view file
Transcription
view file
t57L TheCanadian Mburalogist Vol.35,pp. 157l-1606(1997) NOMENCLATURE FORZEOLITEMINERALS:REPOFTOFTHE RECOMMENDED MINERALOGICAL ZEOLITES OF THEINTERNATIONAL SUBCOMMITTEE ON NAMES AND MINERAL ON NEW MINERALS ASSOCIATION, COMMISSION DOUGLASS. COOMBS1(Chairnan) NewZealand universityof Otago,P,O,Box56,Duned.in, GeologyDepartmznt, ALBEMOALBERTI j2, 144100Ferrara,Italy Istiato d.iMineralogia"(JniversftA di Fenara,CorsoErcoleI" d.'Este, TIIOMAS ARMBRUSTER 3, CH-i012Bem,Swiaerl'anl Bern"Freiestrasse Kristatlographie, Universitdt Laboratoimftr chcmische undmburalogische GILBERTOARTIOLI di Milana,vin.Botticelli,23,I-20133Milarc, Italy Dipartimentodi Scienze d.ell.a kna. [Jniversitd. CARMINECOLELLA UniversitdFedcricoII di Napoli, Dipartimentodi IngegneriadeiMaterialie dellaProd.azionc, PiazzpleV Tecchio,80,I-80125NapolLltaly ERMANNOGALLI Dipartimcntod.iScienze dellaTbrra,Universitddi Modena,via S.Eufetnia,19,141100Modena,Italy JOELD. GRICE Musewnof Naturc,Ottawa"OntarinKiP 6P4,Canada MineralSciences Division,Canadian FRIEDRICHLIEBAU 40-60,D-2300Kiel"Germany Instint, IJniversitdt Kiel, Olshaasenstasse Mineralogisch-Petrographisches DecemberI 994 JOSEPHA. MANDARINO (retiredfrom Subcommittee, Depanmcntof Mineralagy,RoyalOntarioMweum,Toronto,Onnrio MSS2C6Canada HIDEOMINATO 5-37-17 Kugayam+ Suginami-ku,Tolqo 168,Japan ERNESTH. MCKEL Division of Exploration and Mining, CSIRO,Private Bag, Wembley6014, WestemAu*tralia" Aastralin ELIO PASSAGLIA Dipanimento di ScienzedellaTerra, Universitd.di Modena"via S. Eufemia 19,I-4II0a Modenu haly DONALD R. PEACOR Departnent of Geological Sciences,University of Michigan, Ann Arbor Michisan 48109, U.S.A. SIMONAQUARTIERI Dipartim.entodi ScienzeitellaTena, Universitd ili Modeno,via S. Eufemiu 19,141100 Modena"Italy ROMANORINALDI Dipartinznto di Scienzedella Terra, Universitd.di Perugia I-06100 Perugia"Italy MAITCOLMROSS U.S. Geological Suney, MS 954, Reston,Wrginia20192, U.SA. RICHARDA. SHEPPARD U.S. GeologicatSurvey,MS 939, Box 25M6, Federal Center Denve4 Colorado 80225, U.SA. EKKEHARTTILLMANNS Institutflr Mineralogie md Kristallographie, UniversitdtWiett Althanstrasse14, A-1090Vmna, Austria GIOVANNAVEZZALIM Dipartimento di Scienzed.ellaTena, Ilniversitd.di Modena, via S. Er{emia 19, 141100 Moden'alta$ I E-mnil address: doug.coombs@stonebow.otago.ac.nz r572 THE CANADIAN MINERALOGIST ABSTRACT This report embodiesrecommendationson zeolite nomenclatureapprovedby the InternationalMineralogical Association, Commissionon New Minerals andMineral Names.In a working definition of a zeolite mineral usedfor this revie\p,structures containingan intemrptedf:ameworkoftetrahedraareacceptedwhereotherzeolitic propertiesprevail, andcompletesubstitrtioD by elementsother than Si andAl is allowed. Separatespeciesarerecognizedin topologically distinctive compositionalseries in which different extra-framework cations are the most abundantin atomic proportions. To name these, the appropriate chemicalsymbolis attachedby a hyphento the seriesnameasa suffx, exceptforthe narnesharmotomqpollucite andwairakite in the phillipsite and analcime series.Differences in space-groupsymmetry and in order-disorder relationshipsin zeolites having the sametopologically distinctive framework do not in generalprovide adequategroundsfor recognition of separate species.Zeolite speciesate not to be distinguished solely on the ratio Si : Al except for heulandite (Si : Al < 4.0) and clhoptilolite (Si : Al > 4.0). Dehydration"partial hydration, and overhydrationare not suffrcient groundsfor the recogrition of separatespeciesof zeolites. Use of the term "ideal formula" should be avoided in referring to a simplified or averaged formula of a zeolite. Newly recognized speciesin compositional series are as follows: brewsterite-Sr, -Ba" chabazite-Ca" -Na -Ii clinoptilolite-I! -Nq -C4 dachiardite-C4 -Na, erionite-Na"-K, -Cq faujasite-Na,-Ca -Mg, ferrierite-Mg, -K -Na gmelinite-Na,-Cq -K heulandite-Ca,-Nq -K -Sr, levyne-Ca -Na paulingite-K -Ca, phillipsils-1.{q -Cq -K and stilbite-Ca, -Na. Key references,type locality, origin of name,chemicaldat4 ZA structure-typesymbols,space-groupsynmefiry,unit-cell dimensions,and commentson structureare listed for 13 compositionalseries,82 acceptedzeotte mineral species,and thJee of doubtfrrl status.Herschelite,leonhardite,svetlozarite,and wellsile are discreditedas mineral speciesnames.Obsoleteand discreditednamesare [sted. Keyvords: zeolitenomenclanre,herschelite,leonhardite,svetlozarite,wellsite,brewsterite,chabazite,clinoptilolite, dachiardite, erionite, faujasite, ferrierite, gmelinite, heulandite"levyne, paulingite, phill;Fsite, stilbite. SoMruans Ce rapport contient les recommandationsi proposde la nomenclaturedesz6olites,telles qu'approuvdespar l'Association min{mlsgiqus internationale,commissiondesnouveauxmin6rauxet desnoms de min6raux.Daasla d6finition d'une z€olite retenueici, les structurescontenantune trame interrompuede t6traAdressont acceptdesdgnsles cas oi les autrespropri6t6s satisfont les crit0res de cetie famille de min6raux. De plus, il peut y avoir remplacementcomplet de Si et Al par d'autres 6l€ments.Des espbcesdistinctesfont partie de s6riesde compositionsdont I'agencementtopologiqueest le m6me,le cation dominant ne faisant pas partie de la trame d6ierminantl'espBce.Pour en d6terminerle nom, il s'agit de rattacherle symbole chimiqueappropri6au nom de la s6riepar un trait d'union, saufdansles casde harmotome,po[ucite et wairakite,faisantpartie des s6riesde la phillipsite et de I'analcime. Des diff6rencesen symdtrie exprim6espar le groupe spatial et en degt6 d'ordre Si-Al dansles z6olites ayantle m€me agencemetrttopologiquene suffisent pas en g6n6ralpour ddfinir une especedistincte. Le seul critdre de rapport Si : Al ne sufEt pas pour distinguer les espBcesde z6olites, sauf pour la heuladite (Si : Al < 4.0) et clinoptilolite (Si : Al > 4.O).Yetat de d6shydratation,d'hydratation partielle, et de sur-hydratation ne suffit pas pour reconnaltre une espBcedistincte de z6olite, On doit 6viter d'utiliser le concept d'une "formule iddale" en parlant des formules simplifi6es ou repr6sentativesdes z6olites. I,es nouveauxnoms d'espOcesdans ces s6ries de compositions sont: brewsterite-Sr,-Ba, chabazite-Ca,-Na -K, clinoptilolite-I( -Na -Ca dachiardite-Ca -Na,6rionite-Na" -K -Cq faujasite-N4 -Ca -Mg, ferrierite-Mg, -K, -Na, gmelinite-Na, -Ca, -K, heulandite-Ca, -Na, -K, -Sr, l6vyne-Ca, -Na, paulingite-K, -Ca, philipsite-Na, -C4 -K, et stilbite-Ca"-Na- Nous pr6sentonsles r6f6rences-cl6s,la localit6-type,l'origine du nom, desdonn6es chimiques,le symbolestructuralZA, le groupe spatial et la syndftie, les parambtes r6ticulaires et des commentairessur la structurede 13 s6riescompositionnelles,82 espBces homologu6es,et trois dont le statut est douteux.Herschelite,ldonhardite, svetlozaxite,et we[site sont discr6dit6escotrme norns d'esp€cesmin6rales.Nous dressonsune liste des noms obsoldteset discr6dit6s. (Iraduit par la R6daction) Mots-cl6s:.nomenclaturedes z6olites, herschelite,ldonhardite, svetlozarite, wellsite, brewsterite, chabazite,clinoptilolite, dachiardite,6rionite,faujasite,ferrierite, gmelinite, heulandite,l6vyne, paulingite, phillipsite, stilbite. INIRoDuc"iloN described with their present 6saning by L842. Forty-six zeolites were listed by Gouardi & Galli The name"zenli€'\'ras inftoducedby the Swedish (1985), and new speciescontinueto be described.The mineralogist Cronstedt ia 1756 for certain silicate first crystal-structure determination of a zeolite was minerals in allusion to their behavior on heating in a done on analcime(Taylor 1930); following this, Hey borax bead (Greek zeo =borli lithos = stone). Three (1930) concluded tlat zeolites in general have such minerals were listed by Haiiy (1801), namely aluminosilicatefraneworks with loosely bondednlkali stilbite, analcime, and harmotome, together with or alkali-earth cations, or both. Molecules of HrO "mesofype", which has not survived. Chabazite and occupy extra-framework positions. He pointed out leucitehadbeennamedevenearlier.Nineteenhadbeen tle consequentialrequirements that the molar ratio FORAOLIIE MINERALS RECOMMENDEDNOMENCI.-ATURE AlzOr : (CaSr,BaNaz,K)O = 1 andthat O : (Si + Al) = 2 in the empirical formula. Zeolites have other highly characteristic features developedto varying degrees,notably the potential for reversiblelow-temperaturedehydration,the ability of the dehydrated forms to reversibly absorb otler molecules,a tendencytoward more or less easylowtemperatureexchangeof extra-frameworkcations,and a lack of clear-cut, structu(ally controlled constraints on end-membercompositionsin terms of Si : Al ratios within the framework. In somecases,observedextraframework compositions may be artefacts of cation exchangeresultingfrom humanactivitiesin the laboratory or elsewhere,and firrtlermore, tle compositions are not convenienflydeterminedby traditional optical metiods. Perhapsfor a combination of suchreasons, separatenameshavebeenglven to few zeoliteson the basis of the dominant extra-framework cation in solid-solution series. This conflicts with standard practicein most mineral groupsand with guidelinesof the Commissionon New Minerals andMineral Names (CNMMN) (Nickel &Mandarino 1987). With intensification of research and tlre advent of the electron microprobe, a flood of information on compositions has become available, and with automated single-crystal X-ray diffractometers atrd otler developments,many complexitieshave been investigated,including order-disorderrelationshipsin the frameworks and associatedchangesin unit-cell paxameters and symmetry. Thus in the case of analcime,Mazzi & Galli (1978),Te,ertsfraetal. (1994), and otlers have demonstrateda wide range of spacegroup symmetries associatedwith different patterns of order in tle framework and possible displacive transformations. Sites of extra-framework cations are commonly less well defined in an open, zeolitic structuretlan in most other minerals,and arevariably occupied.Guidelinesallowing recognition of separate speciesdependingon the dominantion occupyingeach structural site are thus compromised in the case of extra-frameworksitesin zeolites.Furthermore,changes in the occupancyof suchsitescandistortthe framework to varying degrees,changingthe space-group symmetry. Some minerals meet traditional criteria for zeolitesin all respectsexceptthat they containR Be, or other elementsin tetrahedral sites, witl consequent departurefrom the requirementof Hey (1930) that O : (Si + A1) = 2. Other structurally related minerals vrith zeolitic propertieshaveall tetrahedralsitesoccupiedby elementsother than Si andAl. Certain other minerals displaying zeolitic properties depart from traditional requirementsfor a zeolitein having a franework that is intemrpted by some (OH) groups. An example is parth6ite,fistedby Gottardi& Galli (1985)as azsoTitp. Synthesisand structural analysis ofmaterials having zeolitic properties have become major fields of researchandhaveled to a voluminousliterature,ashas the industrial use of zeolitic materials. L573 The recommendations of an IMA CNMMN subcommitteeset up to review zeolite nomenclature are set out below. Theserecommendationshave been adoptedby the Commission. DtrnmIoN oF A ZEoIxrEMINERAL In arriving at its working definition of a zeolite, 1ls gufssmmittee took the view that zeolitesin the historical na4 mineralogical sense are naturally occurring minerals, irrespectiveof how the term may be appliedto syntheticmaterialsand in industry.In the light of advances in mineralogy, the Hey (1930) definition is found to be too restictive. The Subcommittee gave particular considerationto the following questions.Is more that 5OVosubstitution of elements other than Si andAl permissiblein tetrahedralsites?Is tle presenceof HzO and of extra-framework cations absolutely essential?Can'ointemrptedo'framework structuresqualify as zeolite minerals?Thesematters are furtler discussedinAppendix 1. Definition A zeolite mineral is a crystalline substancewith a structure characterized by a framework of linked tetrahedra,eachconsistingoffour O atomssurrowtding a cation. Thisframework containsopencavities in thc form of channelsand cages.Theseare u.suallyoccupied by H2O rnoleculesand.extra-framework cations that are commonlyexchangeable.The channelsare large enough to allow the passageof guest species.In the hydrated.phases,dehydration occurs at temperatures rnost$ below about 400oCand is largely reversible. Thef'ram.eworkmay be interru.ptedby (OH,F) groups; theseoccupya tetrahedronapexthat is not sharedwith adjacent tetrahedro. Applicationof the defi.nition(seealsoAppendix1) Relatively easy exchange of extra-framework cationsat relatively low temperatureis a characteristic feature of zeolites and zeolitic behavior, but varies greatly from speciesto species.Its extent does not providea convenientbasisfor the definition of zeolites. In practice, it appears that channels must have a minimum width greaterthan that of 6-memberedrings (i.a.,rings consistingof six tetrahedra)in orderto allow zeolitic behaviorat normal temperaturesandpressures. Framework structuressuchas in feldspars,nepheline, sodalites,scapolites,melanophlogite,and probably leifite, in which any channelsaretoo resticted to allow typical zeolitic behaviorsuchasreversibledehydration, molecularsieving,or cationexchange,arenot rggarded as zeolites. Framework densify, defined as the number of tetrahedralsites in 1000 43, was used as tle criterion for inclusion inthe Atlas of Zeolite Structure Ilpes 1574 TT{E CANADIAN @Iereret aL 1996).However,this criterion providesno evidencethat the channelsnecessaryfor diffitsion are present,as well as cages,and it has not been adopted in the presentdefinition. In some minerals witl a tetrahedral framework sfructureandotherzeolitic characteristicsasdescribed, namely parth6ite, roggianite, maricopaite, and chiavennite,one apex of sometetrahedrais occupied by an (OH) group or F atom insteadof being occupied by an O atom. This (OH) group or F atom does not form a bridge with an adjacent tetrahedron. The framework is tlus intemrpted. Suchminerals are here acceptedas zeolites. In terms of the definition adopted,minerals of the cancrinitegroupcanarguablybe consideredaszeolites. This group has long been regardedby many or most mineralogistsas distinct from tle zeolites, in part, at least, becauseof the presenceof large volatile anions (e.9., Hassan 1997). They are not reviewed in the presentreport.3a1trs1similarly, wenkite containslarge cagesand channels,but theseare blocked by SOa,C4 and Ba ions (Wenk 1973,Merlino 1974),inhibiting zeolitic behavior. In addition, no water is lost below 500oC.Wenkiteis not includedasa zeolitein this report. Leucite has seldombeenregardedas a zeolite, asit does not display a full range of zeolitic behavior. Nevertheless. it has the same framework structure as analcime and conforms to the adopteddefinition. Ammonioleucite can be regarded as an analcime derivative,canbe synthesizedfrom analcimeby cation exchange, and may have formed naturally by low-temperaturereplacementof analcime.Leucite and ammonioleuciteareincludedin the list of zeolites.asis kalborsite, a derivative of the edingtonitestructure. Also conforming to the definition adopted are tle beryllophosphatespahasapaiteand weinebeneite. Thesecontainneither Si norAl and canbe regardedas end-memberexamples of Si-free zeolites or zeolite phosphates. MINERALOGIST for departing from tle rules for giving a new nrme. Casesarising under Rule 2 are particularly difficult, and require individual consideration. RuIe 1 (a) One or more zeolite minerals having a topologically distinctive framework of tenahedra,and a compositionthat is distinctivefor zeoliteshaving that framework, constitute separatespecies. (b) Zeolites having the sametopologically distinctive framework of tetrahedraconstitute a series when they display a substantial lange in composition in which differing extra-frameworkcationsmay be the most abundantin atomicproportions.Thesecationsrnayoccupydifferent extra-frameworksites.Suchsarrasconsistof two or morespeciesthat are distinguishedon the basisof the most abundantextra-frameworkcation. Application ofthe rule Laumontite, for example, has a topologically distinctive framework and a compositionwhich, asfar asis cunently known, is distinctivein that Ca is always the dominant extra-framework cation. It is a separate zeolite speciesunderRule la. Natrolite, mesolite,and scolecitehavethe sametopologicallydistinctivefranework structure as each other, and have compositions that are distinctive. They also are separatespecies underRulela. Zeolites having the topologically distinctive chabazitestructure have a range of compositions in which any one of Ca, Na, or K may be the most abundantextra-frameworkcation. SubstantialSr is in somecasespresentas well, bui so far has never been reported as the most abundantin natural gxamples. Chabaziteis a seriesconsistingofthree separatespecies Na K underRule lb. It is knownthat near-end-member Ca and Sr compositionsarereadily obtainableby ion exchangefrom nalural Ca-dominantchabaziteat 110"C (Alberti et al. L982a), but this is not the essential RuLesron NowNo.eruns or Zrolrre MnrERAr-s criterion for recognition ofthe natural series. Mesolite may have either Na or Ca slightly in In presentingthe following rules for nomenclature excess of the other,but the ratio Na : Ca is alwaysclose of zeolite mine14ls,the Subcommitteefeels strongly I : 1. The rangeof its compositionis not regardedas to that they should be viewed as guidelines rather than and mesolite is not divided into more as being rigidly prescriptive. As stated by Nickel "substantial", one species on groundsof composition. than & Mandarino (1987): "It is probably not desirable Severaldistinct structuralsitesfor extra-framework to formulate rigid rules to define whether or not a cationsarerecognizedin many zeolites,but in view of compositional or crystallographic difference is tle relatively loose bonding and specializedproblems sufficiently large to require a new mineral name,and only the in esablishing the individual site-occupancies, eachnew mineral proposal must be consideredon its population of exfra-frameworkcations should in total own merits". Explanatorynotesfollowing the proposed generalbe usedin defining zeolite species. rules or guidelinesgive examplesof how the Subcommifreeenvisagesthaf rulebeing applid but Iike Nickel Rule 2 andMandarino,the Subcommitteeurgesthat eachcase (a) Differences in space-groupsymmebryand in be treated on its merits. In some casesncompelling reasonsmay exist on grounds ofhistorical usagefor order-disorderrelationshipsin zeolite mineralshaving retaining an existing name,or other groundsmay exist the sametopologically distinctive frameworkdo not in FORreOLITE MINERALS RECOMMENDEDNOMENCT.ATURE general provide adequategrounds for recognition of separatespecies,but eachcaseshouldbe treatedon its merits. (b) In assessingsuchcases,other factors, such as relationship to chemical composition, should be takeninto consideration. Application ofthe rule The Subcommitteefound it to be impracticable to formulate quantified criteria 1e1hnadling problems arising from this rule. Irrespective of decisions that have been made in the past, care should be taken that departuresenvisagedin Rule 2b from the principle enunciatedin Rule 2a are basedon grounds ttrat are truly compelling. Analcime and certain other zeolites exist with several different space-groupsymmetries, in some casesoccurring on a yery fine scalein the samehand specimenand with the samechemistry. Even though this may be relatedto Si,Al ordering, separatespecies namesin thesecasesare in generalnot warranted. Gismondineand garroniteare examplesof zeolites that havethe sametopologicallydistinctiveframework. Both haveCa asthe dominantextra-frameworkcation. Their differing space-gtoupsymmetry is associated with disorderedSi,Al and the presenceof significant Na in garronite.They are acceptedas separatespecies. Gobbinsiteand amicite have topologically tle same framework structure as gismondine, but are alkalidominant. Their different space-group symmetries Epear to be relatedto Si,Al disorderin gobbinsiteand possiblechemicaldifferences,andthey areprovisionally retained. Barrerite is topologically similar to stilbite and stellerite,but it has different symmetrycorrelated with the presenceof extra cationsthat causerotational displacementswithin the framework (Galli & Alberti 1975b);it is similarly retained. L57s continuousrange of compositions.The usual 507o compositionalfl1ls gnnnsf be applied, as there are no clearly defined Si,Al end-membercompositions for heulandite and clinoptilolite. Thermal stability has been used by some investigators to distinguish clinoptilolite from heulandite. This is a derivative property,however,suggested by Mumpton (1960)asan aid to identification, and it is not appropriate as the basisfor definition. Afietti (1972) and Boles (1972) haveshownthat thereis no gapin compositioneitherin frameworkor extra-frameworkcationcontentsbetween heulanditeand clinoptilolite, and that samplestransitional in compositionshow intermediatepropertiesin terms of thermal stability. Rule 4 Dehydration,partial hydration, and overhydration, whether reversible or irreversible, are not sufficient grounds for the recognition of separatespecies of zeoliteminetals. Application ofthe rule If a new topologically distinctive framework arises from overhydration or partial dehydration, separate speciesstatuswould result from applicationofRule 1. Leonhardite, a partially and in most casesreversibly dehydratedform of laumontite, is not acceptedas a separatemineral species. Rule 5 Individual speciesin a zeolite mineral serieswith varying extra-frameworkcationsarenamedby attaching to the series name a suffix indicating the chemical symbol for the extra-framework elementthat is most abundantin atomic proportions,e.9., chabante'Ca. Rule 3 The following exceptionsaremade:a) On grounds usage,the ofhistorical precedenceandlong-established Zeolite mineral speciesshall not be distinguished tame harmotome is retained for the Ba-dominant solely on the basis of the framework Si : Al ratio. An member of the phillipsite series. b) On grounds of exception is made in the case of heulandite and long-establishedusage,pollucite is retained as the clinoptilolite; heulandite is defined as tle zeolite Cs-dominantzeolite of the analcimestucture-type.On minslal series having the distinctive framework grounds of establishedusageand markedly different topology of heulandite and the ratio Si : Al < 4.0. space-gtoupsymmetry and Si,Al order related to the Clinoptilolite is defined as the series with tle same extra-frameworkcation content@ule 2b), wairakite is framework topology and Si : Al 2 4.0. retained as the Ca-dominant zeolite of tle analcime structure-type. On the ottrer hand, herschelite is Application ofthe rule suppressedin favor ofchabazite-Na (Appendix 2). Many zeoliteshave a widely variable Si : Al ratio, but this, in itself, is not regardedasproviding adequate grounds for recognition of separate species. The exceptionis basedon entrenchedusageof &e names healanditeandclinoptilolifa, andtheir conveniencefor recognizingan important chemicalfeature.The cutoff value adopted(following Boles 1972)is arbitrary in a Application ofthe rule New species arising from Rule 5 that are well authenticatedby publisheddata are set out in Table 1. Futureproposalsfor additional new speciesunderthis rule shouldbe dealt with as for any otler proposalfor a new mineral name. r576 TIIE CANADIAN MINERALOGIST Adoption of a Levinson-style system of suffixes avoids the proliferation of a large numberof new and potentially unrelatedspeciesnames,and ensuresthat all membersof a topologically identical compositional seriesare indexedtogether.It has the great advantage that where adequatechemicaldataare not required or arenot available,a mineral canbe referredto correctly by an unambiguousseriesname.The systemadopted here is witlout the brackets (parentheses)used by Levinson (1966) in suffixes for rare-earthminerals. Substantial amounts of extra-framework cations otler than the dominant one may be indicated, if desired, by the use of adjectives such as calcian and sodianne.g., calcian clinoptilolite-K. Such adjectival modifiers are not part of the formal nameof a species. Informal useis oftenmadeof descriptivetermssuch as calcium chabaziteand Ca cbabazite,in which the name or symbol of an elementis usedadjectivally. In conformity with generalIMA guidelines,theseshould not appearin print as mineral namesor in hyphenated form. The correct narnefor tle mineral speciesin this caseis chabazite-Ca.Termssuchas sodium-substituted chabazite-Caare suggestedfor what in effect would be a syntheticchabazite-Napreparedby cation exchange from chabazite-Ca.Chabaziteremainsthe correctname for a memberof the chabaziteseriesthat is not sfecifically identified on compositionalgrounds. TABLE I. NEWLY PROPiOSK)AOLTTE SPECIES gERrEst wmtrN coMPiosrnor{Al Spoi€s nrdg Sp6i€s nono brwnt€dt€ brwdecitesr gedhft, gnrfidtFNa gmdid€..Ch br$rs€dtsBe gn8tidbK dhabarrt+Ca claboziteNa hgrhdno.Ce hsl$ditFNr haileditFK hs'hndit*Sr chabaziteK clhopdolte dinoftiloliteK clitroFdolitsNs olinopflolilFCa lsr4no la4tmCa l64fseNa dacliardito dacfiindite-Ca daclirditeNg padiqdto padi4$sK fingilsCs gioite-Ns pbillipcito simitFK sioni!+Ca pmil6ileN8 pmipitc-Ca pmipoits-f frliasit&.Nr h{ieitscs dilhe-Ca scilbiteNa ftnisitelvt ftrrigit+I( ftrdcitoNa Rule 6 lto firc-med nmbo of ec& s€d€sis ths @ to xtbic,hths 6i8iml t,rpe (a) Space-groupvariantsof zeolite mineral species $Bpeim ftrth€ sis 8@ to bdorg; may be indicatedby placing the space-groupsymbolin round brackets(parentheses)after the mineral species name,e.g.,analcime(Ibca),heriandite-Ca(C2lm).(b) Levels of order may be indicated by adjectival use of words such as oodisordered" or "fullv ordered" before paragraph).Users of the list should bear in mind tlat the mineral name. the Si : A1 ratio, or, more generally, occupancy of tetrahedralsites by Si, Al, R Be, Zr, and possibly Application ofthe rule otler elementsovaries widely in many zeolites. The total exfta-frameworkcationchargevariesaccordingly. Modifiers as suggestedhere are not paxt of t}le Major variation in more-or-lessexchangeable,extraformal namee1&s mineral. framework cations is also a feature of many natural zeolites. Contents of H2O tend to decrease with AccspIEDZEourE SERTFS ANDSprcrss increasing number and size of extra-framework cations, as well as with increasing temperatureand Zeolites to be elevated to series status and the decreasingP(HzO). Such variations can be vital to consequentialnew speciesto be recognizedon the basis petrological,geochemical,environmental,and experiof the most abundantextra-frameworkcation (Rule 5) mental considerations. gimFlified or generalizedformulaeof zeolites,e.9., are set out in Table 1. An annotated list of acceptedzeolite series and NaAlSi2O6.H2O for analcime,haveoften beenreferred speciesfollows below. In eachentry for series,and for to as "ideal" formulae.However,the supposedideality those speciestlat are not membersof compositional may be in writers' desirefor simFlicity, rather than in series, a simplified or generalized formula is given anything fundamental to the zeolites concerned,and in the first line. This is followed by Z, the number of can lead to false assumptions.Thereis much evidence theseformula units per unit cell, as given later in the that the compositionof naturally occurringanalcimeis entry. The sim.Flified or generalized formula should a function of the chemicul eayllenment in which it be regarded as representativeonly, and should not forms (e.9.,Coombs& Whetten1967).In environments be regarded as an o'ideal" composition (see next of low Si activity, asin alteredsfrongly silica-deficient RECOMMENDBD NOMENCI-ATTJRE FOR AOLITE I577 MINERALS alkalingrocks,naturalanalcimeapproachesa Si : Al ratio of 1.5. The composition in burial metamorphic rocks in equilibrium with quartz appears to be distinctly moreSi-rich thanthe supposed'oideal" Si : Al value of 2. The evidently metastableequilibrium in natural environments contafufng siliceous volcanic glassor othersourceof silica yielding higheractivity of Si than coexistencewith quartz,leadsto analcimeu.ith Si : Al approaching3. Analogousobservationsapply to heulandite and other zeolites. If "ideaf is taken to imply equilibrium, it can tlerefore be concludedtlat this is a function of the chemical (and P-T) environment during crystallization,ratherthan simply being a function of crystal structure. Differing Si : Al ratios may in turn favor different patterns of order in tle frameworkApplicationof the term "ideal" to simFlified or averagedformulae of zeolitesshouldbe avoided. Also given in the fust line of each entry is tle structure-type code allocated by the Structure Commission of the International Zeolite Association (ZA) and listed in Meier et al. (L996). The code consists of tlree capital letters. A preceding hyphen indicatesan intemrptedframework of tetrahedra. The second line of each relevant entry starts with the odginalreferencein whichthe currentnane of the mineral, or a nearvariant of tlat name,is given, followed by the type locality, or, in the caseof descriptions that predate the concept of type localities, the generalregion of origin of tle material on which the nameand original descriptionare based,rrhere this is known. The locality is followed by a note on the derivation of the name.Further information on these mattersis given by Gottardi & Galli (1985), Clark (1993), and Blackburn & Dennen(1997), but in some casestle information is hererevised. Next is given inforrnation on tle currenfly known rangein compositionof the mineral concerned.This includesknown values,or rumgeof values,for \i, the proportion of tetrahedronsites occupiedby Si atoms, asreportedin publishedresultsof acceptableanalyses. For many zeolites, this value varies widely, and the valuesreportedmay not indicatethe firll rangepossible, especiallyin the caseof the rarer zeolites. Much information on zeolite compositions was givenby Gottardi& Galli (1985).Thepresentcompilation incorporatesresultsoffurther extensivesearchesofthe literature. A widely usedcriterion for acceptabilityof zeolite compositionsis that the value of the balanceerror function of Passaglia(1970) both Fez*and Fd+ may enter the structures of some zeolites in extra-framework or framework sites, or both. Space-group symmetry and crystallographic parametersfollow. Many acceptedzeolite speciesexist with more than oneknown space-groupsymmetry,and these are listed. Variations in space-gtoupsymmetry andvariationsin order-disorderrelationshipof framework cationsare not in themselvesadequateevidence for establishingnew species(Rule 2). Cell parameters given are as reported for material specified in key references.Cell dimensionsof many speciesvary widely as a result of variablecomposifions,variable extent of order, and differing levels of hydration. Except for a few newly describedspecies,details of structure,including size and orientation of channels, can be obtainedfor eachstructuretype from Meier et aL (1996)andarediscussedin Gottardi& Galli (1985). The acceptedseriesand speciesare as follows: shouldbe less than l07o, a figure that is itself arguably excessive.The calculation of.EVomay be modified to allow for other suspectedcations,suchasFeA andCs*. The role of Fe causesproblems that may not be resolvable.SomeFe reportedin zeolitesis undoubtedly a contaminant, but there are reasonsto suspectthat Analcime Amicite 10H2O I(aNaa[A\SisO32]. GIS Z= 1 Alberfr.et aI. (1979).Tlpe locality: Hiiwenegg(aTertiary melilite nephelinite volcano), Hegau, southwestern Germany.Namedafter GiovanBattistaAmici (178G 1863), inventor of tle Amici lens and microscope objectiveswith a hemisphericalfront lens. Both type amicite and the only other known example (Khomyakov et al. 7982) include minel Q1. f.t = 0.51.0.49. 9.884(1)A, Monoclinic,.I2,a 1O.226(l),b LO.422(L),c B 88.32(2)". The framework is characterizedby double crankshaft chainsas in gismondine(Alberti &Yezzalni1979). Amicite has tle same framework topology as gismondine.Si,Al and NaK distributions are ordered and lower tle symmetry from topological l4llamd to real symmetry.I2. Ammonioleucite ANA (NII4)[AlSirOr] Z = L6 IJoi et al. (1986).Tlpe locality: Tatanzawa,Fujioka, Gunma Prefecture, Japan. The name reflects its compositionandrelationshipto leucite. Material from tle only known locality contains significantK. T5i= 0.70. Tetragonal,I41la,a 73.2L4(L),c 13.713(2)A. ANA Na[AlSi2O6].H2O 2=].6 Hany Q797, p. 278). Tlpe locality: near Catanes, CyclopeanIsles,Italy (Haiiy,1801,p. 180-185).Name from Greek roots meaning "witlout strength", in 1578 TTIE CANADIAN allusionto theweakelectricaletrectsinducedby friction. In most analyzedspecimens,Na is the only substantial extra-ftameworkcation,but analcimeformsa continuous serieswith pollucite andpossibly with wairakite (Seki & Oki 1969,Seki 1971,Cho & Liou 1987).Ts varies widd 0.594.73 (e.9.,Coombs&Whetten 1967).As Si increases,NaAl decreasesand HrO increases. Topological symmetry is cubic, Ia3d.Real symmefy variantsinclude: cubic,Ia3d, a 13.725A; tetragonal,I41lacd, a 13.723(1), c 13.686(10)A; a L3.72I(I), c L3.735(l) ANIaz.zi & Galli 1978); tefragonaT, I41la; orthorhombic, Ibca, a 13.733(l), b L3.729(I), c 13.712(r)L: a 13.727(2),b 1.13.71.4(2), c B.7a0Q) A. Mun & Galli 1978); monoclinic with 2-fold axis parallel both to pseudocubic[100]and[110]; triclinic, a 13.6824(5),b L3.7OM(6),c L3.7063(5)A, o 90.158(3)',B 89.569(3)',y 89.543(3)'(Hazen& Finger 1979); and probably trigonal with variable Si,Al order (a.9., Hazen& Finger 1979,Teertstraet al. 1994). The name applies to Na-dominant composifionswith this framework structureregardlessof the degreeand patternsof order. MINBRALOGIST Bikitaite BIK Z=2 LilAlSi2O6l.H2O (1957). Zimbabwe. locality: Bikita, Tlpe Hurlbut Namedafter the type locality. Tlvo known localities, with the bikitaite having very similar ee6p6sitions.Tsi= 0.67. MonoctinicfP21,a 8.6L(4), b 4.962(2),c 7.600(a)A, B L14.45(l)'(Kocmanet aI.1974). Also triclinic, Pl, a 8.606(1),b 4.953(I), c 7.599(l) 4,, cr 89.89(2)", B 174.42(2)', y 89.96(2)" (Bissert & Liebau 1986). The frameworkstucture consistsof 5-memberedrings linked by additionaltetrahedraIts topologicalsymmetry is P21.The monoclinicP2t variantof Kocmanet al. has partly orderedSi,Al distribution;the triclinic Pl variant of Bissert andLiebau is highly ordered. Boggsite CatNa:[AlrqSinOp2].70H2O Z=I BOG (L990).TYpe (L989) Pluth er al. and Howard et al. locality: Basalt abovecliff, GobleCreek,southside of tle Neer Road, 0.2 km nofih of Goble, Columbia County,Oregon,U.S.A. Namedafter RobertMaxwell Barrerite Boggs(father)andRussellCalvin Boggs(son),mineral collectorsin the Pacific Norttrwest. Nar[AlrSirOtr].6H2O Z=8 STI boggsite approximatesthe above formula, with Tlpe (1974,1975). Passaglia& Pongiluppi Tlpe locality: Capo hrla, Sardinia, Italy. Named after Professor minor Fe, Mg, and K. Boggsitefrom Mt. Adamson, RichardM. Barrer (1910-1996)ef Imperial College, Antarctica (Galli et al. 1995) approximates with minor Fe, Mg, Sr, London,for contributionsto the chemistryof molecular Ca6l.{a5K[AlrsSilOp2].70H2O, Ba.T51= Q.Sl. sieves. Also known from Kuiu Island, Alaska @i Renzo & Orthorhombic, Irnma, a 20.236(2), b 23.798(L), Gabelica1997).Tsi=O.77,O.78.The typeexamplehas c 12.798(l)A (Ptutl & smirh 1990). Si,Al highly disordered. composition: (Na:.asKr.oeCao.sM&.rz) [Als.reF% .orSin.72O7).25.78H2O. Brewsterite (series) OrthorhombicoAmma ot Arnmm, a L3.643(2), (Passaglia b 18.200(3),c 17.842(3)A & Pongiluppi (Sr,Ba)zlAlaSiuO32l. 10H2O r974). BRE Z=L The stucture is similar to that of stilbite and stellerite. but it has different symmetry as a result of extra Brooke (1822). Tlpe locality: Strontian, Argyll, cations, which causerotational displacementswithin Scotland.Named after Sir David Brewster (1781the framework (Galli &Alberti 1975b). 1868),Scottishnatural philosopherwho discovered laws of polarization of light in biaxial crystals. Bellbergite Monoclinic, P21lm,P2y or triclinic (Akizuki 1987a, (KBaSr)zSrzCar(CaNa)a[Al1sSi13072].30H2O Akizuki et aL.1996). Z=L E A B The structureis sheet-likeparallel to (010) @errotta& Riidinger et al. (1993). Tlpe and only known locality: Smith 1964). Bellberg (or Bellerberg) volcano, near Mayen, Eifel, Brewsterite-Sr Germany.Named after the locality. Ca is overall the dominant extra-framework cation. Tsi= 0.51. New namefor the original speciesof the series;Sr is Hexagonal,possiblespace-groups^PQlmmc, P62c, alid the most abundantextra-framework cation. T51in the P63mc,a 13.244(l),c 15.988(2)A. ran9e0.744.75. The framework structure is as for svnthetic zeolite Monoclinic,72rlm,a 6.793(2),b 17.573(6),c 7.759(2) TMA_EAB. A, B 94.54(3)oofor composition (Sr1.a2Baa.arKo.r) RECOMMENDED NOMENCI.Af,URE FOR ZBOLITE MINERAI.S r579 (Schlenkeret al. 1977a). [AI4.uSirLe5O32].aHzO On optical grounds,possiblytriclinic (Akizuki I987a). Refinedastriclinic in threeseparategrowth-sectorsby Akizuki et aI. (L996). Partly orderedSi,Al distribution. Although originally described 4s sqalaining "silexn alumina, and potash" (L6vy 1825), tle name herschzlitehasoftenbeenappliedto chabaziteminerals of tabular habit and high Na content. Herschelite shouldno longer be usedas a speciesname. Brewsterite-Ba Chabazite-K New name;Ba is tle most abundantextra-framework cation. Proposed type-example: the Gouverneur Talc Company'sNo. 4 wollastonitemine nearHarrisville, Lewis County, New York, U.S.A. (Robinson& Grice 1993).Also Cerchiaramine, Liguria, Italy (Cabellaet al. L993,including structurerefinement).Tsi = 0.73, 0.74. Monoclinic^,P21lmot P21,a 6.780(3),b L7.599(9), c 1.733(2)L, B 94.47(3)" for type examFle,containing up to 0.85Ba per 16 O atoms. Chabazite (series) New name; K is the most abundant single extraframeworkcation. Othercationsvary widd T51inthe range0.6G{.74. Suggestedfype-specimen:Tufo Ercolano,Ercolano, Naples, Italy (De Gennaro & Franco L976)' a iz.t+g(z), ts.tos(r) A, for hexagonalcell, witl composition"(K2.s6Nan.$Cas.a6Mge.16Sre.e1)[Ala37Fe6 Si7.@O241.11.42H2O. Chiavennite CaMnlBerSisOr(OlD2l'2H2O -{HI Z=4 Bondret al. (1983),Raadeet aI. (1983).Tlpe locality: ChiavennaLombardy,Italy. Namedafter type locality. The limited data available show up to 0.72 Al and 0.15 B in tetrahedral sites, and significant extra-framework Fe and Na (Raade et al. 1983, Langhof& Holstam1994).Ts1in therange0.63to 0.68. Orthorhombic, Pnab, a 8.729(5), b 31'.326(1'l), c 4.903Q) A, (tazzob et al. 1995). A CaMnberyllosilicate with an intemrptedframework of four-connected[SiOa] and tbree-connected[BeOa] tetrahedra. (Caos,NaK)alAlaS isOS. 12H29 CHA Z=I (trigonal) Boscd'Antic (1792),as"chabazie".The sourceofthe original specimenis unclear.The nameis from a word "chabaziono'used for an unknown substancein the story of Orpheus. Ca-,Na-, andK-dominantspeciesoccurin that orderof frequency,with Sr andMg occasionallysignificant Ba moreminor.Ts varieswidely, 0.58to 0.81. Topological symmetry of tle framework, trigonal (R3n), wherea = L3.2,c = 15J A (pseudohexagonal ClinoPtilolite (series) cell). Significan!deviationsto triclinic, PI, a * 9.4, * = o (Smith et b 9.4,c 9.4A, U.= 94o,B 94",T- 94" (NaK,Caos,Sro.s,B aos,Mgos)e[Al6si30o72]'-20ILO & Galli 1983). al. 1964,l,0lllazzr I{EU Z= L Partial ordering leadsto the lower symmetry. Schaller(1923, 1932).Tlpe locality: in d6semFosed basalt at a high point on ridge running east from Chabazite-Ca Hoodoo Mountain, Wyoming, U.S.A. ("crystallized mordenite" of Pirsson 1891).The name reflects its most common species; New namefor the original and Cais the most abundantsingleexfia-frameworkcation. inclined extinction and supposed similarity in Other cationsvary widely. Tr; in the range0.58-O.80. composition to "ptilolite" (mordenite). Ptilo-, from cell, Greek, alludes to the downy, finely fibrous nature of A, for pseudo-hexagonal a L3.790(5),c 15.0210(4) (Ca1361.{a6.orlq.20Mg6.02Sre.o:)[Al:.sa that mineral. with composition from Col de Lares' Val di The cation content is highly variable. Ca-, Na-, and Fes.61Sis.i3O2l'13.16H2O, K-dominant compositionsare known, and Sr, Ba, Fass4 Italy @assaglia1970,#L3). andMg arein somecasessubstantial.Feh andFek are possibleconstituents.In Pirsson's(1890)analysis,K is Chabazite-Na the most abundant single cation by a small margin. Clinoptilolite-K is thereforetakenasthe type speciesof extrasingle Na is ttre most abundant name; New frameworkcation.Other cationsvary widely. Ts1in the the series.Tn in the range0.8G{.84. Minerals with the sameframework topology but with nngeO.624.79. Suggestedtype-locality: biggest "Faraglione" facing Tsi< 0.80, Si/Al < 4.0 areclassifiedasheulandite,with Aci Trezza, Sicily, Italy (Passaglia 1970, #D. which clinoptilolite forms a continuousseries. a L3.863(3),c 15.165(3)A, for hexagonalcell, with Monoclinic,CArn,or A,or Cm. Structure refinements by Alberti (I975a) and composition (Na3.11K1.65Cax.rrlVlge.66Srs.65) [Ala.53Fes.e1 Armbruster (1993) demonstratevariations in extraSir.aoOz].11.47H2O. 1580 framework cation sites compared with heulandite and as a function of the extent of dehydration. Dachiardite (series) (Caj5,Na"K)a-5 [AI4-5Si20-r eo4s].13HrO Z=L DAC Clinoptilolite-K D'Achiardi (1906).Dpe locality: SanPiero in Campo, New name for tle original species; K is the most Elba, Italy. Named by the author in memory of his (1839-1902), frst fuIl abundantsingle sx66-fram.\ /ork cation.A moderately father, Antonio D'Achiardi professor of Mineralogy at the University of Pisa. K-rich clinoptilolite-K was referred to as "potassium clinoptilolite'by Minato & Takano(1.964).Ts in the May containminor Cs andSr.Ts1in therange0.7H.86. Monoclinic, topological symmetry Alm, real range0.8G{.83. symmetry Crn. Monoclinic,AJm. C2,ot Cm.,a L7.688(1,6), b L7.902(9), The structure consists of complex chains of c 7.409(7) A, n tto.solt)o, for (I!.zzNao.rcao.* 5-memberedrings cross-linkedby 4-memberedrings Sre3TMge.,eFee.orlr4ns.sJ[A16., 2Si2e ssO'f,.nH2O, from (Gottardi & Meier 1963), but with complexities that an off-shoreborehole,Japan(Ogrhara& Iijima 1990). commonlyresuhin diffrse andstreakedX-ray-diffraction maxima (Quartieri et aL.7990). Clinoptilolite-Na Dachiardlte-Ca New name; Na is tle most abundant single extraframeworkcation. Other cationsvary widely. Ts1in the New namefor the original speciesof the series;Ca is the most abundantextra-frameworkcation.Dachiardite range0.80--0.84. from the type locality contains 0.12 Cs atoms per Suggestedtype-example:Barstow Formation,about formula vnut(apfu) (Bonardi 1979).Tsi in tle range 1.6 km eastof mouth of Owl Canyon,SanBernardino 0.7H.83. County,California U.S.A., USGSLab. no. D100594 14e16slinic,topologicalsymmetryC2lmorealsymmety (Sheppard& Gude 1969a). Cm. a 1"8.676, b 7.5L8,c 10.246A, B 107.87o,for Monoclinic,QAm,C2,or Crn,a 17.627(4),b 17.955(4), tlte composition (Car.saNao.azlG.e2Csj.11Sre.12Baa c 7.399(4) 4,, n ne .ZO1Z).(Boles 1972), for type [Al4.s6Fe0.02sir8 .s6Oasl.l2.56E2Ofrom tle type locality material of Sheppard & Gude (L969a), (Na'1K1.., Nezz,abnL984). Ca66tBao'Mgo,,Mno.o,)[Al66rFq .6Si,p,nO7.].20.4L12O. Partly ordereddistribution of Si,Al. Clinoptilolite-Ca New name; Ca is the most abundant single extraframeworkcation. Othercationsvary widely. Ts1in the range0.80-0.84. Suggestedtype-specimen:Kuruma Pass,Fukushima Prefecture,Japan(Koyama& Tak6uchi 1977). \/f6a6s1inis,^()1t771, C2, or Cm,a 17.660(4),b L7.963(5), c 7.4O0(3)A, B L1"6.47(3)o basedon C2"/m(Koyama& Tak6uchi 1,977), for Kuruma Pass specimen, (Nar.ruKr.e5Ca,.roMgs.17) [A.16.7 2Si,2e.6Or").23.7H2O. Cowlesite Dachiardite-Na New name;Na is the most abundantexba-framework cation. Suggestedtype-example:Alpe di Siusi, Bolzano,Italy (Alberti L975b). Available analytical results for material from seven localities,e.9.,Bonardi et al. (198L)showconsiderable variation in Na : K : Ca proportions. Tsi in the range 0.81-0.86. Monoclinic,a 18.647(7),b 7.506(4),c 1,0.296@) L, B I 08.37(3)', for (Na2.5eKn.r1Caa.53Mge.eaBao.or) [AI+.zz Fe6.11Si1e.61Oasl.13.43HzO from the type locality (Alberti L975b). Diffrrse diffraction-spotsindicate disorder. Ca[AlrSi3O,o].5.3HrO Z=52 @Acodenotassigned) Wise & Tschernich(1975). Tlpe locality: road cuts Edingtonite 0.65 km northwest of Goble, Columbia County, Oregon,U.S.A. Named after John Cowles of Rainier, Ba[AlzSi:Oro].4ItO Z=2 EDI Oregonoamateurmineralogist. Haidinger (1825).Tlpe locality: Kilpatrick Hills, near Minor substitutionfor Ca by Na and lesserK, Mg, Sr, Glasgow Scotland. Named after a Mr. Edington of B4 Fe.To in therange0.60--0.62(Yezzalitret al. 1992). Glasgow,in whosecollectionHaidingerfoundthemineral. Orthorhombic,P222tor Pmm.m,Pmm2,Y2wn, Y222 Small amountsof K, Na andCa may replaceBa. T5iin (Nawaz L9U), a 23.249(5),b 30.629(3), c 2a.96a@)A the range0.59-0.61. (Artioli et al. 1987). Orthorhombic,F2t2t2b a 9.550(10),b 9.665(10), Structure and degree of order of framework cations c 6.523(5)A @Ohletmine, Westergotland,Sweden) have not beendetermined. (Galli 1976). RECOMMENDED NOMENCLATTJRE FOR 4OLITE Also tetragonal,P42rm,a9.584(5),c 6.524(3)A (On Kilpatrick, near Glasgow, Scotland) @Iazzi et al. 1984). From optical evidence,Akizuki (1986)suggestedthat a triclinic true symmetryalso is possible. The structureis similar to that of natrolite, but with a distinctive slessJinking of the chains (Taylor & Jackson 7933, Mazzi et al. 1984). Examples of orthorhombic edingtonite have nearly perfect (Si,Al) order.The tetragonalform is disordered,and available analytical results show that slightly more Ba hasbeen replacedby other ions. Eptutilbite (CaNaJlAlzStAOd.4H2O Z=4 EPI Rose (1826). Tlpe localities: "Iceland" and "Fartie Islands". Named from Greek epi in the senseof near, and stilbite, from its supposedsimilarity to the latter. Na/(Na + Ca) variesfrom about0.1 to 0.3, with minor K and Ba (e.S- CaIi & Rinaldi 1974).Tsiin the range 0.724.77. Monoclinic, C2, a 9.LOL(2),b 17.74L(L),c 10.226(l) A, B 124.66(2)o(Teigarhorn, Iceland: Nberti et al. 1985),or triclinie, CI, a 9.053(L),b L7.738(3),c L0.209(I)4., o 89.95(1)',I 124.58(1)',y 90.00(1)' (Gibelsbach, Valais, Switzerland:Yang & Armbruster 1996). The structural framework belongs to tle mordenite group (Gottardi & Gatli 1985).Earlier work suggested space-groupsymmetryC2Jm @elr.ottaL967). Albem et al. (L985) proposed a domain structure involving acentricconfigurationsof tenahedra,and spacegroup C2. Yaq & Armbruster (1996) indicated that the proposeddomainscan be modeledby (010) disorder caused by a local mirror plane, and tlat increased partial order of Si,Al leadsto fisliniq symmetry. MINERAI,S 1581 epitactic growths (Passagliaet al. L998). The three mineralshave4-, 6- and 8-memberedrings.They differ in the stackingof singleand doubleGmemberedrings, resultingin different c dimensionsanddifferently sized andshapedcages.Si,Al disordered.Erionite-Na New name;Na is the most abundantexfta-framework cation. Proposedtype-example:Cady Mountains, Californi4 Tslin therange0.744.79. aL.1965). U.S.A.(Sheppwdet For tho rypJspecimen,a B.rI4Q), c tS.OaS(+)A, composition(Na5.5eK2.ssCax.11Mgq.1sFe6.0, [AL.57Si2s.2? (Sheppard& Gude L969b). 0721.24.6OH2O Erionite-K New name: K is the most abundantextra-framework cation. Proposedtype-example:Rome, Oregon, U.S.A. in which K makesup 58Voof extra-framework cations; significant Na, Ca, and Mg also are present (Eberly 1964).Tsiin the rangeO.74F4.79. For a specimenaomOrtenberg,Germany,a I3.227(L), c 15.075(3) A, (K3.32Nas1Ca".*Mgs.o6Bao.oJ[A]ms Si2r.6,O721.31.99H2O @assagliaet al. 1998). Erionite-Ca New name;Ca is the most abundantextra-framework cation. Proposed type-example: Maz{ Niigata Prefecture, Japan(Haradaet al. 1967).Ts in the range0.68-0.79. c fS.OSt(Z)A; For thi rype exnmpleta ].3-.433{1), 1.35H2O (Ca2.2sK1.5aNa6.e5Mge.s6)[Als.sSi26.eeO72].3 (Haxaala et al. L967). Faujasite (series) (Na Caos,M&.5,K),[Al,Si12-"O ul. L6HzO FAU 2=16 Kr(NaCaoj)s [AlroSi26O72].3 0H2O Damour (1842). Tlpe locality: Sasbach,Kaiserstuhl, Z=7 Germany. Named after Barth6l6my Faujas de Saint Eakle (1898).Tlpe locality: Durkee,Oregon,U.S.A., Fond. noted for his work on extinct volcanoes. in rhyolitic, welded ash-flow tuff. Name from Greek Major amountsof Na, Ca andMg arecommonlypresent root meaningwool, in refergnceto its alpearance. and in somecases,K; minor Sr is also reported.The Substantialamountsof any or all of Ca,Na andK and ratio Si : Al alsovaries;Tslin the range0.68-{.74, with subordinateMg may be present,and thereis evidence onerecordof 0.64.In most samplesanalyzed,.rin the that fraceFe may entertetrahedralandextra-framework abovegeneralizedformula is in the range3.2-3.8, with sites.Eakle's (1898)analysisof type erioniteshowsNa one record of 4.4 (Rinaldi et al. 1975a,Wise 1982, asthe mostabundantextra-frameworkcation;Passaglia Ibrahim& Hdl 1995). et al. (L998) found Ca to be the most abundantin a Cnbic, Fd3m, a 24.65 A (material from Sasbach: type-locality specimen.Ts1in the range-0.68-{.79. BergerhoffetaL1958). Hexagonal,PQlmmc,a I3.I5, c L5.02A (Kawahara& The framework structureis very open, with complete Cwien 1969). sodalite-typecagesandwith very large cavitieshaving The sfructureis relatedto thoseof offretite, with which L2-memberedring openings.Up to 260 moleculesof it may form intergrowths with stacking faults I{2O canbe accommodatedper unit cell @ergerhoffer (Schlenkerer al. 1977b),andlevyne, on which it forrns al. L958,Baur 19@). Erionite (series) r582 b 1,4.145(2),c 7.499(I) A for specimenfrom Monastir, Sardinia, of composition (Mgr.orKt.rsl.{ao.reCaos, (Alberti & New name;Na is t}le most abundantextra-framework Srs.1aBao.0r[Al6.6eSi2e.eaO72].17.86H2O cation, as it is in the original (incomplete) and most Sabelli 1981. subsequentanalysesof samplesfrom the type locality, X'errierite-K Sasbach,Kaisersfubl,and someother localities. Ts1in the range0.70_0..74, with onereportof O.64.Reportedvaluesof a rangefrom 24.638(3)A (Wise New name; K is the most abundant single extraframework cation. 1982)to A.728(2) A (Ibrahim& Hall 1995). Proposedtype-example:Santa Monica Mountainso California,U.S.A., composition(l(r*Na1.1alvlgo Faujasite-Ca .roCao.ro) (Wise& Tschernich1976,#3). [Al5.00Si3mrO72].aH2O New name;Ca is the most abundantextra-framework T.t in the range0.81-0.87. cation.ReportedTsiin the range0.6H.73. Proposed Orthorhombic,a 18973Q),b L4.L40(6),c 7.478(4)L type-example: drill core from Haselborn near for type specimen. Ilbeshausen, Vogelsberg, Hessen,Germany(Wise1982), Ferrierite-Na composition (Car.azNfu5oVIBogIG.onXAL.83Si8.reo24l 'nHzO,Z=L6. Reportedvaluesof a:24.714(4)and24.733(3)A (Jabal New name; Na is the most abundantsingle extraHanoun,Jordan:Ibrahim & Hall 1995). framework cation. Proposedtype-example:Altoon4 Washington,U.S.A., q.d [Al5S13 jsCa6.s5Srs.6B composition(1.{a:.oe&.s'Mge Faqiasite-Mg r O72l.18HrO(Wise& Tschernich1976,#L). New name;Mg is the most abundantextra-framework T31in the range0.85-0.88. c 7.470(5) b 14.182(6), Monoclinic,Y2rln,a 18.886(9), cation. Proposedtype (and only) example:'oOld(museum) A, B 90.0(1)' (Gramlich-Meier et al. 1985, for a sample"(# 32, GenfhCollection,PennsylvaniaState specimenfrom Altoona, Washington). University) from Sasbach,Kaiserstuhl,Germany(anal. Garronitr #15, Rinaldiet al. 1975a),composition (Mgrs:Caa.Naz.0K6.4XAl56Si Q 3sal.nH2O, Z = L. 13? NaCa2.5 [A16SinO.e].| 4 H2O GIS Z= | f,'errierite (series) Walker (1962). Tlpe locality: slopes of Glenariff (K,Na,Mgs5,Caos)6[A16Si30Ozr].8HzO Valley, CountyAntrim, Northern keland. Namedafter Z=]. F E R the GarronPlateau,wherethe type locality is sited. Graham(1918).Tlpe locality: KamloopsLake, British Cal(Na + K) is variable, but Ca predominates.Tlpehasaboutl.3Naapfu, someothershave Columbia Canada.Namedafter Dr. Walter F. Ferrier, localitygarronite mineralogist,mining engineer,andone-timememberof (Na + K) < O.2 apfu. H2O in the range 13.0-14.0 the GeologicalSurveyofCanada who first collectedit. moleculesper formula unit. \1 in the range0.60-0.65. Substantialarnountsof any or all of Mg, K Nq andCa, The crystal_structurehas been refined in" tetragonal may be presenl and smalleramountsof Fe, Ba, and Sr. symmety, i4m2, a 9.9266(2),c I 0.303I (3) A, by Artioli (1992),andNa-freesyntheticgarronitehasbeenrefined Ts1in the range0.8H.88. A, by Schriipfer& Joswig Statistical symmetry, ortlorhombic, Imrnm:, true nI4/a, a9.873(1),c 10.288(1) symmetriesorthorhombicoPnnm, a 19.23,b L4.t5, (1997). Orthorhombicsymmetryhasbeenproposedon c 7.5OA (Alberti & Sabelli 19^87),and monoclinic, the basis of X-ray diftaction witi twinned crystals Y2/n, a 18.89,b L4.78,c 7.47 A, B 90.0' (Gramlich- (Nawaz1983)andcrystalmorphology(Howard 1994). The framework topology is the same as for Meier et al. L985). The structurewas first determinedby Vaughan(1966). gismondine,but Si andAl are essentially disordered. FrameworkSi,Al partially ordered(Alberti & Sabelli The different space-groupsymmetry (tutioli L992)is L987). associatedwith disorderandthe presenceof significant Na. Gottardi&Alberti (1974)proposedpartial ordering f,'errierite-Mg subsequentto growth to explain fwin domains. f,'aujasite-Na Gaultite New namefor the original memberof the series;Mg is the most abundantsingle extra-frameworkcation. VSV Z=8 Substantial extra-framework Na, K, and lesser Ca Naa[Zn2Si7O1d.5H2O Ercit & Van Velthuizen(L994).Iype locality: Mont commonly present.T51in the range0.80-0.84. True symme6y orthorhombic,Pnnmoa 19.23L(2), Saint-Hilaire,Quebec,Canada.Namedafter RobertA. RECOMMENDEDNOMENCLATUREFORreOLITE MINERALS Gault (b. 1943),mineralogistat the CanadianMuseum of Nature, OttawaoOntario, Canada. No other elements detected in the one reported example;Tsi= 0.78. Orthorhombico Fkld, a L0.2IL(3), b 39.88(2), c 10.304(4)A. The zincosilicate framework of tetrahedra is characterizedby stackedsheetsof edge-sharing4- and 8-memberedrings. The sheetsare cross-linkedby tetrahedra. Gaultite is isostructural with synthetic zeoliteVPI-7 andsimilar in structureto lovdariteGrcit & Van Velthuizen 1994). 1583 Gmelinite-Na New namefor the most coulmon speciesof the series. I1occursin at leastone of the g@elinitetype-localities (MontecchioMaggrore).The Ca contentis commonly substantial,K is minor, and Sr is significant in a few samplesanalyzed.Ts1in the range0.65-0.71. c 10.048(5)A Hexagonal,P6y'mmc,a 1.3.756(5), (Gallt et aL L982), for near-end-membermaterial from Queensland, Australiao of composition (Nar.utCao.*&r6)[AL.41Si16.4eO4s].21.5 1H2O@assaglia et al. t978a). Gmelinite-Ca Gismondine Ca[AlzSizOs].4.5HrO Z=4 GIS (in Leonhard footnote, 1817), renaming von oozeagonitd' of Gismondi(1817).Tlpe locality: Capodi Boveonear Rome, Italy. Named after Cado Giuseppe Gismondi (1762-l8U), lecturer in Mineralogy in Rome. (K + Na) doesnot exceed0.12 apfu with K lesstlan 0.08 apfu; analysesshowing high K result from intergrownphillipsite. Minor Sr may be present;Ts in therange0.514.54 ('lezzalni & Oberti 1984).HzOis slightly variable (4.M.5 moleculesper formula unit) becauseof mixed 6- and 7-coordinationof Ca (Artioli et al.1986b). \{easeliniso originaily refined tn P2/a by Fischer& Schramm(1970); cell convertedto standardP21lc settingis a 10.023(3),b 10.61.6(5), c 9.843(15) s_econd A, B 92.42(25)".Also refined (t'wosamples)by Rinaldi &yezzalini (1985). The frameworktopology is basedon crankshaftchains of 4-membered rings as in feldspars, connected in ULIDD configuration. Si,Al are strictly ordered. Gmelinite (series) (Naz,Ca,K)a[ALSi16oa3].22H2o 2=L GMF. (1825a). Brewster rlperocariry, th"ou*"*i proposedfor minerals occuning both at Little Deer Park,Glena:m,CountyAntrim, Northernkeland, and at Montecchio Maggrore,Yrcenz4-ltaly. Named after Christian Gottlob Gmelin, Professorof Chemistry, UniversityofT0bingen. Na-dominantmembersarethe mostcommon.\1 in the range0.65-{.72. Hexagonal,PQlmmc, a 13.62-t3.88, c 9.97-1O.25A. The stucture is similar to that of chabazite,with which it is commonlyintergrown(Sfrunz1956),but gmelinite has a different stacking of the double 6-membered rings @scher 1966).Si,Al are disordered. New namefor a speciesthat also occursin at leastone of the type localities (MontecchioMaggiore).Ca is the most abundantsingle exta-framework cation. Significantto substantialSr andNa, minor K. \1in the range 0.68-{.70. Hexagonal,PQlrnmc,a 13.800(5),c 9.964(5)A (Galli et al. 1982),from MontecchioMaggiore,of compositron 3.23H2O (Ca2.s6Sr1.35Na0.78K0.r 16.21Oas]'2 1)[Al?.s2Si @assagliaet al. 1978a). Gmelinite-K New name; K is the most abundant single extraframework cation. Proposed type-example: Fara Vicentina"Vic enz4 Italy, composition(K2.72Ca1.67Sre3e (YezzalTmet Nao.uzMgo.rJ[Alr.7eSi16.32Oa3].23.52H20 al. 1.990\.Also known from the Kola Peninsula (Malinovskii1984). Hexagonal,P6zlmmc,a L3.62I(3),c L0.254(l)A. Gobbinsite GIS Z=l Na5[Al5Si11Orzf.L2LlzO (1982). basalt cliffs Nawaz & Malone $pe locality: near Hills Port, soutl of the Gobbins area, County Antrim, Nortlem Ireland. Namedafter the locality. Na: Ca: Mg: Kvariable,withNagreatlypredominant Ca < 0'6 apfu'-.Reportsof high K are ascribedto ffi%?fjffi;'jilffih&X?,#fl?*;ffirff pmn2y a 10.108(1), b 9.766(L), Orthorhombic, c 1,0.I7L(I) A for the anhydrous composition (Nar.roKr.r,Ca".5e)[Al6.17sie.$o32] from Tlvo-Mouth Cav",-Countyemirn,Northemlreland(McCuskereraL b 9.8016(5),c 10.1682(6)A for 1985);a 1O:1027(S), (Na.43Cao.6)[Al5.6Siro.nOr2].12HrO from Magheramorne quarry,Larne, Northern heland (Artioli & Foy 1994). The frameworktopology is the sameasfor gismondine chainsof 4-memberedrings, andis basedon cra:rksha:ft as in feldspars.Distortion from tetragonaltopological symmetry results from the arrangementof cations in the channels.Si,Al in the fra.rneworkare disordered. 1584 TTIE CANADIAN Gonnardite (NaCa)o+[(Al,Si)2oO4o]. 12H2O Z=I NAT Lacroix (1896). Tlpe locality: Chaux de Bergonne, Gignat Puy-de-D6me,France.Namedafter Ferdinand Gonnard. who had earlier described the material as oomesole" (= thomsonite). Forms an extensive substitution seriesocommonly (after approximatingNa3-3,Ca2,[A\*"Si12-Oa6].12H2O Rossel aL 1992),with minor Feh, Mg, Bq Sr, andK. Ts;in the range0.52-{.59 (or O.524.62 if tetranatrolite = gonnardite). Tefragonal,IZd, a L3.2L(l), c 6.622(4)A for material from Tvedalen,Langesund,Norway, of composition (Nat.az&.orCar jo)[A1e.22Sir0.73O aa].L2.37H2O@Iazziet al. 1986). The structure is similar to that of natrolite. but with Si,Al disordered, and usually with significant to substantial Ca (Mazzi et al. L986, Artioli & Torres Salvador1991,Albertiet al. L995). Goosecreekite Ca[Al2Si6O16].5H2OZ=2 GOO Dunn et al. (1980).Tlpe locality: GooseCreekquarry, lnudoun County,Virginia"U.S.A.Nanedafterthelocality. Resultsofthe singleanalysisavailableconformclosely to the formula given, with no other elementsdetected. Tsi= 0.75. Monoclinic,P2r,a7 .4AL(3),b L7.439(6),c 7.293Q)A, B L05.M(4)" @ouse& Peacor1986). The framework consists of 4-, 6-, and 8-membered rings that link to form layersparallel to (010), with somesimilarities to the brewsteritestructure.Si,Al are nearly perfectly ordered@ouse& Peacor1986). MINERALOGIST Harmotome L2H2O @an5,Caa5,K,Na)5[A15Si11O32]. PHI Z=T Haiy (1801,p. 191-195),renamingandreasbergolite, of Delam6therie(1795,p.393). alsoknownasandr6olite, Tlpe locality: Andreasberg,Harz, Germany.Named from Greekwordsfor a'Joint'' and"to cut'', in allusion to a tendencyto split alongjunctions (twin planes). Ba is tle most abundant extra-framework cation. Harmotome forms a continuous series with phillipsite-Ca. The name hannotorne predates phillipsite; on grounds of history and usage, both areretainedin spite of Rule I of the presentreport. Tsi in the range0.68-{.71 (e.g.,Cern! et al. 1977). Monoclinicorefined in P21lm,but on piezoelectric and optical grounds, tle true symmeft'y may be and triclinic, Pl (e.5.,Akizuki noncentrosyrnmetric 1985, Stuckenschmidt-et al. L990), a 9.879(2), for @a1.sCan.* b L4.139(2),c 8.693Q)A, B 124.81(1)o IG.r) [Alr.uoSit peO3). L2H"Ofr om Andreasberg, Harz (Rinaldi et aI. L974). The structureis the sameasfor phillipsite, with little or no Si.Al order. Heulandite (series) (Can5,Sre5,B a6s,Mgo.s.Na K) sl$Siy1O 7,1.*).41J',;9 IIEU Z= I Brooke (L822). Tlpe locality: none; the name was given to the more distinctly monoclinic minerals previously known as stilbite. Named after Henry Heuland,English mineral collector. The cationcontentis higbly variable.Ca-, Na-, K-, and Sr-dominantcompositionsarelcnownoandBa andMg are in somecasessubstantial.Tsi in the range 0.71 to Gottardiifs 0.80. Minerals with the samefrarneworktopology,but with T51> 0.80, Si/Al > 4.O, are distinguishedas Na:IUg:Caj[Al 1eSil1rO2r2].93H2O clinoptilolite. Z=l N E S Monoclinic, with highestpossibletopologicalsymmetry Alberti et al. (L996), Galli et al. (L996).Mt. Adamson, CAm (I2lm). Cm ard C2 alsohavebeensuggested. Victoria Land, Antarctica. Named after Professor The sheet-like strucfure was solved by Merkle & GlaucoGottardi(1928-1988),Universityof ModenA Slaughter(1968).Thereis partial orderof Si,Al. in recognition of his pioneeringwork on the structure and crystal chemistryof natural zeolites. Heulandite-Ca Known from the type locality only, with composition approximatingthe abovesimplified formula; minsl [1, New namefor the most corlmon speciesof the series, andvery high Si. Ts = 0.86. Orthorhombic, topological symmefr'y Fmmmo real and that deducedfrom results of most older analyses. symmetryCmca,a 13.698Q),b 25.213Q), c 22.660(2) Ca is the most abundantsingleextra-frameworkcation. T51in the range0.71-0.80. A (Alberti et al.1996). The framework topology is the same as for the Monoclinic, C2lrn, Crn, or C2, a L7.7I8(7), synthetic zeolite NU-87, which, however, has b 17.897(5),c 7.428(2)A, B 116.42(2)"from Fariie monoclinic symmetry, P21lc. Some Si,Al order Islands,composition(Ca357Sre.e5Ba6.66Mg.61Na1slft .a3) (Ts = 0.74) (Nbertr 1972). is probable. lAle3?Si26.70O721.26.02H2O RFCOMMEI.IDED NOMENCLATURE FOR ZEOLITE MINERALS 1585 Heulandite-Sr Known from two localities in the Khibina massif.both with compositionscloseto the aboveformula @ekov& New name; Sr is the most abundant single extra- Chukanov1996).Tstvaluesare0.59,0.61. ^ framework cation. Tetagonal,P42p, a 9.851(5),c 13.060(5)A. One known example: QamFegli, Eastern Ligurian Frameworkof Si,Al tetrahedra with channelsalong c ophiolites, Italy, of composition (Sr2.1eCa1.76Ban.1a containing B(OH)4 tetrahedraand K, Cl (Malin6vslii Mgs.62Nae.ffi.22)[A1e.resi26.e4O.,2f.nH2O, Tsr = 0.75 & Belov 1980).Consideredby Smitl (1988)to be an (Lucchetti et al.L982). anhydrousanalogueofthe edingtonite strucfure-fype MorlocLtric,-CUn4 Cm,or C2' a L7.655(5),b17.877(5), EDI. c 7.396(5)A" B 116.65". Heulandite-Na Laumontite LAU Caa[AlsSir6Oas].L8HzO Z=L New name; Na is the most abundant single extraAs lomonite, Jameson(1805),who creditstle nameto framework cation. specifi.creference;spelling shangedto Proposedtype-example:Challis,Idaho,U.S.A., U.S. Wernerwithout laumoniteby Haiiy (1809),and to laumontiteby von National Museum#9451213@oss& Shannon1924, konhard (1821).Namedafter Gillet de Laumont who Boles L972,#6'). collectedmaterialdescribedas "z€ohtheefflorescente" Monoclinic,C2)m,Cmoot C2,a 17.670(4),b17.982(4), by Haiiy (1801, p. 4I0-4L2), from lead mines of c 7.4O4(2)A, B 116.40(2)o@oles 7972) for the Brittany. The later spellingswere appliedto type example,of composition(Na3.esCar,rl(n:s)[AL.* Huelgoet, this material, and the Huelgodt mines are effectively = 5!46O71.27.74HO, T't 0.78. the type locality. Always Ca-dominant,witl minor (K,Na). "Primary Heulandite-K leonhardite" of Fersman(1908) is laumontite with approximately1.5 Ca replacedby 3(K,Na) apfu and New name; K is the most abundant single extra- reducedH2O.Tsi in the range0.M.7O. framework cation. Monoclinic, C2lm (although reported to !e Proposedtype-example:Albero Bassi, Vicenza, Italy pyroelectric),a 14.845(9),b 13.167(2), c 7.5414(8)A, @assaglia1969a), composition(K2.asNaoj6Ca1.ooMgo.* B 1L0.34(2)"(Nasik,India:Artioli & Stnil 1993). Sre5paj.p)[Ale.6Fq56Si"o.cO Ts1= 0.73. Exceptwhereunusuallyrich in (KJ.{a),reversiblyloses 7,].25.84H2O, Monoclilis, C2/rn, Cm" or A, a L7.498,b 17.816, ca. 4H2Oat low humidity at room temperatureand c7.529A, B 116.07'. pressureto form fhe variety termed"leonhardite"(e.9., A closeapproachto end-memberKe[AleSi27O72].zH2OFersman1908,Armbruster & Kohler 1992); structure hasbeenreportedby N/rnbere (1990). refined by Bartl (1970) and others.Si,Al in the framework is highly ordered. Hsianghualite Leucite Li2Ca3[BgSiO,2]F2 Z=8 ANA Htang et al. (1958).Tlpe locality unclear,in metanor- KlAlsi2o6] ANA z=16 phosedDevonian Limestone,Hunan ProvinceoChina. Blumenbachs (I79I), who attributed tle name to The nameis from a Chineseword for fragrant flower. Werner,who had previously describedthe mineral as Known from the original locality only. MnorAl, Fe, 'lrhite garnet". Tlpe locality: Vesuvius,Italy. Named Mg, Na, and L.28Voloss on ignition reported@eus from Greek,msnningwhite, in referenceto color. 1960).\t = 0.48. and Minor substitutionof Na for K at low temperatures, Ctbic,I2r3, a 12.864(2)4,. Si in excessof that in the ideal formula, are commonly Has an analcime-typestructure,with tetrahedralsites reportd alsosignificantFe9'.Ts1i1 therange0.66-O.69. occupied alternately by Si and Be. Extra-framework Tefragonal,I41la,a L3.09,c 13.75A, @laz.zlet aI. 1976). Ca, Li, and F ions @astsvetaevaet al. L99L). At ordinary temperatures,leucile is invariably finely twinnsd as a result of a displaciveinversionfrom a Katborsite cubic polymorph with the structureof analcime,space grotp la3d, apparently stable above 630'C (Wyart K6[ALSi6Om]B(OI{)4CI 1938,Peacor1968).Heaney& Veblen(1990) noted Z=2 ?EDI that high leucite inverts to lower symmetry at KhomyakoveraL (1980),Malinovskii& Belov (1980). temperaturesbetween600" and 750oCdependingon Tlpe locality: rischorritepegmatite,Mt. Rasvumchorr, the sample,and that there is a tetragonal, metrically Khibina alkaline massif, Kola Peninsula,Russia.The cubic form intermediatebetweenhigh (cubic) and low (tetragonal)forms. namealludesto the composition. 1586 TIIE CANADIAN Levyne (series) (Caos,Na"K)6tAl6Sir2O36l.17H2O LEV Z=3 Brewster (1825b). Tlpe locality: Dalsnypen,Fariie Islands. Named after Armand I-Evy (1794-1.84I), mathematician and crystallographer, Universit6 de Paris. Extra-framework cations range from strongly Ca-dominant to strongly Na-dominant, witlh minor K and, in some cases,mi1e1 Sr or Ba; Si:Al is also variable (Galli et al. L98I). T5i in tle range 0.624.70. Hexagonal,Rbn, a 13.32-13.43,c 22.66-23.01A. The stacking 61 single and double 6-memberedrings differs from that in the relatedshucturesof erioniteand offretite (Merlino et aI. L975). Levyne-Ca New na:nefor the original memberof the series;Ca is the most abundant extra-framework cation. Type locality: Dalsnypen,FarbeIslands.Material closely has approachingend-memberCar[A16SirrO36].L7H2O beenreportedby England& Ostwald(1979)from near Meriwa, New SouthWales,Australia. \1 in the range o.624.7A. Hexagonal,frmo a 13.338(4),c 23.014(9)A for composition (Caz.rsl.{ao.65lq.2o) 16.66H2O [Al6jlsir.6eO36]. from near the Nurri to Orroli road, Nuora, Sardinia @assagliaet aL.7974,Merlino et aI. 1975). MINERALOGIST The structure consists of a tiree-dimensional framework of Si (with minor Al) and Be tetrahedra. It contains three-membered rings, made possible by the presenceof Be instead of Si in one of the teftahedra. Maricopaite (PbCa)[AluSir6(O,O]I)1e6l.n(II2O,QH), n - 32 Structureclosely Z=1 related to MoR Peasoret al. (1988).Tlpe locality: Moon Anchor mine, near Tonopah,Maricopa County, Aizona, U.S.A. Namedafter the locality. Only one known occurrence.Tsr= 0.76. Orthorhombic, Cm2m (psetdo-Cmcm), a 19.434(2), b 19.702(2),c 7.538(1)A @ouse&Peacot 1994). Has an intemrpted, mordenite-like framework. Pb atoms form Pb4(O,OH)4clusters with Pb4tetrahedra within channels(Rouse&Peacor 1994). lV,Iazrite 0H2O J [Al10Si26O72].3 @Igz.sKrCar MAZ Z=L Galltret al. (L974).Tlpe locality: in olivine basaltnear top of Mont Semiol, south slope, near Montbrison, Loire, France.Namedafter FiorenzoMazzi, hofessor of Mineralogy at the University of Pavia"Itaty. A new chemicalanalysisfromthe fype andonly known locality (G. Vezzalini, pers.commnn., L996)gives the Levyne-Na aboveforrnula(cf Rinaldi et al. 1975b).Tsi=0:72. New name;Na is the most abundanlexfra-framework Hexagonal,P6y'nmc,a 18.392(8), c 7.646(2)A. The framework is characterizedby stackedgmelinitecation. Proposed type-example: Chojabaru, Nagasaki type cages(Galli 1975),witl evidencefor limited Si,Al Prefecture,Japan(Mizota et al. 1974).T5iin the range order(Alberti &Yezzalim 1981b). 0.65-{.68. c22.684(DA.for Hexagonal, frm,a 13.330(5), Merlinoite (Nar.ealqjeCao.rglvlgo.oJ[Al6$Si11.?ro36] (lllizota et aI. 1974). &CadAlgSixOsl.22HzO MER Z=l Lovdarite Passagliaet al. (1977).Tlpelocality: Cupaelloquarry in kalsilite melilitite, near SantaRufina, Rieti, Italy. IlNap[BqSi4O?r]. 18HrO L O V Named after Stefano Merlino, Professor of Z=l Men'shikov et al. (1973). Ilpe locality: alkaline Crystallographyat the University of Pisa. pegmatites on Mt. Karnasurt, Lovozero nlkaline The two available reliable analyses@assagliaer massif,Kola Peninsul4 Russia.Namemeans'oagifl of al. L977, Della Ventura et aL L993) show strongly K-dominant compositions,with significant Ca, and Lovozero". In the type and only known occurrence,approximafely lessNa andBa; T51in the range0.66-{.71. 1 Al atom substitutesfor Si in the above structure- OrthorhombicoImrnrn, a L4.lL6(7), b L4.229(6), et aI.1977). derived formula, with introduction of additional c9.946(6)A @assaglia The framework is built of double 8-memberedrings exfra-frarneworkNaand Ca. Ts1= Q.JJ. Orthorhombic,Pmaz,but containsb-centereddomains linked with 4-memberedrings (Galli et al. L979).T\e in which a is doubled;a 39.576(I), b 6.93O8(2),c structure is related to, but different from, that of philliFsite. 7.L526(3)A (Merlino 1990). RECOMMENDED NOMENCLATURE FOR ZOLITE Mesolite Na16Ca16 [Ala3Si720 7,a].4H2O Z=l NAT Gehlen& Fuchs(1813),asmesolitl, for somevarieties of "mesotype"(mostly natrolite)of Haiiy (1801).No type localify was given. Fuchs (1816) clarified tle distinctions amongnatrolite, scolecite, and mesolite, and gave analytical data for mesolite from tle Farije Islands, Iceland and Tlrol. The name recognizesits compositionalposition betweennatrolite aud scolecite. (Na + K/(Mg + Ca + Sr + Ba) variesfrom 0.45 to0.52, with K Mg, Sr, Ba very minor (Alberti et al. L982b). Ts1in the rangeO.59-0.62. Orthorhombic, Fdd2, a I8.4M9(8), b 56.655(6), c 6.5M3(4) A, for material from Poona,India (Artioli et al. L986a). OrderedSi,Al in the framework with onenatrolite-like layer alternatingwith two scolecite-likelayersparallel to (010) (Artioli et aI. t986uRoss et al.1992). Montesommaite Ke[AleSirOa].10HzOZ=L MON Rouse e/ al. (I99O). Tlpe locality: Pollena, Monte Somma,Vesuvius,Italy. Namedafter the localify. Minor Na was detectedin the onepublishedanalytical data-set.Tsi= 0.70. Orthorhombic,Fdd2, a = b L0.O99(L), c 17.307Q) A, (pseudoteftagonal,14rlamO. The framework can be constructedby linkiag (100) sheetsof five- and eight-memberedrings; it has similarities to thoseof merlinoite andthe gismondinegroup (Rouseet aI. 1990). Mordenite MINERAI.S Mutinaite Na3Caa[Al1 lSirrO,e].60HrO MFI Z=l Gal1iet aI. (1997b),Yezza1imet al. (L997b).a}pe locality: Mt. Adamson, Northern Victoria Land, Antarctica. The nameis for Mutina the ancientLatin namefor Modena Italy. Electron-microprobe analysesof mutinaite from the type and only known locality show limited departure from tle simplified formula, with minor Mg (-0.21 apfu) and K (-0.11, apfu). Very high Si, Tsi= 0.88. Orthorhomblc, Pnma, a 20.223(7), b 20.052(8), c 13.491(5)A. Mutinaite conformsclosely in stucture with synthetic zeolite ZSM-5. Natrolite NAT Z=8 Na2[Al2Si3O16).2HzO Klaproth (1803).Tlpe locality: Hohentwiel,Hegau, Baden-Wiirttemberg,Germany.Name from natro- for sodium-bearing. (Na + K/(Mg + Ca + Sr + Ba) variesfrom 0.97to 1.00, with K, Mg, Sr, and Ba very mineL T3l in the range 0.59-0.62 (Alberti et al. l982b,Rosset al.1992). Orthorhombic,Fdd2, a 78.272,b 18.613,c 6.593 A (Si"{l highly ordered Dutoitspan,SouthAfrica: Artioli c 6.5970)A. uis.sgs@), it at. 9\qj a r8.3r9(4), (-70Vo Si,N order,Zeilberg, Germany:Hesse1983). Si,Al partly to highly ordered (Alberti & Yezzalini et al. 1995). 1981a,Rosset al. 1992,AJ:bem 0ffretite caKMg[AlsSi13o36]'16H2o Z= | OFF (Na2,c4K)a[A18si4oo%].28H'o ffr;H:l s,ffin13rT"9r:Lffi?ji;",?x;.ti Z=| MOR Albert J.J.Offreg professorin the Facuhyof Sciences, How (1864). Tlpe locality: shore of Bay of Fundy, !Yo1-Franc-e,3-5 km eastof Morden, King's County, Nova Scotiu, Ca Mg, and K substantial,commonly in proportions approacling I : 1,: 1; N1as6mmofil/ trace or minor. canada.Namedafter the tocality. isvariable, withNa/(Na + ca) trffiiffi'hli'33,r} rhecarion contenr typicatly in the range0.5H.81. SomeK Ue, ro f1 and Sr also may be present@assaglia1975,Passaglii et al. 1995).In someelrmplesoK is reporredas tle demin4r carion(Thugutt L933,1-net aI. L99L,Lo & Hsieh 1991),potentiallyjustifying therecognitionof a mordeniteserieswithNa- andK-dominantspecies.l'1 in the range0.8G{.86. ,-*;f$:}ffi#ffi# Cal andNa_dominantvariants ;;.ffiil ;;;d,r.treE "nn|*d, td"ntificarionproblems,including io ,h".*g e'o.eg_nlq. o"rrilt*1"**]t* "n;;;;;" 1,'-p-;;2,"a tz.zot(i), c 7.592(2) A for ;;6;;tt.;'(Mg,*Cuo.rl!.rrSrs.61Bao.e1)[Al'xSi,r.r, OrulltO.ASHrOfiifr di; ryF fo-Jifit'-ipurriEfij-ii orthorhombic 18.052-18.16 8, b 20.404- ffitJflh1tJ3fl is retared , cmcm,^a to rhoseof erioniteand 20.5n,c7.511-7.537 A@assaglia1975). Structuredeterminedby Meier (1961). Si,Al disorder in tle framework is extensive,but not complete. levlmeo but differs in the stacking of sheets of six-memberedrings, resultrngin different valuesfor c and differently sized and shapedcages(Gard & Tait 1588 TT{E CANADIAN MINERALOGIST 1972). A high degree of Si,Al order is inferred. Offretite may contain intergrown macro- or crypto-domainsof erionite (e.9., Rinaldi 1976). It forms epitactic intergrowths wittr chabazite, but epitactic associationswith levyne are questionable (Passagliaet al. 1998). Pahasapaite Paulingite-K New name;K is the most abundantextra-framework cation. Averagecompositionfrom five analysesof samples from Rock IslandDam, Washington,U.S.A., the suggestedtype-examplefor paulingite-K: (I(0.*Nao.rrCar.r, (fschernich & Wise Bax.13)[Ale32S\2.21Opa1.44H2O 1982):a35.093(2)A (Gordonet al. 1966). (Ca5.5Li3.6K12Nao.2tr 8II2O rr)Lis[Be24P24Oe6].3 Z='1. RHO Rouseetal. (1987).Tlpe locality: Tip Top mine, Black Hills, SouthDakota, U.S.A. Named after Pahasapa,a Sioux Indian namefor the Black Hills. Known from the type loc^alityonly. T'' = Q. Cubic,I23,a L3.781(4)A. A beryllophosphatezeolite with orderedBeOaandPO4 tetrahedraand a distorted synthetic zeolite RHO-type framework, structurally related to the faujasite series (Rouseet al.1989). New neme:Ca is the most abundantextra-framework cation.Averageresult offour analyses,Ritter, Oregon, U.S.A., the suggestedtype-locality for paulingite-Ca: (Ca3.7eK2.67Nae.s6Bas.1e) [Al r0.?sSi31.2rOs al.34H2O; a 35.088(6)A (Tschernich& Wise 1982). I-angater et al. (1997)found evidenceofreduced HzO content (27 H2O for Z = 16) in barian paulingite-Ca from VinaricM Hora, CzechRepublic. Parth6ite Perlialite Caz[AlaSiaOr:(OIDr].4HrO -PAR Z=4 Sarpet al. (L979).Tipe locality: in ophiolitic rocks, 7 km souttreastof Doganbaba,Burdur province, TaurusMountains, southwesternTirrkey. Namedafter Erwin Partl6, Professorof StructuralCrystallography, University of Geneva"Svritzerland. Minor Na and K. Tr, = 0.52 and 0.495 in the only two known occurrences. Monoclinic, C2/coa 21.553(3), b 8.761(L), c 9.3M(2) A, B 91.55(2)"(typelocality; Engel& Yvon 1984). The framework contains various 4-, 6-, 8-, and l0-memberedrings, andis intemrptedat every second AlOo tetrahedronby hydroxyl groups. Si and Al are ordered. Paulingite (series) -44H2O (K,Caor,Na,BaoJ10[Al10Si32O84].27 Z=L6 PAU Kamb & Oke (1960).Tlpe locality: Rock Island Dam, Columbia River, Wenatchee,Washington,U.S.A. Named after Linus Q. pauling, Nobel Prize winner and Professor of Chemistry, California Institute of Technology. Electron-microprobeanalysesshow K as tle most abundantcation at tbree known localities and Ca at two. Significant Ba and Na also are reported (Ischemich&Wise 1982,kngauer et al. L997).Tsiin the range0.734.77. Cnbic,Iffim, a35.093(2)A (Gordonet al. L966). The framework contains several kinds 6f 1ffgs polyhedralcages(Gordonet al.1966). The structure has been refined by Bieniok et al. (L996) and by Lergauer et al. (L997). Paulingite-Ca Kfl a(CaSr)[Af usi24od. 15H2O Z=j. LTL Men'shikov (1984).Tlpe locality: pegmatitesof Mt. Eveslogchorr and Mt. Yukspor, Khibina alkaline massif, Kola Peninsula, Russia. Named after Lily Alekseevna Perekrest, instructor in mineralogy at Kirov Mining TechnicalSchool. Minor substitution by Sr and Ba, but little other compositionalvariation in the two known occunences. Tn in the range0.65-{.67. Hexagonal, P6lmnrm, a 18.49(3), c ?.51(1) A (Men'shikov1984). Perlialite has the snme framework topology as syntheticzeolite-L (Artioli & Kvick 1990).Structural columns have alternatingcancrinite-fypecagesand double 6-memberedrings. No Si,Al order has been detected. Phillipsite (series) (K,Na"Cao.s,B aoJ,[ALSi ro-O:]. lltIzO Z=L PHI L6vy (1825).Tlpe locality asrecordedby L6vy: Aci Reale,now Acireale,on the slopesof Etna"Sicily, Italy. Contemporary literature (see Di Franco 1942) al.d present-dayexposrressuggestthat the occunencewas probably in basaltic lavas at Aci Castello, nearby. Named after William Phillips (1773-1828), author of geological and mineralogical treatisesand a founder of the GeologicalSociety of London. Either K, Na, Ca, or Ba may be the most abundant extra-framework cation, but tle name harmotomeis retained for tle Ba-dominant member of tle series. Minor Mg and Sr may be present.In the generalized formula above,x rangesfrom about 4 to about 7. T51 RECOMMENDED NOMENCI.ATTJRE FOR ZOLITE varies from approximalely0.56 to 0.77. Monoclirlic,P2, or P2rlm,a9.865(2),b 14.3O0(4), c 8.668(2)A" B 124.20(3)"@hillipsite-Kwith substantial Ca from Casal Brunori, Rome, Italy: Rinaldi er aL 1974). A, pseudo-orthorhombiccell has a = 9.9, b = 14.2,c = 14.2Fa B = gO.O", Z = 2. Tlvo cation sites have been idenffied, one, with two atoms per formula unit fully occupied by K in phillipsite-K and by Ba in harmotome,is surrounded by eight framework atoms of oxygen and four moleculesof HzO; the other is partly occupiedby Ca and Na in distorted octahedralcoordination viith two framework atoms of oxygen and four molecules of HrO (Rinaldi et al. 1.974).FrameworkSi,Al largely disordered. MINERAI.S 1589 end-membercompositions(Teertstra& dernf 1995). Ts1in the range 0.67-0.74. Minor Rb and Li may be present.Sodianpollucite commonly containsmore Si thanthe simplifi ed formula-T\e tame pollucite applies where Cs exceedsNa in atomic proportions. Cubic, Ia3d, a 13.69 A for Cs11.7Na3.1Lis.25IG.. (Beger L969); a in tle range [Al15SirrOe6.2].H2O A for 0.1Lm.I73 Na apfu,Z = 16 3.672(1Y13.674(t) (demf & $imFson1978). Si.Al disordered. Roegiantte iaOrrf.4.5H2O Caz[Be(OH)zAlzS -ROG Z=8 Passaglia(1969b). Tlpe locality: in albitite dike Phillipsite-Na @. Passaglia,pers.commun.,1998)at Alpe Rossoin Val Vigezzo about 1.5 km soutl of Orcesco,Novara New name;Na is the most abundantextra-framework Province, Italy. Named after Aldo G. Roggiani, a cation. teacherof naturalsciences,who first found the mineral. Na forms SLVoof all extra-framework cations in Containsminor Na andK. materialfromAci Castello,Sicily, Italy, suspectedto be Tetragonal,I4lmcm, a 18.33(1),c 9.16(I) A (Galli tle original locality for phillipsite (#6 of Galli & 1980). Loschi Ghittoni 1972).Known rangein T5i:0.&4.77. Contains framework tetrahedrally coordinated Be For pseudocell,a^9.93I-IO.O03, b L4.1,42-L4.286, (Passaglia & Yezzalim 1988) and frameworkc 1.4.159-14.338 A, B 9Oo,Z = 2 (e.5.,Galll & Loschi intemrpting (OII) groups(Giuseppettiet el. I99I). Ghinoni 1972,Sheppard& Fitzpatrick1989). Phillipsite-K Scolecite NAT Z=4or8 Ca[d2Si3O1e].3H2O Gehlen& Fuchs(1813),asskolezit.Clark (1993)gave the type locality as Berufiord, Iceland, but this is not appaxentin the original reference. Fuchs (1816) clarified the distinctionsamongnafrolite, scolecite,and mesolite.He listed occlurencesof scoleciteas Farde Islands, Iceland and Staffa (WesternIsles, Scotland), with andytical data for specimensfrom the Fariie Islands and Staffa. Namedfrom Greek slalex,wotm, Phillipsite-Ca for a tendencyto curl when heated. New name;Ca is the most abundantextra-framework (Na + K)/(Mg + Ca) variesfrom 0 to 0.16, with very cation. Proposedtype-locality: Lower Salt Lake Tirff, little K, Mg, or other elements. Ts1 in tle range Puuloa Road near MoanaluaRoad junction, Oahu, 0.60_0.62(Alberti et al.1982b). Monoclinic,Cc,a 6.516(2),b 18.948(3),c 9.767(l) A, Hawaii (Ljima & Harada1969). B 108.98(1)",Z= 4 @ombay,India:Kvick et al. 1985), Known rangein Ts1:0.57{).74. For the pseudocell,a 9.859-9.960,b L4.224-L4.340, or, by analogy with natrolite, pseudo-orthorhombic , 18.981(5)c 6.527(2)A, B c 14.297-14.362A, B 90", Z = 2 (e.g., GaJJi& Loschi Fd, e.g.,a 18.508(5), 9O.64(L)",Z = 8 (Ber:afiord,Iceland: Joswig et al. Ghittoni t972, Passaghaet al. 1990). 1984). The structure is similar to that of natrolite, with a Pollucite well-orderedSi,Al framework, Ca insteadof Na2,and an extra moleculeof HrO. (Cs,Na)[AlSi2O6f.nH2O, where (Cs + n) - | Z=L6 ANA Stellerite Breithaupt (1s46). Tlpe locality: Elba, Italy. Named oopollux"with coexistingmineral otastolo (a variety of STI pltutit") for twins C-astor and Polluxn of Gieek Ca[A12Si7O13]'7H2O Z = 8 mythology;namemodifiedto pollucite by Dana(1868). Morozewicz (1909).Tlpe locality: ComrnanderIsland Forms a serieswith analcime (Cernf 1974) reaching Bering Sea NamedafterWilhelm Steller (1709-17216), New name; K is the most abundantextra-framework cation.Proposedtype-locality:Capo di Bove, Rome, Itaty (Hintze L897,#2 of Galli & Loschi GhittonllgT2). Known rangein Tn: 0.594.76. For the pseudocell,a9.87L-1.0.007,b L4.124-L4.332, c 14.L98-14.415 A, B 90o,Z = 2 (e.g., GaIh& Loschi Ghittoni 1972,Sheppardet al. l97O). 1590 natural scientist and military doctor who made imFortantobservationson CommanderIsland. Variations in compositioninclude up to about0.2,apfu Na andminor K, Mg, Fe.T51in the range0.75-0.78. Orthorhombic,Fmmm,a in the range13.507-13.605, D in the range18.198-18.2700 c in tle nnge 17.82317.863A @assagliaet aI. 1978b). The frameworkis topologicaly the sameasfor stilbite, but it has higher symmetrlr, correlated witl fewer extra-frameworkcations.Only one independentexhaframework site is occupied, and the symmetry is Fmmm (Galli & Alberti 1975a). Na-exchanged stellerite retains the Fmmm symmetry,unlike tle Na zeolite, barrerite, with which it is isochemical @assaglia& Sacerdoti1982). Villarroel (1983) has suggestedtle occurrenceof Na-dominant Fmmm stellerite from Roberts Island. SouthShetlandgroup. Stilbite (series) (Caos,NaK)q[AleSirO72].28FI2O Z=L STI Haiiy (1801, p. 161-166),for minerals, apparently including heulandite, that had previously been describedwith informal names.He mentionedoccurrences in volcanic terranesoand named lceland, Andreasberg in Harz, Alpes Dauphinoises, and Norway, but there is no clear type-locality. Named from Greek word for mirror. in allusion to its luster ('1rn certain 6clat"). Ca is almost always tle dominant extra-framework cation,accompaniedby subordinateNa and minsl l( and Mg, approximating Caa(Na,K)per formula unit, but Na-rich membersalso are known. Ts1in the range 0.71to 0.78. Monoclinic, C2lm,a L3.64(3),b 18.24(4),c 11.27(2) A, B 128.00(25)"(Galli & Gottardi L966,GalliL97l); an alternative setting is pseudo-orthorhombic,F2lm, Z=2. Increasingdeparturefrom the topologicalsymmetryof the orthorhombicframework,Fm.rnm,tendsto correlafe witl increasing content of monovalent cations et aL LWSb),which causesthe frameworkto @assagha rotate (Galli & Alberti L975a,b). However, {001} growth sectorswitl appreciableNa and orthorhombic Frnmtn symmetry have been observedin crystals in which other isochemicalsectorsaremonoclinicoC2,lm (Akizuki & Konno 1985,Akizuki et al. L993).T\e centrosymmet'icspace-groupdependson statistically completeSi,Al disorder,andthe true space-grouprnay (Galli 1971). be noncenfrosymmetric Stilbite-Ca New namefor commonstilbite in which Ca is the most abundantextra-frameworkcation. For tle pseudo-orthorhombiccell, F2lm, a 13.595- L,8 90.0G b 8.201-r8.29L,c L7.775-77.842 13.657, 90.91"@assagliaet al. 1.978b). Stilbite-Na New name:Na is the most abundantextra-framework cation. Proposedtype-locality: CapoPula"Qagliari, Sardinia, Italy @assagliaet al. I918b, #2L). Known examplescontain significant Ca and K, and minor Mg, aswell ascleady predominantNa.Ts in the range 0.73-0.78 (Passagliaet al. 1978b, Ueno & Hanada1982,Di Renzo& Gabelica1997). Monoclinic, C2lm. U sing the pseudo-ortlorhombic F2lm settimg, a L3.610,b L8.330,c 17.820A, B 90.54" for type material,of composition(Nas.1sK1-Ca3"5JVlgs.e) (Quartieri & Yezzalini [Alr6.62Si55.25Oraa].53.53HrO 198n. In spite of the high Na content, themotocljnic C2lm symmetryof stilbite is retaine4 in contast to stellerite, Fmmm, andbarr.erite,Amma. Tbrranoyaite NaCa[Al:SirOqol.>7WO TER Z=4 GaIh et al. (L997a). Tlpe locality: Mt. Adamson, Northern Victoria Land. Antarctica. Named after tle Italian Antarctic station at TerranovaBay. Tlpe materialcontainsminor amountsof K and Mg. Tsi= 0.85. Orthorhombico Cmcm, a 9.747(7), b 23.880(2), c?-0.068(2)4,. The framework topology is not known in other natural or syntheticzeolites.It containspolyhedralunits found in laumontite,heulandite,andboggsite. Thomsonite CazNa[AlsSisOm].6I{10 THO Z=4 Brooke (1820). Tlpe locality: Old Kilpatrick, near Dumbarton, Scotland. Named after Dr. Thomas Thomson(1773-1852), editor of the journal in which the name was published, and who contributed to the improvementof methodsof chemicalanalysis. Extensivevariationin Na:(Ca+ Sr) andSi : Al approximately according to the formula Naa*,(Ca,Sr)r, wherer variesfrom about0 to [Alzo-"Sizo'Oaol.2AHzO, 2; small amountsof Fe, Mg, Ba, and K also may be present@ossel a/. 1992).Tstin the range0.5H.56. Orthorhombic,Pncn, a l3.lO43(L4),, 13.0569(18), c 13.2463(30)A (SUU et aI. 1.99O} Chainswith a repeatunit of five tetrahedraoccur as in the NAI structuretype, but they are cross-linkedin a different way; Si,Al are highly ordered,but disorder increaseswith increasingSi : Al (Alberti et al. I98l). RECOMMENDBD NOMBNCLATT]RB FOR reOLITE Tbchernichite Ca[AlrSiuO,u].-8ttO Z=8 BEA Smrthet al. (1991),Boggset al. (1993).Tlpe locality: GobleCreek,0.2 km north of Goble,ColumbiaCounty, Oregon, U.S.A. Named after Rudy W. Tschernich, zeolite investigatorof theAmericanPacific Northwest, who discoveredthe mineral. Na, Mg, and K are minor but variable constituentsin specimensfromthe oneknown locality. T' in tle range 0.744.78 (0.73, 0.80 in a tschernichite-likemineral from Mt. Adamson,Antarctica: Galli et al. L995). Tetragonal,possiblespace-group P4lmmm,a 12.880Q), c 25.020(5)A, but may consist of an intergrowth of a tetragonal enantiomorphic pair with space groups P4p2 andP\22 anda triclinic polymorphPl. Seealso GalJiet al. (1995). This is a structuralanalogueof syntheticzeolite beta. r59l MINERAI.S The nameappliesto zeolitesof ANA structuraltype in which Cais the mostabundantextra-frarneworkcation, irrespective of the degree of order or space-group symmery. \{einebeneite Ca[Be@Oa)r(OH)r].4HrO z--4 wEI Walter(1992).Dpe locality: vein of spodumene-bearing pegmatite2 km west of WeinebenePass,Koralpe, Carinthia,Austria- Namedafter the locality. No elementsotherthanthosein the given formula were detectedin the one known occurrence. b 9.707(I), c 9.633(1)A, Monoclinic,Cc,a 11.897(2), B 95.76(1)'. A calcium beryllophosphatezeolite witl 3-, 4-, and 8-memberedrings in the framework (Walter 1992). \ilillhendersonitc Tbchiirtnerite where0 <.r < 1 K"Cq15"a5q[Al3Si3Otr]'5H2O, CHA Z=2 Peacoret al. (198a).Tlpe locality: SanVenanzoqrurry, Terni, Umbria, Italy. Named after Dr. William A. Henderson,of Stamford,Connecticut,U.S.A., who noted this as an unusual mineral and provided it for study. Tlpe willhendersonite conforms closely to End-memberCa1.5[A13Si3Or2] KCa[Al3Si3O1rl.5HuO. .5HO and intermediatecompositionsare now known (Yezzallnret al. t997a).Tsi= 0.50,0.51. Triclinic, Pl, a 9.2O6(2),b 9.2L6(2),c 9.500(4)A, u 92.34(3)', B 92.70(3)", T 90.12(3)' @ftringer Bellerberg,nearMayen, Eifel, Germany:Tillmanns et al.I98$. The frameworkis the sameasfor chabazite,which has Wairakite idealized framework topological symmetry R3m, but with much lower Si and with Si,Al fitlly ordered.This Ca[AlzSiaOrz].2HzO Z=8 ANA reducesthelopochemicalfrarneworksymmetryto rR3, Steiner (1955), Coombs (1955). Wairakei, Taupo and the nature and ordering of the extra-framework VolcanicZone,New Zealand.Namedafter the locality. cationsfurther reducethe framework symmetryto Pl. Most analyzedsampleshave Na/(Na + Ca) less than The low-K variants also havefully orderedSi,Al, but 0.3, but wairakite possibly forms a continuous solid- areless markedly ticlinic ({ezzalni et al. 1996). solution serieswitl analcime(Seki & Oki 1969,Seki Yugawaralite 1971,Cho & Liou 1987).Otherreportedsubstitutions are very minor. Ts1in the range0.65-{.69. YUG 1{ea6slinic (highly ordered),^I2la, a 1,3.692(3), CalAlzSieOrel.4HzO Z=2 b 1.3.643(3),c 13.560(3) A, B 90.5(1)" for Sakurai & Hayashi (1952). Tlpe localify: Yugawara (Cao.roNao.14)[Al1.e2Sia.67O12].2H2O (Tak6uchi et al. Hot Springs, Kanagawa Prefecture, Honshu, Japan. 1979). Namedafter the locality. Tetragonal^or near-tetragonal, I41lacd, a 13.72(4), Reported compositions are close to the ideal c 13.66(4)A for (Cq.eNa6.16)[AlpSq.67O pl.2.lLH2O stoichiometry,withtpta0.2 apfu of Na + K + Sr. Tsiin (Nakajima1983). the range0.7H.76. The fiLmework topology is similar to that of analcime, Monocinic , Pc, a 6.70il(L),b I3.g72Q), c 10.039@A, but Al is preferentially locatedin a pair of tetrahedral I 111.07' (Kvick et al. 1986). sites associated with Ca, and Ca is in one specific fdslinis, Pl, by symmetryreduction ascrib€dto local extra-framework site. Smaller departuresfrom cubic Si,Al order, has beenreported on the basis of optical symmetry are correlated witl decreasedSi,Al order. measurements(Akizuki 1987b). Caa(Kz,CaSr,Ba):Cu:(OtI)a[AltrSitrO4].zH2O, n = 2O (IZA codenot Z= L6 assigned) Krauseet aI. (L997),Effenbergeret al. (1998).Bellberg volcano, near Mayen, Eifel, Germany. Named after JochenTschdrhrer,minglal collector and finder of the mineral. Tsi = 0.50 &r the only known occrurence. Cubic,Fn$-m,a3l.62g) 4,. Cagesin the frameworkincludealarge super-cagewith 96 tetrahedraand 50 faces.A Cu,(Oll)-bearing cluster occupiesanothercage.The framework density is the lowest known for a zeolite with a non-intemrpted framework. 1592 Larsen et al. (1992). Tlpe locality: Vevya quarry, Tvedalen,Vestrold County,Norway. Named after the locality. Spot analysesshow a rangefrom (Ca3.2sNlno:zFeo.os)x for BqSi6O17(OII)a.3H2O, with to (Car.6Mn1.s6Feo.rn)20 ZsourEs oF DoUBTFILSrAf,usAND about0.9 to 0.21A1 andminor Be substitutingfor Si in e PossrsLEZEourE the generalizedformula. Further work is recommendedto clarify the status Orthorhombic(c-centered),a 8.724(6),b 23.L4(.L),c of paranatrolite and tetranatrolite. Essential data for 4.e23@) L. theseminerals and for tvedalite, which is possibly a Consideredto be structurallyrelatedto chiavennite,but beryllosilicate zeolite, are asfollows. in the absenceof an adequatedetermination of its structure, it has not been listed here as an accepted Paranatrolite zeolitespecies. Si,Al arestrictly orderedin samplesfrom Iceland(Kerr & Mlliams 1969,Kvick a al. 1986).The partial order reportedfor the Yugawa&sample(rimer & Slaughter 1969)is doubttul(Gottardi& Galli 1985). Na2[Al2SiO1e].3H2OZ=8 NAT Chao (1980). Tlpe locality, Mont Saint-Hilaire, Quebec,Canada.The namerecognizesits association with and similarity in chemical somposition to natrolite, Na2[Al2SirOro].zHro. Contains additional HrO relative to natrolite, also minor Ca andK. Pseudo-orthorhombic, F***, pro^bablymonoclinic,a Ig.W(l),b 19.13(L), c 6.580(3)A. Givesvery diffuse diffraction-spots,and a powder pattern similar to that of gonnardite(Chao1980). Dehydratesto tefranatrolite and could be regardedas overhydrated natroliteo tetranatrolite or gonnardite. Without firtler justification, separatespeciesstatusis debatableaccordingto Rule 4. Onsorrrg, ANDOIIDR NON-APPROVED DISCREDnED, ZsoLrrENANcs Herschelite, Ieonhardite, svetlozarite, and wellsite are discreditedas nrmes of mineral species (Appendix 2). Kehoeite was regardedby McConnell (1964) as a zinc phosphateanalogueof analcime,but accordingto White & Etd,(1992), type kehoeiteis a heterogeneous mixture of quartz and sphalerite witl other phases including gypsumand woodhouseite,or a very similar phase. No phase present bears any relationship to analcime.It is not acceptedas a valid zeolite species. Vis6ite is shownby Di Renzo& Gabelica(1995) not to be a zeolite, as had commonly been supposed. They regardit as a defectivememberof the crandallite Tetranatrolite group,with compositionCaA|@O4,SiO4)2(OID o.mH2Q. Kim & Kirkpatrick (1996) showedthat a specimen (Na,Ca)6[Al1eSi21Oso]. 16H2O Z=0.5 N A T sxaminedfy them is very disordered,with a structure Chen & Chao (1980). Tlpe localify: Mont Saint- simil2l 16that of crandallite,but containsotherphases Hilaire, Quebec, Canada. The name indicates a including opal. Vis6ite is excluded from the list of tetragonal analogue of natrolite. First described as acceptedzeolites. "tehagonalnafrolite", from flfmaussaq,Greenland,by Obsoleteand discreditednnmesare listed below" KroghAndersenet al. (L969). followed by the correct namesor identifications. The Extensivesolid-solutionapproximatingNa16_,Ca,Al1*" list is basedon one compiled by the late G. Gottardi, Siz+-9a0'16HrO, where.rvariesfrom about0.4 to 4, is using tle following references:Hintze (1897),Dana reportedby Rosset a/. (L992). Small amountsof Fek, (L9L4),Cocco& Garavelli(1958),Davis (1958),Hey Sr, Ba and K may replaceNa and Ca. Ts in the range (1960, 1.962),Merlino (1972), and Strunz (1978). 0.50-{.59. Numerousadditionsand amendmentshavebeenmade Tetragonal,i42d, a L3.L4I, c 6.617 A (Mont Saint- in the light of more recentlypublishedwork andof the Hilaire, Quebec,Canada:I!.:osset al. L992). notesbelow, and of listings in Clark (L993), in which The framework is of disordered natrolite type. much information on the history and usagesof these Tefranafroliteis consideredto be a productof dehydra- namescan be found. tion ofparanatrolite(Chen& Chao 1980,Rosset a/. 1992).It differs from nafrolite in CaAl substitutionfor ahrazite= gismondine,phillipsite NaSi, as well as in space-groupsymmetry. These, acadialite= chabazite however, are also characteristics of gonnardite, to achiardite= dachiardite which its relationshipis debatable. adipite = chabazite2 aedelforsite= laumontite?.stilbite? Tvedalite aedelite(of Kirwan), aedilite = natrolite ameletite= mixtures of sodalite,analcime,phillipsite, (Ca,Mn)aB qSi6Otr(OII)o.3H2O and relict nepheline Z=2 amphigdne= leucite RECOMMENDED NOMENCT.ATURE FOR EOLIIE analcidite= analcime analcite= analcime analzim= analcime andreasbergolite= harmotome andreolite,andr6olithe= harmotome antitidrite = edingtonite apoanalcite= natrolite arduinite = mordenite aricite = gismondine ashtonite= strontianmordenite bagotite= thomsonite barium-heulandite= barianheulandile(unlessBa is the most abundantcation) barytkreuzstein= harrnotome beaumontite= heulandite bergmannite= nabolite blItterzeolith = heulandite,stilbite brevicite = natrolite cabasite= chabazite caporcianile= laumontite carphostilbite= thomsonite chabasie,chabasite= chabazite christianite (of desCloizeaux)= philliFsite cluthalite = analcime comptonite= thomsonite crocalite = natrolite cubicite, cubizit = analcime cubic zeolite = analcime?,chabazite cuboite= analcime cuboizite =chabazite desmine= stilbite diagonite= brewsterite dollanite = analcime doranite = analcime with tlomsonite, natrolite, and Mg-rich clay minerals(Ieertsta & Dyer 1994) echellite = natrolite efflorescingzeolite = laumontite eisennatrolith= nafrolite witl otler mineral inclusions ellagite = a ferriferous natrolite or scolecite? epidesmine= stellerite epinatrolite = nafrolite ercinite = harmotome eudnophite= analcime euthalite,euthallite = analcime euzeolith= heulandite falkenstenite= probabl] plagioclase@aade1996) fargite = natrolite fariielite = tlomsonite fassaite(of Dolomieu) = probably stilbite feugasite= faujasite flokite, flockit = mordenite foliated zeolite = heulandite,stilbite foresite = stilbite + cookeite galactite= natrolite gibsonite= thomsonite ginzburgite (of Voloshin et al.) =roggpzaile gismondite= gismondine glottalite = cbabazite MINERAI,S 1593 granatite= leucite grenatite(of Daubenton)= leucite gpddeckite = gmelinite? hairzeolite (group name) = natrouteo thomsonite, mordenite harmotomite= harmotome harringtonite = tlomsonite, mesolitemixture haydenite= chabaztte, hegauit (hOgauite)= natrolite hercynite (of Zappe)= harmotome herschelite= chabazite-Na hiigauite = natrolite hsiang-hua-shih= hsianghualite hydrocastorite= stilbite, mic4 petalite mixfure hydrolite (of Leman) = gmelinite hydronafrolite= naholite hydronephelite = a. mixture, probably containing natrotte hypodesmine= stilbite hypostilbite = stilbite or laumontite idrocastorite(hydrocastorite)= stilbite, mica, petalite mixture kali-harmotome,kalkh4aele6e = phillipsite kalithomsonite= ashcroftine(not a zeolite) kalkkreuzstein= phillipsite karphostilbite= tlomsonite kehoeite = a mixture including quartz, sphalerite, gyp$um,and ?woodhouseite koodilite = thomsonite krokatith = naholite kubizit = analcime kuboite = analcime laubanite= natrolite laumonite= laumontite ledererite,lederite (of Jackson)= gmelinite lehuntite = naholite leonhardite= HzO-poorlaumontite leuzit = leucile levyine, levynite, levyite = levyne lime-harmotome= phillipsite lime-sodamesotlpe = mesolite linsqlnins, lincolnite = heulandite lintonite = thomsonite lomonite = laumontite marburgite= phillipsite mesole= tlomsonite mesoline= levyne? chahazite? mesolitine = thomsonite mesotype= oatrolito, mesolite,scolecite metachabazite= partially dehydratedchabaztts metadesmine= partiall) dehydratedstilbite metaepistilbite= partially dehydratedepistilbite metaheulandite= partiall| dehydratedheulandite metalaumontite= partially dehydratedlaumontile = dehydrated"leonhardite"Qaumontite) metaleonhardite metaleucite= leucite metamesolite= mesolite metanatrolite= partiall! dehydratednatrolite t594 TIIE CANADIAN metascolecite,metaskolecit, metaskolezit = partially dehydratedscolecite metathomsonils= partially dehydratedthomsonite monophane= epistilbite mooraboolite= natrolite morvenite= harmotome nafrochabazite= gmelinite (of Naumann)= gmelinite naton-chabasit, natronchabazit naftonite (in part) = naholite needle zeolite, needle stone = natrolite, mesolite, scolecite normafin= phillipsite orizita, oryz,rtn= epistilbite ozarkite= thomsonite parastilbite= eprstilbite phacolite,phakolit(e) = chabazi.tp picranalcime= analcime picrothomsonite= tlomsonite pollux = pollucite poonahlite,poonalite = mesolite portite = natrolite (Franzini &Perchrazn L994) potassiumclinoptilolite = clinoptilolite-K pseudolaumontite= pseudomorphsafter laumontite pseudomesolite= mesolite pseudonatrolite= mordenite pseudophiJlipsite= phillipsite ptilolite = mordenite puflerite, pufflerite = stilbite punahlite= mesolite radiolite (of Esmark)= natrolite ranite = gonnardite(Mason 1957) reissite (of Fritsch) = epistilbite retzitp = stilbite?, laumontite? sarcolite(of Vauquelin)= gmelinite sasbachite,saspachite= phillipsite? savite= natroute schabasit= chabazite schneiderite= laumontite(Franzini &Percbiaz.zi15941 schorl blanc = leucite scolesite,scolezit= scolecite scoulerite= thomsonite seebachite= chabazite skolezit = scolecite sloanite= laumontite? snaiderite(schneiderite)= laumontite soda-chabazite= gmelinite sodamesotype= natrolite sodium dachiardite= dachiardite-Na sommaite= leuqite spangite= phillipsite sphaerodesmine, sphaerostilbite= thomsonite spreustein= nafrolite (mostly) staurobaryte= harmotome steeleite,steelit = mordenite stellerycie= stellerite stilbite anamorphique= heulandite stilbite (of many Germanauthors)= heulandite MINERAL@IST strontium-heulandite = strontian heulandite and heulandite-Sr svetlozarite= dachiardite-Ca syanhualite,syankhualite= hsianghualite syhadrite,syhedrite= impure stilbite? tehaedingtonite= edingtonite tonsonite= thomsonite triploclase,triploklase = thomsonite vanadio-laumontite= vanadianlaumontite vemrcite = mesolite Vesuviangarnet= leucite Vesuvian(of Kirwan) = leucite vis6ite = disorderedcrandalliteand other phases weissian= scolecite wellsite = barianphillipsite-Ca andcalcianharmotome white garnet= leucite winchellite = thomsonite Wtirfelzeolith = analcime,chabazile zeagonits- gismondine,phillipsite zeolite mimetica = dachiardite zdolithe efflorescente= laumontite AcKr.IowmDGEN{B,trs Members of the present Subcommittee,which commencedwork in L993, arc grateful to a previous Subcommittee. established in 1979 under ttre Chairmanshipof ProfessorW.S.Wise of the University of California. Santa Barbara, California, for work containedin a draft repofi completedin 1987.Members of the 1979SubcommitteeincludedL. P.van Reeuwijk and the late G. Gottardi and M.H. Hey, as well as D.S.C. and H.M. of tle presentSubcommittee.J.V. Smith,W.M. Meier, R.W.Tschernich,andthe late V.A. Frank-Kamenetskiiwere consultanls.Although recommendationsin tle present report differ significantly from those in the 1987 report, the existence of that report has greatly facilitated our task. Ws thank J.V. Smith andL.B. McCuskerfor advice,C.E.S.Arps and W.D. Birch. successivesecretariesof CNMMN, for muchhelp, andmany othercolleaguesfor conhibutions of time, advice, and specimens.Staff of tle Science Library, University of Otago, and others,helpedtrace obscurereferences. REFERENCES Arrzrn<r, M. (1985): The origin of sector 6vinning in harmotome.Ara Mineral. 70. 822-828. (1986): Al-Si ordering and twinning in edingtonite. Am-Mineral. 7t. l51Ul5L4. (1987a): Crystal symmetry and order-disorder structue of brewsterite.Ara Mineral. 72. @5-&8. (1987b): An explanation of optical variation in yrgawaralite. Mineral, Mag. 51, 615-620. RECOMMENDEDNOMENCI,ATT'REFORreOLITE MINERAI.S & Kottro, H. (1985): Order-disorderstructureand theinternaltextureof stilbite.Ara Mineral.70,8l+821. 1595 Ar.Ern, A. (1972): Polymorphism and crystal-chemistry of heulandites and clinoptilolites, Am. Mineral. 57, 1448-1462. KuDou,Y. & Kurusavesm,T. (1996):Crystal structures ofthe {0ll}, {610},and{010} growthsectors AnvsnusrEn, T. (1993): Dehydration mechanism of clinoptilolite and heulandite: single-crystal X-ray study in brewsterite. Am"Mineral.81.150l-1506. of Na-poor,Ca-, K-, Mg-rich clinoptilolite at lm K.Arr. Mineral.7E.260-2@. & Saros, Y. (1993):Crystal shuctureof the orthorhombic {001} growth sector of sttJblte.EunJ. Mineral.5, 839-843. ALBERT,A. (L972): On the crystal structure of the zeolite heulandite. Tscher'maksMineral. Petrogr. Mitt, lE, 129-146. & Kom*en,T. (1992): Re- and dehydrationof laumontite: a single-crystalX-ray study at 100 K. Neues Jahrb. Mineral.. Monatsh.. 385-397. Aarror,I, G. (1992): The crystal structure of garronite. Arz. Mineral. TT,189-196. The crystalstrucfire of two clinoptilolites. -Onsa): TschermalaMineral. Petrogr Mitt. X2,25-3'7. & Foy, H. (1994): Gobbinsitefrom Magheramorne quarry,Northern lr:eland,MfurcraLMag. 58, 615-620. (1975b): Sodium-richdachiarditefrom Alpe di Siusi, Italy. Contrib. Mineral. Petrol. 49,63-66. Gotr*ot, G., RNALDI,R., Sarow,Y., Honruqu, -, H., Ys, J., Seweoe,H., Tarexe, M. & Tororem, M. (1987): A single crystal dif&action study of the natural zeolite cowlesite, Photon Factory, National Inboratory for High EnergyPhysics,Activity Rep.198i1,316. CnucnNl G. & Deunu,I. (1995):Order-disorder in natrolite-groupminerals.Ear: J. Minzral. T, 501-508. Ger-u, E. & Vnzam.n, G. (1985): Epistilbite: an _, acenhiczeolite wilh domainstructure.Z Kristallngr 1.il3, 257-265. & Kvrc& A. (1SSO):SynchrotronX-ray Rietveld study of perlialite, the natural counlerpart of synthetic zeolite-L. Eun J. Mineral. 2, 749-759. Passecua,E. &ZNtAZz,, P.F. (1982a):Position of cations and water molecules in hydrated chabazite. Natural and Na-, Ca-, Sr- and K-exchangedchabazites.kolites 2, 303-309. _ RnrALDr,R., Kvrcr, A. & Surnr, J.V. (1986b): Neutron dilfraction strucfl[e refinement of t]e zeolite gismondineat 15 K. fuolites 6, 36L-366. Ilalrscng., G. & VszAr.;Nr, G. (1979):Amicite, a new natural zeolite. Neueslahrb. Mineral., Monatsh., 481-488. SMffH,J.V.& KucK, A. (1984):Neuton dilffiaction at 20 K. Acta study of natrolite, NarA12Si3O16.2H"O, CrystaIIogn Cfi , 1658-1662. Poxcnuppr, D. & Vnzzamu, G. (1982b): The crystal chemistry of natrolite, mesolite and scolecite. NeuzsJahrb. Mineral.. Abh. 143. 231-248. J.J. (1986a):X-ray sffucture & PLUTIT, refinementof mesolite.Acta Crystallogn C{2, 937'942. & Sansnt, C. (1987): Statistical and true symmetry of ferrierite: possible absence of straight T-G-T bridEirg bonds.Z Kristallogr 178,249-256. & SrAttU K. (1993): Fully hydratedlaumontite: a stucture studyby flat-plate and capillary powder diffraction tecbniques.Tzolites 13, 249-255, & Vnzzer-nu, G. (1979): The crystal structure of Acta Crystallogr. R35, 2866-2869, amicite, a z,enlate, - M.R. (1991):Characterization SALVADoR, & ToRRF.s of the natural zeolite gonnardite. Sffucture analysis of natural and cation exchangedspecies by the Rietveld method.Materi.al ScienceForum 79-82, M5-850. (1981a): A partially disordered & natrolile: relationshipsbetweencell parametersand Si-Al BARTL,H. (1970): Strukturverfeinerung von Leonhardit, &stribution.Acta Crystallogn837, 781-788. Ca[AlzSiOu].3Hro, mittels Neutronenbeugung.lVeaes (1981b):Crystal energiesand coordiJahrb. Mineral., Monatsh., 298-310. &nation of ions in partially occupied sites: dehydrated maznts.Bull. Mindral lM,5-9. Baun, W.H. (1964): On the cation and water positionsin faujasite.Ane Mineral. 49, 697-7M. Gar,u, E. & Querrmr, S. (1996):The crystal structureof gottardiite, a new natural zeolite. Err: BEcER,R.M. (1969): The crystal structureand chemical J. Mineral.E.69-75. compositionof polluciie. Z. Kristallagn 129, 280'302, & T szzor.r,Y. (198l): Thomsonite:a detailedrefinementwith crosscheckingby crystal energy calculations.Zolites l.9l-97 . G., Beun, W.H. & Nowecrc,W. (1958):Uber BBRGERuoFF, die Kristallstrutrtur desFaujasis. NeucsJahrb. Mbrcral., Monatsh.,193-200. 1596 THB CANADIAN MINERALOGIST Brus, A.A. (1960): Geochemistryof Berylliunr.and the GeneticTlpes of Berylliunt Deposits.Akademii Nauk, SSSR,Ltst. minspl., geokhim.,i kristallochim.redkith elementov,1-329 (i:r Russian).Abstract in Am, Mfu.eral. 46.2M. BIEI\uoK, A., Joswo, W. & Baun, W.H. (1996):A study of paulingites: pore filliag by cations and water molecules. NeuesJahrb. Mineral., Abh. l7l, ll9-134. C:mrf, p. (1974):The presentstatusof the analcime-pollucite seies. Can,Mineral, 12. 33+341, - Rl.teml, R. & SURDAM, R.C. (1977):Wellsite and its status in the phillipsite - harmotome glottp. Neues Jahrb.Mineral.,Abh. PA,3L2-32O. & SnrsoN, F.M. (1978):The Tancopegmatiteat _ Bernic Lake, Manitoba. X. Pollucite. Can, Mineral. 16, 325-333. BIssERr,G. & LTEEAU, F. (1986): The crystal structure of a triclinic bikitaite, LilAlSi2O6l.HrO, with orderedAVSi distribution. NeuesJahrb. MineraL, Monatsh..'241-252 Cs,lo, G.Y. (1980): Paranatrolite,a new zeolite from Mont St-ltilaire, Qu6bec.Can.Minzral. 18,85-88. Blacr<runn, W'.H.& Ds.weu, W.H. (1997): Encyclopediaof MineralsN"mes.Cah Mineral, Spec.PubL l. CmN, T.T. & Cseo, G.Y. (1980): Tetranatrolite from Mont St-Hilaire, Qudbec.Can.Mineral. LE,77-84. BLutvIENBAcHs, J.F. (1791): Auszuge und Kezensioneit Cso, M. & Ltou" J.G. (1987): Prehnite-pumpellyiteto greenschistfaciestansition in the Karmutsenmetabasites, bergmanischer und mineralogischer Schriften. VancouverIsland,B.C. J. Petrol.2.8,417443. Bergxnnnis ches J, 2, 489-500, Boccs, R.C., Howeno, D.G., Surrs, J.V. & Kr,sN, G.L. (1993): Tschernichite, a new zeolite from Goble, Columbia County, Oregon.Am- MineraL TS,822-826. Bolrs, J.R. (1972): Composition,optical properties,cell dimensions, and thermal stability of some heulandite group zeolites.An . Mineral. 57, 1463-1493. Boranor, M. (1979): Composition of type dachiarditefrom Elba: a re-examinaton. Mineral, Mag. 43, 548-549. Ronnnrs,A.C. & Sasnre,A.P. (1981):Sodiumrich dachiarditefrom the Franconquarry,Montreal Islan4 Quebec.Can.Mineral. 19, 285-289. Bornr, M., Grurml, W.L., Marrrolr, V. & Morrale, A. (1983): Chiavennite,CaMnBqSi5o,r(oH)2.2H2o, a new mineral from Chiavenna (Italy). Am. Mineral. 6E, 623-6n. Bosc D'AMrc, L. (1,792):M6moire sur la chabazie.L d'Histoire Naturelle 2, l8l-184, Bnumatrr, A. (1846): Pollux. (Poggendoff's) Awulen der Physik und Chzmie 69,439. BREwsrER,D. (1825a): Description of gmelinite, a new mineral species. Ed.inburghJ. Sci.2,262-257. (1825b): Description of levyne, a new nineral spcies. Edinburgh J. Sci.2, 332-334. Bnooru, H.J. (1820): On mesotype, needlestone,and thomsonite.Anrals of Philosoplty L6, 193-194. (1822): On the comptonite of Vesuvius, the brewstedte of Scotland, the stilbite and the heulandite. Edinburgh Philos. J. 6, ll2-115. Casu,rl, R., LuccuErrr, G., PALs{zoN!, A., Quamml S. & Vpzzamu, G. (1993): First occurrenceof a Ba-dominanr brewsterite: structural features. Ear J. Mitu<al. 5, 353-360. CLARK,A.M. (1993): Hey'sMineral Index. Chapman& Hall, London, U.K. Cocco, G. & Garurvs.l t, C. (1958):Riesamedi alcunezeoliti elbarc.Atti Soc. ToscanaSci.Naturali 65, 262-283. CooMBs,D.S. (1955):X-ray observationson wairakiteand non-cubicanalcime.Mineral. Mag 30, 699:708, & WIs"ITEN,J.T. (1967): Compositionof analcime from sedimentaryand burial metamorphic rocks. Geol, Soc.Am., Bull. 78, 269-282. CnoxsrsDt, A.F. (1756): Observationand description of an unknown kind of rock to be named zeolites, Kongl. Vetenskaps Acad. Handl. Stockhobn17, l2O-123 (n Swedish). D'AcrnemI, G. (1906): Zeobtt del filone della Speranza pressoS. Piero in Campo @lba). Atti Soc. ToscanaSci. NaturaliXL,15G165. DAMouR,M. (1842): Descriptionde la faujasite,nouvelle esplce mindrale, AnnalesdesMincs, Sdr 4, l, 395-399. DANA,E.S. (1914):A Systemof Mtuuralogy of J.D. Dana (6th ed., with AppendicesI and IT). John Wiley & Sons,New Yorlq N.Y. DANA,J.D. (1868):A Systemof Mbrcralogy (5th ed.).John Wiley & Sons,New York, N.Y. DAvrs,R.J. (1958):Mordenite,ptilolite, flokite, andarduinite. Mineral. Mag. 3t, 887-888. DE GETINARo, M. & FRANco,E. (L976): La K-chabazite di alcuni "Ttrfi del Vesuvio". Rend.Accad. Naz. Lincei 40, 490497. Dnarutrruarur, J.-C. (1795): Th6orte de la Tbne l. Chez Maradaq Paris,Fra:rce. Dsia VncruRA, G., Per.opr,G.C. & Bunnececo, F. (1993): New dataon merlinoite andrelatedzeolites.Rend.Lincei Sci.Fisichz Naturali, Ser. 9, 4, 303-312. RECOMMENDED NOMENCLATT]RE FOR UOLTIE Dt Fnerco, S. (L942):MineralagiaEmea.Zw*arc1ls&,rzn, Catania,Italy (158-161). MINERALS L597 Garr-r, E. (1971): Refiaement of the crystal structure of stilbite. Acta Crystallagr.Bn, $3-841. (1975): Crystal structure refilement of mazz7le. Dr Rmvzo, F. & GesElrce, Z. (1995): New data on the Rend Soc.It. Mineral. Petrol.3l,599-6L2. structureand compositionof the silicoaluminophosphate visdite and a discreditation of its status as a zeolrte. In Crystal structurerefinementof edinglonite. -(1976): Natural Zeolites '93: Occurrence,Properties,Use @.W. Acta CrystaIIogr. B.32,| 623-l 627. Ming & F.A. Mumpton, eds.).IntemationalCommitteeon NaturalZeolites,Brockport New York, N.Y. (173-185). (1980): The crystal structure of roggianite, a zeolite-like silicate. hoc. 5th Int. Conf. on Zeolites (1997):Barreriteand other zeolites &_ (L.V.C.Rees,ed.).Heyden,London,U.K. (205-213), from Kuiu and Kupreanofislands,Alaska. Can.Mineral. & ABERrl, A. (1975a): The crystal structure of 35,691-698. stelleita. BuIl. Soc.fr Minlral. Crisnllogn 98, 11-18. Duwr, P.J.,hacon, D.R., NEWBERRY, N. & RArflK, R.A. (1975b): The crystal stnrctureof & (1980): Goosecreekiten a new calcium sluminum silleafs balreite. BuIl. Soc.fr, MindraL Cristallogr. 9E,331-3N. hydrate possibly related to brewsterite and epistilbite. Can.Mineral. 18, 3X-3n . GotrenoI, G. (1966):The crystal structureof -& stibits. Mineral. Petogn Acta (Bolngn) 12, l-l0. Earc:e,A.S. (1898):Erionite,a new zeolite.Am. J. Sci.156, 66-68. D. (1979): The crystal & PoNGILUPPL structureof the zeolite merlinoite.lveaesJahrb, Mineral., EBERLv,P.E.,JR.(1964): Adsorption propertiesof naturally Monatsh."L-9. occurring erionite and its cationic-exchangedforms.,4Ln Mincral. 49.3040. & Loscm Gnnrom, A.G. (1972): The crystal chemistryof phillipsites. Az. Mineral, 57, ll25-LL45. Errrrrrncrn, H., Gresr:en,G., Krausn, W. & Bnnmnnor, H.-J. (1998):Tschiirtnerite,a copper-bearingzeolite from D. & RNALDI, R. Passecua, E,, PoNGu,uPPI, (1974):M;azzl:tB"a new mineral, the natural counterpafi tle Bellberg volcano, Eifel, Germary. Am. Mineral.83, 607-617. of the synthetic zeolite Q. Contrib. Mineral. Petrol, 45, 99-105. ENceI-, N. & YvoN, K. (1984): The crystal structure of & Z^N^z,n, P.F. (1982): Gmelinite: parth6ite.Z. Kristallogr. 169, 165-175. structural refiaements of sodium-rich and calcium-rich natural crystalg. Neues Jahrb. Mineral., Monatsh., Ewclano, B.M. & Osrwar.o, J. (1979): Levyne - offretite 145-155. intergrowtls from Tertiary basaltsin the Merriwa distict HunterValley,New SouthWales,Australia-Aust.Mineral. Quanrnnr, S., VEzzeu.u, G. & AI-BERTI,A. 25, ll7-r19. (1995): Boggsiteand tschernichite-g4tezeolitesfrom Ml Adamson, Northern Victoria Land (Antarctica). Ean J. ERcrr, T.S. & VeN VsLTnurroN,I. (1994): Gaultite, a new Mtureral.7.L029-1032zeolite-like mineral species from Mont Saint-Hilaire, Quebec, and its crystal structure. Can. Mineral, 32, 855-863. Gottardiite, a new high-silica zeolite fromAntarctica: the naturalcounterpartof syntheticNU-87. Ear J. Mineral. E, Frnsrraen,A.E. (1908): Materialien zur Untersuchung der 687-693. Zpolrthe Russlands. I. Leonhardit und Laumontit aus der Umgebungvon Simferopol (Krim). Trav. du Musde -&Fharau,M. 96ol. Pierre le Grand pn l'Acad, hnp. de Science (1997a'):Terranovaitefrom Antarctica: a new 'pentasil' St Pdtersbourg 2, lO3-L50 (abstr. ia Z. Kristallogn 50, zenhte.Am. Mineral. 82,423429. 75-76\. FIScHER., K. (1966): Untersuchungder Kristallstruktur von Gmelinit..tVeaesJahrb. Mineral., Monatsh., l-13. & Scnnamr, V. (1970): Crystal structure of gismondite, a detailed refinement. /n Molecular Sieve Z,eobtes.Am. Chem.Soc.,Adv. Chem.Ser.l0l,250-258. Fhalla{, M. & Pnncrtraa, N. (1994): Portite discredited= natrolite and new data on "schneiderite" (= laumontite). Eur J. Mineral. 6, 351-353. Fucss, J.N. (1816): Ueber die Zeolitle. (Schweigger's)J. Chem.andPhys.18, l-29. & R-trlAr-DI,R. (1974): The crystal chemistry of epistilbites.Am"Mineral. 59, 1055-1061. & Mopwe, C. (1981):Crystalchemistry oflevytes. Zzolites l, L57-L60, YEzzALrNr,G., Quarrrenr, S., Ar-SERTI,A. & Fnen'a.n, M. (1997b): Mutinaite, a new zeolite from Antarctica: the natural counterpart of ZSM-5. Zeolites 19,31,8-322. Gano, J.A. & Tarr, J.M. (1972):T\e crystal structureof the 5.2H2O. zeolite offretite, K1.1Ca1.1Mg6.7[Si12.sAl5rO36]'1 Acta Crystallogn 828, 825-834. 1598 THE CANADIAN Getn:eN, A.F. & Fucus,J.N. (1813):UeberWerner'sZeolith, Hatiy's Mesotype und Stilbite. (Schweigger's)J, Chem. undPhys.8, 353-366. Gtsuouor, C.G. (1817): Osservazionisopra alcuni fossili particolari de' contomi di Roma.Giornnle Enciclopedico di Napoli, Anno Xl, 2, 3-15. MINERALOGIST Ilssss, K.-F. (1983): Refinementof a partially disordered Z Kristallogr 163, 69-74. natolite, Na2Al2Si3O16.H2O. tfuv, M.H. (1930): Studieson the zeolites.I. Generalreview. Mineral. Mag. XL, 422437. (1960):Glottaliteis chabaate.Mineral. Mag.32, 421422. GrusEppE'nr, G,,MAzn, F., Talnrn, C. & Gar-lr, E. (1991): The revised crystal structure of roggianite: CarfBe(OII)rAlrSiOrrl<2.5HrO. r'feuesJahrb. Mineral., Monatsh..3O7-314. An Indzx of Mineral SpeciesandVarieties -(1962} Ananged Chemically(2nded., andAppendices,1963and 1974).British Museum,Irndon, U.K. Gottlteno, F. (1890):Sur 1'oft6tite, esp&e min6ralenouvelle. C.R.Acad. Sci.,Paris 111,1002-1003. Hnfire, C. (1897): Handbuch der Mineralogia 2. Von Veit, I*ipag, Germany. GonooN,E.K., Savsox, S. & Ka,D, W.B. (1966): Crystal structure of the zeolite paulingite. Science 154, 1004-1007. Honr, H., Necasnnae, K., Yaveoa, M., Mrvawerr, R. & MARUBASm, T. (1986): Ammonioleucitena new mineral from Tatarazaw4Fujiok4 lapat Am Mineral. Tl,1022- Gomenor, G. & Ar-ennrr, A, (1974'l: Domain structure in garronite:a hypothesis.MlzeraL Mag,39, 898-899. & Garrt, E. (1985):Natural Zeolites.SpringerVerlag, Berlin, Germany. & Mrmn, W.M. (1963): The crystal structure of dachrardrte.Z Kristallo gr. ll9, 53-fu , Gnaqau, R.P.D.(1918): On ferrierite, a new 2solitig minsral, from British Columbialwith noteson someotherCanadiau minerals.T?ans.R. Soc,Can.,Sen3, t2,185-201. Gnau;or-I\4m., R., GRArtrLrcH, V. & MEER,W.M. (1985): The crystal structure of the monoclinic variety of ferrierite.A Mineral, 70.6L9-623. Hanmorn, W. (1825): Description of edingtonite, a new mineralspecies.EdinbarghJ. Sci.3,316-320. Lon. How, H. (1864): On mordenite,a new mineral from the trap of Nova Scotia.J. Chern.Soc.l7 (new sen),17,100-1M. HowARD,D.G. (1994):Crystalhabit andt$"inningof gaxronite from Fara Vicentina" Yrcenza (Italy). Neues Jahrb. Mineral,, M onatsh., 9 l-96. TscnaRNrcH,R.W., Surm, J.V. & KLSN" G.L. (1990):Boggsite,a new higb-silicazeolitefrom Goble, Columbia County, Oregon,Arn. Mineral. 75, l20O-12M. HuANc,WEr.{-Hu,Tu, SnAo-HuA"WANG,K'uNc-HAl CnAo, Grul-Ln:l & Yu, Cnwc-Gm (1958): Ilsiang-hua-shib a new beryllium mineral. Ti-chih-yueh-k'an7, 35 (abstr.in -1328;6, 244). Am. Mineral. 44, 13217 HURLBUT, C.S.,Jn. (1957):Bikitaite, LiAlSirOu,HrO,a new mineral from Southern Rhodesia. Am. Mineral. 42. 792-797. Hanena, K., Iwauoro, S. & Kruna, K. (1967): Erionite, phillipsite and gonnardite i:r the amygdales of altered basaltfrom Maz6,Niigata Prefecture,Iapan.Am. MincraL 52,1785-1,794. IsRAItnr4,K. & IIeu., A. (1995): New occurrencesof diageneticfaujasite in the Quaternarytuffs of north-east Jordan.Eun J. Mturcral.7.1129-1135. Hassan, I. (1997): Feldspathoidsand tleir relationships to zeolites.Ktwait J. Sci.EngineertngA, rc3-n7. IIJITaA,A. & HARADA,K. (1969): Authigenic zeolites in zeolitic palagonitetuffs on Oahu, Hawaii. Am. Mineral. 54, 182-197. IIAtIr, R.-J.(1797):Analcime.J. desMines5,n8-n9. - (1801): Traitd de min4ralagre3. ChezLouis, Paris, France. (18O9): Tableau Comparatif des R€sulta* de Crisallagraphie et de l'Arnlyse Chfunique Relativementd la ClassificationdesMindraax, Courcier,Paris,France. HAa!{, R.M. & Fnqcnn,L.W. (1979): Polyhedral tilting: a cornmontype ofpure displacive phasetransition and its relationshipto analciteat high pressue.PhaseTfansitions l,t-22. H NEy, P.J. & Vr,rur, D.R. (1990): A high-temperature study of the low-high leucite phass hansition using the transmission electron microscope. Am. Mineral. 75, 46+476. JArEsoN, R. (1805): System of Mineralogy II. Bell and Bradfirte, Edinburgh,U.K. (539). Joswrc, W., Barn-, H. & FuBss,H. (1984): Structurerefinement of scolecite by neufron diffraction. Z. Kristallogr t66,219-223. KAIi,B,W.B. & Orq W.C. (1960):Paulingite,anew zeolife,in associationwith erionite andfiliform pynte.Aru Mineral. 45.79-91. KAwAHARA, A. & Curuw, H. (1969): La structurecristalline de l'6rionite. Bull. Soc. fn Mindral. Crtstallogn 92, 250-256. KERR,I.S. & Wu.nus, D.J. (1969): The crystal strucfire of yugawaralite.Acta Crystallogn825, 1183-1190. RECOMMENDED NOMENCLATURE FOR 4OLME MD{ERAI,S L599 gesamnte Mineralogie mit Hinsicht auf die neuesten KHoMrAKov,A.P., CHEREprvsKAyA, G.Ys., Kunove, T.A. & KAprsov, V.V. (1982):Amicite, K2Na2AlaSiaO16.5H2O, Entdeckungen ll, 164-168 (extracted from Gismondi frst find in the USSR. Dokl. Akad. Nauk SSSR263. 1817). 978-980(in Russ.). (1.82L):Handbuch der Oryktognosie.Mohr & Mnter, Heidelberg,Germany(448). Sar.rpom.sraya, S.M. & MALNoVSKI, Yu.A. (1980):Kalbonite,K6BAI4Si6O4(OH).C1, a new minetal. LsvnrsoN, A.A. (1966): A system of nomenclaturefor Dokl. Akad- Nauk SSSR252, 1465-L468(in Russ.). rare-earthminerals,Am. Mineral, 51, 152-158. KrM, Y. & Krnrcarnrcr, R.J. (1996):Application of MAS NMR spectroscopyto poorly crystallinematerials:vis6ite. Ldw, A. (1825):Descriptionsof two new minerals.fumals of Philosophy,newser.10,361-363. Mineral. M ag. 60, 957-962. KLAPRofiI, M.H. (1803): ChemischeUntersuchungdes Natroliths. Ges. Naturforschender Freunde zu Berlin, Neue Schrift en 4, 243-248. Koctrrar, V., Garr, R.I. & RucKr.pcs,J. (L974): The crystal structureof bikitaite, Li[AlSirO6].I{rO. An Mineral, 59, 7t-78. Koraua, K. & TerGucr, Y. (1977): Clinoptilolite: the distribution ofpotassiumatomsandits role in thermalstability. Z. Kristallogr. 145, 216-239. Knauss, W., BRNHARDT, H.-I., EFFB{BERGER, H. & GIEsrR" G. (1997):Tschdrtnerite,a copper-bearingzeolitefrom the Bellberg volcano,Eifel, Germany.Ber Deutsch,Miwral, Ges.1,205 (abstr.). KnmsArnmsml, E., DANo,M. & Psrm.sw, O.V.(1969):A tetragonalnatrohte.Medd- om Gr4nland l.8|, l-19. Kvrcr, A., ARrroLL G. & Srrnrn, J.V. (1936): Neutron diffraction study of tle zeolite yugawaxaliteat 13 K. Z, Kristallag n l7 4, 265-281. SrAru., K. & Surm, J.V. (1985): A neutron diffuaction study of the bonding of zeolitic water in scoleciteat 20 K. Z. Kristallogn 171,l4l-154. Lecnox, A. (1896): Sur la gonnndrte. Bull. Soc.fn Mindral. 19,426429. LANcHoF, J. & Holsreu, D. (1994): Boron-bearing chiavennite and otler late-stage minerals of tle Proterozoic litiium-pegoatites of Utii, Stockholm, Sweden.Int. Mineral. Assoc., l6th Gen. Meet. (Pisa), Abstr.232. LARSBN, A.O., Asrsnr, A., Raaos, G. & TAFro, J. (1992): Tvedalite, (CaMn)aBqSi6O,r(OlDa.3HzO,a new mineral from syenitepegmatitein the Oslo region, Norway. An. Mineral. 77. 438443. LEn/c& H.W. & Sr.aucrnr,n,M. (1969): The determination and refinementof the crystal structureof yugawaraJite.Z Kristallogr 130, 88-111. Lo, H.-J. & Hsnn, Y.-L. (1991): Iligh potassiumnatural mordeniteandthe chemicalvariation of mordenite.Proc. Geol. Soc. China (Taiwan) 34, 305-312. SoNc,S.-R.&WaN, S.-8. (1991):Highpotassium mordenitein the andesitefrom the CoastalRange,eastem Taiwaa.Proc. Geol. Soc, China (Taiwan) 34, 293-3M. Luccmru, G., Messa, B. & PsNco,A.M. (1982):Strontian heulandite from Campegli (easternLigurian ophiolites, Italy). NeaesJahrb. Mineral,, Monatsh,,541-550. MAln{ovsKrr, Yu.A. (1984): The crystal structure of K-gmelinite. Kistallagrafirya 29, 426430 (in Russ.). & BBLov. N.V. (1980): Crystal structure of kalborsite. Dokl. Akad.. lVaat S,S,Sft252. 611'-615 (in Russ.). MAsoN, B.H. (1957): Gonnardite (ranite) from Langesundsfiord. NorskgeoL TId*skr 37, 435437 . M-wt"F. & GAII, E. (1978):Is eachanalcimediffercnt?AmMineral. 63,448460. The tetrahedralframework of & -(1983): chabazite.NeuesJahrb. Mincral, Monatsh. 461-480. & GorreroI, G. (1976): The crystal sfucture of tetragonallelrcite.Am. Mineral. 6L, L08-115, &- (1984):Crystalstructure refinement of two teffagonal ediaglonites. News Jahrb. Mfurcral, M onatsh., 37 3-382. LARSEN,A.O., GorrARDI, G. & GAul, E. (1986): Gonnardite has the tetrahedral framework of natrolite: experimental proof with a samplefrom Norway. lfeaas Jahrb.Mirral,, Monatsh.,2L9-228, McCoNNELL,D. (1964): A zinc phosphateanalogueof analcime:kehoerte.MineraL Mag. 33, 799-803. McCusGR, L.8., BaBnr-oclrnn,C. & Nawez, R. (1985): fuetveld refinement of the crystal structure of the new zeolite miaeral gobbinsite.Z. Kristallogr. l7l, 281-289, LENGAUER, C.L., Gmsrsn,G. &TnnaarNs, E. (1997):Mineralogical characterizationof paulingite from Viaarickd Hora, CzechRepablic, Mineral. Mag. 61, 591-606. Mrten, W.M. (1961): The crystal sffucture of mordenite (ptitolite). Z. Kristallo gn ll5, 439450. voN LBoNITARD, K.C. (1817):Die Zeagonigein neuesMineral vom Capo do Bove bei Rom. Taschenbuchfrtr die OLsoN,D.H. & BeeRrccffi, C. (1996): Atlas of zeolite structuretypes.kolites t7, L-23O. 1600 THE CANADIAN MINERALOGIST MrN'snxov, Yu.P. (1984): Perlialite, Krl.{a(Ca,Sr) Ocurane, S. & IIrntA, A. (1990): Exceptionally K-rich clinoptilolite - heulandite group zeolites from tlree [AlrzSizorr]'15Hro, a new potassianzeolite from tle Khibina Massrf. Zap. Vses.Mineral. Obshchest. ll3, offshoreboreholesoff northernJapaa.Eutr J. Mineral. 2, 6M-612. 819-826. - DBr.usov,A.P.,UsFElsKAyA, E.I. & Lparova, E.A. (1973): Lovdarite, a new hydrous beryllosilicate of alkd;s.Dokl. Akad.lVazl SSSR213, M9432 (in Russ.). MeRxLs,A.B. & Suucurug M. (1968): Dererminationand refinementofthe stucture ofheulaadite.Am. Mineral. 531120-1138. Mnru,nro, S. (1972): Orizite discredited (= epistilbite). Arz. Mineral. 57,592-593. (1974): The crystal structure of wenkite. Acta Crystallo gn 830, 1262-1268. (1990):Lovdarite, I!Na12(BesSioOT2)'1 8H2O,a zeolite-like mineral: structuralfeaturesand OD character. Eun J. Mineral. 2, 809-817. Gau,r, E. & Alrrnn, A. (1975): The crystal structure of levyne. TschermaksMineral. Petrogr. Mitt. 22, rt7-129. MnIAro, H. & Tararo, T. (L964): An occurrence of potassiumclinoptilolite from ltaya, Yamagatahefecture, Japan.J. CIay Sci.Soc,Japan 4,12-22 (in Japanesewith Englishabsn). MIzorA, T., Surrure, G., Snnraezu,M. & TaxssHnA, Y. (1974):Mineralogical studieson levyne anderionite fron Japan.Geol.Soc.Japan,Mem.11,283-290. Monoznwrcz, J. (1909): Uber Stellerit, ein neues Zeolithmineral. Bull. International de I'Acaddmie des Sciencesde Cracovie. 34+359. Mutup.roN,F.A. (1960): Clinoptilolite redefined.Am. Mineral, 45.35t-369. Narernae, W. (1983): Disordered wairakite from Hikihara, Haga Town, Hydgo Prefecture.BuIl. Faculty of Education, Kobe Univ.70,3946. NAIryAz, R. (1983): New data on gobbinsileand garronite. Mineral. Mag 47, 567-568. PAssAcuA,E, (1969a):Le zeoliti di Albero Bassi (Vicenza). Pen Mineral. 38, 237-243. (1969b): Roggianite,a new silicate mineral. Clny Minerals8.107-lll. (1970): The crystal chemistry of chabazites.An. Mineral. 55, 1278-1301. (1975): The crystal chemistry of mordenites. Contrib. Mineral. Petrol. 50, 65-77. ARrrou, G. & Gualruru, A. (1998): The crystal chemistry of the zeolites erionite and ofhetite. Arz. Mineral. 83,57'7-589. & CamlBveq R. (1995): Diageneticmordenitefrom PonzqItaly. Eur J. Mineral. 7,429438. GALLT,E., LsoNr,L. & Rossr,G. (1978b):The crystal chemistryof stilbites andstellerites.BrrlLMinlral. 101.368-375. & Rntar-ot,R. (1974): Levynes and erionites from Sardinia, Italy. Contrib. Mineral. Petrol. 43,253-259. & PoNcnuppr,D. (1974):Sodianstelleritefrom CapoI'nla, Sardegna.Lithas 7, 69-73. (1975): Barrerite, a new natural & _ zeohte,Mineral. Mag. 40, 208. & Rnqapl R. (1977):Merlinoite, a new mineral of the zeolite gtoup. Neres Jahrb. Mineral., Motuztsh..355-36l, & VBzzamu, G. (1978a):The crystal chemistryof gmelinites.NeuesJahrb. Mineral., MonatslL, 3t0-324. (1984): New data on cowlesite from Northern Ireland,.Mineral, Mag 48, 565-566. & SeceRDou,M . (1982): Crystal structuralrefinement of Na-exchanged stellerite. Bull. MindraL 105, 338-342. & Melowe, J.F. (1982): Gobbinsite,a new zeolite mineralfrom Co. Antrim, N. heland.MineraL Mag.46, 365-369. & Tlcr,ravnu, A. (1994): Chabazite - offretite epitaxial overgrowthsin cornubianitefrom PassoForcel Rosso,Adamello,Italy.Eur J. Mineral, 6,397405. NICKEL,E.H. & MANDARI{o,J.A. (1987): Procedures involving the IMA Commission otr New Miaerals and Mineral Names,ald guidelineson mineral nomenclature. Can. Mineral. 25, 353-377. NoRNBERG, P. (1990): A potassium-rich zeolite in soil developmenton Daaian chet. Mineral. Mag 54, 9l-94, & VBzzar.nu,G. (1985): Crystal chemistry of diagenetic zeolites in volcanoclastic deposits of Italy. Contrib. Mineral. Petrol. N. 190-198. (1988): Roggianite:revisedchemical formula and zeolitic properties. Mineral. Mag. 52, 201-206. RECOMMENDED NOMENCLATURE FOR ZEOLITE MINERAIJ & CanNevALI, R. (1990): Diagenetic chabazitesandphillipsites in ltaly: crystal chemistry and genesis.Ean J. Mineral, 2, 8n -$9. Psacon, D.R. (1968): A high temperaturesingle crystal difhactometer study of leucite, (K,Na)AlSi2O6. z, Krt stallogr l?:1,21,3-224. Dr.rm, P.J., SndMoNs,W.B., TnuaNNs, E. & FIscItER,R.X. (1984): Willhendersonite,a new zeolite isostructuralwith chabazite, fun, Mineral.69. 186-189. Wrcrs, F.J.& RATDSFP,M. (1988): Maricopaite, a new hydrated Ca-Pb, zeolite-like silicate from Arizotu Can.Mineral. 26. 309-313. PBKov, I.V. & CnureNov, N.V. (1996): New data on kalborsite.fup, Vses.Mineral. Obshchest.125(4),55-59 (in Russ.). Prnnorra, A.J. (1967):The crystal structureof epistilbite. Mineral. Mag. 36, 480490. & SIImH, J.V. (1964): The crystal structure of brewsterite, (Sr,Ba,Ca)z(AlaSit0rS.1gl1r6. O"ro Crystallagn 17, 857-862. hssoN, L.V. (1890):On mordenite. An" J. Sci.140,232-237. Pnrnr, J.J. & Slurm, J.V. (1990): Crystal structure of boggsite, a new high-silica zeolite with the frst three-dimensionalchannel systemboundedby both 12and lO-rings.Am Mineral.7s, 501-507. Howano, D.G. & TscnsRNrcg,R.W. (1989): Boggsite; the first tlree-dimensional channel system with both l2-and l0-rings. /z Zeolites for the Nineties, Recent Research Reports (J.C. Jaasen, L. Moscou & M.F.M. Posl eds.).Eighth Int. Zeolite Conf. (Amsterdam),I I 1-112 (abstr.). Querrcru, S. & VszALru, G. (1987): Crystal chemistry of sfilbites: structure refinements of one nornal and four chemically anomaloussamples.kolites 7, 163-170. & Ar-anu, A. (1990):Dachiarditefrom Hokiyadake: evidenceof a new tspology Eur J. Minzral, 2.187-193. RaalB, G. (1996): Minerals originally described from Norway. Including notes on type material. Norst BergverksmuseumsSlrift serie ll. 1601 Pnrnr, J.J.& Surrl J.V. (1974):Zeolitesof the phillipsite family. '[efinement of the crystal structures of phillipsite and harmotome. Acta Crystallogr. D.30, 2426-2433. Crystalstructure e -(975b): of maz.zitedehydratedat 600"C. Acta Crystallogn R31, 1603-1608. SIvnru,J.V. & JuNc,G. (1975a):Chenistry and paragenesisof faujasite, phillipsite and offretite from Sasbach,Kaiserstuhl, Germany.NeuesJahrb. Mineral., Monatsh..433443. & VBzemu, G. (1985): Gismondhe; the detailed X-ray structure refinement of two natural samples. In Zeolr:teq' Synthesis, Structure, Technology and Application (8. Daj, S. Hodevar& S. Pejovnik,eds.). Elsevier,Amsterdam"The Netherlands(481492). RoBnIso\ G.W & GRIcE,J.D. (1993):The barium analogof brewsteritefrom Harrisville, New York Con Minzral.3L, 687-690. Rosn, G. (1826): Ueber den Epistilbit eine neuezur Familie 's) der Zeolithe gehtirige Mineralgattung, (Poggendodf 6, 183-190. Amalender Physikund Chemie Ross, C.S. & Ssamqon,E,Y. (1924): Mordenite and associated minerals from near Challis, Custer County, Idalo. Proc. U.S.Nat Museum@(19), L-19. Ross,M., Flom., M.J.K. & Ross,D.R. (1992): Crystalline solution series and order-disorder within the mtrolite mineral goup. A;rz,Mineral. 77, 685-703. J.L. Rouse, R.C., Dr-Dw,P.J., Gnrce, J.D., SCHI.EI.II{BR, (1990): Montesommaite, & rlrccn{s, J.B. (K,Na)qAlqSiBO64'10H2O, a new zeolite related to merlinoite and the gismondinegroup.Am. Mineral.75, r4L5-1420. PBAcoR,D.R. (1986): Crystal structureof the -& An zeolite mineral goosecreekite,CaAlrSi6O16.5H2O. Mineral. Tl. I49+I5OL. (1994): Maricopaie, an unusuallead &calcium zeolite with an interrupted mordenite-like framework and intrachannelPbotetrahedralclusters.Ara Mineral.79.175-lU. I., T.J., RoBERts, DUNN,P.J., CArvtr'Bpr Artu,r,R., Mr,aoscr, M.H., Dw, V.K., LansBr, -, A.O. & Asnsu, A. (1983): Chiavennitefrom syenite pegmatitesir the Oslo region, Norway.Am. Mineral. 68, 628-633. RAsrsvETAEvA, R.K., Rrreu,ova, O.Y., ArronraNov, V.I. & MALD.rovsK[, Yu.A. (1991): Crystal structure of hsianghualite. Dokl. Akad. Naaft ,ISSR 316, 62+628 (in Russ.). Rwar,or, R. (1976): Crystal chemistry atrdstructuralepitaxy of of&etite - erionite from Sasbach.Kaiserstuhl. iVeues Jahrb. MineraL, Mottntsh., 145-156. a D. (1987):Pahasapaite, W.L., WIcKs,F.J.& NswBURv, beryllophosphatezeolite related to synthetic zeolite rho, from the Tip Top pegmatite of South Dakota. Neaes Jahrb, MineraL, M onatsh, 433444. & Mm.Lnco,S, (1989):Crystal structure of pahasapaite, a beryllophosphate mineral with a distorted zeolite rho framework. Am. Mineral. 74, tr95-1202. RoDNosR,8., Ttrluexr.rs, E. & HsN'IscIfiL, G. (1993): Bellbergite- a new mineral with the zeolits sfructre type F'AB.Mineral. Petrol. 4E,147-152. 1602 Saxuner, K. & Heyasm, A. (1952): "Yugawaralite", a new zeolite.Jci. Rep.,YokolwmaNaqUniu, Ser.II,l,69-77 . PLurH,J.J.,Boccs, RC. & Howenp,D.G. (191): Tschernichite, the mineral analogue of zeolite beta. J. Chem-Soc.,Chem.Commun.,363-3il. Sanp,H., Dsm.Ne, J., Bzouann, H. & LnsIctr, B.W. (1979): La parthdite, CaAl2Si2Os.2!12O,un nouveau silicate naturel d'aluminium et de calcium. Schweiz Mineral. Petrogr Mitt.59,5-L3. SrAru K., Kvrcr, A. & Surnr, J.V. (1990):Thomsonite,a neul:rondiffraction study at 13 K. Acta Crystallogr C46, t370-1373. ScHAI,I.R"W.T. (1923):ftilolite andrelatedzeolites./n hoc. Societies@.T.Wherry,ed.).AnL MilrcraL8,93-94. SrsnvsR, A. (1955): Wairakite, the calcium analogue of analcime, a new zeolite mineral. Mineral. Mag. 3O, 691-698. (1932): The mordenite - ptilolite group; clinoptilolite, a new species.Arn Mineral. YI,128-134. Scru,Buren, J.L., PLUrs, J.J. & St"trll I.Y. (1977a): Refinement of the crystal structure of brewsterite, Bas5SrlsAlaSirro32.lOHrO.Acta Crystallogn E.33, 2907-29tO. (1977b): Dehydrated natural erionite with stackingfaults of the offretite type. Acta Crystallogr 833, 3265-3268. _& Scrfi.OpFBR, L. & Joswrc, W. (1997): Structureanalysesof a partially dehydratedsyntheticCa-garronitesingle crystal under differentT, pHrO conditions.Eun J, Mineral.9, 53-65. SBxr,Y. (1971):Wairakite- analcimesolid solution as an indicator of water pressuresin low-grademetamorphism. J. Geol.Soc.Japan17,667-674. & Ort, Y. (1969): Wairakite - analcime solid solutions from low-grade metamorphic rocks of the TanzawaMountains, centralJapan.Mineral. J. 6,3645. Srnuvz, H. (1956): Die Zeolithe Gmelinit, Chabasil Levyn (Phakolith,Herschelit, Seebachit,Offrett). NeuesJahrb. Mineral., Morwtsh., 25U259. (L978): Mineralogische Tabellen (7th ed.). AkademischeVerlagges.,Leipzig, Germany. FuFss,H. & Kvrcr<,A. (1990):InvestiSrucr<mlsc}nr,mr,8., gation of the structure of harmotomeby X-ray (293 K, 100K) andneutronditraction (15 K). Ear. J. MirwraL 2, 861-874. TAx€ucrfl,Y., MAzzt,F., Haca, N. & Gau,t, E. (1979):The crystal sfiuctureof wairakite.Ar?.Mineral.64, 993-1001. TAyLoR, W.H. (1930): The structure of (NaAlSirO6'HrO).Z Krtstuilogn74, l-19. analcite & JAcKsoN,R. (1933):The structureofedinglonite. Z. Krtstallagn86, 53-64. Tezorr, V., Dolrmrecnrrrr, M.C., MAz, F. & Camun o, E. (1995): The crystal structure of chiavennite. Ear J. Mineral. T,1339-13M. SnsFpARD, R.A. & Fn-aarnrcr, J.J. (1989): Phillipsite from silicic tuffs in saline, alkaline-lake deposits.Clays CLay Minerals 37.243-247. TmrsrRA, D.K. & dERNf,P.(1995):Firstnatural @curences of end-memberpollucite: a product of low-temperature reequilibration.Eur J. Minzral. 7, LL37-1148. & GIDE,AJ.,Itr (1969a):Diagenesis of tuffs inthe Barstow Formation, Mud Hills, SanBernardiao County, Califomia. U.S.Geol.Surv.,Prof. Pap, 6A,l-35, & DvsR,A. (1994):The informal discreditationof "doranite" as the magnesium analogue of analcime. kolites 14.411413. (1969b): Chemical composition and &physical properties of tle related zeolites offretite anderionite.Arz.Mbrcral.54. 875-886. P. (1994):MAS Srm.rurp,8.L., Xu, Zrtr & CTERNf', and DOR NMR study of Al-Si order in the analcine pollucite series.Can Mineral, 32, 69-80. & Grurrn, J.J. (1970): Chemical composition and physicalpropertiesofphillipsite from the Pacific and Indian oceans.Ar?. MfueraL 55.2053-2062. & MuNsoN,E.L. (1965): Chemical compositionof diageneticzeolitesfrom tuffaceousrocks of the Mojave Desert and vicinity, California. Arz. Mineral. 50.24+249. Stvrrnr,J.V. (1988): Topochenristryof zeolitesand related materials. 1. Topology and geometry. Chem. Rev, 8E, 149-t82. KNAwE6, C.R. & Rnt.llpr, R. (1964): Crystal structures with a chabazite framework. Itr. Hydrated Ca-chabaziteat +20 and -150oC. Acta Crystallogn 17, 374-3U. TsuGLrr, S.J.(1933): O ptylocie z Mydzka na Wolyniu - Sur la ptilolite de Mydzk en Volhynie. Arch. Mindral., Soc. Sci. Varsovie 9, 99-102 (Polish), 103-lM @rench r6sum6).(Mineral. Absn 6, 129). Tuuar.rxs, E., FrscHBR,R.X. & Beun, W.H. (1984): Chabazite-type framework in the new zeolite willhendersonite, KCaAl3Si3Orz.SHzO.Neues Jahrb. Mineral,, M onatsh.,547-558. Tsctmmqr, R.D. & W$q W.S.(1982):Paulingite:variations in conposition. Atn, Mineral. 67, 799-803, UENo,T. & Haraoa, K. (1982): Chemicalconpositions and genesesof zeolites from Tsuyazaki,Fukuokahefecture, Iapar J. Mineral. Soc.Japan15,259-n2 (in Japanese, with English abstr.). RECOMMENDED NOMENCI.ATI.'RE FOR reOIJTE MINERAI.S 1603 VAUGHAN,P.A. (1966): The crystal structure of the zeolite ferrieito Acta Crystallogr 21, 983-990. Vnl.annoal-, H.S. (1983): Sobre la existencia de otras variedadesde estellerita y una forma de reconocerlas. Anais Aca.demiaBrasileira d.eCiercias 55,87-91. VBzzem.u, G. (1984): A refirement of Elba dachiardite: oppositeacentric domainssimulating a centric structure. Z Krtstuilogr16,63-71. Wru-rnn, G.P.L. (1962): Garronite, a new zeolite, from Ireland and lcelard. Mineral, Mag.33, 173-186. F. (1992):Weinebeneite,CaBq@O)r(OtlAIlrO, a Anrror4G. & Quarnrru, S. (1992):Thecrystal Warrm, minetal species:mineral data and crystal structure. nerv chemistry of cowlesite,Mturcral.Mag. 56,575-579. R. (1984): The crystal chemistry of & OBERTI, gismondines:the non-existenceof K-rich gismondines. Bull. Mindral. 1117, 805-812. Eur J. Mineral. 4, ln 5-Q83. Wnqr, H.-R. (1973):The structureof wenkite.Z Kristallogr \37,t13-t26. Wnrrs. J.S. & Enp, R.C. (1992): Kehoeite is rot a valid species.Minzral. Mag, 56, 256-258. Quamruru, S. & Gar-lr, E. (1996): Relazioni strutturali nelle zeoliti con topologia CHA alla luce del XXVI Congresso Wrse, W.S. (1982): New occrurence of faujasite in ritrova:nentodi una Ca-willhendersonite. Nazianale dclla Associazioneltaliana di Cristallografi.a soutleasternCaliforna. kn MineraL 67, 79+7 98. (Alessandria), 9 I (abstr.). & Tscsrnrqcu, R.W. (1975): Cowlesite,a new Ca-zenhte.Am- Mincral, 60. 951-956. & -(1997a): Occu:renceand crystal structure of a Ca-purewillhendersonite. kolites (1976): Chemical comPositionof & 19,75-79. fefieri&. ArL Mineral. 61, 60-66. Ar-sERn,A.,Cnuqaq C. & Kvrcr, A. 9997b): Crystal sffucture of the zeolite mutinaite, the natural analogue of ZSM-S. Zeolites 19.323-325. & PAssAcLrA,E. (1990): Crystal structure of a K-rich natural g'nelinite and comparison with the other refined gmelinite samples.NeuesJahrb. Mineral., Monatsh.,504-516. Wvem, J. (1938):ftude surlaleucite.Bull. Soc.fr Mindral. 61.228-238. T. (1996): (010) disorder,partial Yerc, Pnvc& AnvmRusrtsR, Si,Al ordering, and Ca distribution in triclinic (Cl) epistilbite. Ear J. Mineral. 8, 2$-n l. ReceivedDecember3, 1997. L604 TTIE CANADIAN Aprnxpx 1. Norss on rm Dnrrnrnon or ^l Znolttr MINERALOGIST Natural zeolites are known with up to 88Voof tetrahedral sites occupied by Si, as in mutinaite, and Is more than 50Vosubstitutionof elementsother than thereis no theoreticalreasonwhy this figure cannotbo Si and Al pennissible in tetrahedral sites? exceeded.If the site occupancy of tetrahedraby Si approacheslffiVo, the exfra-frameworkcation content Therewascompleteagteementin the Subcommittee will approachzero,eventhoughthe structureand other that somesubstitutionof elementssuchasP andBe for characteristicsmay remaintypically zeolitic. It is again Si andAl in tetahedral sitesmust be permitted in the consideredinexpedientto word the definition so as to definition. Discussionin this context focussedon excludesucha hypotheticalend-membercasefrom the whethera5OVorule shouldbe applied.The so-called zeolite category.Melanophlogiteoa low-density SiO2 50Vorule (Nickel L992)is normally applied to split a phase with large cages in its framework, would be binary solid-solution seriesinto two speciesat tle a possible example,but is otlerwise excluded by half-way point accordingto the predominantcations the adopted definition becauseit lacks appropriate concerned,but not to separatemembers of a solid- channelsfor the passageof guestspecies. solution seriesinto two separateclassesof minerals, as could happen if applied in the present context. REIERm{CE Proponents of. a 50c/orule argued tlat the definition in mineralnomenclature. of zeolites should be on grounds of both structure Ntcrcr.,E.H.(1992):Solidsolutions Can.Mineral. 30,23| -234. and composition, zeolites being aluminosilicates or possibly Al-free silicates.The confiary opinion is that wherestructuresaretopologically equivalentandother essentially identical zeolitic characteristics prevail, Appnmrx 2. Drscnnortatroxs irrespective of Si and Al contentsin tetrahedralsites, any restrictions basedon specific Si and Al contents H erschelite is chabazite-Na would be arbitrary andundesirable.The Subcommittee voted by a substantial majority for this view. The Herschelite,Na[AlSiOo].3HrO, was named by beryllosilicates lovdarite and chiavennite, like tle I-6vy (1825)from materialbroughl to him 6y Herschel zincosilicategaultite, havemore than 50Votetrahedral from "Aci Reale" (nowAcireale), on the flanks of Mt. sitesoccupiedby Si, and are here acceptedas zeolites Etnain Sicily. Contemporaryliteratureandpresent-day in spite of having little if any Al. Also included arethe exposruessuggestthat the actualoccurrencemay have beryllophosphates pahasapaite and weinebeneite, been in basaltic lavas at Aci Castello, nearby. L6vy which haveneitherSi norAl, but havetypically zeolitic describedherscheliteas tabular crystals of hexagonal sructures and other zeolitic characteristics.They can outline that contain'silex, atumina,andpotash".It was be regarded as end-member examples of Si-free later identified with chabazite(e.g., Hausmann1847) zeolitesor zeolite phosphates. and relegated to synonymy, altlough shown to be A compositional factor is included in the adopted Na-rich, not K-rich. Strunz (1956) confirmed that definition in that the framework consistsessentiallyof herschelite and chabazite give essentially identical oxygen atoms togetier with cations that enter into X-ray powderpatterns.Mason(1962)proposedrevalitefi?hedml co-ordinationwith oxygen. dation on the basesof a supposedcompositional gap betweenherscheliteand'onormal" Ca-rich chabazite, Is thc presenceof H2Oand of exta-framework the distinctive habit and lower indices of refraction. cations essential? Passaglia (1970) demonstrated a continuum of compositionsfrom Ca-to frfu-deminantgpes, extending Reversibledehydrationis a characteristicfeatureof into the field of K-dominancein a ternary series;there zeolitic behavior,but how much I{2O must be presert is no discerniblegapin composition.The lower indices for a mineral to be considered a zeolite? Pollucite of refraction reflect the Na-rich composition. Variant forms a continuous series with analcime, the HzO crystal habit is not an accepted basis for species content declining progressively *i1tr iaslsaging Cs status for minerals, and some examples of strongly contentsuchthat fhe Na-free,Cs memberis essentially Na-dominantchabazitehaverhombohedral,not tabular anhydrous. It seems unnecessary,impractical, and habit asin the caseof micrometer-scalecrystalsaggreillogical to prescribesomearbihary HrO contentbelow gatedinto flin raggedplates,illushated by Shepparder which pollucite (or othermineral) would be definedas al. (1978). anhydrous,and no longer az,eolrte.Furthermore,it is In view of its chequeredhistory and the above not inconceivable that sometypical zeolite might be considerations,tle nameherscheliteis suppressedand reversiblydehydratedundernaturalconditionswithout tle name chabazite-Na is to be applied to those essentiallossof stnrcture.If so,it hasnot ceasedto be a members of the chabazite series in which Na is tle zeolite.Althoughzeolitestypically arehydrous,it is inex- most abundant extra-framework cation. Herschelite pedientto specifythe presenceof H2Oin the definition. may retain someuseas a term for a distinctive habit. RECOMMENDED NOMENCI.{IT'RE FOR ZEOLITE MINERAI.S 1605 faults, andthat it is not a topologicatlydistinct member of the mordenitefamily. Its compositionis within the -L II'O was described rangeof other samplesof dachiardite.It is regardedas Ironhardite Caa[AleSiteOar]. by Blum (1843) for a mineral closely related to a multiply twinned and highly faulted dachiardite laumontite Caa[A\Si16Oa].18HrO, but with different (dachiardite-Ca), and is discredited as a separate morphology. The type locality was near Schemnitz, species. nowadaysBanskaStiavnica,tlen in Hungary,now in Slovakia. Delffs (1843) showed that type-locality Wellsiteis barian phillipsite-Ca and calcian leonharditehaslessH2O(ca. 13 moleculesof H2Oper harmotome formula unit) than laumontite. Doelter (1921) agreed tlat leonhardite is identical in composition to The mineralnamedwellsiteby hatt & Foole (1897) laumontite, apart from its lower content of H2O.The has beenshownby Galli (L972) and Galli & Loschi name has continued to be used widely for a material Ghittoni (1.972)tobe isostuctural with phillipsite and that forms rapidly andreversiblyby partial dehydration harmotome,and dernf et al. (1977) have shown that of laumontiteunder ambientconditions.This happens zoning in crystalsof wellsite coversmost of the range upon exposurein tle field and in the laboratory as a from Ca-rich phillipsite to potassian calcian function of H2Ovapor pressureor by soakingin water harmotome.Wellsite is discredited.Most examplesof giving a readily observablechangein extinction angle wellsite arebarianphillipsite-Ca andothersarecalcian andcell dimensions(e.9.,Coombs1952,Annbruster& harmotome. Kohler 1992). Fersman (1908) introduced the term ooprimary RmsnnNcss leonhardite" for a variety from Kurtsy (nowadays Ukrainka), Crimea, witl 14 moleculesof HrO, which of T. & Kon m, T. (1992):Re-anddehydration neither dehydrates nor rehydrates under ambient Aru,mnusrm, X-raystudyat 100K. Neaes laumontite:a single-crystal conditions. In it, (K,Na)z substitutesfor Caoaltlough Jahrb,Mineral.,Monatsh.,385-397. Ca is still dominant(Pipping 1966). Tlpe leonhardite of Blum from Schemnitz catalogued in the Museum of Natural History Vienna, in BLUM,J.R. (1843): Leonhaxdit,ein neues Mineral. (Poggendorffb) Annalen'derPhysikund Chemie59, 1843 and type '?rimary leonhardite" of Fersman 336-339. obtainedfrom the FersmanMineralogical Museumin Moscowareshownby Wuest& Armbruster(1997)and R.C.(1977):Welsiteand GnrV, p.,RnqamI,R. & Sunoarra, Stolz & Armbruster(1997),respectively,to havethe group.lfeaes its statusin the phillipsite-harmotome same Si.Al ordered framework of tetrahedra as Jahrb.Mineral..Abh.128.31'2-320. laumontite. The low H2O content of "primary leonhardite'ois attibuted to spacelimitations resulting Coours, D.S. (1952):Cell size,opticalpropertiesand from the introduction of additional cations of larger Arn. atrdleonhardite. of laumontite chemicalcomposition size. Mineral.37,812-830. In conformitywith Rule 4, leonharditeis discredited as the name of a separatespecies.It is an H2O-poor DEITFFs, W. (1843):AnalysedesLeonhardits.(Poggendorff's) variety of laumontite. "Primary leonhardite" is Annalen der Physikwtd Chemie59,339-342. H2O-poorsodianpotassianlaumontite. Leonharditeis H2o-poor laumontite Svetlozarite is dnchiardite- Ca C. (192L): Handbuchder Mineralchemiefr,3. DoELTER, VerlagTheodorSteinkopff, Dresden,Gemmny. FsnsMAN,A.E. (1908): Maxerialienzur Untersuchungder Svetlozaritewas describedby Maleev (1976) as Zeolithe Russlands. I. Leonhardit und Laumontit aus a high-silica zeolite occurring as spherulites in der Umgebungvon Simferopol (IGim). ?rar. du Musde chalcedonyveinlets in brecciatedandesiteswest of 96ol. Pierre le Grand. pn l'Acad. Imp. de Science Zvesdel,easternRhodopes,Bulgaria.Analysis showed St Pdtersbourg2, 103-150(abstr.in Z. Kristallogn 50, Ca > Na > K, and minor Fe and Mg. From X-ray 75:76). powder-diffraction studies, Maleev suggested an orthorhombicsymmetry,with a c-axis repeatof 7.5 A, Gerr.r, E. (1972): La phillipsite barifera ("wellsite") di M. Calvarina (Verona).Per.Mturcral, 41, 23-33. which is characteristicof the mordenitegroup,to which he attributedthe mineral. & Loscrn GnroM, A.G. (1972): The crystal Gellenset al. (1.982)concludedfrom powderand chemistry of philripsites.Anr- Mfueral. 57, 1125-1'145. single-crystal X-ray and transmission electron microscopy (IEM) studies, tlat svetlozarite, space Gsr-r-srs, R.L., PnrcB, G.D. & SMrH, J.V. (1982): The group Ccma (?), is related to tle ideal dachiardite structual relation between svetlozarite and dachiardite. structureby irregular periodic twinning and stacking Mineral. Mag. 45, 157-161. 1606 THB CANADIAN HAUSMANN, J.F.L. (1847): Handbuch der Mineralogie (2nded.).2,1600. LEw, A. (1825):Descriptionsof two new minerals.Annals of Philosophy,ns-wser, 10, 361.-363. Merwv, M.N. (1976): Svetlozarite,a new high-silicazeohte, 7ap. Vses.Mineral. Obshchest,105,449453 (in Russ.). MAsoN, B. (1,962):Herschelite - a valid species?Ant Mineral. n.985-987. Passeclre, E. (1970):The crystal chemistryofchabazites. Am^Mineral. 55. 1278-1301. PFFD{c,F. (1966):The dehydrationandchemicalcomposition of laumontte.Mbzeral.Soc.India, IMAVol.,1.59-166. PRATT,J.H. & Foorn, H.W. (1897): On wellsite, a new mineral.Am. Sci. 153. M3-448. "/. MINERALOGIST Snrrreno, R.A., GUDB,A.J. & Eosor.t,G.M. (1978):Bowie zeolite deposit, Cochiseand GrahamCounties,Arizona. 1z Natural Zeolites - Occurrence, Properties and Use (L.8. Sand& F.A. Mumpton,eds.).Pergamon,oxford, u.K. (319-328). Srorz, J. & AnMsnusrER,T. (1997): X-ray single-crystal structurerefinementof a Na,K-rich laumontite,originally designated"primary leonhardite"'.lfeues Jahrb. Mineral., Monatsh. I3L-I34. Srmrxz, H. (1956): Die Zeolithe Gmelinit, Chabasit,Levyn (Phakolith,Herscheli! Seebachit,Ofuetit). NeuesJahrb. M ineral., M onatsh.,250-259, Wuesr, T. & AnvsRusrsn, T. (1997): Tlpe locality leonhardite:a single-crystalX-ray study at 100K, kolite '97, 5th Int, Conf. on the Occurrence,Properties, and Utilization of Nanral Zeolites (Ischia, Italy), Program Absn.327-328.