OPTIMORE-FINAL WS-P04-AVL City Car BEV_20140918

Transcription

OPTIMORE-FINAL WS-P04-AVL City Car BEV_20140918
OPTIMORE - Optimised Modular Range Extender for every day customer usage
City BEV-Range Extender Vehicle
Theodor Sams
AVL Graz
Final Meeting
18./19. September 2014
OPTIMORE - Optimised Modular Range Extender for every day customer usage
Range Extender – BEV City Car
Target Setting
Priorities for RE development
1. Noise, Vibration and Harshness (NVH)
2. Package
3. Efficiency
4. Weight
5. Product Cost
18-09-2014
OPTIMORE –Final Meeting
2
OPTIMORE - Optimised Modular Range Extender for every day customer usage
Range Extender – BEV City Car
Concept Study: Selection of Combustion Engine
Concept Design
18-09-2014
OPTIMORE –Final Meeting
3
OPTIMORE - Optimised Modular Range Extender for every day customer usage
Concept Study: Serial Range Extender Integration
Vehicle integration of a Range Extender system:
 System integration of RE-module for dedicated
electric vehicle packaging and avoidance of
exhaust-system tunnel
 RE System integration together with electric
traction motor systems
- similar axle-load distribution as conventional car
- assembly similar to conventional vehicle
- joint functional integration of electric propulsion
system and RE (cooling, acoustic, HV system, …)
18-09-2014
OPTIMORE –Final Meeting
4
OPTIMORE - Optimised Modular Range Extender for every day customer usage
Power Electronics
for Traction E-motor
P_peak = 75kW
P_cont. = 45kW
City BEV-Range Extender Demo Vehicle
Vehicle concept with electric range for average daily need
of approx. 50km. RE performance for average energy need
at 100km/h vehicle speed. Reserve battery power required
for full dynamic vehicle performance.
Traction
E-Motor
 HV battery: 12kWh
 battery charging time approx. 3h
P
 electric motor: 75kW & 240Nm (peak)
t
 All electric range: 50km
P
 energy consumption: 16kWh/100km
15kW
t
 RE performance: appr. 15kW electric
ICE: rotary engine, 254ccm
engine installation in the back
 fuel tank size for 250km total range
 fuel consumption 1.8l/100km
(fleet testing average)
Range Extender
Pe = 15kW
18-09-2014
OPTIMORE –Final Meeting
5
OPTIMORE - Optimised Modular Range Extender for every day customer usage
Range Extender with Wankel combustion engine
18-09-2014
OPTIMORE –Final Meeting
6
OPTIMORE - Optimised Modular Range Extender for every day customer usage
City BEV-Range Extender Demo Vehicle
Aims and Objectives of OPTIMORE
The existing rotary engine based range extender should be developed
to a level which meets actual and future customer requirements.
• Elimination of expensive (prototype) materials and processes by
using conventional materials
• Evaluation of different design solutions for impact on packaging and
effectiveness as countermeasures with respect to NVH
• Development of next step power electronics regarding automotive
requirements, volume and weight reduction
• Optimisation of thermal management and heating strategies to
improve emission level, fuel consumption and robustness;
• Improved aftertreatment (50% of EU6 emission targets)
• Customer comfort, heating/cooling improvements/optimizations
under “real world” conditions
18-09-2014
OPTIMORE –Final Meeting
8
OPTIMORE - Optimised Modular Range Extender for every day customer usage
Rotary Engine Range Extender
Electric Integration
Temperature
sensors
ICE control
Power electronics
Starter motor
for ICE
ICE thermodynamics
 thermal load
Field control of
E-machine
Position sensor
Housing  mounting
and cooling of stator
E-machine design
Magnetic flux
NVH
EMC
package
emissions
Common shaft
 mechanics
Balancing for
ICE
18-09-2014
OPTIMORE –Final Meeting
9
OPTIMORE - Optimised Modular Range Extender for every day customer usage
Overview of Measures to Optimise Gearing
Overview of measures to avoid damages on gearing
1. Component geometry:
• Radial clearence of piston
optimised
• Main bearing and piston
bearing clearance reduced
• Assemble tolerance
optimised
2. Component strength:
• Gearing of piston in
pressed in steel –
insert can
• Gearing geometry
optimised
• Treatment quality of
gearing improved
3. Load:
• System inertia
increased by heavier
counter weights
• Active generator controlling
(balanced)
sufficient fatique strength
18-09-2014
OPTIMORE –Final Meeting
10
OPTIMORE - Optimised Modular Range Extender for every day customer usage
Measures to Optimise Gearing
Example measure 3. Load:
• Increase of the inertia by using heavy
metal parts for the counterweight
within the system,
• Additional potential on the generator
side or by changing the package (engine
length)
• active generator control –reduction of
the rotational irregularities and
consequently a reduction of the gearing
load by 30 %
18-09-2014
OPTIMORE –Final Meeting
11
OPTIMORE - Optimised Modular Range Extender for every day customer usage
Summary Active Damping
 the reduced angular vibrations
significantly reduce mechanical loading
of the drivetrain
 combustion-pressure induced rooling
motion of the RE is reduced by 12dB
(corresponds to - 75%).
 acoustic excitation of the RE mounting
frame is reduced by 40 – 75%
res. torque of
eccentric shaft
counter torque of the
generator for the active
vibration reduction
Reduction shaft-angle dev.
eccentric shaft PU15
ca. 1.0°  0.4° feasible
OPTIMORE - Optimised Modular Range Extender for every day customer usage
Production cost reduction – Range Extender
Production cost assessment for Range Extender Unit incl. exhaust system for two
different production scenarios:
Scenario 1:
Production volume: 20.000 units / year
OEM production
Brownfield approach
Scenario 2:
Production volume: 100.000 units / year
Tier 1 Supplier for different OEM’s
Brownfield approach
18-09-2014
OPTIMORE -Final Meeting
13
OPTIMORE - Optimised Modular Range Extender for every day customer usage
Assessment Matrix of Production Processes – Range Extender
Wankel Motor Technologie Matrix
V e rf a hre n
B e t ra c ht ung
V e ra nt w.
Prototypenherstellung
Anzahl Prototypen
Herstellungskosten
(Rohteilherstellung)
Bearbeitungsaufwand
Toolingkosten
Materialkosten
Mögliche Werkstoffe
Serientauglichkeit
Werkstoffbewertung (z.B.
Rp0.2 bei 250°)
Prüfaufwand
TROCHOIDE
Assessment Criteria:
-
-
Production cost
- Handling cost
- Tooling cost
- Material cost
Series production suitability
Material assessment
Test effort
Functionality
Sandguss (Basis)
AVL / LKR
ja
10
100% (70€)
100% (25min)
???
100% (ca. 4,7€)
GK-AlCu4Ti+X/ GKAlSi12CuNiMg (T64/T7)
state of the art
Alusil-Einsatz /Beschichtung
AVL
??
3
90%, ätzen
120 %, honen
???
120 %
AlSi17Cu4Mg
state of the art, BMW, Audi,
Kolbenschmidt
Strangpressen 2-teilig
LKR
ja
27% (ca. 18,70€) inkl. FSW
25% (ca. 17,35€) inkl. EB
100% (25min)
12000€ je WZ-Satz
100% (ca. 4,50€ - 2618)
AA2019/ Weldural
2618
Kombination zwei Serienprozesse Zusammeführung der Prozesse zur
Serientauglichkeit notwendig
Geometrieprüfung,
Materialkennwerte (Stichprobe)
Pulverstrangpress 2-teilig
Mepura,
LKR
ja
27% (ca. 18,70€) inkl. FSW
25% (ca. 17,35€) inkl. EB
100% (25min)
12000€ je WZ-Satz
180% (ca. 8,5 €)
AA2019/ Weldural
PM4041, 2618
Kombination drei Serienprozesse Zusammeführung der Prozesse zur
Serientauglichkeit notwendig
Geometrieprüfung,
Materialkennwerte (Stichprobe)
Schmieden
LKR
BackupMöglichkeit
x
30% (ca.21€)
110% (27,5min)
20000€
150% (ca. 6,75€ -2618)
2xxx/4xxx/6xxx
state of the art
Geometrieprüfung,
Materialkennwerte (Stichprobe)
PEO-Beschichtung
Rübig
ja
8(5SP / 3 SG)
62% (16,44€)
90% (24,09€)
100% (trovalisiert 50%)
5000€
xx% (0,42€)
xx% (0,63€)
Alle Al-Werkstoffe - bei
Gußlegierungen jedoch
einbußen in der
Schichthärte und
Verlängerung der
Prozessdauer - AA2019/
Weldural
PM4041, 2619
state of the art
Wolframcarbid WC/Co
AVL
ja
8(5SP / 3 SG)
110% (Termisches spritzen
Sulzer)
150%
100000€
110%
AA2019/ Weldural
PM4041, 2619
für diese Anwendung (Gehäuse) nicht
state of the art
Beschichtungen Trochoide
Schichthärte 9002100HV0,05
Schichtdicke, Härteprüfung,
Referenzprüfkörper
(Stichprobemprüfung)
ROTOR
Herstellungskosten
Bearbeitungsaufwand
Invest-/Toolingkosten
Materialkosten
Mögliche Werkstoffe
Serienreife
Strangpressen mit Verzahnung / Ritzel
Funktionskritisch Alu-Stahl-Paarung
LKR
Klärung
AVL
ja
130% (ca. 7€)
60% (19min)
10.000
85% (ca. 2,50€)
AA2019/ Weldural, 2618
geringe Erfahrungswerte,
Bauteilversuche erforderlich
Strangpressen mit Verzahnung / Ritzel
Pulverstrangpressen
Funktionskritisch Alu-Stahl-Paarung
Mepura,
LKR Klärung
AVL
ja
170% (ca. 9€)
60% (19min)
10.000
130% (ca. 3,75€)
PM4041
state of the art
Strangpressen als Vorbearbeiten und
Schmieden inkl. Verzahnung / Ritzel
Funktionskritisch Alu-Stahl-Paarung
Klärung
AVL
BackupMöglichkeit
130%
50% (16min)
20.000
100%
(Al-Legierung)
geringe Erfahrungswerte,
Fertigungsversuche sowie
Bauteilversuche erforderlich
V e rf a hre n
B e t ra c ht ung
Strangpressen ohne Verzahnung/Ritzel und
addiertem Stahlhohlrad (montiert)
Pulverstrangpressen
Mepura
BackupMöglichkeit
120%
90% (29min)
25.000
125%
AA2019/ Weldural
PM4041, 2618, 42CrMo4
geringe Erfahrungswerte,
Bauteilversuche erforderlich
160
ja
137% (7,22€)
80% (26min)
20.000
75% (2,18€)
PM4041, PM2618
Für 4041 ist der Status der
Serienreife mit der Herstellung von 3
Mio Stück lange erreicht
110
Geometrieprüfung,
Materialkennwerte (Stichprobe)
xx% (0,42€)
xx% (0,63€)
Alle Al-Werkstoffe - bei
Gußlegierungen jedoch
einbußen in der
Schichthärte und
Verlängerung der
Prozessdauer - AA2019/
Weldural
PM4041, 2619
state of the art
Schichthärte 9002100HV0,05
Schichtdicke, Härteprüfung,
Referenzprüfkörper
(Stichprobemprüfung)
Beschichtungen Kolben
Rübig
ja
5
16,44€
24,09€
Verbundwerkstoff (MMC) - Strangpressen
LKR,
Mepura
ja
12
Vorversuche
Funktionsfähigkeit !!!
Alu-Graphit - MMC - Infiltration
LKR
ja
12
selektiv dicke PEO Schicht
(bei Alukolben Dichtleistennut, Verzahnung )
160
100% (trovalisiert 50%)
5000€
DICHTLEISTE
M a t e ria l
Herstellungskosten
B e t ra c ht ung
Alu warmfest - Strangpressen
LKR
ja
12
Siliziumnitrid - Sintern
AVL,
Rübig
Backup
x
Vorversuche
Funktionsfähigkeit !!!
Vorversuche
Funktionsfähigkeit !!!
2,80€ (nur gesintert)
5,30€ (geschliffen)
Lieferantenverfügbarkeit Invest-/Toolingkosten
Materialkosten
Serienreife
100%
15000€
0,50€
state of the art
100%
???
0,03€
state of the art
state of the art
RSP, SAW,
100%
??
??
100%
13.800 €
< 2,80€
state of the art
state of the art
Schichthärte 9002100HV0,05
Schichtdicke, Härteprüfung,
Referenzprüfkörper
(Stichprobemprüfung)
state of the art
Schichtdicke ~2µm,
Schichthärte 2000HV,
Reibkoeffizient <0,1
Schichthaftung, Schichtdicke
state of the art
Schichtdicke bis ~ 5µm,
Schichthärte ~2300HV
Reibkoeffizient
gegen Stahl bis 0,8
geben WC 0,3-0,4
Schichthaftung, Schichtdicke
Beschichtungen Dichtleiste
PEO
Rübig
ja
3 je Variante
0,60€
0,90€
100% (trovalisiert 50%)
5000€
xx% (0,02€)
xx% (0,03€)
Alle Al-Werkstoffe - bei
Gußlegierungen jedoch
einbußen in der
Schichthärte und
Verlängerung der
Prozessdauer - AA2019/
Weldural
PM4041, 2619
zus. Beschichtung z.B.: DLC
(Aluminium sehr kritisch)
Rübig
ja
3 je Variante
0,70€
0%
im Preis incl.
im Preis incl.
Stahl od. Guss IKA33, AlMMC, Cermet
evt. W, WC od. W/WC
18-09-2014
Rübig
ja
3 je Variante
0,70€
0
im Preis incl.
OPTIMORE -Final Meeting
im Preis incl.
Stahl od Guss IKA33,
Aluminium, Titan,
karamische Werkstoffe
14
OPTIMORE - Optimised Modular Range Extender for every day customer usage
Range Extender Production – Process Flows
18-09-2014
OPTIMORE -Final Meeting
15
OPTIMORE - Optimised Modular Range Extender for every day customer usage
Example of Measures:
Rotary Engine – Rotary Piston
PROTOTYPING SITUATION
Geometry of the rotary piston combined with
tangential running sealing strip grooves is not
ideal for production processes using a reamer
and causes more burr formation.
Production process using a circularly controlled
end mill is more time and cost-consuming.
The unfavorable circular segmentation
additionally causes instable measurement
results on the coordinate measuring system.
Geometry of AVL piston with tangential
running sealing strip grooves. Production with
reamer turned out to be problematic.
18-09-2014
PROPOSAL FOR SOLUTION
Geometry modification, e.g. radially running
sealing strip grooves. The production process
in this case is possible without any problems.
equal circular segmentation
Manufacture with circular controlled end mill
OPTIMORE -Final Meeting
16
OPTIMORE - Optimised Modular Range Extender for every day customer usage
Production Cost Reduction – Range Extender
Extruded Piston and Trochoid:
Target design piston
Target design Trochoid
Extruded single
parts of
Trochoid
Trochoid -very
high surface
quality
Machined Piston
18-09-2014
OPTIMORE -Final Meeting
17
OPTIMORE - Optimised Modular Range Extender for every day customer usage
Operating system software industrialisation:
EV Architecture and HV-Safety of the Range Extender City Car
18-09-2014
OPTIMORE -Final Meeting
18
OPTIMORE - Optimised Modular Range Extender for every day customer usage
Operating system software industrialisation:
Completed Power Inverter
• Completed construction
• Complete interpretation of the DC
link capacitor
• Parts are procured
• All parts are integrated in vehicle
18-09-2014
OPTIMORE -Final Meeting
19
OPTIMORE - Optimised Modular Range Extender for every day customer usage
Operating system software industrialisation:
Vehicle Response Tests – Functional Safety
Test Case: Inversion of demand on rotational direction
Test No.
TC_00001
Test No.
TC_00001
Release
recommendation
AVL PTE-DEA
Release
recommendation
AVL PTE-DEA
18-09-2014
Performing the test
preconditions:
1) Vehicle ready to operate
2) WH D/R
3) with RE / without RE
Terminal status:
1)
KL15, engine is running
actions:
1) Inverting the torque demand with the help
of a CANalyzer
2) Inverting the demand of rotational
direction with the help of the CANalyzer
Definition of test objectives
In both separately performed test cases an
error shall be caused and:
slow shutdown path
Definition of test objectives
Test results
In both separately performed test cases an
error shall be caused and:
passend (green)
Slow shutdown path
not passed (red)
OPTIMORE -Final Meeting
20
OPTIMORE - Optimised Modular Range Extender for every day customer usage
Demonstrator Development
CONCEPT &
PROTOTYPE
DEVELOPMEN
T
on-road development
Subsystem Layout
System
definition
Komponent
Engineering
Control System
Development
System
validation
18-09-2014
Prototype built-up
21
OPTIMORE - Optimised Modular Range Extender for every day customer usage
AVL ELECTRIC VEHICLE
Model Based Operating Strategy Development
Acoustic
Operation
Strategy
Drivability
Range
18-09-2014
OPTIMORE -Final Meeting
22
OPTIMORE - Optimised Modular Range Extender for every day customer usage
Required
Power [kW]
Required
Energy
[kWh]
Altitude [m]
Vehicle
Speed
[km/h]
Velocity, Altitude and Energy Profiles of the “AVL Real World
Driving Route”
150
120
90
60
30
0
600
City
Highway
Extra Urban
City
12%
40%
40%
8%
500
100
100
AVL
% Drivetrain Testbed
5%
a.. 5
400
cca
ppee
sslloo
300
10
8
6
4
2
0
60
40
20
0
-20
-40
m
m
5 kk
.. 555
a
a
cc
130
130
50
50
Vehicle System-Simul.
0
10
20
Distance [km]
AVL Vehicle Data Logging
30
40
50
OPTIMORE - Optimised Modular Range Extender for every day customer usage
NVH-Package – Example
Constant speed with after-heating at RE standstill, Variant A
1
2
1
2
18-09-2014
At 230°C the RE is stopped and the speed is increased in
order to reduce temperature.
Temperature increase up to 100km/h, switching to the e-mode
and cooling down to 125°C.
4
The RE is restarted and the speed reduced to 30km/h in order
to continue the measurements. Switching to the lowest load
point (3300 rpm, 27%TV) and reducing the speed results in a
significant temperature increase up to 225°C. (relative
temperature increase = 100°C within 4 minutes).
5
The speed again increases to approx. 100km/h and the RE is
interrupted in order to reduce temperature to 125°C, with the
help of this operating mode the SOC is reduced to 26% and
the test run has to be stopped.
6
The vehicle is stopped and the temperature development is
observed. After 4’30“, 240°C are exceeded, the temperature
development is still being observed. The measurement is
interrupted and the box surroundings are cooled down from
outside.
5
6
At the lowest load point (3300 rpm, 27%TV) and with a speed
reduction to 30km/h, the temperature increases significantly.
3
3
4
Start of the test run, first with slightly varying, later with
constant speed at approx. 60km/h – RE with 4500 rpm,
50%TV. The temperature increases rapidly and constantly up
to more than 180°C, the saw tooth profile results from the
influences of the head- or tailwind.
OPTIMORE -Final Meeting
24
OPTIMORE - Optimised Modular Range Extender for every day customer usage
NVH-Package – Example
Constant speed with after-heating at RE standstill, Variant A
18-09-2014
OPTIMORE -Final Meeting
26
OPTIMORE - Optimised Modular Range Extender for every day customer usage
Thermal System Development
Thermal System Model
Compressor
Wax TH
E
Fan
Main
1
ICE OC
E
ICE Bypass (internal)
AC COND
LT HX
HT HX
0
Pump
CH
ICE
to cabin
BV CH
E
PTC
Pump
ICE
SOV OC Byp
PE
Pump PE
Pump
Battery
E
0
BV Battery
E
CP…Cooling Pack
SOV… Shut-off valve
BV… Bypass valve
TXV… Expansion valve
20-03-2014
Fan
HVAC
EVAP
E
Functionalities:
Chiller
DC/DC
1
AC…Air condition
LT… Low Temperature
HT… High Temperature
OC… Oil Cooler
Air Flap
Charger
HV
Battery
EM-WM
1
0
SOV+TXV EVAP
E
SOV+TXV Chiller
EM OC*
CH
TH…Thermostat
CH… Cabin Heater
EVAP… Evaporator
TXV… Expansion valve
HT≈90°C
Oil ≈ 75°C
LT ≈ 50°C
LT ≈ 25°C
AC
 PTC+ICE Cabin heating
 Cooling @ Charging
 Coolant+Oil E-Motor
cooling
 Air/AC Battery Cooling
OPTIMORE -GA04 Meeting
27
OPTIMORE - Optimised Modular Range Extender for every day customer usage
Range Extender - Vehicle Simulation
50
30
NEDC cycle
24
NYCC cycle
36
Vehicle engine
Sport cycle
33
Constant speed 80 km/h, no
gradient
43
44
Constant speed 80 km/h, 2%
gradient
57
27 31
Constant speed 130 km/h,
no gradient
27 29
without heating / air condition
with heating / air condition
Electric operating range [km]
Boundary conditions:
Consumption auxiliary units
Consumption air condition
18-09-2014
0,80 kW
2,70 kW
OPTIMORE -Final Meeting
28
OPTIMORE - Optimised Modular Range Extender for every day customer usage
Range Extender
Optimisation Activities - Vehicle
Acceleration time [s]:
AVL OPTIMORE
Mitsubishi i-MiEV
Smart ForTwo ED
0 – 50 km/h
0 – 80 km/h
0 – 100 km/h
7,3 10,2
4,3
10,6
5,1
16,2
15,3
6,2
26,7
time [s]
Range [km] / Number of laps:
AVL OPTIMORE
33
250
160
10,7
Mitsubishi i-MiEV
Smart ForTwo ED
77
144
5,1
106
135
7,1
electric operating range
overall range
manufacterer‘s specification of range
number of laps
range [km] / number of laps [-]
8000
8250
18-09-2014
OPTIMORE -Final Meeting
29
OPTIMORE - Optimised Modular Range Extender for every day customer usage
Summary
 The project targets of OPTIMORE WP City Car BEV with RE are
achieved mostly
 In real world operation the Range Extender enables affordable
electric mobility and eliminates the risk of an empty battery
(RANGE ANXIETY)
 A flexible operating strategy depending on car to environment
information improves the fuel consumption potential of RE vehicles
significantly
 Depending on usage profile, different Range Extender solutions
utilizing serial or parallel ICE configurations are the respective best
approaches
 Best results depend on an holistic engineering approach which
equally takes ICE, electric motor, transmission and control
intelligence into account
18-09-2014
OPTIMORE -Final Meeting
30