Jahresbericht 2005 - Leibniz-Institut für Photonische Technologien
Transcription
Jahresbericht 2005 - Leibniz-Institut für Photonische Technologien
INSTITUT FÜR PHYSIKALISCHE HOCHTECHNOLOGIE e.V. JENA INSTITUTE FOR PHYSICAL HIGH TECHNOLOGY JENA JAHRESBERICHT ANNUAL REPORT 2005 Institut für Physikalische Hochtechnologie e.V. Direktor: Prof. Dr. H. Bartelt Albert-Einstein-Str. 9, D-07745 Jena Postfach/P.O.B.: 10 02 39, D-07702 Jena Telefon/Phone: +49(0)36 41 2 06 00 Telefax: +49(0)36 41 20 60 99 e-mail: institut@ipht-jena.de internet: http://www.ipht-jena.de Titelfoto: Dr. K. Fischer Herstellung: Werbeagentur Kirstin Sangmeister Telefon: 03671/64 12 96 Mobil: 0171 8 43 65 94 e-mail: kirstin.sangmeister@freenet.de INHALT / CONTENT Inhaltsverzeichnis / Content A. B. C. D. Vorwort / Introduction Organisation / Organization Personal und Finanzen / Staff and Budget Forschungsbereiche / Scientific Divisions 1. Bereich Magnetik/Quantenelektronik (Prof. Dr. H. E. Hoenig) Magnetics/Quantum Electronics Division 12 1.1 1.2 1.2.1 1.2.2 1.2.3 1.2.4 1.2.5 1.2.6 1.2.7 1.2.8 1.2.9 1.2.10 1.2.11 1.2.12 1.3 Überblick / Overview Scientific results Micro- and nanofabrication SQUID sensors and systems Integrated superconducting circuits Quantum computing Foundry service Domain wall motion in small GMR structures Measurement of coupling strength distribution in exchange bias film systems _Z< _ 33 Electron exited L X-rax spectra of the elements 14 < Preparation, characterization, and application of melt-textured YBCO Characterization and application of bulk MgB2 Preparation of magnetic materials Biomedical applications of magnetic nanoparticles Appendix Partners Publications Talks/Posters Patents Memberships Lectures PhD Thesis/Diploma Thesis Laboratory exercises Events/exhibitions Awards New equipment 12 15 15 15 17 18 19 19 21 22 23 24 24 25 26 27 29 34 34 35 36 36 36 36 36 2. Bereich Optik (Prof. Dr. H. Bartelt) Optics Division 37 2.1 2.2 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.2.6 2.2.7 2.2.8 2.2.9 Übersicht / Overview Scientific results Flame hydrolysis technique (FHD) for the preparation of advanced optical materials Materials for fibre lasers: Preparation and properties Boron doping for polarization maintaining laser fibres Photonic crystal fibres for innovative applications and devices Loss measurements at silica fibres for cladding pumped applications Studies of the mode behaviour of multi-core fibre structures Fibre-optic waveguide arrays as model system of discrete optics High-reflectivity draw-tower fibre Bragg gratings (FBG) at 1550 nm wavelength Travelling wave approach to direct-modulated fibre Bragg-grating stabilized external cavity semiconductor lasers Implementation of an OADM with a data rate of 10 Gbit/s as technology demonstrator in the PLATON project (Planar Technology for Optical Network) Material processing with DUV/VUV laser radiation High-speed optical fibre grating sensor system Monitoring of inhomogeous flow distribution using fibre-optic Bragg-grating temperature sensor array UV-spectrometer for in situ measurement of nitrate tested in the North Sea Novel optical dew point sensor 37 40 40 40 41 42 42 43 44 45 2.2.10 2.2.11 2.2.12 2.2.13 2.2.14 2.2.15 3 7 12 12 45 46 47 48 49 49 50 1 INHALT / CONTENT 2.3 Appendix 3. Bereich Mikrosysteme (Prof. Dr. J. Popp) Microsystems Division 59 3.1 3.2 3.2.1 Übersicht / Overview Scientific results Spectral optical techniques and instrumentation Spectral optical sensing Thermal microsensors Photonic chip systems Molecular nanotechnology and plasmonics DNA-chip technology Micro system technology Microfluidics of liquid-liquid segmented sample streams Chipmodule for analysis of micro combustion Appendix Partners Editor/Book chapters Publications Presentations/Posters Patents Lectures Diploma thesis Laboratory exercises Practical trainee Guest scientists Memberships Awards Conference organization 59 63 63 63 65 67 67 69 69 70 71 72 73 73 75 77 77 78 78 78 78 78 79 79 4. Bereich Lasertechnik (Prof. Dr. H. Stafast) Laser Technology Division 80 4.1 4.2 4.2.1 Überblick / Overview Selected results Laser chemistry Laser crystallization, Thin film deposition and nanowire growth, Laser ablation Laser diagnostics UV optical materials, Combustion processes Appendix Partners Publications Presentations/Posters Patents Lectures Diploma Theses Laboratory Exercises Committees Award, Exhibitions New Equipment 80 83 83 83 84 85 86 87 88 89 89 89 89 89 89 89 Innovation Project 2005 90 90 3.2.2 3.2.3 3.3 4.2.2 4.3 E. Partners Publications Presentations/Posters Lectures Patents Diploma/Master Thesis/Laboratory Exercises Guest scientists Memberships Participations in fairs/expositions Nanostructured Ta2O5 layers for optochemical/biophotonic sensors and solar cells 2 51 52 54 56 57 57 57 57 58 VORWORT / INTRODUCTION A. Vorwort A. Introduction Das IPHT konnte das Jahr 2005 mit einer erfolgreichen Projektarbeit abschließen. Die Drittmittelquote liegt deutlich über 50% mit einer bemerkenswerten Steigerung bei den EU-Projekten. Als besonders herausragende Beispiele der in diesem Jahresbericht enthaltenen Darstellung der Ergebnisse sollen hier genannt werden: – Erstmalig wurden vier Flussquanten-Qubits als Vorstufe für einen adiabatischen Quantenrechner gekoppelt und spektroskopisch charakterisiert. – Bei der Erzeugung von Einzelpuls-Bragg-Gittern (Typ I) in optischen Fasern wurden mit bis zu 50% Reflexionseffizienz internationale Spitzenwerte erzielt. – Die Entwicklung eines auf dem Prinzip segmentierter Probenströme arbeitenden LabOnChip basierten Systems führte zu einer Analysenplattform für die Krebsdiagnostik, deren Anwendungspotenzial auf grundlegende molekularbiologische Fragestellungen erweiterbar ist. – durch Laserkristallisation von Silizium auf Glas wurden mittels eines industrietauglichen Diodenlasers Keimkristalle mit Abmessungen bis 500 µm erzeugt, die die bisherige Größe um das 5- bis 10fache übersteigt. For the IPHT, 2005 was a successful project year. The share of project-financed activities was well above the 50% level, with a considerable increase in EU-funded projects. Here are some highlights of the results presented in this annual report: – For the first time, four flux quantum qubits have been coupled and spectrally characterized – a first step towards an adiabatic quantum computer. – The inscription of single pulse fibre Bragg gratings (type I) has achieved a reflection efficiency of 50% – a new international record. – The development of a LabOnChip based system using the principle of segmented probe flow has paved the way for an analysis platform for cancer diagnosis, which can be further extended to perform fundamental investigations in molecular biology. – By laser crystallisation of silicon on glass with a diode laser suitable for industrial use, seed crystals with a size of up to 500 µm have been produced, which is an improvement by a factor of 5 to 10. Gleichzeitig wurde während des Jahres eine Reihe von Weichenstellungen für eine zukunftsorientierte Aufstellung und Entwicklung der Arbeitsgebiete des IPHT vorbereitet. Dazu gehört zunächst die Berufung von Prof. Dr. Jürgen Popp als Leiter des Forschungsbereiches Mikrosysteme zum 1. Mai 2005. Er ist gleichzeitig Lehrstuhlinhaber für Physikalische Chemie an der Universität Jena und ausgewiesener Spezialist auf dem Forschungsgebiet der Laserspektroskopie und der Biophotonik. Damit wird die Verbindung von optischen Technologien und Anwendungen der Lebenswissenschaften fachlich gestärkt und die Zusammenarbeit mit der Friedrich-Schiller-Universität weiter unterstützt. Dr. Helmut Dintner, der diesen Forschungsbereich während der vergangenen sechs Jahre geleitet hatte, gebührt unser Dank für seine umsichtige Leitungstätigkeit während dieser Zeit. Zur Frage einer mit dem Umfeld abgestimmten und zukunftsorientiert ausgerichteten Fokussierung der Arbeitsgebiete zu photonischen und optischen Technologien wurde auf Empfehlung des Wissenschaftlichen Beirats durch das Kuratorium des IPHT eine Strukturkommission unter Leitung von Prof. Dr. Dietrich Wegener (Universität Dortmund) mit Beteiligung von Vertretern des IPHT, der Universität und des Landes eingesetzt. Auf der Basis eines vom IPHT vorgelegten Konzeptes wurden unter besonderer Berücksichtigung der bestehenden fachlichen Stärken Empfehlungen zur Fokussierung auf den Gebieten In addition to the scientific achievements, several measures were taken to shape the future of the IPHT and to assure the successful development of its research fields. As one major point, Prof. Dr. Jürgen Popp was appointed as head of the Micro Systems research division as of May 1st, 2005. He is also a professor of physical chemistry at the University of Jena and a well-known specialist in the fields of laser spectroscopy and biophotonics. This appointment will strengthen the synergy in our research in optical technologies and applications in the life sciences as well as intensify our collaboration with the University of Jena. We are obliged to Dr. Helmut Dintner for his prudent management of the said research division during the last six years. Based on a recommendation by the Institute’s scientific council, the Supervisory Board of the IPHT appointed a structural commission headed by Prof. Dr. Dietrich Wegener (University of Dortmund) with participation of representatives from the IPHT, the University of Jena and the State of Thuringia. This commission has discussed future focussing directions in the fields of photonic technologies considering regional interests to strengthen scientific excellence. Based on a concept framed by the IPHT, the commission investigated the Institute’s specific strengths and recommended focussing and further strengthening in the fields of optical fibres and applications and photonic instrumentation. For the magnetics and quantum electronics research fields, similar and still ongoing discussions have been held in order to develop strategies for this important part of the IPHT’s activities. 3 VORWORT / INTRODUCTION Optische Fasern und Faseranwendungen und Photonische Instrumentierung formuliert. Für die Forschungsgebiete Magnetik und Quantenelektronik fand ebenfalls eine Reihe von Abstimmungsgesprächen zur Zukunftsgestaltung dieses gewichtigen Arbeitsfeldes statt, die aber noch nicht abgeschlossen sind. Zur Pflege des wissenschaftlichen Austauschs war das IPHT Ausrichter von Tagungen und Workshops und beteiligte sich aktiv an Ausstellungen und internationalen Messen. Im Februar traf sich der PhotonicNet-Arbeitskreis „Oberflächenbearbeitung“ im IPHT. Im Mai organisierte Dr. Wolfgang Fritzsche ein internationales Symposium zur Molekularen Plasmonik. Ebenfalls im Mai versammelten sich unter der Schirmherrschaft des OPTONET e.V. Spezialisten im IPHT, um im Rahmen eines Workshops über neue Laserstrahlquellen zu diskutieren. Die Vermittlung von Forschungsergebnissen an die Öffentlichkeit war Anliegen der Beteiligung des IPHT an der Präsentation des Beutenberg Campus in Tokio im Rahmen des „Deutschlandjahres in Japan 2005–2006“ sowie an den Ausstellungen Faszination Licht im Januar und Eiskalte Energien für Europa im Juli, jeweils in der Jenaer Einkaufspassage Goethe-Galerie. Der öffentlichen Vermittlung von Forschungsarbeiten diente auch die Lange Nacht der Wissenschaften in Jena im November. Bis nach Mitternacht drängten sich die Besucher an den Experimenten und in den Labors. Lange Nacht der Wissenschaften: Besucher und Aussteller in Aktion The “Long Night of the Sciences”: Visitors and demonstrators in action 4 Zu einem Ehrenkolloquium war vom IPHT aus Anlass des 75. Geburtstages von Prof. Dr. Günter Albrecht im März eingeladen worden. Prof. Albrecht hat in seiner aktiven Zeit an der Universität die Forschung zur Supraleiterelektronik maßgeblich etabliert und ist damit einer der Väter dieser Forschungsrichtung im IPHT. In order to encourage scientific discussion and exchange, the IPHT organized conferences and workshops and was actively engaged in exhibitions and international fairs. In February, the PhotonicNet cluster on surface modification met at the IPHT. Dr. Wolfgang Fritzsche organized an international symposium on “Molecular Plasmonics” in May. Also in May a workshop on new laser sources was held at the IPHT under the patronage of the OPONET cluster. Several activities were aimed to present our scientific results to a broad public: the presentation of the Beutenberg campus in Tokyo/Japan as part of the German Year 2005/2006, and the expositions “Fascinating Light” (in January) and “Ice-cold Energies for Europe” (in July) in the Jena’s Goethe Gallery shopping mall. With the same intention, the IPHT took part in the first “Long Night of the Sciences” in Jena in November. Till well after midnight, many interested visitors crowded the Institute’s laboratories and took part in scientific experiments. An honorary colloquium was held on the occasion of the 75th birthday of Prof. Dr. Günther Albrecht in March. During his active years, Prof. Albrecht was a major force in establishing the research field of supraconductivity at the Jena University and also became a father of this research direction at the IPHT. Another special highlight at the IPHT was a public colloquium held by Prof. Dr. Anton Zeilinger (University of Vienna) on quantum information transmission, a subject which is related to our activities in quantum electronics research. As one of a series of talks at Beutenberg campus, this talk was organized by Prof. E. Hoenig with great commitment and attracted more than 200 visitors. The work of Dr. Thomas Henkel for the development of microfluidic chip systems had been acknowledged by the 2004 IPHT award. Another IPHT research award was presented to Dr. Sonja Unger, Volker Reichel and Klaus Mörl for their work on high power laser fibres with a record result of 1.3 kW output power from a single fibre. Six students of the University of Applied Sciences in Jena finished their diploma work in 2004 with very good results and marks: Constanze Döring, Lars Bergmann, Ralf Bitter, Carsten Hartmann, Matthias Schnepp und Rico Stober . They received the prizes for the best IPHT diploma work, sponsored by the Jena-Saale-Holzland Savings Bank. The internal competition for the 2005 innovation project was decided in favor of Wolfgang Morgenroth, Dr. Uwe Hübner, Richard Boucher (Magnetics/Quantum Electronics Division), Sven Brückner, Uta Jauernig, Dr. Siegmund Schröter, Dr. Torsten Wieduwilt, Barbara Geisenhainer, Matthias Giebel, Dr. Günther Schwotzer (Optics Division), Dr. Andrea Czaki, Andrea Steinbrück, VORWORT / INTRODUCTION Ein besonderer Höhepunkt war im Rahmen der von Prof. E. Hoenig mit großem Engagement organisierten öffentlichen Vortragsreihe des Beutenberg Campus eine Veranstaltung im IPHT mit Prof. Dr. Anton Zeilinger aus Wien, die über 200 Besucher anlockte. Prof. Zeilinger sprach über Quanteninformationsübertragung mit Anknüpfung an unsere Arbeitsrichtung Quantenelektronik. Mit einem IPHT-Preis 2004 wurden die Arbeiten von Dr. Thomas Henkel zur Entwicklung mikrofluidischer Chipsysteme für Kompartimentierung, Kultivierung und Detektion biologischer Spezies anerkannt. Ein weiterer IPHT-Preis 2004 ging an Dr. Sonja Unger, Dipl.-Phys. Volker Reichel und Dipl.-Phys. Klaus Mörl für Arbeiten auf dem Gebiet der Hochleistungsfaserlaser mit einer Ausgangsleistung von 1,3 kW aus einer Einzelfaser. Gleich sechs Diplomanden von der FH Jena hatten ihre Arbeit 2004 mit sehr guten Ergebnissen abgeschlossen: Constanze Döring, Lars Bergmann, Ralf Bitter, Carsten Hartmann, Matthias Schnepp und Rico Stober. Sie wurden mit von der Sparkasse Jena-Saale-Holzland in dankenswerter Weise zur Verfügung gestellten Preisen ausgezeichnet. Den IPHT-internen Wettbewerb um das IPHTInnovationsprojekt 2005 gewannen Wolfgang Morgenroth, Dr. Uwe Hübner, Richard Boucher (Bereich Magnetik/Quantenelektronik), Sven Brückner, Uta Jauernig, Dr. Siegmund Schröter, Dr. Torsten Wieduwilt, Barbara Geisenhainer, Matthias Giebel, Dr. Günther Schwotzer (Bereich Optik), Dr. Andrea Czaki, Andrea Steinbrück, Dr. Wolfgang Fritzsche (Bereich Mikrosysteme) und Dr. Gudrun Andrä (Bereich Lasertechnik) mit der gemeinsamen Thematik „Nanostrukturierte Ta2O5-Schichten für optochemische/biophotonische Sensorik sowie Solarzellen“. Die erzielten Ergebnisse sind am Ende dieses Jahresberichtes zusammengefasst. Die kommerzielle Umsetzung von wissenschaftlichen Ergebnissen in Produkte ist ein besonderes Anliegen des IPHT. Auf dem Gebiet optischer Faser-Bragg-Gitter konnte dazu im Oktober 2005 ein Gemeinschaftsunternehmen mit einem belgischen Partner unter Beteiligung des IPHT, die FBGS Technologies GmbH (Fibre Bragg Grating Sensor Technologies), mit Sitz in Jena gegründet werden. Geschäftsfelder dieses Unternehmens sind Forschung, Entwicklung, Produktion und Vermarktung von optoelektronischen Elementen, insbesondere spezielle Glasfaser-Bragg-Gitter. Der Wissenschaftliche Beirat beurteilte auf seiner jährlichen Sitzung im April die wissenschaftlichen Leistungen des IPHT als sehr beachtlich und überzeugend. Turnusmäßig ausgeschieden aus dem Wissenschaftlichen Beirat sind Dr. Siegfried Birkle (Siemens Erlangen), Prof. Dr. Hans Koch a b Die Gewinner des IPHT-Preises 2004 / IPHT Prizewinner a) Dr. Thomas Henkel, b) Klaus Mörl, Dr. Sonja Unger, Volker Reichel Dr. Wolfgang Fritzsche (Micro Systems Division) and Dr. Gudrun Andrä (Laser Technology Division) who worked on the subject of nanostructured Ta2O5 layers for optochemical/biophotonic sensors and solar cells. Results are presented at the end of this annual report. The transfer into commercial use of its scientific results is a matter of special interest to the IPHT. In the field of optical Bragg gratings, we started a new company in Jena in October jointly with a Belgian company (Fibre Bragg Grating Sensor Technologies). The objects of the new company are research, development, production and sale of optoelectronic components such as especially fibre Bragg gratings. The scientific council has reviewed the scientific results of the IPHT regularly and during its meeting in April appreciated them as highly respectable and convincing. Dr. Siegfried Birkle (Siemens Erlangen), Prof. Dr. Hans Koch (PTB Berlin), and Dr. Augustin Siegel (Carl Zeiss, Oberkochen) left the council due to the end of their term. We would like to thank them for their very constructive work during the last years. New members appointed to the scientific council are Prof. Dr. Michael Siegel (Universität Karlsruhe), 5 VORWORT / INTRODUCTION (PTB Berlin) und Dr. Augustin Siegel (Carl Zeiss, Oberkochen). Den ehemaligen Mitgliedern danken wir für ihre konstruktive Mitarbeit in den vergangenen Jahren. Als neue Mitglieder wurden Prof. Dr. Michael Siegel (Universität Karlsruhe), Dr. Stefan Spaniol (CeramOptec GmbH, Bonn) und Dr. Martin Wiechmann (Carl Zeiss Meditec AG, Jena) berufen. Dr. Stefan Spaniol (CeramOptec, Bonn), and Dr. Martin Wiechmann (Carl Zeiss Meditec, Jena). We thank the State of Thuringia and all our partners in research and industry for their ongoing support and cooperation. H. Bartelt, February 2006 Danken möchten wir an dieser Stelle auch dem Freistaat Thüringen, allen Förderern im Bund und bei der EU für die stete Unterstützung sowie unseren Partnern in Wissenschaft, Forschung und Wirtschaft für die gute Zusammenarbeit. H. Bartelt, im Februar 2006 Beutenberg Campus 2005 6 Foto: Ballonteam Jena ORGANISATION / ORGANIZATION B. Organisation / Organization Institut für Physikalische Hochtechnologie e.V., Jena Institute for Physical High Technology Dez. 2005 Kuratorium/Supervisory Board Thüringer Kultusministerium MDgt. Dr. J. Komusiewicz Thüringer Ministerium für Wirtschaft, Technologie und Arbeit MD Dr. F. Ehrhardt Friedrich-Schiller-Universität Jena Prorektor Prof. Dr. H. Witte 2 gewählte Mitglieder Dr. E. Hacker, Dr. M. Heming Vereinsvorstand/Executive Committee Vorsitzender = Direktor Prof. Dr. H. Bartelt Stellvertretender Direktor Dr. K. Fischer Kaufmännischer Direktor F. Sondermann Kaufmännischer Bereich Administrative Division Kaufmännischer Direktor: F. Sondermann Forschungsbereich 1 Research Division 1 Magnetik/ Quantenelektronik Magnetics/ Quantum Electronics Leiter: Prof. Dr. H. E. Hoenig Mitgliederversammlung Assembly of Members Wissenschaftlicher Beirat Scientific Advisory Council Sprecher: Prof. Dr. S. Büttgenbach Bereichsleiterversammlung Assembly of Convention Vereinsvorstand Betriebsratsvertreter Forschungsbereichsleiter Betriebsrat Works Committee Vors.: Frau Dr. G. Andrä Wissenschaftl.-Techn. Rat Scient.-Techn. Council Sprecher: Dr. E. Keßler Forschungsbereich 2 Research Division 2 Optik Forschungsbereich 3 Research Division 3 Mikrosysteme Optics Microsystems Leiter: Prof. Dr. H. Bartelt Leiter: Prof. Dr. J. Popp Forschungsbereich 4 Research Division 4 Lasertechnik Laser Technology Leiter: Prof. Dr. H. Stafast Die Leiter der Forschungsbereiche sind berufene Professoren an der Friedrich-Schiller-Universität Jena. The divisions head are professors at the University of Jena. 7 ORGANISATION / ORGANIZATION Das IPHT ist eine gemeinnützige Forschungseinrichtung in der Rechtsform eines eingetragenen Vereins und wird institutionell gefördert durch den Freistaat Thüringen. Mitglieder des Vereins sind öffentliche Einrichtungen sowie Personen aus Wissenschaft und Wirtschaft. Im Kuratorium sind zwei verschiedene Ministerien des Freistaates Thüringen, die Friedrich-Schiller-Universität Jena und die Industrie durch zwei von der Mitgliederversammlung gewählte Persönlichkeiten vertreten. Das FuE-Programm unterliegt der Kontrolle eines Wissenschaftlichen Beirats mit Mitgliedern sowohl aus der Wissenschaft als auch aus der Industrie. Das Institut ist in vier Forschungsbereiche untergliedert, deren Leiter gleichzeitig Mitglieder der Physikalisch-Astronomischen bzw. der Chemisch-Geowissenschaftlichen Fakultät der Friedrich-Schiller-Universität sind. The IPHT is a non-profit association with the legal status of a convention, institutionally funded by the Free State of Thuringia, and members from public institutions as well as private members. There is a Supervisory Board with two representatives of two different ministries of the Free State of Thuringia in Germany, one from the Friedrich-Schiller-University in Jena, and two R&D managers from the industry. The R&D program is supervised by a Scientific Advisory Council with members from the scientific community and from the industry. The institute is organized in four research divisions with heads serving also as members oft he faculties for Physics and Astronomy as well as for Chemical and Earth Sciences of the Friedrich-Schiller-University. Wissenschaftlicher Beirat / Scientific Advisory Council Prof. Dr. Stephanus Büttgenbach (Sprecher/Chairman) Technische Universität Braunschweig Prof. Dr. Bruno Elschner Technische Hochschule Darmstadt Dr. Michael Harr ASTEQ Applied Space Techniques GmbH, Kelkheim Prof. Dr. Burkard Hillebrands Universität Kaiserslautern Prof. Dr. Peter Komarek Forschungszentrum Karlsruhe Prof. Dr. Siegfried Methfessel Witten-Herbede Prof. Dr. Frieder Scheller Universität Potsdam Prof. Dr. Paul Seidel Friedrich-Schiller-Universität Jena Dr. Thomas Töpfer Jenoptik AG, Jena 2005 ausgeschieden / left in 2005 Dr. Siegfried Birkle Siemens AG, Erlangen Prof. Dr. Hans Koch Physikalisch-Technische Bundesanstalt, Berlin Dr. Augustin Siegel Carl Zeiss AG, Oberkochen 2005 neu hinzugekommen / joined in 2005 8 Prof. Dr. Michael Siegel Universität (TH) Karlsruhe Dr. Stefan Spaniol CeramOptec GmbH, Bonn Dr. Martin Wiechmann Carl Zeiss Meditec AG, Jena ORGANISATION / ORGANIZATION Mitglieder des IPHT e.V. / Members of the Convention Institutionelle Mitglieder / Membership of institutions Thüringer Kultusministerium, Erfurt Dr. Gerd Meißner Thüringer Ministerium für Wirtschaft, Technologie und Arbeit, Erfurt MD Dr. Frank Ehrhardt Stadt Jena Oberbürgermeister Dr. Peter Röhlinger Friedrich-Schiller-Universität Jena Prof. Dr. Herbert Witte Fachhochschule Jena Prof. Dr. Gabriele Beibst CiS Institut für Mikrosensorik e.V., Erfurt Dr. Hans-Joachim Freitag Leibniz-Institut für Festkörper- und Werkstoffforschung e.V., Dresden Prof. Dr. Helmut Eschrig Sparkasse Jena Herr Martin Fischer TÜV Thüringen e.V., Erfurt Herr Bernd Moser 4H Jena Engineering GmbH Herr Manfred Koch Robert Bosch GmbH, Stuttgart Dr. Christoph P. O. Treutler j-fiber GmbH, Jena Herr Lothar Brehm Persönliche Mitglieder / Personal members Prof. Dr. Hartmut Bartelt Institut für Physikalische Hochtechnologie, Jena Dr. Peter Egelhaaf Robert Bosch GmbH, Stuttgart Prof. Dr. Bruno Elschner Darmstadt Dr. Klaus Fischer Institut für Physikalische Hochtechnologie, Jena Prof. Dr. Peter Görnert Innovent e.V., Jena Frau Elke Harjes-Ecker Thüringer Kultusministerium, Erfurt Prof. Dr. Karl-August Hempel RWTH Aachen Prof. Dr. Hans Eckhardt Hoenig Institut für Physikalische Hochtechnologie, Jena Herr Bernd Krekel Commerzbank AG, Jena Prof. Dr. Siegfried Methfessel Witten-Herbede Prof. Dr. Gerhard Schiffner Ruhr-Universität Bochum Herr Frank Sondermann Institut für Physikalische Hochtechnologie, Jena Prof. Dr. Herbert Stafast Institut für Physikalische Hochtechnologie, Jena 9 PERSONAL UND FINANZEN / STAFF AND BUDGET C. Personal und Finanzen / Staff and Budget Kaufmännischer Bereich / Administrative Division Leitung/Head: F. Sondermann e-mail: frank.sondermann@ipht-jena.de Beauftragte für den Haushalt/ Finance Department Head: I. Ring Projektmanagement/ Project Management: Dr. I. Bieber e-mail: ina.ring@ipht-jena.de e-mail: ivonne.bieber@ipht-jena.de Technik/Technical Infrastructure: Th. Büttner, e-mail: thomas.buettner@ipht-jena.de Mitarbeiterinnen und Mitarbeiter des Kaufmännischen Bereichs. The staff of the administrative division. Personal des Instituts / Staff of the institute Institutionelle Förderung/ Institutional funding Wissenschaftler/ Scientists 34 Doktoranden/ Doctoral candidates Techniker, Mitarbeiter für den Betrieb/ Engineers, employees for infrastructure 46 Verwaltung/ Administration 15 Personalbestand am 31.12.2005/ Number of employees per 2005/12/31 95 Drittmittel/Project funding Öfftl. Förderung/ Public funding Industrie/ Industrial funding 33 13 80 14 3 17 27 15 88 15 74 31 Zusätzliches Personal (Gastwissenschaftler, Diplomanden, Praktikanten, Auszubildende)/ Additional staff (visiting scientists, students, trainees): 10 Anmerkung: Die Tabelle weist Personen aus, nicht Vollbeschäftigtenäquivalente./ Note: The table states numbers of persons, not of full time-jobs 200 39 PERSONAL UND FINANZEN / STAFF AND BUDGET Finanzen des Instituts / Budget of the institute Institutionelle Förderung (Freistaat Thüringen)/ Institutional funding (Free State of Thuringia) Drittmittel/Project funding 7.053,6 T ” 8.393,7 T ” 15.447,3 T ” Institutionelle Förderung: Verwendung / Institutional funding: use 4.276,7 T ” 1.838,4 T ” 938,5 T ” Personalmittel/staff Sachmittel/materials Investitionsmittel/investments 7.053,6 T ” Aufgliederung Drittmittel / Subdivision of project funding BMBF/Federal Ministry DFG/German Research County Freistaat Thüringen (Projektförderung)/Free State of Thuringia (Projects) (davon für Datennetz-Migration/incl. computer network migration 209,3 T”) Europäische Union/European Union Aufträge öffentlicher Einrichtungen/Contracts of public institutions Sonstige Zuwendungsgeber/Other fundings (Unterauftr. an Dritte in öfftl. gef. Projekten/Subcontracts to others 321,2 T”) Unteraufträge in Verbundprojekten/Subcontracts FuE-Aufträge incl. wiss. techn. Leistungen/R&D contracts 2.400,6 T” 328,3 T” 793,6 T” 931,5 T” 569,9 T” 203,9 T” 438,8 T” 2.727,1 T” 8.393,7 T ” Gesamtkosten des Projektes beliefen sich auf 279,0 T“, von denen die Europäische Union 209,3 T“ finanziert und das IPHT einen Eigenanteil von 69,7 T“ aufgewendet hat. The project „Kernnetzmigration“ was cofinanced by the European Union. Das Projekt „Kernnetzmigration“ wurde von der Europäischen Union kofinanziert Um heutzutage international wettbewerbsfähig zu sein, benötigt man auch eine moderne DVInfrastruktur. Zu diesem Zweck hatte das Institut für Physikalische Hochtechnologie e. V. im Mai 2005 einen Antrag an das Thüringer Kultusministerium auf Förderung des „Ersatzes veralteter Netzwerkkomponenten des Datennetzwerkes des IPHT“, Kurztitel: „Kernnetzmigration“ gestellt. Das Projekt wurde dankenswerterweise durch das Thüringer Kultusministerium bewilligt und dann, wie geplant, bis Ende 2005 umgesetzt. Die To be today international competitive a modern data processing infrastructure is needed. To this purpose the Institute for Physical High Technology had applied for a funding at the Thuringian Ministry of Education an Cultural Affairs in May 2005 to replace the meanwhile antiquated network components of the data network of the IPHT, shortened title “Kernnetzmigration” (“Core Network Migration”). The project had been gratefully financed by the Thuringian Ministry of Education and Cultural Affairs and had been executed till the end of 2005. The total costs of the project amounted to 279,0 thousand Euros. From these total costs the European Union had financed 209.3 thousand Euros and the IPHT had financed an own share of 69.7 thousand Euros. 11 MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS D. Forschungsbereiche / Scientific Divisions 1. Magnetik & Quantenelektronik / Magnetics & Quantum Electronics Leitung/Head: Prof. Dr. H. E. Hoenig e-mail: eckhardt.hoenig@ipht-jena.de Magnetik Magnetics Ltg./Head: Prof. Dr. W. Gawalek wolfgang.gawalek@ipht-jena.de Magnetoelektronik Magnetoelectronics Ltg./Head: Dr. R. Mattheis roland.mattheis@ipht-jena.de Quantenelektronik Quantum Electronics Ltg./Head: Dr. H.-G. Meyer hans-georg.meyer@ipht-jena.de Kultusminister Prof. Dr. Jens Goebel verleiht am 3. Februar 2005 in Schmalkalden den Thüringer Forschungspreis 2004 an Dr. Andrei Izmalkov, Dr. Thomas Wagner, Prof. Dr. Miroslav Grajcar und Dr. Evgeni Ilichev (v.l.n.r). Science minister Prof. Dr. Jens Goebel presents the Thuringian Research Award 2004 to Dr. Andrei Izmalkov, Dr. Thomas Wagner, Prof. Dr. Miroslav Grajcar, and Dr. Evgeni Ilichev (left to right). 1.1 12 Überblick Der Forschungsbereich Magnetik/Quantenelektronik repräsentiert in unserem Hause die Elektronik und die Materialforschung. Diese Elektronik stützt sich auf supraleitende bzw. magnetische Materialien und ist dementsprechend in Quantenelektronik und Magnetoelektronik gegliedert. Unter Quantenelektronik verstehen wir die Nutzung der Quanteneffekte der Supraleitung in mikro- und nanotechnisch hergestellten Bauelementen und Schaltungen. Die Materialforschung betrifft Supraleiter und Magnetpigmente. Die Abteilung Quantenelektronik, mit mehr als 30 Mitarbeitern die weitaus größte und dynamischste im Forschungsbereich und im Institut, betreibt wesentlich unseren Reinraum und versteht sich als Systementwickler mit und für Partner und Anwender weltweit. Professionelle Qualität wird durch eine jährlich aktualisierte ISO-Zertifizierung gesichert. Eine strategische Partnerschaft besteht mit dem Fraunhofer-Institut für Angewandte Optik und Feinmechanik bei Betrieb und Anwendung der Elektronenstrahllithographie. Herausragende wissenschaftliche Ergebnisse im Jahre 2005 waren: (1) Weltweit erstmals wurde als Vorstufe zu künftigen adiabatischen Quantrenrechnern vier Flussquanten-Qubits quanten- 1.1 Overview The division Magnetics/Quantum Electronics represents the electronics and materials research in IPHT. It is based on superconducting and magnetic materials and is organized in the Quantum Electronics and Magnetoelectronics departments respectively. Quantum Electronics uses quantum effects of superconductivity in micro- and nanodevices and circuits. Materials research concerns superconductors and magnetic nanoparticles. The Quantum Electronics department, the largest and most dynamical in house, is main operator of our clean room and system developer together with and servicing partners and customers worldwide. ISO certification assures a professional quality level and is updated every year. A strategic partnership has been established with the nearby Fraunhofer Institute for Applied Optics and Precision Mechanics operating and using electron beam lithography. Highlights in the year 2005 have been: (1) for the first time worldwide four superconducting flux qubits have been quantum mechanically coupled and spectroscopically characterized on the route to adiabatic quantum computation; a corresponding European research partnership has been accomplished; in February the group around Dr. Ilichev was honoured with the Thuringian Research Award, (2) again as a worldwide first, a MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS The SQUID system for archaeological prospection, pulled by a jeep, during measurement near Palpa, Peru. The orange tubes contain the SQUID channels. New measuring station used to study domain wall movement in magnetic thin film sensors. In the middle of the coils two boards are visible. The upper one contains the sensor chip (2 × 2 mm2) and a fast preamplifier, the lower board contains a multiplexer. The mayor of Jena C. Schwind, the Thuringian minister of education and cultural affairs Prof. Dr. J. Goebel and the head of department Magnetics Prof. Dr. W. Gawalek during the opening of the interactive exhibition “Eiskalte Energie für Europa” (June 29–July 02, 2005, GoetheGalerie Jena) testing a fly-wheel energy storage system. 13 MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS mechanisch gekoppelt und spektroskopisch charakterisiert. Eine entsprechende europäische Forschungspartnerschaft wurde etabliert. Im Februar wurde der Thüringer Forschungspreis an unsere Quantenelektronikgruppe verliehen. (2) Weltweit erstmals konnte mit einem fahrzeugtransportierten SQUID-System eine professionelle archäometrische Erkundung zum Erfolg gebracht werden. (3) Unsere Beiträge zu dem von uns veranstalteten Symposium „Messen an der Quantengrenze“ bei der Frühjahrstagung der DPG demonstrierten die Schlüsselstellung der supraleitenden Quantenelektronik bei Astro-Kameras und Quantencomputing. Im Rahmen des Jahres „Deutschland in Japan“ wurden diese Arbeiten auch in Tokyo als besondere Leistung des Beutenberg Campus präsentiert. Unsere Magnetoelektronik stützt sich auf die Besonderheit einer industriekompatiblen Beschichtungsanlage für Magnetowiderstands-Multilagen bis zum Format von 8 Zoll. Professioneller Betrieb ist erprobt in kundenspezifischen und kundenvertraulichen Arbeiten. Ein weltweit erstrangiger Geräteentwickler stützt sich auf unsere Prozessentwicklung. Wir haben Expertise in der Charakterisierung der Dünnschicht-Grenzflächen und das Instrumentarium dafür. Qualitätssicherung mit Zertifizierung besteht und wird turnusmäßig erneuert. Highlights sind: (1) GMRViel-Umdrehungszähler für Anwendungen im Automobil, (2) Analytik-Highlights: Neue L-Röntgenspektren als Kalibrierreferenz. Materialentwicklung supraleitender und magnetischer Materialien für die Energietechnik und Medizintechnik betreiben wir in unserer Abteilung Magnetik. Das Projekt DYNASTORE zum Schwungmassenenergiespeicher wurde verlängert und steht jetzt vor dem erfolgreichen Abschluss. Ein großes Projekt mit Partnern zur Entwicklung hochdynamischer Motoren wurde begonnen. Mit „Superlife“ wurde eine von uns mitgestaltete europäische Ausstellung in Jena der Öffentlichkeit präsentiert. Das bisher schon bestehende Zusammengehen mit dem IFW Dresden wird intensiviert. Die Nutzung von Magnetpigmenten in der Krebstherapie in Partnerschaft mit dem Klinikum Jena (Forschungsgruppe von Prof. Werner A. Kaiser) kommt voran. Die Materialentwicklung dazu hat ihre Basis dazu im Ferrofluid-Verbund der DFG, an dem wir maßgeblich beteiligt sind. 14 vehicle carried SQUID-system operated successfully in archaeometric prospection in Palpa/ Peru, (3) the key role of our Quantum Electronics in camera development for astrophysics and in quantum computing circuitry was demonstrated by our contribution to the symposium “measurements at the quantum limit” as organized by us at the spring meeting of the German Physical Society in Berlin; this work also was presented in Tokyo within the year “Germany in Japan” as highlight of the Beutenberg Campus where we belong to. Our Magnetoelectronics department features a deposition system for magneto-resistive multilayer sputtering on industry compatible 8” substrates. Professional operation has been approved in customer-specific and -confidential work. A top level company providing such machines to the world marked relies on our process development. We are experienced in characterising thin film interfaces and are well equipped for such investigations. ISO certification assures quality and is updated annually. Highlights have been: (1) a multiturn GMR counter for automotive applications, (2) new L-x-ray spectra as reference for instrumentation. Our Magnetics department developes superconducting and magnetic materials for power and medical engineering. The project DYNASTORE on a flywheel with our superconducting components has been extended and is expected to be finished in summer of 2006. A large project has been started on a superconducting machine testing high power combustion engines for the car industry. With “Superlife” we presented a European exhibition to the public here in Jena with our contributions. We intensify our collaboration with the IFW Dresden. Cancer therapy using our magnetic nanoparticles and corresponding heating system reported progress (team of Prof. Werner A. Kaiser). The materials development is based on the ferro-fluid consortium of the DFG where we contribute and organize. MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS 1.2 Scientific results 1.2.1 Micro- and nanofabrication (Uwe Hübner, Ludwig Fritzsch, Solveig Anders, Jürgen Kunert) The microfabrication group is responsible for the maintenance of the existing micro- and nanotechnological fabrication processes for quantum electronic devices (SQUID sensors, voltage standard chips, Qubits) and other applications such as nanoscale calibration standards, photonic crystals and micro optical components, and for the development of technologies appropriate for new device requirements. In 2005, 210 chromium masks and 240 electron beam direct writing exposure jobs were made using the ZBA 23H. 120 masks were prepared by using the optical pattern generator MANN 3600. About 80 high resolution exposures were made using the e-beam-tool LION. For the further improvement of the electron beam lithography the software tool SCELETON was installed as a proximity function calculator. In 2005 a new DFG-project, “Electrooptically Tunable Photonic Crystals”, was started. The European project PLATON (PLAnar Technology for Optical Networks) and the R&D project “KALI II” were successfully finished. In the “KALI II” project a new type of nanoscale CD-standard for AFM and a “Nanoscale Linewidth/Pitch Standard” were realized. These standards consist of different grating structures etched in nanocrystalline silicon on a quartz substrate. They contain patterns on nanometer scale for the calibration and resolution-check of high-resolution optical microscopy techniques, such as deep ultraviolet microscopy and laser scanning microscopy. One important task of the year 2005 was to develop a process to reduce the standard 3.5 µm2 Nb/Al process to junction dimensions of 1 µm2. At the start of 2005 a chemical-mechanical polishing (CMP) machine was installed and the process of SiO2-planarization on 4” wafers developed. In parallel, optical lithography using a g-line stepper (AÜR, Zeiss Jena) and the RIE process for subµm Nb structures were optimized. A first wafer run with test structures of SQUIDs with Josephson junctions of different dimensions down to 0.8 µm showed in principal the functionality of the planarization process. However, there was a large parameter spread and a small yield, caused by an insufficient reliability and overlap accuracy of the stepper and the strong dependence of the polishing rate on topology and structure dimensions. Therefore, for the ongoing test runs new technological concepts were developed including direct e-beam exposure and the CALDERA process for the CMP step in order to overcome the dimensional effects when polishing. Fig. 1.1 shows a cross section of planarized SiO2 isolated Nb lines. The standard 3.5 µm2 Nb/Al process for SQUIDs was upgraded by integrating Nb-oxide capacitors with specific capacitances of app. 4 fF/µm2 for areas of up to 25 mm2. They are used in highly balanced gradiometers for mobile SQUID system applications. The development of large area Josephson junctions for applications as x-ray detectors in synchrotron radiation experiments was started with special emphasize on the minimization of the subgap leakage currents. The first results are promising and future work will be concentrated on the preparation of sensor arrays and the implementation of different absorber materials. Fig. 1.1: Cross section of Nb lines with planarized SiO2 isolation. 1.2.2 SQUID sensors and systems (Volkmar Schultze, Ronny Stolz, Viatcheslav Zakosarenko, Andreas Chwala, Sven Linzen, Nilolay Ukhanski, Torsten May) Except for SQIFs (Superconducting Interference Filters – a special combination of number of various SQUIDs) which are developed and produced within a long-standing cooperation with the University of Tübingen and the company QEST, all SQUID projects are based now upon the use of low temperature superconductors. In the fourth phase of the development of the LTS SQUID gradiometer system for mobile applications the second generation prototype for measuring the full tensor of the Earth’s magnetic field gradient with extremely high sensitivity was built. It features several improvements compared to its antecessors. With integrated low pass filters the frequency gap for disturbances between the system bandwidth of approximately 4 MHz and 500 MHz of the RFI screen around the cryostat could be closed. Here, the main task was the development of a technology for integrated capacitances up to 80 nF. After several aborts in the past few years the successful implementation of intrinsic capacitors is a highlight in the SQUID development in 2005. Now, due to these filters the new gradiometer sensors provide higher stability in environments with high frequency radiation and their intrinsic noise could be decreased down to 20 fT/(m·√Hz). The second task was to reduce the motion noise 15 MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS of the SQUIDs caused by movements in the Earth’s magnetic field. By decreasing the width of all superconducting structures below 5 µm the critical magnetic field amplitude for flux capture could be increased up to 65 µT. Furthermore, using smaller areas of about 3000 µm2, the sensitivity of the three reference SQUID magnetometers was decreased. Now we are able to work even in high magnetic field amplitudes like, for instance, in the north of Canada. Further development has been done on the data acquisition unit of the system. It contains now extremely low noise differential inputs for 21 analogue channels. They are digitized with 24 bit ADC. All interactions of this unit with the SQUID system have been removed. The accuracy of the determination of the 3D position, flight direction, and orientation in space is determined from a low-power differential GPS system and a new inertial system unit containing high accuracy fiber-optical gyros. With the implementation of new lithium ion batteries the weight and geometric dimensions of the data acquisition unit have been decreased by simultaneous increase of the working period to approximately eight hours. In September 2005 the Earth’s magnetic field gradient of the same area (approx. 13 km × 7 km), surveyed in South Africa already in 2004, was measured again. The system was used in a fixed wing configuration on a CESSNA Grand Caravan 208 airplane from Fugro Airborne Systems, where the rigidity of the stinger was increased compared to the past. In this configuration the area (1100 line kilometers) was scanned at altitudes of 80 m and line spacing of 100 m. To compare the system sensitivity with the best contemporary conventional system (MIDAS system from Fugro Airborne systems), the survey was conducted with helicopter based instruments at altitudes between 35 m and 40 m and a tow rope length of 40 m. The comparison of the magnetic maps of both systems showed a superior sensitivity and spatial resolution of the full-tensor SQUID device. 16 The development of a SQUID system for archaeological prospection within the project “ArcheNova” was finished with the end of year 2005. Via various field trials the system was further improved compared to the status the year before. The final examination – and a highlight of the SQUID activities in this year – was an expedition to the Nasca/Palpa region in Peru, about 250 km south of Lima. This region is most famous because of the large geoglyphes. Our measurements were performed in coordination and cooperation with the BMBF project network “Nasca: Development and adaption of archaeometric techniques for the investigation of cultural history”. All the demands of this application – transport of the system, provision with liquid Helium, and especially the measurement in a hyper arid, dusty area – could be solved well. The measurements could even be performed with a pickup truck as a hauling system – despite a very cragged surface of the explored areas (cf. colored picture). Mappings on foot, performed for comparison, proved the same data quality of the “motorized” ones. So it was possible to map about one hectare per measurement hour, which is a remarkable gain compared to common handheld geomagnetic archaeological prospection systems. All in all more than 200 line kilometers were driven. Due to the geo-referenced positioning with the differential GPS system the results can easily be fit into photos or maps achieved with other methods. One example out of the 10 mapped areas is shown in Figure 1.2. On the ortho photo only recent plow furrows are visible. Partially they also reproduce in the magnetogram. However, there also an old riverbed comes out, magnetically detectable due to the deposition of sediments. This gives an impression on the dramatic changes the area around Nasca suffered in times before the Spanish set up to conquer South America. On other areas geometric structures came out in the magnetogram which allude to ancient settlement residues. Fig. 1.2: Jauranga – a site near Palpa, Peru. Top: Ortho photo (by courtesy of the Institute for Geodesy and Photogrammetry, ETH Zürich), Bottom: Magnetogram. MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS Even though with the Peru expedition the project is formally finished, in 2006 some other field trials in Europe are planned where the potential of our system shall be used for geomagnetic prospection of archaeologically interesting sites. The most common electromagnetic method in mineral exploration is based on the application of transient Electro-Magnetics (TEM). Already in 2003 a prototype of a TEM system with LTS SQUID magnetometers has been developed, which has been used routinely on several targets in Australia and South Africa in 2004 with great success. In 2005, the system has been redesigned in various aspects. All components have been evaluated for the use of the system under arctic conditions. A new cryostat with a higher thermal efficiency (and the same size) helps to save liquid helium, since it now needs to be refilled every second day only. The power supply and control unit have shrunk by almost a factor of two in size. The mechanical setup has been ruggedized by changing cable, connectors, switches and cryostat installation. A new family of SQUIDs has been implemented to achieve a better stability of the working point all over the world (with different magnetic field strengths). At the end of this process it was possible to out-source the fabrication to our spinoff ‘Supracon’. Two new systems have been produced there and meet all the required specifications. The first “production” system was applied in routine field work for many weeks in Australia. Already in 2001 a prototype of a directly coupled SQUID electronics for various applications has been developed. In between it has been successfully used in various applications. From 2002 on, commercial production of this electronics, completed by a digital control unit, started by our spin-off ‘Supracon’. In 2005 this electronics has been redesigned in many aspects. Keeping a frequency range of 7 MHz and very low input noise ~0.33 nV/Hz1/2 (with flicker noise corner frequency ~0.1 Hz), thermodrift (~5 nV/K), maximum slew rate (~16 MΦ0 /s) and dynamic range (170 dB) have been remarkably improved. In the frame work of the “LABOCA” project being executed in close collaboration with the Max Planck Institute for Radio Astronomy in Bonn our group has considerably enhanced the performance of the used transition edge bolometers by developing a new technology for patterning the supporting membranes. These structured membranes, sometimes referred to as “spider-webs” (Fig. 1.3), help to lower the thermal conductivity and thereby improve the energy resolution down to values below 10–16 W/Hz. Furthermore, we have developed a new concept of coupling the first-stage readout SQUID and the second-stage amplifier SQUID. This approach is particularly well adapted to the time domain multiplexing con- Fig. 1.3: A quadratic, 800 nm thick silicon nitride membrane patterned in the shape of a spider web. The width of the legs is 4 µm. cept. The appropriate electronics was improved and a production prototype was built, which can be easily produced in the batches of 30 ones, needed for the 300 channel array. In parallel the LABOCA prototype system with 7 channels was successfully used to image objects from a distance of a few meters in a lab environment. Imaging in the frequency band between 0.1 and 1 THz also opens the possibility of detecting potentially hazardous objects hidden underneath the clothing of suspects, for instance in security areas at airports. Together with the company Vericold Technologies we have developed and manufactured X-ray bolometers, operating at a temperature of 100 mK. They are routinely used to equip the Polaris™ spectrometer, an add-on for commercial electron microscopes, which can be used for finding defects in semiconducting electronic circuits. 1.2.3 Integrated superconducting circuits (Gerd Wende, Marco Schubert, Torsten May, Michael Starkloff, Birger Steinbach, Hans-Georg Meyer) In 2005 the project “Quantum Synthesizer (QuaSy)” was successfully developed further. In the project three components – an RSFQ pulse pattern generator, a pulse amplifier, and a Josephson quantizer – are being developed by different project partners, and integrated into a Multi-Chip-Module. Within the scope of the joint project the IPHT is focused on investigations of superconducting pulse-driven microwave circuits, the so-called Josephson quantizer, and on the relevant microwave tests and measurements. Our main activities were the improvement of the fabrication technology and testing the Josephson quantizer microwave circuits. With this new technology the packing density of the Josephson 17 MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS junctions (JJs) was increased by about one third. The critical current spread was reduced from about 10% to 2–3%. All this together results in a distinct increase of the yield of fully functional quantizer circuits. A new cooperation with the NMi Van Swinden Laboratorium B.V. in Delft, Netherlands, allowed to measure our chips in a bipolar pulse driving mode with pulse repetition frequencies of up to 12 GHz. The pulse pattern generator delivers a repeating pattern of short current pulses in which the desired low frequency output waveform is encoded. By the Josephson quantizer circuit it is transformed into a pattern of quantized voltage pulses. Fig. 1.4 shows an example of the operation of a Josephson quantizer circuit with 2560 JJs. In this case, a 122 kHz ac voltage was delta-sigma modulated in a 64 Mbit long pattern. The used clock frequency was 4 GHz. The left spectrum of Fig. 1.4 is delivered by the generator itself. It can be seen that there are not only the distinct higher harmonics of the fundamental but also other peaks whose origin is not yet clear. The quantizer circuit driven by the same pattern removes all of these unwanted signals as seen in the right hand side spectrum of Fig. 1.4. The amplitude of the fundamental frequency was 9.5 mV with quantum accuracy and the higher harmonics were suppressed by –86 dBc. Currently, the Josephson junction array limits the maximum usable clock frequency to 4.8 GHz and the maximum ac voltage amplitude to 9.5 mV. Therefore, the major task for the next few months is to increase the chip bandwidth in order to increase the maximum ac voltage amplitude. Fig. 1.4: Measured power spectra of a deltasigma modulated 122 kHz sine wave with an amplitude of 9.5 mV. The bipolar pulse pattern generator was clocked at 4 GHz. Left spectrum: Delivered by the generator itself. Right spectrum: Output signal of the JJ array quantizer, pulse-driven by the generator with the same pattern. The suppression of the higher harmonics is –86 dBc. 18 Josephson quantizer and 10 V Josephson voltage standard chips with almost 20,000 JJs are the most highly integrated superconductive circuits provided commercially. Worldwide only HYPRES Inc. (USA) and the IPHT are able to offer such 10 V Josephson voltage standard circuits. In 2005 the IPHT delivered quantizer chips and 10 V chips to several national metrology laboratories. In 2005 a complete microprocessor controlled 10 V Josephson voltage standard system was developed. The system facilitates a variety of DC voltage calibrations and measuring functions: Calibration of secondary DC-reference Zeners and testing of the linearity and accuracy of DCvoltmeters and DC-calibrators in the voltage range of 0 to ±10 V. It was successfully evaluated at the PTB in Braunschweig. A direct comparison of the IPHT Josephson voltage standard with the PTB one showed a voltage difference between both standards of only 0.7 nV, with a measurement uncertainty of 3.4 nV. This corresponds to an accuracy of 7 × 10–11. So, the IPHT system compares to the primary standards of the national metrology institutes. 1.2.4 Quantum computing (Evgeni Il’ichev, Miroslav Grajcar, Andrei Izmalkov, Thomas Wagner, Sven Linzen, Uwe Hübner, Simon van der Ploeg, Daniel Wittig) Approximately ten years ago it was demonstrated theoretically that a quantum computer can solve some problems much more effectively than a classical one. This discovery has stimulated an effort to find a physical system which can be used as a qubit, the building block of a quantum computer. Amongst the many systems in physics which can be used as a qubit, one is the so-called persistent current qubit. This qubit consists of a small inductance superconducting loop with three Josephson junctions. Such superconducting qubits have several advantages over qubits based on microscopic systems: there is no principal limitation in their number and they can be accessed and controlled individually. We proposed a specific implementation for adiabatic quantum computing with a set of coupled superconducting flux qubits, which can be fabricated with the present state of the art. We could show that our measurement setup – the impedance measurement technique – can be effectively used to read out the results of the adiabatic evolution algorithm. In order to demonstrate any quantum algorithm, a coupling between qubits must be implemented. We proposed implementing the coupling between two qubits through a shared Josephson junction. We have experimentally demonstrated direct antiferromagnetic Josephson coupling between two persistent current qubits. The coupling strength can be of the order of a Kelvin, and agrees with theoretical predictions to the expected accuracy. Moreover, the resulting coupling not only is strong, but can also be varied independent of other design parameters by choosing the shared junction’s size. MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS We implemented a “twisted” design which exhibits the ferromagnetic coupling. It was done by fabricating and studying a four–qubit circuit (Fig. 1.5) in which the two types of coupling co-exist. This is very promising from the perspectives of realizing nontrivial Ising-spin systems and scalable adiabatic quantum computing. This world-wide first coupling of four superconducting qubits clearly is a highlight of our work in 2005. The acquired data fully agree with a quantum-mechanical description to the experimental accuracy. parent interfaces. Reasonable agreement between theory and experiment was found. The whole work of the quantum computing group was honoured already in the preceding year with the Thuringian Research Award. The actual awards ceremony happened in the year 2005, shown in the colored picture. These good results, ever again presented in important scientific journals, also reflect in a steadily growing embedding in international cooperation. To allow for the growing number of measurements coming along with this, a second mK-cryostat had to be set up, what was connected with the preparation of an additional specially prepared room for it. So, in combination of these further improving measurement conditions and the scientific potential of the quantum computing group its position in the emerging field of quantum computing could further be strengthened. 1.2.5 Fig. 1.5: Electron micrograph of a four-qubit sample. The central junctions A1–A3 couple the Al qubits q1–q4. The surrounding Nb coil is part of the LC tank circuit, used for measurement and global flux biasing. The Nb lines Ib1 – Ib4 allow asymmetric bias tuning. For superconducting qubits the problem of decoherence is one of the most important. In order to get additional information about the qubits dynamics we proposed a new tool – low frequency Rabi spectroscopy for a two-level system. In principal we have analyzed the interaction of a dissipative two-level quantum system with highand low-frequency excitation. The system is continuously and simultaneously irradiated by these two waves. If the frequency of the first signal is close to the level separation, the response of the system exhibits undamped low-frequency oscillations whose amplitude has a clear resonance at the Rabi frequency with the width being dependent on the damping rates of the system. Therefore, by analyzing the experimental data, decoherence as well as relaxation times can be reconstructed. We have also experimentally and theoretically investigated combined superconductor-semiconductor structures. The measurement of the supercurrent-phase relationship of a ballistic Nb/InAs(2DES)/Nb junction in the temperature range from 1.3 K to 9 K using impedance measurement technique showed at low temperatures substantial deviations of the supercurrent-phase relationship from conventional tunnel-junction behaviour, as has to be expected for highly trans- Foundry service (Wolfgang Morgenroth, Ludwig Fritzsch, Torsten May, Jürgen Kunert, Birger Steinbach, Gerd Wende, Hans-Georg Meyer) The Jena Superconductive Electronics Foundry (JeSEF) was founded in 1997. It uses the knowhow and the competitive infrastructure for niobium and YBCO technology of the department of Quantum Electronics. The foundry provides customers with LTS SQUIDs and SQUID systems, RSFQ circuits, Josephson voltage standard circuits, components and systems, and with microfabrication items including the design and fabrication of lithography masks. Further, the foundry offers technological services like single manufacturing steps, using our cleanroom facilities, as well as characterization services of our well equipped laboratories. JeSEF and the department of Quantum Electronics have been ISO 9001:2000 certified since 2002. About 40 orders were processed in 2005. Our main customers for SQUIDs and Microfabrication were Supracon AG, THEVA GmbH, Bruker BioSpin GmbH, and Jenoptik LOS GmbH. Voltage standard circuits and components were delivered to the University of Naples and to the national metrology laboratories of the Netherlands, France, and Korea. 1.2.6 Domain wall motion in small GMR structures (Roland Mattheis, Hardy Köbe, Dominique Schmidt, Uwe Hübner, Wolfgang Morgenroth) The motion of domain walls in narrow stripes represents the key element for new magneto- 19 MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS electronic devices like magnetic logic, stacked MRAM, and our multiturn sensor. We investigated domain wall motion in 500 µm long stripes of a GMR stack with NiFe as the sensing layer. The stripes were prepared using e-beam lithography and Ar ion milling. 20 Fig. 1.6: GMR stripe with domain wall generator: a) Temporal evolution of voltage (proportional to R) of a 220 nm wide stripe; b) distribution of the field strength Hinj; c) distribution of the length covered during the first domain wall jump; d) distribution of the field strength Hmov > Hinj necessary for completion of the domain wall movement through the stripe. Stripe widths of between 150 and 300 nm and thicknesses of the NiFe layer of between 5 and 20 nm, cause large shape anisotropy and, as a consequence, high fields Hnuc were needed for a domain wall nucleation in the stripe. Some stripes have an 6 µm × 10 µm large area (domain wall generator) at one end, in which a 180° domain wall is generated upon rotation of a field of strength Hgen and injected into the stripe at a field strength Hinj (with Hnuc > Hmov > Hinj > Hgen). The field dependencies of the 180° domain wall injection, of the domain wall velocity, and of the processes of pinning and depinning in our stripes were determined from the resistance changes of the GMR stack, by measuring the R(t)-curve and statistically interpreting 500 repeated experiments. As shown in Fig. 1.6a during a linear increase of the magnetic field a domain wall was injected at 5.3 kA/m and pinned after travelling about 70 µm, 140 µm, and 270 µm, as derived from the relative voltage jump. The distribution of the injection field Hinj in Fig. 1.6b clearly shows a twofold Gaussian distribution. These two peaks are presumably caused by the two possible types of domain walls, transverse and vortex-like domain walls, whose injection into the stripe is dependent on the magnetic reversal process in the domain wall generator. As displayed in Fig. 1.6c the domain wall can be pinned during movement through the stripe at nearly all parts of the wire, thereby showing the stochastic nature of domain wall movement. The pinning probability exhibits a double peak near 100 µm. In most cases the domain wall is pinned twice during passage. The magnetic field for passing through the complete stripe is depictured in Fig 1.6d. The wide distribution of this field again indicates the stochastical nature of domain wall motion, pinning and depinning. Edge roughness probably causes this statistically distributed pinning. Magnetic fields Hmov of about 9.5 kA/m are sufficient to move the domain wall completely through the 500 µm long stripes. In some stripes with a domain wall generator single defects seem to occur. These cause strong pinning for every domain transition. The field strength necessary to overcome this strong pinning varies from experiment to experiment within a factor of 3. One such strong defect near the domain wall generator enabled us to determine the field dependence of the domain wall velocity. As shown in Fig. 1.7 we get a linear field dependence of the domain wall velocity v. Within some µs a domain wall can move through the whole stripe. The domain wall mobility of 17 (m/s)/ (kA/m) is low compared to that obtained in largearea NiFe layers and is comparable to that found by other groups in narrow stripes at comparatively high magnetic fields. The minimum field Hinj for any domain wall movement in 200 nm wide stripes is of the order of 4 kA/m. MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS Fig. 1.7: Linear dependence of the domain wall velocity v on the field strength Hmov in a stripe with a defect. annual report 2004) and included thermal relaxation processes in our model used to analyse the experimental non-equilibrium torque curves L(Φ). Furthermore, we performed time dependent measurements which directly show relaxation at T = 10 K. L(Φ) is the irreversible contribution to the torque exerted on the F/AF film by an in-plane rotating strong magnetic field after a rotation reversal from the cw to ccw sense. Beginning at the reversal point (Φ = 0), the film grains of coupling strength j change their magnetic states from one equilibrium (cw) to a new one (ccw) at characteristic angles Φ(j). Thus L(Φ) reflects P(j) and we derive P(j) = 1/(S(Kt)2) * G(βS(j),Φ) * d2L(Φ)/dΦ2, Fig. 1.8: Distribution of the field strength necessary for nucleation of a domain wall in a GMR stripe without domain wall generator. where S, K, and t are the area, anisotropy constant, and thickness of the AF film, respectively. The function G was calculated in the frame of a Stoner-Wohlfarth model for 3-axial anisotropy (inset of Fig. 1.9). This model describes for a single grain the magnetization angles βS(j/Kt) at which the coupled AF net moment switches from one AF anisotropy axis to the next, thus contributing to the irreversible torque L(Φ). Thermal energy reduces this switching angle βS(j,T)< βS(j,0) as demonstrated in Fig. 1.9, because within the measuring time t > τ = 10–9 s * exp(EB/kBT) an energy barrier EB can be overcome. This must be considered also at T = 10 K because the grain volume V EB is very small. As an example In stripes without a domain wall generator the domain wall nucleates at one end of the stripe at a field strength Hnuc = 18–26 kA/m and moves through the line within some µs. The peak field is inversely proportional to the stripe width and has a very narrow Gaussian distribution (σ ~ 0.8% of the peak field) as shown in Fig. 1.8. This field is larger than the field necessary to overcome every pinning and corresponds to the coercitive field strength HC. 1.2.7 Measurement of coupling strength distribution in exchange bias film systems (Klaus Steenbeck, Roland Mattheis) The exchange bias field and the coercitivity of ferro-/antiferromagnetic (F/AF) coupled polycrystalline film systems for magnetoelectronics strongly depend on the coupling strength j of the individual grains, with their distribution function P(j) in the grain ensemble. Until now P(j) was not measurable. We quantified our proposed method to determine P(j) with low temperature torquemetry (see IPHT Fig. 1.9: Calculated critical magnetization angles βS for switching of the AF net moment µAF to a neighbouring easy axis as a function of the grain coupling (j/Kt). The shown parameter is the ratio (T/K) of temperature and AF anisotropy constant K. Inset: Sketch of the rotating magnetization MF and the coupled AF net moment µAF in a film crystallite with 3 easy axes of the AF. 21 MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS Fig. 1.10: Probability P(j) for a coupling energy density between j and (j+dj) as a function of j, determined from torque measurements with a NiFe / IrMn film at T = 10 K. Fig. 1.10 shows the distribution function P(j) for a sputtered NiFe (16 nm) / IrMn (0.8 nm) coupled film determined from torque measurements at T = 10 K. Only the range of coupling j > j1, which is responsible for the irreversible torque contributions, can be recorded by the method. The result shows that most of the grains have low coupling energies and that the portion of strongly coupled grains continuously decreases with increasing j. The value of K used was estimated using information from exchange bias measurements. 1.2.8 22 Electron excited L X-ray spectra of _Z< _ 33 the elements 14 < (Andrea Assmann, Jan Dellith, Andy Scheffel, Michael Wendt) In order to obtain reliable data of the relative inten_Z< _ 33 sities of the L spectra for the elements 14 < a reinvestigation using high resolution wavelength dispersive spectrometry (WDS) was undertaken. These data are needed in order to avoid misinterpretations of X-ray lines. Three posters about this subject were presented at the EMAS2005/IUMAS3 conference which was held in May 2005 in Florence/Italy. For one of them, dealing with the L spectrum of Fe and Fe3O4, the international scientific committee of this conference gave Andy Scheffel a young scientists award. The other five young scientists awards went to Australia (2), to Canada (1), Belgium (1), and Italy (1). Meanwhile, three manuscripts about this subject were accepted for publication in Microchim. Acta. In the first paper, Andrea Assmann, Jan Dellith and Michael Wendt report for the first time on the observation of the line Lβ3,4 = L1M2,3 for all ele_Z< _ 22, but not for 14Si and 15P. These ments 16 < ultra-soft L spectra were studied by means of multilayer reflectors the periodicity of which was 6 nm and 10 nm. The extension of the knowledge on these ultra-soft L spectra is illustrated by Fig. 1.11. Fig. 1.11: Scheme of the L lines for Z < 26. The circles represent the new data obtained in this work. In the second paper the differences between the L spectra of pure iron and Fe3O4 are discussed by Andy Scheffel, Andrea Assmann, Jan Dellith, and Michael Wendt. The intensities of the Fe L lines/bands l = L3M1, η = L2M1, α1,2 = L3M4,5, β1 = L2M4, and β3,4 = L1M2,3 were measured for pure Fe and Fe3O4 by using a TAP crystal as the dispersing element. The energy of the exciting electrons, _ E0 < _ 25 keV. E0, was varied in the range 5 < For pure Fe the following results were obtained. The net peak height ratio Ll/Lα remains relatively constant with varying E0 at approximately 14%. The E0 dependence of Lη is similar to that of Ll, although Lη is less intense than Ll by a factor of 7. Lβ1/Lα decreases from 20% for E0 = 5 keV to about 5% for 25 keV. Lβ3,4 behaves like Lβ1 but is weaker by a factor of 15. For Fe3O4 a much weaker intensity of Lα was observed which can be partially explained by its stronger absorption. Again, the E0 dependence of Ll and Lη is similar with Ll/Lα = 19% and Lη/Lα = 4%. Lβ1 and Lβ3,4 show a comparable E0 dependence. Lβ1/Lα decreases from 50% for E0 = 5 keV to 34% for 25 keV. Lβ3,4 is weaker than Lβ1 by a factor of about 25. For the first time the observed E0 dependence of the different lines was used to estimate a complete set of mass absorption coefficients (m.a.c.). Our value for Lα in Fe agrees well with other data which were deduced from variable E0 measurements but differs considerably from data given by Heinrich and Henke in their tables. For the m.a.c. values of the other lines contained in Fig. 1.12 a comparison is impossible because no other data were found. The same TAP crystal with a periodicity of 25.757 Å was used by Andrea Assmann, Jan Dellith, and Michael Wendt to reinvestigate the _ Z < _ 33. Among L spectra of the elements 24 < these elements 33As is the only one for which the energy of the lines Lα1,2 and Lβ1 is below the L3 absorption edge. For all the other elements the lines Ll, Lη, and Lα1,2 are below the L3 edge, whereas Lβ1 and Lβ3,4 are above this edge. This MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS Fig. 1.12: Correlation between the m.a.c. values and the intensity ratio R = I(20 keV)/I(7 keV). Fig. 1.13: Melt-textured YBCO monolith prepared using 7 seeds. difference leads to effects of differential absorption, where the absorption is stronger for decreasing line energy. For the net peak height ratio β1/α we obtained results which are of the same order of magnitude as those given by White and Johnson (W&J) in their popular tables. However for l/α and β3,4/β1 our results show an atomic number dependence which is completely different from those given by W&J. 1.2.9 lith with a size of 78 * 38 * 18 mm3 where 7 seeds in <100> orientation were applied. The trapped field profile (Fig. 1.14) represents a transport current across all grain boundaries. Preparation, characterization and application of melt-textured YBCO (Wolfgang Gawalek, Tobias Habisreuther) Our work is based on a stable preparation technology to prepare high quality material combined with an adapted characterization technology. Investigation on the whole chain from precursor preparation to the system integration of function elements is performed in order to optimize melttextured YBCO for applications. Several projects and co-operations with partners in research and industry of Germany, Europe and world wide support our work. Silvia Kracunovska successfully defended her PhD thesis on the relation between preparation and microstructure. General material development Any application requires material with good and reproducible quality. This is provided by our batch process. We are able to prepare several sizes of monoliths according to the requirements of the application (D. Litzkendorf). To enlarge the monoliths size and to improve the magnetic properties we concentrated on the multi-seeding technique where several seeds were placed on the monoliths. Both <110> and <100> growth fronts were investigated used polarised light microscopy (J. Bierlich, PhD work). In both orientations a transport current across the grain boundaries is observed in the trapped field profile. The seeds have to be oriented with an accuracy of about 3° in a distance less than 5 mm. Fig. 1.13 shows a mono- Fig. 1.14: Trapped flux distribution of the multiseeded monolith. The flux distribution shows a transport current across all grain boundaries. Within the EFFORT consortium we use the possibility to exchange and discuss the latest developments and results with all European specialists. Applications In co-operation with MAI Moscow motor tests at temperatures at 20 K were performed. Small scale reluctance motors were tested at the MAI Moscow. The power output of an YBCO-motor increased from 500 W at 77 K to 1500 W at 20 K and 3000 rpm. In 2005 we and our project-partners Oswald Elektromotoren GmbH, MAI Moscow, and Arburg GmbH developed first designs for the BMBF-project “Hochdynamischer HTSL Motor”. In the frame of the POWER SCENET W. Gawalek leads the working group “Rotating machines”. A meeting with 20 participants from 10 countries was organized in Jena from April 11–12, 2005 in Jena. 23 MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS In 2005 the final detailed system design was realized for the Dynastore project. We finished the monoliths for the embedding into the bearing and transferred them to the company Nexans High Temperature Superconductors for the system integration. It is scheduled to test the system in 2006. Public awareness Under the patronage of the Thuringian minister of education and cultural affairs Prof. J. Goebel we organised an interactive exhibition “Eiskalte Energie für Europa” from June 29 to July 2 in the GoetheGalerie Jena (Fig. 1.15). The exhibition was developed in the frame of EU-project “SUPERLIFE” in co-operation with the Budapest University for Technology and Economics (co-ordination), ICMAB Barcelona, ISMRA Caen, Oxford University, Ben-Gurion University of the Negev, S-Metall Budapest and Sydcraft. After contacting schools within a range of 100 km around Jena we organized 50 guided tours through the exhibition to bring superconductivity near to the young students. During the exhibition we counted 2000 persons testing the human levitator. Fig. 1.16: Rotor of the first MgB2 HTS motor. set-up for motor tests at 21K was constructed and the motor tests were performed. Test results are shown in Fig. 1.17. At 20 K this motor showed an output power of 1300 W at 3000 rpm. Fig. 1.17: Test results of the MgB2 motor at 20 K. Fig. 1.15: Visitors watching a levitated train at the exhibition. In addition we showed levitation during the “Highlights der Physik 2005” in Berlin, at Siemens Nürnberg, during the “Lange Nacht der Wissenschaften” in Jena and Erlangen, and at the Solvay headquarters Hannover. Also we contributed our human levitator to the TV-science magazine “Galileo”. 1.2.10 Characterization and application of bulk MgB2 (Wolfgang Gawalek, Tobias Habisreuther, Matthias Zeisberger) 24 The first motor with MgB2 elements world-wide was constructed by ISM Kiev, MAI Moscow and IPHT Jena (Fig. 1.16). ISM Kiev produced several MgB2 plates. In Jena they were characterized and machined to function elements. At the MAI Moscow the experimental The DFG project “Neue Werkstoffe für die Energietechnik: Magnesiumdiborid” was successfully enroled. 1.2.11 Preparation of magnetic materials (Robert Müller) In the frame of the DFG-priority program spectroscopic investigations (University Bonn) on glass crystallised Ba-ferrite BaFe12–2xTixCoxO19 magnetic particles were continued with respect to the problem of reduced magnetisation in nanoparticles (“magnetic dead layer”). Experiments to prepare magnetite or maghemite nanoparticles in the 20 nm-range for medical applications by glass crystallisation as well as by cyclic wet chemical precipitation were continued. Essential points of interest are the optimisation of nucleation and the growth onto given particles without further nucleation (see Fig. 1.18), respectively. Mean particles sizes >30 nm could be MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS Fig. 1.18: Magnetic properties in dependence on number of cycles (i.e. on increasing mean size from 11 to 26 nm). realised. Bigger particles in size distributions with mean values > ≈25 nm are magnetically too hard to give a high loss power at the small field amplitudes required for medical treatment. Experiments on covering the particles by a biocompatible layer (dextran) were started in the frame of a diploma thesis. Stable suspensions with 17 nm-particles (mean value) could be prepared. Investigations on magnetic properties were done as well in cooperation with partners on Co-particles, encapsulated particles (FZK, DFG-program), hard-magnetic Ba-ferrite particles (TU Ilmenau), iron oxide particles and ferrofluids with different polymer surface layers (University Düsseldorf, DFG-program) and iron oxide microspheres (HKI Jena). 1.2.12 Biomedical applications of magnetic nanoparticles (Rudolf Hergt, Matthias Zeisberger) In the last years magnetic nanoparticles (MNP) found increasing interest in various biomedical applications as for instance superparamagnetic contrast agents for MRI, cellular separation and refinement, drug delivery, gene magnetofection and magnetic biochips. One important new therapy method entering now clinical application is magnetic particle hyperthermia and thermoablation which is under development in the group of the IPHT in co-operation with the Institute for Diagnostic and Interventional Radiology (IDIR, Prof. W. A. Kaiser) of the Clinics of the University Jena. Within the frame of the DFG-priority program “Colloidal Magnetic Fluids” foundations for therapy of breast carcinoma by magnetic particle injection were provided and the fundamentals of the second therapy generation, the “Antibody Mediated Targeting of Nanoparticles” (AMTN) were laid down. The experimental setup developed in co-operation with IDIR for first clinical trials was further improved considering reliability and comfortability for patients. For the developed apparatus as well the special magnetic particle suspension to be injected for tumour therapy two patents were filed. The new method of AMTN is presently under investigation in the frame of the DFG-project “Magnetic heat treatment of breast tumours with multivalent magnetic nanoparticles” (HE2878/9-2) in co-operation with Prof. Kaiser (IDIR). The goal is the coupling of three strategies of tumour therapy: combination of hyperthermia by magnetic nanoparticles with antibody-targeting and chemoor radiotherapy. Therefore, functional molecular groups (e.g. tumour-specific antibodies and cisplatin) will be coupled to the carboxymethyldextran coating of maghemite nanoparticles. There, a till now not satisfyingly solved problem is the preparation of MNP which provide sufficient specific heating power (SHP). While suitable MNP with moderate values of SHP are available now for the direct intratumoural injection method, the target concentrations expected for AMNT are so low that at least an order of magnitude higher SHP is needed. Theoretical modelling of the heat generation by magnetic nanoparticles in a tumour showed that for large tumours (some cm) SHP of more than 1 kW/g is needed, a value which is even increasing with decreasing tumour size. Such a high value of SHP was found by our group till now only for magnetosomes synthesized by magnetotactical bacteria (co-operation with Dr. Schüler, MPI Marine Microbiology Bremen). Unfortunately, those particles are available only in small amounts and – more importantly – they lack biocompatibility due to the bacteria proteins of their coating. Our investigations have shown that a maximum of magnetic losses occurs in the transition region between superparamagnetic and stable single domain particles. For maghemite or magnetite this is just the mean size of about 30 nm found for magnetosomes. However, screening with respect to magnetic properties, in particular losses, for various MNP types prepared by chemical precipitation resulted in nearly one order of magnitude lower SHP. As a reason, the too broad size distribution as well as a magnetic coupling of MNP is supposed and is subject of present investigations. Besides efforts with particle preparation described in the previous section. An apparatus for magnetic size fractionation was developed which is under investigation, now. Another way towards large values of SHP is the application of MNP with higher magnetic moment e.g. FePt or Co. The latter ones are presently magnetically investigated with encouraging results (co-operation with Prof. Bönnemann, FKZ). In co-operation with the University of Applied Sciences Jena (Prof. Andrä, Prof. Bellemann, Dept. Biomedical Engineering) a pharmaceutical capsule for the remote controlled drug release is in development. The release mechanism is based on the heating of a magnetic absorber in an alternating magnetic field. By in-vitro investigations the remote controlled release was realised and a clinical study is under preparation. 25 MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS 1.3. Appendix Partners National cooperation Thuringia • • • • • • • • • • • • • • • • • • • • • • • • B&W Trade Technology, Jena Carl Zeiss Jena GmbH Docter-Optics GmbH, Neustadt/Orla FH Jena, FB SciTec, FB Medizintechnik Fraunhofer Institut für Angewandte Optik und Feinmechanik, Jena Friedrich Hagans Plastverarbeitung, Erfurt FSU Jena • Physikalisch-Astronomische Fakultät und Chemisch-Geowissenschaftliche Fakultät • Institut für Diagnostische und Interventionelle Radiologie • Institut für Sportwissenschaft • Klinik für Innere Medizin III HITK Hermsdorf IMB Jena IMG Nordhausen IMMS gGmbH, Ilmenau Innovent e.V. Jena j-fiber GmbH, Jena Jenoptik AG, Jena JOLD Jena Landesamt für Archäologie mit Museum für Ur- und Frühgeschichte Thüringens in Weimar Leica Microsystems Lithography GmbH Jena Melexis AG Erfurt Schott Lithotec, Jena STS Diagnostics, Jena Supracon AG, Jena SurA Chemicals, Jena TÜV Thüringen e.V., Kalibrierlabor Arnstadt TU Ilmenau Germany 26 • BAM, Berlin • Bayerisches Landesamt für Denkmalpflege (BLfD) München • Bruker AXS Microanalysis GmbH, Berlin • BUGH, Wuppertal • EAS Hanau • Eberhard Karls Universität Tübingen, Physikalisches Institut I • Forschungszentrum Jülich GmbH • Fraunhofer – INT, Euskirchen • FRT GmbH – Fries Research & Technology • FZ Karlsruhe • FZ Rossendorf • HL Planartechnik Dortmund • Hochschule für Technik, Wirtschaft und Kultur Leipzig • IFW Dresden • Infineon AG München • Infineon AG Regensburg • Lucent Technologies GmbH Nürnberg • Max Planck Institut für Radioastronomie Bonn • Max Planck Institut für Mikrostrukturphysik Halle • Nanoworld Services GmbH Erlangen • Naomi technologies Mainz • Nexans High Temperature Superconductors, Hürth • Novotechnik Messwertaufnehmer OHG, Ostfildern • OSWALD Elektromotoren GmbH, Miltenberg • Philips Semiconductor Hamburg • Physikalisch-Technische Bundesanstalt, Braunschweig • Physikalisch-Technische Bundesanstalt, Berlin • Piller GmbH, Osterode • PREMA Semiconductor GmbH, Mainz • QEST GmbH, Tübingen • RWTH Aachen • Siemens AG Erlangen • Singulus AG Kahl • Solvay Barium Strontium GmbH, Hannover • Technische Universität Hamburg-Harburg • TU Kaiserslautern • Tracto-Technik GmbH, Lennestadt • TransMIT GmbH, Gießen • TU Braunschweig • TU Bergakademie Freiberg • Universität Bielefeld • Universität Erlangen • Universität Gießen • Universität Heidelberg, Kirchhoff-Institut für Physik • Universität Karlsruhe • Universität Mainz, Institut für Organische Chemie • Universität Regensburg • Vacuumschmelze GmbH & Co KG, Hanau • VeriCold Technologies Ismaning • WSK Hanau International cooperations • • • • • • • • • • • • • • • • • • • • • • • • • Altis Semiconductor France Anglo Operations Ltd., South Africa Bar Ilan University, Israel Ben-Gurion University of the Negev, Israel Budapest University of Technology and Economy, Hungary Cambridge University, UK CardioMag Imaging Inc., Schenectady, USA CEA Saclay, Gif sur Yvette cedex, France CEA/Le Ripault Mounts, France Chalmers University of Technology, Sweden Chengdu University, China CNRS Grenoble, France Comenius University, Slovakia Commissariat a l’energie atomique, France Consiglio Nazionale Delle Ricerche, Italy D-wave System Inc. Canada Edison Spa, Milano, Italy Encom Technology Pty Ltd, Sydney, Australia Fugro Airborne Surveys, South Africa Geovista, Sweden Helsinki University of Technology, Finland ICMAB Barcelona, Spain Institute for Superhard Materials, Kiev, Ukrain Institute of Crystallography Moscow, Russia Institute of Radio Engineering and Electronics Moscow, Russia MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS • Lawrence Berkely National Laboratory, CA, USA • Leiden University, Kamerlingh Onnes Laboratorium, The Netherlands • Los Alamos National Laboratory, Biophysics Group, NM, USA • MAI Moscow, Russia • Moscow Engineering Physics Institute (State University), Russia • National Physical Laboratory, Teddington, UK • Nederlands Meetinstitut, NMi Van Swinden Laboratorium B.V., The Netherlands • NIST, Gaithersburg, MD, USA • Novosibirsk University, Russia • Philips Reseach Lab Eindhoven/NL • PicoImages Limited, South Africa • SAS Kosice, Slovakia • SPEZREMONT, Moscow, Russia • Swiss Federal Institute of Technology Lausanne, Institute of Applied Optics (IOA), Suisse • Technical Research Centre of Finland • TU Wien, Austria • University of Oxford, Department of Physics, Sub-department of Particle Physics, UK • University of Twente, Faculty of Science and Technology, The Netherlands • Vienna Institute for Archaeological Science, Austria H.-G. Meyer, R. Stolz, A. Chwala, M. Schulz: “SQUID technology for geophysical exploration” phys. stat. sol. (c) 2 (2005) 1504–1509 Publications R. Boucher: “Sr2FeMoO6+x: Film structure dependence upon substrate type and film thickness” J. Phys. Chem. Solids, 66 (2005) 1020 M. Schmidt, M. Eich, U. Huebner, R. Boucher: “Electrooptically tunable photonic crystals” Appl. Phys. Lett. 87 (2005) 121110 M. Grajcar, A. Izmalkov, S. H. W. van der Ploeg, S. Linzen, E. Il’ichev, Th. Wagner, U. Hübner, H.-G. Meyer, Alec Maassen van den Brink, S. Uchaikin, A. M. Zagoskin: “Direct Josephson coupling between superconducting flux qubits” Phys. Rev. B 72 (2005) 020503(R) M. Grajcar, A. Izmalkov, E. Il’ichev: “Possible implementation of adiabatic quantum algorithm with superconducting flux qubits” Phys. Rev. B 71 (2005) 144501 Ya. S. Greenberg, E . Il’ichev, A. Izmalkov: “Low-frequency Rabi spectroscopy for a dissipative two-level system” Europhys. Lett., 72 (2005) 880–886 Ya. S. Greenberg, I. L. Novikov, V. Schultze, H.-G. Meyer: “The influence of the second harmonic in the current-phase relation on the voltage-current characteristic of high-Tc DC SQUIDs” Eur. Phys. J. B 44 (2005) 57–62 M. Schubert, T. May, G. Wende, H.-G. Meyer: “A Cross-Type SNS Junction Array for a Quantum-Based Arbitrary Waveform Synthesizer” IEEE Trans. Appl. Supercond. Vol. 15 (2) 829– 832, 2005 T. May, V. Zakosarenko, E. Kreysa, W. Esch, S. Anders, L. Fritzsch, R. Boucher, R. Stolz, J. Kunert, H.-G- Meyer: “On-chip integrated SQUID readout for superconducting bolometers” IEEE Transactions on Applied Superconductivity Vol. 15 (2) (2005) 537–540 W. Krech, D. Born, V. Shnyrkov, Th. Wagner, M. Grajcar, E. Il’ichev, H.-G. Meyer, Ya. Greenberg: “Quantum dynamic of the interferometer-type charge qubit under microwave irradiation” IEEE Trans. Appl. Supercond. 15 (2005) 876 M. Ebel, C. Busch, U. Merkt, M. Grajcar, T. Plecenik, E. Il’ichev: “Supercurrent-phase relationship of a Nb/InAs (2DES)/Nb Josephson junction in overlapping geometry” Phys. Rev. B 71, 052506 (2005) R. Mattheis, K. Steenbeck: “Beating the superparamagnetic limit of IrMn in F/AF/AAF stacks” J. Appl. Phys. 97(2005) 10K107 S. Questea, S. Dubourg, O. Acher, J.-C. Soret, K.-U. Barholz, R. Mattheis: “Microwave permeability study for antiferromagnet thickness dependence on exchange bias field in NiFe/lrMn layers” J. Magn. Magn. Mater. 288 (2005) 60–65 P. A. Warburton, A. R. Kuzhakhmetov, G. Burnell, M. G. Blamire, Y. Koval, A. Franz, P. Müller, and H. Schneidewind: “Fabrication and Characterization of Sub-Micron Thin Film Intrinsic Josephson Junction Arrays” IEEE Trans. Appl. Supercond. 15 (2005) 237–240 B. Oswald, K. -J. Best, M. Setzer, M. Söll, W. Gawalek, A. Gutt, L. K. Kovalev, G. Krabbes, L. Fisher, H. C. Freyhardt: “Reluctance motors with bulk HTS material” Supercond. Sci. Technol. 18 (2005) S24–S29 27 MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS W. Gawalek, T. Habisreuther, M. Zeisberger, D. Litzkendorf, O. Surzhenko, S. Kracunovska, T. A. Prikhna, B. Oswald, L. K. Kovalev, W. Canders: “Batch-processed melt-textured YBCO with improved quality for motor and bearing applications” Supercond. Sci. Technol. 17 (2005) 1185–1188 D. A. Cardwell, M. Murakami, M. Zeisberger, W. Gawalek, R. Gonzalez-Arrabal, M. Eisterer, H. W. Weber, G. Fuchs, G. Krabbes, A. Leenders, H. C. Freyhardt, N. Hari Babu: “Round robin test on large grain melt processed Sm-Ba-Cu-O bulk superconductors” Supercond. Sci. Technol. 18 (2005) S173–S179 M. Zeisberger, W. Gawalek, G. Giunchi: “Magnetic levitation using magnesiumdiboride” J. Appl. Phys. 98 (2005) 023905 J. Bierlich, T. Habisreuther, D. Litzkendorf, C. Dubs, R. Müller, S. Kracunovska, W. Gawalek: “Growth and investigation of melt-textured SmBCO in air for preparation of Sm123 seed crystals” Supercond. Sci. Technol. 18 (2005) S194–S197 D. Litzkendorf, T. Habisreuther, J. Bierlich, O. Surzhenko, M. Zeisberger, S. Kracunovska, W. Gawalek: “Increased efficiency of batch-processed melttextured YBCO” Supercond. Sci. Technol. 18 (2005) S206–S208 S. Kracunovska, P. Diko, D. Litzkendorf, T. Habisreuther, J. Bierlich, W. Gawalek: “Oxygenation and cracking in melt-textured YBCO bulk superconductors” Supercond. Sci. Technol. 18 (2005) S142–S148 P. Diko, S. Kracunovska, L. Ceniga, J. Bierlich, M. Zeisberger, W. Gawalek: “Microstructure of top seeded melt-grown YBCO bulks with holes” Supercond. Sci. Technol. 18 (2005) S1400–S1404 T. A. Prikhna, W. Gawalek, N. V. Novikov, V. E. Moshchil, V. B. Sverdun, N. V. Sergienko, A. B. Surzhenko, L. S. Uspenskaya, R. Viznichenko, A. A. Kordyuk, D. Litzkendorf, T. Habisreuther, S. Kracunovska and A. V. Vlasenko: “Formation of superconducting junctions in MTYBCO” Supercond. Sci. Technol. 18 (2005) S153–S157 28 E. Bartolome, X. Granados, T. Puig, X. Obradors, E. S. Reddy and S. Kracunovska: “Critical State of YBCO Superconductors With Artificially Patterned Holes” IEEE Transactions on Applied Superconductivity 15 (2005) 2775–2778 M. Zeisberger, T. Habisreuther, D. Litzkendorf, A. Surzhenko and W. Gawalek: “Investigation of the structure of melt-textured YBCO by magnetic measurements” Supercond. Sci. Technol. 18 (2005) S90–S94 M. Zeisberger, I. Latka, W. Ecke, T. Habisreuther, D. Litzkendorf and W. Gawalek: “Measurement of the thermal expansion of melttextured YBCO using optical fibre grating sensors” Supercond. Sci. Technol. 18 (2005) S202–S205 R. Zboril, L. Machala, M. Mashlan, J. Tucek, R. Müller, O. Schneeweiss: “Magnetism of amorphous Fe2O3 nanopowders synthesized by solid-state reactions” phys. stat. sol. (c) 1 (2004) 3710–3716 R. Müller, R. Hergt, M. Zeisberger, W. Gawalek: “Preparation of magnetic nanoparticles with large specific loss power for heating applications” J. Magn. Magn. Mater. 289 (2005) 13–16 S. Dutz, W. Andrä, H. Danan, C. S. Leopold, C. Werner, F. Steinke, M. E. Bellemann: “Remote controlled drug delivery to the gastrointestinal tract: investigation of release profiles” Biomedizinische Technik 50 (Suppl. 1) (2005) 601–602 C. Werner, W. Andrä, T. Kupfer, J. Seilwinder, M. E. Bellemann: “Out-patient magnetic marker monitoring: evaluation of temporal and spatial resolution” Biomedizinische Technik 50 (2005) Suppl. Vol. 1, Part 1, 605–606 W. Andrä, M. E. Bellemann: “Remote controlled drug delivery to the gastrointestinal tract: optimizing the total system” Biomedizinische Technik 50 (2005) Suppl. Vol. 1, Part 1, 607–608 S. Dutz, W. Andrä, R. Hergt, R. Müller, J. Mürbe, J. Töpfer, C. Werner, M. E. Bellemann: “Magnetic nanoparticles for remote controlled drug delivery to the gastrointestinal tract” Biomedizinische Technik 50 (Suppl. 1) (2005) 1555–1556 W. Andrä, H. Danan, K. Eitner, M. Hocke, H.-H. Kramer, H. Parusel, P. Saupe, C. Werner, M. E. Bellemann: “A novel magnetic method for examination of bowel motility” Med. Phys. 32 (2005) 2942–2944 S. Dutz, R. Hergt, R. Müller, M. Zeisberger, W. Andrä, M. E. Bellemann: “Application of Magnetic Nanoparticles for Biomedical Heating Processes” MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS VDI-Berichte Nr. 1920 – 4th Internat. Nanotechnology Symposium: 229–232 (2005) (Ed.: VDI Wissensforum IWB GmbH). Proc. Tagung Kryoelektronische Bauelemente „Kryo’05“, 09–11 Oktober 2005, Bad Herrenalb, p. 66, poster R. Müller, H. Steinmetz, R. Hergt, M. Zeisberger, S. Dutz, W. Gawalek: “Magnetic iron oxide nanoparticles for medical applications” Conference report – Chemical Nanotechnology Talks VI, (2005) Ed.: DECHEMA Frankfurt/M. V. Schultze, A. Chwala, R. Stolz, M. Schulz, S. Linzen, T. Schüler, H.-G. Meyer „SQUID-System für die geomagnetische Archäometrie“ Proc. Tagung Kryoelektronische Bauelemente „Kryo’05“, 09–11 Oktober 2005, Bad Herrenalb, p. 67, poster M. Zeisberger, S. Dutz, R. Hergt, R. Müller: “Magnetic Nanoparticles for Hyperthermia” Conference report – Bioinspired Nanomaterials for Medicine and Technologies: 62 (2005), Ed.: DECHEMA R. Hergt, R. Hiergeist, M. Zeisberger, D. Schüler, U. Heyen, I. Hilger, W. A. Kaiser: “Magnetic properties of bacterial magnetosomes as potential diagnostic and therapeutic tools” J. Magn. Magn. Mater. 293 (2005) 80–86 I. Hilger, R. Hergt, W. A. Kaiser: “Use of magnetic nanoparticle heating in the treatment of breast cancer” IEE Proc. Nanobiotechnol. 152 (2005) 33–39 I. Hilger, R. Hergt, W. A. Kaiser: “Towards breast cancer treatment by magnetic heating” J. Magn. Magn. Mater. 293 (2005) 314–319 I. Hilger, W. Andrä, R. Hergt, R. Hiergeist, W. A. Kaiser: „Magnetische Thermotherapie von Tumoren der Brust: Ein experimenteller Ansatz“ RöFo Fortschr. Röntgenstr. 177 (2005) 507–515 Presentations (Talks and Posters) V. Schultze, A. Chwala, R. Stolz, M. Schulz, S. Linzen, H.-G. Meyer, T. Schüler: “A SQUID system for geomagnetic archaeometry” Proc. 6th Int. Conf. on Archaeological Prospection (Archeo2005), 14–17 Sept. 2005, Rom, pp. 245–248, poster H.-G. Meyer, A. Chwala, R. Stolz, S. Linzen, V. Schultze, M. Schulz, T. Schüler: „Aktuelle Anwendungen von SQUIDs zur geomagnetischen Pospektion“ Proc. Tagung Kryoelektronische Bauelemente „Kryo’05“, 09–11 Oktober 2005, Bad Herrenalb, p. 23, oral presentation V. Schultze, R. IJsselsteijn, H.-G. Meyer: „Zur Realisierung von SQIFs mit Hochtemperatur-Supraleitern“ R. IJsselsteijn, V. Schultze, H.-G. Meyer: „Thermozyklieren von HTS-SQIFs und -SQUID“ Proc. Tagung Kryoelektronische Bauelemente „Kryo’05“, 09–11 Oktober 2005, Bad Herrenalb, p. 96, poster V. Schultze, A. Chwala, R. Stolz, M. Schulz, S. Linzen, H.-G. Meyer, T. Schüler: „A SQUID system for geomagnetic archaeometry“ Proc. ISEC ‘05, 05.–09.09.2005, Noordwijkerhout, The Netherlands, P-H.08 V. Schultze, R. IJsselsteijn, H.-G. Meyer: “How to puzzle out a good high-Tc SQIF?” Proc. ISEC ‘05, 05.–09.09.2005, Noordwijkerhout, The Netherlands, P-K.06 U. Huebner, W. Morgenroth, R. Boucher, H. G. Meyer, Th. Sulzbach, B. Brendel, W. Mirandé, E. Buhr, G. Ehret, Th. Fries, G. Kunath-Fandrei, R. Hild: “Prototypes of new nanoscale CD-standards for high resolution optical microscopy and AFM” in Proceedings of the 5th international euspen conference, Montepellier, 185–188, 2005, poster U. Huebner, W. Morgenroth, R. Boucher, W. Mirandé, E. Buhr, Th. Fries, Nadine Schwarz, G. Kunath-Fandrei, R. Hild: “Development of a nanoscale linewidth-standard for high-resolution optical microscopy” in Optical Fabrication, Testing, and Metrology II, edited by Angela Duparré, Roland Geyl, David Rimmer, Lingli Wang, Proc. SPIE Systems Design Jena, Germany, Vol. 5965, (2005), poster U. Huebner, R. Boucher, W. Morgenroth, M. Schmidt, M. Eich: “Fabrication of photonic crystal structures in polymer waveguide material” Micro & Nano Engineering MNE 2005, (2005), poster M. Eich, M. Schmidt, U. Huebner, R. Boucher: “Electrooptically tunable photonic crystal” Proceedings of SPIE Optics and Photonics San Diego, California, (2005), 5935–18 29 MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS G. Wende, M. Schubert, T. May, H.-G. Meyer: “Pulse Driving of a Josephson Pulse Quantizer for Quantum-Based Arbitrary Waveform Synthesizers, Proc. ISEC`05, 05.–09.2005, Noordwijkerhout, The Netherlands, P-K.05 G. Wende, M. Schubert, T. May, H.-G. Meyer: “Impulsansteuerung eines Josephson-ImpulsQuantisierers für einen Quantensynthesizer beliebiger Wellenformen” Tagung Kryoelektronische Bauelemente “Kryo’05”, 09.–11. Oktober 2005, Bad Herrenalb, Poster V. Zakosarenko, S. Anders, T. May, R. Boucher, H.-G. Meyer, E. Kreysa, N. Jethava, G. Siringo: “Time domain multiplexing for superconducting bolometers read out by integrated SQUIDs” Low Temperature Detectors LTD 2005, Tokio (Japan), Poster N. Oukhanski, R. Stolz, H.-G. Meyer: “Concept of ultra-low-drift and very fast dc SQUID readout electronics” Proc. Tagung Kryoelektronische Bauelemente “Kryo’05”, 09.–11. Oktober 2005, Bad Herrenalb, p. 65, Poster N. Oukhanski, R. Stolz, H.-G. Meyer: “Ultra-low-drift and very fast dc SQUID readout electronics” Proc. of 7th European Conference on Applied Superconductivity (EUCAS’05), Sept. 11–15, 2005, Vienna, Austria, P- WE-P3–138 A. Izmalkov, M. Grajcar, S. H. W. van der Ploeg, S. Linzen, T. Plecenik, Th. Wagner, U. Hübner, E. Il’ichev, H.-G. Meyer, A. Yu. Smirnov, P. J. Love, A. Maassen van den Brink, M. H. S. Amin, S. Uchaikin, A. M. Zagoskin: “Realization of ferro- and antiferromagnetic coupling among superconducting qubits through a common Josephson junction” “Kryo’05”, 09–11 October 2005, Bad Herrenalb, contributed talk A. Izmalkov, M. Grajcar, E. Il’ichev, S. H. W. van der Ploeg, S. Linzen, Th. Wagner, U. Hübner, H.-G. Meyer, A. Yu. Smirnov, S. Uchaikin, M. H. S. Amin, A. Maassen van den Brink, A. M. Zagoskin: “Experimental investigation of coupled flux qubits” 7th European Conference on Applied Superconductivity (EUCAS’05), Sept. 11–15, 2005, Vienna, Austria, poster 30 S. H. W. van der Ploeg, A. Izmalkov, M. Grajcar, E. Il’ichev, S. Linzen, Th. Wagner, U. Hübner, H.-G. Meyer, A. Yu. Smirnov, S. Uchaikin, M. H. S. Amin, Alec Maassen van den Brink, A. M. Zagoskin: “Characterization of coupled flux qubits by impedance measurement technique” ISEC ‘05, 05.09.09.2005, Noordwijkerhout, The Netherlands, contributed talk S. H. W. van der Ploeg, A. Izmalkov, A. Maassen van den Brink, U. Hübner, M. Grajcar, S. Uchaikin, S. Linzen, E. Il’ichev, H.-G. Meyer: “Realization of strong and controllable anti-ferromagnetic coupling between superconducting flux-qubits” Tagung Kryoelektronische Bauelemente “Kryo’05”, 09.–11. October 2005, Bad Herrenalb, contributed talk S. Anders, T. May, R. Boucher, H.-G. Meyer, C. Hollerith, D. Wernicke: “Transition-edge sensors manufactured on 4-inch wafers for reliable, cost-effective x-ray detectors” ISEC ‘05, 05.09.2005, Noordwijkerhout, The Netherlands, poster S. Anders, R. Boucher, T. May, H.-G. Meyer: “Kantenbolometer aus dem Zweischichtsystem Mo/AuPd für Röntgendetektoren” Tagung Kryoelektronische Bauelemente “Kryo’05”, 09.–11. Oktober 2005, Bad Herrenalb, poster J. Fassbender, J. McCord, M. Weisheit, R. Mattheis: “Modifikation der magnetischen Dämpfung in Permalloy-Schichten durch Cr-Implantation” Vortrag, Verhandlungen Frühjahrstagung DPG, 28.02.–04.03.2005, MA 27.7 Ch. Hamann, J. McCord, R. Schäfer, L. Schultz, R. Mattheis: “Magnetization reversal in CoFe/IrMn exchange biased structures” Vortrag, Verhandlungen Frühjahrstagung DPG 28.02.–04.03.2005, MA 15.5 J. McCord, R. Mattheis: “Asymmetric fixed and rotatable magnetic anisotropy at the onset of exchange bias” Poster, Verhandlungen Frühjahrstagung DPG, 28.02.–04.03.2005, MA 20.59 J. Fassbender, J. McCord, M. Weisheit, R. Mattheis: “Increased magnetic damping of Permalloy upon Cr implantation” International Magnetics Conference, Intermag 2005, Nagoya, Japan J. Fassbender, J. McCord, R. Mattheis, K. Potzger, A. Mücklich, J. v. Borany: “Doping magnetic materials – tunable properties due to ion implantation” European Congress on Advanced materials and processing, 5.–8.09.2005, Prague, Czech Republics R. Mattheis, M. Diegel, U. Huebner: “Domain Wall motion in narrow spin valve strip lines” 50th Conference on Magnetism and Magnetic Materials, San Jose, California, USA MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS J. Fassbender, L. Bischoff, R. Mattheis, P. Fischer: “Magnetic domains and magnetization reversal of ion-induced magnetically patterned RKKY-coupled Ni81Fe19/Ru/Co90Fe10 films” 50th Conference on Magnetism and Magnetic Materials, San Jose, California, USA M. Mans, A. Grib, M. Büenfeld, R. Bechstein, F. Schmidl, H. Schneidewind und P. Seidel: “Elektrische Untersuchung serieller intrinsischer Josephsonkontaktarrays an dünnen Tl2Ba2CaCu2O8+x Schichten auf r-cut Saphir und 20° vizinalem LaAlO3” Vortrag, Verhandlungen Frühjahrstagung DPG, 28.02.–04.03.2005, TT 10.11 M. Büenfeld, R. Bechstein, M. Mans, F. Schmidl, A. Grib, H. Schneidewind und P. Seidel: “Elektrische Untersuchung serieller intrinsischer Josephsonkontaktarrays an dünnen Tl2Ba2CaCu2O8+x Schichten auf r-cut Saphir und 20° vizinalem LaAlO3” Poster, Verhandlungen Frühjahrstagung DPG, 28.02.–04.03.2005, TT 23.47 H. Schneidewind, M. Mans, M. Büenfeld, M. Diegel: “Misaligned Tl-2212 Thin Films with Different Tilt Angles for Intrinsic Josephson Junctions” 7th European Conference on Applied Superconductivity (EUCAS ‘05), Vienna University of Technology, 11 to 15 September 2005, Austria M. Büenfeld, M. Mans, A. N. Grib, F. Schmidl, H. Schneidewind, P. Seidel: “Untersuchung intrinsischer Josephsonkontaktarrays aus dünnen Tl2Ba2CaCu2O8+x Schichten auf vicinalem LaAlO3” Tagung Kryoelektronische Bauelemente, 09.–11. Oktober 2005, in Bad Herrenalb A. Assmann, J. Dellith, M. Wendt: “Electron excited L X-ray spectra of the elements _Z< _ 33” 24 < EMAS 2005 – 9th European Workshop on Modern Developments and Applications in Microbeam Analysis, Florence (Italy), May 22–26, 2005, poster A. Assmann, J. Dellith, M. Wendt: “Electron excited L X-ray spectra of the elements 14 <_ Z <_ 22” EMAS 2005 – 9th European Workshop on Modern Developments and Applications in Microbeam Analysis, Florence (Italy), May 22–26, 2005, poster A. Scheffel, A. Assmann, J. Dellith, M. Wendt: “The L spectrum of Fe and Fe3O4” EMAS 2005 – 9th European Workshop on Modern Developments and Applications in Microbeam Analysis, Florence (Italy), May 22–26, 2005, poster and talk J. Kirchhof, S. Unger, C. Aichele, St. Grimm, J. Dellith: “Borosilicate Optical Fibers and Planar Waveguides” 5th International Conference on Borate Glasses, Crystals and Melts, July 10–14, 2005, Trento, Italy X. Granados, M. Torner, X. Obradors, W. Gawalek: “Magnetisation behaviour of Hybrid Ferromagnetic-Superconducting structures” Proceedings of SCENET-2 Workshop “Superconducting Electric motors with HTS”, Jena, Germany, April 11–13, (2005) M. Zeisberger, G. Giunchi, W. Gawalek: “Magnetic levitation using magnesium diboride” Proceedings of SCENET-2 Workshop “Superconducting Electric motors with HTS”, Jena, Germany, April 11–13, (2005) T. A. Prikhna, W. Gawalek, Ya. M. Savchuk, V. Moshchil, N. Sergienko, M. Wendt, T. Habisreuther, M. Zeisberger, R. Hergt, D. Litzkendorf, Ch. Schmidt, J. Dellith, S. N. Dub, V. Melnikov, A. Assmann, P. A. Nagorny: “High-pressure synthesized MgB2-based nanostructural highly dense material for electromotors” Proceedings of SCENET-2 Workshop “Superconducting Electric motors with HTS”, Jena, Germany, April 11–13, (2005) T. A. Prikhna, W. Gawalek, Ya. M. Savchuk, V. Moshchil, N. Sergienko, M. Zeisberger, V. Moshchil, M. Wendt, T. Habisreuther, S. Dub, V. Melnikov, Ch. Schmidt, J. Dellith, P. A. Nagorny: “High-pressure synthesized superconducting nanostructural magnesium diboride-based materials” Euro Powder Metallurgy 2005, 3–5 October, Prague, Czech Republic (Proceedings will be published) M. Zeisberger, W. Gawalek, G. Giunchi: “Magnetic field trapping and levitation on MgB2 discs up to 35 K” SCENET–2 Workshop “Magnesiumdiborid”, Twente, Netherlands, March 7–8, (2005) X. Granados, X. Obradors, M. Tornes, E. Bartolomé, L. Rodrigues, W. Gawalek, M. McCulloch, D. Dew Hughes, A. Campbell, M. Ausloos, R. Cloots: “Magnetization of Iron-YBCO Heterostructures: A Superconducting Permanent Magnet Motor” SCENET-2 Workshop “Superconducting Electric motors with HTS”, Jena, Germany, April 11–13, (2005) 31 MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS W. Gawalek, T. A. Prikhna, L. K. Kovalev, G. Giunchi, M. Zeisberger: “Bulk MgB2-Superconductors: A new material for Energy technologies?” Keynote talk JAPMED´4: 4th Japanese-Mediterranean Workshop on Applied Electromagnetic Engineering for Magnetic, Superconducting and nano materials, Cairo, Egypt, September 17–20, (2005), p. 19 T. A. Prikhna, Ya. M. Savchuk, W. Gawalek, N. V. Sergienko, V. E. Moshchil, P. A. Nagorny, V. B. Sverdun, A. V. Vlasenko, L. K. Kovalev, K. L. Kovalev, V. T. Penkin: “High-pressure high-temperature synthesis of Nanostructural magnesium diboride for electromotors working at liquid hydrogen temperatures” Proceedings of International Conference “Modern Materials Science: Achievements and Problems”, September 26–30, (2005), Kiev, Ukraine T. A. Prikhna, W. Gawalek, Ya. M. Savchuk, N. V. Sergienko, V. E. Moshchil, M. Wendt, M. Zeisberger, T. Habisreuther, S. X. Dou, S. N. Dub, V. S. Melnikov, Ch. Schmidt, J. Dellith and P. A. Nagorny: “Formation of magnesium diboride-based materials with high critical currents and mechanical characteristics by high-pressure synthesis” EUCAS 2005, Sept. 11–15, 2005, Vienna, Austria T. A. Prikhna, W. Gawalek, V. B. Sverdun, Ya. M. Savchuk, A. V. Vlasenko, X. Chaud, J. Rabier, A. Joulain, V. E. Moshchil, P. A. Nagorny, N. V. Sergienko, V. S. Melnikov, S. N. Dub, T. B. Serbenyuk: “Improvement of MT-YBCO properties by oxygenation and treatment under pressure” Proceedings of International Conference “Modern Materials Science: Achievements and Problems”, September 26–30, (2005), Kiev, Ukraine M. Eisterer, S. Haindl, M. Zehetmayer, R. Gonzalez-Arrabal, H. W. Weber, D. Litzkendorf, M. Zeisberger, T. Habisreuther, W. Gawalek, L. Shlyk, G. Krabbes: “Limitations for the Trapped Field in Large Grain YBCO Superconductors” PASREG 2005, 5th International Workshop on Processing and Applications of Superconducting (RE)BCO Large Grain Materials, October 21–23, 2005, Tokyo, Japan 32 R. Müller, H. Steinmetz, M. Zeisberger, Ch. Schmidt, S. Dutz, R. Hergt, W. Gawalek: “Precipitated iron oxide particles by cyclic growth” 6. Deutschen Ferrofluid-Workshop, 19.–22. 7. 05, Saarbrücken S. Dutz, R. Hergt, J. Mürbe, J. Töpfer, R. Müller, M. Zeisberger, W. Andrä, M. E. Bellemann: “Preparation of water based dispersions of magnetic iron oxide nanoparticles in the mean diameter range of 15 to 30 nm” 6th German Ferrofluid-Workshop, 19.–22. 7. 05, Saarbrücken S. Dutz, N. Buske, R. Hergt, R. Müller, M. Zeisberger, P. Görnert, M. Röder, M. E. Bellemann: “Magnetic Nanoparticles for biomedical heating applications” 6. Deutschen Ferrofluid-Workshop, 19.–22. 7. 05, Saarbrücken, poster R. Müller, H. Steinmetz, R. Hergt, Ch. Schmidt, M. Zeisberger, W. Gawalek: “Preparation of Iron Oxide Nanoparticles for Heating Applications” 6th Colloq. of DFG-Priority Program “Colloidal magnetic fluids”, Benediktbeuern 25.–28. 9. 05 N. Palina, H. Modrow, R. Müller, J. Hormes, Ya. B. Losovyj: “Final results of X-ray absorption spectroscopy and resonant photo-emission investigations on doped Bariumhexaferrite nanoparticles” 6th Colloq. of DFG-Priority Program “Colloidal magnetic fluids”, Benediktbeuern 25.–28.9.05 S. Dutz, W. Andrä, H. Danan, C. S. Leopold, C. Werner, F. Steinke, M. E. Bellemann: “Remote controlled drug delivery to the gastrointestinal tract: investigation of release profiles” Jahrestagung der Deutschen Gesellschaft Biomedizinische Technik, Nürnberg (14.–17.09. 2005) S. Dutz: „Magnetische Nano-Verbundwerkstoffe für die intrakorporale Erwärmung in der Medizin“ Jahreskolloquium des Institutes für Keramische Werkstoffe, Bergakademie Freiberg (20.–21.10. 2005). S. Dutz, R. Hergt, R. Müller, M. Zeisberger: “Magnetic nanoparticles for hyperthermia” Mitarbeitertreffen des DFG-Schwerpunktprogramms “Kolloidale magnetische Flüssigkeiten”. Erlangen (01.–02.12.2005). S. Dutz, R. Hergt, M. Zeisberger, M. Kettering, I. Hilger, W. A. Kaiser: “Magnetic hyperthermia with multivalent magnetic nanoparticles” 6th Colloq. of DFG-Priority Program “Colloidal magnetic fluids”, Benediktbeuern 25.–28.9.2005 J. Dellith: „Zur röntgenmikroanalytischen Werkstoffcharakterisierung mittels niederenergetischer M-Strahlung“ Kolloquium des IKW der TU Freiberg, Oktober 20–21, 2005 MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS J. Bierlich, T. Habisreuther, M. Zeisberger, D. Litzkendorf, S. Kracunovska, W. Gawalek: „Multi-Seeding von massiven YBCO Supraleitern“ SDYN-Treffen, 07.–08.07.2005, Jena, Deutschland J. Bierlich, T. Habisreuther, S. Kracunovska, W. Gawalek, E. Müller, F. Schirrmeister: “Modifizierte Oberflächenbekeimung von schmelztexturierten YBa2Cu3O7-x-Supraleitern” IKW – Hauskolloquium, 20.–21.10.2005, Freiberg, Deutschland J. Bierlich, T. Habisreuther, D. Litzkendorf, M. Zeisberger, S. Kracunovska, W. Gawalek: “Multi-seeding for single domain melt-textured YBCO” ISS 2005, 18th International Symposium on Superconductivity, October 24–26, 2005, Tsukuba, Japan J. Bierlich, T. Habisreuther, D. Litzkendorf, M. Zeisberger, S. Kracunovska, W. Gawalek: “Multi-seeding for single domain melt-textured YBCO” PASREG 2005, 5th International Workshop on Processing and Applications of Superconducting (RE)BCO Large Grain Materials, October 21–23, 2005, Tokyo, Japan Invited talks A. Izmalkov, M. Grajcar, E. Il’ichev, S. H. W. van der Ploeg, S. Linzen, Th. Wagner, U. Hübner, H.-G. Meyer, A. Yu. Smirnov, S. Uchaikin, M. H. S. Amin, Alec Maassen van den Brink, A. M. Zagoskin: “Experimental and theoretical investigation of multiqubit systems” International Workshop on Physics of Superconducting Phase Shift Devices, 2–5 April 2005, Ischia, Italy E. Il’ichev, M. Grajcar, A. Izmalkov, Th. Wagner, S. Linzen, T. May, U. Hübner, H. E. Hoenig, H.-G. Meyer, M. H. S. Amin, A. Maasen van den Brink, A. Smirnov, S. Uchaikin, A. Zagoskin: “Continuous Impedance Measurements of a Superconducting Flux Qubit” American Physical Society, Los Angeles, USA, March 21–25, 2005 E. Il’ichev, M. Grajcar, A. Izmalkov, Th. Wagner, S. Linzen, T. May, U. Hübner, H. E. Hoenig, H.-G. Meyer, A. Maasen van den Brink, A. Smirnov, S. Uchaikin, A. Zagoskin: “Impedance Measurement Technique for Investigation of Superconducting Qubits” Pishift conference, Ischia (Naples), Italy, 2–5 April 2005 E. Il’ichev: “Radio-Frequency Method for Investigation of Quantum Properties of Superconducting Structures” International Summer School and Conference on Arrays of Quantum Dots and Josephson Junctions Kiten, Bulgaria, 9th–24th June, 2005 E. Il’ichev, M. Grajcar, A. Izmalkov, Th. Wagner, S. Linzen, T. May, U. Hübner, H. E. Hoenig, H.-G. Meyer, A. Maasen van den Brink, A. Smirnov, S. Uchaikin, A. Zagoskin: “Radio-Frequency Method for Investigation of Quantum Properties of Superconducting Structures” International ULTRA-1D STREP Workshop Quantum Coherence and Decoherence at the Nanoscale (Corfu, Greece) 28 August–2 September 2005 E. Il’ichev: “Radio-Frequency Technique for Investigation of Quantum Properties of Superconducting Structures” The Mesoscopic Quantum Physics Conference (Aussois, France) 05–09 October 2005 A. Izmalkov, M. Grajcar, E. Il’ichev, Th. Wagner, U. Hübner, N. Oukhanski, T. May, H.-G. Meyer, A. Yu. Smirnov, A. Maassen van den Brink, M. H. S. Amin, A. M. Zagoskin, Ya. S. Greenberg: “Macroscopic quantum effects in a flux qubit” Seminar at Institute of Solid State Physics, 11 May 2005, Chernogolovka, Russia E. Il’ichev: “Radio-Frequency Technique for Investigation of Quantum Properties of Superconducting Structures” The 5th International Argonne Fall Workshop on the Nanohysics Argonne, USA, 13–18 November E. Il’ichev, M. Grajcar, A. Izmalkov, Th. Wagner, S. Linzen, T. May, H. E. Hoenig, H.-G. Meyer, D. Born, W. Krech, A. Smirnov, S. Uchaikin, A. Zagoskin: „Supraleitende Qubits auf dem Weg zum Quantenrechner“ Deutschen Physikalischen Gesellschaft (German Physical Society), Berlin, Germany, March 4–9, 2005 R. Mattheis: „Grundprinzipien von Sensoren auf der Basis des Magnetowiderstandseffektes und deren Anwendungsfelder in der Automobil- und Automatisierungstechnik sowie in der hochempfindlichen Magnetfeldsensorik“, Vortrag HdT Essen, Magnetische Erkennung von Position und Bewegung, Essen, 8. und 9.06. 2005 33 MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS R. Mattheis: „Multiturnsensor mit GMR“ Vortrag 8. Sympsoium „Magnetoresistive Sensoren Grundlagen-Herstellung-Anwendungen“, Wetzlar, 8. und 9.03.2005 M. Wendt: „Mikrostrukturcharakterisierung mittels Rasterelektronen- und Rasterkraft-Mikroskopie“ Kolloquium aus Anlass des 60. Geburtstages von Prof. Dr. Ludwig Josef Balk, Wuppertal, May 30, 2005 M. Wendt: „Qualitative Röntgenmikroanalyse mit Si(Li)Detektoren“ RÖNTEC – Kundenschulung, Bad Saarow, June 14–16, 2005 M. Wendt: „Zur Systematik der weichen Röntgenemissionsspektren“ PTB-Kolloquium, Berlin, September 22, 2005 W. Gawalek T. Habisreuther, M. Zeisberger, D. Litzkendorf: „Magnetic levitation with Bulk YBCO and MgB2 Superconductors” „8th International Symposium on Magnetic Suspension Technology“, Dresden, Germany, September 26–28, (2005), p.114 K. L. Kovalev, S. M.-A. Koneev, V. N. Poltavets, W. Gawalek: “Magnetically Levitated High-Speed Carriages on the Basis of Bulk Elements” “8th International Symposium on Magnetic Suspension Technology”, Dresden, Germany, September 26–28, (2005), p.51 T. Habisreuther: „VSM – Vibrating Sample Magnetometry – Einsatz im IPHT Jena“ Uni Potsdam, Germany, June 1, 2005 T. Habisreuther: “Processing, Characterisation and Application of Batch Processed and Multi-Seeded Single Domain Melt-Textured YBCO” PASREG 2005, 5th International Workshop on Processing and Applications of Superconducting (RE)BCO Large Grain Materials, October 21–23, 2005, Tokyo, Japan R. Müller: „Magnetit – Renaissance eines alten Magnetwerkstoffs“ 6th Colloq. of DFG-Priority Program „Colloidal magnetic fluids“, Benediktbeuern 25.–28.9.05 34 R. Müller: „Eigenschaften magnetischer Eisenoxidpartikel“ Arbeitsgruppenseminar „Grundlagen“, Klinik für Innere Medizin II, FSU Jena, 12.10.05 Th. Klupsch: “Prediction of macromolecular units and optimum crystallization conditions by static and dynamic light scattering” Crystallization Course CC 2005, October 10–12, 2005, Nove Hrady, Czech Republik Th. Klupsch: “Understanding the protein solubility: classical concepts and novel ideas” Crystallization Course CC 2005, October 10–12, 2005, Nove Hrady, Czech Republik Patents V. Schultze, W. Andrä, K. Peiselt: „Vorrichtung und Verfahren zur Lokalisierung eines Gerätes“ DE 10 2005 051 357.3 (25.10.2005) R. Müller, H. Steinmetz, W. Gawalek: „Verfahren zur Herstellung von nanokristallinen magnetischen Eisenoxidpulvern“ DE 10 2005 030 301.3 (05.07.2005) W. Andrä, M. E. Bellemann, H. Danan, S. Dutz, S. Liebisch, R. Schmieg: „Kapsel zum Freisetzen von in ihr befindlichen Wirkstoffen an definierten Orten in einem Körper“ PCT/DE 2005–001086 (15.6.2005) W. Andrä, R. Hergt, I. Hilger, W. A. Kaiser, D. Spitzer: „Vorrichtung zur zielgerichteten Erwärmung“ DE 10 2005 062 746.3 (23.12.2005) K.-U. Barholz, M. Diegel, R. Mattheis, G. Rieger, J. Hauch: „Stromsensor zur galvanisch getrennten Gleichstrommessung“ DE 10 2005 029 269.0 (23.06.2005) Membership Prof. Dr. H. E. Hoenig Beirat Institut für Mikroelektronik und Mechatronik Ilmenau Beirat Forschungszentrum für Medizintechnik und Biotechnologie e. V. Bad Langensalza Scientific advisor of the Materials Science Institutes CSIC (Spain) Auswahlgremium Forschungspreis des Thüringer Kultusministeriums Vorstandsvorsitzender im Verein Beutenberg Campus e. V. Vorstandsvorsitzender der SUPRACON AG Scientific board of WOLTE and CRYO MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS Dr. R. Mattheis Editorial Board IEEE Transactions on Magnetics Mitglied des FA 9.4 der ITG Mitglied des Wissenschaftlichen Beirats der Tagung: „Sensoren und Sensorsysteme 2006“ Freiburg/Breisgau PhD Thesis Prof. Dr. M. Wendt Mitwirkung im Organisationskomitee der EDOTagung Silvia Kracunovska: “The influence of preparation parameters on microstructure and properties of YBCO bulk superconductors” Technische Universität Kosice, Slowakische Republik, 20.09.2005 Prof. W. Gawalek Head of SCENET-2 Working Group “Rotating HTS Machines” International Steering Committee JAPMED´4: 4th Japanese-Mediterranean Workshop on Applied Electromagnetic Engineering for Magnetic, Superconducting and Nano Materials, Cairo, Egypt, September 17–20, (2005) Dr. T. Habisreuther Arbeitsgruppe K184 Supraleiter der DKE und TC90 WG10 Lectures Prof. H. E. Hoenig Vorlesung WS 04/05, Quantencomputing Vorlesung SS 2005, Quantencomputing Prof. M. Wendt Vorlesung “Einführung in die Analytische Elektronenmikroskopie” WS 2004/2005 sowie 2005/2006 an der FH Jena Dr. H.-G. Meyer Vorlesung SS 2005, Supraleiterelektronik Vorlesung WS 2005/2006, Supraleitende Quanteninterferometer (SQUID) und ihre Anwendungen Dr. H. Schneidewind 5 Vorlesungen in „Festkörperphysik für Werkstofftechniker“ von Prof. F. Schirrmeister Vorlesung an der FH Jena, WS 2005/2006 Dr. H. Schneidewind “Metallphysik” Vorlesung an der FH Jena im SS 2005 Andrei Izmalkov: “Macroscopic quantum effects in a flux qubit” 18.05.2005, Moscow Engineering Physics Institute Diploma Thesis André Krüger: „Entwurf, Aufbau und Inbetriebnahme einer mehrkanaligen, hochauflösenden 24-Bit AnalogDigital-Wandlerkarte für ein modulares Datenerfassungssystem“, 22.03.2005, Fachhochschule Jena. Michael Starkloff: „Entwicklung und Aufbau eines mikroprozessorgesteuerten Messsystems zur Gleichspannungskalibrierung von Fluke-Normalen mit dem Josephson-Primärnormal“, 22.03.2005, Fachhochschule Jena. Laboratory Exercises H. Köbe 18 Wochen, Praktikumssemester FH Jena Dominique Schmidt 18 Wochen, Praktikumssemester FH Jena Herr Oliver und Joachim Müller, Herr Jens Bartelt und Felix Oertel, zweiwöchentliches Seminarfach der Spezialschule Carl Zeiss, Jena Christopher Schmidt “Herstellung und magnetische Eigenschaften von Eisenoxidpartikeln durch Fällung FH Jena Events/Exhibitions Dr. T. Habisreuther „Sonder- und Verbundwerkstoffe“ Vorlesung an der FH Jena, WS2004/2005 Vorlesung an der FH Jena, WS2005/2006 Dr. T. Habisreuther „Festkörperphysik für Werkstofftechniker“ von Prof. F. Schirrmeister Vorlesung an der FH Jena, WS2004/2005 Vorlesung an der FH Jena, WS2005/2006 „Eiskalte Energie für Europa – Supraleiter und der Traum vom Schweben“ „International Superlife Exhibition“ Goethe-Galerie Jena, Jena, Germany, June 29– July 2, (2005) SCENET-2 Workshop “Superconducting Electric motors with HTS”, Jena, Germany, April 11–13, (2005) 35 MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS Physik-Ausstellung „Zeit, Licht, Zufall – Physik seit Einstein“ Highlights der Physik 2005, 13.–18.06.2005, Berlin, Deutschland Präsentation „Magnetschweben-Levitator“ Siemens Familien-Tag 2005, 02.07.2005, Nürnberg, Deutschland Präsentation „Supraleitung-Schwebendes Logo“ SOLVAY Familientag, 02.09.2005, Hannover, Deutschland Studioexperiment „Supraleitung-Levitation“ in der TV-Sendung Galileo Gesendet am 14.10.2005 bei ProSieben Awards EMAS young scientists award an Dipl.-Ing. (FH) Andy Scheffel New Equipment Präsentation „Supraleitung-Levitation“ Sternstunden. Lange Nacht der Wissenschaften Jena, 18.11.2005, Jena, Deutschland 36 Ion-beam-etching-equipment for structuring of high Tc-superconductors at low temperatures OPTIK / OPTICS 2. Optik / Optics Leitung/Head: Prof. Dr. H. Bartelt hartmut.bartelt@ipht-jena.de Optische Fasern Optical Fibers Leitung/Head: Dr. J. Kirchhof johannes.kirchhof@ipht-jena.de Mikrooptik Microoptics Leitung/Head: Dr. H.-R. Müller hans.rainer.mueller@ipht-jena.de Optische Mikrosysteme Optical Microsystems Leitung/Head: Prof. Dr. R. Willsch reinhardt.willsch@ipht-jena.de Mikrostrukturtechnik Micro Structuring Technology Dr. S. Schröter siegmund.schroeter@ipht-jena.de Mitarbeiter des Bereiches Optik 2005 / Staff of the Optics Division in 2005. 2.1 Übersicht Das zentrale Arbeitsgebiet des Forschungsbereichs betrifft „Optische Fasern und Faseranwendungen“. Die vom Kuratorium des IPHT im Jahr 2005 eingesetzte Strukturkommission hat die besondere wissenschaftliche und technologische Position des IPHT auf diesem Gebiet hervorgehoben und eine weitere Stärkung dieser Arbeitsfelder empfohlen. 2.1 Overview The main focus of the activities within the Optics division is on optical fibres and fibre applications. The structure commission, which was established for advising future focusing of activities within the IPHT, has emphasized the special scientific and technological competence of the IPHT in this field and has recommended a further strengthening of this research direction. 37 OPTIK / OPTICS Characterisation of high precision multicore fibre optic waveguide arrays: cross section of an array of 61 waveguides and light propagation patterns. Demonstrator of an optical add-drop-multiplexer (OADM) based on a photosensitive planar technology 38 Thermal elongation measurement of melt-textured YBCO in cryogenic temperature range down to 10 K using a fibre Bragg grating strain sensor array (sensors attached in the three principal axes of the anisotropic sample). OPTIK / OPTICS Ein wichtiges internationales Forum zur Diskussion von modernen Sensoranwendungen optischer Fasern war die 17. Optical Fibre Sensors Konferenz (OFS) in Brügge/Belgien im Mai 2005, an der das IPHT sowohl organisatorisch als auch inhaltlich maßgeblich mitwirkte (Prof. Reinhardt Willsch und Dr. Wolfgang Ecke als Conference Chairs). Das IPHT war mit fünf wissenschaftlichen Beiträgen einschließlich einem eingeladenen Vortrag (Prof. Hartmut Bartelt) und einem viel beachteten Ausstellungsstand vertreten, der unsere starke Stellung auf diesem Forschungsgebiet deutlich machte. Die internationale Rekordbeteiligung von ca. 500 Teilnehmern aus mehr als 40 Ländern an dieser seit 1983 stattfindenden Konferenz zeigte generell das wachsende Interesse an Anwendungen optischer Fasern in der Sensor- und Messtechnik. Dieser internationalen Entwicklung folgte auch die Ausgründung zu Fasergitter-Sensorkomponenten unter dem Namen FBGS Technologies GmbH aus dem IPHT gemeinsam mit einer belgischen Partnerfirma im Oktober 2005. Die technischen Grundlagen zu diesem Arbeitsfeld, nämlich die Möglichkeit der Erzeugung von Faser-Bragg-Gittern mit einem einzelnen Laserpuls während des Faserziehens, wurde dazu im vergangenen Jahr weiter ausgebaut. Die Herstellung von solchen Gittern mit bis zu 50% Reflexion (Typ I) demonstriert die weltweit führende Rolle des IPHT und seiner Ausgründung in dieser Technologie. Mit dem Firmenstandort im Technologie- und Innovationspark am Campus Beutenberg in Jena ist auch zukünftig die Basis für eine enge Zusammenarbeit mit dem IPHT gesichert. Anwendungsfelder der Arbeiten des IPHT betrafen im Sensorbereich im vergangenen Jahr vor allem temperaturbeständige faseroptische Bragg-Gitter-Sensoren für das Turbinen- und Triebwerksmonitoring, Fasergitter-Sensornetzwerke für die strukturintegrierte Zustandsüberwachung in der Bahntechnik und in Windenergieanlagen sowie opto-chemische Fasersensorsysteme für die in-situGewässeranalytik. Die Entwicklung neuartiger Fasern etwa unter Nutzung von Mikro- und Nanostrukturen, die Weiterentwicklung photonischer Kristallfasern und Arbeiten zu temperaturbeständigen Coatings bildeten dazu einen wichtigen technologischen Hintergrund. Die Arbeiten zu optischen Faserlasern finden zunehmendes Anwendungsinteresse und wurden insbesondere unter Aspekten speziell strukturierter und dotierter Faserkerne zur Optimierung der Stabilität und der Pumpeffizienz weitergeführt. Die Aktualität dieses Forschungsgebietes zeigte sich auch auf einem Workshop des OptoNet Clusters, „Neue Laserstrahlquellen“, der im Mai 2005 mit ca. 100 Teilnehmern am IPHT organisiert und veranstaltet wurde. Kompetenz zu strukturierten Wellenleitern konnte erfolgreich auch für Sensoranwendungen in speziellen planaren Strukturen genutzt werden. A major international forum in 2005 for the discussion of modern sensor applications of optical fibres was the 17th Optical Fibre Sensors Conference (OFS) in May 2005 in Bruges (Belgium) with major organizational and scientific involvement of the IPHT (Prof. Willsch as technical chair and Dr. Ecke as program chair). The IPHT took part in this conference with 5 presentations including an invited talk (Prof. Hartmut Bartelt) and a well-recognized exhibition booth indicating its strong position in this research field. The record international participation (approx. 500 participants from 40 countries) in this conference of a series started in 1983 underlines the growing interest in such modern applications of optical fibres. Following such demands for applications, the IPHT became involved (together with a Belgian partner) in the founding of a new company for the development and application of draw tower fibre gratings in October 2005 (FBGS Technologies). The technological basis of inscribing fibre Bragg gratings during the fibre drawing process with a single laser pulse has been further developed in 2005. The making of such gratings (type I) with a reflection efficiency of up to 50% has demonstrated the international leading competence in this technology of the IPHT and of the newly founded company. The headquarters of the FBGS company being placed at the Beutenberg campus in Jena ensures future close cooperation. Investigations into sensor applications of optical fibres covered especially temperature-stable fibre Bragg grating sensor systems for turbine and engine monitoring, fibre grating sensor networks for integrated diagnosis in train systems and in wind energy converters, and opto-chemical sensors for in-situ water analysis. The development of new types of fibres with micro- and nanostructures, developments for photonic crystal fibres and activities for coatings with high temperature stability were important cornerstones for these activities. The applications of fibre lasers are gaining growing interest and have been pursued with regard to specially structured and doped fibre cores, e.g. for optimization of pumping efficiency and stability. The general interest in this research field became obvious also by strong participation (15 scientific presentations, 100 participants) in a workshop on new laser sources held at the IPHT in cooperation with the OptoNet cluster. The competence in structured waveguides was additionally exploited for sensor applications in specific planar waveguides. The results presented in this report indicate that optical fibres indeed offer attractive research subjects for the future and also promise fruitful applications jointly with the complementary research field of photonic instrumentation within the IPHT. 39 OPTIK / OPTICS Die nachfolgend präsentierten Ergebnisse in diesem Jahresbericht machen die hohe Attraktivität der Forschung zu optischen Fasern und Faseranwendungen deutlich und bieten in Kombination mit dem komplementären Arbeitsgebiet zur photonischen Instrumentierung im IPHT breite zukünftige Anwendungsmöglichkeiten. 2.2. Scientific Results 2.2.1 Flame hydrolysis technique (FHD) for the preparation of advanced optical materials (C. Aichele, St. Grimm, M. Köhler, K. Schuster) The flame hydrolysis technique allows the production of highest quality silica. This material is primarily used for planar optical waveguide devices and components or for the deposition of substrate tubes by OVD (Outside Vapor Deposition). To utilize the potential of this technology we are engaged in new applications. The recent concentration of microlithography on an excitation wavelength of 193 nm requires an improvement of the optical materials and devices used. For high power density and excellent replication quality, materials are necessary which provide special, very well-defined properties in terms of optical quality as well as type and distribution of the dopant hydrogen. The flame hydrolysis technique enables the preparation of a high-quality quartz glass material combined with the implementation of different dopant distributions in a wide range. 40 Fig. 2.1: FHD-configuration. A further miniaturization of the structure at the same excitation wavelength can be achieved by what is known as immersion lithography. Aqueous fluids (immersions) with a still higher refractive index than standard materials and good optical transparency are particularly suitable for these processes. By flame hydrolysis it is possible to prepare highly pure, oxidic particles with a main size of about 5–10 nm and a narrow particle size distribution. These oxidic materials can be used as additives to water to increase its refractive index for application as an immersion medium. Figure 2.1 shows the burner configuration used for the FHD technique. 2.2.2 Materials for fibre lasers: Preparation and properties (S. Unger, A. Schwuchow, S. Grimm, V. Reichel, J. Kirchhof) Recently, the performance of rare earth doped high-power silica fibre lasers has been dramatically increased with output powers beyond 1 kW, high efficiency and excellent beam quality. This progress is due to new design concepts such as non-symmetrical double clads and large mode area core structures, but also by careful tailoring of the material properties. Extreme power load and complicated fibre structures make high demands on preparation technology and materials. However, up to now still little is known about the influence of the material and the preparation technology on the laser efficiency. Here, the absorption and emission properties of silica based ytterbium doped preforms, made by Modified Chemical Vapor Deposition (MCVD) and solution doping, and of the drawn fibres were investigated in dependence on the atmosphere during the preform collapsing. The preparation was carried out under oxidizing and reducing conditions (helium/carbon monoxide/hydrogen). The absorption measurements on preforms and fibres with nominally identical compositions have shown the following results: – All Yb doped preform samples show the typical Yb3+ absorption in the wavelength region between 800 and 1100 nm, and the absorption coefficient is not remarkably changed by modifications during the preparation process. OPTIK / OPTICS Fig. 2.2: Preform absorption spectra in the UV/VIS region. – However, changes are observed in the UV/VIS region. With an increasingly reducing effect of the collapsing atmosphere (He < CO < H2, see Fig. 2.2), the Yb related UV edge shifts partially towards longer wavelengths, and an additional band system between 300 and 400 nm builds up, probably caused by formation of Yb2+ ions. The tail of these absorptions extends into the VIS region and is responsible for the increasingly yellow tint of the preform cores. – Simultaneously the fibre background loss in the NIR region is remarkably increased as a tail of the UV/VIS bands. The reducing treatment also influences the laser properties. With increasingly reduced state, the Yb fluorescence lifetimes around 1000 nm decrease, and a Yb related fluorescence around 550 nm develops in consequence of the atomic defect structures formed. Furthermore, the laser efficiency is drastically impaired. As laser experiments carried out with three fibre samples (type a, c and d) have shown, the reducing treatment leads to a surprisingly strong decrease in laser efficiency from 61% to 12%. These basic investigations have shown that a reducing treatment must be strictly avoided in the preparation of high efficiency laser fibres. 2.2.3 With stress applying parts (SAPs) in the fibre cladding (the so-called PANDA structure), a high birefringence can be obtained also in active fibre cores. Thereby, the linear polarization of launched or actively generated light can be maintained over the fibre lengths. Such fibres are prepared by the following steps: – Fabrication of the rare earth doped preform made by MCVD and solution doping, and drilling of two holes parallel to the rare earth doped core – Preparation of the boron doped silica preform made by MCVD – Isolating the boron doped core by etching the undoped silica with hydrofluoric acid – Inserting the boron rods (diameter: 4…5 mm) into the active preform – Drawing of the complete preform into a fibre with silicone rubber To increase the birefringence, the drawing conditions (drawing temperature and velocity), geometrical parameters (diameter and distances of the SAPs from the active core) and boron concentration of the SAPs were optimized. The investigations have shown that boron doped cores at concentrations above 14 mol% B2O3 and diameter of approx. 5 mm have an elliptic crosssection and cannot be used for preform preparation. In Fig. 2.3, a cross-section of a Yb doped polarization maintaining laser fibre is shown. The measured birefringence amounts to 2.5 · 10–4, corresponding to a beatlength of 4.2 mm at the operation wavelength (1060 nm). Surprisingly, the birefringence can be further enhanced by annealing of the fibre at a temperature of 1100 °C in a furnace of a value of 3.5 · 10–4 (beatlength: 3.2 mm). The pump absorption in double-clad laser fibres is a very important point for the laser efficiency. It is generally poor with a circular cladding, but it can be greatly improved with different noncircular shapes. The incorporation of the SAPs leads also to improved pump absorption in spite of the circular fibre surface. Boron doping for polarization maintaining laser fibres (S. Unger, S. Jetschke, J. Kobelke, K. Schuster, J. Kirchhof) Recently, boron doped silica has met with increasing interest as a special material for optical devices such as polarization maintaining laser and amplifier fibres and photosensitive fibres for Bragg grating inscription. For many applications of fibre lasers or amplifiers, a stable linear-polarized output is required. Fig. 2.3: Cross-section of a Yb doped polarization maintaining laser fibre (PANDA structure). 41 OPTIK / OPTICS 2.2.4 Photonic crystal fibres for innovative applications and devices (J. Kobelke, K. Schuster, J. Kirchhof, A. Schwuchow, K. Mörl, K. Oh) Photonic crystal fibres (PCFs) are commonly interesting as transmission media over long distances for their specific light propagation behaviour. However, the promising application potential of photonic crystal fibres also takes effect in various novel devices, e.g. PCFs with defect super lattice structure and PCF-based NxN fibre couplers. Such PCF couplers have a power stability advantage, because they can be manufactured without any dopants in the basic silica. Moreover, the transmission behaviour is mostly effected by air hole confinement light propagation, so a high numerical aperture is possible. Typical power limitations of polymer-clad fibre can be avoided by the air-clad design. We prepared special large mode area PCFs by variation of the geometric cross section design parameters. They were changed by introduction of a flexible defect in the lattice structure. The new defect design consists of the central air hole, surrounded by a holey germanium-doped silica ring. It provides a large-area annulus-mode light propagation and a chromatic dispersion with low slope ~0.05 ps/km nm2 at 1550 nm. 42 Fig. 2.5: Scheme of the 4 × 4 coupler, micrograph of the used air-clad index-guided PCF and lateral segments of the 2 × 2 coupler. 2.2.5 Loss measurements at silica fibres for cladding pumped applications (S. Jetschke, A. Schwuchow) Fig. 2.4: Calculated dispersion curves of fundamental modes of different dcore/Λcore of the super lattice PCF. Inset: fibre micrograph. Silica fibres with rare-earth-doped cores for laser or amplifier applications are often claddingpumped to benefit from commercial high-power pump diodes. Thereby, losses of pump power may occur in the cladding material itself or in the adjacent coating having a refractive index lower than silica. We investigated this attenuation in silica fibres of diameter 125 µm (without core), drawn from F300 rods and coated with different materials (see Tab. 2.1). The loss measurements were done by two different, but well-known methods: 1. With the cut-back method, the loss spectra are calculated from transmission measurements in the 300–1700 nm wavelength range (Halogen lamp, NA 0.25) in a long (>60 m) and a shortened fibre (10 m). Although the fibre NA is not fully illuminated, the characteristic absorption bands of the coating materials are clearly seen (Fig. 2.6). PCFs with air-clad design are interesting components for optical devices. 2 ×2 and 4 ×4 multimode air-clad holey fibre couplers were prepared at the Gwangju Institute of Science and Technology (GIST), South Korea, based on IPHT-manufactured PCFs. The couplers were fabricated by a novel fusion tapering technology, starting from an air-clad fibre with a core diameter of about 130 µm and a very high air fraction of the holey clad ring. The couplers thus fabricated show a high port-to-port coupling uniformity over a wide spectral range from 800 nm to 1650 nm. Due to the absence of power-limiting low refractive index polymer materials to achieve the high numerical aperture, the device shows a strong potential for future high-power applications. Fig. 2.6: Loss spectra of coated silica fibres, measured by the cut-back method. OPTIK / OPTICS Coating material NA (coated silica fibre) Layer thickness [µm] Cut-back method: Loss [dB/km] OTDR: Loss [dB/km] 800 nm 1310 nm 1550 nm 850 nm 1310 nm 1550 nm Silicone RT601 0.358 Ormogel HG-Li-V-T 0.410 1D3-63 (Acrylate) 0.404 Luv PC 373 (Acrylate) 0.447–0.127 Teflon AF 0.606 50 5 50 50 5–10 20 25 34 9 9 25 51 59 17 7 250 150 180 60 8 13 23 (50) 5 4 29 37 75 16 5 n.m. (70) n.m. 45 6 Tab. 2.1: Loss in silica fibres with different coating materials, measured by the cut-back method and by OTDR (n.m. = not measurable, because of limited dynamic range of OTDR; cut-back method works without limitation of measurable loss). 2 With the Optical Time Domain Analysis (OTDR), the loss can be evaluated with a spatial resolution of some meters, but only at selected wavelengths. Fibre lengths >60 m can be analysed; the measurements should be executed from both fibre ends. One of the available devices applies a wavelength of 850nm and illuminates the fibre under test with NA 0.20 (spot size 50 µm); another device for 1310 nm and 1550 nm implements NA 0.10 (spot size 10 µm). Both methods supplement each other and are suitable especially for the comparison of losses in fibres with different coatings, but equal fibre diameters. The results obtained with both methods are compared in Tab. 2.1 (the wavelengths are determined by the OTDR devices) and indicate a sufficient consistency. The low loss and the high NA achieved with the Teflon AF coating, as well as the absence of additional absorption bands (apart from OH absorption) are particularly advantageous for cladding pumping. But the Teflon layer that can be implemented is too thin for many applications. The low-index Acrylate Luv 370–444, but also Silicone RT601 provide a moderate pump loss and an adequate layer thickness. However, characteristic absorption bands may be detrimental, e.g. the Silicone absorption around the common pump wavelength of 915 nm. Besides the effects on fibre loss, the coating materials differ in their mechanical and thermal properties, which should also be taken into account in high pump power applications. 2.2.6 out usually by repeated packaging and stretching of rare-earth-doped elements made by the well established MCVD technique, soaking in rareearth solutions and subsequent drawing of the microstructured fibre by means of the “stack and draw“ technique. Fig. 2.7 shows the central part of a PCF with 7 × 7 active Yb-doped filaments. Fig. 2.7: Central part of a PCF with 7 × 7 active doped filaments . A matter of particular interest is the mode behaviour of such structures, especially the optical coupling of the single elements (formation of a “super-mode”). Fig. 2.8 shows the changing mode picture at the end of a short piece of the fibre shown in Fig. 2.7, achieved by launching Studies of the mode behaviour of multi-core fibre structures (K. Mörl, J. Kobelke, K. Schuster) There are various reasons to build-up the active cores of microstructured fibres from single doped filaments. One of them is to achieve a mode field as large as possible. The preparation is carried Fig. 2.8: Mode structure at the end of a short piece of fibre shown in Fig. 2.7, obtained by launching different wavelengths in the central part. 43 OPTIK / OPTICS light in the central part of fibre core by means of a fibre with 7 µm mode field diameter, and scanning the wavelength. We can see the beating of modes with a period of about 7 µm. From this and from the fibre length it is possible to compute the mode coupling length. Much more interesting it is to study the mode behaviour of such multi-filament cores in the active laser regime. Fig. 2.9 shows the large mode field of the fundamental laser mode (supermode), and Fig. 2.10 shows the mode profile of this mode at the same scale. Fig. 2.9: Fundamental laser mode (super –mode) of the fibre shown in Fig. 2.7. Fig. 2.10: Profile of the mode field of Fig. 2.9 in comparison to the fibre geometry. 2.2.7 44 However, because of the necessary weak coupling between the waveguides, the tolerances of the optical properties and the relative positions of the waveguides are quite challenging. With respect to the state of the art, the precision of the geometrical and material parameters should be improved by a factor of 10. To achieve this requirement we developed a special technology on the basis of high-quality optical materials, precision machining and a careful control of all preparation steps. A first sample prepared in this way is shown in Fig. 2.11. The array consists of 61 weakly coupled single-mode waveguides with a hexagonal symmetry. The array is surrounded by a microstructured buffer zone and a jacketing tube. The precision of the array geometry fulfils the requirements. Fig. 2.11: Precision fibre array (designed for λ = 1.5 µm; outer diameter 585 µm); photo-micrograph with transmitted light (a) and reflected light DIC (b) of a cleaved HF-etched fibre end. The distribution of light launched into a single waveguide follows the propagation characteristic in a regular array. A thorough analysis of this array sample shows that almost all (but not really all) waveguides fulfil the requirements. Fibre-optic waveguide arrays as model systems of discrete optics (U. Röpke, S. Unger, K. Schuster, J. Kobelke, H. Bartelt) The field of optics in discrete systems is evolving from theoretical concepts into experimental verification and discussion of its application potential. In the framework of a DFG research group working at this topic, we developed fibre-optic waveguide arrays suitable for optical experiments on nonlinear dynamics in two-dimensional discrete systems. The technology of microstructured fibres, which succeeds in the preparation of photonic crystal fibres, also provides a basis for waveguide arrays. Fig. 2.12: Propagation of light (λ = 1550 nm) in the array launched into a waveguide at a boundary corner (L: propagation length). In conclusion we have shown that fibre-optic waveguide arrays can be prepared that are suited as model systems in experiments of nonlinear discrete optics. OPTIK / OPTICS 2.2.8 High-reflectivity draw-tower fibre Bragg gratings (FBG) at 1550 nm wavelength (M. Rothhardt, Ch. Chojetzki) For making Bragg gratings with excellent mechanical strength during the drawing tower process of the fibre, there is a limitation in using single pulses for the inscription of each grating. To achieve high reflectivity Bragg gratings during the dynamic inscription of FBG within the fibre drawing process (draw tower gratings), three important components are under consideration: first of all, the laser pulse properties; second, the UV photosensitivity of the fibre core, and third, the optical configuration and its alignment. These three factors have been developed and optimized during the last years; the result is the achievement of single pulse gratings with a reflectivity maximum of R = 51% at 1550 nm. Useful values for fibre transmission losses of <10 B/km at 1550 nm can be achieved. With this kind of fibre and Bragg gratings, the requirements can be fulfilled for a lot of applications. Because of the achieved good laser coherence properties, we are able to use an interferometric set-up (the well known Talbot interferometer) for the generation of the interference pattern needed to write Bragg gratings into the fibre core. Further we use cylindrical lenses with focal lengths between 200 and 500 mm in order to increase the energy density in the interference pattern and thus maximize the grating’s index modulation. Another fundamental demand for dynamically generated fibre Bragg gratings during the fibre drawing process is the stable position of the fibre in the centre of the beam intensity maximum of the excimer laser beam. We use an MCVD preform with an outer diameter of about 29 mm. The outcome of this is a small amplitude of the fibre oscillation of < ±100 µm during the operation time of approx 1 h. An online monitoring system for the controlling of the alignment of the fibre relative to the laser beam allows in-line positioning of the cylindrical lens that focuses the laser beam onto the fibre. Fig. 2.13: Spectral shape of a single pulse grating made at the drawing tower with a reflectivity of 51%. We use a “Compex 150” KrF excimer laser from Lambda Physics. The laser consists of an oscillator with a wavelength selection unit using 3 prisms for beam shaping and a grating for spectral narrowing. This type of laser delivers very high temporal beam coherence as well as a high degree of spatial coherence. By variation of the high voltage of oscillator and amplifier we found a regime with sufficiently high pulse energy and simultaneously very good pulse-to-pulse repeatability at about 26 kV. It is essential to have a high single laser pulse photosensitivity of the fibre core. The high photosensitivity is caused by doping the fibre core with a high content of Germanium together with special collapsing conditions in the MCVD process during preform manufacturing. Ge co doping increases the refractive index of the core. This way the fibre core diameter has to be slightly smaller compared to the standard single-mode fibre in order to achieve single-mode behaviour of the fibre. This results in additional coupling losses for splices or fibre coupling with standard fibres. Fig. 2.14: Reflection spectrum of a typical FBG array example. In summary, we have shown the implementation of single pulse type I fibre Bragg gratings in arrays up to some 100 single gratings in one fibre with different wavelengths around 1550 nm with more than 35% reflectivity. These FBG arrays reach mechanical strengths similar to those of standard telecom fibres and are highly useful for application as optical strain gauges. 2.2.9 Travelling wave approach to directmodulated fibre Bragg-grating stabilized external cavity semiconductor lasers (M. Becker, M. Rothhardt) Fibre Bragg-grating stabilized semiconductor lasers (FGLs) are hybrid distributed Bragg reflector lasers with double resonator configuration, 45 OPTIK / OPTICS comprising a semiconductor laser and an extended external cavity. On the one hand, the FGL concept for Non-Return-to-Zero (NRZ) data transmission is considered as a potential low-cost data transmitter device; on the other hand, the laser output power and emission wavelength is shown to be sensitive to packaging, laser temperature and device current (see IPHT annual report 2001). FGL understanding and optimization require simulation tools, which have been developed at the IPHT. The numerical method bases on the travelling wave model for DFB (distributed feedback) semiconductor lasers. As the lasing condition of the external cavity laser depends on its own history, the applied model splits the laser into individual sections, each with its own treatment of rate equations, (Bragg) reflections and losses. The simulation tools give access to the complex output power behaviour, mode jumps and eye. Additionally it is now possible to design special laser architectures like mode-hop-free FGLs with active wavelength stabilization and wavelengthswitchable FGLs, which are based on the interaction between the external cavity with superimposed Bragg gratings and the internal cavity, which comprises the semiconductor optical amplifier section. 2.2.10 Implementation of an OADM with a data rate of 10 Gbit/s as technology demonstrator in the PLATON project (Planar Technology for Optical Networks) (M. Rothhardt, C. Aichele, M. Becker, U. Hübner) The EU-funded PLATON Project involves collaboration and permanent feedback with a variety of European research partners: Université des Sciences et Technologies de Lille (France), Université Paris Sud (France), Ecole Polytechnique Fédérale de Lausanne (Switzerland), Technische Universität Hamburg Harburg (Germany), Instituto de Engenharia de Sistemas e Computadores do Porto (Portugal), and two industrial partners, Lucent Technologies GmbH (Nürnberg, Germany) and Highwave Optical Technologies (France). The objective of the PLATON project was to study, develop and assess photosensitive planar technology through key pilot devices. The main subject of interest is demonstrating the feasibility of the technology for making components like channel waveguides, multimode interferometers, Mach-Zehnder structures and Bragg gratings. The work aims at a reconfigurable optical adddrop multiplexer (OADM) which will be the final demonstrator. Objectives of the IPHT were particularly: (i) Accomplishing an optimized process for optical layer deposition (ii) Structuring the optical waveguides of the key pilot components (OADM) (iii) Realizing the Bragg gratings inside the optical waveguides (iv) UV trimming of the MZI structures (Mach Zehnder Interferometer) of the OADM’s (v) Packaging and fibre coupling of the optical chips. Fig. 2.16: OADM scheme with MZI structure, sections for UV trimming, input and output ports and Bragg grating regions. Fig. 2.15: Simulated eye diagrams of the virtual fibre-grating-laser at 2.5 Gbit/s. Shown are the eye diagrams with the emission wavelength at the Bragg wavelength (top) and at the long-wavelength slope close to a mode-hop (bottom). 46 The main results are: (i) Optical layer deposition The well-mastered technology at the IPHT for optical silica layer deposition, FHD (Flame Hydrolysis Deposition) is applied for this project. The core layer is germanium-doped. Our parameters achieved are: Core layer thickness of 4.5 µm/5.2 µm and a refractive index of n[core] = 1.469. The refractive _ ± 1 * 10–4 and the thickindex tolerance is δn < _ ± 0.1 µm. ness tolerances are δd < OPTIK / OPTICS a b Fig. 2.17: a. Scheme of cross sections of etched waveguides b. Deposition and sintering of a cladding layer. (iv) UV trimming The actual trimming process applies a tuneable laser source, an EDFA and an optical power-versus-time recorder. The number of trimming sections is four for symmetry reasons. The cladding layer is boron co-doped, resulting in a refractive index of n[clad] = 1,454. A level of nearly no stress-induced birefringence was achieved. The resulting core-cladding refractive index difference is as specified, with ∆n ~1.5 * 10–2. (ii) Structuring of the optical waveguides The techniques used are photolithography and reactive ion etching (RIE), which allow exact definition of planar waveguide structures. A square cross section of the waveguides was achieved. Fig. 2.18: Photomicrograph of the optical near field of the waveguide samples obtained. (iii) Bragg grating inscription process For Bragg grating inscription, a two step UVprocess was applied. It starts with imprinting the grating’s index modulation and continues with the correction of the average index modulation envelope. This final apodisation correction is done by exposing the grating to the inverse grating envelope intensity profile. The grating inscription setup at the IPHT uses the holographic Talbot interferometer inscription technique with a frequency-doubled argon-ion laser operating cw at 244 nm. The laser power at the output was 244 mW at 244 nm. Fig. 2.19: Grating transmission spectra after index modulation inscription before (α) and after (β) adaptation of the average refractive index profile. Fig. 2.20: Set-up scheme for UV trimming of the MMI structure of the OADM. The UV trimming procedure was performed two times: first time with hydrogen- loaded sample and second with presensitized trimming sections. The resulting OADM was tested at LUCENT Technologies in Nuremberg with a bit stream of 10 Gbit/s. The functionality of the OADM was shown. 2.2.11 Material processing with DUV/VUV laser radiation (S. Brückner) Because of their short wavelengths and their high quantum energies, the ArF laser (193 nm) and the F2 laser (157 nm) are excellent laser tools for the precise and efficient micro structuring of high band gap materials, like fused silica or PTFE (Teflon). The measurement setups for material processing in the DUV/VUV spectral range have been continually improved in recent years. With both laser systems it is possible now, by the use of high-resolution mechanical components, to produce complex microstructures with lateral and depth resolutions in the sub-µm range. Different special tasks were successfully processed with both measurement setups by maskbased structuring. By means of the ArF laser, an array of 12 microholes with diameters smaller than 50 µm was drilled in a silica-based Photonic Crystal Fibre (PCF). For the implementation of a chemical sensor system it was necessary to drill holes through the fibre cladding exactly up to the fibre core. The drilling depth is determined by the number of laser pulses and the fluence. With an energy dose of 750 J/cm2 it was possible to drill the hole just up to the fibre core, as shown in figure 2.21. 47 OPTIK / OPTICS Fig. 2.21: Micrographs of the side view (left) and the fractured surface (right) of a Photonic Crystal Fibre (PCF) with a drilled hole (produced with 193 nm). Additionally to a variety of experiments to F2 laser material processing of glass, fused silica and metallic layers, the micro structuring of PTFE should be mentioned. By the use of specially designed CaF2 lenses and an improved experimental setup, new results at sub-µm structuring were achieved. Different gratings with sizes of 1 mm2, line widths up to 1 µm and a depth of 500 nm were produced with fluences from 0.3 to 1.5 mJ/cm2. Investigations of the ablation behaviour of PTFE in a nitrogen atmosphere show an efficient ablation process with ablation rates of 40 nm/pulse at a fluence of 300 mJ/cm2. The assembling of a new vacuum chamber system permits material processing with 157 nm in the high-vacuum range. In further experiments, a comparison of material processing in vacuum and in a dry nitrogen atmosphere will be carried out to determine the ablation behaviour and the deposition of debris particles on the grating surface. 2.2.12 High-speed optical fibre grating sensor system (W. Ecke) 48 Fibre Bragg grating (FBG) sensor systems find application in a steadily increasing number of fields, including fast strain vibrations in electrical machines, drive units or tools, e.g., train current collectors, large-scale generators, wind turbines or spot-welding grippers. These applications require fast measuring and cost-effective signal processing equipment. For this purpose, our concept of an FBG sensor system-based on broadband illumination and a compact spectrometer operating at 800 nm wavelength (Fig. 2.22) has been optimized to achieve a digital signal processing data rate of up to 1800 measurements per second, with exactly simultaneous processing for all the 16 sensors in the fibre network. The development of new optical mode-equalizing components now decreases the influence of disturbances on the fibre transmission lines to well below the detection limits of Bragg wavelength excursions (standard deviation down to 0.3 pm). Repeatability and accuracy of the measured strain signals have been improved to less than 0.5 µε and 5 µε, respectively. Although operating at a data rate 500 times higher than our previous standard design, the sensor system is very compact (220 × 140 × 60 mm3, Fig. 2.23) and robust, operates at temperatures between –40 and +60 °C, and is fully suitable for use in industrial applications in adverse environments. Our industrial partner for sensor technologies, Jenoptik LOS GmbH, is now commercializing this new high-speed sensor system in addition to the precursor “StrainaTemp”, which is dedicated to performing slower temperature and strain measurements. Highly topical application fields of fast fibre optic strain measurements are, e.g., the quality monitoring of spot welding (cooperation with University of Applied Sciences Jena), defect monitoring of train overhead contact lines (cooperation in two European R&D projects), and load monitoring of wind turbine blades (cooperation with Enercon GmbH and Jenoptik AG). Fig. 2.22: Schematic of the optical fiber grating sensor system. Fig. 2.23: View of the high-speed sensor system (1800 meas./s for 16 strain/vibration sensors; Ethernet data output at the rear). OPTIK / OPTICS 2.2.13 Monitoring of inhomogeneous flow distributions using fibre-optic Bragg grating temperature sensor arrays (I. Latka, W. Ecke) In many industrial facilities like chemical reactors, thermodynamic engines, pipes and others, complex flow distributions occur. Knowledge of the gas flow distributions may help to achieve an efficient system performance. In our approach, fibre Bragg grating (FBG) sensors have been used for measuring the temperature of a heated element, in our case a steel capillary, which is cooled according to the surrounding mass flow. Because of the multiplexing capability of FBG sensors, one can measure the temperature distribution, i.e., the spatial distribution of the gas mass flow along the sensor array. The length of the heated and sensor-equipped element can be easily adapted to the cross section of the gas flow, from <10 cm up to several m. The number and distances of FBG sensors distributed over this length defines the spatial resolution and is basically limited by the signal processing unit used for read-out. According to FBG sensor lengths <5 mm, spatial resolutions of gas flow measurements of less than 1 cm should be achieved. The metal capillary was heated to temperatures of 150 … 300 °C at zero gas flow, resulting in gas flow measurement ranges of air at normal pressure between about 0.1 m/s and 10 m/s. The gas flow cools locally the capillary and the corresponding FBG sensor in the array, depending on its local inhomogeneity (see Fig. 2.24). The flow sensor has a strongly non-linear characteristic: sensitivity is highest at low gas velocities, and it is tending to zero at the upper velocity limit (see Fig. 2.25), the measuring signal DT is the temperature increase from the unheated to the heated state of the sensors. The response time of the sensor, which amounts to a few seconds, is depending on the actual sensor design. A first field test has been performed while monitoring the closed cycle cooling system of a 206MVA generator of Siemens AG. Probes, each Fig. 2.24: Flow velocity vs. position measured at a probe of 7 FBG sensors exposed to an inhomogeneous gas flow. Fig. 2.25: Sensor characteristic over flow velocity measuring range of 0.1…10 m/s. with 7 FBG sensors, have been used to characterise local flow distributions in areas where other sensor types were not suitable because of limited space. Other application fields are gas turbines, e.g., the measurement of the total compressor inlet mass flow, cooling flow, and exhaust flow. 2.2.14 UV-spectrophotometer for in situ measurement of nitrate tested in the North Sea (H. Lehmann, G. Schwotzer) Due to worldwide rising population and the intensification of agriculture, the load of natural water with nutrients, especially with nitrate ions, has been increased dramatically during the last decades. It must be expected that this may have serious consequences not only for the life in freshwater, but for the whole ecosystem in the sea and in the oceans. Therefore, the measurement of nitrate ions in seawater is an important part of many oceanographic investigations. It is aimed to perform most of these investigations by automatically working stations, drifting autonomous in the ocean or dragged by ships. These stations require fast responding, low power consuming and reliable sensors for the nutrient analysis. Based on a spectrophotometric nitrate sensor, developed at IPHT to measure nitrate in fresh water within the typical concentration range of rivers and drinking water storage reservoirs (0.1 mg/l NO3-N to 5 mg/l NO3-N), a miniaturized sensor for nitrate in seawater was developed. The sensor consists of two fiber coupled microoptical flow cells of different lengths and is based on the measurement of the nitrate absorption in the UV range near 200 nm. By using a sophisticated mathematical treatment of the obtained spectra, the nitrate absorption band can be separated from the absorption of other ions, occurring in salt water in the same spectral region. Hence, a detection range of 50–3000 µg/l NitrateN in seawater could be achieved. 49 OPTIK / OPTICS After long-term laboratory tests of the sensor system with artificial and natural seawater, field tests of the sensor system were performed by the GKSS-Research Centre/Institute for Coastal Research, Geesthacht on board the ferry ship „Duchess of Scandinavia“ during a trip between Cuxhaven (D) and Harwich (GB) [Fig. 2.26]. The measured nitrate profile, shown in Fig. 2.27, reflects the nitrate load in the seawater caused by the rivers Elbe, Weser and Schelde as well as the nitrate pollution from the North Frisian Islands and the big harbour cities of the Netherlands and fits well to measurements obtained by sampling nutrient analysers on the same ferry route. Fig. 2.28: Comparison between water samples measured by sensor and by autoanalyzer. 2.2.15 Novel optical dew point sensor (T. Wieduwilt, G. Schwotzer) Fig. 2.26: Ferry route from Harwich to Cuxhaven. Fig. 2.27: Nitrate content profile in the North Sea, measured during the ferry trip in Fig. 2.26. 50 Further investigations mainly directed to the improvement of the long-term stability of the sensor were performed during a 2-week North Sea round trip of the German research vessel “Gauss”. On several stations the nitrate concentration was measured by the sensor and compared with the results of a commercial nutrient autoanalyser [Fig. 2.28]. The dew or frost point is a measure of the water content of any gas. Commercial optical dew point hygrometers are based on the “chilled mirror” principle. The devices consist of polished stainless steel or platinum mirrors attached to thermoelectric coolers (Peltier devices). The mirrors are illuminated (e.g. with LED), and the reflected light is received by photodiodes. The gas stream whose humidity is to measure is directed over the mirror surface. When the mirror temperature falls below the dew or frost point of the gas sample water condenses or forms ice crystals onto the mirror surface. The reflected light received by the photodiode is abruptly reduced due to scattering. The photodiode is tied into a servo loop which controls the current to the Peltier cooler. This enables the mirror to be maintained at an equilibrium temperature where the rates of condensation and evaporation of water molecules are equal and therefore, a constant mass of water is maintained on the mirror. The resulting temperature of the mirror is then fundamentally, by definition, equal the dew point temperature. A platinum resistance thermometer (PRT) embedded beneath the mirror surface measures this temperature. An inconvenience of chilled mirror hygrometers is the falsification of the measuring by contaminations on the mirror surface. Contaminations (e.g. organic particle) affect the light reflection characteristics and cleaning procedures or compensation methods are necessary. The electronic schemes used for contamination compensation are often sophisticated and expensive. Other problems are the limited miniaturization and the unsuitable manufacturing technology for mass production. In cooperation with BARTEC GmbH a novel optical dew point sensor has been developed to overcome these disadvantages. OPTIK / OPTICS The operation principle is based on frustrated total internal light reflection on the glass-air interface in the presence of dew drops or ice crystals (patented by Bartec). The optical principle is shown in Fig. 2.29. Essential features of the new dew point hygrometer are the application of a transparent light guiding glass slide and the reverse illumination of the glass-gas interface through glass. To precise measure the dew point temperature, a platinum resistance thermometer with contact structures has been deposited on the glass surface (see Fig. 2.30). The platinum structure is arranged in the thermoelectric cooled condensation area. For passivation, the measuring structure is coated by a thin silicon carbide overlay to protect the electrical resistance structure. Fig. 2.31 shows a microscopic photo of condensed water droplets on the sensor surface. With the presented sensor, an accuracy of ± 0.5 K for the dew point temperature in the range of –15 to +20 °C DP has been measured. 2.3 Appendix Partners Fig. 2.29: Scheme of the sensor principle. Without condensed water on the glass surface, the light from a LED propagates without losses through the light guide to the photodetector. If condensed dew droplets are on the glass surface the light penetrates the glass-droplet interfaces and is scattered at the droplet-air interface. This results in a decrease of the intensity at the detector. The advantage of this principle is the ruggedness in relation to contamination. Fig. 2.30: Optical waveguide with platinum resistance thermometer. Fig. 2.31: Condensation on the glass surface. 1. Industrial partners • Advanced Optic Solutions GmbH, Dresden • Analytik Jena AG • AIFOTEC Fiber Optics GmbH, Meiningen • BARTEC Messtechnik & Sensorik GmbH • Carl Zeiss Jena, Oberkochen • CeramOptec GmbH, Bonn • Crystal Fibre A/S Lyngby, Dänemark • DaimlerChrysler AG, Forschungszentrum Ulm • DSM Research, Geleen, Niederlande • EADS München-Ottobrunn • Electro-optics Industries Ltd., Israel • EPSA GmbH Saalfeld/Jena • j-Fiber GmbH,Jena • FiberTech GmbH, Berlin • fiberware GmbH, Mittweida • FISBA Optik, St. Gallen/Schweiz • GESO GmbH, Jena • GRINTECH GmbH Jena • Heraeus Quarzglas GmbH & Co. KG • Heraeus Tenevo AG • Hottinger Baldwin Messtechnik GmbH, Darmstadt • Hybrid Glass Technologies, Princeton, USA • I.D. FOS Research, Geel, Belgien • Jenoptik Laserdiode GmbH • Jenoptik L.O.S. GmbH • Jenoptik LDT GmbH, Gera • Jenoptik Mikrotechnik GmbH • Jenoptik Laser Solution GmbH • Jena-Optronik GmbH • JETI GmbH Jena • Kayser & Threde GmbH München • Laserline GmbH Mühlheim-Kärlich • Layertec GmbH Mellingen • Leica Microsystems Wetzlar • Mikrotechnik & Sensorik GmbH Jena • NTECH Technology, Novara, Italy • ONERA Paris Palaiseau /Frankreich • OVD Kinegram Corp., Zug, Schweiz • piezosystem jena GmbH • ROFIN SINAR Laser GmbH Hamburg • Schott Glas, Mainz • Schott Lithotec AG, Jena 51 OPTIK / OPTICS • • • • • • • • • • • • 52 Siemens AG, CT Erlangen und München SUPERLUM Ltd. Moskau SurA Chemicals GmbH Jena Thales Avionics Massy/Frankreich Thales Research and Technology Orsay/Frankreich TETRA GmbH Ilmenau Lucent Technologies Nürnberg unique mode AG Jena VITRON Spezialwerkstoffe GmbH Jena Wahl optoparts GmbH, Neustadt 4H Jena Engineering GmbH 2. Scientific partners • Bundesanstalt für Materialprüfung und -forschung (BAM), Berlin • DBI Gas- und Umwelttechnologie GmbH, Leipzig • EMPA Dübendorf/Schweiz • ESO European Southern Observatory, Garching • Fachhochschule Giessen-Friedberg • Fachhochschule Jena • Ferdinand-Braun-Institut für Höchstfrequenztechnik Berlin • Fiber Optics Research Center, Moskau • Fraunhofer Heinrich-Hertz-Institut für Nachrichtentechnik Berlin • Fraunhofer Institut Angewandte Optik und Feinmechanik Jena • Fraunhofer Institut für Silicatforschung Würzburg • Fraunhofer Institut für Lasertechnik Aachen • Fraunhofer INT, Euskirchen • GKSS Forschungszentrum Geesthacht • Image Processing Systems Institute, Samara, Russia • INNOVENT e.V. Jena • INESC Porto/Portugal • Institut für Angewandte Photonik, Berlin • S.I. Vavilov State Optical Institute, St. Petersburg, Russia • Institut für Bioprozess- und Analysenmesstechnik (IBA) Heiligenstadt • Institut für Fügetechnik und Werkstoffprüfung GmbH Jena • Institute für Radiotechnik und Elektronik in Moskau/Uljanovsk und Prag • Laser Zentrum Hannover • Max-Planck-Institut für Plasmaphysik, Greifswald • Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Berlin • Physikalisch-Technische Bundesanstalt Braunschweig • Technische Universität Berlin • Universität Braunschweig • Technische Universität Chemnitz • Technische Universität Darmstadt • Technische Universität Dresden • Universität Erlangen • Technische Universität Hamburg-Harburg • • • • • • • • • • • • • Technische Universität Ilmenau Universität Jena Universität Kaiserslautern Technische Universität München University of Leeds, U.K. University of Pardubice, Tschech. Republik University of Rio de Janeiro (PUC), Brasilien University of Southampton, U.K. Verfahrenstechnisches Institut Saalfeld Universite Catholique de Louvain/Belgien Universite Paris-Süd/Frankreich Universite de Lille/Frankreich Gwangju Institute of Science and Technology, South Korea Publications H. Bartelt: Properties of microstructured and photonic crystal fibers suitable for sensing application Proceedings SPIE Vol. 5950, 236–242 (2005) H. Bartelt: Influences of micro- and nanostructuring on light guiding Proceedings SPIE Vol. 5855, 114–117 (2005) Y. Kim, Y. Jeong, K. Oh, J. Kobelke, K. Schuster, J. Kirchhof: “Multi-port N × N multimode air-clad holey fiber coupler for high-power combiner and splitter” Optics Letters 30, 2697–2699 (2005) Y. Kim, Y. Jung, U. Paek, K. Oh, U. Röpke, J. Kirchhof, H. Bartelt: „A new type of index guiding holey fiber with flexible modal birefringence control“ Proc. SPIE Vol 5855, 306–309 (2005) J. Kirchhof, S. Unger, J. Kobelke, K. Schuster, K. Mörl, S. Jetschke, A. Schwuchow: “Materials and technologies for microstructured high power fiber lasers” Proc. SPIE 5951, 107/1–12 (2005) C. Chojetzki, M. Rothhardt, J. Ommer, S. Unger, K. Schuster, H.-R. Müller: “High-reflectivity draw-tower fiber Bragg gratings – arrays and single gratings of type II” Optical Engineering 44, 60503/1–2 (2005) M. Wegmann,J. Heiber, F. Clemens, T. Graule, D. Hülsenberg, K. Schuster: “Forming of noncircular cross-section SiO2 glass fibers” Glass Sci. Technol. 78, 69–75 (2005) H. Lehmann, S. Brückner, J. Kobelke, G. Schwotzer, K. Schuster, R. Willsch: “Toward photonic crystal fiber based distributed chemosensors” Proc. SPIE Vol. 5855, 419–422 (2005) OPTIK / OPTICS K.-F. Klein, H. S. Eckhardt, C. Vincze, S. Grimm, J. Kirchhof, J. Kobelke, J. Clarkin, G. Nelson: “High NA-fibers: silica-based fibers for new applications” Proc. SPIE Vol. 5691, 30–41 (2005) J. Kirchhof, S. Unger, A. Schwuchow, S. Jetschke, B. Knappe: “Dopant interactions in high power laser fibers” Proc. SPIE Vol. 5723, 261–272 (2005) J. Kobelke, H. Bartelt, J. Kirchhof, S. Unger, K. Schuster, K. Mörl, C. Aichele, K. Oh: „„Dotierte Photonische Kristallfaser – erweiterte Möglichkeiten zur Modifizierung der Propagationseigenschaften und zur Verbesserung der Anwendungsmöglichkeiten mikrostrukturierter Fasern“ DGaO – Proceedings 2005, ISSN 1614 8436. W. Ecke, K. Schröder, S. Bierschenk, R. Willsch: “Opto-chemical fibre Bragg grating sensors based on evanescent field interaction with specific transducer layers” Proceedings SPIE Vol. 5952, 118–125 (2005) R. Willsch, W. Ecke, G. Schwotzer: “Spectrally Encoded Optical Fibre Sensor Systems and their Application in Process Control, Environmental and Structural Monitoring” (invited paper) Proceedings of SPIE, Vol.5952,133–146 (2005) T. Glaser, A. Ihring, W. Morgenroth, N. Seifert, S. Schröter, V. Baier: “High temperature resistant antireflective motheye structures for infrared radiation sensors” Microsystem Technologies 11, 86–90 (2005) M. Duparré, B. Lüdge, S. Schröter: “On-line characterization of Nd:YAG laser beams by means of modal decomposition using diffractive optical correlation filters” Proc. SPIE Vol. 5962, 59622G (2005) M. Zeisberger, I. Latka, W. Ecke, T. Habisreuther, D. Litzkendorf, W. Gawalek: “Measurement of the thermal expansion of melttextured YBCO using optical fibre grating sensors” Supercond. Sci. Technol. Vol. 18, 202–205 (2005) W. Ecke, K. Schröder, M. Kautz, P. Joseph, S. Willet, T. Bosselmann, M. Jenzer: “On-line characterization of impacts on electrical train current collectors using integrated optical fiber grating sensor network” Proceedings SPIE, Vol. 5758, 114–123 (2005) I. Latka, W. Ecke, B. Höfer, T. Frangen, R. Willsch, A. Reutlinger: “Micro bending beam based optical fiber grating sensors for physical and chemical measurands” Proceedings SPIE Vol. 5855, 94–97 (2005) K. Schröder, J. Apitz, W. Ecke, E. Lembke, G. Lenschow: “Fibre Bragg grating sensor system monitors operational load in a wind turbine rotor blade” Proceedings SPIE Vol. 5855, 270–273 (2005) J. P. Dakin, W. Ecke, M. Reuter: “Comparison of vibration measurements of elastic and mechanically lossy (visco-elastic) materials using fibre grating sensors” Proceedings SPIE Vol. 5855, 5–8 (2005) C. Chojetzki, M. Rothhardt, J. Ommer, S. Unger, K. Schuster, H.-R. Müller: “High reflectivity draw tower fiber Bragg gratings array and single gratings of type II” Optical Engineering Jan. (2005) M. Becker, M. Rothhardt und H.-L. Althaus: „Wavelength-Switchable Fiber Grating Laser with Active Wavelength Stabilization“, Optical Engineering Dec. (2005) S. Jetschke, V. Reichel, K. Mörl, S. Unger, U. Röpke, H.-R. Müller: “Nd:Yb-codoped Silica Fibers for High Power Fiber Lasers: Fluorescence and Laser Properties” Proc. SPIE Vol. 5709, 59–68 (2005) A. Strauss, S. Brueckner, U. Roepke, H. Bartelt: “Thermal Poling of Silica” DGAO-Proceedings, ISSN 1614–8436 (2005) H. Bartelt, S. Schröter, J. Kobelke, K. Schuster “Photonische Kristalle: neue Funktionalität für integrierte Optik und optischen Fasern” Proceedings Symposium “Optik in der Rechentechnik”, TU Ilmenau Sept. (2005) C. Chojetzki, K. Schröder, M. Rothhardt, W. Ecke: “Strukturüberwachung mit Faser-Bragg-GitterSensoren am Beispiel des Rotorblattes einer Windkraftanlage” VDI-Berichte Nr. 1899, 209–217, (2005) M. Rothhardt, C. Chojetzki, H.-R. Müller: “High mechanical strength single-puls draw tower gratings” Proc. SPIE Vol. 5579, 127–135, (2005) Y. Joeng, Y. Kim, K. Mörl, S. Höfer, A. Tünnermann, K. Oh: “Q-switching of Yb3+-doped fiber laser using a novel micro-actuating platform light modulator” Optics Express 13, 10302, (2005) 53 OPTIK / OPTICS Presentations/Posters S. Unger, J. Kirchhof, A. Schwuchow, S. Jetschke, B. Knappe: “Dopant interactions in high power laser fibers” Photonics West/Optoelectronics, 22.01.–27.01.2005, San Jose, California/USA (Poster) S. Jetschke, V. Reichel, K. Mörl, S. Unger, U. Röpke, H.-R. Müller: “Nd:Yb-codoped slica fiber lasers: fluorescence and laser properties”: Photonics West 2005, San Jose USA 24.01.–28.01.2005 (Paper) R. Willsch, W. Ecke, G. Schwotzer: „Faseroptische Sensorsysteme mit Mikro- und Nanostrukturkomponenten“ VDE /GMM Workshop „Mikrooptik im Fokus der Photonik“, Karlsruhe 03.02.–04.02.2005 (Paper) S. Schröter, U. Hübner, R. Boucher, H. Bartelt: “Mikrooptische Komponenten auf der Basis von PC-Strukturen in Ta2O5-Wechselschichtsystemen” GMM-Workshop “Mikrooptik im Fokus der Photonik”, FZ Karlsruhe,03.02.–04.02. 2005 (Paper) J. Kobelke, J. Kirchhof, K. Schuster, K. Gerth, S. Unger, C. Aichele, K. Mörl: “Photonische Kristallfasern – Möglichkeiten zur Herstellung und Anwendung einer neuen Klasse optischer Fasern” Innovationsforum Strukturierung von Gläsern, 14.02.–15.02. 2005, Barleben. (Paper) W. Ecke, K. Schröder, M. Kautz, P. Joseph, S. Willet, T. Bosselmann, M. Jenzer: “On-line characterization of impacts on electrical train current collectors using integrated optical fiber grating sensor network” SPIE’s 12th International Symposium on Smart Structures and Materials, Conference “Smart Sensor Technology and Measurement Systems”, 07.03.–09.03 2005, San Diego/USA, (Paper) J. Kobelke, J. Kirchhof, S. Unger, K. Schuster, K. Mörl, C. Aichele, H. Bartelt: “Active and passive doped microstructured and photonic crystal fibres” Hauptjahrestagung der DPG, 04.–09.03. 2005, Berlin. (Poster) 54 J. Kirchhof, S. Unger, J. Kobelke, H. Bartelt: „Hochleistungs-Laserfasern und Photonische Mikrostrukturen“ DGG Glasforum, 10. 03.2005, Würzburg. (Invited paper) Y. Kim, W. Shin, S. C. Bae, K. Oh, J. Kobelke, K. Schuster, J. Kirchhof: “Air-clad multimode holey fiber coupler for high power transmission” CLEO 2005, section 09, paper CWN1. (Paper) W. Ecke, K. Schröder: “Fiber Optic Health Monitoring Sensor System for Wind Energy Turbine” Colloquium at National Wind Technology Center of US Department of Energy, Boulder, Colorado, 16.03.2005 (Invited paper) K. Mörl: „Arbeiten zu mikrostrukturierten und Hochleistungs-Laserfasern am IPHT Jena“ Universität Hamburg, 25.04.2005 (Invited paper) V. Reichel: „Höchstleistungsfaserlaser für cw-Betrieb“ OptoNet Workshop „Neue Laserstrahlquellen“ 11.05.2005, IPHT Jena (Invited paper) J. Kobelke, H. Bartelt, J. Kirchhof, S. Unger, K. Schuster, K. Mörl, C. Aichele, K. Oh: “Doped photonic crystal fibres – Enhanced possibilities for modification of microstructured fibres” DGaO-Jahrestagung, 17.05.–20.05.2005 Wroclaw, Polen. (Paper) A. Strauss, S. Brueckner, U. Roepke, H. Bartelt: “Thermal Poling of Silica“, 106. Jahrestagung der DGaO, 17.05.–20.05. 2005, Wroclaw/Polen (Poster) A. Csaki, A. Steinbrück, S. Schröter, T. Glaser, W. Fritzsche: “Fabrication and characterization of nanophotonic metal structures” International Symposium Molecular Plasmonics, Jena 19.05.–21.05. 2005 (Poster) I. Latka, W. Ecke, B. Höfer, T. Frangen, R. Willsch, A. Reutlinger: “Micro bending beam based optical fiber grating sensors for physical and chemical measurands” 17th International Conference on Optical Fibre Sensors, 23.05.–27.05.2005, Bruges/Belgium, (Paper) K. Schröder, J. Apitz, W. Ecke, E. Lembke, G. Lenschow: “Fibre Bragg grating sensor system monitors operational load in a wind turbine rotor blade” 17th International Conference on Optical Fibre Sensors, 23.05.–27.05.2005, Bruges/Belgium, (Paper) OPTIK / OPTICS J. P. Dakin, W. Ecke, M. Reuter: “Comparison of vibration measurements of elastic and mechanically lossy (visco-elastic) materials, using fibre grating sensors” 17th International Conference on Optical Fibre Sensors, 23.05.–27.05.2005, Bruges/Belgium, (Paper) B. Knappe, C. Aichele, St. Grimm, M. Alke, H. Renner, E. Brinkmeyer: “Ready-to-use silica slab waveguides for pretreatmentless UV-fabrication of customized planar lightwave circuits” BGPP, Sydney, Australia, 04.07.–07.07.2005, (Paper) H. Bartelt: “Influences of micro- and nanostructuring on light guiding” 17th International Conference on Optical Fibre Sensors, Bruges/Belgium, 23.05.–27.05.2005 (Invited paper) M. Rothhardt, C. Chojetzki, H.-R. Müller, H. Bartelt: “Large Fiber Bragg Grating Arrays for Motoring Applications Made by Drauring Tower Inscription”, BGPP, Sydney, Australia 04.07.–06.07.2005 (Poster) C. Aichele, M. Becker, S. Grimm, B. Knappe M. Rothhardt: „Eigenschaften dotierter SiO-Wellenleiterschichten für UV-Strukturierungs-verfahren zur Realisierung passiver optischer Wellenleiterkomponenten“, VDE-ITG-Diskussionssitzung“ „Messung und Modellierung in der Optischen Nachrichtentechnik“ (MMONT’05), Hamburg, 01.06.–03.06. 2005 (Paper) J. Kirchhof, S. Unger, C. Aichele, S. Grimm, J. Dellith: “Borosilicate optical fibers and planar waveguides – Technology and properties” 5th Int. Conf. on Borate Glasses, Crystals and Melts, Trento, Italy,10.07.–14.07.2005, (Paper) M. Becker, M. Rothhardt: „Simulation direkt modulierbarer Faser-GitterLaser mit dem Wanderwellenmodell, VDE-ITG Diskussionssitzung „Messung und Model-lierung optischer Nachrichtensysteme“ (MMONT’05), Hamburg, 01.06.–03.06.2005 (Paper) C. Chojetzki, M. Rothhardt, H.-R. Müller, M. Becker: „Ziehturm Faser-Bragg-Gitter – kostengünstige Bauelemente für die optische Informationstechnik“, VDE-ITG-Diskussionssitzung “Messung und Modellierung in der Optischen Nachrichtentechnik (MMONT’05), Hamburg, 01.06.–03.06.2005 (Paper) K.-F. Klein, H. S. Eckhardt, C. Vincze, J. Kirchhof, J. Kobelke: „Numerische Apertur von mikrostrukturierten Multimode-Fasern“ Messung und Modellierung in der optischen Nachrichtentechnik, Hamburg, 01.06.–03.06.2005 (Paper) U. Röpke, S. Jetschke, S. Unger: ”Investigation of Nd:Yb-codoped Silica Fibers as a Laser Material”, CLEO Europe 2005, WED CJ-14, München, 12.06.–17.06.2005 (Poster) H.-R. Müller, J. Kirchhof, V. Reichel, S. Unger: “Fibres for High-Power Lasers and Amplifiers” Journees Scientifique de I’ONERA, Paris 27.06.–29.06.2005 (Invited paper) W. Ecke, K. Schröder, S. Bierschenk, R. Willsch: “Opto-chemical fibre Bragg grating sensors based on evanescent field interaction with specific transducer layers” SPIE OOC 2005, Warsaw/Poland 28.08.–02.09.2005 (Paper) R. Willsch, W. Ecke, G. Schwotzer: “Spectrally Encoded Optical Fiber Sensor Systems and their Application in Industrial Process Control, Environmental and Structural Monitoring” SPIE Optics and Optoelectronics Congress Warsaw/Poland, 28.08.–02.09.2005 (Invited paper) H. Bartelt: “Properties of microstructured and photonic crystal fibers suited for sensing applications” SPIE OOC 2005, Warsaw/Poland 28.08.–02.09.2005 (Invited paper) J. Kirchhof, S. Unger, J. Kobelke, K. Schuster, K. Mörl: “Materials and technologies for microstructured high power fiber lasers” Optics and Optoelectronics Conference, 28.08.–02.09. 2005, Warsaw, Poland. (Paper) L. Kröckel, G. Schwotzer, M. Koch, K. Bley, K. H. Venus: “Fluorimetric Determination of Phosphate by Reversed-FIA for In-Situ Water Analysis” AquaLife, Kiel, 20.09.05–22.09.05 (Poster) 55 OPTIK / OPTICS G. Schwotzer: “Optical Components and Devices for In-Situ Water Analysis in Project BIOSENS” AquaLife 2005, Kiel, 20.09.–22.09.2005 (Invited paper) C. Chojetzki, W. Ecke, M. Rothhardt, K. Schröder: “Structural monitoring using fibre Bragg gratings at the example of a wind energy facility” GESA – Symposium 2005, Saarbrücken, 21.09.–22.09.2005 (Paper) H. Bartelt: “Optische Fasern – geführtes Licht für Kommunikationstechnik und Sensorik” Lehrerfortbildung, Jena, 22.09.2005 H. Bartelt, S. Schröter, J. Kobelke, K. Schuster: “Photonische Kristalle: Neue Funktionalität für integrierte Optik und optische Fasern” Vortrag auf dem 8. Workshop „Optik in der Rechentechnik“, TU Ilmenau, 23.09.2005 (Paper) H.-R. Müller: “Fiber Development for Diode Pumped Fiber Lasers” Sino-German Workshop GZ 313 “Advances in Diodes and Diode Pumped Lasers”, Peking, 25.09.–30.09.2005 (Invited paper) J. Kirchhof, S. Unger, A. Schwuchow, S. Grimm, V. Reichel: “Materials for high-power fiber lasers” First Conference on Advances in Optical Materials, 12.10.–16.10.2005, Tucson, Arizona/USA. (Poster) W. Ecke, K. Schröder: “Optical fibre grating sensors for structural health monitoring in adverse environment” Colloquium at Max-Planck-Institute for Plasma Physics, Greifswald, 04.11.2005 (Invited paper) W. Ecke: “Fibre Bragg grating sensor systems for structural health monitoring and optochemical measurements” Colloquium at Institute of Materials Science and Applied Mechanics of Wroclaw University of Technology, Wroclaw/Poland, 16.11.2005 (Paper) 56 R. Willsch, W. Ecke, G. Schwotzer: „Spektraloptische Fasersensorsysteme für Prozess-, Umwelt- und Strukturmonitoring“ 17. Internat. Wiss. Konferenz IWKM, Mittweida, 03.11.–04.11.2005 (Invited paper) K. Schuster, J. Kobelke, J. Kirchhof, C. Aichele, K. Mörl, A. Wojcik,: “High NA fibers – a comparison of optical, thermal and mechanical properties of ultra low index coated fibers and air clad MOF’s” 54th Int. Cable and Wire Symposium, Providence, RI/USA, 13.11.–16.11.2005, (Paper) A. Wojcik, K. Schuster, J. Kobelke, C. Chojetzki, C. Michels, K. Rose, M. J. Matthewson: “Novel Protective coatings for high temperature applications” 54th Int. Cable and Wire Symposium, Providence, RI/USA,13.11–16.11. 2005, (Paper) J. Kobelke, K. Schuster, J. Kirchhof, S. Unger, A. Schwuchow, K. Mörl, S. Brückner: “Active and passive microstructured fibers” Int. Workshop on Emerging Areas of Fibre Optics and Future Applications, Kalkutta, India 08.12.–10.12.2005, (Invited paper) Lectures Prof. Dr. H. Bartelt: Wahlvorlesung Friedrich-Schiller-Universität Jena Optische Nachrichtentechnik Winter-Semester und 2004/2005 Wahlvorlesung Friedrich-Schiller-Universität Jena Mikrooptik und integrierte Optik Sommer-Semester 2005 Prof. Dr. R. Willsch: Fachhochschule Jena, Fachbereiche/Studienrichtungen Elektrotechnik/Informationstechnik, Physikalische Technik, Umwelttechnik und Biotechnologie, “Sensortechnik” Wintersemester 2004/2005 und 2005/2006 Dr. W. Ecke: Fachhochschule Jena, Masterstudiengang Laser- und Opto-Technologien LOT “Faseroptik” Sommersemester 2005 Patents J. Bolle, J. Bliedtner, K. Zweinert, W. Ecke, R. Willsch, W. Bürger: „Schweißanordnung, insbesondere zum Verbinden von Werkstücken durch Widerstands- und Pressschweißen“ DE 10 2005 017 797.2 OPTIK / OPTICS W. Ecke, K. Schröder: „Anordnung zur Erhöhung der Messgenauigkeit von Fasergitter-Sensorsystemen“ DE 10 2005 062 749.8 (25.08.2005) H.-R. Müller, S. Unger, K. Mörl, K. Schuster: „Optische Fasern für polarisiert emittierende Faserlaser und -verstärker sowie ein Verfahren zu deren Herstellung“, DE 10 2005 062 749.8 (23.12.2005) Diploma Y. Eberhardt „Konzeption, Aufbau und Erprobung von Küvetten zur Messung kleiner Flüssigkeits-Volumina“ Fachhochschule Jena, 15.06.2005 R. Roth „Optische Untersuchungen ausgewählter Laserdioden und VCSEL hinsichtlich ihrer Eignung für Sensoranwendungen“ Fachhochschule Jena, 16.07.2005 Th. Frangen. „Entwicklung, Aufbau und Test eines FasergitterMikrobiegebalkens zur Messung kleiner Biegekräfte und Anwendung als Viskosimeter“ Fachhochschule Jena, 23.09.2005 L. Kröckel: „Untersuchungen zum fluorimetrischen Nachweis von Phosphat in Wasser mittels Fließ-InjektionsAnalyse“ Fachhochschule Jena, 28.09.2005 D. Reinisch: „Konstruktion eines Simulators für die optische Messung von Temperatur und Feuchte in Zahnradgetrieben“ Fachhochschule Jena 16.12.2005 Master Thesis M. Giebel: „Entwicklung einer Labormesseinrichtung zur Messung von Brechzahlen in Wasser“ Fachhochschule Jena, 24.03.2005 S. Bierschenk: “Application of specifically sensibilised layers in an optical fibre grating refractometer” Fachhochschule Jena, 11.04.2005 Mirko Wittrin: „Untersuchungen zum Potential des RNF-Verfahrens für Brechzahlprofilmessungen an optischen ,Silica on Silicon‘-Wellenleitern“ Fachhochschule Jena, Oktober 2005 Laboratory exercises Th. Frangen L. Kröckel D. Mitrenga E. Lindner M. Klube M. Wittrin D. Reinisch M. Leich R. Roth N. Westphal T. Rohrbach T. Rathje K. Wolter F. Just 01.01.05–31.01.05 21.02.05–31.12.05 14.02.05–31.07.05 15.02.05–18.02.06 01.03.05–30.04.06 01.03.05–30.09.05 01.04.05–30.11.05 04.04.05–12.08.05 26.04.04–16.07.05 18.07.05–29.07.05 05.10.05–21.02.06 19.10.05–30.06.06 21.11.05–31.05.06 01.12.05–30.06.06 Guest scientists Dr. Y. Joeng Gwangju Institute of Science and Technology, Korea März 2005 Dr. Aleksey Tchertoriski, Institute for Radio Engineering and Electronics, Ulyanovsk, Russia, 01.04.–27.06.2005 Prof. Kyunghwan Oh Gwangju Institute of Science and Technology, Korea 01.12.04–28.02.2005 Memberships Prof. Dr. H. Bartelt: • Mitglied im Arbeitskreis Mikrooptik der Deutschen Gesellschaft für Angewandte Optik • Deutscher Vertreter in WG7 der ISO zum Thema „Diffractive Optics“ • Mitglied des Editorial Board der Fachzeitschrift „Optik“ • Vorstandsmitglied des Mikrotechnik Thüringen e.V. • Mitglied im Kuratorium der Stiftung für Forschung und Technologie STIFT • Mitglied im wissenschaftlichen Beirat der Jenaer Technologietage 2004 und 2005 • Mitglied im Beirat des BioRegio Jena e.V. • Mitglied im Beirat des Technologie- und Innovationspark Jena • Conference Chair Optical sensing II Photonics Europe, April 2006, Strasbourg/France Prof. Dr. R. Willsch: • Mitglied des Redaktionsbeirates der Fachzeitschrift „SENSOR report“ • Member of Optical Fibre Sensors (OFS) International Steering Committee, Chair of OFS-17, International Conference May 2005 Bruges/Belgium 57 OPTIK / OPTICS • Mitglied im Kongressbeirat und Session-Chairman OPTO-Kongress Nürnberg, Mai 2006 • Stellv. Vorsitzender AMA-Fachausschuss „Optische Sensorik“ Dr. W. Ecke: • Program Chair and Member of Technical Program Committee of International Optical Fiber Sensors Conference OFS-17, Bruges/Belgium, May 2005 • Co-Chair of Conference „Smart Sensor Technology and Measurement Systems“ of SPIE International Symposium on Smart Structures and Materials, San Diego/CA USA, March 2005 • Member of Technical Program Committees of Optical Fibre Technology (OFT) and Optical Fibre Applications (OFA) conferences of SPIE Optics and Optoelectronics Congress, Warsaw/Poland, August 2005 58 Participation in fairs/expositions • Exhibition at OFS-17 Conference 23.05.–27.05.2005 Bruges, Belgium • „Lange Nacht der Wissenschaften“ 18.11.2005 IPHT Jena • Optonet Workshop „Neue Laserstrahlquellen“ 11.05. 2005, IPHT, Jena • LASER 2005 – World of Photonics, Neue Messe München, 3.–16. 06.2005, Ausstellung am Gemeinschaftsstand Sachsen/Thüringen • TRANSFER X, Messe Dresden, 9.–11.11.05 Gemeinschaftsstand IPHT MIKROSYSTEME / MICROSYSTEMS 3. Mikrosysteme / Microsystems Leitung/Head: Prof. Dr. J. Popp e-mail: juergen.popp@ipht-jena.de Stellvertreter/Vice Head: Dr. H. Dintner helmut.dintner@ipht-jena.de Spektral-optische Verfahren und Instrumentierung Spectral Optical Techniques and Instrumentation Photonische Chipsysteme Photonic Chip Systems Mikrosystemtechnologie Microsystem Technology Leitung/Head: Prof. Dr. J. Popp Leitung/Head: Dr. W. Fritzsche wolfgang.fritzsche@ipht-jena.de Leitung/Head: Dr. Th. Henkel thomas.henkel@ipht-jena.de Spectral Optical Sensing Dr. R. Riesenberg rainer.riesenberg@ipht-jena.de Microtechnology Dr. G. Mayer guenter.mayer@ipht-jena.de Thermal Microsensors Dr. E. Keßler ernst.kessler@ipht-jena.de Sensor Preparation Dr. A. Lerm albrecht.lerm@ipht-jena.de 3.1 Überblick 2005 war für den Bereich „Mikrosysteme“ ein bewegtes Jahr, das im Rückblick mit den Begriffen Kontinuität und Veränderung umrissen werden kann. Kontinuität insofern, dass in den Gruppen die fachliche Arbeit auf den verschiedenen Themengebieten systematisch weiter vorangetrieben wurde und zu einer Reihe sehr beachtlicher wissenschaftlicher Ergebnisse, verbunden mit erfolgreicher Projektakquisition, geführt hat. Die nachfolgenden Abschnitte geben darüber Auskunft. Veränderung benennt vor allem zwei wichtige, eng miteinander verkoppelte Entwicklungen. Zum Einen hat das Kuratorium mit Wirkung vom 1. Mai 2005 Prof. Jürgen Popp zum neuen Bereichsleiter berufen. Prof. Popp ist Lehrstuhlinhaber für Physikalische Chemie an der hiesigen Universität und Leiter des Institutes für Physikalische Chemie. Er wird diese Funktionen auch weiterhin ausüben, so dass die Verflechtung des IPHT mit der Universität in seiner Person eine substanzielle, für die Zukunft des IPHT entscheidende Stärkung erfährt. Als weithin anerkannter Experte auf dem Gebiet der Laserspektroskopie und der Biophotonik bringt Prof. Popp – mit seiner Gruppe an der FSU – ein hochaktuelles und zukunftsträchtiges wissenschaftliches Feld in das IPHT ein, welches sich in idealer Weise mit dem KnowHow 3.1. Overview 2005 was a rather exciting year for the microsystems division. The year 2005 can be sketched by the terms continuity and change. Continuity insofar as the scientific work of the various research fields within the division has been pursued systematically resulting in a lot of remarkable scientific results and a very successful acquisition of new projects. The following chapters provide a more detailed insight into the recent achievements of the microsystems division. The term change marks two important and strongly coupled developments. Firstly, Prof. Juergen Popp was appointed as the new head of the division starting at May 1 by the supervisory board of the institute. Prof. Popp holds a chair at the Friedrich-Schiller-Universität of Jena where he is the director of the institute for physical chemistry. Since he will carry on this position, the scientific interlocking between the IPHT and the university being an essential factor for the future of the IPHT will be strengthened by Prof. Popp in a substantial manner. As a widely recognized expert in the field of laser spectroscopy and biophotonics Prof. Popp – together with his group at the university – will establish a highly attractive and longreaching research field at IPHT which can be suitably combined with the know how of the division on the development of chip systems 59 MIKROSYSTEME / MICROSYSTEMS The staff of the microsystems division. Fig. 3A: NIR Raman spectral sensor. The sensor works in the wavelength range of 780 nm to 1100 nm, is equipped with a 1024 × 128 pixel CCD and has a spectral resolution of 0.3 nm (5 cm–1 to 2.5 cm–1). 60 Fig. 3B: Relative irradiance on the CCD of the multi-signal-polychromator. Positions of 4 rows of 25 spectra, dot-distance 31 nm. Fig. 3C: 16 × 16 thermopile array of a calorimetric space debris detector on PC. MIKROSYSTEME / MICROSYSTEMS Fig. 3D: Silver nanoparticles were coated with a gold shell in order to tune the plasmon surface resonance band. Spectra (left), scheme (center), photos of droplets with various gold shell thickness (center right) and SEM and TEM images of the sample (right). Fig. 3E: Single particle spectroscopy on immobilized 90 nm silver (left) and 110 nm gold (right) nanoparticles. The presented spectra were measured on a single particle each. Fig. 3F: LabOnChip system for droplet-based micro flow-trough PCR. Sample droplets are moved along a winding micro channel over the different temperature zones according the thermal protocol. The fluidic module is in thermal contact with a micro system-based heat plate. The thermal distribution as measured with an infrared camera is shown in the upper right corner. A detailed view of sample droplets inside the microchannel is given in the lower right corner. 61 MIKROSYSTEME / MICROSYSTEMS des Bereiches zur mikrotechnisch basierten Chip- und Instrumentenentwicklung ergänzt und das fachliche Profil des Bereiches, aber auch des IPHT insgesamt, maßgeblich prägen wird. Damit ist zugleich die zweite wesentliche Veränderung des vergangenen Jahres angesprochen: Die erreichten Fortschritte in der Diskussion zu der zukünftigen Ausrichtung und Positionierung des IPHT. Die vom Kuratorium bestellte Strukturkommission hat für den optisch orientierten Teil des IPHT, und damit auch für den Bereich „Mikrosysteme“, Empfehlungen zur inhaltlichen Fokussierung und strukturellen Anpassung ausgesprochen. Von den beiden identifizierten Forschungsschwerpunkten Optische Fasern und Photonische Instrumentierung beschreibt vor allem der Letztere die avisierte thematische Ausrichtung des Bereiches, auf welche sich die Arbeiten in den kommenden Jahren fokussieren werden. Fachlich bedeutet der Fokussierungsprozess einerseits die kontinuierliche Fortführung von Arbeitsrichtungen, welche sich unmittelbar in das neue Bereichsprofil einordnen (Verknüpfung optisch basierter Chiparrays, mikroanalytischer Systeme, infrarotoptischer Sensoren mit laserspektroskopischen Verfahren). Andererseits sind mit der Neuausrichtung auch inhaltliche Umorientierungen verbunden (Mikrosystemkonzepte außerhalb der Optik) und muss mit Blick auf die kompetente Besetzung der Forschungsfelder zusätzliche Expertise auf- bzw. ausgebaut werden (Plasmonik, molekulares und funktionales Imaging, THz-Technik). Hierzu sollen insbesondere Nachwuchsgruppen zeitnah etabliert werden. 62 and instruments defining not only the future scientific profile of the division, but also a main research topic of the IPHT. For this reason, the second essential change within the last year was already addressed: the progress achieved in the discussion about the future orientation and positioning of the IPHT. The structure commission being established by the supervisory board submitted a strategic recommendation for a scientific focusing and structural adaption of the optical orientated parts of IPHT, hence, also for the microsystems division. The future scientific direction of the division is described by “Photonic Instrumentation” being one of the newly identified research fields “Optical Fibers” and “Photonic Instrumentation”. With respect to the research activities of the division the focusing process stands on the one hand for a steady continuation of those approaches which fit into the new scientific profile i.e. combination of optical based chip arrays, microanalytical systems and infrared sensors with laser spectroscopic methods. However on the other hand, a focusing on photonic instrumentation is associated with significant changes in some traditional areas like microsystem concepts not based on optical principles. Furthermore the establishment and strengthening of new research fields requires a build-up or extension of new expertise like e.g. plasmonics, molecular and functional imaging, and THz techniques etc. For these purposes, young scientists groups need to be installed. Um die fachliche Profilierung zu befördern, hat sich der Bereich im vergangenen Jahr eine neue Abteilungsstruktur gegeben, welche im obigen Organigramm dargestellt ist. Die einzelnen Arbeitsgruppen sind dabei in sich weitgehend unverändert geblieben, wurden aber durch die geänderte Zuordnung in einen neuen Kontext gestellt. Dies betrifft vor allem die Vereinigung von spektraloptischer Verfahrens- und Systementwicklung sowie die Herausstellung der Mikrosystemtechnik (Mikroreaktorik, Mikrofluidik) als unverzichtbare enabling technology für die photonische Instrumentierung. The division has changed its department structure in accordance to the recommended focusing process (see scheme given above). In doing so the various groups remained largely unchanged however are put into a new context due to the changed classification. This restructuring process mainly concerns the association between spectral-optical techniques and instrumentation as well as the emphasis on microsystem technology (including microreactors, microfluidics) as an essential enabling technology for photonic instrumentation. Damit sind intern bereits wichtige Weichen gestellt, um den Fokussierungsprozess des Bereiches forciert weiterzuführen. Zugleich sind diese Maßnahmen eingebunden in zentrale forschungsstrategische Aktivitäten der Universität und des Campus Beutenberg (z.B. Ernst-AbbeCenter for Photonics, Jenaer Innovationscluster „Optische Technologien“). Insgesamt sieht sich der Bereich „Mikrosysteme“ daher gut aufgestellt, um die Herausforderungen der inhaltlichen Profilierung als Chance für die weitere wissenschaftliche und struklurelle Entwicklung des Bereiches zu nutzen. All these efforts are setting internally the course for a successful continuation of the department’s focusing process. Additionally, these decisions are embedded into central strategic activities of the university and the campus (e.g. Ernst-Abbe-Center for Photonics, Jena innovation cluster “Photonic Technologies”). Overall the microsystems division is in a very good position not only to face the challenges arising due to the new profile of the IPHT but also to use this profiling opportunity as a chance to further pursue the scientific and structural development of the division. MIKROSYSTEME / MICROSYSTEMS 3.2 Scientific Results 3.2.1 Spectral optical techniques and instrumentation (J. Popp) The main objectives of the department “Spectral optical techniques and instrumentation” are the development of innovative optical and spectroscopical techniques as well as the design and experimental realization of advanced spectral optical devices and instruments for material and life sciences applications. A fundamental understanding of the processes taking place when light interacts with matter is an indispensable prerequisite for such developments. The ultimate goal in life sciences is a deeper understanding of the molecular processes occuring inside living cells. Furthermore chemical reactions, metabolite or bioactive compounds driven functionalities of biological cells as well as cell-cell communication need to be studied. Optical and spectroscopical techniques are extremely capable methods to study the aforementioned processes on a molecular level. Based on such knowledge e.g. in the field of health care the origin of diseases can be resolved, therapies can be optimized, and the occurence of diseases might be prevented or at least minimized. Apart from the derivation of structure-property relationships, the derivation of structure-dynamic relationships is one of the most challenging topics. Utilizing advanced nanostructuring technologies artificial bioinspired materials with new promising properties can be realized. To achieve all the aformentioned ambitious goals in material and life sciences innovative optical components and sophisticated frequency-, timeand spatially resolved innovative laser spectroscopical methods and systems ranging from the UV to the THz with unparalleled functionalities need to be developed. Therefore, future research activities have to focus on the development of innovative optical spectroscopy techniques and instruments like e.g.: – Frequency resolved spectroscopical techniques exploiting novel spectral ranges to access innovative matter structures, – Time-resolved methods ranging from nanosecond to subfemtosecond time resolution to study the entire range of time dependent structural changes, – Functional and molecular imaging – e.g. CARS microscopy, TIP-SERS, – High-efficient spectral imaging for diagnostics, – Applied plasmonics for the ultra-sensitive diagnostics, – Lensless microscopes, – THz-spectroscopy and -technique. Another research topic together with the Department “Photonic Chip Systems” shall combine the achievements of photonics especially of biophotonics with those from micro- and nano-technology. The main goal is the realization of new industrial products, like e.g. the development of a new generation of optical and spectroscopical microchips for a powerful point-of-care diagnostics. A. Spectral optical sensing (R. Riesenberg) The annual report 2004 was entitled “Micro-aperture arrays in optics” and that oft 2003 “Ultra-sensitive optical sensing”. The annual report 2005, presents innovative high performance optical sensing set-ups for spectral sensors, for a multisignal-reader and for micro-imaging. Future research topics might be high performance optical spectral and 5D-sensing architectures and lensless micro-imaging with synthetic apertures. Compact Raman spectral sensors (A. Wuttig, R. Riesenberg) The project “OMIB online monitoring and identification of microorganisms and bio aerosols” deals with a rapid identification of single microorganisms by means of micro Raman-spectroscopy in combination with statistical data evaluation procedures. Such a point-of-care detection demands compact high performance sensors. Therefore, two sensors based on new technologies were designed and manufactured: one for the UV-region and another for the NIR-region. For that reason, a special 2D-entrance aperture array implementing a set of 10 little different spectrometers in one design can be applied. The reconvolution of the different images avoids aberrations and increases the spectral resolution as well as the throughput (patent pended arrangements). The UV spectral sensor established in 2004 has been successfully tested by recording Raman spectra of bacteria and minerals. More than 10.000 spectral points are detected by the UV-sensor exhibiting a detector-array of 2048 × 512 pixels (spectral region 245 nm – 360 nm, spectral resolution up to 0.035 nm) simultaneously (see Fig. 3.1). A second NIR Raman spectral sensor (see Fig. 3A on color page) operates in the wavelength range of 780 nm to 1100 nm at a wavelength resolution of 0.3 nm (corresponding wavenumber resolution: 5 cm–1 at λ = 780 nm … 2.5 cm–1 at λ = 1100 nm) using only a 1024 × 128 pixel detector. 63 MIKROSYSTEME / MICROSYSTEMS Unconventional micro-imaging (R. Riesenberg, A. Grjasnow, M. Kanka, J. Bergmann) a) The coherent illumination of a sample by a pinhole generates an interference image (inlineholography). Results are given by unconventional microscopic imaging by illumination with a pinhole array, see Fig. 3.2. The microscopy by multiplane interference detection uses three or more interference pictures to reconstruct the objects. The actual technique is adapted to microscopic imaging. No reference is needed and a sub-pixel algorithm is implemented. The lensless technique is applied for wide field imaging. The illumination by a pinhole-array leads to a homogenous illumination with more intensity and so with an increased sensitivity. The field of view can be extended without loosing resolution (see Fig. 3.3). b) Fig. 3.1: a) View of the compact UV-Raman spectral sensor (circled) with a commercial Raman spectrometer HR 600 with nearly the same performance and b) measured spectra of bacillus pumius, DSM 361, excitation wavelength 257 nm, with both instruments. 64 Fig. 3.2.: Arrangement of illumination of the sample by a pinhole-array and interference detection by a CCD. Fig. 3.3: a…d above: Digital inline holography. Objects (diameter of 0.5 µm) at the edge of the illumination cone (object plane in 10 µm distance from the pinhole-plane) can not be detected and reconstructed. For a pinhole diameter of 1 µm the aperture is limited. The field of view is limited [hologram at a distance of 220 µm from the pinhole-plane, image area (200 µm)2, the field of view in the example is limited to about (9 µm)2. e… h below: The single pinhole is replaced by a pinhole-array (9 pinholes). Nearly all objects can be illuminated and reconstructed. The field of view is extended. MIKROSYSTEME / MICROSYSTEMS Spectral-reader-technologies (G. Nitzsche, R. Riesenberg) A concept and an optical design of a fluorescence reader for real-time PCR was developed which enables for the first time the detection of four different dyes in 96 samples simultaneously. It uses fiber-arrays, a lens-array and microaperture entrance arrays for parallel illumination as well as for highly parallel spectral detection. The design of the multi-signal polychromator with the 2D-slit-array consists of 4 × 25 single slits to generate 4 × 25 spectra on the CCD-chip (see Fig. 3B on color page). The design was adapted to a CCD-camera with 1024 × 1024 pixels of a pitch of 13 µm. B. Thermal microsensors (E. Keßler) Two projects (ISEL and FANIMAT-nano) could be started in 2005 while the MICRO-THERM project was finished. All these projects fit in the strategic orientation of the Thermal Microsensors group aimed at research and development of miniaturized thermal sensors (in particular for sensing electromagnetic radiation in the infrared and neighboring spectral regions) with a high and relatively uniform sensitivity/ detectivity in a broad spectral region and in a wide range of operating temperatures up to 200 °C and more based on high-performance materials of the functional layers, e.g., the absorber, the thermoelectric transducer and the isolation/passivation layers. inalienable condition, the detector operating in a high-vacuum ambiance. The floating membrane pattern is generated by dry etching processes. Several chip designs and types of thermopiles comprising four and eight thermocouples with leg widths of 2 and 4 µm, respectively, deposited on stress-controlled silicon nitride, have been tested and provided for packaging (see. Fig. 3.4). Under vacuum conditions, responsivities of up to approximately 3000 V/W and specific detectivities of 1.4 × 109 cm Hz1/2/W were measured with the thermoelectric materials combination BiSb and Sb. Variations of the multi-layer absorber system aiming at the lowering of its thermal mass to decrease the thermal time constant resulted in responsivities of about 2400 V/W and time constants in the order of 40 ms for an optimized design. A significant potential for a further increase in responsivity and detectivity arises from substituting the p-material Sb by the high-figure-of-merit material BiSbTe and by the application of a new membrane technology based on SU-8. These efforts were continued after the termination of the project in September 2005. The scaled-down geometrical dimensions of the micro-thermopiles connected to the accomplishable high detectivities are an important first step towards the development of thermopile arrays with high spatial resolution; hence, this project is of particular importance for the further development of thermopile sensors at the IPHT. New generation of micro-thermopiles with high detectivity (MICRO-THERM) (E. Kessler, V. Baier, U. Dillner, A. Ihring) The main goal of the project MICRO-THERM, started in July 2004, was the development of microthermopiles for high-resolution low-temperature radiation thermometry (spectral range 8 to 14 µm). The work was carried out in close cooperation with Optris GmbH, Berlin and Mikrotechnik & Sensorik GmbH, Jena. Essential specifications of this new generation of detectors are reduced dimensions of the receiving area (diameters ranging from 100 to 150 µm, thus permitting the enhancement of the distance ratio and the optical resolution of pyrometers up to 1 : 200 even with small optics), high specific detectivities above 1 × 109 cm Hz1/2/W and comparatively low thermal time constants in the range of 100 ms. These features are achieved by a thermally optimized thermopile arrangement on a floating membrane with supporting bridges smaller than 10 µm and reduced thicknesses of active and passive layers, thereby reducing parasitic thermal conductances and masses, and, as an Fig. 3.4: MICRO-THERM thermopile chip on TO-5 base plate, wire-bonded. Infrared sensors having increased standards of performance (ISEL) (E. Kessler, V. Baier) Basically, the aims of this project are both to shift the long-term operating temperature of thermopile IR sensors beyond the limit of 180 °C, reached in the former project HOBI, towards 250 °C and enhancing the responsivity of the sensors. This shall be achieved by replacing the 65 MIKROSYSTEME / MICROSYSTEMS typically used thermoelectric materials BiSb and Sb with materials of higher thermoelectric figures of merit, which moreover have higher temperature stabilities. For the prediction of sensor properties by parametric thermal modeling the transport coefficients of these materials have to be characterized up to 300 °C. The according measurement equipment shall be built in 2006. The high-effective ternary BiSbTe was chosen as thermoelectric p-material. It was sputtered by dc technology under optimized conditions. Thereby a power factor of P = α2 σ = 1.9 10–3 W / (m K2) (Seebeck coefficient α = 189 µV / K and electrical conductivity σ = 53 540 (Ω m)–1) was obtained at room temperature. In a first run sensors of TS 80 type were manufactured for high temperature applications with this technology using CuNi as n-material. However, some problems appeared in the wet-chemical patterning of the BiSbTe films, which can most likely be attributed to the specific sputtering conditions. The averaged responsivity S = 51 V / W is enhanced by a factor of 1.6 compared with BiSb/Sb and the temperature coefficient of responsivity is lowered by a factor of 2.7 in the room temperature range. Sensors of this type were delivered for testing and qualifying to the project partner Micro-Hybrid Electronic. in vacuum-tight sensor housings are planned to test the compatibility of the ceramic films with high-temperature interconnection and packaging techniques. Thus, the project combines the competence of the three partners HITK (ceramic nano-powders), IPHT (thermoelectric sensor functional layers) and MHE (interconnection and packaging techniques). In 2005, first investigations concerning new absorber layers were carried out. The absorption coefficients of several high-temperature resistant layers supplied by HITK and based on different materials were measured at IPHT using a FTIRspectrometer. Moreover, the morphology of the layers was characterized by SEM (see Fig. 3.5). For layers of a special soot, absorption coefficients exceeding 90% were found in the wavelength range between 8 and 14 µm. Nanotechnologies for the functionalization of ceramic materials (FANIMAT-nano) (E. Kessler, U. Dillner) 66 FANIMAT-nano represents one so-called “growth core” in the Program “Innovative Regional Growth Cores” launched by the Federal Ministry of Education and Research (BMBF). This is a development support program aimed towards regional cooperations with platform technology and important features which make them unique in their field of competence. The target region of FANIMAT-nano is the region Jena-Hermsdorf in the federal state Thuringia. Within the FANIMATnano growth core, the Thermal Microsensors group at IPHT Jena is involved in a project called “Structurable ceramic thin films for high-temperature stable infrared (HT-IR) sensors” which started in September 2005. Our partners in this project are the Hermsdorf Institute for Technical Ceramics (HITK) and the Micro-Hybrid Electronics GmbH (MHE), also located in Hermsdorf. The development objectives of this project include the creation and characterization of structurable polyceramic or solgel thin film materials which can be integrated in the stacks of functional layers of thermoelectric infrared microsensors as high-temperature resistant absorber layers and isolation or passivation layers, respectively. Furthermore, the development of thermopile sensor chips with operating temperatures up to 250 °C employing those ceramic films is envisioned. Investigations of these chips Fig. 3.5: A SEM micrograph of a special hightemperature resistant soot absorber layer. Calorimetric space debris detector (E. Kessler, V. Baier, U. Dillner, A. Ihring) A detector array of 16 × 16 thermopile sensors based on the TS100/Flow design was developed as an integrated part of a breadboard model of a new type of in-situ space debris and meteoroid detector to determine the impact energy of micron-sized particles by calorimetric measurements (see Fig. 3C on the color page). The partners of this project are the eta_max Space GmbH, Braunschweig, the Physikalisch-Technische Bundesanstalt, and the TU Braunschweig. The thermopile array is completed with an appropriate plate absorber array supported by small spacing columns of 20 µm height made of SU-8 and thermally connected to the sensitive areas of the thermopiles each to convert the kinetic energy of the impacting particles into a temperature increase. An estimate of an average thermal effect gives temperature rises of 2…3 mK which can be clearly detected by the thermopiles. Initial tests using laser pulse heating were successfully performed. MIKROSYSTEME / MICROSYSTEMS 3.2.2 Photonic chip systems (W. Fritzsche) The detection and manipulation of molecular ensembles as well as individual molecules based on miniaturized and paralleled photonic approaches represent the main objective of the department. It is therefore aimed at two main research directions: (I) molecular construction techniques in order to develop required novel methods for manipulation and detection at the molecular level and (II) chip technology to convert these developments into (bio)analytical applications. The ultimate goal for both ultrasensitive bioanalytics and other possible applications for molecular complexes (such as nano-electronics and -optics) is the control of the constructs at the nanoscale and the single molecule level. During the last years novel approaches for single molecule handling have been developed in the department. They address the integration problem by aiming at parallel approaches to position individual molecular structures in prestructured microsystem environments, such as microelectrode gaps. In 2005, this development was advanced by the adaptation of dielectrophoretic methods. The last years witnessed also impressive results in the synthesis and optical characterization of designer metal nanoparticles, providing particles with defined spectral properties. Thereby, the main focus of the department shifted towards molecular plasmonics, a field that combines the effect of surface plasmon resonance at metal nanostructures, such as metal nanoparticles, with molecular components. These molecular structures can either be used to influence the optical properties, thus representing the analyte (bioanalytics), or to realize novel nanoscale hybrid complexes of metal nanoparticles and molecular components. In these complexes, the molecules act as backbone to realize a connection with defined geometry (distance, angle etc.) at the nanometer scale. This research field was massively pushed by the international symposium “Molecular Plasmonics” that was organized in May by the department and brought many of the world leading scientists in this field to the IPHT. In order to convert these developments into applications the established platform technologies for DNA arraying and model system evaluation has been further extended. These activities included the first successful demonstration of the electrical DNA chip detection system for a biological application and the further extension of partnerships with innovative bioanalytic companies in order to get market-driven and application-oriented impulses for future research and development in this promising field. A. Molecular nanotechnology and plasmonics Electrical manipulation of DNA (A. Csaki, A. Wolff, R. Kretschmer, W. Fritzsche) The control of a precise positioning of (bio) molecular complexes onto microstructured substrates is a key requirement for molecular nanotechnology. The application of electrical fields represents an interesting alternative for this purpose. Electrical fields are a well-established technique for molecular manipulation and they are easily directed with microscale precision using microelectrodes. Therefore, prestructured microelectrodes that will later act as contacts to the complexes were utilized to apply fields of alternating current in order to position polarizable molecular structures from solution by dielectrophoresis. Molecules of lambda-phage DNA (about 16 µm long) could be successfully positioned in electrode gaps as revealed by fluorescence and scanning force microscopy. Fig. 3.6: Defined positioning of DNA molecules in microelectrode gaps (100 nm gold) on silicon oxide substrates by dielectrophoresis using 300 ng/µl lambda-phage DNA and a field with 1 V/µm and 1 MHz. AFM-images (left and center) and fluorescence image (YOYO-1 as DNA-specific dye). Substrate-controlled orientation of DNA superstructures (J. Vesenka, A. Wolff, A. Reichert, W. Fritzsche) Another approach for aligned positioning of (bio) molecular structures is the utilization of substrate-inherent patterns of e.g. electrostatic charges. The observed effect of alignment of DNA superstructures (G wires) on mica substrates following three major directions was characterized and studied. By resolving the substrate of such samples with atomic resolution in the same experiment, it was found that the G-wires seem to align with the next nearest neighbor potassium vacancy sites of mica. Such auto-orientation phenomena could be utilized to address the fine-positioning of molecular structures e.g. in network formation. The self-organization character and the massive parallelization are features that make this approach very promising for future applications. 67 MIKROSYSTEME / MICROSYSTEMS particles with defined optical features are required. Therefore, core-shell particles consisting of Ag/Au or Au/Ag were identified as especially promising systems to tune the resulting plasmon resonance (see figure 3D on the color page). Moreover, optical characterization at both ensemble and single particle level are needed. The last year witnessed the set-up of a spectroscopy system with single particle capabilities in the department (see figure 3E on the color page). Experiments demonstrated the ability to yield UV-VIS spectra of individual nanoparticles, together with AFM and optical images of this structure. Fig. 3.7: Alignment of DNA structures (G wires) following the atomic arrangement in mica crystal planes. (Top) Overview AFM image (left) with histogram of orientation of G wire segments (right), (bottom) orientation of G wires as compared to the crystal arrangement of the underlying mica (insets) on air (left) and in buffer (right). Metal nanoparticles for molecular plasmonics (A. Steinbrück, A. Csaki, W. Fritzsche) Utilizing the optical properties of metal nanoparticles in combination with molecular complexes represents a promising recent development in molecular nanotechnology with envisioned applications especially for bioanalytics but also in nanophotonic devices. This field is based on the surface plasmon resonance effect in the particles. In order to realize complex systems the optical properties of the nanostructures have to be tuned and approaches to synthesize designer Photonic nanostructures combined with metal nanoparticles (A. Csaki, A. Steinbrück, S. Schröter, W. Fritzsche) Photonic nanostructures, such as nanoaperture arrays, show promising novel effects regarding e.g. transmission of light. The established experience with nanoparticle handling and ultramicroscopic characterization was applied in order to position metal nanoparticles in nanoapertures. Comparison of the transmission characteristics of the apertures with and without particles showed a higher transmission in the case of particle-modified openings. This effect seemed even enhanced when the particle where enlarged using specific metal deposition. Fig. 3.9: Light transmission of microfabricated holes with sub-wavelength dimensions in a chromium layer in dependence on the presence of metal nanoparticles. AFM images (top) and optical images (bottom) of three holes without particle (left), with an individual particle (center), and with a particle aggregate (right). 68 Fig. 3.8.: Synthesis of gold-silver core-shell nanoparticles yields designer particles with adjustable surface plasmon resonance peak between the bands of pure gold and pure silver nanoparticles. The particles were formed using specific silver deposition onto gold particles using various silver salt concentrations. All spectra are ensemble measurements. MIKROSYSTEME / MICROSYSTEMS B. DNA-chip Technology Characterization of specific metal deposition at single particle level (G. Festag, W. Fritzsche) Specific reductive deposition of silver on gold nanoparticles has a tremendous importance for numerous processes in molecular construction as well as in various kinds of bioanalytical methods for signal enhancement. AFM was used to study this process at the single particle level in order to reveal the influence of parameters like particle size, composition of enhancement solution, length of incubation etc. Because on-line measurements were not feasible, techniques were developed to relocate certain positions at the sample in order to image particle arrangements after every enhancement step. Fig. 3.10: AFM study of the growth of a silver shell on gold nanoparticles at the single particle level. Top: Three images of the same sample position after different growth times; Bottom: Dependence of particle height on growth time and various start diameters. Electrical identification of microorganisms by DNA-chip technology (T. Schüler, R. Möller, W. Fritzsche) The electrical DNA-detection system that has been developed at the IPHT was for the first time applied to biological samples (PCR fragments). In collaboration with the Leibniz Institute for Natural Product Research and Infection Biology – Hans-Knöll-Institute (HKI) Jena, the electrical DNA detection was utilized to identify species of microorganisms. Therefore, capture DNA sequences, specific for each of the studied species, were immobilized into the electrode gaps prior to incubation with the target DNA. Target DNA binding is detected by a significantly reduced resistance in the respective gap because binding of the labeled target DNA will lead to metal deposition in a subsequent signal enhancement step. The results showed that the electrical DNA chip detection is able to clearly differentiate between the different species and allows for a straightforward identification of microorganisms. Fig. 3.11: Measurements from a typical experiment with the electrical DNA-chip system show a clear signal for the species K. setea (set, left column) and the positive control from a consensus sequence (uni). An optical view on an electrical chip visualizes the silver deposition (especially in the 1+2 row and the last one) that leads to the electrically detectable signal at these positions. 3.2.3 Micro system technology (Th. Henkel) Photonic instrumentation strongly depends on the integration of micromechanical and microoptical components with critical dimensions in the nanometer scale. Furthermore, LabOnChip systems for integrated sample placement and sample preparation are required for high-throughput microoptical applications, the retrieval of spatialand time-resolved spectral information and localized photochemical activation of sample ingredients. The aim of the microsystem technologies department is the development and fabrication of components for photonic instrumentation and the 69 MIKROSYSTEME / MICROSYSTEMS application of LabOnChip based microfluidic devices for integrated sample preparation and placement in micro optical systems. The newly developed technology for the preparation of allglass microfluidic devices with coplanar faces are in compliance with the requirements of microoptical systems. A. Microfluidics of liquid-liquid segmented sample streams Liquid-liquid segmented flow based on highly integrated LabOnChip devices offers a powerful and versatile approach for high-throughput processing of linearly organized sample streams. Currently, these fluidic networks are built up from individual chip modules which are interconnected by HPLC-capillaries. Since all operations have to be in plug mode, micro droplets need to be large enough, to seal a given channel completely. For widely used HPLC capillaries with an inner diameter of 0.5 mm this critical volume is about 64 nl. With respect to this, modular systems are limited in compartment size and thus in throughput and sample density. Processing of segmented sample streams uses interface-generated forces for the maniplation of the micro droplets at functional nodes with optimized geometry and wetting conditions. Miniaturization of the channel system and the droplet volume increases the curvature of the interfaces and thus the pressure drop generated at the interface. In conclusion, not only throughput and sample density, but also reliability of the processes benefit from miniaturization and integration. Considering this, our work in development of LabOnChip devices is focused on the development of integrated LabOnChip devices for segmented flow based application. Toolkit for computational fluidic simulation and interactive parametrization of segmented-flow based fluidic networks (N. Gleichmann, M. Kielpinski, D. Malsch, T. Henkel) 70 are derived from experimental data and Computational Fluid Dynamics (CFD) simulations of the functional element. The geometry is dynamically generated from photolithographic mask data and process parameters. Segmented sample streams are implemented as lists. For interactive inspection of the interface geometries inside a functional node a software interface to the surface evolver is implemented. The main objectives of this work are the application of principles of electronic design automation (EDA) to the model based design and parameterization of segmented-flow based micro fluidic networks. This approach will significantly increase the efficiency in development of highly integrated LabOnChip devices for custom fluidic and micro chemical protocols. By that way, research and development of micro chemical and screening applications will benefit of the promising micro droplet-based approach of segmented flow. Our toolkit is based on a computational network of fluidic nodes, which are interconnected by virtual fluid ports for the transfer of segment streams. The particular behaviour of a functional node may be given by user definable rules, which Fig. 3.12: Geometry of a drop passing a Tshaped junction with nozzle. The surface evolver starts with a dynamically generated mesh of the node itself and the correct position of the micro droplets inside the element. Wetting conditions and local contact angles are non-constraints and dynamically calculated from the interface energies. Channel geometry is generated from the photo lithographical mask data and the parameters of the etch process. The parameterization is realized by interactively changing the mask geometry of the fluidic nodes and analysing the results of the fluidic simulation. A complete run for a dynamic simulation takes a view minutes only. The network can operate with pressure and volume flow constraints. Currently it is implemented for non compressible liquid/liquid two-phase flows and the micro system technology of isotropic wet etching. The Toolkit consists of a C++ class library of components for fluidic network simulation, for user interaction and network visualization and for interfacing the surface evolver. In a first test case it was successfully applied for modelling a double injector module. Conceptual work on self-controled fluidic networks for segmented-flow based applications (M. Kielpinski, D. Malsch, G. Mayer, J. Albert, T. Henkel) Functional elements for sample generation, dosing of liquid into droplets and retrieval of individual samples from the sample stack, generation of stacked sequences and controlled fusion of adjacent segments within it’s segment stream have been reported and successfully applied for highthroughput applications. These processes are mainly effected and controlled by the dynamics of interface evolution at functional nodes and spe- MIKROSYSTEME / MICROSYSTEMS cial flow dynamics inside the micro droplets. Additional functionality is requested and proposed. This includes controlled 1:N fusion of multiple droplet sequences and controlled 1:N segment splitting. Unfortunately, these operations require synchronization of the flow of multiple droplet sequences and seem to require integration of actors and sensors for closed loop flow control into the micro fluidic device. Application of these approaches to fluidic networks would require a huge amount of integrated sensors and actors, each of them interfering with the others and thus, the software for control of these networks would be very complicated. Analyzing a segmented flow based system we can recognize, that all prerequisites for application of self control to these special micro fluidic systems are available. There are mobile interfaces, which can be used to seal junctions of the main channels temporarily. Obstructions can be used to increase or widenings to decrease the pressure, generated by the curved droplet inter- Fig. 3.14: y-Shaped junction for self syncronized droplet fusion of two generated sample streams (above) and microfluidic device, consisting of the element and a total of four injectors for sample stream generation and postprocessing by dosing operations (below). face. By that way, segmented flow provides the basics for the implementation of self-controlled functional elements and their integration into micro fluidic networks. Actual development has been focused on a first implementation of these concepts for the selfsynchronized 1:1 fusion of two segment sequences. The functional node consists of a Y-shaped junction, where each inlet is equipped with an obstruction. The two inlet ports are connected by a bypass. If one segment reaches the obstruction it stops and the carrier flow is guided along the bypass to the second inlet of the Y-junction. It remains at the obstruction until a second droplet from the opposite channel reaches the junction. After this, fusion occurs followed by ejection of the formed droplet. Microfluidic devices for investigation of the fusion process have been developed and fabricated. Fig. 3.13: CFD-Simulation (right column) and experimental data (left column) of self-synchronized 1:1 droplet fusion at a Y-junction with integrated bypass. Two sequences of micro droplets are transported each with constant flow rate to the Y-junction. The droplet, which first arrives at the stricture stops (Part B) and the carrier flow is guided through the bypass until a droplet from the opposite sequence arrives (Part C). Now droplet fusion occures (Part D) and the coalesced volume is ejected from the element. LabOnChip based system for identification of cancer cells (J. Felbel, M. Urban, M. Kielpinski, G. Mayer, T. Henkel) Main aim of the collaboration between health professionals, molecular biologists and micro system experts is the development of a LabOnChip based analysis system permitting the partly automated execution of micro flow-through-RT-PCR for the detection and counting of cancer cells in samples 71 MIKROSYSTEME / MICROSYSTEMS from cancer patients. The device combines techniques of segmented flow with thermal management of sample streams, according the given molecular biological protocol and real-time optical readout of the amplification process. The PCR reaction unit was developed as all-glass microchannel chip module, which is based on a patented flow-through thermocycler-chip. Thermal management is realized by a micro system made heat plate, providing thermal control and management for up to four thermal zones with minimized dimensions of the thermal gap between the heater zones. The PCR sample droplets are cycled during the flow over specific temperature zones (see figure 3F on the color page). Main advantage of this LabOnChip module is the ability to process a high number of individual samples, each embedded in a single micro droplet by the serial flow regime. oxygen and hydrogen. Detailed results on the analysis of these micro chemical high temperature processes are shown in the contribution of the laser diagnostics department in this annual report. Possible fields of application of the RT-PCR are clinical diagnostics. For the establishment of the system disseminated tumour cells in the blood of patients with cervical carcinoma will be detected. A special characteristic of these tumour cells is the expression of oncogenes encoded by Human Papillomaviruses (HPV), which can be specifically amplified by this procedure. A successful PCR reaction of HPV targets in microchannels was demonstrated. • B. Chipmodules for analysis of micro combustion (G. Mayer, J. Albert, T. Henkel) Chip modules for investigation of miniaturized combustion processes have been developed and successfully tested during an internal collaboration. Integrated static micro-mixers allow the efficient mixing of fuel gas and oxygen at macroscopic explosive conditions and the controlled combustion at the outlet nozzle. Up to 2300 K may be generated in micro-flames with a width of 2 mm and a height of 3 mm during micro combustion of 3.3 Partners National co-operation • • • • • • • • • • • • • • • • • • • • • • • • • • • • 72 Fig. 3.15: All-glass chip with integrated static mixer for analysis of micro flames. Appendix • • • • • Alphacontec, Berlin Analytik AG, Jena Applikationszentrum Mikrotechnik, Jena ART-Photonics GmbH, Berlin Bartec Componenten und Systeme GmbH, Gotteszell Berliner Glas KGaA Herbert Kubatz GmbH & Co., Berlin Bosch und Siemens Hausgeräte GmbH, Traunreuth Cetoni GmbH, Gera-Korbußen Deutsches Zentrum für Luft- und Raumfahrt e.V., Berlin Entec GmbH, Ilmenau eta_max space GmbH, Braunschweig Fachhochschule Jena Fachhochschule Hannover, FB Elektrotechnik Fachhochschule Wiesbaden, FB Physikalische Technik Faseroptik Jena GmbH, Bucha Fraunhofer Institut für Biomedizinische Technik (IBMT) Nuthetal Friedrich-Schiller-Universität Jena – Institut für Materialwissenschaft und Werkstofftechnologie – Institut für Physikalische Chemie – Institut für Physiologie II – Klinik für Frauenheilkunde Fritz-Lipmann-Institut, Jena Hans-Knöll-Institut, Jena Hermsdorfer Institut für Technische Keramik e.V., Hermsdorf HL-Planartechnik, Dortmund HSG, Institut für Mikrotechnik und Informationstechnik e.V., Villingen-Schwenningen IL Metronic Sensortechnik GmbH, Ilmenau IMPAC Infrared GmbH, Frankfurt/Main Industrieanlagen-Betriebsgesellschaft mbH, Ottobrunn Institut für Bioprozess- und Analysenmesstechnik e.V. (iba), Heiligenstadt Institut für Mikrotechnik (IMM), Mainz Jena Bioscience GmbH, Jena JENOPTIK Laser, Optik, Systeme GmbH, Jena JENOPTIK Mikrotechnik GmbH, Jena Kayser-Threde GmbH, München Labor Diagnostik Leipzig GmbH, Leipzig Max-Born-Institut, Berlin Micro-Hybrid Electronic GmbH, Hermsdorf MIKROSYSTEME / MICROSYSTEMS • • • • • • • • • • • • • • • • Mikrotechnik + Sensorik GmbH, Jena NFT Nanofiltertechnik, Bad Homburg Optris GmbH, Berlin PTB, Labor „Wechsel-Gleich-Transfer“, Braunschweig Quantifoil Instruments GmbH, Jena RapID, GmbH, Berlin Raytek GmbH, Berlin Scanbec GmbH, Halle/Saale Schering AG, Berlin Seleon GmbH, Dessau SurA Chemicals GmbH, Jena Technische Universität Bergakademie Freiberg, Institut für Physikalische Chemie Technische Universität Ilmenau – Physikalische Chemie/Mikroreaktionstechnik – Zentrum für Mikro- und Nanotechnologie Universität Leipzig, Institut für Virologie Universität Dortmund Universität Würzburg International co-operation • ALBEDO Technologies, Razès, France • Anhui Institute of Optics and Fine Mechanics, Hefei, China • Bundesamt für Eich- und Vermessungswesen (BEV), Wien, Austria • CAL-Sensors, Inc., Santa Rosa, CA, USA • CEA, Saclay, France • Centro National de Metrologia (CENAM), Querétaro, Mexico • Dalhousie University, Dept. of Physics and Atmospheric Science, Halifax, Canada • EDAS-Astrium-CRISA, Madrid, Spain • Foster-Miller, Waltham, MA, USA • Hebrew University, Jerusalem, Israel • HORIBA Jobin Yvon, Villeneuve, France • IR System Co. Ltd., Tokyo, Japan • Institutul National de Metrologie (INM) Bukarest, Romania • Istituto Elettrotecnico Nazionale (IEN), Turin, Italy • Karolinska Institutet, Clinical Research Center, Stockholm, Sweden • Key Techno Co., Ltd. Tokyo, Japan • Nanoprobes, Inc., Yaphank, NY, USA • Nanotec Electronica S.L., Madrid, Spain • National Institute of Metrology (NIMT), Bangkok, Thailand • National Measurement Institute (MNI), Lindfield, Australia • National Metrology Laboratory (NML), Sepang, Malaysia • National Research Counsil (NRC), Ottawa, Canada • Országos Mérésügyi Hivatal (OMH), Budapest, Hungary • Politechnika Śla̧ska, Gliwice, Poland • Slovenian Institute of Quality and Metrology (SIQ), Ljubljana, Slovenia • Standards, Productivity and Innovation Board (SPRING), Singapore • Tokyo University, Mechanical Engineering, Japan • Ukrmetrteststandart (UkrCSM), Kiev, Ukraine • Ulusal Metroloji Enstitüsü (UME), Gebze, Turkey • University of Bologna, Dipartimento di Biochimica, Italy • Universidad Carlos III, Optoelectronics and Laser Technology Group, Madrid, Spain • University of Copenhagen, Department Medical Biochemistry and Genetics, The Panum Institute, Denmark • University of Newcastle, Department of Chemistry, UK • University Warsaw, Institute of Micromechanics and Photonics, Poland Editor W. Fritzsche, W. Knoll: Special Issue “Nanoparticles for Biotechnology Applications” IEE Proceedings Nanobiotechnology, 2005 Book chapters G. Festag, U. Klenz, T. Henkel, A. Csáki, W. Fritzsche: “Biofunctionalization of metallic nanoparticles and microarrays for biomolecular detection” in “Nanotechnologies for the Lifesciences” (book series) – Vol.1 “Biofunctionalization of Nanomaterials” (Ed. by C. Kumar, Wiley-VCH, 2005) Publications V. Baier, R. Födisch, A. Ihring, E. Kessler, J. Lerchner, G. Wolf, J. M. Köhler, M. Nietzsch, M. Krügel: “Highly sensitive thermopile heat power sensor for micro-fluid calorimetry of biochemical processes” Sensors and Actuators A 123–124 (2005) 354–359 B. Dietzek, R. Maksimenka, W. Kiefer, G. Hermann, J. Popp, M. Schmitt: “The excited state dynamics of magnesium octaethylporphyrin studied by femtosecond timeresolved four-wave-mixing” Chem. Phys. Lett. 415, (2005) 94–99 T. Eick, A. Berger, D. Behrendt, U. Dillner, E. Kessler: “An Alternative Method for Measuring the Responsivity of Thermopile Infrared Sensors” Proceedings of Sensor 2005, 12th International Conference, Vol. I (2005) 109–114 73 MIKROSYSTEME / MICROSYSTEMS J. Felbel, A. Reichert, M. Kielpinski, M. Urban, D. Malsch, T. Henkel: „Entwicklung von mikrofluidischen Chipsystemen für biologische Anwendungen“ 7. Dresdner Sensor-Symposium in Dresdner Beiträge zur Sensorik (Editor: G. Gerlach, H. Kaden), TUDpress Vol. 24 (2005), Ergänzungsband, Seite LMP3 J. Felbel, A. Sondermann, M. Kielpinski, M. Urban, T. Henkel, N. Häfner, M. Dürst, J. Weber, W. Fritzsche: “Single-cell-diagnostics with in-situ RT-PCR in flow-through microreactors: thermal and fluidic concepts” Proceedings of BioPerspektives 2005, Pub. Dechema, Vol. 2 (2005) 265 G. Festag, A. Steinbrück, A. Wolff, A. Csaki, R. Möller, W. Fritzsche: “Optimization of Gold Nanoparticle-Based DNA Detection for Microarrays” Journal of Fluorescence 15 (2005) 161–170 T. Funck, M. Kampik, E. Kessler, M. Klonz, H. Laiz, R. Lapuh: “Determination of the AC/DC Voltage Transfer Standards at Low Frequencies” IEEE Transactions on Instrumentation and Measurement Vol. 54, No. 2 (2005) 807–809 F. Garwe, A. Csaki, G. Maubach, A. Steinbrück, A. Weise, K. König, W. Fritzsche: “Laser pulse energy conversion on sequencespecifically bound metal nanoparticles and its application for DNA manipulation” Medical Laser Application 20 (2005) 201–206 A. Grjasnow, R. Riesenberg, A. Wuttig: “Lenseless coherent imaging by multi-plane interference detection” Proceedings of the 106th Conference of the DGaO (2005) A39 P. M. Günther, F. Möller, T. Henkel, J. M. Köhler, G. A. Groß: “Formation of Monomeric and Novolak Azo Dyes in Nanofluid Segments by Use of a Double Injector Chip Reactor” Chemical Engineering & Technology 28, Iss. 4 (2005) 520–527 Z. Guttenberg, H. Müller, H. Habermüller, A. Geisbauer, J. Pipper, J. Felbel, M. Kielpinski, J. Scriba, A. Wixforth: “Planar chip device for PCR and hybridization with surface acoustic wave pump” Lab on a Chip, Vol. 5, Iss. 3 (2005) 308–317 74 M. Harz, P. Rösch, K.-D. Peschke, O. Ronneberger, H. Burkhardt, J. Popp: “Micro-Raman spectroscopic identification of bacterial cells of the genus Staphylococcus and dependence on their cultivation conditions” Analyst, 130 (2005) 1543–1550 E. Kessler, V. Baier, U. Dillner, J. Müller, A. Berger, R. Gärtner, S. Meitzner, K.-P. Möllmann: “High-Temperature Resistant Infrared Sensing Head” Proceedings of Sensor 2005, 12th International Conference, Vol. I, (2005) 73–78 J. M. Köhler, T. Henkel: “Chip devices for miniaturized biotechnology” Applied Microbiology and Biotechnology 69, Iss. 2 (2005) 113–125 J. M. Köhler, J. Wagner, J. Albert, G. Mayer, U. Hübner: „Bildung von Goldnanopartikeln und Nanopartikelaggregaten in statischen Mikromischern in Gegenwart von Rinderserumalbumin“ Chemie Ingenieur Technik 77, No. 7 (2005) 867–873 J. Lerchner, A. Wolf, G. Wolf, V. Baier, E. Kessler: „Chip-Kalorimeter zur on-line-Detektion biomolekularer Prozesse“ 7. Dresdner Sensor-Symposium (Editor: G. Gerlach, H. Kaden) TUDpress (2005) 211–214 An-Hui Lu, W. Schmidt, S. Tatar, B. Spliethoff, J. Popp, W. Kiefer, F. Schueth: “Formation of amorphous carbon nanotubes on ordered mesoporous silica support” Carbon, 43(8) (2005) 1811–1814 G. Maubach, D. Born, A. Csaki, W. Fritzsche: “Parallel Fabrication of DNA-Aligned Metal Nanostructures in Microelectrode Gaps by a SelfOrganization Process” Small 1 (2005) 619–624 R. Möller, R. D. Powell, J. F. Hainfeld W. Fritzsche: “Enzymatic control of metal deposition as key step for a low-background electrical detection for DNA chips” Nano Letters (2005) 1475–1480 R. Möller, W. Fritzsche: “Chip-based electrical detection of DNA” IEE Proceedings Nanobiotechnology 152 (2005) 47–51 U. Neugebauer, A. Szeghalmi, M. Schmitt, W. Kiefer, and J. Popp: “Vibrational Spectroscopic Characterization of Fluoroquinolones” Spectrochimica Acta Part A, 61 (2005) 1505–1517 R. Riesenberg: “Pinhole array and lenseless microscopic microimaging” Proceedings of the 106th Conference of the DGaO (2005) A26 MIKROSYSTEME / MICROSYSTEMS P. Rösch, M. Schmitt, K.-D. Peschke, O. Ronneberger, H. Burkhardt, H-W. Motzkus, M. Lankers, S. Hofer, H. Thiele and J. Popp: “Chemotaxonomic identification of single bacteria by micro-Raman spectroscopy: Application to clean room relevant biological contaminations” Appl. Environm. Mikrobiol. 71 (2005) 1626–1637 P. Rösch, M. Harz, M. Schmitt, J. Popp: “Raman spectroscopic identification of single yeast cells” J. Raman Spectrosc. 36 (2005) 377–379 M. Schmitt and J. Popp: „Femtosekundenlaser-Mikroskopie“ Laser Technik Journal, 4 (2005) 67–71 M. A. Strehle, P. Rösch, M. Baranska, H. Schulz, J. Popp: “On the way to a quality control of the essential oil of fennel by means of Raman spectroscopy” Biopolymers, 77(1) (2005) 44–52 A. Wuttig: “Optimal transformations for optical multiplex measurements in the presence of photon noise” Appl. Opt. 44 (14) (2005) 2710–2719 Invited talks W. Fritzsche, G. Maubach, R. Kretschmer, A. Csáki, D. Born: “Parallel approaches for the integration of individual molecular structures into electrode arrangements” EU Workshop “Nanotechnology Information Devices”, Madrid (Spain), January 31–February 2, 2005 W. Fritzsche: “Nanoparticle-Based Detection of DNA” German BioSensor Symposium, Regensburg, March 15–18, 2005 W. Fritzsche: “Nanoparticle-Based DNA Nanotechnology” German-Israeli Foundation G.I.F. Meeting on Nanotubes and Nanowires, Dresden, June 18–23, 2005 W. Fritzsche: „Mikro- und Nanosysteme für die Biosensorik“ 2. Jenaer Technologietag, September 12, 2005 W. Fritzsche: “Metal Nanoparticles in Bioanalytics” Bioinspired Nanomaterials for Medicine and Technologies BioNanoMaT, DECHEMA Conference, Marl, November 23–24, 2005 M. Kittler, X. Yu, M. Birkholz, T. Arguirov, M. Reiche, A. Wolff, W. Fritzsche, M. Seibt: “Self Organized Pattern Formation Of Biomolecules At Si Surfaces” European Materials Research Society Meeting, Strasbourg (France), May 31–June 3, 2005 R. Möller, W. Fritzsche: “Metal nanoparticle-based molecular detection: Principles and applications” Annual Meeting of the German and Austrian Societies for Clinical Chemistry and Laboratory Diagnostics, Jena, October 6–8, 2005 J. Popp: “Raman-Spectroscopy for a Rapid Identification of Single Microorganisms” 5th International Conference on Photonics, Devices and Systems, Prague (Czech Republic), June 8–11, 2005 J. Popp: “Photonics meets Life Science – Innovative Aspects of Laser Spectroscopy” XIV. Krakow – Jena Symposium on Physical Chemistry, Dornburg, October 4–6, 2005 J. Popp: „Innovative Bioanalytik mit Laserspektroskopischen Methoden“ Jenaer Technologie Tage (JETT), Jena, September 12, 2005 J. Popp: „Schwingungsspektroskopie zur Identifikation von einzelnen Mikroorganismen“ Fraunhofer IPA Technologieforum, Institutszentrum der Fraunhofer-Gesellschaft, Stuttgart-Vaihingen, November 24, 2005 J. Popp: “Rapid Microbe Identification by means of Raman-Spectroscopy” ECSBM 2005, Aschaffenburg, September 3–8, 2005 W. Fritzsche: “Nanoparticle-Based DNA Nanotechnology” EU Workshop “DNA-Based Nanowires”, Modena (Italy), October 7–8, 2005 J. Popp: „Vision Biophotonik – Licht für die Gesundheit: Ein BMBF-Forschungsschwerpunkt stellt sich vor“ Kaiser-Friedrich-Forschungspreis 2005 – Biophotonik, Goslar, May 3, 2005, W. Fritzsche: „Metallische Nanopartikel für die Bioanalytik“ BioHyTec Workshop „Moderne Aspekte der Biosystemtechnik“, Luckenwalde, November 17, 2005 J. Popp: “Biophotonik – Photonics meets Life Science”, Instituts-Kolloquium, Hochschule Reutlingen – Reutlingen University, May 18, 2005 75 MIKROSYSTEME / MICROSYSTEMS J. Vesenka: “Progree Towards Growth and Colloidal Gold Decoration of G-wire DNA” EU Workshop “DNA-Based Nanowires”, Modena, (Italy), October 7–8, 2005 T. Eick, A. Berger, D. Behrendt, U. Dillner, E. Kessler: “An Alternative Method for Measuring the Responsivity of Thermopile Infrared Sensors” Sensor 2005, 12th International Conference, Nürnberg, May 10–12, 2005, talk B1.1 Presentations/Posters J. Felbel, A. Sondermann, M. Kielpinski, M. Urban, I. Bieber, T. Henkel, W. Fritzsche: „Chip-Thermocycler für die Polymerase Kettenreaktion (PCR)“ Micro Systems Technology Congress 2005, Freiburg, October 10–12, 2005, Proceedings: VDE VERLAG GMBH•Berlin•Offenbach, p. 54, talk A. Brösing, B. R. Kracht, J. Felbel, M. Urban, M. Kielpinski, A. Reichert, T. Henkel, J. Weber, C. Gärtner, H.-P. Saluz, H. Krügel, T. Häfner, M. Dürst, U. Liebert, J. M. Köhler: “Serial DNA Amplification in Submicroliter Volumes by Implementation of Segmented Flow in Flow-through Micro Devices” 14th International Conference of Medical Physics and 39th Annual Meeting of the German Society for Biomedical Engineering, Nürnberg, September 14–17, 2005, talk A. Csáki, G. Maubach, F. Garwe, A. Steinbrück, K. König, W. Fritzsche: “A novel DNA restriction technology based on laser pulse energy conversion on sequence-specific bound metal nanoparticles” SPIE Photonics West, San Jose (USA), February 23–28, 2005, poster A. Csáki, G. Maubach, F. Garwe, A. Steinbrück, K. König, W. Fritzsche: “Sequence-Specific Bound Nanoparticles For A Novel Sub-Wavelength DNA Restriction Technology Based On Laser Pulse Energy Conversion” International Meeting “Focus on Microscopy”, Jena, March 20–23, 2005, poster A. Csáki, A. Steinbrück, S. Schröter, T. Glaser, W. Fritzsche: “Fabrication and characterization of nanophotonic metal structures” Intern. Symposium on Molecular Plasmonics, Jena, May 19–21, 2005, poster A. Csáki, F. Garwe, A. Steinbrück, A. Weise, G. Maubach, K. König, W. Fritzsche: “Laser-based sequence-specific DNA processing with sub-wavelength precision using DNAnanoparticle conjugates” Intern. Symposium on Molecular Plasmonics, Jena, May 19–21, 2005, poster A. Csáki, A. Steinbrück, W. Fritzsche: “Nanoparticle-based molecular plasmonics” 3. German-Canadian Workshop “Young Scientist in Photonics”, München, June 10–14, 2005, talk 76 A. Csáki, F. Garwe, A. Steinbrück, A. Weise, G. Maubach, K. König, W. Fritzsche: “Novel DNA restriction technology based on laser pulse energy conversion on sequence-specific bound metal nanoparticles” 3. German-Canadian Workshop “Young Scientist in Photonics”, München, June 10–14, 2005, poster W. Fritzsche, A. Csáki, A. Steinbrück, M. Raschke: “Metal nanoparticles as passive and active tools in bioanalytics” SPIE Photonics West, San Jose (USA), February 23–28, 2005, talk W. Fritzsche, A. Csaki, A. Steinbrück, F. Garwe, K. König, M. Raschke: “Metal Nanoparticles As Passive And Active SubWavelength Tools For Biophotonics” International Meeting “Focus on Microscopy”, Jena, March 20–23, 2005, talk W. Fritzsche: “DNA-based nanoparticle plasmonics for a highly parallel and integrated molecular nanotechnology” International Symposium on Molecular Plasmonics, Jena, May 19–21, 2005, talk W. Fritzsche: “DNA nanotechnology with metal particle conjugates for applications in bioanalytics and molecular construction” University of Southern Danemark, Odense, February 11, 2005, talk W. Fritzsche: „Charakterisierung im Nanobereich“ Weiterbildungsveranstaltung „Nanotechnologie“ im Haus der Technik, Essen, March 4, 2005, talk W. Fritzsche, A. Csáki, F. Garwe, G. Maubach, R. Möller, A. Steinbrück, M. Raschke, K. König: „Biokonjugierte metallische Nanopartikel als Tool für optische Detektion und Manipulation mit molekularer Spezifität“ Symposium im Rahmen des BiophotonikSchwerpunkts „Struktur und Dynamik biologischer Zellen mit optischen Methoden auf der Spur“, Jena, March 15–17, 2005, talk W. Fritzsche: “Nanoparticle-DNA-complexes for bioanalytics, nanoelectrics and nanophotonics” Weizmann Institute Rehovot, December 1, 2005 and Hebrew University Jerusalem, December 4, 2005, (Israel), talks MIKROSYSTEME / MICROSYSTEMS P. Grigaravicius, K. O. Greulich, S. Peters, P. Schellenberg: “Examining the influence of immobilization of proteins and their binding to ligands by probing their intrinsic UV-fluorescence decay” BioNanoMaterials, Marl, November 23–24, 2005, poster T. Henkel: “Measurement of phase internal flow of liquid/ liquid two phase flow in microchannels – approaches for control of mixing efficiency in microdroplets” Joint International PIVNET II/ERCOFTAC Workshop on Micro PIV and Applications in Microsystems, Delft (The Netherlands), April 7–8, 2005, talk E. Kessler, V. Baier, U. Dillner, J. Müller, A. Berger, R. Gärtner, S. Meitzner, K.-P. Möllmann: “High-Temperature Resistant Infrared Sensing Head” Sensor 2005, 12th International Conference, Nürnberg, May 10–12, 2005, talk A3.1 M. Kittler, X. Yu, O. F. Vyvenko, M. Birkholz, W. Seifert, M. Reiche, T. Wilhelm, T. Arguirov, A. Wolff, W. Fritzsche, M. Seibt: “Self-organized pattern formation of biomolecules at silicon surfaces” 2nd International Symposium on Complex Material, Volkswagen Foundation, Stuttgart, June 2–3, 2005, talk J. Lerchner, A. Wolf, G. Wolf, V. Baier, E. Kessler: “A new micro-fluid chip calorimeter for screening applications” 7th MEDICTA 2005, Thessaloniki (Greece), July 2–6, 2005, talk J. Lerchner, R. Hüttl, A. Wolf, G. Wolf, V. Baier, R. Födisch: “Chip Calorimeter for Bioanalytical Applications” 4. Deutsches BioSensor Symposium 2005, Regensburg, March 13–16, 2005, talk R. Petry, K. Gaus, K.-D. Peschke, H. Burkhardt, A. Wuttig, R. Riesenberg, J. Popp: „Modifiziertes, hochauflösendes UV-Mikro-Raman-Setup zur schwingungsspektroskopschen Untersuchung von Mikroorganismen“ Biophotonik-Symposium „Struktur und Dynamik biologischer Zellen mit optischen Methoden auf der Spur“, Jena, March 15–17, 2005, poster R. Riesenberg, A. Wuttig, R. Petry: „Neue leistungsfähige Spektrometer-Architekturen“ Biophotonik-Symposium „Struktur und Dynamik biologischer Zellen mit optischen Methoden auf der Spur“, Jena, March 15–17, 2005, talk R. Riesenberg: “Spectral Bioreader, spectral High-Throughput Screening” Presentation of the Campus Beutenberg in the MIREIKAN, Tokyo (Japan), September 11–14, 2005, poster A. Steinbrück, A. Csaki, C.-C. Neacsu, M. Raschke, W. Fritzsche: “Preparation and optical characterization of coreshell bi-metal nanoparticles” International Symposium on Molecular Plasmonics, Jena, May 19–21, 2005, poster A. Steinbrück, A. Csáki, G. Festag, W. Fritzsche: “Preparation and optical characterization of coreshell bi-metal nanoparticles” 3. German-Canadian Workshop “Young Scientist in Photonics”, München, June 10–15, 2005, poster A. Steinbrück, J. Vesenka, A. Csaki, G. Festag, W. Fritzsche: “Bi-metal nanostructures: Fabrication and characterization” 4. Internationaler Workshop “Scanning Probe Microscopy in Life Sciences”, Berlin, October 13, 2005, poster J. Vesenka, A. Wolff, A. Reichert, C. Holste, R. Möller, W. Fritzsche: “Progress towards growth and decoration of Gwire DNA with gold nanoparticles” EU Workshop “DNA-Based Nanowires”, Modena (Italy), October 7–8, 2005, poster J. Weber, J. Felbel, W. Fritzsche: „Biologische Gefahrstoffe unter Beobachtung – Biotechnologische Mikrosysteme zur Gewinnung von Sicherheitsinformationen“ Workshop „Neue Technologien – Ausblick in eine wehrtechnische Zukunft“, BMVg Bonn, November 17, 2005, talk A. Wolff, A. Csaki, W. Fritzsche: “Directed DNA-Immobilization on Solid Substrates” 2nd International Symposium on Complex Material, Volkswagen Foundation, Stuttgart, June 2–3, 2005, poster A. Wolff, A. Csaki, W. Fritzsche: “DNA Stretching and Positioning for Nano-electronics” German-Israeli Foundation G.I.F. Meeting on Nanotubes and Nanowires, Dresden, June 18–23, 2005, poster Patents R. Riesenberg, A. Wuttig: „Anordnung zur hochauflösenden digitalen InlineHolographie“ DE 10 2005 023 137.3 (15.05.2005) 77 MIKROSYSTEME / MICROSYSTEMS Lectures W. Fritzsche: „Nanobiotechnologie“ FSU Jena, Chemisch-Geowissenschaftliche Fakultät, Sommersemester 2005 G. Festag, Th. Schüler: „DNA-Goldnanopartikel-Addukte auf Chipoberflächen“ Praktikum „Molekulare Nanotechnologie“ für Studenten der TU Ilmenau, 12.–14.09.2005 W. Fritzsche: „Metallische Nanopartikel – Präparation, Charakterisierung, Anwendungen“ FSU Jena, Chemisch-Geowissenschaftliche Fakultät, Wintersemester 2005 G. Festag, G. Nitzsche: „Sequenzspezifischer DNA-Nachweis mittels Glasfasern“ Praktikum „Nanobiotechnologie“ für Schüler des Gymnasiums Rudolstadt (11. Klasse), 17.–28.10.2005 W. Fritzsche: „Nanocharakterisierung“ TU Ilmenau, Fakultät für Mathematik und Naturwissenschaften, Wintersemester 2005 T. Henkel, D. Malsch: “Microparticle imaging velocimetry (µ-PIV)” Praktikum für Studenten der TU Ilmenau September 2005 P. Schellenberg (mit R. Glaser, K. O. Greulich): „Biophysikalische Chemie II“ FSU Jena, Biologisch-Pharmazeutische Fakultät, Sommersemester 2005 R. Möller, G. Festag, W. Fritzsche: „Mikroskopische Untersuchungen an DNA-Nanopartikel-Komplexen“ Praktikum „Biophysikalische Chemie“ (Biochemie 5. Semester) für Studenten der FSU Jena WS 2004/2005, SS 2005, WS 2005/2006 P. Schellenberg: „Biomoleküle: Visualisierungen und Rechnungen am Computer“ FSU Jena, Biologisch-Pharmazeutische Fakultät und Multimediazentrum, Wintersemester 2005/ 2006 A. Wolff, A. Csaki: „Einführung in die Mikrosystemtechnik“ Betriebspraktikum des Carl-Zeiss-Gymnasiums Jena (9. Klasse) 31.01–03.02.05, 30.06.–12.07.05 Diploma Thesis Practical Trainee Thomas Schüler: „Chip-basierter elektrischer DNA-Nachweis zur Identifikation von Mikroorganismen“ Fachhochschule Jena, FB Medizintechnik, 09/05 Eileen Heinrich: „Chip-basierter Nachweis von DNA und Proteinen mittels Molekülklassen-spezifischer Markierung“ Fachhochschule Jena, FB Medizintechnik, 12/05 Laboratory exercises A. Csáki, A. Wolff, W. Fritzsche: „AFM-Untersuchungen an gestreckt-immobilisierter DNA“ Praktikum „Biophysikalische Chemie“ (Biochemie 5. Semester) für Studenten der FSU Jena WS 2004/2005, SS 2005, WS 2005/2006 A. Csáki, A. Wolff, W. Fritzsche: „AFM-Untersuchungen von DNA-Molekülen“ Ergänzungspraktikum für Genetik (11. Klasse) 27.6.2005–1.7.2005 78 J. Felbel, A. Reichert, W. Fritzsche: „PCR in Chip-Bauelementen“ Praktikum „Biophysikalische Chemie“ (Biochemie 5. Semester) für Studenten der FSU Jena WS 2004/2005, SS 2005, WS 2005/2006 Georg Ziegenhardt: „Aufbau von Anordnungen zur objektivlosen Mikroskopie“ practical semester, Fachhochschule Jena, 04–09/05 Guest Scientists Prof. Dr. J. Vesenka University of New England, Department of Chemistry and Physics, Biddeford, ME (USA) September 2005–January 2006 Dr. Shin-ichi Tanaka Osaka University, Graduate School of Frontier Biosciences (Japan) May 2004–April 2005 Memberships V. Baier Deutscher Verband für Schweißen und verwandte Verfahren e.V. (DVS), AG Waferbonden H. Dintner • Member of the Thuringian VDI/VDE working group „Mikrotechnik” MIKROSYSTEME / MICROSYSTEMS • Member of scientific council of AMA, Fachverband für Sensorik e.V. W. Fritzsche • Scientific Advisory Committee of the International Society for Nanoscale Science, Computation and Engineering (ISNSCE), • Working Committee “Micro Systems for Biotechnology” E. Keßler Gesellschaft für Thermische Analyse e.V., AK Thermophysik J. Popp • Editorial Board Member Journal of Raman Spectroscopy • Editorial Board Member ChemPhysChem • Member of Steering committee “International Conference on Raman Spectroscopy” • Member of Steering committee “Advanced Spectroscopies on Biomedical and Nanostructured Systems” • Member advisory board BioRegio Jena e.V. • Personal member: DPG, GDCh, Bunsen society R. Riesenberg • IRS2, International Conference and Exhibition on Infrared Sensors & Systems, programme committee and chair • CLEO Europe, 16th International Conference on Lasers and Electrooptics Europe of the Optical Society of America (OSA), programme committee • Participant of the Humboldt Foundation, German-American Frontiers of Engineering in Optics • Personal member: SPIE, DPG Awards Winner of the Poster Award of the 7. Dresdner Sensor Symposium, 12.–14.12.2005, Dresden, Poster Title: „Entwicklung von mikrofluidischen Chipelementen für biologische Anwendungen” The Cetoni GmbH was the winner of the “Innovationspreis Thüringen Ost 2005” for the development of an innovative microsyringe based multichannel, high precision liquid handling plattform, optimized for R&D and automation of microfluidic applications. The device is based on results of a joint project, between Cetoni GmbH and the IPHT, funded by the German Federation of Industrial Cooperative Research Associations “Otto von Guericke” (AiF). Conference Organization W. Fritzsche International Symposium “Molecular Plasmonics”, Jena, May 19–21, 2005 J. Popp Symposium „Struktur und Dynamik biologischer Zellen mit optischen Methoden auf der Spur“, Jena, March 15–17, 2005 79 LASERTECHNIK / LASER TECHNOLOGY 4. Lasertechnik / Laser Technology Leitung/Head: Prof. Dr. H. Stafast e-mail: herbert.stafast@ipht-jena.de Laserchemie / Laser Chemistry Leitung/Head: PD Dr. F. Falk fritz.falk@ipht-jena.de 4.1 80 Überblick Der Bereich Lasertechnik nutzt Laser als subtiles Werkzeug (Laserchemie) und als kontaktfreie Sonde (Laserdiagnostik). Die Hauptanwendungen als Werkzeug betreffen die Laserkristallisation von Silizium-Dünnschichten hauptsächlich für Solarzellen und zunehmend die Präparation von Silizium-Nanodrähten. Die Laserdiagnostik dient im Wesentlichen zur Charakterisierung von optischen Materialien, Dünnschichten und Komponenten sowie von Flammen. Für die Flammendiagnostik unter Mikrogravitation wird für den Fallturm Bremen ein abstimmbares und gepulstes UV-Scheibenlasersystem entwickelt. In allen genannten Gebieten zeigen die konsequente Aufbauarbeit in der Lasertechnik und ihre hohen Qualitätsstandards sehr gute Erfolge. Laserdiagnostik / Laser Diagnostics Leitung/Head: Prof. Dr. W. Triebel wolfgang.triebel@ipht-jena.de 4.1 Overview The division for Laser Technology applies lasers as subtle tools and as remote probes. The most important applications as a tool refer to laser crystallisation of silicon thin films for solar cells and increasingly to the preparation of silicon nanowires. Laser diagnostics is essentially used to characterise optical materials, thin films, and components as well as flames. For flame diagnostics under microgravity in the drop tower Bremen, a tuneable and pulsed UV disk laser system has been developed. Overall, the thorough establishment of laser technology and high quality standards are putting forth very good results. The Laser Chemistry section at IPHT is dominantly active in the field of solar cells (design and preparation) and is well established in the photo- LASERTECHNIK / LASER TECHNOLOGY Combination of prisms and mirror to achieve single line operation in the F2 laser of TUI Laser company. Diode laser crystallised seed layer with large grained crystalline silicon on glass (grains 10 – some 100 µm wide, several mm long). 81 LASERTECHNIK / LASER TECHNOLOGY Die Abteilung Laserchemie arbeitet zum größten Teil auf dem Gebiet der Solarzellen (Design und Herstellung) und ist in der Photovoltaik(PV) fest verankert, in F&E-Fachkreisen (z.B. PVUniNetz und Solar INPUT) und Industriepartnerschaften (z.B. Firma Ersol, Erfurt und Antec Solar, Arnstadt). Herausragendes Projektergebnis im Jahr 2005 ist die produktionsnahe Präparation von Silizium-Kristallkeimschichten mit einem industrietauglichen Diodenlasersystem, das neben einer deutlichen Kapazitätssteigerung durch eine Laserleistung von 0,7 kW gegenüber 10–20 W aus einem Ar+-Laser auch eine Kristallkeimvergrößerung von 0,01–0,1 mm auf 0,1 bis wenige mm bewirkt (s. Farbbildseite). In enger Zusammenarbeit mit dem Institut für Festkörperphysik der Friedrich-Schiller-Universität, dem MPI für Mikrostrukturphysik, Halle und der Uníversität Halle ist das neue Arbeitsfeld mit nanostrukturierten Halbleitern auf eine breitere Basis gestellt worden. Zu der bereits 2004 etablierten CVD-Methode sind zur Präparation von Nanodrähten aus Silizium die Elektronenstrahlverdampfung und die Laserablation hinzugekommen. Inzwischen gelingt es, Nanodrähte in Vorzugsrichtungen wachsen zu lassen (Abb. 4.2). Die Abteilung Laserdiagnostik hat ihre Methodenvielfalt um die Frequenzverdopplung (SHG = second harmonic generation) von Femtosekundenlaserpulsen an Grenzflächen erweitert (Doktorarbeit T. Scheidt „summa cum laude“, vgl. auch Abb. 4.6) und kann damit selbst monomolekulare Dünnschichten diagnostizieren. Die an optischen Massivmaterialien erprobten Transmissions- und Absorptionsmessungen haben mit der Doktorarbeit von Ch. Mühlig („magna cum laude“) einen neuen Qualitätsstandard erreicht (Abb. 4.4 und 4.5). Absorptionsmessungen mit Teststrahlablenkung (LID = laser induced deflection) und die laserinduzierte Fluoreszenz (LIF) gelingen zunehmend auch an Dünnschichten und optischen Komponenten durch Empfindlichkeitssteigerungen und/oder Konzeptverbesserungen der Messmethoden. 82 Die Entwicklung des Scheibenlasersystems (ADL-FT = Advanced Disk Laser für Fallturm) machte 2005 – in bewährter Zusammenarbeit mit dem IFSW (Stuttgart) und ZARM (Bremen) – große Fortschritte. Die Ergebnisse aus den ersten Fallturm-Abwürfen haben inzwischen zu Konzeptverbesserungen geführt. Im IPHT gelang mit diesem Lasertyp auch die kurzwellige Anregung von OH-Radikalen für die Flammendiagnostik, in Zusammenarbeit mit dem Bereich Mikrosysteme auch an Mikroflammen (ca. 5 mm breit, 35 mm hoch, Abb. 4.7). In Kooperation mit dem Bereich Optik gelang auch die Laserdiagnostik an Partikel-„beladenen“ Flammen, die beispielsweise zur Glassynthese dienen. voltaics R&D community (e.g. PVUniNetz and Solar INPUT) and in industrial partnerships (e.g. Ersol company, Erfurt and Antec Solar, Arnstadt). The prominent success in 2005 consists of the production relevant preparation of silicon crystalline seed layers with a laser diode system suitable for industrial application. Not only was the throughput increased by using a 0.7 kW diode laser instead of the previous 10–20 W Ar+ laser but also an enlargement of the crystallite size from 0.01–0.1 mm to 0.1–several mm was achieved (cf. coloured page). In close cooperation with the Institute of Solid State Physics at the Friedrich-Schiller-University, the Max-Planck-Institute of Microstructural Physics at Halle and the University of Halle, the new field of nanostructured semiconductors has been put onto an enlarged basis. The CVD method available in 2004 for nanowire preparation has been complemented by electron beam evaporation and laser ablation of silicon. Meanwhile we manage to grow epitaxial nanowires into preferred directions (Fig. 4.2). The Laser Diagnostics section has added frequency doubling (SHG = second harmonic generation) of femtosecond laser pulses on surfaces to its variety of experimental methods (PhD thesis of T. Scheidt “summa cum laude”, also cf. Fig. 4.6) enabling to characterize even monomolecular thin layers. The transmission and absorption measurement methods established with optical bulk materials achieved a new quality standard (PhD thesis of Ch. Mühlig, “magna cum laude”, also cf. Figs. 4.4 and 4.5). Absorption measurements with laser induced deflection (LID) of a probe beam and the laser induced fluorescence (LIF) now can more and more be transferred to thin films and optical components due to sensitivity enhancements and/or improved concepts of the measurement methods. The development of the disk laser system (ADL FT = Advanced Disk Laser for “Fallturm”) showed – in the experienced cooperation with IFSW (Stuttgart) and ZARM (Bremen) – much progress in 2005. The results of the first experiments in the drop tower meanwhile induced several conceptual improvements. At IPHT, experiments with this kind of laser were performed at short wavelengths suitable to excite OH radicals in flames, in cooperation with the division for Microsystems even in microflames (5 mm broad, 35 mm high, Fig. 4.7). In cooperation with the Optics division laser diagnostics could be shown for particle “loaded” flames suitable e.g. for glass synthesis. Due to the extraordinary efforts of all coworkers during 2005 the division for Laser Technology managed to nearly maintain its project funds, level of publications, and patents in spite of the tough situation with governmental funds and the LASERTECHNIK / LASER TECHNOLOGY Dank besonderem Engagement aller Mitarbeiter konnte der Bereich Lasertechnik 2005 trotz der verschärften Situation bei den öffentlichen Fördermitteln und des allgemein geringen Wirtschaftswachstums sein Niveau bei den Drittmittelprojekten, Veröffentlichungen und Patenten wenigstens in etwa halten. Das Drittmittelaufkommen von rund 1,0 Mio “ liegt merklich unter dem Niveau des Vorjahres (1,2 Mio “). Insgesamt haben jedoch die mit dem Umzug erreichten kurzen Wege zu den anderen IPHT-Forschungsbereichen einen deutlichen Zuwachs bei der bereichsübergreifenden Zusammenarbeit bewirkt. generally poor rate of economic growth. The project funds in 2005 of about 1.0 Mio are close to the amount of 2004 (1.2 Mio “). Overall the move to the Beutenberg campus yielded, however, a considerable strengthening of trans-divisional cooperation due to the short distances to the other IPHT research divisions. 4.2 Selected Results 4.2.1 Laser chemistry Berlin, Solar-Zentrum Erfurt at CiS, Ersol company at Erfurt, and INPUT Solar, a Thuringian association of photovoltaic industrial companies and R&D institutes. Laser chemistry at IPHT is essentially concerned with the deposition of thin films and thin film systems, their physicochemical modification (particularly laser crystallisation) and some special items like spectroscopic diagnostics of thin film processing, nanowire preparation, and fs laser micromachining. Laser crystallisation (Gudrun Andrä, Joachim Bergmann, Arne Bochmann, Fritz Falk, Annett Gawlik, Ekkehardt Ose) For several years, IPHT has been aiming at the preparation of thin film solar cells consisting of large grained crystalline silicon on glass. The development of this new cell type is based on the deposition of amorphous silicon either by plasma CVD from SiH4 (13.6 MHz) or by electron beam evaporation of bulk silicon and its in situ laser crystallisation. In a first step large crystal grains are obtained from 300–500 nm thick amorphous silicon layers by cw laser crystallisation (seed layer formation). Subsequently the seed layer undergoes epitaxial thickening by pulsed Layered Laser Crystallisation (LLC), an IPHT patented method. So far laboratory cells with an open circuit voltage of 510 mV and a conversion efficiency of 4.8% based on an absorber thickness of 5 µm were obtained. Recent work addressed the acceleration (industrial application) and optimisation of the seed layer formation by applying a 700 W diode laser focused to a line and scanned across the substrates to achieve crystallite sizes of 0.1 to several mm (cf. coloured page). Additional progress for the solar cell performance is expected from improving light trapping, improving contact and shunt resistances as well as minimising charge carrier recombination. The related work benefits from the discussions and cooperation with the Hahn-Meitner-Institute (HMI) at Thin film deposition and nanowire growth (Gudrun Andrä, Fritz Falk, Herbert Stafast, Thomas Stelzner) The deposition of Si/C/N thin films for tribological applications by RF plasma enhanced CVD using single source precursors was performed within the DFG program SPP 1119 in close cooperation with TU Darmstadt and RWTH Aachen. IPHT contributed to the understanding of the complex CVD processes by comparing Si/C/N thin films obtained from two precursors, hexamethyldisilazane (CH3)3Si-NH-Si(CH3)3 (HMDS) and bis(trimethylsilyl)carbodiimide (CH3)3Si-N=C=NSi(CH3)3 (BTSC). Hard Si/C/N thin films were obtained on the RF powered, but not on the grounded electrode. Therefore a heating system for the RF electrode was developed which allowed to investigate the substrate temperature dependence of the thin film properties. As an example the temperature dependence of the film hardness is sketched out in Fig. 4.1. Fig. 4.1: Martens hardness of Si/C/N thin films obtained from HMDS or BTSC as a function of the subtrate temperature. 83 LASERTECHNIK / LASER TECHNOLOGY As a new field of research at IPHT, silicon nanowires are grown by thermal and plasma enhanced CVD from SiH4 or electron beam evaporation via a gold nanodot supported vapor-liquid-solid mechanism. This work is performed in close cooperation with the universities of Jena and Halle as well as the Max-Planck-Institute of Microstructural Physics at Halle. Evidently the nanowire growth conditions now can be sufficiently controlled to achieve well oriented epitaxial silicon wires with diameters ranging from 50 nm to 1 µm (Fig. 4.2). Laser ablation (Gudrun Andrä, Fritz Falk, Joachim Bergmann, A. Bochmann) Femtosecond (fs) laser ablation for micromachining of hard metal tools as a spin-off from an InnoRegio project was presented at the LASER 2005 fair at Munich. The potential of fs laser micromachining could, in addition, be demonstrated in case of a diamond tip sharpened by fs laser ablation (Fig. 4.3). This result demonstrates the importance of nonlinear processes as diamond has an indirect bandgap of 5.48 eV (direct: 7.3 eV) which is very large in comparison to the laser photon energy of 1.6 eV. Fig. 4.3: Diamond tip sharpened by fs laser ablation. 4.2.2 Laser diagnostics The Laser Diagnostics section applies different types of lasers as remote and contactless probes particularly to characterise optical materials, components, and thin films and to investigate flames. Some years ago, the development of solid state lasers dedicated to flame diagnostics has been successfully established. Fig. 4.2: Silicon nanowires grown by CVD on Si(111), Si(100), and Si(110) surfaces (top to bottom). 84 In 2005 two high ranking PhD theses were submitted to the Friedrich-Schiller-University: Ch. Mühlig could considerably improve the understanding of the ArF laser pulse absorption by fused silica and CaF2 (magna cum laude). In both materials laser absorption is related to the generation and annealing of defects. T. Scheidt revealed 5 new laser induced effects at the technologically important Si/SiO2 interface applying the surface second harmonic generation (SSHG) method using fs laser pulses (summa cum laude). He performed his experiments at the Laser Research Institute at the University of Stellenbosch, South Africa, after having built up the fs laser laboratory from scratch. LASERTECHNIK / LASER TECHNOLOGY UV optical materials (Alfons Burkert, Siegfried Kufert, Christian Mühlig, Wolfgang Triebel) UV laser lithography and other laser applications impose severe challenges on the optical quality and laser durability of bulk and thin film materials. IPHT has specialised for more than one decade on selected methods for their characterisation. Experience has been accumulated in close cooperation with Schott Lithotec company as the longstanding industrial partner as well as Jenoptik L.O.S. and Layertec companies and the FhG IOF within the last few years. The facilities, knowledge and experience of these institutions and IPHT complement each other to their mutual benefit, making Jena a place of high standards at the leading edge worldwide. The measurement methods at IPHT using excimer lasers at 248, 193, and 157 nm comprise (i) UV laser beam transmission, (ii) measurement of absorption by the laser induced probe beam deflection (LID) method, (iii) laser induced fluorescence (LIF), (iv) pulsed UV laser Raman spectroscopy, (v) vacuum UV spectroscopy, and (vi) wavefront deformation (S-H sensor). These have been complemented by (vii) surface second harmonic generation (SSHG) using fs laser pulses. small H values and unequivocally revealed a nonlinear dependence. This finding has a great impact on the extrapolation of the α(H=0) values which usually are used to estimate the materials` quality and laser durability. The α(H) data are reproduced by an empirical absorption model in the whole investigated H range (Fig. 4.4: solid line). In addition, the LID method can be calibrated absolutely and can separate laser absorption in the bulk material from that on surfaces. Bulk and surface absorption are calibrated by applying electrical resistance heaters introduced into the sample or attached to the selected sample surface area, respectively (Fig. 4.5). The method of sample surface heating has also been used to calibrate laser absorption in optical thin films, e.g. absorption in dielectric layers of highly reflective mirrors. The progress in investigating bulk absorption of excimer laser pulses by fused silica gained by applying the LID method becomes easily apparent in Fig. 4.4. Looking at the fluence dependence of the ArF laser absorption, it previously appeared to be a linear relation between the absorption coefficient α and the fluence H. These results from the Laser Laboratory Göttingen obtained by calorimetry were, however, limited to the high H region. The improved sensitivity of the LID method at IPHT (cf. e.g. annual report 2004) enabled us to investigate the α(H) behaviour at Fig. 4.5: Samples prepared for absolute calibration of laser absorption by using electrical resistance heaters introduced into the sample (bulk absorption) or attached to the sample surface (surface absorption). Fig. 4.4: ArF laser absorption coefficients α of fused silica as a function of the applied laser energy fluence H; α values in high H range obtained by calorimetry and α values in low H range by LID method (cf. text). The investigation of (inner) surfaces and thin films can be conveniently performed by SSHG. As an example Fig. 4.6 demonstrates that the SSHG signal obtained from the interface between silicon and its 5 nm thin natural oxide layer is sensitive to p-type doping of the silicon sample: The electric field induced SH (EFISH) signal at the beginning of irradiation is very small (no or low doping, upper part) or large (high doping, lower part). The signal development during irradiation shows how the doping induced field 85 LASERTECHNIK / LASER TECHNOLOGY Fig. 4.7: 2D-LIF image of OH in small flame on top of microburner with 380 µm channel width. Fig. 4.6: EFISH signal development (cf. text) at Si/SiO2 surfaces with oxidized silicon of low (upper part) and high p-type doping (lower part). across the Si/SiO2 interface is steadily compensated and overwhelmed by laser induced electron injection into the SiO2 layer building up an electric field of opposite direction. In addition the SSHG method was successfully applied to detect the damage of monomolecular surface layers induced by excimer laser irradiation. Further investigations of optical materials and components in 2005 refer to the laser durability of fused silica (undesired microchannel formation), CaF2 (HELD = high energy laser durability project), optical layers (impurity and defect detection) as well as the performance of optical functional elements. Combustion processes (Dirk Müller, Wolfgang Paa, Wolfgang Triebel) Laser diagnostics is applied to investigate steady state and dynamic flames up to pulse repetition rates of 1 kHz. The well-established detection of OH radicals by LIF now has – in cooperation with the Optics division – also successfully been applied to flames of industrial burners containing particles (loaded flames) and used to determine local gas temperatures. On the other hand, the LIF method is capable of characterising very small flames created by microburners which were prepared in the division for Microsystems (Fig. 4.7). 86 The breadboard model of the advanced disk laser system (ADL) at IPHT Jena was further improved and tested to generate 2D-LIF images of OH in flames. This required generating the third harmonic of the ADL pulses efficiently with sufficiently high pulse energy. Furthermore, some preliminary work has been performed towards fast wavelength switching of the ADL system using the available tuning components at the high laser pulse repetition rate. Moreover the ADL-FT (Fallturm) system was tested in several drops with maximum deceleration of about 35 g in polystyrene granulate: Evidently the laser system survives these procedures. Convection, however, is still present in front of the laser disk and changes when microgravity conditions start. These changes are small but sufficient to influence the laser operation so that some revisions of the laser system and operation are required. 4.3 Appendix Partners (in alphabetical sequence) in Jena and Thuringia: • CiS Institut für Mikrosensorik, Erfurt • Ersol Solar Energy AG, Erfurt • Fachhochschule (University of Applied Sciences) Jena • Fraunhofer-Institut für Angewandte Optik und Feinmechanik (IOF), Jena • Friedrich-Schiller-Universität, Jena Institut für Festkörperphysik und Astrophysikalisches Labor • Institut für Fügetechnik und Werkstoffprüfung (IFW), Jena • ITP GmbH, Weimar • Jenoptik Laser.Optik.Systeme GmbH, Jena • Jenoptik Laserdiode GmbH, Jena • Layertec GmbH, Mellingen • LLT Applikation GmbH, Ilmenau • MWS Schneidwerkzeuge GmbH&Co. KG, Schmalkalden LASERTECHNIK / LASER TECHNOLOGY • PV Silicon GmbH, Erfurt • Schott Lithotec AG, Jena • Technische Universität Ilmenau, Institut für Physik • Technische Universität Ilmenau, Institut für Werkstofftechnik • U. Speck Sensorsysteme GmbH, Jena in Germany: • • • • • • • • • • • • • • • • • • • • • • • • Carl Zeiss Oberkochen GmbH (CZO) Carl Zeiss SMT AG DLR Verbrennungsforschung, Stuttgart Hahn-Meitner-Institut (HMI), Berlin Heraeus Tenevo, Bitterfeld Innovavent GmbH, Göttingen Institut für Solarenergieforschung GmbH, Hameln Lambda Physik AG, Göttingen Laser Labor Göttingen (LLG) Laser Zentrum Hannover (LZH) Leica Microsystems Wetzlar GmbH Martin-Luther-Universität Halle, Fachbereich Physik Max-Planck-Institut für Mikrostrukturphysik, Halle Neon Products GmbH (NP), Aachen Neon Technik Leipzig GmbH (NEL) Öl-Wärme-Institut gGmbH, Aachen Schott FT, Mainz Technische Universität München, Lehrstuhl für Thermodynamik TUI Laser AG, Germering/München Universität Erlangen, Lehrstuhl für Technische Thermodynamik Universität Stuttgart, Institut für Strahlwerkzeuge Universität Stuttgart, Institut für Thermodynamik TU Dresden, Lehrstuhl für Verbrennungsmotoren Zentrum für Angewandte Raumfahrttechnik and Mikrogravitation (ZARM), Universität Bremen in foreign countries: • NASA, Glenn Research Center, Cleveland, Ohio, USA • University of Lund, Sweden, Combustion Physics • University of New Mexico, USA, Dept. Physics and Astronomy • University of Rennes I, France, Sciences et Propriete de la Matiere • University of Stellenbosch, South Africa, Physics Department • University of Vigo, Spain, Dept. of Applied Physics G. Andrä, J. Bergmann, F. Falk “Laser crystallized multicrystalline silicon thin films on glass” Thin Solid Films 487 (2005) 77–80 A. Baum, D. Grebner, W. Paa, W. Triebel, M. Larionov, A. Giesen “Axial Mode Tuning of a Single Frequency Yb:YAG Thin Disk Laser” Appl. Phys. B 81 (2005) 1091–1096 A. Burkert, W. Triebel, Ch. Mühlig, D. Keutel, L. Parthier, U. Natura, S. Gliech, S. Schröder, A. Duparré “Investigating the ArF laser stability of CaF2 at elevated fluences” Proc. SPIE 5878 (2005) pp. E-1–E-8 F. Garwe, U. Hübner, T. Clausnitzer, E.-B. Kley, U. Bauerschäfer “Elongated gold nanostructures in silica for metamaterials: theory, technology and optical properties” Proc. SPIE 5955 (2005) pp. 59550T-1–59550T- 8 Ch. Mühlig, W. Triebel, J. Bergmann, S. Kufert, S. Bublitz, H. Bernitzki, M. Klaus “Absorption and fluorescence measurements of DUV/VUV coatings” Proc. SPIE 5963 (2005) pp. 59630P-1–59630P-8 D. Müller, W. Paa, W. Triebel, C. Menzel, K. Lucka, H. Köhne „PLIF – Diagnostik von Formaldehyd mit kHzRepetitionsrate in der Mischzone von flüssigen Brennstoffen und vorgeheizter Luft“ VDI-Berichte Nr. 1888 (2005) 355–360 W. Paa, D. Müller, A. Gawlik, W. Triebel “Combined Multispecies PLIF Diagnostics with kHz Rate in a Technical Fuel Mixing System Relevant for Combustion Processes” Proc. SPIE 5880 (2005) pp. N-1–N-8 D. Probst, H. Hoche, H. Scheerer, E. Broszeit, C. Berger, Y. Zhou, R. Hauser, R. Riedel, Th. Stelzner, H. Stafast “Development of PE-CVD Si/C/N:H-films for Tribological and Corrosive Complex-Load Conditions” Surf. Coat. Technol. 200/1-4 (2005) 355–359 T. Scheidt, E. G. Rohwer, H. M. v. Bergmann, H. Stafast “Femtosecond laser diagnostics of thin films, surfaces and interfaces” South African J. Science 101(2005) 267–271 Publications T. Scheidt, E. G. Rohwer, H. M. von Bergmann, E. Saucedo, L. Fornaro, E. Dieguez, H. Stafast “Optical second harmonic imaging of PbxCd1-x Te ternary alloys” J. Appl. Phys. 97 (2005) 103104-1–103104-6 G. Andrä, J. Bergmann, F. Falk, E. Ose, S. Dauwe, T. Kieliba, C. Beneking “Characterization and Simulation of Multicrystalline LLC-Si Thin Film Solar Cells” Proc. 20th Europ. PVSEC, Barcelona, Spain, June 06–10, 2005, pp. 1171–1174 Th. Stelzner, M. Arold, F. Falk, H. Stafast, D. Probst, H. Hoche “Single source precursors for plasma-enhanced CVD of SiCN films, investigated by mass spectrometry” Surf. Coat. Technol. Vol 200/1-4 (2005) 372–376 87 LASERTECHNIK / LASER TECHNOLOGY Th. Stelzner, F. Falk, H. Stafast, D. Probst, H. Hoche “Plasma-enhanced CVD of hard SiCN thin films using bis-(trimethylsilyl)-carbodiimide or hexamethyl disilazane as single source precursors” Proc. Internat. Symp. EUROCVD-15, Bochum Vol. 2005-09 pp.1014–1020 A. Burkert, W. Triebel, Ch. Mühlig, D. Keutel, L. Partier, U. Natura, S. Gliech, S. Schröder, A. Duparré “Investigating the ArF laser stability of CaF2 at elevated fluences” Talk at SPIE Optics & Photonics, San Diego, USA, July 31–August 4, 2005 W. Triebel, Ch. Mühlig, S. Kufert “Application of the laser induced deflection (LID) technique for low absorption measurements in bulk materials and coatings” Proc. SPIE 5965 (2005) pp 59651J-1–59651J-10 F. Garwe, U. Hübner, T. Clausnitzer, E.-B. Kley, U. Bauerschäfer “Elongated gold nanostructures in silica for metamaterials: theory, technology and optical properties” Talk at SPIE, Warschaw, Poland, August 28– September 2, 2005 Presentations (Talks and Posters) H. Stafast „Der Laser als kontaktfreie Sonde“ Vortragsreihe Heinrich-Böll-Gymnasium/Rotary Club Talk at Heinrich-Böll-Gymnasium, Saalfeld, February 14, 2005 H. Stafast, D. Müller, W. Paa, W. Triebel, A. Burkert „Moderne Entwicklungen der planaren laserinduzierten Fluoreszenz für die Laserdiagnostik von Verbrennungsprozessen“ Poster at 19. Vortragstagung GDCh-Fachgruppe Photochemie, Jena, March 29–31, 2005 F. Falk „Laserkristallisation von Halbleitern“ Talk at WIAS-Kolloquium, Berlin, April 4, 2005 H. Stafast „Laserdiagnostik an Flammen – Methoden- und Geräteentwicklung“ Talk at Colloquium, Institute of Physical and Theoretical Chemistry, University of Frankfurt/Main, May 23, 2005 G. Andrä, J. Bergmann, F. Falk, E. Ose, S. Dauwe, T. Kieliba, C. Beneking “Characterization and Simulation of Multicrystalline LLC-Si Thin Film Solar Cells” Poster at 20th Europ. PVSEC, Barcelona, Spain, June 06–10, 2005 J. Bergmann, A. Bochmann, R. Stober „Mikromaterialbearbeitung mit dem Ultrakurzpulslaser“ Poster at “Laser 2005”, München, June 13–16, 2005 F. Falk “Laser crystallization – a way to produce crystalline silicon films on glass or on polymer substrates” Talk at 16th Amer. Conf. Crystal Growth and Epitaxy, Big Sky, Montana, USA, July 10–14, 2005 88 W. Paa, D. Müller, A. Gawlik, W. Triebel “Combined Multispecies PLIF Diagnostics with kHz Rate in a Technical Fuel Mixing System Relevant for Combustion Processes” Talk at SPIE Optics & Photonics 2005, San Diego, USA, July 31–August 4, 2005 Th. Stelzner, F. Falk, H. Stafast, D. Probst, H. Hoche “Plasma-enhanced CVD of hard SiCN thin films using bis-(trimethylsilyl)-carbodiimide or hexamethyl disilazane as single source precursors” Talk at EUROCVD-15, Bochum, September 04–09, 2005 W. Triebel, Ch. Mühlig, S. Kufert “Application of the laser induced deflection (LID) technique for low absorption measurements in bulk materials and coatings” Talk at SPIE Optical Systems Design, Jena, September 12–16, 2005 Ch. Mühlig, W. Triebel, J. Bergmann, S. Kufert, S. Bublitz, H. Bernitzki, M. Klaus “Absorption and fluorescence measurements of DUV/VUV coatings” Talk at SPIE Optical Systems Design, Jena, September 12–16, 2005 W. Triebel “Characterization of DUV optical materials by LIF and direct absorption measurements” Talk at Boulder Damage Symposium, Boulder, USA, September 19–21, 2005 D. Müller, W. Paa, W. Triebel, C. Menzel, K. Lucka, H. Köhne „PLIF – Diagnostik von Formaldehyd mit kHzRepetitionsrate in der Mischzone von flüssigen Brennstoffen und vorgeheizter Luft“ Talk at 22. Deutscher Flammentag, Braunschweig, September 21–22, 2005 H. Stafast “Laserdiagnostics in Flames – Development of methods and tools” Talk at Colloquium of Laser Research Institute, University of Stellenbosch, South Africa, October 11, 2005 F. Falk, G. Andrä „Herstellung von Dünnschichtsolarzellen mit Hilfe von Excimerlasern“ Talk at Technologieseminar: Laseranwendungen in der Photovoltaik, Göttingen, November 8, 2005 LASERTECHNIK / LASER TECHNOLOGY F. Falk „Mikromaterialbearbeitung mit dem Ultrakurzpuls-Laser“ Poster at TransferX-Messe, Dresden, November 09–11, 2005 Björn Eisenhawer: Wachstum von Si-Nanowires mittels Chemical Vapor Deposition Friedrich-Schiller-University, Jena, Faculty of Physics and Astronomy Supervisors: Dr. F. Falk/Dr. G. Andrä W. Triebel „Charakterisierung UV-optischer Dünnschichten durch LIF und direkte Absorptionsmessung“ Talk at TransferX-Messe, Dresden, November 09–11, 2005 Sven Germershausen: Untersuchungen zur Laserkristallisation von Germaniumschichten auf Glassubstraten University of Applied Sciences, Jena, SciTec Supervisor: Dr. G. Andrä Patents G. Andrä, F. Falk „Dünnschichtsolarzelle und Verfahren zur Herstellung eines Halbleiterbauelements“ DE 10 2005 045 096.2 (21.09. 2005) Michael Kaiser: Präparation von Solarzellen in multikristallinen LLC-Si-Schichten Technical University of Ilmenau, Mechanical Engineering Supervisors: Dr. F. Falk/Dr. G. Andrä Laboratory Exercises Lectures H. Stafast „Angewandte Lasertechniken“, 2-stündige Wahlvorlesung über 4 Semester an der FriedrichSchiller-Universität, Winter 2004/2005 bis Winter 2005/2006 F. Falk „Photovoltaik“, 2-stündige Wahlvorlesung an der Friedrich-Schiller-Universität, Winter 2004/2005 „Elastizitätstheorie“, 2-stündige Wahlvorlesung an der Friedrich-Schiller-Universität, Sommer 2005 „Thermodynamik der Phasenübergänge“, 2stündige Wahlvorlesung an der Friedrich-SchillerUniversität, Winter 2005/2006 PhD Theses Torsten Scheidt: Charge Carrier Dynamics and Defect Generation at the Si/SiO2 Interface Probed by Femtosecond Optical Second Harmonic Generation*) Friedrich-Schiller-University, Jena, Faculty of Physics and Astronomy Supervisor: Prof. H. Stafast *) work at University of Stellenbosch, South Africa Christian Mühlig: Zur Absorption gepulster ArFLaserstrahlung in hochtransparenten optischen Materialien Friedrich-Schiller-University, Jena, Faculty of Physics and Astronomy Supervisor: Prof. H. Stafast Diploma and Bachelor Theses Markus Arold: Massenspektroskopie an Ausgangsstoffen zur PE-CVD von Si-C-N-Schichten Friedrich-Schiller-University, Jena, Faculty of Physics and Astronomy Supervisor: Prof. H. Stafast Ch. Noppeney, Fachhochschule Jena, Physikalische Technik Ch. Voigtländer, Friedrich-Schiller-Universität, Jena, Technische Physik J. Grasemann, O. Pabst, D. Rettig, Carl-ZeissGymnasium (Spezialklasse), Jena M. Aubel und R. Pagel, Staatl. Berufsbildendes Schulzentrum Jena Göschwitz, Höhere Berufsfachschule M. Röder, FH Coburg Commitees G. Andrä – Executive Committee, INPUT Solar, Thuringia W. Triebel – Program Committee “Optical Diagnostics”, SPIE Conf., San Diego, USA, August 2005 – DUV/VUV Optics, Common working group of PhotonicNet and OptoNet – GET-UP initiative for start-up companies Award H. Stafast, professor extraordinary of University of Stellenbosch, South Africa Exhibitions – LASER 2005, World of Photonics, Munich – TransferX fair, Dresden – Faszination Licht, Goethegalerie, Jena New Equipment Thin film deposition unit with several material sources 89 INNOVATIONSPROJEKT / INNOVATION PROJECT E. Innovationsprojekt 2005 / Innovation Project 2005 Nanostructured Ta2O5 layers for optochemical/biophotonic sensors and solar cells (S. Schröter, U. Hübner, W. Morgenroth, R. Boucher, R. Pöhlmann, G. Schwotzer, T. Wieduwilt, S. Brückner, U. Jauernig, A. Csáki, W. Fritzsche, G. Andrä, E. Ose) Tantalum pentoxide layers are particularly suitable for a variety of optical applications due to their high refractive index, low absorption from the visible to the infrared, good adhesion to glass and silicon substrates, and high resistance to acids and bases. Furthermore, nanoporous Ta2O5 layers could be a promising material for optical sensors. We have investigated several fabrication technologies for optical waveguide grating couplers and two-dimensional resonant gratings in compact and nanoporous Ta2O5 layers as devices for optochemical and biophotonic sensors, and characterised their optical properties. Because of the afore mentioned optical properties and the high melting point of about 1800 °C, Ta2O5 has potential as an intermediate layer for thin film solar cells. Waveguide grating couplers Electron beam exposure (LION LV1) or DUV interference lithography at 244 nm were applied to the patterning of about 300 nm thick resist (ZEP or ARP610) gratings with periods of 410 to 420 nm atop a NiCr/C/NiCr hard mask sputtered onto the Ta2O5 layers on quartz or borofloat glass substrates. The resist gratings were transferred by a multi-step etching process into the bottom NiCr layer, and from this by Ar-IBE, 40 to 70 nm into the Ta2O5 layer. An example is shown in Fig. E1. For the nanoporous layers it was necessary to cool the substrate down to –20 °C during etching in order to maintain porosity. At higher temperatures it is supposed that a compaction of the material occurs. The sensor functionality for the nanoporous layers was also verified by considering the adsorption isotherms in water vapour as an example. Fig. E2 shows the transmission spectra of a grating coupler for the case of a grating with a period of 416 nm etched into a 600 nm thick nanoporous Ta2O5 layer at two different water vapour pressures of 3.5 ·10–2 mbar (dry) and 22 mbar (wet). The magnitude of the spectral shifts depends on the quantity of water molecules adsorbed in the nanopores and the related refractive index change. Fig. E2: Spectral shift of transmission minima with humidity due to the coupling of the normally incident TE polarised light with two different waveguide modes. The observed shifts of 8.5 and 9.3 nm for the short and long wavelength minimum, respectively, are in good agreement with a change in the refractive index from about 2.01 to 2.05. 90 Fig. E1: SEM picture of a grating with a period of 416 nm etched 67 nm into a 147 nm thick Ta2O5 layer. The visible surface texture is created by the gold coating for the SEM. 2D resonant waveguide gratings Resonance diffraction effects from 2D dielectric gratings can be used to create very sensitive angle and/or wavelength encoded sensors. Ta2O5 layers perforated with square or triangular lattices of air holes are suitable for this purpose. Gratings with a period of e.g. 620 nm exhibit, for hole diameters between about 200 and 400 nm, pronounced resonant diffraction properties at least within the spectral region from 700 to 1350 nm. The fabrication technology was essentially the same as for the grating couplers. The ARP671 resist masks were created by e-beam exposure (ZBA23). In order to obtain steep edge profiles an ECR-RIE process with a CF4/CHF3 plasma was applied to transfer the pattern from the NiCr mask INNOVATIONSPROJEKT / INNOVATION PROJECT into the Ta2O5 layers. Unlike for porous layers the samples of compact material had to be heated up to 150 °C for optimal results. An example of a triangular grating in nanoporous Ta2O5 is shown in Fig. E3. Fig. E3: Triangular grating with a period of 620 nm and an average hole diameter of about 230 nm at the top etched 150 nm into a 600 nm thick layer of porous Ta2O5 imaged at 0° and 60°. The polarisation independent transmission spectra for normal incident light for the case of a dry and wet environment are displayed in Fig. E4. The pronounced transmission minima at λ > 830 nm are caused by resonant diffraction effects. Fig. E5: Simulated transmission properties of a grating with the parameters given in Fig. E3, assuming cylindrical holes with a diameter of 210 nm. A variety of different devices which include the square lattices of holes have been fabricated in compact and humidity sensitive Ta2O5 layers and are currently under detailed investigation. The nanoporous tantalum pentoxide samples were provided by the Fraunhofer IOF in Jena and investigated here mainly because it could be possible selectively to measure the moisture content of other than water vapour analytes. The filling of the holes of two-dimensional gratings with metallic nanoparticles provides an opportunity for the biosensing of e.g. DNA molecules immobilised on gold nanoparticles. This method utilises the special plasmon scattering properties of the ordered arrays. Chemically activated samples with 2D-gratings were placed at an angle into preheated (80 °C) colloidal nanoparticle solutions (30 nm in diameter) with a concentration of 2 · 1011 particles/ml. During the drying process the receding meniscus causes an influx of the metal nanoparticles into the holes, see Fig. E6. Fig. E4: Spectral shift of the transmission minima between dry and wet samples (∆λmin = 10.4 and 13.5 nm for the first and second resonance wavelength, respectively). By simulating the transmission behaviour with a rigorous coupled wave method, a sufficient agreement with the experiment was obtained for 150 nm deep cylindrical holes with a diameter of 210 nm, see Fig. E5. A change of the refractive index from 1.97 to 2.01 yields ∆λmin = 13 and 15 nm for the first and second transmission minimum, respectively, and all wavelengths of the transmission minima differ from the experimental values by less than 1.5 nm. Fig. E6: Transmission mode optical micrograph of a 2D grating in Ta2O5 (square array with a period of 620 nm) when the holes are partially filled with gold particles. 91 INNOVATIONSPROJEKT / INNOVATION PROJECT The varying shades (spectrum from white to greenish-blue in a colour picture) indicate the different level of filling and positioning accuracy. In order to improve the homogeneity a further optimisation of this technique is required. Thin film solar cells For the first time layered laser crystallised (LLC) thin film solar cells were prepared on borofloat glass substrates covered with a tantalum pentoxide layer. Our standard cell structure is sketched in Fig. E7. Immediately on top of the borofloat glass sub- Fig. E7: Design of a standard LLC cell. strate a multicrystalline silicon layer system with grains exceeding 100 µm in size is deposited. The layer system consists of a p+-doped highly conductive seed layer, a p-doped absorber layer and an n-doped emitter layer. A metal electrode acts as a light reflector. The seed layer is prepared by cw laser crystallisation of amorphous silicon. The absorber and emitter are prepared by continuously depositing amorphous silicon on top of the seed combined with repeated excimer laser irradiation in order to guarantee epitaxial growth. In various papers it has been demonstrated that intermediate layers between the glass and silicon may increase the cell efficiency by reducing the reflection loss. Moreover, the barrier may act as a light trapping structure due to surface scattering and as a diffusion barrier against foreign atoms of the glass. In the case of LLC cells the intermediate layer has to withstand the laser crystallisation process. Standard layers 92 usually applied in solar cells such as SnO2, ZnO or a-SiNx:H do not meet this requirement. Because of its suitable optical properties and high melting point of above 1800 °C we expect tantalum pentoxide layers to be an interesting alternative. Therefore, we tested the laser stability of this material. We demonstrated that on Ta2O5 layers LLC solar cells can be prepared successfully. However, it turned out that Ta2O5 layers require an excimer laser pretreatment. Without the pretreatment layer damage was observed after laser crystallisation of amorphous silicon due to the formation of gas bubbles. Moreover, due to the laser pretreatment the Ta2O5 layer surface roughens so that increased light scattering is observed which is beneficial for the solar cell. In Fig. E8 a current-voltage diagram of a 2 µm thick cell with a tantalum pentoxide intermediate layer is shown, as compared to a standard cell. In both cases no metal reflector for light trapping was present. Even though the Ta2O5 cell has inferior properties as compared to the standard cell it is still a positive result. It was demonstrated that the intermediate layer has the desired properties. In order to improve the cell parameters the excimer laser pretreatment has to be optimised so that the crystal quality of the silicon is increased to that of the standard cells. Fig. E8: I–V-diagram of a LLC cell with tantalum pentoxide intermediate layer (full line) as compared to a standard LLC cell (broken line).