view file

Transcription

view file
t57L
TheCanadian
Mburalogist
Vol.35,pp. 157l-1606(1997)
NOMENCLATURE
FORZEOLITEMINERALS:REPOFTOFTHE
RECOMMENDED
MINERALOGICAL
ZEOLITES
OF
THEINTERNATIONAL
SUBCOMMITTEE
ON
NAMES
AND
MINERAL
ON
NEW
MINERALS
ASSOCIATION,
COMMISSION
DOUGLASS. COOMBS1(Chairnan)
NewZealand
universityof Otago,P,O,Box56,Duned.in,
GeologyDepartmznt,
ALBEMOALBERTI
j2, 144100Ferrara,Italy
Istiato d.iMineralogia"(JniversftA
di Fenara,CorsoErcoleI" d.'Este,
TIIOMAS ARMBRUSTER
3, CH-i012Bem,Swiaerl'anl
Bern"Freiestrasse
Kristatlographie,
Universitdt
Laboratoimftr chcmische
undmburalogische
GILBERTOARTIOLI
di Milana,vin.Botticelli,23,I-20133Milarc, Italy
Dipartimentodi Scienze
d.ell.a
kna. [Jniversitd.
CARMINECOLELLA
UniversitdFedcricoII di Napoli,
Dipartimentodi IngegneriadeiMaterialie dellaProd.azionc,
PiazzpleV Tecchio,80,I-80125NapolLltaly
ERMANNOGALLI
Dipartimcntod.iScienze
dellaTbrra,Universitddi Modena,via S.Eufetnia,19,141100Modena,Italy
JOELD. GRICE
Musewnof Naturc,Ottawa"OntarinKiP 6P4,Canada
MineralSciences
Division,Canadian
FRIEDRICHLIEBAU
40-60,D-2300Kiel"Germany
Instint, IJniversitdt
Kiel, Olshaasenstasse
Mineralogisch-Petrographisches
DecemberI 994
JOSEPHA. MANDARINO (retiredfrom Subcommittee,
Depanmcntof Mineralagy,RoyalOntarioMweum,Toronto,Onnrio MSS2C6Canada
HIDEOMINATO
5-37-17 Kugayam+ Suginami-ku,Tolqo 168,Japan
ERNESTH. MCKEL
Division of Exploration and Mining, CSIRO,Private Bag, Wembley6014, WestemAu*tralia" Aastralin
ELIO PASSAGLIA
Dipanimento di ScienzedellaTerra, Universitd.di Modena"via S. Eufemia 19,I-4II0a Modenu haly
DONALD R. PEACOR
Departnent of Geological Sciences,University of Michigan, Ann Arbor Michisan 48109, U.S.A.
SIMONAQUARTIERI
Dipartim.entodi ScienzeitellaTena, Universitd ili Modeno,via S. Eufemiu 19,141100 Modena"Italy
ROMANORINALDI
Dipartinznto di Scienzedella Terra, Universitd.di Perugia I-06100 Perugia"Italy
MAITCOLMROSS
U.S. Geological Suney, MS 954, Reston,Wrginia20192, U.SA.
RICHARDA. SHEPPARD
U.S. GeologicatSurvey,MS 939, Box 25M6, Federal Center Denve4 Colorado 80225, U.SA.
EKKEHARTTILLMANNS
Institutflr Mineralogie md Kristallographie, UniversitdtWiett Althanstrasse14, A-1090Vmna, Austria
GIOVANNAVEZZALIM
Dipartimento di Scienzed.ellaTena, Ilniversitd.di Modena, via S. Er{emia 19, 141100 Moden'alta$
I E-mnil address: doug.coombs@stonebow.otago.ac.nz
r572
THE CANADIAN
MINERALOGIST
ABSTRACT
This report embodiesrecommendationson zeolite nomenclatureapprovedby the InternationalMineralogical Association,
Commissionon New Minerals andMineral Names.In a working definition of a zeolite mineral usedfor this revie\p,structures
containingan intemrptedf:ameworkoftetrahedraareacceptedwhereotherzeolitic propertiesprevail, andcompletesubstitrtioD
by elementsother than Si andAl is allowed. Separatespeciesarerecognizedin topologically distinctive compositionalseries
in which different extra-framework cations are the most abundantin atomic proportions. To name these, the appropriate
chemicalsymbolis attachedby a hyphento the seriesnameasa suffx, exceptforthe narnesharmotomqpollucite andwairakite
in the phillipsite and analcime series.Differences in space-groupsymmetry and in order-disorder relationshipsin zeolites
having the sametopologically distinctive framework do not in generalprovide adequategroundsfor recognition of separate
species.Zeolite speciesate not to be distinguished solely on the ratio Si : Al except for heulandite (Si : Al < 4.0) and
clhoptilolite (Si : Al > 4.0). Dehydration"partial hydration, and overhydrationare not suffrcient groundsfor the recogrition
of separatespeciesof zeolites. Use of the term "ideal formula" should be avoided in referring to a simplified or averaged
formula of a zeolite. Newly recognized speciesin compositional series are as follows: brewsterite-Sr, -Ba" chabazite-Ca"
-Na -Ii clinoptilolite-I! -Nq -C4 dachiardite-C4 -Na, erionite-Na"-K, -Cq faujasite-Na,-Ca -Mg, ferrierite-Mg, -K -Na
gmelinite-Na,-Cq -K heulandite-Ca,-Nq -K -Sr, levyne-Ca -Na paulingite-K -Ca, phillipsils-1.{q -Cq -K and stilbite-Ca,
-Na. Key references,type locality, origin of name,chemicaldat4 ZA structure-typesymbols,space-groupsynmefiry,unit-cell
dimensions,and commentson structureare listed for 13 compositionalseries,82 acceptedzeotte mineral species,and thJee
of doubtfrrl status.Herschelite,leonhardite,svetlozarite,and wellsile are discreditedas mineral speciesnames.Obsoleteand
discreditednamesare [sted.
Keyvords: zeolitenomenclanre,herschelite,leonhardite,svetlozarite,wellsite,brewsterite,chabazite,clinoptilolite, dachiardite,
erionite, faujasite, ferrierite, gmelinite, heulandite"levyne, paulingite, phill;Fsite, stilbite.
SoMruans
Ce rapport contient les recommandationsi proposde la nomenclaturedesz6olites,telles qu'approuvdespar l'Association
min{mlsgiqus internationale,commissiondesnouveauxmin6rauxet desnoms de min6raux.Daasla d6finition d'une z€olite
retenueici, les structurescontenantune trame interrompuede t6traAdressont acceptdesdgnsles cas oi les autrespropri6t6s
satisfont les crit0res de cetie famille de min6raux. De plus, il peut y avoir remplacementcomplet de Si et Al par d'autres
6l€ments.Des espbcesdistinctesfont partie de s6riesde compositionsdont I'agencementtopologiqueest le m6me,le cation
dominant ne faisant pas partie de la trame d6ierminantl'espBce.Pour en d6terminerle nom, il s'agit de rattacherle symbole
chimiqueappropri6au nom de la s6riepar un trait d'union, saufdansles casde harmotome,po[ucite et wairakite,faisantpartie
des s6riesde la phillipsite et de I'analcime. Des diff6rencesen symdtrie exprim6espar le groupe spatial et en degt6 d'ordre
Si-Al dansles z6olites ayantle m€me agencemetrttopologiquene suffisent pas en g6n6ralpour ddfinir une especedistincte.
Le seul critdre de rapport Si : Al ne sufEt pas pour distinguer les espBcesde z6olites, sauf pour la heuladite (Si : Al < 4.0)
et clinoptilolite (Si : Al > 4.O).Yetat de d6shydratation,d'hydratation partielle, et de sur-hydratation ne suffit pas pour
reconnaltre une espBcedistincte de z6olite, On doit 6viter d'utiliser le concept d'une "formule iddale" en parlant des
formules simplifi6es ou repr6sentativesdes z6olites. I,es nouveauxnoms d'espOcesdans ces s6ries de compositions sont:
brewsterite-Sr,-Ba, chabazite-Ca,-Na -K, clinoptilolite-I( -Na -Ca dachiardite-Ca -Na,6rionite-Na" -K -Cq faujasite-N4
-Ca -Mg, ferrierite-Mg, -K, -Na, gmelinite-Na, -Ca, -K, heulandite-Ca, -Na, -K, -Sr, l6vyne-Ca, -Na, paulingite-K, -Ca,
philipsite-Na, -C4 -K, et stilbite-Ca"-Na- Nous pr6sentonsles r6f6rences-cl6s,la localit6-type,l'origine du nom, desdonn6es
chimiques,le symbolestructuralZA, le groupe spatial et la syndftie, les parambtes r6ticulaires et des commentairessur la
structurede 13 s6riescompositionnelles,82 espBces
homologu6es,et trois dont le statut est douteux.Herschelite,ldonhardite,
svetlozaxite,et we[site sont discr6dit6escotrme norns d'esp€cesmin6rales.Nous dressonsune liste des noms obsoldteset
discr6dit6s.
(Iraduit par la R6daction)
Mots-cl6s:.nomenclaturedes z6olites, herschelite,ldonhardite, svetlozarite, wellsite, brewsterite, chabazite,clinoptilolite,
dachiardite,6rionite,faujasite,ferrierite, gmelinite, heulandite,l6vyne, paulingite, phillipsite, stilbite.
INIRoDuc"iloN
described with their present 6saning by L842.
Forty-six zeolites were listed by Gouardi & Galli
The name"zenli€'\'ras inftoducedby the Swedish (1985), and new speciescontinueto be described.The
mineralogist Cronstedt ia 1756 for certain silicate first crystal-structure determination of a zeolite was
minerals in allusion to their behavior on heating in a done on analcime(Taylor 1930); following this, Hey
borax bead (Greek zeo =borli lithos = stone). Three (1930) concluded tlat zeolites in general have
such minerals were listed by Haiiy (1801), namely aluminosilicatefraneworks with loosely bondednlkali
stilbite, analcime, and harmotome, together with or alkali-earth cations, or both. Molecules of HrO
"mesofype", which has not survived. Chabazite and occupy extra-framework positions. He pointed out
leucitehadbeennamedevenearlier.Nineteenhadbeen tle consequentialrequirements that the molar ratio
FORAOLIIE MINERALS
RECOMMENDEDNOMENCI.-ATURE
AlzOr : (CaSr,BaNaz,K)O = 1 andthat O : (Si + Al) =
2 in the empirical formula.
Zeolites have other highly characteristic features
developedto varying degrees,notably the potential
for reversiblelow-temperaturedehydration,the ability
of the dehydrated forms to reversibly absorb otler
molecules,a tendencytoward more or less easylowtemperatureexchangeof extra-frameworkcations,and
a lack of clear-cut, structu(ally controlled constraints
on end-membercompositionsin terms of Si : Al ratios
within the framework. In somecases,observedextraframework compositions may be artefacts of cation
exchangeresultingfrom humanactivitiesin the laboratory or elsewhere,and firrtlermore, tle compositions
are not convenienflydeterminedby traditional optical
metiods. Perhapsfor a combination of suchreasons,
separatenameshavebeenglven to few zeoliteson the
basis of the dominant extra-framework cation in
solid-solution series. This conflicts with standard
practicein most mineral groupsand with guidelinesof
the Commissionon New Minerals andMineral Names
(CNMMN) (Nickel &Mandarino 1987).
With intensification of research and tlre advent
of the electron microprobe, a flood of information
on compositions has become available, and with
automated single-crystal X-ray diffractometers atrd
otler developments,many complexitieshave been
investigated,including order-disorderrelationshipsin
the frameworks and associatedchangesin unit-cell
paxameters and symmetry. Thus in the case of
analcime,Mazzi & Galli (1978),Te,ertsfraetal. (1994),
and otlers have demonstrateda wide range of spacegroup symmetries associatedwith different patterns
of order in tle framework and possible displacive
transformations. Sites of extra-framework cations
are commonly less well defined in an open, zeolitic
structuretlan in most other minerals,and arevariably
occupied.Guidelinesallowing recognition of separate
speciesdependingon the dominantion occupyingeach
structural site are thus compromised in the case of
extra-frameworksitesin zeolites.Furthermore,changes
in the occupancyof suchsitescandistortthe framework
to varying degrees,changingthe space-group
symmetry.
Some minerals meet traditional criteria for
zeolitesin all respectsexceptthat they containR Be, or
other elementsin tetrahedral sites, witl consequent
departurefrom the requirementof Hey (1930) that O :
(Si + A1) = 2. Other structurally related minerals vrith
zeolitic propertieshaveall tetrahedralsitesoccupiedby
elementsother than Si andAl. Certain other minerals
displaying zeolitic properties depart from traditional
requirementsfor a zeolitein having a franework that is
intemrpted by some (OH) groups. An example is
parth6ite,fistedby Gottardi& Galli (1985)as azsoTitp.
Synthesisand structural analysis ofmaterials having
zeolitic properties have become major fields of
researchandhaveled to a voluminousliterature,ashas
the industrial use of zeolitic materials.
L573
The recommendations of an IMA CNMMN
subcommitteeset up to review zeolite nomenclature
are set out below. Theserecommendationshave been
adoptedby the Commission.
DtrnmIoN oF A ZEoIxrEMINERAL
In arriving at its working definition of a zeolite,
1ls gufssmmittee took the view that zeolitesin the
historical na4 mineralogical sense are naturally
occurring minerals, irrespectiveof how the term may
be appliedto syntheticmaterialsand in industry.In the
light of advances in mineralogy, the Hey (1930)
definition is found to be too restictive. The Subcommittee gave particular considerationto the following
questions.Is more that 5OVosubstitution of elements
other than Si andAl permissiblein tetrahedralsites?Is
tle presenceof HzO and of extra-framework cations
absolutely essential?Can'ointemrptedo'framework
structuresqualify as zeolite minerals?Thesematters
are furtler discussedinAppendix 1.
Definition
A zeolite mineral is a crystalline substancewith a
structure characterized by a framework of linked
tetrahedra,eachconsistingoffour O atomssurrowtding
a cation. Thisframework containsopencavities in thc
form of channelsand cages.Theseare u.suallyoccupied
by H2O rnoleculesand.extra-framework cations that
are commonlyexchangeable.The channelsare large
enough to allow the passageof guest species.In the
hydrated.phases,dehydration occurs at temperatures
rnost$ below about 400oCand is largely reversible.
Thef'ram.eworkmay be interru.ptedby (OH,F) groups;
theseoccupya tetrahedronapexthat is not sharedwith
adjacent tetrahedro.
Applicationof the defi.nition(seealsoAppendix1)
Relatively easy exchange of extra-framework
cationsat relatively low temperatureis a characteristic
feature of zeolites and zeolitic behavior, but varies
greatly from speciesto species.Its extent does not
providea convenientbasisfor the definition of zeolites.
In practice, it appears that channels must have a
minimum width greaterthan that of 6-memberedrings
(i.a.,rings consistingof six tetrahedra)in orderto allow
zeolitic behaviorat normal temperaturesandpressures.
Framework structuressuchas in feldspars,nepheline,
sodalites,scapolites,melanophlogite,and probably
leifite, in which any channelsaretoo resticted to allow
typical zeolitic behaviorsuchasreversibledehydration,
molecularsieving,or cationexchange,arenot rggarded
as zeolites.
Framework densify, defined as the number of
tetrahedralsites in 1000 43, was used as tle criterion
for inclusion inthe Atlas of Zeolite Structure Ilpes
1574
TT{E CANADIAN
@Iereret aL 1996).However,this criterion providesno
evidencethat the channelsnecessaryfor diffitsion are
present,as well as cages,and it has not been adopted
in the presentdefinition.
In some minerals witl a tetrahedral framework
sfructureandotherzeolitic characteristicsasdescribed,
namely parth6ite, roggianite, maricopaite, and
chiavennite,one apex of sometetrahedrais occupied
by an (OH) group or F atom insteadof being occupied
by an O atom. This (OH) group or F atom does not
form a bridge with an adjacent tetrahedron. The
framework is tlus intemrpted. Suchminerals are here
acceptedas zeolites.
In terms of the definition adopted,minerals of the
cancrinitegroupcanarguablybe consideredaszeolites.
This group has long been regardedby many or most
mineralogistsas distinct from tle zeolites, in part, at
least, becauseof the presenceof large volatile anions
(e.9., Hassan 1997). They are not reviewed in the
presentreport.3a1trs1similarly, wenkite containslarge
cagesand channels,but theseare blocked by SOa,C4
and Ba ions (Wenk 1973,Merlino 1974),inhibiting
zeolitic behavior. In addition, no water is lost below
500oC.Wenkiteis not includedasa zeolitein this report.
Leucite has seldombeenregardedas a zeolite, asit
does not display a full range of zeolitic behavior.
Nevertheless. it has the same framework structure
as analcime and conforms to the adopteddefinition.
Ammonioleucite can be regarded as an analcime
derivative,canbe synthesizedfrom analcimeby cation
exchange, and may have formed naturally by
low-temperaturereplacementof analcime.Leucite and
ammonioleuciteareincludedin the list of zeolites.asis
kalborsite, a derivative of the edingtonitestructure.
Also conforming to the definition adopted are
tle beryllophosphatespahasapaiteand weinebeneite.
Thesecontainneither Si norAl and canbe regardedas
end-memberexamples of Si-free zeolites or zeolite
phosphates.
MINERALOGIST
for departing from tle rules for giving a new nrme.
Casesarising under Rule 2 are particularly difficult,
and require individual consideration.
RuIe 1
(a) One or more zeolite minerals having a
topologically distinctive framework of tenahedra,and
a compositionthat is distinctivefor zeoliteshaving that
framework, constitute separatespecies. (b) Zeolites
having the sametopologically distinctive framework
of tetrahedraconstitute a series when they display a
substantial lange in composition in which differing
extra-frameworkcationsmay be the most abundantin
atomicproportions.Thesecationsrnayoccupydifferent
extra-frameworksites.Suchsarrasconsistof two or
morespeciesthat are distinguishedon the basisof the
most abundantextra-frameworkcation.
Application ofthe rule
Laumontite, for example, has a topologically
distinctive framework and a compositionwhich, asfar
asis cunently known, is distinctivein that Ca is always
the dominant extra-framework cation. It is a separate
zeolite speciesunderRule la. Natrolite, mesolite,and
scolecitehavethe sametopologicallydistinctivefranework structure as each other, and have compositions
that are distinctive. They also are separatespecies
underRulela.
Zeolites having the topologically distinctive
chabazitestructure have a range of compositions in
which any one of Ca, Na, or K may be the most
abundantextra-frameworkcation. SubstantialSr is in
somecasespresentas well, bui so far has never been
reported as the most abundantin natural gxamples.
Chabaziteis a seriesconsistingofthree separatespecies
Na K
underRule lb. It is knownthat near-end-member
Ca and Sr compositionsarereadily obtainableby ion
exchangefrom nalural Ca-dominantchabaziteat 110"C
(Alberti et al. L982a), but this is not the essential
RuLesron NowNo.eruns or Zrolrre MnrERAr-s
criterion for recognition ofthe natural series.
Mesolite may have either Na or Ca slightly in
In presentingthe following rules for nomenclature
excess
of the other,but the ratio Na : Ca is alwaysclose
of zeolite mine14ls,the Subcommitteefeels strongly
I : 1. The rangeof its compositionis not regardedas
to
that they should be viewed as guidelines rather than
and mesolite is not divided into more
as being rigidly prescriptive. As stated by Nickel "substantial",
one
species
on groundsof composition.
than
& Mandarino (1987): "It is probably not desirable
Severaldistinct structuralsitesfor extra-framework
to formulate rigid rules to define whether or not a
cationsarerecognizedin many zeolites,but in view of
compositional or crystallographic difference is
tle relatively loose bonding and specializedproblems
sufficiently large to require a new mineral name,and
only the
in esablishing the individual site-occupancies,
eachnew mineral proposal must be consideredon its
population of exfra-frameworkcations should in
total
own merits". Explanatorynotesfollowing the proposed
generalbe usedin defining zeolite species.
rules or guidelinesgive examplesof how the Subcommifreeenvisagesthaf rulebeing applid but Iike Nickel
Rule 2
andMandarino,the Subcommitteeurgesthat eachcase
(a) Differences in space-groupsymmebryand in
be treated on its merits. In some casesncompelling
reasonsmay exist on grounds ofhistorical usagefor order-disorderrelationshipsin zeolite mineralshaving
retaining an existing name,or other groundsmay exist the sametopologically distinctive frameworkdo not in
FORreOLITE MINERALS
RECOMMENDEDNOMENCT.ATURE
general provide adequategrounds for recognition of
separatespecies,but eachcaseshouldbe treatedon its
merits. (b) In assessingsuchcases,other factors, such
as relationship to chemical composition, should be
takeninto consideration.
Application ofthe rule
The Subcommitteefound it to be impracticable to
formulate quantified criteria 1e1hnadling problems
arising from this rule. Irrespective of decisions that
have been made in the past, care should be taken
that departuresenvisagedin Rule 2b from the principle
enunciatedin Rule 2a are basedon grounds ttrat are
truly compelling.
Analcime and certain other zeolites exist with
several different space-groupsymmetries, in some
casesoccurring on a yery fine scalein the samehand
specimenand with the samechemistry. Even though
this may be relatedto Si,Al ordering, separatespecies
namesin thesecasesare in generalnot warranted.
Gismondineand garroniteare examplesof zeolites
that havethe sametopologicallydistinctiveframework.
Both haveCa asthe dominantextra-frameworkcation.
Their differing space-gtoupsymmetry is associated
with disorderedSi,Al and the presenceof significant
Na in garronite.They are acceptedas separatespecies.
Gobbinsiteand amicite have topologically tle same
framework structure as gismondine, but are alkalidominant. Their different space-group symmetries
Epear to be relatedto Si,Al disorderin gobbinsiteand
possiblechemicaldifferences,andthey areprovisionally
retained. Barrerite is topologically similar to stilbite
and stellerite,but it has different symmetrycorrelated
with the presenceof extra cationsthat causerotational
displacementswithin the framework (Galli & Alberti
1975b);it is similarly retained.
L57s
continuousrange of compositions.The usual 507o
compositionalfl1ls gnnnsf be applied, as there are no
clearly defined Si,Al end-membercompositions for
heulandite and clinoptilolite. Thermal stability has
been used by some investigators to distinguish
clinoptilolite from heulandite. This is a derivative
property,however,suggested
by Mumpton (1960)asan
aid to identification, and it is not appropriate as the
basisfor definition. Afietti (1972) and Boles (1972)
haveshownthat thereis no gapin compositioneitherin
frameworkor extra-frameworkcationcontentsbetween
heulanditeand clinoptilolite, and that samplestransitional in compositionshow intermediatepropertiesin
terms of thermal stability.
Rule 4
Dehydration,partial hydration, and overhydration,
whether reversible or irreversible, are not sufficient
grounds for the recognition of separatespecies of
zeoliteminetals.
Application ofthe rule
If a new topologically distinctive framework arises
from overhydration or partial dehydration, separate
speciesstatuswould result from applicationofRule 1.
Leonhardite, a partially and in most casesreversibly
dehydratedform of laumontite, is not acceptedas a
separatemineral species.
Rule 5
Individual speciesin a zeolite mineral serieswith
varying extra-frameworkcationsarenamedby attaching
to the series name a suffix indicating the chemical
symbol for the extra-framework elementthat is most
abundantin atomic proportions,e.9., chabante'Ca.
Rule 3
The following exceptionsaremade:a) On grounds
usage,the
ofhistorical precedenceandlong-established
Zeolite mineral speciesshall not be distinguished tame harmotome is retained for the Ba-dominant
solely on the basis of the framework Si : Al ratio. An member of the phillipsite series. b) On grounds of
exception is made in the case of heulandite and long-establishedusage,pollucite is retained as the
clinoptilolite; heulandite is defined as tle zeolite Cs-dominantzeolite of the analcimestucture-type.On
minslal series having the distinctive framework grounds of establishedusageand markedly different
topology of heulandite and the ratio Si : Al < 4.0. space-gtoupsymmetry and Si,Al order related to the
Clinoptilolite is defined as the series with tle same extra-frameworkcation content@ule 2b), wairakite is
framework topology and Si : Al 2 4.0.
retained as the Ca-dominant zeolite of tle analcime
structure-type. On the ottrer hand, herschelite is
Application ofthe rule
suppressedin favor ofchabazite-Na (Appendix 2).
Many zeoliteshave a widely variable Si : Al ratio,
but this, in itself, is not regardedasproviding adequate
grounds for recognition of separate species. The
exceptionis basedon entrenchedusageof &e names
healanditeandclinoptilolifa, andtheir conveniencefor
recognizingan important chemicalfeature.The cutoff
value adopted(following Boles 1972)is arbitrary in a
Application ofthe rule
New species arising from Rule 5 that are well
authenticatedby publisheddata are set out in Table 1.
Futureproposalsfor additional new speciesunderthis
rule shouldbe dealt with as for any otler proposalfor
a new mineral name.
r576
TIIE CANADIAN MINERALOGIST
Adoption of a Levinson-style system of suffixes
avoids the proliferation of a large numberof new and
potentially unrelatedspeciesnames,and ensuresthat
all membersof a topologically identical compositional
seriesare indexedtogether.It has the great advantage
that where adequatechemicaldataare not required or
arenot available,a mineral canbe referredto correctly
by an unambiguousseriesname.The systemadopted
here is witlout the brackets (parentheses)used by
Levinson (1966) in suffixes for rare-earthminerals.
Substantial amounts of extra-framework cations
otler than the dominant one may be indicated, if
desired, by the use of adjectives such as calcian and
sodianne.g., calcian clinoptilolite-K. Such adjectival
modifiers are not part of the formal nameof a species.
Informal useis oftenmadeof descriptivetermssuch
as calcium chabaziteand Ca cbabazite,in which the
name or symbol of an elementis usedadjectivally. In
conformity with generalIMA guidelines,theseshould
not appearin print as mineral namesor in hyphenated
form. The correct narnefor tle mineral speciesin this
caseis chabazite-Ca.Termssuchas sodium-substituted
chabazite-Caare suggestedfor what in effect would be
a syntheticchabazite-Napreparedby cation exchange
from chabazite-Ca.Chabaziteremainsthe correctname
for a memberof the chabaziteseriesthat is not sfecifically identified on compositionalgrounds.
TABLE I. NEWLY PROPiOSK)AOLTTE SPECIES
gERrEst
wmtrN coMPiosrnor{Al
Spoi€s nrdg
Sp6i€s nono
brwnt€dt€
brwdecitesr
gedhft,
gnrfidtFNa
gmdid€..Ch
br$rs€dtsBe
gn8tidbK
dhabarrt+Ca
claboziteNa
hgrhdno.Ce
hsl$ditFNr
haileditFK
hs'hndit*Sr
chabaziteK
clhopdolte
dinoftiloliteK
clitroFdolitsNs
olinopflolilFCa
lsr4no
la4tmCa
l64fseNa
dacliardito
dacfiindite-Ca
daclirditeNg
padiqdto
padi4$sK
fingilsCs
gioite-Ns
pbillipcito
simitFK
sioni!+Ca
pmil6ileN8
pmipitc-Ca
pmipoits-f
frliasit&.Nr
h{ieitscs
dilhe-Ca
scilbiteNa
ftnisitelvt
ftrrigit+I(
ftrdcitoNa
Rule 6
lto firc-med
nmbo
of ec& s€d€sis ths @ to xtbic,hths 6i8iml t,rpe
(a) Space-groupvariantsof zeolite mineral species $Bpeim ftrth€ sis 8@ to bdorg;
may be indicatedby placing the space-groupsymbolin
round brackets(parentheses)after the mineral species
name,e.g.,analcime(Ibca),heriandite-Ca(C2lm).(b)
Levels of order may be indicated by adjectival use of
words such as oodisordered"
or "fullv ordered" before paragraph).Users of the list should bear in mind tlat
the mineral name.
the Si : A1 ratio, or, more generally, occupancy of
tetrahedralsites by Si, Al, R Be, Zr, and possibly
Application ofthe rule
otler elementsovaries widely in many zeolites. The
total exfta-frameworkcationchargevariesaccordingly.
Modifiers as suggestedhere are not paxt of t}le Major variation in more-or-lessexchangeable,extraformal namee1&s mineral.
framework cations is also a feature of many natural
zeolites. Contents of H2O tend to decrease with
AccspIEDZEourE SERTFS
ANDSprcrss
increasing number and size of extra-framework
cations, as well as with increasing temperatureand
Zeolites to be elevated to series status and the decreasingP(HzO). Such variations can be vital to
consequentialnew speciesto be recognizedon the basis petrological,geochemical,environmental,and experiof the most abundantextra-frameworkcation (Rule 5) mental considerations.
gimFlified or generalizedformulaeof zeolites,e.9.,
are set out in Table 1.
An annotated list of acceptedzeolite series and NaAlSi2O6.H2O
for analcime,haveoften beenreferred
speciesfollows below. In eachentry for series,and for to as "ideal" formulae.However,the supposedideality
those speciestlat are not membersof compositional may be in writers' desirefor simFlicity, rather than in
series, a simplified or generalized formula is given anything fundamental to the zeolites concerned,and
in the first line. This is followed by Z, the number of can lead to false assumptions.Thereis much evidence
theseformula units per unit cell, as given later in the that the compositionof naturally occurringanalcimeis
entry. The sim.Flified or generalized formula should a function of the chemicul eayllenment in which it
be regarded as representativeonly, and should not forms (e.9.,Coombs& Whetten1967).In environments
be regarded as an o'ideal" composition (see next of low Si activity, asin alteredsfrongly silica-deficient
RECOMMENDBD NOMENCI-ATTJRE FOR AOLITE
I577
MINERALS
alkalingrocks,naturalanalcimeapproachesa Si : Al
ratio of 1.5. The composition in burial metamorphic
rocks in equilibrium with quartz appears to be
distinctly moreSi-rich thanthe supposed'oideal"
Si : Al
value of 2. The evidently metastableequilibrium in
natural environments contafufng siliceous volcanic
glassor othersourceof silica yielding higheractivity of
Si than coexistencewith quartz,leadsto analcimeu.ith
Si : Al approaching3. Analogousobservationsapply to
heulandite and other zeolites. If "ideaf is taken to
imply equilibrium, it can tlerefore be concludedtlat
this is a function of the chemical (and P-T) environment during crystallization,ratherthan simply being a
function of crystal structure. Differing Si : Al ratios
may in turn favor different patterns of order in tle
frameworkApplicationof the term "ideal" to simFlified
or averagedformulae of zeolitesshouldbe avoided.
Also given in the fust line of each entry is tle
structure-type code allocated by the Structure
Commission of the International Zeolite Association
(ZA) and listed in Meier et al. (L996). The code
consists of tlree capital letters. A preceding hyphen
indicatesan intemrptedframework of tetrahedra.
The second line of each relevant entry starts
with the odginalreferencein whichthe currentnane of
the mineral, or a nearvariant of tlat name,is given,
followed by the type locality, or, in the caseof descriptions that predate the concept of type localities, the
generalregion of origin of tle material on which the
nameand original descriptionare based,rrhere this is
known. The locality is followed by a note on the
derivation of the name.Further information on these
mattersis given by Gottardi & Galli (1985), Clark
(1993), and Blackburn & Dennen(1997), but in some
casestle information is hererevised.
Next is given inforrnation on tle currenfly known
rangein compositionof the mineral concerned.This
includesknown values,or rumgeof values,for \i, the
proportion of tetrahedronsites occupiedby Si atoms,
asreportedin publishedresultsof acceptableanalyses.
For many zeolites, this value varies widely, and the
valuesreportedmay not indicatethe firll rangepossible,
especiallyin the caseof the rarer zeolites.
Much information on zeolite compositions was
givenby Gottardi& Galli (1985).Thepresentcompilation
incorporatesresultsoffurther extensivesearchesofthe
literature. A widely usedcriterion for acceptabilityof
zeolite compositionsis that the value of the balanceerror function of Passaglia(1970)
both Fez*and Fd+ may enter the structures of some
zeolites in extra-framework or framework sites, or
both.
Space-group symmetry and crystallographic
parametersfollow. Many acceptedzeolite speciesexist
with more than oneknown space-groupsymmetry,and
these are listed. Variations in space-gtoupsymmetry
andvariationsin order-disorderrelationshipof framework cationsare not in themselvesadequateevidence
for establishingnew species(Rule 2). Cell parameters
given are as reported for material specified in key
references.Cell dimensionsof many speciesvary
widely as a result of variablecomposifions,variable
extent of order, and differing levels of hydration.
Except for a few newly describedspecies,details of
structure,including size and orientation of channels,
can be obtainedfor eachstructuretype from Meier et
aL (1996)andarediscussedin Gottardi& Galli (1985).
The acceptedseriesand speciesare as follows:
shouldbe less than l07o, a figure that is itself arguably
excessive.The calculation of.EVomay be modified to
allow for other suspectedcations,suchasFeA andCs*.
The role of Fe causesproblems that may not be
resolvable.SomeFe reportedin zeolitesis undoubtedly
a contaminant, but there are reasonsto suspectthat
Analcime
Amicite
10H2O
I(aNaa[A\SisO32].
GIS
Z= 1
Alberfr.et aI. (1979).Tlpe locality: Hiiwenegg(aTertiary
melilite nephelinite volcano), Hegau, southwestern
Germany.Namedafter GiovanBattistaAmici (178G
1863), inventor of tle Amici lens and microscope
objectiveswith a hemisphericalfront lens.
Both type amicite and the only other known example
(Khomyakov et al. 7982) include minel Q1. f.t =
0.51.0.49.
9.884(1)A,
Monoclinic,.I2,a 1O.226(l),b LO.422(L),c
B 88.32(2)".
The framework is characterizedby double crankshaft
chainsas in gismondine(Alberti &Yezzalni1979).
Amicite has tle same framework topology as
gismondine.Si,Al and NaK distributions are ordered
and lower tle symmetry from topological l4llamd to
real symmetry.I2.
Ammonioleucite
ANA
(NII4)[AlSirOr]
Z = L6
IJoi et al. (1986).Tlpe locality: Tatanzawa,Fujioka,
Gunma Prefecture, Japan. The name reflects its
compositionandrelationshipto leucite.
Material from tle only known locality contains
significantK. T5i= 0.70.
Tetragonal,I41la,a 73.2L4(L),c 13.713(2)A.
ANA
Na[AlSi2O6].H2O 2=].6
Hany Q797, p. 278). Tlpe locality: near Catanes,
CyclopeanIsles,Italy (Haiiy,1801,p. 180-185).Name
from Greek roots meaning "witlout strength", in
1578
TTIE CANADIAN
allusionto theweakelectricaletrectsinducedby friction.
In most analyzedspecimens,Na is the only substantial
extra-ftameworkcation,but analcimeformsa continuous
serieswith pollucite andpossibly with wairakite (Seki
& Oki 1969,Seki 1971,Cho & Liou 1987).Ts varies
widd 0.594.73 (e.9.,Coombs&Whetten 1967).As
Si increases,NaAl decreasesand HrO increases.
Topological symmetry is cubic, Ia3d.Real symmefy
variantsinclude:
cubic,Ia3d, a 13.725A;
tetragonal,I41lacd, a 13.723(1), c 13.686(10)A;
a L3.72I(I), c L3.735(l) ANIaz.zi & Galli 1978);
tefragonaT,
I41la;
orthorhombic, Ibca, a 13.733(l), b L3.729(I), c
13.712(r)L: a 13.727(2),b 1.13.71.4(2),
c B.7a0Q) A.
Mun & Galli 1978);
monoclinic with 2-fold axis parallel both to pseudocubic[100]and[110];
triclinic, a 13.6824(5),b L3.7OM(6),c L3.7063(5)A,
o 90.158(3)',B 89.569(3)',y 89.543(3)'(Hazen&
Finger 1979);
and probably trigonal with variable Si,Al order (a.9.,
Hazen& Finger 1979,Teertstraet al. 1994).
The name applies to Na-dominant composifionswith
this framework structureregardlessof the degreeand
patternsof order.
MINBRALOGIST
Bikitaite
BIK
Z=2
LilAlSi2O6l.H2O
(1957).
Zimbabwe.
locality:
Bikita,
Tlpe
Hurlbut
Namedafter the type locality.
Tlvo known localities, with the bikitaite having very
similar ee6p6sitions.Tsi= 0.67.
MonoctinicfP21,a 8.6L(4), b 4.962(2),c 7.600(a)A,
B L14.45(l)'(Kocmanet aI.1974).
Also triclinic, Pl, a 8.606(1),b 4.953(I), c 7.599(l) 4,,
cr 89.89(2)", B 174.42(2)', y 89.96(2)" (Bissert &
Liebau 1986).
The frameworkstucture consistsof 5-memberedrings
linked by additionaltetrahedraIts topologicalsymmetry
is P21.The monoclinicP2t variantof Kocmanet al. has
partly orderedSi,Al distribution;the triclinic Pl variant
of Bissert andLiebau is highly ordered.
Boggsite
CatNa:[AlrqSinOp2].70H2O
Z=I
BOG
(L990).TYpe
(L989)
Pluth er al.
and Howard et al.
locality: Basalt abovecliff, GobleCreek,southside of
tle Neer Road, 0.2 km nofih of Goble, Columbia
County,Oregon,U.S.A. Namedafter RobertMaxwell
Barrerite
Boggs(father)andRussellCalvin Boggs(son),mineral
collectorsin the Pacific Norttrwest.
Nar[AlrSirOtr].6H2O Z=8
STI
boggsite approximatesthe above formula, with
Tlpe
(1974,1975).
Passaglia& Pongiluppi
Tlpe locality:
Capo hrla, Sardinia, Italy. Named after Professor minor Fe, Mg, and K. Boggsitefrom Mt. Adamson,
RichardM. Barrer (1910-1996)ef Imperial College, Antarctica (Galli et al. 1995) approximates
with minor Fe, Mg, Sr,
London,for contributionsto the chemistryof molecular Ca6l.{a5K[AlrsSilOp2].70H2O,
Ba.T51= Q.Sl.
sieves.
Also known from Kuiu Island, Alaska @i Renzo & Orthorhombic, Irnma, a 20.236(2), b 23.798(L),
Gabelica1997).Tsi=O.77,O.78.The typeexamplehas c 12.798(l)A (Ptutl & smirh 1990).
Si,Al highly disordered.
composition:
(Na:.asKr.oeCao.sM&.rz)
[Als.reF%
.orSin.72O7).25.78H2O.
Brewsterite (series)
OrthorhombicoAmma ot Arnmm, a L3.643(2),
(Passaglia
b 18.200(3),c 17.842(3)A
& Pongiluppi
(Sr,Ba)zlAlaSiuO32l.
10H2O
r974).
BRE
Z=L
The stucture is similar to that of stilbite and stellerite.
but it has different symmetry as a result of extra Brooke (1822). Tlpe locality: Strontian, Argyll,
cations, which causerotational displacementswithin Scotland.Named after Sir David Brewster (1781the framework (Galli &Alberti 1975b).
1868),Scottishnatural philosopherwho discovered
laws of polarization of light in biaxial crystals.
Bellbergite
Monoclinic, P21lm,P2y or triclinic (Akizuki 1987a,
(KBaSr)zSrzCar(CaNa)a[Al1sSi13072].30H2O
Akizuki et aL.1996).
Z=L
E A B The structureis sheet-likeparallel to (010) @errotta&
Riidinger et al. (1993). Tlpe and only known locality: Smith 1964).
Bellberg (or Bellerberg) volcano, near Mayen, Eifel,
Brewsterite-Sr
Germany.Named after the locality.
Ca is overall the dominant extra-framework cation.
Tsi= 0.51.
New namefor the original speciesof the series;Sr is
Hexagonal,possiblespace-groups^PQlmmc,
P62c, alid the most abundantextra-framework cation. T51in the
P63mc,a 13.244(l),c 15.988(2)A.
ran9e0.744.75.
The framework structure is as for svnthetic zeolite Monoclinic,72rlm,a 6.793(2),b 17.573(6),c 7.759(2)
TMA_EAB.
A, B 94.54(3)oofor composition (Sr1.a2Baa.arKo.r)
RECOMMENDED NOMENCI.Af,URE FOR ZBOLITE MINERAI.S
r579
(Schlenkeret al. 1977a).
[AI4.uSirLe5O32].aHzO
On optical grounds,possiblytriclinic (Akizuki I987a).
Refinedastriclinic in threeseparategrowth-sectorsby
Akizuki et aI. (L996).
Partly orderedSi,Al distribution.
Although originally described 4s sqalaining "silexn
alumina, and potash" (L6vy 1825), tle name
herschzlitehasoftenbeenappliedto chabaziteminerals
of tabular habit and high Na content. Herschelite
shouldno longer be usedas a speciesname.
Brewsterite-Ba
Chabazite-K
New name;Ba is tle most abundantextra-framework
cation.
Proposed type-example: the Gouverneur Talc
Company'sNo. 4 wollastonitemine nearHarrisville,
Lewis County, New York, U.S.A. (Robinson& Grice
1993).Also Cerchiaramine, Liguria, Italy (Cabellaet
al. L993,including structurerefinement).Tsi = 0.73,
0.74.
Monoclinic^,P21lmot P21,a 6.780(3),b L7.599(9),
c 1.733(2)L, B 94.47(3)" for type examFle,containing
up to 0.85Ba per 16 O atoms.
Chabazite (series)
New name; K is the most abundant single extraframeworkcation. Othercationsvary widd T51inthe
range0.6G{.74.
Suggestedfype-specimen:Tufo Ercolano,Ercolano,
Naples, Italy (De Gennaro & Franco L976)'
a iz.t+g(z), ts.tos(r) A, for hexagonalcell, witl
composition"(K2.s6Nan.$Cas.a6Mge.16Sre.e1)[Ala37Fe6
Si7.@O241.11.42H2O.
Chiavennite
CaMnlBerSisOr(OlD2l'2H2O
-{HI
Z=4
Bondret al. (1983),Raadeet aI. (1983).Tlpe locality:
ChiavennaLombardy,Italy. Namedafter type locality.
The limited data available show up to 0.72 Al
and 0.15 B in tetrahedral sites, and significant
extra-framework Fe and Na (Raade et al. 1983,
Langhof& Holstam1994).Ts1in therange0.63to 0.68.
Orthorhombic, Pnab, a 8.729(5), b 31'.326(1'l),
c 4.903Q) A, (tazzob et al. 1995).
A CaMnberyllosilicate with an intemrptedframework
of four-connected[SiOa] and tbree-connected[BeOa]
tetrahedra.
(Caos,NaK)alAlaS
isOS. 12H29
CHA
Z=I (trigonal)
Boscd'Antic (1792),as"chabazie".The sourceofthe
original specimenis unclear.The nameis from a word
"chabaziono'used for an unknown substancein the
story of Orpheus.
Ca-,Na-, andK-dominantspeciesoccurin that orderof
frequency,with Sr andMg occasionallysignificant Ba
moreminor.Ts varieswidely, 0.58to 0.81.
Topological symmetry of tle framework, trigonal
(R3n), wherea = L3.2,c = 15J A (pseudohexagonal
ClinoPtilolite (series)
cell). Significan!deviationsto triclinic, PI, a * 9.4,
*
=
o
(Smith
et
b 9.4,c 9.4A, U.= 94o,B 94",T- 94"
(NaK,Caos,Sro.s,B
aos,Mgos)e[Al6si30o72]'-20ILO
& Galli 1983).
al. 1964,l,0lllazzr
I{EU
Z= L
Partial ordering leadsto the lower symmetry.
Schaller(1923, 1932).Tlpe locality: in d6semFosed
basalt at a high point on ridge running east from
Chabazite-Ca
Hoodoo Mountain, Wyoming, U.S.A. ("crystallized
mordenite" of Pirsson 1891).The name reflects its
most
common
species;
New namefor the original and
Cais the most abundantsingleexfia-frameworkcation. inclined extinction and supposed similarity in
Other cationsvary widely. Tr; in the range0.58-O.80. composition to "ptilolite" (mordenite). Ptilo-, from
cell, Greek, alludes to the downy, finely fibrous nature of
A, for pseudo-hexagonal
a L3.790(5),c 15.0210(4)
(Ca1361.{a6.orlq.20Mg6.02Sre.o:)[Al:.sa
that mineral.
with composition
from Col de Lares' Val di The cation content is highly variable. Ca-, Na-, and
Fes.61Sis.i3O2l'13.16H2O,
K-dominant compositionsare known, and Sr, Ba,
Fass4 Italy @assaglia1970,#L3).
andMg arein somecasessubstantial.Feh andFek are
possibleconstituents.In Pirsson's(1890)analysis,K is
Chabazite-Na
the most abundant single cation by a small margin.
Clinoptilolite-K is thereforetakenasthe type speciesof
extrasingle
Na
is
ttre
most
abundant
name;
New
frameworkcation.Other cationsvary widely. Ts1in the the series.Tn in the range0.8G{.84.
Minerals with the sameframework topology but with
nngeO.624.79.
Suggestedtype-locality: biggest "Faraglione" facing Tsi< 0.80, Si/Al < 4.0 areclassifiedasheulandite,with
Aci Trezza, Sicily, Italy (Passaglia 1970, #D. which clinoptilolite forms a continuousseries.
a L3.863(3),c 15.165(3)A, for hexagonalcell, with Monoclinic,CArn,or A,or Cm.
Structure refinements by Alberti (I975a) and
composition (Na3.11K1.65Cax.rrlVlge.66Srs.65)
[Ala.53Fes.e1
Armbruster (1993) demonstratevariations in extraSir.aoOz].11.47H2O.
1580
framework cation sites compared with heulandite
and as a function of the extent of dehydration.
Dachiardite (series)
(Caj5,Na"K)a-5
[AI4-5Si20-r
eo4s].13HrO
Z=L
DAC
Clinoptilolite-K
D'Achiardi (1906).Dpe locality: SanPiero in Campo,
New name for tle original species; K is the most Elba, Italy. Named by the author in memory of his
(1839-1902), frst fuIl
abundantsingle sx66-fram.\ /ork cation.A moderately father, Antonio D'Achiardi
professor
of
Mineralogy
at
the
University of Pisa.
K-rich clinoptilolite-K was referred to as "potassium
clinoptilolite'by Minato & Takano(1.964).Ts in the May containminor Cs andSr.Ts1in therange0.7H.86.
Monoclinic, topological symmetry Alm, real
range0.8G{.83.
symmetry Crn.
Monoclinic,AJm. C2,ot Cm.,a L7.688(1,6),
b L7.902(9), The structure consists of complex chains of
c 7.409(7) A, n tto.solt)o, for (I!.zzNao.rcao.* 5-memberedrings cross-linkedby 4-memberedrings
Sre3TMge.,eFee.orlr4ns.sJ[A16.,
2Si2e
ssO'f,.nH2O, from (Gottardi & Meier 1963), but with complexities that
an off-shoreborehole,Japan(Ogrhara& Iijima 1990). commonlyresuhin diffrse andstreakedX-ray-diffraction
maxima (Quartieri et aL.7990).
Clinoptilolite-Na
Dachiardlte-Ca
New name; Na is tle most abundant single extraframeworkcation. Other cationsvary widely. Ts1in the New namefor the original speciesof the series;Ca is
the most abundantextra-frameworkcation.Dachiardite
range0.80--0.84.
from the type locality contains 0.12 Cs atoms per
Suggestedtype-example:Barstow Formation,about formula vnut(apfu) (Bonardi 1979).Tsi in tle range
1.6 km eastof mouth of Owl Canyon,SanBernardino 0.7H.83.
County,California U.S.A., USGSLab. no. D100594 14e16slinic,topologicalsymmetryC2lmorealsymmety
(Sheppard& Gude 1969a).
Cm. a 1"8.676,
b 7.5L8,c 10.246A, B 107.87o,for
Monoclinic,QAm,C2,or Crn,a 17.627(4),b 17.955(4), tlte composition (Car.saNao.azlG.e2Csj.11Sre.12Baa
c 7.399(4) 4,, n ne .ZO1Z).(Boles 1972), for type
[Al4.s6Fe0.02sir8
.s6Oasl.l2.56E2Ofrom tle type locality
material of Sheppard & Gude (L969a), (Na'1K1..,
Nezz,abnL984).
Ca66tBao'Mgo,,Mno.o,)[Al66rFq
.6Si,p,nO7.].20.4L12O.
Partly ordereddistribution of Si,Al.
Clinoptilolite-Ca
New name; Ca is the most abundant single extraframeworkcation. Othercationsvary widely. Ts1in the
range0.80-0.84.
Suggestedtype-specimen:Kuruma Pass,Fukushima
Prefecture,Japan(Koyama& Tak6uchi 1977).
\/f6a6s1inis,^()1t771,
C2, or Cm,a 17.660(4),b L7.963(5),
c 7.4O0(3)A, B L1"6.47(3)o
basedon C2"/m(Koyama&
Tak6uchi 1,977), for Kuruma Pass specimen,
(Nar.ruKr.e5Ca,.roMgs.17)
[A.16.7
2Si,2e.6Or").23.7H2O.
Cowlesite
Dachiardite-Na
New name;Na is the most abundantexba-framework
cation.
Suggestedtype-example:Alpe di Siusi, Bolzano,Italy
(Alberti L975b).
Available analytical results for material from seven
localities,e.9.,Bonardi et al. (198L)showconsiderable
variation in Na : K : Ca proportions. Tsi in the range
0.81-0.86.
Monoclinic,a 18.647(7),b 7.506(4),c 1,0.296@)
L,
B I 08.37(3)', for (Na2.5eKn.r1Caa.53Mge.eaBao.or)
[AI+.zz
Fe6.11Si1e.61Oasl.13.43HzO
from the type locality
(Alberti L975b).
Diffrrse diffraction-spotsindicate disorder.
Ca[AlrSi3O,o].5.3HrO
Z=52 @Acodenotassigned)
Wise & Tschernich(1975). Tlpe locality: road cuts
Edingtonite
0.65 km northwest of Goble, Columbia County,
Oregon,U.S.A. Named after John Cowles of Rainier, Ba[AlzSi:Oro].4ItO Z=2
EDI
Oregonoamateurmineralogist.
Haidinger (1825).Tlpe locality: Kilpatrick Hills, near
Minor substitutionfor Ca by Na and lesserK, Mg, Sr, Glasgow Scotland. Named after a Mr. Edington of
B4 Fe.To in therange0.60--0.62(Yezzalitret al. 1992). Glasgow,in whosecollectionHaidingerfoundthemineral.
Orthorhombic,P222tor Pmm.m,Pmm2,Y2wn, Y222 Small amountsof K, Na andCa may replaceBa. T5iin
(Nawaz L9U), a 23.249(5),b 30.629(3), c 2a.96a@)A the range0.59-0.61.
(Artioli et al. 1987).
Orthorhombic,F2t2t2b a 9.550(10),b 9.665(10),
Structure and degree of order of framework cations c 6.523(5)A @Ohletmine, Westergotland,Sweden)
have not beendetermined.
(Galli 1976).
RECOMMENDED NOMENCLATTJRE FOR 4OLITE
Also tetragonal,P42rm,a9.584(5),c 6.524(3)A (On
Kilpatrick, near Glasgow, Scotland) @Iazzi et al.
1984).
From optical evidence,Akizuki (1986)suggestedthat a
triclinic true symmetryalso is possible.
The structureis similar to that of natrolite, but with a
distinctive slessJinking of the chains (Taylor &
Jackson 7933, Mazzi et al. 1984). Examples of
orthorhombic edingtonite have nearly perfect (Si,Al)
order.The tetragonalform is disordered,and available
analytical results show that slightly more Ba hasbeen
replacedby other ions.
Eptutilbite
(CaNaJlAlzStAOd.4H2O
Z=4
EPI
Rose (1826). Tlpe localities: "Iceland" and "Fartie
Islands". Named from Greek epi in the senseof near,
and stilbite, from its supposedsimilarity to the latter.
Na/(Na + Ca) variesfrom about0.1 to 0.3, with minor
K and Ba (e.S- CaIi & Rinaldi 1974).Tsiin the range
0.724.77.
Monoclinic, C2, a 9.LOL(2),b 17.74L(L),c 10.226(l)
A, B 124.66(2)o(Teigarhorn, Iceland: Nberti et al.
1985),or
triclinie, CI, a 9.053(L),b L7.738(3),c L0.209(I)4.,
o 89.95(1)',I 124.58(1)',y 90.00(1)' (Gibelsbach,
Valais, Switzerland:Yang & Armbruster 1996).
The structural framework belongs to tle mordenite
group (Gottardi & Gatli 1985).Earlier work suggested
space-groupsymmetryC2Jm @elr.ottaL967). Albem et
al. (L985) proposed a domain structure involving
acentricconfigurationsof tenahedra,and spacegroup
C2. Yaq & Armbruster (1996) indicated that the
proposeddomainscan be modeledby (010) disorder
caused by a local mirror plane, and tlat increased
partial order of Si,Al leadsto fisliniq symmetry.
MINERAI,S
1581
epitactic growths (Passagliaet al. L998). The three
mineralshave4-, 6- and 8-memberedrings.They differ
in the stackingof singleand doubleGmemberedrings,
resultingin different c dimensionsanddifferently sized
andshapedcages.Si,Al disordered.Erionite-Na
New name;Na is the most abundantexfta-framework
cation.
Proposedtype-example:Cady Mountains, Californi4
Tslin therange0.744.79.
aL.1965).
U.S.A.(Sheppwdet
For tho rypJspecimen,a B.rI4Q), c tS.OaS(+)A,
composition(Na5.5eK2.ssCax.11Mgq.1sFe6.0,
[AL.57Si2s.2?
(Sheppard& Gude L969b).
0721.24.6OH2O
Erionite-K
New name: K is the most abundantextra-framework
cation.
Proposedtype-example:Rome, Oregon, U.S.A. in
which K makesup 58Voof extra-framework cations;
significant Na, Ca, and Mg also are present (Eberly
1964).Tsiin the rangeO.74F4.79.
For a specimenaomOrtenberg,Germany,a I3.227(L),
c 15.075(3) A, (K3.32Nas1Ca".*Mgs.o6Bao.oJ[A]ms
Si2r.6,O721.31.99H2O
@assagliaet al. 1998).
Erionite-Ca
New name;Ca is the most abundantextra-framework
cation.
Proposed type-example: Maz{ Niigata Prefecture,
Japan(Haradaet al. 1967).Ts in the range0.68-0.79.
c fS.OSt(Z)A;
For thi rype exnmpleta ].3-.433{1),
1.35H2O
(Ca2.2sK1.5aNa6.e5Mge.s6)[Als.sSi26.eeO72].3
(Haxaala
et al. L967).
Faujasite (series)
(Na Caos,M&.5,K),[Al,Si12-"O
ul. L6HzO
FAU
2=16
Kr(NaCaoj)s [AlroSi26O72].3
0H2O
Damour (1842). Tlpe locality: Sasbach,Kaiserstuhl,
Z=7
Germany. Named after Barth6l6my Faujas de Saint
Eakle (1898).Tlpe locality: Durkee,Oregon,U.S.A., Fond. noted for his work on extinct volcanoes.
in rhyolitic, welded ash-flow tuff. Name from Greek Major amountsof Na, Ca andMg arecommonlypresent
root meaningwool, in refergnceto its alpearance.
and in somecases,K; minor Sr is also reported.The
Substantialamountsof any or all of Ca,Na andK and ratio Si : Al alsovaries;Tslin the range0.68-{.74, with
subordinateMg may be present,and thereis evidence onerecordof 0.64.In most samplesanalyzed,.rin the
that fraceFe may entertetrahedralandextra-framework abovegeneralizedformula is in the range3.2-3.8, with
sites.Eakle's (1898)analysisof type erioniteshowsNa one record of 4.4 (Rinaldi et al. 1975a,Wise 1982,
asthe mostabundantextra-frameworkcation;Passaglia Ibrahim& Hdl 1995).
et al. (L998) found Ca to be the most abundantin a Cnbic, Fd3m, a 24.65 A (material from Sasbach:
type-locality specimen.Ts1in the range-0.68-{.79.
BergerhoffetaL1958).
Hexagonal,PQlmmc,a I3.I5, c L5.02A (Kawahara& The framework structureis very open, with complete
Cwien 1969).
sodalite-typecagesandwith very large cavitieshaving
The sfructureis relatedto thoseof offretite, with which L2-memberedring openings.Up to 260 moleculesof
it may form intergrowths with stacking faults I{2O canbe accommodatedper unit cell @ergerhoffer
(Schlenkerer al. 1977b),andlevyne, on which it forrns al. L958,Baur 19@).
Erionite (series)
r582
b 1,4.145(2),c 7.499(I) A for specimenfrom Monastir,
Sardinia, of composition (Mgr.orKt.rsl.{ao.reCaos,
(Alberti &
New name;Na is t}le most abundantextra-framework Srs.1aBao.0r[Al6.6eSi2e.eaO72].17.86H2O
cation, as it is in the original (incomplete) and most Sabelli 1981.
subsequentanalysesof samplesfrom the type locality,
X'errierite-K
Sasbach,Kaisersfubl,and someother localities. Ts1in
the range0.70_0..74,
with onereportof O.64.Reportedvaluesof a rangefrom 24.638(3)A (Wise New name; K is the most abundant single extraframework cation.
1982)to A.728(2) A (Ibrahim& Hall 1995).
Proposedtype-example:Santa Monica Mountainso
California,U.S.A., composition(l(r*Na1.1alvlgo
Faujasite-Ca
.roCao.ro)
(Wise& Tschernich1976,#3).
[Al5.00Si3mrO72].aH2O
New name;Ca is the most abundantextra-framework T.t in the range0.81-0.87.
cation.ReportedTsiin the range0.6H.73. Proposed Orthorhombic,a 18973Q),b L4.L40(6),c 7.478(4)L
type-example: drill core from Haselborn near for type specimen.
Ilbeshausen,
Vogelsberg,
Hessen,Germany(Wise1982),
Ferrierite-Na
composition (Car.azNfu5oVIBogIG.onXAL.83Si8.reo24l
'nHzO,Z=L6.
Reportedvaluesof a:24.714(4)and24.733(3)A (Jabal New name; Na is the most abundantsingle extraHanoun,Jordan:Ibrahim & Hall 1995).
framework cation.
Proposedtype-example:Altoon4 Washington,U.S.A.,
q.d [Al5S13
jsCa6.s5Srs.6B
composition(1.{a:.oe&.s'Mge
Faqiasite-Mg
r
O72l.18HrO(Wise& Tschernich1976,#L).
New name;Mg is the most abundantextra-framework T31in the range0.85-0.88.
c 7.470(5)
b 14.182(6),
Monoclinic,Y2rln,a 18.886(9),
cation.
Proposedtype (and only) example:'oOld(museum) A, B 90.0(1)' (Gramlich-Meier et al. 1985, for a
sample"(# 32, GenfhCollection,PennsylvaniaState specimenfrom Altoona, Washington).
University) from Sasbach,Kaiserstuhl,Germany(anal.
Garronitr
#15, Rinaldiet al. 1975a),composition
(Mgrs:Caa.Naz.0K6.4XAl56Si
Q 3sal.nH2O,
Z = L.
13?
NaCa2.5
[A16SinO.e].| 4 H2O
GIS
Z= |
f,'errierite (series)
Walker (1962). Tlpe locality: slopes of Glenariff
(K,Na,Mgs5,Caos)6[A16Si30Ozr].8HzO
Valley, CountyAntrim, Northern keland. Namedafter
Z=].
F E R the GarronPlateau,wherethe type locality is sited.
Graham(1918).Tlpe locality: KamloopsLake, British Cal(Na + K) is variable, but Ca predominates.Tlpehasaboutl.3Naapfu, someothershave
Columbia Canada.Namedafter Dr. Walter F. Ferrier, localitygarronite
mineralogist,mining engineer,andone-timememberof (Na + K) < O.2 apfu. H2O in the range 13.0-14.0
the GeologicalSurveyofCanada who first collectedit. moleculesper formula unit. \1 in the range0.60-0.65.
Substantialarnountsof any or all of Mg, K Nq andCa, The crystal_structurehas been refined in" tetragonal
may be presenl and smalleramountsof Fe, Ba, and Sr. symmety, i4m2, a 9.9266(2),c I 0.303I (3) A, by Artioli
(1992),andNa-freesyntheticgarronitehasbeenrefined
Ts1in the range0.8H.88.
A, by Schriipfer& Joswig
Statistical symmetry, ortlorhombic, Imrnm:, true nI4/a, a9.873(1),c 10.288(1)
symmetriesorthorhombicoPnnm, a 19.23,b L4.t5, (1997). Orthorhombicsymmetryhasbeenproposedon
c 7.5OA (Alberti & Sabelli 19^87),and monoclinic, the basis of X-ray diftaction witi twinned crystals
Y2/n, a 18.89,b L4.78,c 7.47 A, B 90.0' (Gramlich- (Nawaz1983)andcrystalmorphology(Howard 1994).
The framework topology is the same as for
Meier et al. L985).
The structurewas first determinedby Vaughan(1966). gismondine,but Si andAl are essentially disordered.
FrameworkSi,Al partially ordered(Alberti & Sabelli The different space-groupsymmetry (tutioli L992)is
L987).
associatedwith disorderandthe presenceof significant
Na. Gottardi&Alberti (1974)proposedpartial ordering
f,'errierite-Mg
subsequentto growth to explain fwin domains.
f,'aujasite-Na
Gaultite
New namefor the original memberof the series;Mg is
the most abundantsingle extra-frameworkcation.
VSV
Z=8
Substantial extra-framework Na, K, and lesser Ca Naa[Zn2Si7O1d.5H2O
Ercit & Van Velthuizen(L994).Iype locality: Mont
commonly present.T51in the range0.80-0.84.
True symme6y orthorhombic,Pnnmoa 19.23L(2), Saint-Hilaire,Quebec,Canada.Namedafter RobertA.
RECOMMENDEDNOMENCLATUREFORreOLITE MINERALS
Gault (b. 1943),mineralogistat the CanadianMuseum
of Nature, OttawaoOntario, Canada.
No other elements detected in the one reported
example;Tsi= 0.78.
Orthorhombico Fkld, a L0.2IL(3), b 39.88(2),
c 10.304(4)A.
The zincosilicate framework of tetrahedra is
characterizedby stackedsheetsof edge-sharing4- and
8-memberedrings. The sheetsare cross-linkedby
tetrahedra. Gaultite is isostructural with synthetic
zeoliteVPI-7 andsimilar in structureto lovdariteGrcit
& Van Velthuizen 1994).
1583
Gmelinite-Na
New namefor the most coulmon speciesof the series.
I1occursin at leastone of the g@elinitetype-localities
(MontecchioMaggrore).The Ca contentis commonly
substantial,K is minor, and Sr is significant in a few
samplesanalyzed.Ts1in the range0.65-0.71.
c 10.048(5)A
Hexagonal,P6y'mmc,a 1.3.756(5),
(Gallt et aL L982), for near-end-membermaterial
from Queensland, Australiao of composition
(Nar.utCao.*&r6)[AL.41Si16.4eO4s].21.5
1H2O@assaglia
et al. t978a).
Gmelinite-Ca
Gismondine
Ca[AlzSizOs].4.5HrO Z=4
GIS
(in
Leonhard
footnote,
1817),
renaming
von
oozeagonitd'
of Gismondi(1817).Tlpe locality: Capodi
Boveonear Rome, Italy. Named after Cado Giuseppe
Gismondi (1762-l8U), lecturer in Mineralogy in
Rome.
(K + Na) doesnot exceed0.12 apfu with K lesstlan
0.08 apfu; analysesshowing high K result from
intergrownphillipsite. Minor Sr may be present;Ts in
therange0.514.54 ('lezzalni & Oberti 1984).HzOis
slightly variable (4.M.5 moleculesper formula unit)
becauseof mixed 6- and 7-coordinationof Ca (Artioli
et al.1986b).
\{easeliniso originaily refined tn P2/a by Fischer&
Schramm(1970); cell convertedto standardP21lc
settingis a 10.023(3),b 10.61.6(5),
c 9.843(15)
s_econd
A, B 92.42(25)".Also refined (t'wosamples)by Rinaldi
&yezzalini (1985).
The frameworktopology is basedon crankshaftchains
of 4-membered rings as in feldspars, connected in
ULIDD configuration.
Si,Al are strictly ordered.
Gmelinite (series)
(Naz,Ca,K)a[ALSi16oa3].22H2o
2=L
GMF.
(1825a).
Brewster
rlperocariry,
th"ou*"*i
proposedfor minerals occuning both at Little Deer
Park,Glena:m,CountyAntrim, Northernkeland, and
at Montecchio Maggrore,Yrcenz4-ltaly. Named after
Christian Gottlob Gmelin, Professorof Chemistry,
UniversityofT0bingen.
Na-dominantmembersarethe mostcommon.\1 in the
range0.65-{.72.
Hexagonal,PQlmmc, a 13.62-t3.88, c 9.97-1O.25A.
The stucture is similar to that of chabazite,with which
it is commonlyintergrown(Sfrunz1956),but gmelinite
has a different stacking of the double 6-membered
rings @scher 1966).Si,Al are disordered.
New namefor a speciesthat also occursin at leastone
of the type localities (MontecchioMaggiore).Ca is the
most abundantsingle exta-framework cation. Significantto substantialSr andNa, minor K. \1in the range
0.68-{.70.
Hexagonal,PQlrnmc,a 13.800(5),c 9.964(5)A (Galli
et al. 1982),from MontecchioMaggiore,of compositron
3.23H2O
(Ca2.s6Sr1.35Na0.78K0.r
16.21Oas]'2
1)[Al?.s2Si
@assagliaet al. 1978a).
Gmelinite-K
New name; K is the most abundant single extraframework cation. Proposed type-example: Fara
Vicentina"Vic enz4 Italy, composition(K2.72Ca1.67Sre3e
(YezzalTmet
Nao.uzMgo.rJ[Alr.7eSi16.32Oa3].23.52H20
al. 1.990\.Also known from the Kola Peninsula
(Malinovskii1984).
Hexagonal,P6zlmmc,a L3.62I(3),c L0.254(l)A.
Gobbinsite
GIS
Z=l
Na5[Al5Si11Orzf.L2LlzO
(1982).
basalt
cliffs
Nawaz & Malone
$pe locality:
near Hills Port, soutl of the Gobbins area, County
Antrim, Nortlem Ireland. Namedafter the locality.
Na: Ca: Mg: Kvariable,withNagreatlypredominant
Ca < 0'6 apfu'-.Reportsof high K are ascribedto
ffi%?fjffi;'jilffih&X?,#fl?*;ffirff
pmn2y a 10.108(1), b 9.766(L),
Orthorhombic,
c 1,0.I7L(I) A for the anhydrous composition
(Nar.roKr.r,Ca".5e)[Al6.17sie.$o32]
from Tlvo-Mouth
Cav",-Countyemirn,Northemlreland(McCuskereraL
b 9.8016(5),c 10.1682(6)A for
1985);a 1O:1027(S),
(Na.43Cao.6)[Al5.6Siro.nOr2].12HrO
from Magheramorne
quarry,Larne, Northern heland (Artioli & Foy 1994).
The frameworktopology is the sameasfor gismondine
chainsof 4-memberedrings,
andis basedon cra:rksha:ft
as in feldspars.Distortion from tetragonaltopological
symmetry results from the arrangementof cations in
the channels.Si,Al in the fra.rneworkare disordered.
1584
TTIE CANADIAN
Gonnardite
(NaCa)o+[(Al,Si)2oO4o].
12H2O
Z=I
NAT
Lacroix (1896). Tlpe locality: Chaux de Bergonne,
Gignat Puy-de-D6me,France.Namedafter Ferdinand
Gonnard. who had earlier described the material as
oomesole"
(= thomsonite).
Forms an extensive substitution seriesocommonly
(after
approximatingNa3-3,Ca2,[A\*"Si12-Oa6].12H2O
Rossel aL 1992),with minor Feh, Mg, Bq Sr, andK.
Ts;in the range0.52-{.59 (or O.524.62 if tetranatrolite
= gonnardite).
Tefragonal,IZd, a L3.2L(l), c 6.622(4)A for material
from Tvedalen,Langesund,Norway, of composition
(Nat.az&.orCar
jo)[A1e.22Sir0.73O
aa].L2.37H2O@Iazziet
al. 1986).
The structure is similar to that of natrolite. but with
Si,Al disordered, and usually with significant to
substantial Ca (Mazzi et al. L986, Artioli & Torres
Salvador1991,Albertiet al. L995).
Goosecreekite
Ca[Al2Si6O16].5H2OZ=2
GOO
Dunn et al. (1980).Tlpe locality: GooseCreekquarry,
lnudoun County,Virginia"U.S.A.Nanedafterthelocality.
Resultsofthe singleanalysisavailableconformclosely
to the formula given, with no other elementsdetected.
Tsi= 0.75.
Monoclinic,P2r,a7 .4AL(3),b L7.439(6),c 7.293Q)A,
B L05.M(4)" @ouse& Peacor1986).
The framework consists of 4-, 6-, and 8-membered
rings that link to form layersparallel to (010), with
somesimilarities to the brewsteritestructure.Si,Al are
nearly perfectly ordered@ouse& Peacor1986).
MINERALOGIST
Harmotome
L2H2O
@an5,Caa5,K,Na)5[A15Si11O32].
PHI
Z=T
Haiy (1801,p. 191-195),renamingandreasbergolite,
of Delam6therie(1795,p.393).
alsoknownasandr6olite,
Tlpe locality: Andreasberg,Harz, Germany.Named
from Greekwordsfor a'Joint'' and"to cut'', in allusion
to a tendencyto split alongjunctions (twin planes).
Ba is tle most abundant extra-framework cation.
Harmotome forms a continuous series with
phillipsite-Ca. The name hannotorne predates
phillipsite; on grounds of history and usage, both
areretainedin spite of Rule I of the presentreport. Tsi
in the range0.68-{.71 (e.g.,Cern! et al. 1977).
Monoclinicorefined in P21lm,but on piezoelectric
and optical grounds, tle true symmeft'y may be
and triclinic, Pl (e.5.,Akizuki
noncentrosyrnmetric
1985, Stuckenschmidt-et al. L990), a 9.879(2),
for @a1.sCan.*
b L4.139(2),c 8.693Q)A, B 124.81(1)o
IG.r) [Alr.uoSit peO3). L2H"Ofr om Andreasberg, Harz
(Rinaldi et aI. L974).
The structureis the sameasfor phillipsite, with little or
no Si.Al order.
Heulandite (series)
(Can5,Sre5,B
a6s,Mgo.s.Na
K) sl$Siy1O 7,1.*).41J',;9
IIEU
Z= I
Brooke (L822). Tlpe locality: none; the name was
given to the more distinctly monoclinic minerals
previously known as stilbite. Named after Henry
Heuland,English mineral collector.
The cationcontentis higbly variable.Ca-, Na-, K-, and
Sr-dominantcompositionsarelcnownoandBa andMg
are in somecasessubstantial.Tsi in the range 0.71 to
Gottardiifs
0.80. Minerals with the samefrarneworktopology,but
with T51> 0.80, Si/Al > 4.O, are distinguishedas
Na:IUg:Caj[Al 1eSil1rO2r2].93H2O
clinoptilolite.
Z=l
N E S Monoclinic, with highestpossibletopologicalsymmetry
Alberti et al. (L996), Galli et al. (L996).Mt. Adamson, CAm (I2lm). Cm ard C2 alsohavebeensuggested.
Victoria Land, Antarctica. Named after Professor The sheet-like strucfure was solved by Merkle &
GlaucoGottardi(1928-1988),Universityof ModenA Slaughter(1968).Thereis partial orderof Si,Al.
in recognition of his pioneeringwork on the structure
and crystal chemistryof natural zeolites.
Heulandite-Ca
Known from the type locality only, with composition
approximatingthe abovesimplified formula; minsl [1,
New namefor the most corlmon speciesof the series,
andvery high Si. Ts = 0.86.
Orthorhombic, topological symmefr'y Fmmmo real and that deducedfrom results of most older analyses.
symmetryCmca,a 13.698Q),b 25.213Q), c 22.660(2) Ca is the most abundantsingleextra-frameworkcation.
T51in the range0.71-0.80.
A (Alberti et al.1996).
The framework topology is the same as for the Monoclinic, C2lrn, Crn, or C2, a L7.7I8(7),
synthetic zeolite NU-87, which, however, has b 17.897(5),c 7.428(2)A, B 116.42(2)"from Fariie
monoclinic symmetry, P21lc. Some Si,Al order Islands,composition(Ca357Sre.e5Ba6.66Mg.61Na1slft
.a3)
(Ts = 0.74) (Nbertr 1972).
is probable.
lAle3?Si26.70O721.26.02H2O
RFCOMMEI.IDED NOMENCLATURE FOR ZEOLITE MINERALS
1585
Heulandite-Sr
Known from two localities in the Khibina massif.both
with compositionscloseto the aboveformula @ekov&
New name; Sr is the most abundant single extra- Chukanov1996).Tstvaluesare0.59,0.61. ^
framework cation.
Tetagonal,P42p, a 9.851(5),c 13.060(5)A.
One known example: QamFegli, Eastern Ligurian Frameworkof Si,Al tetrahedra with channelsalong c
ophiolites, Italy, of composition (Sr2.1eCa1.76Ban.1a
containing B(OH)4 tetrahedraand K, Cl (Malin6vslii
Mgs.62Nae.ffi.22)[A1e.resi26.e4O.,2f.nH2O,
Tsr = 0.75 & Belov 1980).Consideredby Smitl (1988)to be an
(Lucchetti et al.L982).
anhydrousanalogueofthe edingtonite strucfure-fype
MorlocLtric,-CUn4
Cm,or C2' a L7.655(5),b17.877(5), EDI.
c 7.396(5)A" B 116.65".
Heulandite-Na
Laumontite
LAU
Caa[AlsSir6Oas].L8HzO
Z=L
New name; Na is the most abundant single extraAs lomonite, Jameson(1805),who creditstle nameto
framework cation.
specifi.creference;spelling shangedto
Proposedtype-example:Challis,Idaho,U.S.A., U.S. Wernerwithout
laumoniteby Haiiy (1809),and to laumontiteby von
National Museum#9451213@oss& Shannon1924,
konhard (1821).Namedafter Gillet de Laumont who
Boles L972,#6').
collectedmaterialdescribedas "z€ohtheefflorescente"
Monoclinic,C2)m,Cmoot C2,a 17.670(4),b17.982(4),
by Haiiy (1801, p. 4I0-4L2), from lead mines of
c 7.4O4(2)A, B 116.40(2)o@oles 7972) for the
Brittany. The later spellingswere appliedto
type example,of composition(Na3.esCar,rl(n:s)[AL.* Huelgoet,
this material, and the Huelgodt mines are effectively
=
5!46O71.27.74HO, T't 0.78.
the type locality.
Always Ca-dominant,witl minor (K,Na). "Primary
Heulandite-K
leonhardite" of Fersman(1908) is laumontite with
approximately1.5 Ca replacedby 3(K,Na) apfu and
New name; K is the most abundant single extra- reducedH2O.Tsi in the range0.M.7O.
framework cation.
Monoclinic, C2lm (although reported to !e
Proposedtype-example:Albero Bassi, Vicenza, Italy pyroelectric),a 14.845(9),b 13.167(2), c 7.5414(8)A,
@assaglia1969a), composition(K2.asNaoj6Ca1.ooMgo.*
B 1L0.34(2)"(Nasik,India:Artioli & Stnil 1993).
Sre5paj.p)[Ale.6Fq56Si"o.cO
Ts1= 0.73. Exceptwhereunusuallyrich in (KJ.{a),reversiblyloses
7,].25.84H2O,
Monoclilis, C2/rn, Cm" or A, a L7.498,b 17.816, ca. 4H2Oat low humidity at room temperatureand
c7.529A, B 116.07'.
pressureto form fhe variety termed"leonhardite"(e.9.,
A closeapproachto end-memberKe[AleSi27O72].zH2OFersman1908,Armbruster & Kohler 1992); structure
hasbeenreportedby N/rnbere (1990).
refined by Bartl (1970) and others.Si,Al in the framework is highly ordered.
Hsianghualite
Leucite
Li2Ca3[BgSiO,2]F2 Z=8
ANA
Htang et al. (1958).Tlpe locality unclear,in metanor- KlAlsi2o6]
ANA
z=16
phosedDevonian Limestone,Hunan ProvinceoChina. Blumenbachs (I79I), who attributed tle name to
The nameis from a Chineseword for fragrant flower. Werner,who had previously describedthe mineral as
Known from the original locality only. MnorAl, Fe, 'lrhite garnet". Tlpe locality: Vesuvius,Italy. Named
Mg, Na, and L.28Voloss on ignition reported@eus from Greek,msnningwhite, in referenceto color.
1960).\t = 0.48.
and
Minor substitutionof Na for K at low temperatures,
Ctbic,I2r3, a 12.864(2)4,.
Si in excessof that in the ideal formula, are commonly
Has an analcime-typestructure,with tetrahedralsites reportd alsosignificantFe9'.Ts1i1 therange0.66-O.69.
occupied alternately by Si and Be. Extra-framework Tefragonal,I41la,a L3.09,c 13.75A, @laz.zlet aI. 1976).
Ca, Li, and F ions @astsvetaevaet al. L99L).
At ordinary temperatures,leucile is invariably finely
twinnsd as a result of a displaciveinversionfrom a
Katborsite
cubic polymorph with the structureof analcime,space
grotp la3d, apparently stable above 630'C (Wyart
K6[ALSi6Om]B(OI{)4CI
1938,Peacor1968).Heaney& Veblen(1990) noted
Z=2
?EDI that high leucite inverts to lower symmetry at
KhomyakoveraL (1980),Malinovskii& Belov (1980). temperaturesbetween600" and 750oCdependingon
Tlpe locality: rischorritepegmatite,Mt. Rasvumchorr, the sample,and that there is a tetragonal, metrically
Khibina alkaline massif, Kola Peninsula,Russia.The cubic form intermediatebetweenhigh (cubic) and low
(tetragonal)forms.
namealludesto the composition.
1586
TIIE CANADIAN
Levyne (series)
(Caos,Na"K)6tAl6Sir2O36l.17H2O
LEV
Z=3
Brewster (1825b). Tlpe locality: Dalsnypen,Fariie
Islands. Named after Armand I-Evy (1794-1.84I),
mathematician and crystallographer, Universit6 de
Paris.
Extra-framework cations range from strongly
Ca-dominant to strongly Na-dominant, witlh minor
K and, in some cases,mi1e1 Sr or Ba; Si:Al is
also variable (Galli et al. L98I). T5i in tle range
0.624.70.
Hexagonal,Rbn, a 13.32-13.43,c 22.66-23.01A.
The stacking 61 single and double 6-memberedrings
differs from that in the relatedshucturesof erioniteand
offretite (Merlino et aI. L975).
Levyne-Ca
New na:nefor the original memberof the series;Ca is
the most abundant extra-framework cation. Type
locality: Dalsnypen,FarbeIslands.Material closely
has
approachingend-memberCar[A16SirrO36].L7H2O
beenreportedby England& Ostwald(1979)from near
Meriwa, New SouthWales,Australia. \1 in the range
o.624.7A.
Hexagonal,frmo a 13.338(4),c 23.014(9)A for composition (Caz.rsl.{ao.65lq.2o)
16.66H2O
[Al6jlsir.6eO36].
from near the Nurri to Orroli road, Nuora, Sardinia
@assagliaet aL.7974,Merlino et aI. 1975).
MINERALOGIST
The structure consists of a tiree-dimensional
framework of Si (with minor Al) and Be tetrahedra.
It contains three-membered rings, made possible
by the presenceof Be instead of Si in one of the
teftahedra.
Maricopaite
(PbCa)[AluSir6(O,O]I)1e6l.n(II2O,QH),
n - 32
Structureclosely
Z=1
related to MoR
Peasoret al. (1988).Tlpe locality: Moon Anchor mine,
near Tonopah,Maricopa County, Aizona, U.S.A.
Namedafter the locality.
Only one known occurrence.Tsr= 0.76.
Orthorhombic, Cm2m (psetdo-Cmcm), a 19.434(2),
b 19.702(2),c 7.538(1)A @ouse&Peacot 1994).
Has an intemrpted, mordenite-like framework. Pb
atoms form Pb4(O,OH)4clusters with Pb4tetrahedra
within channels(Rouse&Peacor 1994).
lV,Iazrite
0H2O
J [Al10Si26O72].3
@Igz.sKrCar
MAZ
Z=L
Galltret al. (L974).Tlpe locality: in olivine basaltnear
top of Mont Semiol, south slope, near Montbrison,
Loire, France.Namedafter FiorenzoMazzi, hofessor
of Mineralogy at the University of Pavia"Itaty.
A new chemicalanalysisfromthe fype andonly known
locality (G. Vezzalini, pers.commnn., L996)gives the
Levyne-Na
aboveforrnula(cf Rinaldi et al. 1975b).Tsi=0:72.
New name;Na is the most abundanlexfra-framework Hexagonal,P6y'nmc,a 18.392(8), c 7.646(2)A.
The framework is characterizedby stackedgmelinitecation.
Proposed type-example: Chojabaru, Nagasaki type cages(Galli 1975),witl evidencefor limited Si,Al
Prefecture,Japan(Mizota et al. 1974).T5iin the range order(Alberti &Yezzalim 1981b).
0.65-{.68.
c22.684(DA.for
Hexagonal,
frm,a 13.330(5),
Merlinoite
(Nar.ealqjeCao.rglvlgo.oJ[Al6$Si11.?ro36]
(lllizota et aI.
1974).
&CadAlgSixOsl.22HzO
MER
Z=l
Lovdarite
Passagliaet al. (1977).Tlpelocality: Cupaelloquarry
in kalsilite melilitite, near SantaRufina, Rieti, Italy.
IlNap[BqSi4O?r]. 18HrO
L O V Named after Stefano Merlino, Professor of
Z=l
Men'shikov et al. (1973). Ilpe locality: alkaline Crystallographyat the University of Pisa.
pegmatites on Mt. Karnasurt, Lovozero nlkaline The two available reliable analyses@assagliaer
massif,Kola Peninsul4 Russia.Namemeans'oagifl of al. L977, Della Ventura et aL L993) show strongly
K-dominant compositions,with significant Ca, and
Lovozero".
In the type and only known occurrence,approximafely lessNa andBa; T51in the range0.66-{.71.
1 Al atom substitutesfor Si in the above structure- OrthorhombicoImrnrn, a L4.lL6(7), b L4.229(6),
et aI.1977).
derived formula, with introduction of additional c9.946(6)A @assaglia
The framework is built of double 8-memberedrings
exfra-frarneworkNaand Ca. Ts1= Q.JJ.
Orthorhombic,Pmaz,but containsb-centereddomains linked with 4-memberedrings (Galli et al. L979).T\e
in which a is doubled;a 39.576(I), b 6.93O8(2),c structure is related to, but different from, that of
philliFsite.
7.L526(3)A (Merlino 1990).
RECOMMENDED NOMENCLATURE FOR ZOLITE
Mesolite
Na16Ca16
[Ala3Si720 7,a].4H2O
Z=l
NAT
Gehlen& Fuchs(1813),asmesolitl, for somevarieties
of "mesotype"(mostly natrolite)of Haiiy (1801).No
type localify was given. Fuchs (1816) clarified tle
distinctions amongnatrolite, scolecite, and mesolite,
and gave analytical data for mesolite from tle Farije
Islands, Iceland and Tlrol. The name recognizesits
compositionalposition betweennatrolite aud scolecite.
(Na + K/(Mg + Ca + Sr + Ba) variesfrom 0.45 to0.52,
with K Mg, Sr, Ba very minor (Alberti et al. L982b).
Ts1in the rangeO.59-0.62.
Orthorhombic, Fdd2, a I8.4M9(8), b 56.655(6),
c 6.5M3(4) A, for material from Poona,India (Artioli
et al. L986a).
OrderedSi,Al in the framework with onenatrolite-like
layer alternatingwith two scolecite-likelayersparallel
to (010) (Artioli et aI. t986uRoss et al.1992).
Montesommaite
Ke[AleSirOa].10HzOZ=L
MON
Rouse e/ al. (I99O). Tlpe locality: Pollena, Monte
Somma,Vesuvius,Italy. Namedafter the localify.
Minor Na was detectedin the onepublishedanalytical
data-set.Tsi= 0.70.
Orthorhombic,Fdd2, a = b L0.O99(L),
c 17.307Q) A,
(pseudoteftagonal,14rlamO.
The framework can be constructedby linkiag (100)
sheetsof five- and eight-memberedrings; it has similarities to thoseof merlinoite andthe gismondinegroup
(Rouseet aI. 1990).
Mordenite
MINERAI.S
Mutinaite
Na3Caa[Al1
lSirrO,e].60HrO
MFI
Z=l
Gal1iet aI. (1997b),Yezza1imet al. (L997b).a}pe
locality: Mt. Adamson, Northern Victoria Land,
Antarctica. The nameis for Mutina the ancientLatin
namefor Modena Italy.
Electron-microprobe analysesof mutinaite from the
type and only known locality show limited departure
from tle simplified formula, with minor Mg
(-0.21 apfu) and K (-0.11, apfu). Very high Si,
Tsi= 0.88.
Orthorhomblc, Pnma, a 20.223(7), b 20.052(8),
c 13.491(5)A.
Mutinaite conformsclosely in stucture with synthetic
zeolite ZSM-5.
Natrolite
NAT
Z=8
Na2[Al2Si3O16).2HzO
Klaproth (1803).Tlpe locality: Hohentwiel,Hegau,
Baden-Wiirttemberg,Germany.Name from natro- for
sodium-bearing.
(Na + K/(Mg + Ca + Sr + Ba) variesfrom 0.97to 1.00,
with K, Mg, Sr, and Ba very mineL T3l in the range
0.59-0.62 (Alberti et al. l982b,Rosset al.1992).
Orthorhombic,Fdd2, a 78.272,b 18.613,c 6.593 A
(Si"{l highly ordered Dutoitspan,SouthAfrica: Artioli
c 6.5970)A.
uis.sgs@),
it at. 9\qj a r8.3r9(4),
(-70Vo Si,N order,Zeilberg, Germany:Hesse1983).
Si,Al partly to highly ordered (Alberti & Yezzalini
et al. 1995).
1981a,Rosset al. 1992,AJ:bem
0ffretite
caKMg[AlsSi13o36]'16H2o
Z= |
OFF
(Na2,c4K)a[A18si4oo%].28H'o
ffr;H:l
s,ffin13rT"9r:Lffi?ji;",?x;.ti
Z=|
MOR Albert J.J.Offreg professorin the Facuhyof Sciences,
How (1864). Tlpe locality: shore of Bay of Fundy, !Yo1-Franc-e,3-5 km eastof Morden, King's County, Nova Scotiu, Ca Mg, and K substantial,commonly in proportions
approacling I : 1,: 1; N1as6mmofil/ trace or minor.
canada.Namedafter the tocality.
isvariable,
withNa/(Na
+ ca) trffiiffi'hli'33,r}
rhecarion
contenr
typicatly in the range0.5H.81. SomeK Ue, ro
f1
and Sr also may be present@assaglia1975,Passaglii
et al. 1995).In someelrmplesoK is reporredas tle
demin4r carion(Thugutt L933,1-net aI. L99L,Lo &
Hsieh 1991),potentiallyjustifying therecognitionof a
mordeniteserieswithNa- andK-dominantspecies.l'1
in the range0.8G{.86.
,-*;f$:}ffi#ffi#
Cal andNa_dominantvariants
;;.ffiil
;;;d,r.treE "nn|*d, td"ntificarionproblems,including
io ,h".*g e'o.eg_nlq.
o"rrilt*1"**]t*
"n;;;;;" 1,'-p-;;2,"a tz.zot(i), c 7.592(2) A for
;;6;;tt.;'(Mg,*Cuo.rl!.rrSrs.61Bao.e1)[Al'xSi,r.r,
OrulltO.ASHrOfiifr di; ryF fo-Jifit'-ipurriEfij-ii
orthorhombic
18.052-18.16
8, b 20.404- ffitJflh1tJ3fl is retared
, cmcm,^a
to rhoseof erioniteand
20.5n,c7.511-7.537 A@assaglia1975).
Structuredeterminedby Meier (1961). Si,Al disorder
in tle framework is extensive,but not complete.
levlmeo but differs in the stacking of sheets of
six-memberedrings, resultrngin different valuesfor c
and differently sized and shapedcages(Gard & Tait
1588
TT{E CANADIAN MINERALOGIST
1972). A high degree of Si,Al order is inferred.
Offretite may contain intergrown macro- or
crypto-domainsof erionite (e.9., Rinaldi 1976). It
forms epitactic intergrowths wittr chabazite, but
epitactic associationswith levyne are questionable
(Passagliaet al. 1998).
Pahasapaite
Paulingite-K
New name;K is the most abundantextra-framework
cation.
Averagecompositionfrom five analysesof samples
from Rock IslandDam, Washington,U.S.A., the suggestedtype-examplefor paulingite-K: (I(0.*Nao.rrCar.r,
(fschernich & Wise
Bax.13)[Ale32S\2.21Opa1.44H2O
1982):a35.093(2)A (Gordonet al. 1966).
(Ca5.5Li3.6K12Nao.2tr
8II2O
rr)Lis[Be24P24Oe6].3
Z='1.
RHO
Rouseetal. (1987).Tlpe locality: Tip Top mine, Black
Hills, SouthDakota, U.S.A. Named after Pahasapa,a
Sioux Indian namefor the Black Hills.
Known from the type loc^alityonly. T'' = Q.
Cubic,I23,a L3.781(4)A.
A beryllophosphatezeolite with orderedBeOaandPO4
tetrahedraand a distorted synthetic zeolite RHO-type
framework, structurally related to the faujasite series
(Rouseet al.1989).
New neme:Ca is the most abundantextra-framework
cation.Averageresult offour analyses,Ritter, Oregon,
U.S.A., the suggestedtype-locality for paulingite-Ca:
(Ca3.7eK2.67Nae.s6Bas.1e)
[Al r0.?sSi31.2rOs
al.34H2O;
a 35.088(6)A (Tschernich& Wise 1982).
I-angater et al. (1997)found evidenceofreduced HzO
content (27 H2O for Z = 16) in barian paulingite-Ca
from VinaricM Hora, CzechRepublic.
Parth6ite
Perlialite
Caz[AlaSiaOr:(OIDr].4HrO
-PAR
Z=4
Sarpet al. (L979).Tipe locality: in ophiolitic rocks,
7 km souttreastof Doganbaba,Burdur province,
TaurusMountains, southwesternTirrkey. Namedafter
Erwin Partl6, Professorof StructuralCrystallography,
University of Geneva"Svritzerland.
Minor Na and K. Tr, = 0.52 and 0.495 in the only two
known occurrences.
Monoclinic, C2/coa 21.553(3), b 8.761(L), c 9.3M(2)
A, B 91.55(2)"(typelocality; Engel& Yvon 1984).
The framework contains various 4-, 6-, 8-, and
l0-memberedrings, andis intemrptedat every second
AlOo tetrahedronby hydroxyl groups. Si and Al are
ordered.
Paulingite (series)
-44H2O
(K,Caor,Na,BaoJ10[Al10Si32O84].27
Z=L6
PAU
Kamb & Oke (1960).Tlpe locality: Rock Island Dam,
Columbia River, Wenatchee,Washington,U.S.A.
Named after Linus Q. pauling, Nobel Prize winner
and Professor of Chemistry, California Institute of
Technology.
Electron-microprobeanalysesshow K as tle most
abundantcation at tbree known localities and Ca at
two. Significant Ba and Na also are reported
(Ischemich&Wise 1982,kngauer et al. L997).Tsiin
the range0.734.77.
Cnbic,Iffim, a35.093(2)A (Gordonet al. L966).
The framework contains several kinds 6f 1ffgs
polyhedralcages(Gordonet al.1966). The structure
has been refined by Bieniok et al. (L996) and by
Lergauer et al. (L997).
Paulingite-Ca
Kfl a(CaSr)[Af usi24od. 15H2O
Z=j.
LTL
Men'shikov (1984).Tlpe locality: pegmatitesof Mt.
Eveslogchorr and Mt. Yukspor, Khibina alkaline
massif, Kola Peninsula, Russia. Named after Lily
Alekseevna Perekrest, instructor in mineralogy at
Kirov Mining TechnicalSchool.
Minor substitution by Sr and Ba, but little other
compositionalvariation in the two known occunences.
Tn in the range0.65-{.67.
Hexagonal, P6lmnrm, a 18.49(3), c ?.51(1) A
(Men'shikov1984).
Perlialite has the snme framework topology as
syntheticzeolite-L (Artioli & Kvick 1990).Structural
columns have alternatingcancrinite-fypecagesand
double 6-memberedrings. No Si,Al order has been
detected.
Phillipsite (series)
(K,Na"Cao.s,B
aoJ,[ALSi ro-O:]. lltIzO
Z=L
PHI
L6vy (1825).Tlpe locality asrecordedby L6vy: Aci
Reale,now Acireale,on the slopesof Etna"Sicily, Italy.
Contemporary literature (see Di Franco 1942) al.d
present-dayexposrressuggestthat the occunencewas
probably in basaltic lavas at Aci Castello, nearby.
Named after William Phillips (1773-1828), author of
geological and mineralogical treatisesand a founder
of the GeologicalSociety of London.
Either K, Na, Ca, or Ba may be the most abundant
extra-framework cation, but tle name harmotomeis
retained for tle Ba-dominant member of tle series.
Minor Mg and Sr may be present.In the generalized
formula above,x rangesfrom about 4 to about 7. T51
RECOMMENDED NOMENCI.ATTJRE FOR ZOLITE
varies from approximalely0.56 to 0.77.
Monoclirlic,P2, or P2rlm,a9.865(2),b 14.3O0(4),
c
8.668(2)A" B 124.20(3)"@hillipsite-Kwith substantial
Ca from Casal Brunori, Rome, Italy: Rinaldi er aL
1974). A, pseudo-orthorhombiccell has a = 9.9,
b = 14.2,c = 14.2Fa B = gO.O",
Z = 2.
Tlvo cation sites have been idenffied, one, with two
atoms per formula unit fully occupied by K in
phillipsite-K and by Ba in harmotome,is surrounded
by eight framework atoms of oxygen and four
moleculesof HzO; the other is partly occupiedby Ca
and Na in distorted octahedralcoordination viith two
framework atoms of oxygen and four molecules of
HrO (Rinaldi et al. 1.974).FrameworkSi,Al largely
disordered.
MINERAI.S
1589
end-membercompositions(Teertstra& dernf 1995).
Ts1in the range 0.67-0.74. Minor Rb and Li may be
present.Sodianpollucite commonly containsmore Si
thanthe simplifi ed formula-T\e tame pollucite applies
where Cs exceedsNa in atomic proportions.
Cubic, Ia3d, a 13.69 A for Cs11.7Na3.1Lis.25IG..
(Beger L969); a in tle range
[Al15SirrOe6.2].H2O
A for 0.1Lm.I73 Na apfu,Z = 16
3.672(1Y13.674(t)
(demf & $imFson1978).
Si.Al disordered.
Roegiantte
iaOrrf.4.5H2O
Caz[Be(OH)zAlzS
-ROG
Z=8
Passaglia(1969b). Tlpe locality: in albitite dike
Phillipsite-Na
@. Passaglia,pers.commun.,1998)at Alpe Rossoin
Val Vigezzo about 1.5 km soutl of Orcesco,Novara
New name;Na is the most abundantextra-framework
Province, Italy. Named after Aldo G. Roggiani, a
cation.
teacherof naturalsciences,who first found the mineral.
Na forms SLVoof all extra-framework cations in
Containsminor Na andK.
materialfromAci Castello,Sicily, Italy, suspectedto be
Tetragonal,I4lmcm, a 18.33(1),c 9.16(I) A (Galli
tle original locality for phillipsite (#6 of Galli &
1980).
Loschi Ghittoni 1972).Known rangein T5i:0.&4.77.
Contains framework tetrahedrally coordinated Be
For pseudocell,a^9.93I-IO.O03, b L4.1,42-L4.286, (Passaglia
& Yezzalim 1988) and frameworkc 1.4.159-14.338
A, B 9Oo,Z = 2 (e.5.,Galll & Loschi
intemrpting (OII) groups(Giuseppettiet el. I99I).
Ghinoni 1972,Sheppard& Fitzpatrick1989).
Phillipsite-K
Scolecite
NAT
Z=4or8
Ca[d2Si3O1e].3H2O
Gehlen& Fuchs(1813),asskolezit.Clark (1993)gave
the type locality as Berufiord, Iceland, but this is not
appaxentin the original reference. Fuchs (1816)
clarified the distinctionsamongnafrolite, scolecite,and
mesolite.He listed occlurencesof scoleciteas Farde
Islands, Iceland and Staffa (WesternIsles, Scotland),
with andytical data for specimensfrom the Fariie
Islands and Staffa. Namedfrom Greek slalex,wotm,
Phillipsite-Ca
for a tendencyto curl when heated.
New name;Ca is the most abundantextra-framework (Na + K)/(Mg + Ca) variesfrom 0 to 0.16, with very
cation. Proposedtype-locality: Lower Salt Lake Tirff, little K, Mg, or other elements. Ts1 in tle range
Puuloa Road near MoanaluaRoad junction, Oahu, 0.60_0.62(Alberti et al.1982b).
Monoclinic,Cc,a 6.516(2),b 18.948(3),c 9.767(l) A,
Hawaii (Ljima & Harada1969).
B 108.98(1)",Z= 4 @ombay,India:Kvick et al. 1985),
Known rangein Ts1:0.57{).74.
For the pseudocell,a 9.859-9.960,b L4.224-L4.340, or, by analogy with natrolite, pseudo-orthorhombic
, 18.981(5)c 6.527(2)A, B
c 14.297-14.362A, B 90", Z = 2 (e.g., GaJJi& Loschi Fd, e.g.,a 18.508(5),
9O.64(L)",Z = 8 (Ber:afiord,Iceland: Joswig et al.
Ghittoni t972, Passaghaet al. 1990).
1984).
The structure is similar to that of natrolite, with a
Pollucite
well-orderedSi,Al framework, Ca insteadof Na2,and
an extra moleculeof HrO.
(Cs,Na)[AlSi2O6f.nH2O,
where (Cs + n) - |
Z=L6
ANA
Stellerite
Breithaupt (1s46). Tlpe locality: Elba, Italy. Named
oopollux"with coexistingmineral otastolo (a variety of
STI
pltutit") for twins C-astor and Polluxn of Gieek Ca[A12Si7O13]'7H2O Z = 8
mythology;namemodifiedto pollucite by Dana(1868). Morozewicz (1909).Tlpe locality: ComrnanderIsland
Forms a serieswith analcime (Cernf 1974) reaching Bering Sea NamedafterWilhelm Steller (1709-17216),
New name; K is the most abundantextra-framework
cation.Proposedtype-locality:Capo di Bove, Rome,
Itaty (Hintze L897,#2 of Galli & Loschi GhittonllgT2).
Known rangein Tn: 0.594.76.
For the pseudocell,a9.87L-1.0.007,b L4.124-L4.332,
c 14.L98-14.415
A, B 90o,Z = 2 (e.g., GaIh& Loschi
Ghittoni 1972,Sheppardet al. l97O).
1590
natural scientist and military doctor who made
imFortantobservationson CommanderIsland.
Variations in compositioninclude up to about0.2,apfu
Na andminor K, Mg, Fe.T51in the range0.75-0.78.
Orthorhombic,Fmmm,a in the range13.507-13.605,
D in the range18.198-18.2700
c in tle nnge 17.82317.863A @assagliaet aI. 1978b).
The frameworkis topologicaly the sameasfor stilbite,
but it has higher symmetrlr, correlated witl fewer
extra-frameworkcations.Only one independentexhaframework site is occupied, and the symmetry is
Fmmm (Galli & Alberti 1975a). Na-exchanged
stellerite retains the Fmmm symmetry,unlike tle Na
zeolite, barrerite, with which it is isochemical
@assaglia& Sacerdoti1982).
Villarroel (1983) has suggestedtle occurrenceof
Na-dominant Fmmm stellerite from Roberts Island.
SouthShetlandgroup.
Stilbite (series)
(Caos,NaK)q[AleSirO72].28FI2O
Z=L
STI
Haiiy (1801, p. 161-166),for minerals, apparently
including heulandite, that had previously been
describedwith informal names.He mentionedoccurrences in volcanic terranesoand named lceland,
Andreasberg in Harz, Alpes Dauphinoises, and
Norway, but there is no clear type-locality. Named
from Greek word for mirror. in allusion to its luster
('1rn certain 6clat").
Ca is almost always tle dominant extra-framework
cation,accompaniedby subordinateNa and minsl l(
and Mg, approximating Caa(Na,K)per formula unit,
but Na-rich membersalso are known. Ts1in the range
0.71to 0.78.
Monoclinic, C2lm,a L3.64(3),b 18.24(4),c 11.27(2)
A, B 128.00(25)"(Galli & Gottardi L966,GalliL97l);
an alternative setting is pseudo-orthorhombic,F2lm,
Z=2.
Increasingdeparturefrom the topologicalsymmetryof
the orthorhombicframework,Fm.rnm,tendsto correlafe
witl increasing content of monovalent cations
et aL LWSb),which causesthe frameworkto
@assagha
rotate (Galli & Alberti L975a,b). However, {001}
growth sectorswitl appreciableNa and orthorhombic
Frnmtn symmetry have been observedin crystals in
which other isochemicalsectorsaremonoclinicoC2,lm
(Akizuki & Konno 1985,Akizuki et al. L993).T\e
centrosymmet'icspace-groupdependson statistically
completeSi,Al disorder,andthe true space-grouprnay
(Galli 1971).
be noncenfrosymmetric
Stilbite-Ca
New namefor commonstilbite in which Ca is the most
abundantextra-frameworkcation.
For tle pseudo-orthorhombiccell, F2lm, a 13.595-
L,8 90.0G
b 8.201-r8.29L,c L7.775-77.842
13.657,
90.91"@assagliaet al. 1.978b).
Stilbite-Na
New name:Na is the most abundantextra-framework
cation.
Proposedtype-locality: CapoPula"Qagliari, Sardinia,
Italy @assagliaet al. I918b, #2L).
Known examplescontain significant Ca and K, and
minor Mg, aswell ascleady predominantNa.Ts in the
range 0.73-0.78 (Passagliaet al. 1978b, Ueno &
Hanada1982,Di Renzo& Gabelica1997).
Monoclinic, C2lm. U sing the pseudo-ortlorhombic
F2lm settimg,
a L3.610,b L8.330,c 17.820A, B 90.54"
for type material,of composition(Nas.1sK1-Ca3"5JVlgs.e)
(Quartieri & Yezzalini
[Alr6.62Si55.25Oraa].53.53HrO
198n.
In spite of the high Na content, themotocljnic C2lm
symmetryof stilbite is retaine4 in contast to stellerite,
Fmmm, andbarr.erite,Amma.
Tbrranoyaite
NaCa[Al:SirOqol.>7WO
TER
Z=4
GaIh et al. (L997a). Tlpe locality: Mt. Adamson,
Northern Victoria Land. Antarctica. Named after tle
Italian Antarctic station at TerranovaBay.
Tlpe materialcontainsminor amountsof K and Mg.
Tsi= 0.85.
Orthorhombico Cmcm, a 9.747(7), b 23.880(2),
c?-0.068(2)4,.
The framework topology is not known in other natural
or syntheticzeolites.It containspolyhedralunits found
in laumontite,heulandite,andboggsite.
Thomsonite
CazNa[AlsSisOm].6I{10
THO
Z=4
Brooke (1820). Tlpe locality: Old Kilpatrick, near
Dumbarton, Scotland. Named after Dr. Thomas
Thomson(1773-1852), editor of the journal in which
the name was published, and who contributed to the
improvementof methodsof chemicalanalysis.
Extensivevariationin Na:(Ca+ Sr) andSi : Al approximately according to the formula Naa*,(Ca,Sr)r,
wherer variesfrom about0 to
[Alzo-"Sizo'Oaol.2AHzO,
2; small amountsof Fe, Mg, Ba, and K also may be
present@ossel a/. 1992).Tstin the range0.5H.56.
Orthorhombic,Pncn, a l3.lO43(L4),, 13.0569(18),
c 13.2463(30)A (SUU et aI. 1.99O}
Chainswith a repeatunit of five tetrahedraoccur as in
the NAI structuretype, but they are cross-linkedin a
different way; Si,Al are highly ordered,but disorder
increaseswith increasingSi : Al (Alberti et al. I98l).
RECOMMENDBD NOMBNCLATT]RB FOR reOLITE
Tbchernichite
Ca[AlrSiuO,u].-8ttO Z=8
BEA
Smrthet al. (1991),Boggset al. (1993).Tlpe locality:
GobleCreek,0.2 km north of Goble,ColumbiaCounty,
Oregon, U.S.A. Named after Rudy W. Tschernich,
zeolite investigatorof theAmericanPacific Northwest,
who discoveredthe mineral.
Na, Mg, and K are minor but variable constituentsin
specimensfromthe oneknown locality. T' in tle range
0.744.78 (0.73, 0.80 in a tschernichite-likemineral
from Mt. Adamson,Antarctica: Galli et al. L995).
Tetragonal,possiblespace-group
P4lmmm,a 12.880Q),
c 25.020(5)A, but may consist of an intergrowth of a
tetragonal enantiomorphic pair with space groups
P4p2 andP\22 anda triclinic polymorphPl. Seealso
GalJiet al. (1995).
This is a structuralanalogueof syntheticzeolite beta.
r59l
MINERAI.S
The nameappliesto zeolitesof ANA structuraltype in
which Cais the mostabundantextra-frarneworkcation,
irrespective of the degree of order or space-group
symmery.
\{einebeneite
Ca[Be@Oa)r(OH)r].4HrO
z--4
wEI
Walter(1992).Dpe locality: vein of spodumene-bearing
pegmatite2 km west of WeinebenePass,Koralpe,
Carinthia,Austria- Namedafter the locality.
No elementsotherthanthosein the given formula were
detectedin the one known occurrence.
b 9.707(I), c 9.633(1)A,
Monoclinic,Cc,a 11.897(2),
B 95.76(1)'.
A calcium beryllophosphatezeolite witl 3-, 4-, and
8-memberedrings in the framework (Walter 1992).
\ilillhendersonitc
Tbchiirtnerite
where0 <.r < 1
K"Cq15"a5q[Al3Si3Otr]'5H2O,
CHA
Z=2
Peacoret al. (198a).Tlpe locality: SanVenanzoqrurry,
Terni, Umbria, Italy. Named after Dr. William A.
Henderson,of Stamford,Connecticut,U.S.A., who
noted this as an unusual mineral and provided it for
study.
Tlpe willhendersonite conforms closely to
End-memberCa1.5[A13Si3Or2]
KCa[Al3Si3O1rl.5HuO.
.5HO and intermediatecompositionsare now known
(Yezzallnret al. t997a).Tsi= 0.50,0.51.
Triclinic, Pl, a 9.2O6(2),b 9.2L6(2),c 9.500(4)A,
u 92.34(3)', B 92.70(3)", T 90.12(3)' @ftringer
Bellerberg,nearMayen, Eifel, Germany:Tillmanns et
al.I98$.
The frameworkis the sameasfor chabazite,which has
Wairakite
idealized framework topological symmetry R3m, but
with much lower Si and with Si,Al fitlly ordered.This
Ca[AlzSiaOrz].2HzO Z=8
ANA reducesthelopochemicalfrarneworksymmetryto rR3,
Steiner (1955), Coombs (1955). Wairakei, Taupo and the nature and ordering of the extra-framework
VolcanicZone,New Zealand.Namedafter the locality. cationsfurther reducethe framework symmetryto Pl.
Most analyzedsampleshave Na/(Na + Ca) less than The low-K variants also havefully orderedSi,Al, but
0.3, but wairakite possibly forms a continuous solid- areless markedly ticlinic ({ezzalni et al. 1996).
solution serieswitl analcime(Seki & Oki 1969,Seki
Yugawaralite
1971,Cho & Liou 1987).Otherreportedsubstitutions
are very minor. Ts1in the range0.65-{.69.
YUG
1{ea6slinic (highly ordered),^I2la, a 1,3.692(3), CalAlzSieOrel.4HzO Z=2
b 1.3.643(3),c 13.560(3) A, B 90.5(1)" for Sakurai & Hayashi (1952). Tlpe localify: Yugawara
(Cao.roNao.14)[Al1.e2Sia.67O12].2H2O
(Tak6uchi et al. Hot Springs, Kanagawa Prefecture, Honshu, Japan.
1979).
Namedafter the locality.
Tetragonal^or near-tetragonal, I41lacd, a 13.72(4), Reported compositions are close to the ideal
c 13.66(4)A for (Cq.eNa6.16)[AlpSq.67O
pl.2.lLH2O stoichiometry,withtpta0.2 apfu of Na + K + Sr. Tsiin
(Nakajima1983).
the range0.7H.76.
The fiLmework topology is similar to that of analcime, Monocinic , Pc, a 6.70il(L),b I3.g72Q), c 10.039@A,
but Al is preferentially locatedin a pair of tetrahedral I 111.07' (Kvick et al. 1986).
sites associated with Ca, and Ca is in one specific fdslinis, Pl, by symmetryreduction ascrib€dto local
extra-framework site. Smaller departuresfrom cubic Si,Al order, has beenreported on the basis of optical
symmetry are correlated witl decreasedSi,Al order. measurements(Akizuki 1987b).
Caa(Kz,CaSr,Ba):Cu:(OtI)a[AltrSitrO4].zH2O,
n = 2O
(IZA codenot
Z= L6
assigned)
Krauseet aI. (L997),Effenbergeret al. (1998).Bellberg
volcano, near Mayen, Eifel, Germany. Named after
JochenTschdrhrer,minglal collector and finder of the
mineral.
Tsi = 0.50 &r the only known occrurence.
Cubic,Fn$-m,a3l.62g) 4,.
Cagesin the frameworkincludealarge super-cagewith
96 tetrahedraand 50 faces.A Cu,(Oll)-bearing cluster
occupiesanothercage.The framework density is the
lowest known for a zeolite with a non-intemrpted
framework.
1592
Larsen et al. (1992). Tlpe locality: Vevya quarry,
Tvedalen,Vestrold County,Norway. Named after the
locality.
Spot analysesshow a rangefrom (Ca3.2sNlno:zFeo.os)x
for BqSi6O17(OII)a.3H2O,
with
to (Car.6Mn1.s6Feo.rn)20
ZsourEs oF DoUBTFILSrAf,usAND
about0.9 to 0.21A1 andminor Be substitutingfor Si in
e PossrsLEZEourE
the generalizedformula.
Further work is recommendedto clarify the status Orthorhombic(c-centered),a 8.724(6),b 23.L4(.L),c
of paranatrolite and tetranatrolite. Essential data for 4.e23@)
L.
theseminerals and for tvedalite, which is possibly a Consideredto be structurallyrelatedto chiavennite,but
beryllosilicate zeolite, are asfollows.
in the absenceof an adequatedetermination of its
structure, it has not been listed here as an accepted
Paranatrolite
zeolitespecies.
Si,Al arestrictly orderedin samplesfrom Iceland(Kerr
& Mlliams 1969,Kvick a al. 1986).The partial order
reportedfor the Yugawa&sample(rimer & Slaughter
1969)is doubttul(Gottardi& Galli 1985).
Na2[Al2SiO1e].3H2OZ=8
NAT
Chao (1980). Tlpe locality, Mont Saint-Hilaire,
Quebec,Canada.The namerecognizesits association
with and similarity in chemical somposition to
natrolite, Na2[Al2SirOro].zHro.
Contains additional HrO relative to natrolite, also
minor Ca andK.
Pseudo-orthorhombic,
F***, pro^bablymonoclinic,a
Ig.W(l),b 19.13(L),
c 6.580(3)A. Givesvery diffuse
diffraction-spots,and a powder pattern similar to that
of gonnardite(Chao1980).
Dehydratesto tefranatrolite and could be regardedas
overhydrated natroliteo tetranatrolite or gonnardite.
Without firtler justification, separatespeciesstatusis
debatableaccordingto Rule 4.
Onsorrrg, ANDOIIDR NON-APPROVED
DISCREDnED,
ZsoLrrENANcs
Herschelite, Ieonhardite, svetlozarite, and
wellsite are discreditedas nrmes of mineral species
(Appendix 2).
Kehoeite was regardedby McConnell (1964) as a
zinc phosphateanalogueof analcime,but accordingto
White & Etd,(1992), type kehoeiteis a heterogeneous
mixture of quartz and sphalerite witl other phases
including gypsumand woodhouseite,or a very similar
phase. No phase present bears any relationship to
analcime.It is not acceptedas a valid zeolite species.
Vis6ite is shownby Di Renzo& Gabelica(1995)
not to be a zeolite, as had commonly been supposed.
They regardit as a defectivememberof the crandallite
Tetranatrolite
group,with compositionCaA|@O4,SiO4)2(OID
o.mH2Q.
Kim & Kirkpatrick (1996) showedthat a specimen
(Na,Ca)6[Al1eSi21Oso].
16H2O
Z=0.5
N A T sxaminedfy them is very disordered,with a structure
Chen & Chao (1980). Tlpe localify: Mont Saint- simil2l 16that of crandallite,but containsotherphases
Hilaire, Quebec, Canada. The name indicates a including opal. Vis6ite is excluded from the list of
tetragonal analogue of natrolite. First described as acceptedzeolites.
"tehagonalnafrolite", from flfmaussaq,Greenland,by
Obsoleteand discreditednnmesare listed below"
KroghAndersenet al. (L969).
followed by the correct namesor identifications. The
Extensivesolid-solutionapproximatingNa16_,Ca,Al1*" list is basedon one compiled by the late G. Gottardi,
Siz+-9a0'16HrO,
where.rvariesfrom about0.4 to 4, is using tle following references:Hintze (1897),Dana
reportedby Rosset a/. (L992). Small amountsof Fek, (L9L4),Cocco& Garavelli(1958),Davis (1958),Hey
Sr, Ba and K may replaceNa and Ca. Ts in the range (1960, 1.962),Merlino (1972), and Strunz (1978).
0.50-{.59.
Numerousadditionsand amendmentshavebeenmade
Tetragonal,i42d, a L3.L4I, c 6.617 A (Mont Saint- in the light of more recentlypublishedwork andof the
Hilaire, Quebec,Canada:I!.:osset al. L992).
notesbelow, and of listings in Clark (L993), in which
The framework is of disordered natrolite type. much information on the history and usagesof these
Tefranafroliteis consideredto be a productof dehydra- namescan be found.
tion ofparanatrolite(Chen& Chao 1980,Rosset a/.
1992).It differs from nafrolite in CaAl substitutionfor ahrazite= gismondine,phillipsite
NaSi, as well as in space-groupsymmetry. These, acadialite= chabazite
however, are also characteristics of gonnardite, to achiardite= dachiardite
which its relationshipis debatable.
adipite = chabazite2
aedelforsite= laumontite?.stilbite?
Tvedalite
aedelite(of Kirwan), aedilite = natrolite
ameletite= mixtures of sodalite,analcime,phillipsite,
(Ca,Mn)aB
qSi6Otr(OII)o.3H2O
and relict nepheline
Z=2
amphigdne= leucite
RECOMMENDED NOMENCT.ATURE FOR EOLIIE
analcidite= analcime
analcite= analcime
analzim= analcime
andreasbergolite= harmotome
andreolite,andr6olithe= harmotome
antitidrite = edingtonite
apoanalcite= natrolite
arduinite = mordenite
aricite = gismondine
ashtonite= strontianmordenite
bagotite= thomsonite
barium-heulandite= barianheulandile(unlessBa is the
most abundantcation)
barytkreuzstein= harrnotome
beaumontite= heulandite
bergmannite= nabolite
blItterzeolith = heulandite,stilbite
brevicite = natrolite
cabasite= chabazite
caporcianile= laumontite
carphostilbite= thomsonite
chabasie,chabasite= chabazite
christianite (of desCloizeaux)= philliFsite
cluthalite = analcime
comptonite= thomsonite
crocalite = natrolite
cubicite, cubizit = analcime
cubic zeolite = analcime?,chabazite
cuboite= analcime
cuboizite =chabazite
desmine= stilbite
diagonite= brewsterite
dollanite = analcime
doranite = analcime with tlomsonite, natrolite, and
Mg-rich clay minerals(Ieertsta & Dyer 1994)
echellite = natrolite
efflorescingzeolite = laumontite
eisennatrolith= nafrolite witl otler mineral inclusions
ellagite = a ferriferous natrolite or scolecite?
epidesmine= stellerite
epinatrolite = nafrolite
ercinite = harmotome
eudnophite= analcime
euthalite,euthallite = analcime
euzeolith= heulandite
falkenstenite= probabl] plagioclase@aade1996)
fargite = natrolite
fariielite = tlomsonite
fassaite(of Dolomieu) = probably stilbite
feugasite= faujasite
flokite, flockit = mordenite
foliated zeolite = heulandite,stilbite
foresite = stilbite + cookeite
galactite= natrolite
gibsonite= thomsonite
ginzburgite (of Voloshin et al.) =roggpzaile
gismondite= gismondine
glottalite = cbabazite
MINERAI,S
1593
granatite= leucite
grenatite(of Daubenton)= leucite
gpddeckite = gmelinite?
hairzeolite (group name) = natrouteo thomsonite,
mordenite
harmotomite= harmotome
harringtonite = tlomsonite, mesolitemixture
haydenite= chabaztte,
hegauit (hOgauite)= natrolite
hercynite (of Zappe)= harmotome
herschelite= chabazite-Na
hiigauite = natrolite
hsiang-hua-shih= hsianghualite
hydrocastorite= stilbite, mic4 petalite mixfure
hydrolite (of Leman) = gmelinite
hydronafrolite= naholite
hydronephelite = a. mixture, probably containing
natrotte
hypodesmine= stilbite
hypostilbite = stilbite or laumontite
idrocastorite(hydrocastorite)= stilbite, mica, petalite
mixture
kali-harmotome,kalkh4aele6e = phillipsite
kalithomsonite= ashcroftine(not a zeolite)
kalkkreuzstein= phillipsite
karphostilbite= tlomsonite
kehoeite = a mixture including quartz, sphalerite,
gyp$um,and ?woodhouseite
koodilite = thomsonite
krokatith = naholite
kubizit = analcime
kuboite = analcime
laubanite= natrolite
laumonite= laumontite
ledererite,lederite (of Jackson)= gmelinite
lehuntite = naholite
leonhardite= HzO-poorlaumontite
leuzit = leucile
levyine, levynite, levyite = levyne
lime-harmotome= phillipsite
lime-sodamesotlpe = mesolite
linsqlnins, lincolnite = heulandite
lintonite = thomsonite
lomonite = laumontite
marburgite= phillipsite
mesole= tlomsonite
mesoline= levyne? chahazite?
mesolitine = thomsonite
mesotype= oatrolito, mesolite,scolecite
metachabazite= partially dehydratedchabaztts
metadesmine= partiall) dehydratedstilbite
metaepistilbite= partially dehydratedepistilbite
metaheulandite= partiall| dehydratedheulandite
metalaumontite= partially dehydratedlaumontile
= dehydrated"leonhardite"Qaumontite)
metaleonhardite
metaleucite= leucite
metamesolite= mesolite
metanatrolite= partiall! dehydratednatrolite
t594
TIIE CANADIAN
metascolecite,metaskolecit, metaskolezit = partially
dehydratedscolecite
metathomsonils= partially dehydratedthomsonite
monophane= epistilbite
mooraboolite= natrolite
morvenite= harmotome
nafrochabazite= gmelinite
(of Naumann)= gmelinite
naton-chabasit,
natronchabazit
naftonite (in part) = naholite
needle zeolite, needle stone = natrolite, mesolite,
scolecite
normafin= phillipsite
orizita, oryz,rtn= epistilbite
ozarkite= thomsonite
parastilbite= eprstilbite
phacolite,phakolit(e) = chabazi.tp
picranalcime= analcime
picrothomsonite= tlomsonite
pollux = pollucite
poonahlite,poonalite = mesolite
portite = natrolite (Franzini &Perchrazn L994)
potassiumclinoptilolite = clinoptilolite-K
pseudolaumontite= pseudomorphsafter laumontite
pseudomesolite= mesolite
pseudonatrolite= mordenite
pseudophiJlipsite= phillipsite
ptilolite = mordenite
puflerite, pufflerite = stilbite
punahlite= mesolite
radiolite (of Esmark)= natrolite
ranite = gonnardite(Mason 1957)
reissite (of Fritsch) = epistilbite
retzitp = stilbite?, laumontite?
sarcolite(of Vauquelin)= gmelinite
sasbachite,saspachite= phillipsite?
savite= natroute
schabasit= chabazite
schneiderite= laumontite(Franzini &Percbiaz.zi15941
schorl blanc = leucite
scolesite,scolezit= scolecite
scoulerite= thomsonite
seebachite= chabazite
skolezit = scolecite
sloanite= laumontite?
snaiderite(schneiderite)= laumontite
soda-chabazite= gmelinite
sodamesotype= natrolite
sodium dachiardite= dachiardite-Na
sommaite= leuqite
spangite= phillipsite
sphaerodesmine,
sphaerostilbite= thomsonite
spreustein= nafrolite (mostly)
staurobaryte= harmotome
steeleite,steelit = mordenite
stellerycie= stellerite
stilbite anamorphique= heulandite
stilbite (of many Germanauthors)= heulandite
MINERAL@IST
strontium-heulandite = strontian heulandite and
heulandite-Sr
svetlozarite= dachiardite-Ca
syanhualite,syankhualite= hsianghualite
syhadrite,syhedrite= impure stilbite?
tehaedingtonite= edingtonite
tonsonite= thomsonite
triploclase,triploklase = thomsonite
vanadio-laumontite= vanadianlaumontite
vemrcite = mesolite
Vesuviangarnet= leucite
Vesuvian(of Kirwan) = leucite
vis6ite = disorderedcrandalliteand other phases
weissian= scolecite
wellsite = barianphillipsite-Ca andcalcianharmotome
white garnet= leucite
winchellite = thomsonite
Wtirfelzeolith = analcime,chabazile
zeagonits- gismondine,phillipsite
zeolite mimetica = dachiardite
zdolithe efflorescente= laumontite
AcKr.IowmDGEN{B,trs
Members of the present Subcommittee,which
commencedwork in L993, arc grateful to a previous
Subcommittee. established in 1979 under ttre
Chairmanshipof ProfessorW.S.Wise of the University
of California. Santa Barbara, California, for work
containedin a draft repofi completedin 1987.Members
of the 1979SubcommitteeincludedL. P.van Reeuwijk
and the late G. Gottardi and M.H. Hey, as well as
D.S.C. and H.M. of tle presentSubcommittee.J.V.
Smith,W.M. Meier, R.W.Tschernich,andthe late V.A.
Frank-Kamenetskiiwere consultanls.Although recommendationsin tle present report differ significantly
from those in the 1987 report, the existence of that
report has greatly facilitated our task. Ws thank J.V.
Smith andL.B. McCuskerfor advice,C.E.S.Arps and
W.D. Birch. successivesecretariesof CNMMN, for
muchhelp, andmany othercolleaguesfor conhibutions
of time, advice, and specimens.Staff of tle Science
Library, University of Otago, and others,helpedtrace
obscurereferences.
REFERENCES
Arrzrn<r, M. (1985): The origin of sector 6vinning in
harmotome.Ara Mineral. 70. 822-828.
(1986): Al-Si ordering and twinning in edingtonite.
Am-Mineral. 7t. l51Ul5L4.
(1987a): Crystal symmetry and order-disorder
structue of brewsterite.Ara Mineral. 72. @5-&8.
(1987b): An explanation of optical variation in
yrgawaralite. Mineral, Mag. 51, 615-620.
RECOMMENDEDNOMENCI,ATT'REFORreOLITE MINERAI.S
& Kottro, H. (1985): Order-disorderstructureand
theinternaltextureof stilbite.Ara Mineral.70,8l+821.
1595
Ar.Ern, A. (1972): Polymorphism and crystal-chemistry
of heulandites and clinoptilolites, Am. Mineral. 57,
1448-1462.
KuDou,Y. & Kurusavesm,T. (1996):Crystal
structures
ofthe {0ll}, {610},and{010} growthsectors AnvsnusrEn, T. (1993): Dehydration mechanism of
clinoptilolite and heulandite: single-crystal X-ray study
in brewsterite.
Am"Mineral.81.150l-1506.
of Na-poor,Ca-, K-, Mg-rich clinoptilolite at lm K.Arr.
Mineral.7E.260-2@.
& Saros, Y. (1993):Crystal shuctureof
the orthorhombic {001} growth sector of sttJblte.EunJ.
Mineral.5, 839-843.
ALBERT,A. (L972): On the crystal structure of the zeolite
heulandite. Tscher'maksMineral. Petrogr. Mitt, lE,
129-146.
& Kom*en,T. (1992): Re- and dehydrationof
laumontite: a single-crystalX-ray study at 100 K. Neues
Jahrb. Mineral.. Monatsh.. 385-397.
Aarror,I, G. (1992): The crystal structure of garronite. Arz.
Mineral. TT,189-196.
The crystalstrucfire of two clinoptilolites.
-Onsa):
TschermalaMineral. Petrogr Mitt. X2,25-3'7.
& Foy, H. (1994): Gobbinsitefrom Magheramorne
quarry,Northern lr:eland,MfurcraLMag. 58, 615-620.
(1975b): Sodium-richdachiarditefrom Alpe di
Siusi, Italy. Contrib. Mineral. Petrol. 49,63-66.
Gotr*ot, G., RNALDI,R., Sarow,Y., Honruqu,
-,
H., Ys, J., Seweoe,H., Tarexe, M. & Tororem, M.
(1987): A single crystal dif&action study of the natural
zeolite cowlesite, Photon Factory, National Inboratory
for High EnergyPhysics,Activity Rep.198i1,316.
CnucnNl G. & Deunu,I. (1995):Order-disorder
in natrolite-groupminerals.Ear: J. Minzral. T, 501-508.
Ger-u, E. & Vnzam.n, G. (1985): Epistilbite: an
_,
acenhiczeolite wilh domainstructure.Z Kristallngr 1.il3,
257-265.
& Kvrc& A. (1SSO):SynchrotronX-ray Rietveld
study of perlialite, the natural counlerpart of synthetic
zeolite-L. Eun J. Mineral. 2, 749-759.
Passecua,E. &ZNtAZz,,
P.F. (1982a):Position of cations and water molecules
in hydrated chabazite. Natural and Na-, Ca-, Sr- and
K-exchangedchabazites.kolites 2, 303-309.
_
RnrALDr,R., Kvrcr, A. & Surnr, J.V. (1986b):
Neutron dilfraction strucfl[e refinement of t]e zeolite
gismondineat 15 K. fuolites 6, 36L-366.
Ilalrscng., G. & VszAr.;Nr, G. (1979):Amicite,
a new natural zeolite. Neueslahrb. Mineral., Monatsh.,
481-488.
SMffH,J.V.& KucK, A. (1984):Neuton dilffiaction
at 20 K. Acta
study of natrolite, NarA12Si3O16.2H"O,
CrystaIIogn Cfi , 1658-1662.
Poxcnuppr, D. & Vnzzamu, G. (1982b): The
crystal chemistry of natrolite, mesolite and scolecite.
NeuzsJahrb. Mineral.. Abh. 143. 231-248.
J.J. (1986a):X-ray sffucture
& PLUTIT,
refinementof mesolite.Acta Crystallogn C{2, 937'942.
& Sansnt, C. (1987): Statistical and true
symmetry of ferrierite: possible absence of straight
T-G-T bridEirg bonds.Z Kristallogr 178,249-256.
& SrAttU K. (1993): Fully hydratedlaumontite: a
stucture studyby flat-plate and capillary powder diffraction tecbniques.Tzolites 13, 249-255,
& Vnzzer-nu, G. (1979): The crystal structure of
Acta Crystallogr. R35, 2866-2869,
amicite, a z,enlate,
-
M.R. (1991):Characterization
SALVADoR,
& ToRRF.s
of the natural zeolite gonnardite. Sffucture analysis of
natural and cation exchangedspecies by the Rietveld
method.Materi.al ScienceForum 79-82, M5-850.
(1981a): A partially disordered
& natrolile: relationshipsbetweencell parametersand Si-Al
BARTL,H. (1970): Strukturverfeinerung von Leonhardit,
&stribution.Acta Crystallogn837, 781-788.
Ca[AlzSiOu].3Hro, mittels Neutronenbeugung.lVeaes
(1981b):Crystal energiesand coordiJahrb. Mineral., Monatsh., 298-310.
&nation of ions in partially occupied sites: dehydrated
maznts.Bull. Mindral lM,5-9.
Baun, W.H. (1964): On the cation and water positionsin
faujasite.Ane Mineral. 49, 697-7M.
Gar,u, E. & Querrmr, S. (1996):The
crystal structureof gottardiite, a new natural zeolite. Err:
BEcER,R.M. (1969): The crystal structureand chemical
J. Mineral.E.69-75.
compositionof polluciie. Z. Kristallagn 129, 280'302,
& T szzor.r,Y. (198l): Thomsonite:a
detailedrefinementwith crosscheckingby crystal energy
calculations.Zolites l.9l-97 .
G., Beun, W.H. & Nowecrc,W. (1958):Uber
BBRGERuoFF,
die Kristallstrutrtur desFaujasis. NeucsJahrb. Mbrcral.,
Monatsh.,193-200.
1596
THB CANADIAN MINERALOGIST
Brus, A.A. (1960): Geochemistryof Berylliunr.and the
GeneticTlpes of Berylliunt Deposits.Akademii Nauk,
SSSR,Ltst. minspl., geokhim.,i kristallochim.redkith
elementov,1-329 (i:r Russian).Abstract in Am, Mfu.eral.
46.2M.
BIEI\uoK,
A., Joswo, W. & Baun, W.H. (1996):A study of
paulingites: pore filliag by cations and water molecules.
NeuesJahrb. Mineral., Abh. l7l, ll9-134.
C:mrf, p. (1974):The presentstatusof the analcime-pollucite
seies. Can,Mineral, 12. 33+341,
-
Rl.teml, R. & SURDAM,
R.C. (1977):Wellsite and
its status in the phillipsite - harmotome glottp. Neues
Jahrb.Mineral.,Abh. PA,3L2-32O.
& SnrsoN, F.M. (1978):The Tancopegmatiteat
_
Bernic Lake, Manitoba. X. Pollucite. Can, Mineral. 16,
325-333.
BIssERr,G. & LTEEAU,
F. (1986): The crystal structure of a
triclinic bikitaite, LilAlSi2O6l.HrO, with orderedAVSi
distribution. NeuesJahrb. MineraL, Monatsh..'241-252
Cs,lo, G.Y. (1980): Paranatrolite,a new zeolite from Mont
St-ltilaire, Qu6bec.Can.Minzral. 18,85-88.
Blacr<runn, W'.H.& Ds.weu, W.H. (1997): Encyclopediaof
MineralsN"mes.Cah Mineral, Spec.PubL l.
CmN, T.T. & Cseo, G.Y. (1980): Tetranatrolite from Mont
St-Hilaire, Qudbec.Can.Mineral. LE,77-84.
BLutvIENBAcHs,
J.F. (1791): Auszuge und Kezensioneit Cso, M. & Ltou" J.G. (1987): Prehnite-pumpellyiteto
greenschistfaciestansition in the Karmutsenmetabasites,
bergmanischer und mineralogischer Schriften.
VancouverIsland,B.C. J. Petrol.2.8,417443.
Bergxnnnis ches J, 2, 489-500,
Boccs, R.C., Howeno, D.G., Surrs, J.V. & Kr,sN, G.L.
(1993): Tschernichite, a new zeolite from Goble,
Columbia County, Oregon.Am- MineraL TS,822-826.
Bolrs, J.R. (1972): Composition,optical properties,cell
dimensions, and thermal stability of some heulandite
group zeolites.An . Mineral. 57, 1463-1493.
Boranor, M. (1979): Composition of type dachiarditefrom
Elba: a re-examinaton. Mineral, Mag. 43, 548-549.
Ronnnrs,A.C. & Sasnre,A.P. (1981):Sodiumrich dachiarditefrom the Franconquarry,Montreal Islan4
Quebec.Can.Mineral. 19, 285-289.
Bornr, M., Grurml, W.L., Marrrolr, V. & Morrale, A.
(1983): Chiavennite,CaMnBqSi5o,r(oH)2.2H2o, a new
mineral from Chiavenna (Italy). Am. Mineral. 6E,
623-6n.
Bosc D'AMrc, L. (1,792):M6moire sur la chabazie.L
d'Histoire Naturelle 2, l8l-184,
Bnumatrr, A. (1846): Pollux. (Poggendoff's) Awulen der
Physik und Chzmie 69,439.
BREwsrER,D. (1825a): Description of gmelinite, a new
mineral species. Ed.inburghJ. Sci.2,262-257.
(1825b): Description of levyne, a new nineral
spcies. Edinburgh J. Sci.2, 332-334.
Bnooru, H.J. (1820): On mesotype, needlestone,and
thomsonite.Anrals of Philosoplty L6, 193-194.
(1822): On the comptonite of Vesuvius, the
brewstedte of Scotland, the stilbite and the heulandite.
Edinburgh Philos. J. 6, ll2-115.
Casu,rl, R., LuccuErrr, G., PALs{zoN!, A., Quamml S. &
Vpzzamu, G. (1993): First occurrenceof a Ba-dominanr
brewsterite: structural features. Ear J. Mitu<al. 5,
353-360.
CLARK,A.M. (1993): Hey'sMineral Index. Chapman& Hall,
London, U.K.
Cocco, G. & Garurvs.l t, C. (1958):Riesamedi alcunezeoliti
elbarc.Atti Soc. ToscanaSci.Naturali 65, 262-283.
CooMBs,D.S. (1955):X-ray observationson wairakiteand
non-cubicanalcime.Mineral. Mag 30, 699:708,
& WIs"ITEN,J.T. (1967): Compositionof analcime
from sedimentaryand burial metamorphic rocks. Geol,
Soc.Am., Bull. 78, 269-282.
CnoxsrsDt, A.F. (1756): Observationand description of an
unknown kind of rock to be named zeolites, Kongl.
Vetenskaps
Acad. Handl. Stockhobn17, l2O-123 (n
Swedish).
D'AcrnemI, G. (1906): Zeobtt del filone della Speranza
pressoS. Piero in Campo @lba). Atti Soc. ToscanaSci.
NaturaliXL,15G165.
DAMouR,M. (1842): Descriptionde la faujasite,nouvelle
esplce mindrale, AnnalesdesMincs, Sdr 4, l, 395-399.
DANA,E.S. (1914):A Systemof Mtuuralogy of J.D. Dana (6th
ed., with AppendicesI and IT). John Wiley & Sons,New
Yorlq N.Y.
DANA,J.D. (1868):A Systemof Mbrcralogy (5th ed.).John
Wiley & Sons,New York, N.Y.
DAvrs,R.J. (1958):Mordenite,ptilolite, flokite, andarduinite.
Mineral. Mag. 3t, 887-888.
DE GETINARo,
M. & FRANco,E. (L976): La K-chabazite di
alcuni "Ttrfi del Vesuvio". Rend.Accad. Naz. Lincei 40,
490497.
Dnarutrruarur, J.-C. (1795): Th6orte de la Tbne l. Chez
Maradaq Paris,Fra:rce.
Dsia VncruRA, G., Per.opr,G.C. & Bunnececo, F. (1993):
New dataon merlinoite andrelatedzeolites.Rend.Lincei
Sci.Fisichz Naturali, Ser. 9, 4, 303-312.
RECOMMENDED NOMENCLATT]RE FOR UOLTIE
Dt Fnerco, S. (L942):MineralagiaEmea.Zw*arc1ls&,rzn,
Catania,Italy (158-161).
MINERALS
L597
Garr-r, E. (1971): Refiaement of the crystal structure of
stilbite. Acta Crystallagr.Bn, $3-841.
(1975): Crystal structure refilement of mazz7le.
Dr Rmvzo, F. & GesElrce, Z. (1995): New data on the
Rend Soc.It. Mineral. Petrol.3l,599-6L2.
structureand compositionof the silicoaluminophosphate
visdite and a discreditation of its status as a zeolrte. In
Crystal structurerefinementof edinglonite.
-(1976):
Natural Zeolites '93: Occurrence,Properties,Use @.W.
Acta CrystaIIogr. B.32,| 623-l 627.
Ming & F.A. Mumpton, eds.).IntemationalCommitteeon
NaturalZeolites,Brockport New York, N.Y. (173-185).
(1980): The crystal structure of roggianite, a
zeolite-like silicate. hoc. 5th Int. Conf. on Zeolites
(1997):Barreriteand other zeolites
&_
(L.V.C.Rees,ed.).Heyden,London,U.K. (205-213),
from Kuiu and Kupreanofislands,Alaska. Can.Mineral.
& ABERrl, A. (1975a): The crystal structure of
35,691-698.
stelleita. BuIl. Soc.fr Minlral. Crisnllogn 98, 11-18.
Duwr, P.J.,hacon, D.R., NEWBERRY,
N. & RArflK, R.A.
(1975b): The crystal stnrctureof
& (1980): Goosecreekiten
a new calcium sluminum silleafs
balreite. BuIl. Soc.fr, MindraL Cristallogr. 9E,331-3N.
hydrate possibly related to brewsterite and epistilbite.
Can.Mineral. 18, 3X-3n .
GotrenoI, G. (1966):The crystal structureof
-&
stibits. Mineral. Petogn Acta (Bolngn) 12, l-l0.
Earc:e,A.S. (1898):Erionite,a new zeolite.Am. J. Sci.156,
66-68.
D. (1979): The crystal
& PoNGILUPPL
structureof the zeolite merlinoite.lveaesJahrb, Mineral.,
EBERLv,P.E.,JR.(1964): Adsorption propertiesof naturally
Monatsh."L-9.
occurring erionite and its cationic-exchangedforms.,4Ln
Mincral. 49.3040.
& Loscm Gnnrom, A.G. (1972): The crystal
chemistryof phillipsites. Az. Mineral, 57, ll25-LL45.
Errrrrrncrn, H., Gresr:en,G., Krausn, W. & Bnnmnnor,
H.-J. (1998):Tschiirtnerite,a copper-bearingzeolite from
D. & RNALDI, R.
Passecua, E,, PoNGu,uPPI,
(1974):M;azzl:tB"a new mineral, the natural counterpafi
tle Bellberg volcano, Eifel, Germary. Am. Mineral.83,
607-617.
of the synthetic zeolite Q. Contrib. Mineral. Petrol, 45,
99-105.
ENceI-, N. & YvoN, K. (1984): The crystal structure of
& Z^N^z,n, P.F. (1982): Gmelinite:
parth6ite.Z. Kristallogr. 169, 165-175.
structural refiaements of sodium-rich and calcium-rich
natural crystalg. Neues Jahrb. Mineral., Monatsh.,
Ewclano, B.M. & Osrwar.o, J. (1979): Levyne - offretite
145-155.
intergrowtls from Tertiary basaltsin the Merriwa distict
HunterValley,New SouthWales,Australia-Aust.Mineral.
Quanrnnr, S., VEzzeu.u, G. & AI-BERTI,A.
25, ll7-r19.
(1995): Boggsiteand tschernichite-g4tezeolitesfrom Ml
Adamson, Northern Victoria Land (Antarctica). Ean J.
ERcrr, T.S. & VeN VsLTnurroN,I. (1994): Gaultite, a new
Mtureral.7.L029-1032zeolite-like mineral species from Mont Saint-Hilaire,
Quebec, and its crystal structure. Can. Mineral, 32,
855-863.
Gottardiite, a new high-silica zeolite fromAntarctica: the
naturalcounterpartof syntheticNU-87. Ear J. Mineral. E,
Frnsrraen,A.E. (1908): Materialien zur Untersuchung der
687-693.
Zpolrthe Russlands. I. Leonhardit und Laumontit aus
der Umgebungvon Simferopol (Krim). Trav. du Musde
-&Fharau,M.
96ol. Pierre le Grand pn l'Acad, hnp. de Science
(1997a'):Terranovaitefrom Antarctica: a new 'pentasil'
St Pdtersbourg 2, lO3-L50 (abstr. ia Z. Kristallogn 50,
zenhte.Am. Mineral. 82,423429.
75-76\.
FIScHER.,
K. (1966): Untersuchungder Kristallstruktur von
Gmelinit..tVeaesJahrb. Mineral., Monatsh., l-13.
& Scnnamr, V. (1970): Crystal structure of
gismondite, a detailed refinement. /n Molecular Sieve
Z,eobtes.Am. Chem.Soc.,Adv. Chem.Ser.l0l,250-258.
Fhalla{, M. & Pnncrtraa, N. (1994): Portite discredited=
natrolite and new data on "schneiderite" (= laumontite).
Eur J. Mineral. 6, 351-353.
Fucss, J.N. (1816): Ueber die Zeolitle. (Schweigger's)J.
Chem.andPhys.18, l-29.
& R-trlAr-DI,R. (1974): The crystal chemistry of
epistilbites.Am"Mineral. 59, 1055-1061.
& Mopwe, C. (1981):Crystalchemistry
oflevytes. Zzolites l, L57-L60,
YEzzALrNr,G., Quarrrenr, S., Ar-SERTI,A. &
Fnen'a.n, M. (1997b): Mutinaite, a new zeolite from
Antarctica: the natural counterpart of ZSM-5. Zeolites
19,31,8-322.
Gano, J.A. & Tarr, J.M. (1972):T\e crystal structureof the
5.2H2O.
zeolite offretite, K1.1Ca1.1Mg6.7[Si12.sAl5rO36]'1
Acta Crystallogn 828, 825-834.
1598
THE CANADIAN
Getn:eN,
A.F. & Fucus,J.N. (1813):UeberWerner'sZeolith,
Hatiy's Mesotype und Stilbite. (Schweigger's)J, Chem.
undPhys.8, 353-366.
Gtsuouor, C.G. (1817): Osservazionisopra alcuni fossili
particolari de' contomi di Roma.Giornnle Enciclopedico
di Napoli, Anno Xl, 2, 3-15.
MINERALOGIST
Ilssss, K.-F. (1983): Refinementof a partially disordered
Z Kristallogr 163, 69-74.
natolite, Na2Al2Si3O16.H2O.
tfuv, M.H. (1930): Studieson the zeolites.I. Generalreview.
Mineral. Mag. XL, 422437.
(1960):Glottaliteis chabaate.Mineral. Mag.32,
421422.
GrusEppE'nr,
G,,MAzn, F., Talnrn, C. & Gar-lr, E. (1991):
The revised crystal structure of roggianite:
CarfBe(OII)rAlrSiOrrl<2.5HrO. r'feuesJahrb. Mineral.,
Monatsh..3O7-314.
An Indzx of Mineral SpeciesandVarieties
-(1962}
Ananged Chemically(2nded., andAppendices,1963and
1974).British Museum,Irndon, U.K.
Gottlteno, F. (1890):Sur 1'oft6tite, esp&e min6ralenouvelle.
C.R.Acad. Sci.,Paris 111,1002-1003.
Hnfire, C. (1897): Handbuch der Mineralogia 2. Von Veit,
I*ipag, Germany.
GonooN,E.K., Savsox, S. & Ka,D, W.B. (1966): Crystal
structure of the zeolite paulingite. Science 154,
1004-1007.
Honr, H., Necasnnae, K., Yaveoa, M., Mrvawerr, R. &
MARUBASm,
T. (1986): Ammonioleucitena new mineral
from Tatarazaw4Fujiok4 lapat Am Mineral. Tl,1022-
Gomenor, G. & Ar-ennrr, A, (1974'l: Domain structure in
garronite:a hypothesis.MlzeraL Mag,39, 898-899.
& Garrt, E. (1985):Natural Zeolites.SpringerVerlag, Berlin, Germany.
& Mrmn, W.M. (1963): The crystal structure of
dachrardrte.Z Kristallo gr. ll9, 53-fu ,
Gnaqau, R.P.D.(1918): On ferrierite, a new 2solitig minsral,
from British Columbialwith noteson someotherCanadiau
minerals.T?ans.R. Soc,Can.,Sen3, t2,185-201.
Gnau;or-I\4m., R., GRArtrLrcH,
V. & MEER,W.M. (1985):
The crystal structure of the monoclinic variety of
ferrierite.A Mineral, 70.6L9-623.
Hanmorn, W. (1825): Description of edingtonite, a new
mineralspecies.EdinbarghJ. Sci.3,316-320.
Lon.
How, H. (1864): On mordenite,a new mineral from the trap
of Nova Scotia.J. Chern.Soc.l7 (new sen),17,100-1M.
HowARD,D.G. (1994):Crystalhabit andt$"inningof gaxronite
from Fara Vicentina" Yrcenza (Italy). Neues Jahrb.
Mineral,, M onatsh., 9 l-96.
TscnaRNrcH,R.W., Surm, J.V. & KLSN" G.L.
(1990):Boggsite,a new higb-silicazeolitefrom Goble,
Columbia County, Oregon,Arn. Mineral. 75, l20O-12M.
HuANc,WEr.{-Hu,Tu, SnAo-HuA"WANG,K'uNc-HAl CnAo,
Grul-Ln:l & Yu, Cnwc-Gm (1958): Ilsiang-hua-shib a
new beryllium mineral. Ti-chih-yueh-k'an7, 35 (abstr.in
-1328;6, 244).
Am. Mineral. 44, 13217
HURLBUT,
C.S.,Jn. (1957):Bikitaite, LiAlSirOu,HrO,a new
mineral from Southern Rhodesia. Am. Mineral. 42.
792-797.
Hanena, K., Iwauoro, S. & Kruna, K. (1967): Erionite,
phillipsite and gonnardite i:r the amygdales of altered
basaltfrom Maz6,Niigata Prefecture,Iapan.Am. MincraL
52,1785-1,794.
IsRAItnr4,K. & IIeu., A. (1995): New occurrencesof
diageneticfaujasite in the Quaternarytuffs of north-east
Jordan.Eun J. Mturcral.7.1129-1135.
Hassan, I. (1997): Feldspathoidsand tleir relationships to
zeolites.Ktwait J. Sci.EngineertngA, rc3-n7.
IIJITaA,A. & HARADA,K. (1969): Authigenic zeolites in
zeolitic palagonitetuffs on Oahu, Hawaii. Am. Mineral.
54, 182-197.
IIAtIr, R.-J.(1797):Analcime.J. desMines5,n8-n9.
-
(1801): Traitd de min4ralagre3. ChezLouis, Paris,
France.
(18O9): Tableau Comparatif des R€sulta* de
Crisallagraphie et de l'Arnlyse Chfunique
Relativementd
la ClassificationdesMindraax, Courcier,Paris,France.
HAa!{, R.M. & Fnqcnn,L.W. (1979): Polyhedral tilting: a
cornmontype ofpure displacive phasetransition and its
relationshipto analciteat high pressue.PhaseTfansitions
l,t-22.
H NEy, P.J. & Vr,rur, D.R. (1990): A high-temperature
study of the low-high leucite phass hansition using the
transmission electron microscope. Am. Mineral. 75,
46+476.
JArEsoN, R. (1805): System of Mineralogy II. Bell and
Bradfirte, Edinburgh,U.K. (539).
Joswrc, W., Barn-, H. & FuBss,H. (1984): Structurerefinement of scolecite by neufron diffraction. Z. Kristallogr
t66,219-223.
KAIi,B,W.B. & Orq W.C. (1960):Paulingite,anew zeolife,in
associationwith erionite andfiliform pynte.Aru Mineral.
45.79-91.
KAwAHARA,
A. & Curuw, H. (1969): La structurecristalline
de l'6rionite. Bull. Soc. fn Mindral. Crtstallogn 92,
250-256.
KERR,I.S. & Wu.nus, D.J. (1969): The crystal strucfire of
yugawaralite.Acta Crystallogn825, 1183-1190.
RECOMMENDED NOMENCLATURE FOR 4OLME
MD{ERAI,S
L599
gesamnte Mineralogie mit Hinsicht auf die neuesten
KHoMrAKov,A.P., CHEREprvsKAyA,
G.Ys., Kunove, T.A. &
KAprsov, V.V. (1982):Amicite, K2Na2AlaSiaO16.5H2O, Entdeckungen ll, 164-168 (extracted from Gismondi
frst find in the USSR. Dokl. Akad. Nauk SSSR263.
1817).
978-980(in Russ.).
(1.82L):Handbuch der Oryktognosie.Mohr &
Mnter, Heidelberg,Germany(448).
Sar.rpom.sraya, S.M. & MALNoVSKI, Yu.A.
(1980):Kalbonite,K6BAI4Si6O4(OH).C1,
a new minetal.
LsvnrsoN, A.A. (1966): A system of nomenclaturefor
Dokl. Akad- Nauk SSSR252, 1465-L468(in Russ.).
rare-earthminerals,Am. Mineral, 51, 152-158.
KrM, Y. & Krnrcarnrcr, R.J. (1996):Application of MAS
NMR spectroscopyto poorly crystallinematerials:vis6ite. Ldw, A. (1825):Descriptionsof two new minerals.fumals of
Philosophy,newser.10,361-363.
Mineral. M ag. 60, 957-962.
KLAPRofiI, M.H. (1803): ChemischeUntersuchungdes
Natroliths. Ges. Naturforschender Freunde zu Berlin,
Neue Schrift en 4, 243-248.
Koctrrar, V., Garr, R.I. & RucKr.pcs,J. (L974): The crystal
structureof bikitaite, Li[AlSirO6].I{rO. An Mineral, 59,
7t-78.
Koraua, K. & TerGucr, Y. (1977): Clinoptilolite: the distribution ofpotassiumatomsandits role in thermalstability.
Z. Kristallogr. 145, 216-239.
Knauss, W., BRNHARDT,
H.-I., EFFB{BERGER,
H. & GIEsrR"
G. (1997):Tschdrtnerite,a copper-bearingzeolitefrom the
Bellberg volcano,Eifel, Germany.Ber Deutsch,Miwral,
Ges.1,205 (abstr.).
KnmsArnmsml, E., DANo,M. & Psrm.sw, O.V.(1969):A
tetragonalnatrohte.Medd- om Gr4nland l.8|, l-19.
Kvrcr, A., ARrroLL G. & Srrnrn, J.V. (1936): Neutron
diffraction study of tle zeolite yugawaxaliteat 13 K. Z,
Kristallag n l7 4, 265-281.
SrAru., K. & Surm, J.V. (1985): A neutron
diffuaction study of the bonding of zeolitic water in
scoleciteat 20 K. Z. Kristallogn 171,l4l-154.
Lecnox, A. (1896): Sur la gonnndrte. Bull. Soc.fn Mindral.
19,426429.
LANcHoF, J. & Holsreu, D. (1994): Boron-bearing
chiavennite and otler late-stage minerals of tle
Proterozoic litiium-pegoatites of Utii, Stockholm,
Sweden.Int. Mineral. Assoc., l6th Gen. Meet. (Pisa),
Abstr.232.
LARSBN,
A.O., Asrsnr, A., Raaos, G. & TAFro, J. (1992):
Tvedalite, (CaMn)aBqSi6O,r(OlDa.3HzO,a new mineral
from syenitepegmatitein the Oslo region, Norway. An.
Mineral. 77. 438443.
LEn/c& H.W. & Sr.aucrnr,n,M. (1969): The determination
and refinementof the crystal structureof yugawaraJite.Z
Kristallogr 130, 88-111.
Lo, H.-J. & Hsnn, Y.-L. (1991): Iligh potassiumnatural
mordeniteandthe chemicalvariation of mordenite.Proc.
Geol. Soc. China (Taiwan) 34, 305-312.
SoNc,S.-R.&WaN, S.-8. (1991):Highpotassium
mordenitein the andesitefrom the CoastalRange,eastem
Taiwaa.Proc. Geol. Soc, China (Taiwan) 34, 293-3M.
Luccmru, G., Messa, B. & PsNco,A.M. (1982):Strontian
heulandite from Campegli (easternLigurian ophiolites,
Italy). NeaesJahrb. Mineral,, Monatsh,,541-550.
MAln{ovsKrr, Yu.A. (1984): The crystal structure of
K-gmelinite. Kistallagrafirya 29, 426430 (in Russ.).
& BBLov. N.V. (1980): Crystal structure of
kalborsite. Dokl. Akad.. lVaat S,S,Sft252. 611'-615
(in Russ.).
MAsoN, B.H. (1957): Gonnardite (ranite) from
Langesundsfiord. NorskgeoL TId*skr 37, 435437 .
M-wt"F. & GAII, E. (1978):Is eachanalcimediffercnt?AmMineral. 63,448460.
The tetrahedralframework of
& -(1983):
chabazite.NeuesJahrb. Mincral, Monatsh. 461-480.
& GorreroI, G. (1976): The crystal
sfucture of tetragonallelrcite.Am. Mineral. 6L, L08-115,
&-
(1984):Crystalstructure
refinement of two teffagonal ediaglonites. News Jahrb.
Mfurcral, M onatsh., 37 3-382.
LARSEN,A.O., GorrARDI, G. & GAul, E. (1986):
Gonnardite has the tetrahedral framework of natrolite:
experimental proof with a samplefrom Norway. lfeaas
Jahrb.Mirral,, Monatsh.,2L9-228,
McCoNNELL,D. (1964): A zinc phosphateanalogueof
analcime:kehoerte.MineraL Mag. 33, 799-803.
McCusGR, L.8., BaBnr-oclrnn,C. & Nawez, R. (1985):
fuetveld refinement of the crystal structure of the new
zeolite miaeral gobbinsite.Z. Kristallogr. l7l, 281-289,
LENGAUER,
C.L., Gmsrsn,G. &TnnaarNs, E. (1997):Mineralogical characterizationof paulingite from Viaarickd
Hora, CzechRepablic, Mineral. Mag. 61, 591-606.
Mrten, W.M. (1961): The crystal sffucture of mordenite
(ptitolite). Z. Kristallo gn ll5, 439450.
voN LBoNITARD,
K.C. (1817):Die Zeagonigein neuesMineral
vom Capo do Bove bei Rom. Taschenbuchfrtr die
OLsoN,D.H. & BeeRrccffi, C. (1996): Atlas of
zeolite structuretypes.kolites t7, L-23O.
1600
THE CANADIAN MINERALOGIST
MrN'snxov, Yu.P. (1984): Perlialite, Krl.{a(Ca,Sr) Ocurane, S. & IIrntA, A. (1990): Exceptionally K-rich
clinoptilolite - heulandite group zeolites from tlree
[AlrzSizorr]'15Hro, a new potassianzeolite from tle
Khibina Massrf. Zap. Vses.Mineral. Obshchest. ll3,
offshoreboreholesoff northernJapaa.Eutr J. Mineral. 2,
6M-612.
819-826.
-
DBr.usov,A.P.,UsFElsKAyA,
E.I. & Lparova, E.A.
(1973): Lovdarite, a new hydrous beryllosilicate of
alkd;s.Dokl. Akad.lVazl SSSR213, M9432 (in Russ.).
MeRxLs,A.B. & Suucurug M. (1968): Dererminationand
refinementofthe stucture ofheulaadite.Am. Mineral. 531120-1138.
Mnru,nro, S. (1972): Orizite discredited (= epistilbite). Arz.
Mineral. 57,592-593.
(1974): The crystal structure of wenkite. Acta
Crystallo gn 830, 1262-1268.
(1990):Lovdarite, I!Na12(BesSioOT2)'1
8H2O,a
zeolite-like mineral: structuralfeaturesand OD character.
Eun J. Mineral. 2, 809-817.
Gau,r, E. & Alrrnn, A. (1975): The crystal
structure of levyne. TschermaksMineral. Petrogr. Mitt.
22, rt7-129.
MnIAro, H. & Tararo, T. (L964): An occurrence of
potassiumclinoptilolite from ltaya, Yamagatahefecture,
Japan.J. CIay Sci.Soc,Japan 4,12-22 (in Japanesewith
Englishabsn).
MIzorA, T., Surrure, G., Snnraezu,M. & TaxssHnA, Y.
(1974):Mineralogical studieson levyne anderionite fron
Japan.Geol.Soc.Japan,Mem.11,283-290.
Monoznwrcz, J. (1909): Uber Stellerit, ein neues
Zeolithmineral. Bull. International de I'Acaddmie des
Sciencesde Cracovie. 34+359.
Mutup.roN,F.A. (1960): Clinoptilolite redefined.Am. Mineral,
45.35t-369.
Narernae, W. (1983): Disordered wairakite from Hikihara,
Haga Town, Hydgo Prefecture.BuIl. Faculty of Education, Kobe Univ.70,3946.
NAIryAz,
R. (1983): New data on gobbinsileand garronite.
Mineral. Mag 47, 567-568.
PAssAcuA,E, (1969a):Le zeoliti di Albero Bassi (Vicenza).
Pen Mineral. 38, 237-243.
(1969b): Roggianite,a new silicate mineral. Clny
Minerals8.107-lll.
(1970): The crystal chemistry of chabazites.An.
Mineral. 55, 1278-1301.
(1975): The crystal chemistry of mordenites.
Contrib. Mineral. Petrol. 50, 65-77.
ARrrou, G. & Gualruru, A. (1998): The crystal
chemistry of the zeolites erionite and ofhetite. Arz.
Mineral. 83,57'7-589.
& CamlBveq R. (1995):
Diageneticmordenitefrom PonzqItaly. Eur J. Mineral.
7,429438.
GALLT,E., LsoNr,L. & Rossr,G. (1978b):The
crystal chemistryof stilbites andstellerites.BrrlLMinlral.
101.368-375.
& Rntar-ot,R. (1974): Levynes and
erionites from Sardinia, Italy. Contrib. Mineral. Petrol.
43,253-259.
& PoNcnuppr,D. (1974):Sodianstelleritefrom
CapoI'nla, Sardegna.Lithas 7, 69-73.
(1975): Barrerite, a new natural
& _
zeohte,Mineral. Mag. 40, 208.
& Rnqapl R. (1977):Merlinoite, a new
mineral of the zeolite gtoup. Neres Jahrb. Mineral.,
Motuztsh..355-36l,
& VBzzamu, G. (1978a):The crystal
chemistryof gmelinites.NeuesJahrb. Mineral., MonatslL,
3t0-324.
(1984): New data on cowlesite from Northern
Ireland,.Mineral, Mag 48, 565-566.
& SeceRDou,M . (1982): Crystal structuralrefinement of Na-exchanged stellerite. Bull. MindraL 105,
338-342.
& Melowe, J.F. (1982): Gobbinsite,a new zeolite
mineralfrom Co. Antrim, N. heland.MineraL Mag.46,
365-369.
& Tlcr,ravnu, A. (1994): Chabazite - offretite
epitaxial overgrowthsin cornubianitefrom PassoForcel
Rosso,Adamello,Italy.Eur J. Mineral, 6,397405.
NICKEL,E.H. & MANDARI{o,J.A. (1987): Procedures
involving the IMA Commission otr New Miaerals and
Mineral Names,ald guidelineson mineral nomenclature.
Can. Mineral. 25, 353-377.
NoRNBERG,
P. (1990): A potassium-rich zeolite in soil
developmenton Daaian chet. Mineral. Mag 54, 9l-94,
& VBzzar.nu,G. (1985): Crystal chemistry of
diagenetic zeolites in volcanoclastic deposits of Italy.
Contrib. Mineral. Petrol. N. 190-198.
(1988): Roggianite:revisedchemical
formula and zeolitic properties. Mineral. Mag. 52,
201-206.
RECOMMENDED NOMENCLATURE FOR ZEOLITE MINERAIJ
& CanNevALI,
R. (1990): Diagenetic
chabazitesandphillipsites in ltaly: crystal chemistry and
genesis.Ean J. Mineral, 2, 8n -$9.
Psacon, D.R. (1968): A high temperaturesingle crystal
difhactometer study of leucite, (K,Na)AlSi2O6. z,
Krt stallogr l?:1,21,3-224.
Dr.rm, P.J., SndMoNs,W.B., TnuaNNs, E. &
FIscItER,R.X. (1984): Willhendersonite,a new zeolite
isostructuralwith chabazite,
fun, Mineral.69. 186-189.
Wrcrs, F.J.& RATDSFP,M.
(1988): Maricopaite, a new hydrated Ca-Pb, zeolite-like
silicate from Arizotu Can.Mineral. 26. 309-313.
PBKov, I.V. & CnureNov, N.V. (1996): New data on
kalborsite.fup, Vses.Mineral. Obshchest.125(4),55-59
(in Russ.).
Prnnorra, A.J. (1967):The crystal structureof epistilbite.
Mineral. Mag. 36, 480490.
& SIImH, J.V. (1964): The crystal structure
of brewsterite, (Sr,Ba,Ca)z(AlaSit0rS.1gl1r6. O"ro
Crystallagn 17, 857-862.
hssoN, L.V. (1890):On mordenite. An" J. Sci.140,232-237.
Pnrnr, J.J. & Slurm, J.V. (1990): Crystal structure of
boggsite, a new high-silica zeolite with the frst
three-dimensionalchannel systemboundedby both 12and lO-rings.Am Mineral.7s, 501-507.
Howano, D.G. & TscnsRNrcg,R.W.
(1989): Boggsite; the first tlree-dimensional channel
system with both l2-and l0-rings. /z Zeolites for the
Nineties, Recent Research Reports (J.C. Jaasen, L.
Moscou & M.F.M. Posl eds.).Eighth Int. Zeolite Conf.
(Amsterdam),I I 1-112 (abstr.).
Querrcru, S. & VszALru, G. (1987): Crystal chemistry of
sfilbites: structure refinements of one nornal and four
chemically anomaloussamples.kolites 7, 163-170.
& Ar-anu, A. (1990):Dachiarditefrom
Hokiyadake: evidenceof a new tspology Eur J. Minzral,
2.187-193.
RaalB, G. (1996): Minerals originally described from
Norway. Including notes on type material. Norst
BergverksmuseumsSlrift serie ll.
1601
Pnrnr, J.J.& Surrl J.V. (1974):Zeolitesof the
phillipsite family. '[efinement of the crystal structures
of phillipsite and harmotome. Acta Crystallogr. D.30,
2426-2433.
Crystalstructure
e -(975b):
of maz.zitedehydratedat 600"C. Acta Crystallogn R31,
1603-1608.
SIvnru,J.V. & JuNc,G. (1975a):Chenistry and
paragenesisof faujasite, phillipsite and offretite from
Sasbach,Kaiserstuhl, Germany.NeuesJahrb. Mineral.,
Monatsh..433443.
& VBzemu, G. (1985): Gismondhe; the detailed
X-ray structure refinement of two natural samples.
In Zeolr:teq' Synthesis, Structure, Technology and
Application (8. Daj, S. Hodevar& S. Pejovnik,eds.).
Elsevier,Amsterdam"The Netherlands(481492).
RoBnIso\ G.W & GRIcE,J.D. (1993):The barium analogof
brewsteritefrom Harrisville, New York Con Minzral.3L,
687-690.
Rosn, G. (1826): Ueber den Epistilbit eine neuezur Familie
's)
der Zeolithe gehtirige Mineralgattung, (Poggendodf
6,
183-190.
Amalender Physikund Chemie
Ross, C.S. & Ssamqon,E,Y. (1924): Mordenite and associated minerals from near Challis, Custer County, Idalo.
Proc. U.S.Nat Museum@(19), L-19.
Ross,M., Flom., M.J.K. & Ross,D.R. (1992): Crystalline
solution series and order-disorder within the mtrolite
mineral goup. A;rz,Mineral. 77, 685-703.
J.L.
Rouse, R.C., Dr-Dw,P.J., Gnrce, J.D., SCHI.EI.II{BR,
(1990): Montesommaite,
&
rlrccn{s,
J.B.
(K,Na)qAlqSiBO64'10H2O,
a new zeolite related to
merlinoite and the gismondinegroup.Am. Mineral.75,
r4L5-1420.
PBAcoR,D.R. (1986): Crystal structureof the
-&
An
zeolite mineral goosecreekite,CaAlrSi6O16.5H2O.
Mineral. Tl. I49+I5OL.
(1994): Maricopaie, an unusuallead
&calcium zeolite with an interrupted mordenite-like
framework and intrachannelPbotetrahedralclusters.Ara
Mineral.79.175-lU.
I., T.J., RoBERts,
DUNN,P.J., CArvtr'Bpr
Artu,r,R., Mr,aoscr, M.H., Dw, V.K., LansBr,
-,
A.O. & Asnsu, A. (1983): Chiavennitefrom syenite
pegmatitesir the Oslo region, Norway.Am. Mineral. 68,
628-633.
RAsrsvETAEvA,
R.K., Rrreu,ova, O.Y., ArronraNov, V.I. &
MALD.rovsK[, Yu.A. (1991): Crystal structure of
hsianghualite. Dokl. Akad. Naaft ,ISSR 316, 62+628
(in Russ.).
Rwar,or, R. (1976): Crystal chemistry atrdstructuralepitaxy
of of&etite - erionite from Sasbach.Kaiserstuhl. iVeues
Jahrb. MineraL, Mottntsh., 145-156.
a
D. (1987):Pahasapaite,
W.L., WIcKs,F.J.& NswBURv,
beryllophosphatezeolite related to synthetic zeolite rho,
from the Tip Top pegmatite of South Dakota. Neaes
Jahrb, MineraL, M onatsh, 433444.
& Mm.Lnco,S, (1989):Crystal structure
of pahasapaite, a beryllophosphate mineral with a
distorted zeolite rho framework. Am. Mineral. 74,
tr95-1202.
RoDNosR,8., Ttrluexr.rs, E. & HsN'IscIfiL, G. (1993):
Bellbergite- a new mineral with the zeolits sfructre type
F'AB.Mineral. Petrol. 4E,147-152.
1602
Saxuner, K. & Heyasm, A. (1952): "Yugawaralite", a new
zeolite.Jci. Rep.,YokolwmaNaqUniu, Ser.II,l,69-77 .
PLurH,J.J.,Boccs, RC. & Howenp,D.G. (191):
Tschernichite, the mineral analogue of zeolite beta. J.
Chem-Soc.,Chem.Commun.,363-3il.
Sanp,H., Dsm.Ne, J., Bzouann, H. & LnsIctr, B.W. (1979):
La parthdite, CaAl2Si2Os.2!12O,un nouveau silicate
naturel d'aluminium et de calcium. Schweiz Mineral.
Petrogr Mitt.59,5-L3.
SrAru K., Kvrcr, A. & Surnr, J.V. (1990):Thomsonite,a
neul:rondiffraction study at 13 K. Acta Crystallogr C46,
t370-1373.
ScHAI,I.R"W.T. (1923):ftilolite andrelatedzeolites./n hoc.
Societies@.T.Wherry,ed.).AnL MilrcraL8,93-94.
SrsnvsR, A. (1955): Wairakite, the calcium analogue of
analcime, a new zeolite mineral. Mineral. Mag. 3O,
691-698.
(1932): The mordenite - ptilolite group;
clinoptilolite, a new species.Arn Mineral. YI,128-134.
Scru,Buren, J.L., PLUrs, J.J. & St"trll I.Y. (1977a):
Refinement of the crystal structure of brewsterite,
Bas5SrlsAlaSirro32.lOHrO.Acta Crystallogn E.33,
2907-29tO.
(1977b): Dehydrated
natural erionite with stackingfaults of the offretite type.
Acta Crystallogr 833, 3265-3268.
_&
Scrfi.OpFBR,
L. & Joswrc, W. (1997): Structureanalysesof a
partially dehydratedsyntheticCa-garronitesingle crystal
under differentT, pHrO conditions.Eun J, Mineral.9,
53-65.
SBxr,Y. (1971):Wairakite- analcimesolid solution as an
indicator of water pressuresin low-grademetamorphism.
J. Geol.Soc.Japan17,667-674.
& Ort, Y. (1969): Wairakite - analcime solid
solutions from low-grade metamorphic rocks of the
TanzawaMountains, centralJapan.Mineral. J. 6,3645.
Srnuvz, H. (1956): Die Zeolithe Gmelinit, Chabasil Levyn
(Phakolith,Herschelit, Seebachit,Offrett). NeuesJahrb.
Mineral., Morwtsh., 25U259.
(L978): Mineralogische Tabellen (7th ed.).
AkademischeVerlagges.,Leipzig, Germany.
FuFss,H. & Kvrcr<,A. (1990):InvestiSrucr<mlsc}nr,mr,8.,
gation of the structure of harmotomeby X-ray (293 K,
100K) andneutronditraction (15 K). Ear. J. MirwraL 2,
861-874.
TAx€ucrfl,Y., MAzzt,F., Haca, N. & Gau,t, E. (1979):The
crystal sfiuctureof wairakite.Ar?.Mineral.64, 993-1001.
TAyLoR, W.H. (1930): The structure of
(NaAlSirO6'HrO).Z Krtstuilogn74, l-19.
analcite
& JAcKsoN,R. (1933):The structureofedinglonite.
Z. Krtstallagn86, 53-64.
Tezorr, V., Dolrmrecnrrrr, M.C., MAz, F. & Camun o, E.
(1995): The crystal structure of chiavennite. Ear J.
Mineral. T,1339-13M.
SnsFpARD,
R.A. & Fn-aarnrcr, J.J. (1989): Phillipsite from
silicic tuffs in saline, alkaline-lake deposits.Clays CLay
Minerals 37.243-247.
TmrsrRA, D.K. & dERNf,P.(1995):Firstnatural @curences
of end-memberpollucite: a product of low-temperature
reequilibration.Eur J. Minzral. 7, LL37-1148.
& GIDE,AJ.,Itr (1969a):Diagenesis
of tuffs inthe
Barstow Formation, Mud Hills, SanBernardiao County,
Califomia. U.S.Geol.Surv.,Prof. Pap, 6A,l-35,
& DvsR,A. (1994):The informal discreditationof
"doranite" as the magnesium analogue of analcime.
kolites 14.411413.
(1969b): Chemical composition and
&physical properties of tle related zeolites offretite
anderionite.Arz.Mbrcral.54. 875-886.
P. (1994):MAS
Srm.rurp,8.L., Xu, Zrtr & CTERNf',
and DOR NMR study of Al-Si order in the analcine pollucite series.Can Mineral, 32, 69-80.
& Grurrn, J.J. (1970): Chemical composition and physicalpropertiesofphillipsite from the
Pacific and Indian oceans.Ar?. MfueraL 55.2053-2062.
& MuNsoN,E.L. (1965): Chemical
compositionof diageneticzeolitesfrom tuffaceousrocks
of the Mojave Desert and vicinity, California. Arz.
Mineral. 50.24+249.
Stvrrnr,J.V. (1988): Topochenristryof zeolitesand related
materials. 1. Topology and geometry. Chem. Rev, 8E,
149-t82.
KNAwE6, C.R. & Rnt.llpr, R. (1964): Crystal
structures with a chabazite framework. Itr. Hydrated
Ca-chabaziteat +20 and -150oC. Acta Crystallogn 17,
374-3U.
TsuGLrr, S.J.(1933): O ptylocie z Mydzka na Wolyniu - Sur
la ptilolite de Mydzk en Volhynie. Arch. Mindral., Soc.
Sci. Varsovie 9, 99-102 (Polish), 103-lM @rench
r6sum6).(Mineral. Absn 6, 129).
Tuuar.rxs, E., FrscHBR,R.X. & Beun, W.H. (1984):
Chabazite-type framework in the new zeolite
willhendersonite, KCaAl3Si3Orz.SHzO.Neues Jahrb.
Mineral,, M onatsh.,547-558.
Tsctmmqr, R.D. & W$q W.S.(1982):Paulingite:variations
in conposition. Atn, Mineral. 67, 799-803,
UENo,T. & Haraoa, K. (1982): Chemicalconpositions and
genesesof zeolites from Tsuyazaki,Fukuokahefecture,
Iapar J. Mineral. Soc.Japan15,259-n2 (in Japanese,
with English abstr.).
RECOMMENDED NOMENCI.ATI.'RE FOR reOIJTE
MINERAI.S
1603
VAUGHAN,P.A. (1966): The crystal structure of the zeolite
ferrieito Acta Crystallogr 21, 983-990.
Vnl.annoal-, H.S. (1983): Sobre la existencia de otras
variedadesde estellerita y una forma de reconocerlas.
Anais Aca.demiaBrasileira d.eCiercias 55,87-91.
VBzzem.u, G. (1984): A refirement of Elba dachiardite:
oppositeacentric domainssimulating a centric structure.
Z Krtstuilogr16,63-71.
Wru-rnn, G.P.L. (1962): Garronite, a new zeolite, from
Ireland and lcelard. Mineral, Mag.33, 173-186.
F. (1992):Weinebeneite,CaBq@O)r(OtlAIlrO, a
Anrror4G. & Quarnrru, S. (1992):Thecrystal Warrm, minetal species:mineral data and crystal structure.
nerv
chemistry of cowlesite,Mturcral.Mag. 56,575-579.
R. (1984): The crystal chemistry of
& OBERTI,
gismondines:the non-existenceof K-rich gismondines.
Bull. Mindral. 1117,
805-812.
Eur J. Mineral. 4, ln 5-Q83.
Wnqr, H.-R. (1973):The structureof wenkite.Z Kristallogr
\37,t13-t26.
Wnrrs. J.S. & Enp, R.C. (1992): Kehoeite is rot a valid
species.Minzral. Mag, 56, 256-258.
Quamruru, S. & Gar-lr, E. (1996): Relazioni
strutturali nelle zeoliti con topologia CHA alla luce del
XXVI Congresso Wrse, W.S. (1982): New occrurence of faujasite in
ritrova:nentodi una Ca-willhendersonite.
Nazianale dclla Associazioneltaliana di Cristallografi.a
soutleasternCaliforna. kn MineraL 67, 79+7 98.
(Alessandria), 9 I (abstr.).
& Tscsrnrqcu, R.W. (1975): Cowlesite,a new
Ca-zenhte.Am- Mincral, 60. 951-956.
& -(1997a):
Occu:renceand
crystal structure of a Ca-purewillhendersonite. kolites
(1976): Chemical comPositionof
& 19,75-79.
fefieri&. ArL Mineral. 61, 60-66.
Ar-sERn,A.,Cnuqaq C. &
Kvrcr, A. 9997b): Crystal sffucture of the zeolite
mutinaite, the natural analogue of ZSM-S. Zeolites
19.323-325.
& PAssAcLrA,E. (1990): Crystal
structure of a K-rich natural g'nelinite and comparison
with the other refined gmelinite samples.NeuesJahrb.
Mineral., Monatsh.,504-516.
Wvem, J. (1938):ftude surlaleucite.Bull. Soc.fr Mindral.
61.228-238.
T. (1996): (010) disorder,partial
Yerc, Pnvc& AnvmRusrtsR,
Si,Al ordering, and Ca distribution in triclinic (Cl)
epistilbite. Ear J. Mineral. 8, 2$-n l.
ReceivedDecember3, 1997.
L604
TTIE CANADIAN
Aprnxpx 1. Norss on rm Dnrrnrnon or ^l Znolttr
MINERALOGIST
Natural zeolites are known with up to 88Voof
tetrahedral sites occupied by Si, as in mutinaite, and
Is more than 50Vosubstitutionof elementsother than
thereis no theoreticalreasonwhy this figure cannotbo
Si and Al pennissible in tetrahedral sites?
exceeded.If the site occupancy of tetrahedraby Si
approacheslffiVo, the exfra-frameworkcation content
Therewascompleteagteementin the Subcommittee will approachzero,eventhoughthe structureand other
that somesubstitutionof elementssuchasP andBe for characteristicsmay remaintypically zeolitic. It is again
Si andAl in tetahedral sitesmust be permitted in the consideredinexpedientto word the definition so as to
definition. Discussionin this context focussedon excludesucha hypotheticalend-membercasefrom the
whethera5OVorule shouldbe applied.The so-called zeolite category.Melanophlogiteoa low-density SiO2
50Vorule (Nickel L992)is normally applied to split a phase with large cages in its framework, would be
binary solid-solution seriesinto two speciesat tle
a possible example,but is otlerwise excluded by
half-way point accordingto the predominantcations the adopted definition becauseit lacks appropriate
concerned,but not to separatemembers of a solid- channelsfor the passageof guestspecies.
solution seriesinto two separateclassesof minerals,
as could happen if applied in the present context.
REIERm{CE
Proponents of. a 50c/orule argued tlat the definition
in mineralnomenclature.
of zeolites should be on grounds of both structure Ntcrcr.,E.H.(1992):Solidsolutions
Can.Mineral. 30,23| -234.
and composition, zeolites being aluminosilicates or
possibly Al-free silicates.The confiary opinion is that
wherestructuresaretopologically equivalentandother
essentially identical zeolitic characteristics prevail,
Appnmrx 2. Drscnnortatroxs
irrespective of Si and Al contentsin tetrahedralsites,
any restrictions basedon specific Si and Al contents H erschelite is chabazite-Na
would be arbitrary andundesirable.The Subcommittee
voted by a substantial majority for this view. The
Herschelite,Na[AlSiOo].3HrO, was named by
beryllosilicates lovdarite and chiavennite, like tle
I-6vy (1825)from materialbroughl to him 6y Herschel
zincosilicategaultite, havemore than 50Votetrahedral from "Aci Reale" (nowAcireale), on the flanks of Mt.
sitesoccupiedby Si, and are here acceptedas zeolites Etnain Sicily. Contemporaryliteratureandpresent-day
in spite of having little if any Al. Also included arethe exposruessuggestthat the actualoccurrencemay have
beryllophosphates pahasapaite and weinebeneite, been in basaltic lavas at Aci Castello, nearby. L6vy
which haveneitherSi norAl, but havetypically zeolitic describedherscheliteas tabular crystals of hexagonal
sructures and other zeolitic characteristics.They can outline that contain'silex, atumina,andpotash".It was
be regarded as end-member examples of Si-free later identified with chabazite(e.g., Hausmann1847)
zeolitesor zeolite phosphates.
and relegated to synonymy, altlough shown to be
A compositional factor is included in the adopted Na-rich, not K-rich. Strunz (1956) confirmed that
definition in that the framework consistsessentiallyof herschelite and chabazite give essentially identical
oxygen atoms togetier with cations that enter into X-ray powderpatterns.Mason(1962)proposedrevalitefi?hedml co-ordinationwith oxygen.
dation on the basesof a supposedcompositional gap
betweenherscheliteand'onormal" Ca-rich chabazite,
Is thc presenceof H2Oand of exta-framework
the distinctive habit and lower indices of refraction.
cations essential?
Passaglia (1970) demonstrated a continuum of
compositionsfrom Ca-to frfu-deminantgpes, extending
Reversibledehydrationis a characteristicfeatureof into the field of K-dominancein a ternary series;there
zeolitic behavior,but how much I{2O must be presert is no discerniblegapin composition.The lower indices
for a mineral to be considered a zeolite? Pollucite of refraction reflect the Na-rich composition. Variant
forms a continuous series with analcime, the HzO crystal habit is not an accepted basis for species
content declining progressively *i1tr iaslsaging Cs status for minerals, and some examples of strongly
contentsuchthat fhe Na-free,Cs memberis essentially Na-dominantchabazitehaverhombohedral,not tabular
anhydrous. It seems unnecessary,impractical, and habit asin the caseof micrometer-scalecrystalsaggreillogical to prescribesomearbihary HrO contentbelow gatedinto flin raggedplates,illushated by Shepparder
which pollucite (or othermineral) would be definedas al. (1978).
anhydrous,and no longer az,eolrte.Furthermore,it is
In view of its chequeredhistory and the above
not inconceivable that sometypical zeolite might be considerations,tle nameherscheliteis suppressedand
reversiblydehydratedundernaturalconditionswithout tle name chabazite-Na is to be applied to those
essentiallossof stnrcture.If so,it hasnot ceasedto be a members of the chabazite series in which Na is tle
zeolite.Althoughzeolitestypically arehydrous,it is inex- most abundant extra-framework cation. Herschelite
pedientto specifythe presenceof H2Oin the definition. may retain someuseas a term for a distinctive habit.
RECOMMENDED NOMENCI.{IT'RE
FOR ZEOLITE MINERAI.S
1605
faults, andthat it is not a topologicatlydistinct member
of the mordenitefamily. Its compositionis within the
-L II'O was described rangeof other samplesof dachiardite.It is regardedas
Ironhardite Caa[AleSiteOar].
by Blum (1843) for a mineral closely related to a multiply twinned and highly faulted dachiardite
laumontite Caa[A\Si16Oa].18HrO, but with different (dachiardite-Ca), and is discredited as a separate
morphology. The type locality was near Schemnitz, species.
nowadaysBanskaStiavnica,tlen in Hungary,now in
Slovakia. Delffs (1843) showed that type-locality Wellsiteis barian phillipsite-Ca and calcian
leonharditehaslessH2O(ca. 13 moleculesof H2Oper harmotome
formula unit) than laumontite. Doelter (1921) agreed
tlat leonhardite is identical in composition to
The mineralnamedwellsiteby hatt & Foole (1897)
laumontite, apart from its lower content of H2O.The has beenshownby Galli (L972) and Galli & Loschi
name has continued to be used widely for a material Ghittoni (1.972)tobe isostuctural with phillipsite and
that forms rapidly andreversiblyby partial dehydration harmotome,and dernf et al. (1977) have shown that
of laumontiteunder ambientconditions.This happens zoning in crystalsof wellsite coversmost of the range
upon exposurein tle field and in the laboratory as a from Ca-rich phillipsite to potassian calcian
function of H2Ovapor pressureor by soakingin water harmotome.Wellsite is discredited.Most examplesof
giving a readily observablechangein extinction angle wellsite arebarianphillipsite-Ca andothersarecalcian
andcell dimensions(e.9.,Coombs1952,Annbruster& harmotome.
Kohler 1992).
Fersman (1908) introduced the term ooprimary
RmsnnNcss
leonhardite" for a variety from Kurtsy (nowadays
Ukrainka), Crimea, witl 14 moleculesof HrO, which
of
T. & Kon m, T. (1992):Re-anddehydration
neither dehydrates nor rehydrates under ambient Aru,mnusrm,
X-raystudyat 100K. Neaes
laumontite:a single-crystal
conditions. In it, (K,Na)z substitutesfor Caoaltlough
Jahrb,Mineral.,Monatsh.,385-397.
Ca is still dominant(Pipping 1966).
Tlpe leonhardite of Blum from Schemnitz catalogued in the Museum of Natural History Vienna, in BLUM,J.R. (1843): Leonhaxdit,ein neues Mineral.
(Poggendorffb)
Annalen'derPhysikund Chemie59,
1843 and type '?rimary leonhardite" of Fersman
336-339.
obtainedfrom the FersmanMineralogical Museumin
Moscowareshownby Wuest& Armbruster(1997)and
R.C.(1977):Welsiteand
GnrV, p.,RnqamI,R. & Sunoarra,
Stolz & Armbruster(1997),respectively,to havethe
group.lfeaes
its statusin the phillipsite-harmotome
same Si.Al ordered framework of tetrahedra as
Jahrb.Mineral..Abh.128.31'2-320.
laumontite. The low H2O content of "primary
leonhardite'ois attibuted to spacelimitations resulting Coours, D.S. (1952):Cell size,opticalpropertiesand
from the introduction of additional cations of larger
Arn.
atrdleonhardite.
of laumontite
chemicalcomposition
size.
Mineral.37,812-830.
In conformitywith Rule 4, leonharditeis discredited
as the name of a separatespecies.It is an H2O-poor DEITFFs,
W. (1843):AnalysedesLeonhardits.(Poggendorff's)
variety of laumontite. "Primary leonhardite" is
Annalen der Physikwtd Chemie59,339-342.
H2O-poorsodianpotassianlaumontite.
Leonharditeis H2o-poor laumontite
Svetlozarite is dnchiardite- Ca
C. (192L): Handbuchder Mineralchemiefr,3.
DoELTER,
VerlagTheodorSteinkopff, Dresden,Gemmny.
FsnsMAN,A.E. (1908): Maxerialienzur Untersuchungder
Svetlozaritewas describedby Maleev (1976) as
Zeolithe Russlands. I. Leonhardit und Laumontit aus
a high-silica zeolite occurring as spherulites in
der Umgebungvon Simferopol (IGim). ?rar. du Musde
chalcedonyveinlets in brecciatedandesiteswest of
96ol. Pierre le Grand. pn l'Acad. Imp. de Science
Zvesdel,easternRhodopes,Bulgaria.Analysis showed
St Pdtersbourg2, 103-150(abstr.in Z. Kristallogn 50,
Ca > Na > K, and minor Fe and Mg. From X-ray
75:76).
powder-diffraction studies, Maleev suggested an
orthorhombicsymmetry,with a c-axis repeatof 7.5 A, Gerr.r, E. (1972): La phillipsite barifera ("wellsite") di M.
Calvarina (Verona).Per.Mturcral, 41, 23-33.
which is characteristicof the mordenitegroup,to which
he attributedthe mineral.
& Loscrn GnroM, A.G. (1972): The crystal
Gellenset al. (1.982)concludedfrom powderand
chemistry of philripsites.Anr- Mfueral. 57, 1125-1'145.
single-crystal X-ray and transmission electron
microscopy (IEM) studies, tlat svetlozarite, space Gsr-r-srs, R.L., PnrcB, G.D. & SMrH, J.V. (1982): The
group Ccma (?), is related to tle ideal dachiardite
structual relation between svetlozarite and dachiardite.
structureby irregular periodic twinning and stacking
Mineral. Mag. 45, 157-161.
1606
THB CANADIAN
HAUSMANN,
J.F.L. (1847): Handbuch der Mineralogie
(2nded.).2,1600.
LEw, A. (1825):Descriptionsof two new minerals.Annals of
Philosophy,ns-wser, 10, 361.-363.
Merwv, M.N. (1976): Svetlozarite,a new high-silicazeohte,
7ap. Vses.Mineral. Obshchest,105,449453 (in Russ.).
MAsoN, B. (1,962):Herschelite - a valid species?Ant
Mineral. n.985-987.
Passeclre, E. (1970):The crystal chemistryofchabazites.
Am^Mineral. 55. 1278-1301.
PFFD{c,F. (1966):The dehydrationandchemicalcomposition
of laumontte.Mbzeral.Soc.India, IMAVol.,1.59-166.
PRATT,J.H. & Foorn, H.W. (1897): On wellsite, a new
mineral.Am. Sci. 153. M3-448.
"/.
MINERALOGIST
Snrrreno, R.A., GUDB,A.J. & Eosor.t,G.M. (1978):Bowie
zeolite deposit, Cochiseand GrahamCounties,Arizona.
1z Natural Zeolites - Occurrence, Properties and Use
(L.8. Sand& F.A. Mumpton,eds.).Pergamon,oxford,
u.K. (319-328).
Srorz, J. & AnMsnusrER,T. (1997): X-ray single-crystal
structurerefinementof a Na,K-rich laumontite,originally
designated"primary leonhardite"'.lfeues Jahrb. Mineral.,
Monatsh. I3L-I34.
Srmrxz, H. (1956): Die Zeolithe Gmelinit, Chabasit,Levyn
(Phakolith,Herscheli! Seebachit,Ofuetit). NeuesJahrb.
M ineral., M onatsh.,250-259,
Wuesr, T. & AnvsRusrsn, T. (1997): Tlpe locality
leonhardite:a single-crystalX-ray study at 100K, kolite
'97, 5th Int, Conf. on the Occurrence,Properties, and
Utilization of Nanral Zeolites (Ischia, Italy), Program
Absn.327-328.

Similar documents