+TXV EVAP E SOV+TXV Chiller EM OC* CH TH…Thermostat CH… Cabin Heater EVAP… Evaporator TXV… Expansion valve HT≈90°C Oil ≈ 75°C LT ≈ 50°C LT ≈ 25°C AC PTC+ICE Cabin heating Cooling @ Charging Coolant+Oil E-Motor cooling Air/AC Battery Cooling OPTIMORE -GA04 Meeting 27 OPTIMORE - Optimised Modular Range Extender for every day customer usage Range Extender - Vehicle Simulation 50 30 NEDC cycle 24 NYCC cycle 36 Vehicle engine Sport cycle 33 Constant speed 80 km/h, no gradient 43 44 Constant speed 80 km/h, 2% gradient 57 27 31 Constant speed 130 km/h, no gradient 27 29 without heating / air condition with heating / air condition Electric operating range [km] Boundary conditions: Consumption auxiliary units Consumption air condition 18-09-2014 0,80 kW 2,70 kW OPTIMORE -Final Meeting 28 OPTIMORE - Optimised Modular Range Extender for every day customer usage Range Extender Optimisation Activities - Vehicle Acceleration time [s]: AVL OPTIMORE Mitsubishi i-MiEV Smart ForTwo ED 0 – 50 km/h 0 – 80 km/h 0 – 100 km/h 7,3 10,2 4,3 10,6 5,1 16,2 15,3 6,2 26,7 time [s] Range [km] / Number of laps: AVL OPTIMORE 33 250 160 10,7 Mitsubishi i-MiEV Smart ForTwo ED 77 144 5,1 106 135 7,1 electric operating range overall range manufacterer‘s specification of range number of laps range [km] / number of laps [-] 8000 8250 18-09-2014 OPTIMORE -Final Meeting 29 OPTIMORE - Optimised Modular Range Extender for every day customer usage Summary The project targets of OPTIMORE WP City Car BEV with RE are achieved mostly In real world operation the Range Extender enables affordable electric mobility and eliminates the risk of an empty battery (RANGE ANXIETY) A flexible operating strategy depending on car to environment information improves the fuel consumption potential of RE vehicles significantly Depending on usage profile, different Range Extender solutions utilizing serial or parallel ICE configurations are the respective best approaches Best results depend on an holistic engineering approach which equally takes ICE, electric motor, transmission and control intelligence into account 18-09-2014 OPTIMORE -Final Meeting 30