Jahresbericht 2005 - Leibniz-Institut für Photonische Technologien

Transcription

Jahresbericht 2005 - Leibniz-Institut für Photonische Technologien
INSTITUT FÜR
PHYSIKALISCHE HOCHTECHNOLOGIE e.V.
JENA
INSTITUTE FOR
PHYSICAL HIGH TECHNOLOGY JENA
JAHRESBERICHT
ANNUAL REPORT
2005
Institut für Physikalische Hochtechnologie e.V.
Direktor: Prof. Dr. H. Bartelt
Albert-Einstein-Str. 9, D-07745 Jena
Postfach/P.O.B.: 10 02 39, D-07702 Jena
Telefon/Phone: +49(0)36 41 2 06 00
Telefax: +49(0)36 41 20 60 99
e-mail: institut@ipht-jena.de
internet: http://www.ipht-jena.de
Titelfoto: Dr. K. Fischer
Herstellung:
Werbeagentur Kirstin Sangmeister
Telefon: 03671/64 12 96
Mobil: 0171 8 43 65 94
e-mail: kirstin.sangmeister@freenet.de
INHALT / CONTENT
Inhaltsverzeichnis / Content
A.
B.
C.
D.
Vorwort / Introduction
Organisation / Organization
Personal und Finanzen / Staff and Budget
Forschungsbereiche / Scientific Divisions
1.
Bereich Magnetik/Quantenelektronik (Prof. Dr. H. E. Hoenig)
Magnetics/Quantum Electronics Division
12
1.1
1.2
1.2.1
1.2.2
1.2.3
1.2.4
1.2.5
1.2.6
1.2.7
1.2.8
1.2.9
1.2.10
1.2.11
1.2.12
1.3
Überblick / Overview
Scientific results
Micro- and nanofabrication
SQUID sensors and systems
Integrated superconducting circuits
Quantum computing
Foundry service
Domain wall motion in small GMR structures
Measurement of coupling strength distribution in exchange bias film systems
_Z<
_ 33
Electron exited L X-rax spectra of the elements 14 <
Preparation, characterization, and application of melt-textured YBCO
Characterization and application of bulk MgB2
Preparation of magnetic materials
Biomedical applications of magnetic nanoparticles
Appendix
Partners
Publications
Talks/Posters
Patents
Memberships
Lectures
PhD Thesis/Diploma Thesis
Laboratory exercises
Events/exhibitions
Awards
New equipment
12
15
15
15
17
18
19
19
21
22
23
24
24
25
26
27
29
34
34
35
36
36
36
36
36
2.
Bereich Optik (Prof. Dr. H. Bartelt)
Optics Division
37
2.1
2.2
2.2.1
2.2.2
2.2.3
2.2.4
2.2.5
2.2.6
2.2.7
2.2.8
2.2.9
Übersicht / Overview
Scientific results
Flame hydrolysis technique (FHD) for the preparation of advanced optical materials
Materials for fibre lasers: Preparation and properties
Boron doping for polarization maintaining laser fibres
Photonic crystal fibres for innovative applications and devices
Loss measurements at silica fibres for cladding pumped applications
Studies of the mode behaviour of multi-core fibre structures
Fibre-optic waveguide arrays as model system of discrete optics
High-reflectivity draw-tower fibre Bragg gratings (FBG) at 1550 nm wavelength
Travelling wave approach to direct-modulated fibre Bragg-grating stabilized external
cavity semiconductor lasers
Implementation of an OADM with a data rate of 10 Gbit/s as technology demonstrator
in the PLATON project (Planar Technology for Optical Network)
Material processing with DUV/VUV laser radiation
High-speed optical fibre grating sensor system
Monitoring of inhomogeous flow distribution using fibre-optic Bragg-grating temperature
sensor array
UV-spectrometer for in situ measurement of nitrate tested in the North Sea
Novel optical dew point sensor
37
40
40
40
41
42
42
43
44
45
2.2.10
2.2.11
2.2.12
2.2.13
2.2.14
2.2.15
3
7
12
12
45
46
47
48
49
49
50
1
INHALT / CONTENT
2.3
Appendix
3.
Bereich Mikrosysteme (Prof. Dr. J. Popp)
Microsystems Division
59
3.1
3.2
3.2.1
Übersicht / Overview
Scientific results
Spectral optical techniques and instrumentation
Spectral optical sensing
Thermal microsensors
Photonic chip systems
Molecular nanotechnology and plasmonics
DNA-chip technology
Micro system technology
Microfluidics of liquid-liquid segmented sample streams
Chipmodule for analysis of micro combustion
Appendix
Partners
Editor/Book chapters
Publications
Presentations/Posters
Patents
Lectures
Diploma thesis
Laboratory exercises
Practical trainee
Guest scientists
Memberships
Awards
Conference organization
59
63
63
63
65
67
67
69
69
70
71
72
73
73
75
77
77
78
78
78
78
78
79
79
4.
Bereich Lasertechnik (Prof. Dr. H. Stafast)
Laser Technology Division
80
4.1
4.2
4.2.1
Überblick / Overview
Selected results
Laser chemistry
Laser crystallization, Thin film deposition and nanowire growth, Laser ablation
Laser diagnostics
UV optical materials, Combustion processes
Appendix
Partners
Publications
Presentations/Posters
Patents
Lectures
Diploma Theses
Laboratory Exercises
Committees
Award, Exhibitions
New Equipment
80
83
83
83
84
85
86
87
88
89
89
89
89
89
89
89
Innovation Project 2005
90
90
3.2.2
3.2.3
3.3
4.2.2
4.3
E.
Partners
Publications
Presentations/Posters
Lectures
Patents
Diploma/Master Thesis/Laboratory Exercises
Guest scientists
Memberships
Participations in fairs/expositions
Nanostructured Ta2O5 layers for optochemical/biophotonic sensors and solar cells
2
51
52
54
56
57
57
57
57
58
VORWORT / INTRODUCTION
A. Vorwort
A. Introduction
Das IPHT konnte das Jahr 2005 mit einer erfolgreichen Projektarbeit abschließen. Die Drittmittelquote liegt deutlich über 50% mit einer bemerkenswerten Steigerung bei den EU-Projekten.
Als besonders herausragende Beispiele der in
diesem Jahresbericht enthaltenen Darstellung
der Ergebnisse sollen hier genannt werden:
– Erstmalig wurden vier Flussquanten-Qubits als
Vorstufe für einen adiabatischen Quantenrechner gekoppelt und spektroskopisch charakterisiert.
– Bei der Erzeugung von Einzelpuls-Bragg-Gittern (Typ I) in optischen Fasern wurden mit bis
zu 50% Reflexionseffizienz internationale Spitzenwerte erzielt.
– Die Entwicklung eines auf dem Prinzip segmentierter Probenströme arbeitenden LabOnChip basierten Systems führte zu einer Analysenplattform für die Krebsdiagnostik, deren
Anwendungspotenzial auf grundlegende molekularbiologische Fragestellungen erweiterbar
ist.
– durch Laserkristallisation von Silizium auf Glas
wurden mittels eines industrietauglichen Diodenlasers Keimkristalle mit Abmessungen bis
500 µm erzeugt, die die bisherige Größe um
das 5- bis 10fache übersteigt.
For the IPHT, 2005 was a successful project year.
The share of project-financed activities was well
above the 50% level, with a considerable
increase in EU-funded projects. Here are some
highlights of the results presented in this annual
report:
– For the first time, four flux quantum qubits have
been coupled and spectrally characterized – a
first step towards an adiabatic quantum computer.
– The inscription of single pulse fibre Bragg gratings (type I) has achieved a reflection efficiency of 50% – a new international record.
– The development of a LabOnChip based system using the principle of segmented probe
flow has paved the way for an analysis platform for cancer diagnosis, which can be further
extended to perform fundamental investigations in molecular biology.
– By laser crystallisation of silicon on glass with
a diode laser suitable for industrial use, seed
crystals with a size of up to 500 µm have been
produced, which is an improvement by a factor
of 5 to 10.
Gleichzeitig wurde während des Jahres eine
Reihe von Weichenstellungen für eine zukunftsorientierte Aufstellung und Entwicklung der
Arbeitsgebiete des IPHT vorbereitet. Dazu gehört
zunächst die Berufung von Prof. Dr. Jürgen Popp
als Leiter des Forschungsbereiches Mikrosysteme zum 1. Mai 2005. Er ist gleichzeitig Lehrstuhlinhaber für Physikalische Chemie an der Universität Jena und ausgewiesener Spezialist auf dem
Forschungsgebiet der Laserspektroskopie und
der Biophotonik. Damit wird die Verbindung von
optischen Technologien und Anwendungen der
Lebenswissenschaften fachlich gestärkt und die
Zusammenarbeit mit der Friedrich-Schiller-Universität weiter unterstützt. Dr. Helmut Dintner, der
diesen Forschungsbereich während der vergangenen sechs Jahre geleitet hatte, gebührt unser
Dank für seine umsichtige Leitungstätigkeit
während dieser Zeit.
Zur Frage einer mit dem Umfeld abgestimmten
und zukunftsorientiert ausgerichteten Fokussierung der Arbeitsgebiete zu photonischen und
optischen Technologien wurde auf Empfehlung
des Wissenschaftlichen Beirats durch das Kuratorium des IPHT eine Strukturkommission unter
Leitung von Prof. Dr. Dietrich Wegener (Universität Dortmund) mit Beteiligung von Vertretern
des IPHT, der Universität und des Landes eingesetzt. Auf der Basis eines vom IPHT vorgelegten
Konzeptes wurden unter besonderer Berücksichtigung der bestehenden fachlichen Stärken Empfehlungen zur Fokussierung auf den Gebieten
In addition to the scientific achievements, several
measures were taken to shape the future of the
IPHT and to assure the successful development
of its research fields. As one major point, Prof. Dr.
Jürgen Popp was appointed as head of the Micro
Systems research division as of May 1st, 2005.
He is also a professor of physical chemistry at
the University of Jena and a well-known specialist in the fields of laser spectroscopy and biophotonics. This appointment will strengthen the synergy in our research in optical technologies and
applications in the life sciences as well as intensify our collaboration with the University of Jena.
We are obliged to Dr. Helmut Dintner for his prudent management of the said research division
during the last six years.
Based on a recommendation by the Institute’s
scientific council, the Supervisory Board of the
IPHT appointed a structural commission headed
by Prof. Dr. Dietrich Wegener (University of Dortmund) with participation of representatives from
the IPHT, the University of Jena and the State of
Thuringia. This commission has discussed future
focussing directions in the fields of photonic technologies considering regional interests to
strengthen scientific excellence. Based on a concept framed by the IPHT, the commission investigated the Institute’s specific strengths and recommended focussing and further strengthening
in the fields of optical fibres and applications and
photonic instrumentation.
For the magnetics and quantum electronics
research fields, similar and still ongoing discussions have been held in order to develop strategies for this important part of the IPHT’s activities.
3
VORWORT / INTRODUCTION
Optische Fasern und Faseranwendungen und
Photonische Instrumentierung formuliert.
Für die Forschungsgebiete Magnetik und Quantenelektronik fand ebenfalls eine Reihe von
Abstimmungsgesprächen zur Zukunftsgestaltung
dieses gewichtigen Arbeitsfeldes statt, die aber
noch nicht abgeschlossen sind.
Zur Pflege des wissenschaftlichen Austauschs
war das IPHT Ausrichter von Tagungen und
Workshops und beteiligte sich aktiv an Ausstellungen und internationalen Messen. Im Februar
traf sich der PhotonicNet-Arbeitskreis „Oberflächenbearbeitung“ im IPHT. Im Mai organisierte
Dr. Wolfgang Fritzsche ein internationales Symposium zur Molekularen Plasmonik. Ebenfalls im
Mai versammelten sich unter der Schirmherrschaft des OPTONET e.V. Spezialisten im IPHT,
um im Rahmen eines Workshops über neue
Laserstrahlquellen zu diskutieren.
Die Vermittlung von Forschungsergebnissen an
die Öffentlichkeit war Anliegen der Beteiligung
des IPHT an der Präsentation des Beutenberg
Campus in Tokio im Rahmen des „Deutschlandjahres in Japan 2005–2006“ sowie an den Ausstellungen Faszination Licht im Januar und Eiskalte Energien für Europa im Juli, jeweils in der
Jenaer Einkaufspassage Goethe-Galerie. Der
öffentlichen Vermittlung von Forschungsarbeiten
diente auch die Lange Nacht der Wissenschaften
in Jena im November. Bis nach Mitternacht
drängten sich die Besucher an den Experimenten
und in den Labors.
Lange Nacht der Wissenschaften:
Besucher und Aussteller in Aktion
The “Long Night of the Sciences”:
Visitors and demonstrators in action
4
Zu einem Ehrenkolloquium war vom IPHT aus
Anlass des 75. Geburtstages von Prof. Dr. Günter Albrecht im März eingeladen worden. Prof.
Albrecht hat in seiner aktiven Zeit an der Universität die Forschung zur Supraleiterelektronik
maßgeblich etabliert und ist damit einer der
Väter dieser Forschungsrichtung im IPHT.
In order to encourage scientific discussion and
exchange, the IPHT organized conferences and
workshops and was actively engaged in exhibitions and international fairs. In February, the PhotonicNet cluster on surface modification met at
the IPHT. Dr. Wolfgang Fritzsche organized an
international symposium on “Molecular Plasmonics” in May. Also in May a workshop on new laser
sources was held at the IPHT under the patronage of the OPONET cluster.
Several activities were aimed to present our scientific results to a broad public: the presentation
of the Beutenberg campus in Tokyo/Japan as
part of the German Year 2005/2006, and the
expositions “Fascinating Light” (in January) and
“Ice-cold Energies for Europe” (in July) in the
Jena’s Goethe Gallery shopping mall. With the
same intention, the IPHT took part in the first
“Long Night of the Sciences” in Jena in November. Till well after midnight, many interested visitors crowded the Institute’s laboratories and took
part in scientific experiments.
An honorary colloquium was held on the occasion of the 75th birthday of Prof. Dr. Günther
Albrecht in March. During his active years, Prof.
Albrecht was a major force in establishing the
research field of supraconductivity at the Jena
University and also became a father of this
research direction at the IPHT.
Another special highlight at the IPHT was a public colloquium held by Prof. Dr. Anton Zeilinger
(University of Vienna) on quantum information
transmission, a subject which is related to our
activities in quantum electronics research. As
one of a series of talks at Beutenberg campus,
this talk was organized by Prof. E. Hoenig with
great commitment and attracted more than 200
visitors.
The work of Dr. Thomas Henkel for the development of microfluidic chip systems had been
acknowledged by the 2004 IPHT award. Another
IPHT research award was presented to Dr. Sonja
Unger, Volker Reichel and Klaus Mörl for their
work on high power laser fibres with a record
result of 1.3 kW output power from a single fibre.
Six students of the University of Applied Sciences in Jena finished their diploma work in 2004
with very good results and marks: Constanze
Döring, Lars Bergmann, Ralf Bitter, Carsten Hartmann, Matthias Schnepp und Rico Stober . They
received the prizes for the best IPHT diploma
work, sponsored by the Jena-Saale-Holzland
Savings Bank.
The internal competition for the 2005 innovation
project was decided in favor of Wolfgang Morgenroth, Dr. Uwe Hübner, Richard Boucher (Magnetics/Quantum Electronics Division), Sven
Brückner, Uta Jauernig, Dr. Siegmund Schröter,
Dr. Torsten Wieduwilt, Barbara Geisenhainer,
Matthias Giebel, Dr. Günther Schwotzer (Optics
Division), Dr. Andrea Czaki, Andrea Steinbrück,
VORWORT / INTRODUCTION
Ein besonderer Höhepunkt war im Rahmen der
von Prof. E. Hoenig mit großem Engagement
organisierten öffentlichen Vortragsreihe des Beutenberg Campus eine Veranstaltung im IPHT mit
Prof. Dr. Anton Zeilinger aus Wien, die über
200 Besucher anlockte. Prof. Zeilinger sprach
über Quanteninformationsübertragung mit Anknüpfung an unsere Arbeitsrichtung Quantenelektronik.
Mit einem IPHT-Preis 2004 wurden die Arbeiten
von Dr. Thomas Henkel zur Entwicklung mikrofluidischer Chipsysteme für Kompartimentierung,
Kultivierung und Detektion biologischer Spezies
anerkannt. Ein weiterer IPHT-Preis 2004 ging an
Dr. Sonja Unger, Dipl.-Phys. Volker Reichel und
Dipl.-Phys. Klaus Mörl für Arbeiten auf dem
Gebiet der Hochleistungsfaserlaser mit einer
Ausgangsleistung von 1,3 kW aus einer Einzelfaser.
Gleich sechs Diplomanden von der FH Jena hatten ihre Arbeit 2004 mit sehr guten Ergebnissen
abgeschlossen: Constanze Döring, Lars Bergmann, Ralf Bitter, Carsten Hartmann, Matthias
Schnepp und Rico Stober. Sie wurden mit von
der Sparkasse Jena-Saale-Holzland in dankenswerter Weise zur Verfügung gestellten Preisen
ausgezeichnet.
Den IPHT-internen Wettbewerb um das IPHTInnovationsprojekt 2005 gewannen Wolfgang
Morgenroth, Dr. Uwe Hübner, Richard Boucher
(Bereich Magnetik/Quantenelektronik), Sven
Brückner, Uta Jauernig, Dr. Siegmund Schröter,
Dr. Torsten Wieduwilt, Barbara Geisenhainer,
Matthias Giebel, Dr. Günther Schwotzer (Bereich
Optik), Dr. Andrea Czaki, Andrea Steinbrück,
Dr. Wolfgang Fritzsche (Bereich Mikrosysteme)
und Dr. Gudrun Andrä (Bereich Lasertechnik) mit
der gemeinsamen Thematik „Nanostrukturierte
Ta2O5-Schichten für optochemische/biophotonische Sensorik sowie Solarzellen“. Die erzielten
Ergebnisse sind am Ende dieses Jahresberichtes
zusammengefasst.
Die kommerzielle Umsetzung von wissenschaftlichen Ergebnissen in Produkte ist ein besonderes
Anliegen des IPHT. Auf dem Gebiet optischer
Faser-Bragg-Gitter konnte dazu im Oktober 2005
ein Gemeinschaftsunternehmen mit einem belgischen Partner unter Beteiligung des IPHT, die
FBGS Technologies GmbH (Fibre Bragg Grating
Sensor Technologies), mit Sitz in Jena gegründet
werden. Geschäftsfelder dieses Unternehmens
sind Forschung, Entwicklung, Produktion und
Vermarktung von optoelektronischen Elementen,
insbesondere spezielle Glasfaser-Bragg-Gitter.
Der Wissenschaftliche Beirat beurteilte auf seiner
jährlichen Sitzung im April die wissenschaftlichen
Leistungen des IPHT als sehr beachtlich und
überzeugend. Turnusmäßig ausgeschieden aus
dem Wissenschaftlichen Beirat sind Dr. Siegfried
Birkle (Siemens Erlangen), Prof. Dr. Hans Koch
a
b
Die Gewinner des IPHT-Preises 2004 /
IPHT Prizewinner
a) Dr. Thomas Henkel,
b) Klaus Mörl, Dr. Sonja Unger, Volker Reichel
Dr. Wolfgang Fritzsche (Micro Systems Division)
and Dr. Gudrun Andrä (Laser Technology Division) who worked on the subject of nanostructured Ta2O5 layers for optochemical/biophotonic
sensors and solar cells. Results are presented at
the end of this annual report.
The transfer into commercial use of its scientific
results is a matter of special interest to the IPHT.
In the field of optical Bragg gratings, we started a
new company in Jena in October jointly with a
Belgian company (Fibre Bragg Grating Sensor
Technologies). The objects of the new company
are research, development, production and sale
of optoelectronic components such as especially
fibre Bragg gratings.
The scientific council has reviewed the scientific
results of the IPHT regularly and during its
meeting in April appreciated them as highly
respectable and convincing. Dr. Siegfried Birkle
(Siemens Erlangen), Prof. Dr. Hans Koch (PTB
Berlin), and Dr. Augustin Siegel (Carl Zeiss,
Oberkochen) left the council due to the end of
their term. We would like to thank them for their
very constructive work during the last years. New
members appointed to the scientific council are
Prof. Dr. Michael Siegel (Universität Karlsruhe),
5
VORWORT / INTRODUCTION
(PTB Berlin) und Dr. Augustin Siegel (Carl Zeiss,
Oberkochen). Den ehemaligen Mitgliedern danken wir für ihre konstruktive Mitarbeit in den vergangenen Jahren. Als neue Mitglieder wurden
Prof. Dr. Michael Siegel (Universität Karlsruhe),
Dr. Stefan Spaniol (CeramOptec GmbH, Bonn)
und Dr. Martin Wiechmann (Carl Zeiss Meditec
AG, Jena) berufen.
Dr. Stefan Spaniol (CeramOptec, Bonn), and
Dr. Martin Wiechmann (Carl Zeiss Meditec,
Jena).
We thank the State of Thuringia and all our partners in research and industry for their ongoing
support and cooperation.
H. Bartelt, February 2006
Danken möchten wir an dieser Stelle auch dem
Freistaat Thüringen, allen Förderern im Bund und
bei der EU für die stete Unterstützung sowie
unseren Partnern in Wissenschaft, Forschung
und Wirtschaft für die gute Zusammenarbeit.
H. Bartelt, im Februar 2006
Beutenberg Campus 2005
6
Foto: Ballonteam Jena
ORGANISATION / ORGANIZATION
B. Organisation / Organization
Institut für Physikalische Hochtechnologie e.V., Jena
Institute for Physical High Technology
Dez. 2005
Kuratorium/Supervisory Board
Thüringer Kultusministerium
MDgt. Dr. J. Komusiewicz
Thüringer Ministerium für
Wirtschaft, Technologie und Arbeit
MD Dr. F. Ehrhardt
Friedrich-Schiller-Universität Jena
Prorektor Prof. Dr. H. Witte
2 gewählte Mitglieder
Dr. E. Hacker, Dr. M. Heming
Vereinsvorstand/Executive Committee
Vorsitzender = Direktor
Prof. Dr. H. Bartelt
Stellvertretender Direktor
Dr. K. Fischer
Kaufmännischer Direktor
F. Sondermann
Kaufmännischer Bereich
Administrative Division
Kaufmännischer Direktor:
F. Sondermann
Forschungsbereich 1
Research Division 1
Magnetik/
Quantenelektronik
Magnetics/
Quantum Electronics
Leiter:
Prof. Dr. H. E. Hoenig
Mitgliederversammlung
Assembly of Members
Wissenschaftlicher Beirat
Scientific Advisory Council
Sprecher:
Prof. Dr. S. Büttgenbach
Bereichsleiterversammlung
Assembly of Convention
Vereinsvorstand
Betriebsratsvertreter
Forschungsbereichsleiter
Betriebsrat
Works Committee
Vors.: Frau Dr. G. Andrä
Wissenschaftl.-Techn. Rat
Scient.-Techn. Council
Sprecher: Dr. E. Keßler
Forschungsbereich 2
Research Division 2
Optik
Forschungsbereich 3
Research Division 3
Mikrosysteme
Optics
Microsystems
Leiter:
Prof. Dr. H. Bartelt
Leiter:
Prof. Dr. J. Popp
Forschungsbereich 4
Research Division 4
Lasertechnik
Laser
Technology
Leiter:
Prof. Dr. H. Stafast
Die Leiter der Forschungsbereiche sind berufene Professoren an der Friedrich-Schiller-Universität Jena.
The divisions head are professors at the University of Jena.
7
ORGANISATION / ORGANIZATION
Das IPHT ist eine gemeinnützige Forschungseinrichtung in der Rechtsform eines eingetragenen
Vereins und wird institutionell gefördert durch den
Freistaat Thüringen. Mitglieder des Vereins sind
öffentliche Einrichtungen sowie Personen aus
Wissenschaft und Wirtschaft. Im Kuratorium sind
zwei verschiedene Ministerien des Freistaates
Thüringen, die Friedrich-Schiller-Universität Jena
und die Industrie durch zwei von der Mitgliederversammlung gewählte Persönlichkeiten vertreten. Das FuE-Programm unterliegt der Kontrolle
eines Wissenschaftlichen Beirats mit Mitgliedern
sowohl aus der Wissenschaft als auch aus der
Industrie. Das Institut ist in vier Forschungsbereiche untergliedert, deren Leiter gleichzeitig Mitglieder der Physikalisch-Astronomischen bzw.
der Chemisch-Geowissenschaftlichen Fakultät
der Friedrich-Schiller-Universität sind.
The IPHT is a non-profit association with the legal
status of a convention, institutionally funded by
the Free State of Thuringia, and members from
public institutions as well as private members.
There is a Supervisory Board with two representatives of two different ministries of the Free
State of Thuringia in Germany, one from the
Friedrich-Schiller-University in Jena, and two
R&D managers from the industry. The R&D program is supervised by a Scientific Advisory
Council with members from the scientific community and from the industry. The institute is organized in four research divisions with heads serving also as members oft he faculties for Physics
and Astronomy as well as for Chemical and Earth
Sciences of the Friedrich-Schiller-University.
Wissenschaftlicher Beirat / Scientific Advisory Council
Prof. Dr. Stephanus Büttgenbach
(Sprecher/Chairman)
Technische Universität Braunschweig
Prof. Dr. Bruno Elschner
Technische Hochschule Darmstadt
Dr. Michael Harr
ASTEQ Applied Space Techniques GmbH, Kelkheim
Prof. Dr. Burkard Hillebrands
Universität Kaiserslautern
Prof. Dr. Peter Komarek
Forschungszentrum Karlsruhe
Prof. Dr. Siegfried Methfessel
Witten-Herbede
Prof. Dr. Frieder Scheller
Universität Potsdam
Prof. Dr. Paul Seidel
Friedrich-Schiller-Universität Jena
Dr. Thomas Töpfer
Jenoptik AG, Jena
2005 ausgeschieden / left in 2005
Dr. Siegfried Birkle
Siemens AG, Erlangen
Prof. Dr. Hans Koch
Physikalisch-Technische Bundesanstalt, Berlin
Dr. Augustin Siegel
Carl Zeiss AG, Oberkochen
2005 neu hinzugekommen / joined in 2005
8
Prof. Dr. Michael Siegel
Universität (TH) Karlsruhe
Dr. Stefan Spaniol
CeramOptec GmbH, Bonn
Dr. Martin Wiechmann
Carl Zeiss Meditec AG, Jena
ORGANISATION / ORGANIZATION
Mitglieder des IPHT e.V. / Members of the Convention
Institutionelle Mitglieder / Membership of institutions
Thüringer Kultusministerium, Erfurt
Dr. Gerd Meißner
Thüringer Ministerium für Wirtschaft,
Technologie und Arbeit, Erfurt
MD Dr. Frank Ehrhardt
Stadt Jena
Oberbürgermeister Dr. Peter Röhlinger
Friedrich-Schiller-Universität Jena
Prof. Dr. Herbert Witte
Fachhochschule Jena
Prof. Dr. Gabriele Beibst
CiS Institut für Mikrosensorik e.V.,
Erfurt
Dr. Hans-Joachim Freitag
Leibniz-Institut für Festkörper- und
Werkstoffforschung e.V., Dresden
Prof. Dr. Helmut Eschrig
Sparkasse Jena
Herr Martin Fischer
TÜV Thüringen e.V., Erfurt
Herr Bernd Moser
4H Jena Engineering GmbH
Herr Manfred Koch
Robert Bosch GmbH, Stuttgart
Dr. Christoph P. O. Treutler
j-fiber GmbH, Jena
Herr Lothar Brehm
Persönliche Mitglieder / Personal members
Prof. Dr. Hartmut Bartelt
Institut für Physikalische Hochtechnologie, Jena
Dr. Peter Egelhaaf
Robert Bosch GmbH, Stuttgart
Prof. Dr. Bruno Elschner
Darmstadt
Dr. Klaus Fischer
Institut für Physikalische Hochtechnologie, Jena
Prof. Dr. Peter Görnert
Innovent e.V., Jena
Frau Elke Harjes-Ecker
Thüringer Kultusministerium, Erfurt
Prof. Dr. Karl-August Hempel
RWTH Aachen
Prof. Dr. Hans Eckhardt Hoenig
Institut für Physikalische Hochtechnologie, Jena
Herr Bernd Krekel
Commerzbank AG, Jena
Prof. Dr. Siegfried Methfessel
Witten-Herbede
Prof. Dr. Gerhard Schiffner
Ruhr-Universität Bochum
Herr Frank Sondermann
Institut für Physikalische Hochtechnologie, Jena
Prof. Dr. Herbert Stafast
Institut für Physikalische Hochtechnologie, Jena
9
PERSONAL UND FINANZEN / STAFF AND BUDGET
C. Personal und Finanzen / Staff and Budget
Kaufmännischer Bereich / Administrative Division
Leitung/Head: F. Sondermann
e-mail: frank.sondermann@ipht-jena.de
Beauftragte für den Haushalt/
Finance Department Head: I. Ring
Projektmanagement/
Project Management: Dr. I. Bieber
e-mail: ina.ring@ipht-jena.de
e-mail: ivonne.bieber@ipht-jena.de
Technik/Technical Infrastructure: Th. Büttner, e-mail: thomas.buettner@ipht-jena.de
Mitarbeiterinnen und Mitarbeiter
des Kaufmännischen Bereichs.
The staff of the administrative division.
Personal des Instituts / Staff of the institute
Institutionelle
Förderung/
Institutional
funding
Wissenschaftler/
Scientists
34
Doktoranden/
Doctoral candidates
Techniker, Mitarbeiter
für den Betrieb/
Engineers, employees
for infrastructure
46
Verwaltung/
Administration
15
Personalbestand
am 31.12.2005/
Number of employees
per 2005/12/31
95
Drittmittel/Project funding
Öfftl. Förderung/
Public funding
Industrie/
Industrial funding
33
13
80
14
3
17
27
15
88
15
74
31
Zusätzliches Personal (Gastwissenschaftler, Diplomanden, Praktikanten, Auszubildende)/
Additional staff (visiting scientists, students, trainees):
10
Anmerkung: Die Tabelle weist Personen aus, nicht Vollbeschäftigtenäquivalente./
Note: The table states numbers of persons, not of full time-jobs
200
39
PERSONAL UND FINANZEN / STAFF AND BUDGET
Finanzen des Instituts / Budget of the institute
Institutionelle Förderung (Freistaat Thüringen)/
Institutional funding (Free State of Thuringia)
Drittmittel/Project funding
7.053,6 T ”
8.393,7 T ”
15.447,3 T ”
Institutionelle Förderung: Verwendung / Institutional funding: use
4.276,7 T ”
1.838,4 T ”
938,5 T ”
Personalmittel/staff
Sachmittel/materials
Investitionsmittel/investments
7.053,6 T ”
Aufgliederung Drittmittel / Subdivision of project funding
BMBF/Federal Ministry
DFG/German Research County
Freistaat Thüringen (Projektförderung)/Free State of Thuringia (Projects)
(davon für Datennetz-Migration/incl. computer network migration 209,3 T”)
Europäische Union/European Union
Aufträge öffentlicher Einrichtungen/Contracts of public institutions
Sonstige Zuwendungsgeber/Other fundings
(Unterauftr. an Dritte in öfftl. gef. Projekten/Subcontracts to others 321,2 T”)
Unteraufträge in Verbundprojekten/Subcontracts
FuE-Aufträge incl. wiss. techn. Leistungen/R&D contracts
2.400,6 T”
328,3 T”
793,6 T”
931,5 T”
569,9 T”
203,9 T”
438,8 T”
2.727,1 T”
8.393,7 T ”
Gesamtkosten des Projektes beliefen sich auf
279,0 T“, von denen die Europäische Union
209,3 T“ finanziert und das IPHT einen Eigenanteil von 69,7 T“ aufgewendet hat.
The project „Kernnetzmigration“ was cofinanced by the European Union.
Das Projekt „Kernnetzmigration“ wurde von
der Europäischen Union kofinanziert
Um heutzutage international wettbewerbsfähig
zu sein, benötigt man auch eine moderne DVInfrastruktur. Zu diesem Zweck hatte das Institut
für Physikalische Hochtechnologie e. V. im Mai
2005 einen Antrag an das Thüringer Kultusministerium auf Förderung des „Ersatzes veralteter Netzwerkkomponenten des Datennetzwerkes des IPHT“, Kurztitel: „Kernnetzmigration“
gestellt.
Das Projekt wurde dankenswerterweise durch
das Thüringer Kultusministerium bewilligt und
dann, wie geplant, bis Ende 2005 umgesetzt. Die
To be today international competitive a modern
data processing infrastructure is needed. To this
purpose the Institute for Physical High Technology had applied for a funding at the Thuringian
Ministry of Education an Cultural Affairs in May
2005 to replace the meanwhile antiquated network components of the data network of the
IPHT, shortened title “Kernnetzmigration” (“Core
Network Migration”).
The project had been gratefully financed by the
Thuringian Ministry of Education and Cultural
Affairs and had been executed till the end of
2005. The total costs of the project amounted to
279,0 thousand Euros. From these total costs the
European Union had financed 209.3 thousand
Euros and the IPHT had financed an own share
of 69.7 thousand Euros.
11
MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS
D. Forschungsbereiche / Scientific Divisions
1. Magnetik & Quantenelektronik / Magnetics & Quantum Electronics
Leitung/Head: Prof. Dr. H. E. Hoenig
e-mail: eckhardt.hoenig@ipht-jena.de
Magnetik
Magnetics
Ltg./Head: Prof. Dr. W. Gawalek
wolfgang.gawalek@ipht-jena.de
Magnetoelektronik
Magnetoelectronics
Ltg./Head: Dr. R. Mattheis
roland.mattheis@ipht-jena.de
Quantenelektronik
Quantum Electronics
Ltg./Head: Dr. H.-G. Meyer
hans-georg.meyer@ipht-jena.de
Kultusminister Prof. Dr. Jens Goebel verleiht
am 3. Februar 2005 in Schmalkalden den
Thüringer
Forschungspreis
2004
an
Dr. Andrei Izmalkov, Dr. Thomas Wagner,
Prof. Dr. Miroslav Grajcar und Dr. Evgeni
Ilichev (v.l.n.r).
Science minister Prof. Dr. Jens Goebel presents the Thuringian Research Award 2004
to Dr. Andrei Izmalkov, Dr. Thomas Wagner,
Prof. Dr. Miroslav Grajcar, and Dr. Evgeni
Ilichev (left to right).
1.1
12
Überblick
Der Forschungsbereich Magnetik/Quantenelektronik repräsentiert in unserem Hause die
Elektronik und die Materialforschung. Diese
Elektronik stützt sich auf supraleitende bzw.
magnetische Materialien und ist dementsprechend in Quantenelektronik und Magnetoelektronik gegliedert. Unter Quantenelektronik verstehen wir die Nutzung der Quanteneffekte der
Supraleitung in mikro- und nanotechnisch hergestellten Bauelementen und Schaltungen. Die
Materialforschung betrifft Supraleiter und Magnetpigmente.
Die Abteilung Quantenelektronik, mit mehr als
30 Mitarbeitern die weitaus größte und dynamischste im Forschungsbereich und im Institut,
betreibt wesentlich unseren Reinraum und versteht sich als Systementwickler mit und für Partner und Anwender weltweit. Professionelle Qualität wird durch eine jährlich aktualisierte ISO-Zertifizierung gesichert. Eine strategische Partnerschaft besteht mit dem Fraunhofer-Institut für
Angewandte Optik und Feinmechanik bei Betrieb
und Anwendung der Elektronenstrahllithographie.
Herausragende wissenschaftliche Ergebnisse im
Jahre 2005 waren: (1) Weltweit erstmals wurde
als Vorstufe zu künftigen adiabatischen Quantrenrechnern vier Flussquanten-Qubits quanten-
1.1
Overview
The division Magnetics/Quantum Electronics represents the electronics and materials research in
IPHT. It is based on superconducting and magnetic materials and is organized in the Quantum
Electronics and Magnetoelectronics departments
respectively. Quantum Electronics uses quantum
effects of superconductivity in micro- and nanodevices and circuits. Materials research concerns
superconductors and magnetic nanoparticles.
The Quantum Electronics department, the
largest and most dynamical in house, is main
operator of our clean room and system developer together with and servicing partners and customers worldwide. ISO certification assures a
professional quality level and is updated every
year. A strategic partnership has been established with the nearby Fraunhofer Institute for
Applied Optics and Precision Mechanics operating and using electron beam lithography.
Highlights in the year 2005 have been: (1) for the
first time worldwide four superconducting flux
qubits have been quantum mechanically coupled
and spectroscopically characterized on the route
to adiabatic quantum computation; a corresponding European research partnership has been
accomplished; in February the group around
Dr. Ilichev was honoured with the Thuringian
Research Award, (2) again as a worldwide first, a
MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS
The SQUID system for archaeological prospection, pulled by a jeep, during measurement near Palpa, Peru.
The orange tubes contain the SQUID channels.
New measuring station
used to study domain
wall movement in magnetic thin film sensors.
In the middle of the coils
two boards are visible.
The upper one contains
the sensor chip
(2 × 2 mm2) and a fast
preamplifier, the lower
board contains a multiplexer.
The mayor of Jena
C. Schwind, the Thuringian minister of education and cultural affairs
Prof. Dr. J. Goebel and
the head of department
Magnetics Prof. Dr.
W. Gawalek during the
opening of the interactive exhibition “Eiskalte
Energie für Europa”
(June 29–July 02, 2005,
GoetheGalerie Jena)
testing a fly-wheel
energy storage system.
13
MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS
mechanisch gekoppelt und spektroskopisch charakterisiert. Eine entsprechende europäische
Forschungspartnerschaft wurde etabliert. Im
Februar wurde der Thüringer Forschungspreis an
unsere Quantenelektronikgruppe verliehen. (2)
Weltweit erstmals konnte mit einem fahrzeugtransportierten SQUID-System eine professionelle
archäometrische Erkundung zum Erfolg gebracht
werden. (3) Unsere Beiträge zu dem von uns veranstalteten Symposium „Messen an der Quantengrenze“ bei der Frühjahrstagung der DPG
demonstrierten die Schlüsselstellung der supraleitenden Quantenelektronik bei Astro-Kameras
und Quantencomputing. Im Rahmen des Jahres
„Deutschland in Japan“ wurden diese Arbeiten
auch in Tokyo als besondere Leistung des Beutenberg Campus präsentiert.
Unsere Magnetoelektronik stützt sich auf die
Besonderheit einer industriekompatiblen Beschichtungsanlage für Magnetowiderstands-Multilagen bis zum Format von 8 Zoll. Professioneller
Betrieb ist erprobt in kundenspezifischen und
kundenvertraulichen Arbeiten. Ein weltweit
erstrangiger Geräteentwickler stützt sich auf
unsere Prozessentwicklung. Wir haben Expertise
in der Charakterisierung der Dünnschicht-Grenzflächen und das Instrumentarium dafür. Qualitätssicherung mit Zertifizierung besteht und wird turnusmäßig erneuert. Highlights sind: (1) GMRViel-Umdrehungszähler für Anwendungen im
Automobil, (2) Analytik-Highlights: Neue L-Röntgenspektren als Kalibrierreferenz.
Materialentwicklung supraleitender und magnetischer Materialien für die Energietechnik und
Medizintechnik betreiben wir in unserer Abteilung
Magnetik. Das Projekt DYNASTORE zum
Schwungmassenenergiespeicher wurde verlängert und steht jetzt vor dem erfolgreichen
Abschluss. Ein großes Projekt mit Partnern zur
Entwicklung hochdynamischer Motoren wurde
begonnen. Mit „Superlife“ wurde eine von uns
mitgestaltete europäische Ausstellung in Jena
der Öffentlichkeit präsentiert. Das bisher schon
bestehende Zusammengehen mit dem IFW
Dresden wird intensiviert.
Die Nutzung von Magnetpigmenten in der Krebstherapie in Partnerschaft mit dem Klinikum Jena
(Forschungsgruppe von Prof. Werner A. Kaiser)
kommt voran. Die Materialentwicklung dazu hat
ihre Basis dazu im Ferrofluid-Verbund der DFG,
an dem wir maßgeblich beteiligt sind.
14
vehicle carried SQUID-system operated successfully in archaeometric prospection in Palpa/
Peru, (3) the key role of our Quantum Electronics
in camera development for astrophysics and in
quantum computing circuitry was demonstrated
by our contribution to the symposium “measurements at the quantum limit” as organized by us at
the spring meeting of the German Physical Society in Berlin; this work also was presented in
Tokyo within the year “Germany in Japan” as
highlight of the Beutenberg Campus where we
belong to.
Our Magnetoelectronics department features a
deposition system for magneto-resistive multilayer sputtering on industry compatible 8” substrates. Professional operation has been
approved in customer-specific and -confidential
work. A top level company providing such
machines to the world marked relies on our
process development.
We are experienced in characterising thin film
interfaces and are well equipped for such investigations. ISO certification assures quality and is
updated annually. Highlights have been: (1) a
multiturn GMR counter for automotive applications, (2) new L-x-ray spectra as reference for
instrumentation.
Our Magnetics department developes superconducting and magnetic materials for power and
medical engineering. The project DYNASTORE
on a flywheel with our superconducting components has been extended and is expected to be
finished in summer of 2006. A large project has
been started on a superconducting machine testing high power combustion engines for the car
industry. With “Superlife” we presented a European exhibition to the public here in Jena with our
contributions. We intensify our collaboration with
the IFW Dresden.
Cancer therapy using our magnetic nanoparticles
and corresponding heating system reported
progress (team of Prof. Werner A. Kaiser). The
materials development is based on the ferro-fluid
consortium of the DFG where we contribute and
organize.
MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS
1.2
Scientific results
1.2.1
Micro- and nanofabrication
(Uwe Hübner, Ludwig Fritzsch,
Solveig Anders, Jürgen Kunert)
The microfabrication group is responsible for the
maintenance of the existing micro- and nanotechnological fabrication processes for quantum
electronic devices (SQUID sensors, voltage standard chips, Qubits) and other applications such
as nanoscale calibration standards, photonic
crystals and micro optical components, and for
the development of technologies appropriate for
new device requirements. In 2005, 210 chromium
masks and 240 electron beam direct writing
exposure jobs were made using the ZBA 23H.
120 masks were prepared by using the optical
pattern generator MANN 3600. About 80 high
resolution exposures were made using the
e-beam-tool LION. For the further improvement
of the electron beam lithography the software
tool SCELETON was installed as a proximity
function calculator.
In 2005 a new DFG-project, “Electrooptically Tunable Photonic Crystals”, was started. The European project PLATON (PLAnar Technology for
Optical Networks) and the R&D project “KALI II”
were successfully finished. In the “KALI II” project
a new type of nanoscale CD-standard for AFM
and a “Nanoscale Linewidth/Pitch Standard”
were realized. These standards consist of different grating structures etched in nanocrystalline
silicon on a quartz substrate. They contain
patterns on nanometer scale for the calibration
and resolution-check of high-resolution optical
microscopy techniques, such as deep ultraviolet
microscopy and laser scanning microscopy.
One important task of the year 2005 was to
develop a process to reduce the standard 3.5 µm2
Nb/Al process to junction dimensions of 1 µm2. At
the start of 2005 a chemical-mechanical polishing (CMP) machine was installed and the process
of SiO2-planarization on 4” wafers developed. In
parallel, optical lithography using a g-line stepper
(AÜR, Zeiss Jena) and the RIE process for subµm Nb structures were optimized. A first wafer
run with test structures of SQUIDs with Josephson junctions of different dimensions down to 0.8
µm showed in principal the functionality of the
planarization process. However, there was a
large parameter spread and a small yield, caused
by an insufficient reliability and overlap accuracy
of the stepper and the strong dependence of the
polishing rate on topology and structure dimensions. Therefore, for the ongoing test runs new
technological concepts were developed including
direct e-beam exposure and the CALDERA
process for the CMP step in order to overcome
the dimensional effects when polishing. Fig. 1.1
shows a cross section of planarized SiO2 isolated Nb lines. The standard 3.5 µm2 Nb/Al process for SQUIDs was upgraded by integrating
Nb-oxide capacitors with specific capacitances of
app. 4 fF/µm2 for areas of up to 25 mm2. They are
used in highly balanced gradiometers for mobile
SQUID system applications. The development of
large area Josephson junctions for applications
as x-ray detectors in synchrotron radiation experiments was started with special emphasize on
the minimization of the subgap leakage currents.
The first results are promising and future work will
be concentrated on the preparation of sensor
arrays and the implementation of different
absorber materials.
Fig. 1.1: Cross section of Nb lines with planarized SiO2 isolation.
1.2.2
SQUID sensors and systems
(Volkmar Schultze, Ronny Stolz,
Viatcheslav Zakosarenko,
Andreas Chwala, Sven Linzen,
Nilolay Ukhanski, Torsten May)
Except for SQIFs (Superconducting Interference
Filters – a special combination of number of various SQUIDs) which are developed and produced
within a long-standing cooperation with the University of Tübingen and the company QEST, all
SQUID projects are based now upon the use of
low temperature superconductors.
In the fourth phase of the development of the
LTS SQUID gradiometer system for mobile applications the second generation prototype for measuring the full tensor of the Earth’s magnetic field
gradient with extremely high sensitivity was built.
It features several improvements compared to its
antecessors.
With integrated low pass filters the frequency gap
for disturbances between the system bandwidth
of approximately 4 MHz and 500 MHz of the RFI
screen around the cryostat could be closed.
Here, the main task was the development of a
technology for integrated capacitances up to 80
nF. After several aborts in the past few years the
successful implementation of intrinsic capacitors
is a highlight in the SQUID development in 2005.
Now, due to these filters the new gradiometer
sensors provide higher stability in environments
with high frequency radiation and their intrinsic
noise could be decreased down to 20 fT/(m·√Hz).
The second task was to reduce the motion noise
15
MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS
of the SQUIDs caused by movements in the
Earth’s magnetic field. By decreasing the width of
all superconducting structures below 5 µm the
critical magnetic field amplitude for flux capture
could be increased up to 65 µT. Furthermore,
using smaller areas of about 3000 µm2, the sensitivity of the three reference SQUID magnetometers was decreased. Now we are able to
work even in high magnetic field amplitudes like,
for instance, in the north of Canada.
Further development has been done on the data
acquisition unit of the system. It contains now
extremely low noise differential inputs for 21 analogue channels. They are digitized with 24 bit
ADC. All interactions of this unit with the SQUID
system have been removed. The accuracy of the
determination of the 3D position, flight direction,
and orientation in space is determined from a
low-power differential GPS system and a new
inertial system unit containing high accuracy
fiber-optical gyros. With the implementation of
new lithium ion batteries the weight and geometric dimensions of the data acquisition unit have
been decreased by simultaneous increase of the
working period to approximately eight hours.
In September 2005 the Earth’s magnetic field
gradient of the same area (approx. 13 km × 7
km), surveyed in South Africa already in 2004,
was measured again. The system was used in a
fixed wing configuration on a CESSNA Grand
Caravan 208 airplane from Fugro Airborne Systems, where the rigidity of the stinger was
increased compared to the past. In this configuration the area (1100 line kilometers) was
scanned at altitudes of 80 m and line spacing of
100 m. To compare the system sensitivity with the
best contemporary conventional system (MIDAS
system from Fugro Airborne systems), the survey
was conducted with helicopter based instruments
at altitudes between 35 m and 40 m and a tow
rope length of 40 m. The comparison of the magnetic maps of both systems showed a superior
sensitivity and spatial resolution of the full-tensor
SQUID device.
16
The development of a SQUID system for archaeological prospection within the project
“ArcheNova” was finished with the end of year
2005. Via various field trials the system was further improved compared to the status the year
before. The final examination – and a highlight
of the SQUID activities in this year – was an
expedition to the Nasca/Palpa region in Peru,
about 250 km south of Lima. This region is most
famous because of the large geoglyphes. Our
measurements were performed in coordination
and cooperation with the BMBF project network
“Nasca: Development and adaption of archaeometric techniques for the investigation of cultural
history”.
All the demands of this application – transport of
the system, provision with liquid Helium, and
especially the measurement in a hyper arid,
dusty area – could be solved well. The measurements could even be performed with a pickup
truck as a hauling system – despite a very
cragged surface of the explored areas (cf. colored picture). Mappings on foot, performed for
comparison, proved the same data quality of the
“motorized” ones. So it was possible to map
about one hectare per measurement hour, which
is a remarkable gain compared to common handheld geomagnetic archaeological prospection
systems. All in all more than 200 line kilometers
were driven. Due to the geo-referenced positioning with the differential GPS system the results
can easily be fit into photos or maps achieved
with other methods.
One example out of the 10 mapped areas is
shown in Figure 1.2. On the ortho photo only
recent plow furrows are visible. Partially they also
reproduce in the magnetogram. However, there
also an old riverbed comes out, magnetically
detectable due to the deposition of sediments.
This gives an impression on the dramatic
changes the area around Nasca suffered in times
before the Spanish set up to conquer South
America.
On other areas geometric structures came out in
the magnetogram which allude to ancient settlement residues.
Fig. 1.2: Jauranga – a site near Palpa, Peru.
Top: Ortho photo (by courtesy of the Institute for
Geodesy and Photogrammetry, ETH Zürich),
Bottom: Magnetogram.
MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS
Even though with the Peru expedition the project
is formally finished, in 2006 some other field trials
in Europe are planned where the potential of our
system shall be used for geomagnetic prospection of archaeologically interesting sites.
The most common electromagnetic method in
mineral exploration is based on the application
of transient Electro-Magnetics (TEM). Already in
2003 a prototype of a TEM system with LTS
SQUID magnetometers has been developed,
which has been used routinely on several targets
in Australia and South Africa in 2004 with great
success.
In 2005, the system has been redesigned in various aspects. All components have been evaluated
for the use of the system under arctic conditions.
A new cryostat with a higher thermal efficiency
(and the same size) helps to save liquid helium,
since it now needs to be refilled every second day
only. The power supply and control unit have
shrunk by almost a factor of two in size. The
mechanical setup has been ruggedized by changing cable, connectors, switches and cryostat installation. A new family of SQUIDs has been implemented to achieve a better stability of the working
point all over the world (with different magnetic
field strengths). At the end of this process it was
possible to out-source the fabrication to our spinoff ‘Supracon’. Two new systems have been produced there and meet all the required specifications. The first “production” system was applied in
routine field work for many weeks in Australia.
Already in 2001 a prototype of a directly coupled
SQUID electronics for various applications has
been developed. In between it has been successfully used in various applications. From 2002 on,
commercial production of this electronics, completed by a digital control unit, started by our
spin-off ‘Supracon’. In 2005 this electronics has
been redesigned in many aspects. Keeping a
frequency range of 7 MHz and very low input
noise ~0.33 nV/Hz1/2 (with flicker noise corner
frequency ~0.1 Hz), thermodrift (~5 nV/K), maximum slew rate (~16 MΦ0 /s) and dynamic range
(170 dB) have been remarkably improved.
In the frame work of the “LABOCA” project being
executed in close collaboration with the Max
Planck Institute for Radio Astronomy in Bonn our
group has considerably enhanced the performance of the used transition edge bolometers by
developing a new technology for patterning the
supporting membranes. These structured membranes, sometimes referred to as “spider-webs”
(Fig. 1.3), help to lower the thermal conductivity
and thereby improve the energy resolution down
to values below 10–16 W/Hz. Furthermore, we
have developed a new concept of coupling the
first-stage readout SQUID and the second-stage
amplifier SQUID. This approach is particularly
well adapted to the time domain multiplexing con-
Fig. 1.3: A quadratic, 800 nm thick silicon nitride
membrane patterned in the shape of a spider
web. The width of the legs is 4 µm.
cept. The appropriate electronics was improved
and a production prototype was built, which can
be easily produced in the batches of 30 ones,
needed for the 300 channel array.
In parallel the LABOCA prototype system with
7 channels was successfully used to image
objects from a distance of a few meters in a lab
environment. Imaging in the frequency band
between 0.1 and 1 THz also opens the possibility of detecting potentially hazardous objects hidden underneath the clothing of suspects, for
instance in security areas at airports.
Together with the company Vericold Technologies
we have developed and manufactured X-ray
bolometers, operating at a temperature of 100 mK.
They are routinely used to equip the Polaris™
spectrometer, an add-on for commercial electron
microscopes, which can be used for finding
defects in semiconducting electronic circuits.
1.2.3
Integrated superconducting circuits
(Gerd Wende, Marco Schubert,
Torsten May, Michael Starkloff,
Birger Steinbach, Hans-Georg Meyer)
In 2005 the project “Quantum Synthesizer
(QuaSy)” was successfully developed further. In
the project three components – an RSFQ pulse
pattern generator, a pulse amplifier, and a
Josephson quantizer – are being developed by
different project partners, and integrated into a
Multi-Chip-Module. Within the scope of the joint
project the IPHT is focused on investigations of
superconducting pulse-driven microwave circuits,
the so-called Josephson quantizer, and on the
relevant microwave tests and measurements.
Our main activities were the improvement of the
fabrication technology and testing the Josephson
quantizer microwave circuits. With this new technology the packing density of the Josephson
17
MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS
junctions (JJs) was increased by about one third.
The critical current spread was reduced from
about 10% to 2–3%. All this together results in a
distinct increase of the yield of fully functional
quantizer circuits.
A new cooperation with the NMi Van Swinden
Laboratorium B.V. in Delft, Netherlands, allowed
to measure our chips in a bipolar pulse driving
mode with pulse repetition frequencies of up to
12 GHz. The pulse pattern generator delivers a
repeating pattern of short current pulses in which
the desired low frequency output waveform is
encoded. By the Josephson quantizer circuit it is
transformed into a pattern of quantized voltage
pulses. Fig. 1.4 shows an example of the operation of a Josephson quantizer circuit with
2560 JJs. In this case, a 122 kHz ac voltage was
delta-sigma modulated in a 64 Mbit long pattern.
The used clock frequency was 4 GHz. The left
spectrum of Fig. 1.4 is delivered by the generator
itself. It can be seen that there are not only the
distinct higher harmonics of the fundamental but
also other peaks whose origin is not yet clear.
The quantizer circuit driven by the same pattern
removes all of these unwanted signals as seen
in the right hand side spectrum of Fig. 1.4. The
amplitude of the fundamental frequency was
9.5 mV with quantum accuracy and the higher
harmonics were suppressed by –86 dBc. Currently, the Josephson junction array limits the
maximum usable clock frequency to 4.8 GHz and
the maximum ac voltage amplitude to 9.5 mV.
Therefore, the major task for the next few months
is to increase the chip bandwidth in order to
increase the maximum ac voltage amplitude.
Fig. 1.4: Measured power spectra of a deltasigma modulated 122 kHz sine wave with an
amplitude of 9.5 mV. The bipolar pulse pattern
generator was clocked at 4 GHz. Left spectrum:
Delivered by the generator itself. Right spectrum:
Output signal of the JJ array quantizer, pulse-driven by the generator with the same pattern. The
suppression of the higher harmonics is –86 dBc.
18
Josephson quantizer and 10 V Josephson voltage
standard chips with almost 20,000 JJs are the
most highly integrated superconductive circuits
provided commercially. Worldwide only HYPRES
Inc. (USA) and the IPHT are able to offer such
10 V Josephson voltage standard circuits. In 2005
the IPHT delivered quantizer chips and 10 V chips
to several national metrology laboratories.
In 2005 a complete microprocessor controlled
10 V Josephson voltage standard system was
developed. The system facilitates a variety of DC
voltage calibrations and measuring functions:
Calibration of secondary DC-reference Zeners
and testing of the linearity and accuracy of DCvoltmeters and DC-calibrators in the voltage
range of 0 to ±10 V. It was successfully evaluated at the PTB in Braunschweig. A direct comparison of the IPHT Josephson voltage standard
with the PTB one showed a voltage difference
between both standards of only 0.7 nV, with a
measurement uncertainty of 3.4 nV. This corresponds to an accuracy of 7 × 10–11. So, the IPHT
system compares to the primary standards of the
national metrology institutes.
1.2.4
Quantum computing
(Evgeni Il’ichev, Miroslav Grajcar,
Andrei Izmalkov, Thomas Wagner,
Sven Linzen, Uwe Hübner,
Simon van der Ploeg, Daniel Wittig)
Approximately ten years ago it was demonstrated
theoretically that a quantum computer can solve
some problems much more effectively than a
classical one. This discovery has stimulated an
effort to find a physical system which can be
used as a qubit, the building block of a quantum
computer.
Amongst the many systems in physics which can
be used as a qubit, one is the so-called persistent
current qubit. This qubit consists of a small
inductance superconducting loop with three
Josephson junctions. Such superconducting
qubits have several advantages over qubits
based on microscopic systems: there is no principal limitation in their number and they can be
accessed and controlled individually.
We proposed a specific implementation for adiabatic quantum computing with a set of coupled
superconducting flux qubits, which can be fabricated with the present state of the art. We could
show that our measurement setup – the impedance measurement technique – can be effectively used to read out the results of the adiabatic
evolution algorithm.
In order to demonstrate any quantum algorithm, a
coupling between qubits must be implemented.
We proposed implementing the coupling between
two qubits through a shared Josephson junction.
We have experimentally demonstrated direct antiferromagnetic Josephson coupling between two
persistent current qubits. The coupling strength
can be of the order of a Kelvin, and agrees with
theoretical predictions to the expected accuracy.
Moreover, the resulting coupling not only is
strong, but can also be varied independent of
other design parameters by choosing the shared
junction’s size.
MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS
We implemented a “twisted” design which exhibits
the ferromagnetic coupling. It was done by fabricating and studying a four–qubit circuit (Fig. 1.5)
in which the two types of coupling co-exist. This is
very promising from the perspectives of realizing
nontrivial Ising-spin systems and scalable adiabatic quantum computing. This world-wide first
coupling of four superconducting qubits clearly is
a highlight of our work in 2005. The acquired data
fully agree with a quantum-mechanical description to the experimental accuracy.
parent interfaces. Reasonable agreement between
theory and experiment was found.
The whole work of the quantum computing group
was honoured already in the preceding year with
the Thuringian Research Award. The actual
awards ceremony happened in the year 2005,
shown in the colored picture.
These good results, ever again presented in
important scientific journals, also reflect in a
steadily growing embedding in international
cooperation. To allow for the growing number of
measurements coming along with this, a second
mK-cryostat had to be set up, what was connected with the preparation of an additional specially
prepared room for it.
So, in combination of these further improving
measurement conditions and the scientific potential of the quantum computing group its position
in the emerging field of quantum computing could
further be strengthened.
1.2.5
Fig. 1.5: Electron micrograph of a four-qubit
sample. The central junctions A1–A3 couple the
Al qubits q1–q4. The surrounding Nb coil is part
of the LC tank circuit, used for measurement and
global flux biasing. The Nb lines Ib1 – Ib4 allow
asymmetric bias tuning.
For superconducting qubits the problem of decoherence is one of the most important. In order to
get additional information about the qubits
dynamics we proposed a new tool – low frequency Rabi spectroscopy for a two-level system. In
principal we have analyzed the interaction of a
dissipative two-level quantum system with highand low-frequency excitation. The system is continuously and simultaneously irradiated by these
two waves. If the frequency of the first signal is
close to the level separation, the response of the
system exhibits undamped low-frequency oscillations whose amplitude has a clear resonance at
the Rabi frequency with the width being dependent on the damping rates of the system. Therefore, by analyzing the experimental data, decoherence as well as relaxation times can be reconstructed.
We have also experimentally and theoretically
investigated combined superconductor-semiconductor structures. The measurement of the
supercurrent-phase relationship of a ballistic
Nb/InAs(2DES)/Nb junction in the temperature
range from 1.3 K to 9 K using impedance measurement technique showed at low temperatures
substantial deviations of the supercurrent-phase
relationship from conventional tunnel-junction
behaviour, as has to be expected for highly trans-
Foundry service
(Wolfgang Morgenroth, Ludwig Fritzsch,
Torsten May, Jürgen Kunert,
Birger Steinbach, Gerd Wende,
Hans-Georg Meyer)
The Jena Superconductive Electronics Foundry
(JeSEF) was founded in 1997. It uses the knowhow and the competitive infrastructure for niobium and YBCO technology of the department of
Quantum Electronics. The foundry provides customers with LTS SQUIDs and SQUID systems,
RSFQ circuits, Josephson voltage standard circuits, components and systems, and with microfabrication items including the design and fabrication of lithography masks. Further, the foundry
offers technological services like single manufacturing steps, using our cleanroom facilities, as
well as characterization services of our well
equipped laboratories. JeSEF and the department of Quantum Electronics have been ISO
9001:2000 certified since 2002.
About 40 orders were processed in 2005. Our
main customers for SQUIDs and Microfabrication
were Supracon AG, THEVA GmbH, Bruker
BioSpin GmbH, and Jenoptik LOS GmbH. Voltage standard circuits and components were
delivered to the University of Naples and to the
national metrology laboratories of the Netherlands, France, and Korea.
1.2.6
Domain wall motion in small GMR
structures
(Roland Mattheis, Hardy Köbe,
Dominique Schmidt, Uwe Hübner,
Wolfgang Morgenroth)
The motion of domain walls in narrow stripes represents the key element for new magneto-
19
MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS
electronic devices like magnetic logic, stacked
MRAM, and our multiturn sensor. We investigated
domain wall motion in 500 µm long stripes of a
GMR stack with NiFe as the sensing layer. The
stripes were prepared using e-beam lithography
and Ar ion milling.
20
Fig. 1.6: GMR stripe with domain wall generator:
a) Temporal evolution of voltage (proportional to
R) of a 220 nm wide stripe; b) distribution of the
field strength Hinj; c) distribution of the length covered during the first domain wall jump; d) distribution of the field strength Hmov > Hinj necessary for
completion of the domain wall movement through
the stripe.
Stripe widths of between 150 and 300 nm and
thicknesses of the NiFe layer of between 5 and
20 nm, cause large shape anisotropy and, as a
consequence, high fields Hnuc were needed for a
domain wall nucleation in the stripe. Some stripes
have an 6 µm × 10 µm large area (domain wall
generator) at one end, in which a 180° domain
wall is generated upon rotation of a field of
strength Hgen and injected into the stripe at a field
strength Hinj (with Hnuc > Hmov > Hinj > Hgen). The
field dependencies of the 180° domain wall injection, of the domain wall velocity, and of the
processes of pinning and depinning in our stripes
were determined from the resistance changes of
the GMR stack, by measuring the R(t)-curve and
statistically interpreting 500 repeated experiments.
As shown in Fig. 1.6a during a linear increase of
the magnetic field a domain wall was injected at
5.3 kA/m and pinned after travelling about 70 µm,
140 µm, and 270 µm, as derived from the relative
voltage jump. The distribution of the injection field
Hinj in Fig. 1.6b clearly shows a twofold Gaussian
distribution. These two peaks are presumably
caused by the two possible types of domain
walls, transverse and vortex-like domain walls,
whose injection into the stripe is dependent on
the magnetic reversal process in the domain wall
generator. As displayed in Fig. 1.6c the domain
wall can be pinned during movement through the
stripe at nearly all parts of the wire, thereby
showing the stochastic nature of domain wall
movement. The pinning probability exhibits a
double peak near 100 µm. In most cases the
domain wall is pinned twice during passage. The
magnetic field for passing through the complete
stripe is depictured in Fig 1.6d. The wide distribution of this field again indicates the stochastical
nature of domain wall motion, pinning and depinning. Edge roughness probably causes this statistically distributed pinning. Magnetic fields Hmov
of about 9.5 kA/m are sufficient to move the
domain wall completely through the 500 µm long
stripes.
In some stripes with a domain wall generator single defects seem to occur. These cause strong
pinning for every domain transition. The field
strength necessary to overcome this strong pinning varies from experiment to experiment within
a factor of 3. One such strong defect near the
domain wall generator enabled us to determine
the field dependence of the domain wall velocity.
As shown in Fig. 1.7 we get a linear field dependence of the domain wall velocity v. Within some
µs a domain wall can move through the whole
stripe. The domain wall mobility of 17 (m/s)/
(kA/m) is low compared to that obtained in largearea NiFe layers and is comparable to that found
by other groups in narrow stripes at comparatively high magnetic fields. The minimum field Hinj for
any domain wall movement in 200 nm wide
stripes is of the order of 4 kA/m.
MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS
Fig. 1.7: Linear dependence of the domain wall
velocity v on the field strength Hmov in a stripe with
a defect.
annual report 2004) and included thermal relaxation processes in our model used to analyse the
experimental non-equilibrium torque curves L(Φ).
Furthermore, we performed time dependent
measurements which directly show relaxation at
T = 10 K.
L(Φ) is the irreversible contribution to the torque
exerted on the F/AF film by an in-plane rotating
strong magnetic field after a rotation reversal
from the cw to ccw sense. Beginning at the reversal point (Φ = 0), the film grains of coupling
strength j change their magnetic states from one
equilibrium (cw) to a new one (ccw) at characteristic angles Φ(j). Thus L(Φ) reflects P(j) and we
derive
P(j) = 1/(S(Kt)2) * G(βS(j),Φ) * d2L(Φ)/dΦ2,
Fig. 1.8: Distribution of the field strength necessary for nucleation of a domain wall in a GMR
stripe without domain wall generator.
where S, K, and t are the area, anisotropy constant, and thickness of the AF film, respectively.
The function G was calculated in the frame of a
Stoner-Wohlfarth model for 3-axial anisotropy
(inset of Fig. 1.9). This model describes for a single grain the magnetization angles βS(j/Kt) at
which the coupled AF net moment switches from
one AF anisotropy axis to the next, thus contributing to the irreversible torque L(Φ). Thermal energy reduces this switching angle βS(j,T)< βS(j,0) as
demonstrated in Fig. 1.9, because within the
measuring time t > τ = 10–9 s * exp(EB/kBT) an
energy barrier EB can be overcome. This must be
considered also at T = 10 K because the grain
volume V EB is very small. As an example
In stripes without a domain wall generator the
domain wall nucleates at one end of the stripe at
a field strength Hnuc = 18–26 kA/m and moves
through the line within some µs. The peak field is
inversely proportional to the stripe width and has
a very narrow Gaussian distribution (σ ~ 0.8% of
the peak field) as shown in Fig. 1.8. This field is
larger than the field necessary to overcome every
pinning and corresponds to the coercitive field
strength HC.
1.2.7
Measurement of coupling strength
distribution in exchange bias film
systems
(Klaus Steenbeck, Roland Mattheis)
The exchange bias field and the coercitivity of
ferro-/antiferromagnetic (F/AF) coupled polycrystalline film systems for magnetoelectronics
strongly depend on the coupling strength j of the
individual grains, with their distribution function
P(j) in the grain ensemble. Until now P(j) was not
measurable.
We quantified our proposed method to determine
P(j) with low temperature torquemetry (see IPHT
Fig. 1.9: Calculated critical magnetization angles
βS for switching of the AF net moment µAF to a
neighbouring easy axis as a function of the grain
coupling (j/Kt). The shown parameter is the ratio
(T/K) of temperature and AF anisotropy constant
K.
Inset: Sketch of the rotating magnetization MF
and the coupled AF net moment µAF in a film crystallite with 3 easy axes of the AF.
21
MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS
Fig. 1.10: Probability P(j) for a coupling energy
density between j and (j+dj) as a function of j,
determined from torque measurements with a
NiFe / IrMn film at T = 10 K.
Fig. 1.10 shows the distribution function P(j) for a
sputtered NiFe (16 nm) / IrMn (0.8 nm) coupled
film determined from torque measurements at
T = 10 K. Only the range of coupling j > j1, which
is responsible for the irreversible torque contributions, can be recorded by the method. The result
shows that most of the grains have low coupling
energies and that the portion of strongly coupled
grains continuously decreases with increasing j.
The value of K used was estimated using information from exchange bias measurements.
1.2.8
22
Electron excited L X-ray spectra of
_Z<
_ 33
the elements 14 <
(Andrea Assmann, Jan Dellith,
Andy Scheffel, Michael Wendt)
In order to obtain reliable data of the relative inten_Z<
_ 33
sities of the L spectra for the elements 14 <
a reinvestigation using high resolution wavelength
dispersive spectrometry (WDS) was undertaken.
These data are needed in order to avoid misinterpretations of X-ray lines. Three posters about this
subject were presented at the EMAS2005/IUMAS3 conference which was held in May 2005 in
Florence/Italy. For one of them, dealing with the
L spectrum of Fe and Fe3O4, the international scientific committee of this conference gave Andy
Scheffel a young scientists award. The other five
young scientists awards went to Australia (2), to
Canada (1), Belgium (1), and Italy (1). Meanwhile,
three manuscripts about this subject were accepted for publication in Microchim. Acta.
In the first paper, Andrea Assmann, Jan Dellith and
Michael Wendt report for the first time on the
observation of the line Lβ3,4 = L1M2,3 for all ele_Z<
_ 22, but not for 14Si and 15P. These
ments 16 <
ultra-soft L spectra were studied by means of multilayer reflectors the periodicity of which was 6 nm
and 10 nm. The extension of the knowledge on
these ultra-soft L spectra is illustrated by Fig. 1.11.
Fig. 1.11: Scheme of the L lines for Z < 26. The
circles represent the new data obtained in this
work.
In the second paper the differences between the
L spectra of pure iron and Fe3O4 are discussed
by Andy Scheffel, Andrea Assmann, Jan Dellith,
and Michael Wendt. The intensities of the Fe L
lines/bands l = L3M1, η = L2M1, α1,2 = L3M4,5, β1 =
L2M4, and β3,4 = L1M2,3 were measured for pure Fe
and Fe3O4 by using a TAP crystal as the dispersing element. The energy of the exciting electrons,
_ E0 <
_ 25 keV.
E0, was varied in the range 5 <
For pure Fe the following results were obtained.
The net peak height ratio Ll/Lα remains relatively
constant with varying E0 at approximately 14%.
The E0 dependence of Lη is similar to that of Ll,
although Lη is less intense than Ll by a factor of
7. Lβ1/Lα decreases from 20% for E0 = 5 keV to
about 5% for 25 keV. Lβ3,4 behaves like Lβ1 but is
weaker by a factor of 15.
For Fe3O4 a much weaker intensity of Lα was
observed which can be partially explained by its
stronger absorption. Again, the E0 dependence of
Ll and Lη is similar with Ll/Lα = 19% and Lη/Lα =
4%. Lβ1 and Lβ3,4 show a comparable E0 dependence. Lβ1/Lα decreases from 50% for E0 = 5 keV
to 34% for 25 keV. Lβ3,4 is weaker than Lβ1 by a
factor of about 25.
For the first time the observed E0 dependence of
the different lines was used to estimate a complete set of mass absorption coefficients (m.a.c.).
Our value for Lα in Fe agrees well with other data
which were deduced from variable E0 measurements but differs considerably from data given by
Heinrich and Henke in their tables. For the m.a.c.
values of the other lines contained in Fig. 1.12 a
comparison is impossible because no other data
were found.
The same TAP crystal with a periodicity of
25.757 Å was used by Andrea Assmann, Jan
Dellith, and Michael Wendt to reinvestigate the
_ Z <
_ 33. Among
L spectra of the elements 24 <
these elements 33As is the only one for which the
energy of the lines Lα1,2 and Lβ1 is below the L3
absorption edge. For all the other elements the
lines Ll, Lη, and Lα1,2 are below the L3 edge,
whereas Lβ1 and Lβ3,4 are above this edge. This
MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS
Fig. 1.12: Correlation between the m.a.c. values
and the intensity ratio R = I(20 keV)/I(7 keV).
Fig. 1.13: Melt-textured YBCO monolith prepared
using 7 seeds.
difference leads to effects of differential absorption, where the absorption is stronger for
decreasing line energy. For the net peak height
ratio β1/α we obtained results which are of the
same order of magnitude as those given by
White and Johnson (W&J) in their popular tables.
However for l/α and β3,4/β1 our results show an
atomic number dependence which is completely
different from those given by W&J.
1.2.9
lith with a size of 78 * 38 * 18 mm3 where 7 seeds
in <100> orientation were applied. The trapped
field profile (Fig. 1.14) represents a transport current across all grain boundaries.
Preparation, characterization and
application of melt-textured YBCO
(Wolfgang Gawalek, Tobias Habisreuther)
Our work is based on a stable preparation technology to prepare high quality material combined
with an adapted characterization technology.
Investigation on the whole chain from precursor
preparation to the system integration of function
elements is performed in order to optimize melttextured YBCO for applications.
Several projects and co-operations with partners
in research and industry of Germany, Europe and
world wide support our work.
Silvia Kracunovska successfully defended her
PhD thesis on the relation between preparation
and microstructure.
General material development
Any application requires material with good and
reproducible quality. This is provided by our batch
process. We are able to prepare several sizes of
monoliths according to the requirements of the
application (D. Litzkendorf).
To enlarge the monoliths size and to improve the
magnetic properties we concentrated on the
multi-seeding technique where several seeds
were placed on the monoliths.
Both <110> and <100> growth fronts were investigated used polarised light microscopy (J. Bierlich, PhD work). In both orientations a transport
current across the grain boundaries is observed
in the trapped field profile. The seeds have to be
oriented with an accuracy of about 3° in a distance less than 5 mm. Fig. 1.13 shows a mono-
Fig. 1.14: Trapped flux distribution of the multiseeded monolith. The flux distribution shows a
transport current across all grain boundaries.
Within the EFFORT consortium we use the possibility to exchange and discuss the latest developments and results with all European specialists.
Applications
In co-operation with MAI Moscow motor tests at
temperatures at 20 K were performed. Small
scale reluctance motors were tested at the MAI
Moscow. The power output of an YBCO-motor
increased from 500 W at 77 K to 1500 W at 20 K
and 3000 rpm.
In 2005 we and our project-partners Oswald
Elektromotoren GmbH, MAI Moscow, and Arburg
GmbH developed first designs for the BMBF-project “Hochdynamischer HTSL Motor”.
In the frame of the POWER SCENET W.
Gawalek leads the working group “Rotating
machines”. A meeting with 20 participants from
10 countries was organized in Jena from April
11–12, 2005 in Jena.
23
MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS
In 2005 the final detailed system design was realized for the Dynastore project. We finished the
monoliths for the embedding into the bearing and
transferred them to the company Nexans High
Temperature Superconductors for the system integration. It is scheduled to test the system in 2006.
Public awareness
Under the patronage of the Thuringian minister
of education and cultural affairs Prof. J. Goebel
we organised an interactive exhibition “Eiskalte
Energie für Europa” from June 29 to July 2 in the
GoetheGalerie Jena (Fig. 1.15). The exhibition was
developed in the frame of EU-project “SUPERLIFE” in co-operation with the Budapest University
for Technology and Economics (co-ordination),
ICMAB Barcelona, ISMRA Caen, Oxford University, Ben-Gurion University of the Negev, S-Metall
Budapest and Sydcraft. After contacting schools
within a range of 100 km around Jena we organized 50 guided tours through the exhibition to
bring superconductivity near to the young students.
During the exhibition we counted 2000 persons
testing the human levitator.
Fig. 1.16: Rotor of the first MgB2 HTS motor.
set-up for motor tests at 21K was constructed and
the motor tests were performed. Test results are
shown in Fig. 1.17. At 20 K this motor showed an
output power of 1300 W at 3000 rpm.
Fig. 1.17: Test results of the MgB2 motor at 20 K.
Fig. 1.15: Visitors watching a levitated train at the
exhibition.
In addition we showed levitation during the “Highlights der Physik 2005” in Berlin, at Siemens
Nürnberg, during the “Lange Nacht der Wissenschaften” in Jena and Erlangen, and at the
Solvay headquarters Hannover. Also we contributed our human levitator to the TV-science
magazine “Galileo”.
1.2.10 Characterization and application
of bulk MgB2
(Wolfgang Gawalek, Tobias Habisreuther,
Matthias Zeisberger)
24
The first motor with MgB2 elements world-wide
was constructed by ISM Kiev, MAI Moscow and
IPHT Jena (Fig. 1.16).
ISM Kiev produced several MgB2 plates. In Jena
they were characterized and machined to function
elements. At the MAI Moscow the experimental
The DFG project “Neue Werkstoffe für die
Energietechnik: Magnesiumdiborid” was successfully enroled.
1.2.11 Preparation of magnetic materials
(Robert Müller)
In the frame of the DFG-priority program spectroscopic investigations (University Bonn) on glass
crystallised Ba-ferrite BaFe12–2xTixCoxO19 magnetic particles were continued with respect to the
problem of reduced magnetisation in nanoparticles (“magnetic dead layer”).
Experiments to prepare magnetite or maghemite
nanoparticles in the 20 nm-range for medical
applications by glass crystallisation as well as by
cyclic wet chemical precipitation were continued.
Essential points of interest are the optimisation of
nucleation and the growth onto given particles
without further nucleation (see Fig. 1.18), respectively. Mean particles sizes >30 nm could be
MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS
Fig. 1.18: Magnetic properties in dependence on
number of cycles (i.e. on increasing mean size
from 11 to 26 nm).
realised. Bigger particles in size distributions with
mean values > ≈25 nm are magnetically too hard
to give a high loss power at the small field amplitudes required for medical treatment.
Experiments on covering the particles by a biocompatible layer (dextran) were started in the
frame of a diploma thesis. Stable suspensions with
17 nm-particles (mean value) could be prepared.
Investigations on magnetic properties were done
as well in cooperation with partners on Co-particles, encapsulated particles (FZK, DFG-program), hard-magnetic Ba-ferrite particles (TU
Ilmenau), iron oxide particles and ferrofluids with
different polymer surface layers (University Düsseldorf, DFG-program) and iron oxide microspheres (HKI Jena).
1.2.12 Biomedical applications of magnetic
nanoparticles
(Rudolf Hergt, Matthias Zeisberger)
In the last years magnetic nanoparticles (MNP)
found increasing interest in various biomedical
applications as for instance superparamagnetic
contrast agents for MRI, cellular separation and
refinement, drug delivery, gene magnetofection
and magnetic biochips. One important new therapy method entering now clinical application is
magnetic particle hyperthermia and thermoablation which is under development in the group of
the IPHT in co-operation with the Institute for
Diagnostic and Interventional Radiology (IDIR,
Prof. W. A. Kaiser) of the Clinics of the University
Jena. Within the frame of the DFG-priority program “Colloidal Magnetic Fluids” foundations for
therapy of breast carcinoma by magnetic particle
injection were provided and the fundamentals of
the second therapy generation, the “Antibody
Mediated Targeting of Nanoparticles” (AMTN)
were laid down. The experimental setup developed in co-operation with IDIR for first clinical trials was further improved considering reliability
and comfortability for patients. For the developed
apparatus as well the special magnetic particle
suspension to be injected for tumour therapy two
patents were filed.
The new method of AMTN is presently under
investigation in the frame of the DFG-project
“Magnetic heat treatment of breast tumours with
multivalent magnetic nanoparticles” (HE2878/9-2)
in co-operation with Prof. Kaiser (IDIR). The goal
is the coupling of three strategies of tumour therapy: combination of hyperthermia by magnetic
nanoparticles with antibody-targeting and chemoor radiotherapy. Therefore, functional molecular
groups (e.g. tumour-specific antibodies and cisplatin) will be coupled to the carboxymethyldextran
coating of maghemite nanoparticles. There, a till
now not satisfyingly solved problem is the preparation of MNP which provide sufficient specific
heating power (SHP). While suitable MNP with
moderate values of SHP are available now for the
direct intratumoural injection method, the target
concentrations expected for AMNT are so low that
at least an order of magnitude higher SHP is
needed. Theoretical modelling of the heat generation by magnetic nanoparticles in a tumour
showed that for large tumours (some cm) SHP of
more than 1 kW/g is needed, a value which is even
increasing with decreasing tumour size. Such a
high value of SHP was found by our group till now
only for magnetosomes synthesized by magnetotactical bacteria (co-operation with Dr. Schüler,
MPI Marine Microbiology Bremen). Unfortunately,
those particles are available only in small amounts
and – more importantly – they lack biocompatibility due to the bacteria proteins of their coating. Our
investigations have shown that a maximum of
magnetic losses occurs in the transition region
between superparamagnetic and stable single
domain particles. For maghemite or magnetite this
is just the mean size of about 30 nm found for
magnetosomes. However, screening with respect
to magnetic properties, in particular losses, for
various MNP types prepared by chemical precipitation resulted in nearly one order of magnitude
lower SHP. As a reason, the too broad size distribution as well as a magnetic coupling of MNP is
supposed and is subject of present investigations.
Besides efforts with particle preparation described
in the previous section. An apparatus for magnetic size fractionation was developed which is under
investigation, now. Another way towards large values of SHP is the application of MNP with higher
magnetic moment e.g. FePt or Co. The latter ones
are presently magnetically investigated with
encouraging results (co-operation with Prof. Bönnemann, FKZ).
In co-operation with the University of Applied Sciences Jena (Prof. Andrä, Prof. Bellemann, Dept.
Biomedical Engineering) a pharmaceutical capsule for the remote controlled drug release is in
development. The release mechanism is based
on the heating of a magnetic absorber in an alternating magnetic field. By in-vitro investigations
the remote controlled release was realised and a
clinical study is under preparation.
25
MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS
1.3. Appendix
Partners
National cooperation
Thuringia
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
B&W Trade Technology, Jena
Carl Zeiss Jena GmbH
Docter-Optics GmbH, Neustadt/Orla
FH Jena, FB SciTec, FB Medizintechnik
Fraunhofer Institut für Angewandte Optik
und Feinmechanik, Jena
Friedrich Hagans Plastverarbeitung, Erfurt
FSU Jena
• Physikalisch-Astronomische Fakultät und
Chemisch-Geowissenschaftliche Fakultät
• Institut für Diagnostische und
Interventionelle Radiologie
• Institut für Sportwissenschaft
• Klinik für Innere Medizin III
HITK Hermsdorf
IMB Jena
IMG Nordhausen
IMMS gGmbH, Ilmenau
Innovent e.V. Jena
j-fiber GmbH, Jena
Jenoptik AG, Jena
JOLD Jena
Landesamt für Archäologie mit Museum für
Ur- und Frühgeschichte Thüringens in Weimar
Leica Microsystems Lithography GmbH Jena
Melexis AG Erfurt
Schott Lithotec, Jena
STS Diagnostics, Jena
Supracon AG, Jena
SurA Chemicals, Jena
TÜV Thüringen e.V., Kalibrierlabor Arnstadt
TU Ilmenau
Germany
26
• BAM, Berlin
• Bayerisches Landesamt für Denkmalpflege
(BLfD) München
• Bruker AXS Microanalysis GmbH, Berlin
• BUGH, Wuppertal
• EAS Hanau
• Eberhard Karls Universität Tübingen,
Physikalisches Institut I
• Forschungszentrum Jülich GmbH
• Fraunhofer – INT, Euskirchen
• FRT GmbH – Fries Research & Technology
• FZ Karlsruhe
• FZ Rossendorf
• HL Planartechnik Dortmund
• Hochschule für Technik, Wirtschaft und Kultur
Leipzig
• IFW Dresden
• Infineon AG München
• Infineon AG Regensburg
• Lucent Technologies GmbH Nürnberg
• Max Planck Institut für Radioastronomie Bonn
• Max Planck Institut für Mikrostrukturphysik Halle
• Nanoworld Services GmbH Erlangen
• Naomi technologies Mainz
• Nexans High Temperature Superconductors,
Hürth
• Novotechnik Messwertaufnehmer OHG,
Ostfildern
• OSWALD Elektromotoren GmbH, Miltenberg
• Philips Semiconductor Hamburg
• Physikalisch-Technische Bundesanstalt,
Braunschweig
• Physikalisch-Technische Bundesanstalt, Berlin
• Piller GmbH, Osterode
• PREMA Semiconductor GmbH, Mainz
• QEST GmbH, Tübingen
• RWTH Aachen
• Siemens AG Erlangen
• Singulus AG Kahl
• Solvay Barium Strontium GmbH, Hannover
• Technische Universität Hamburg-Harburg
• TU Kaiserslautern
• Tracto-Technik GmbH, Lennestadt
• TransMIT GmbH, Gießen
• TU Braunschweig
• TU Bergakademie Freiberg
• Universität Bielefeld
• Universität Erlangen
• Universität Gießen
• Universität Heidelberg, Kirchhoff-Institut
für Physik
• Universität Karlsruhe
• Universität Mainz, Institut für Organische
Chemie
• Universität Regensburg
• Vacuumschmelze GmbH & Co KG, Hanau
• VeriCold Technologies Ismaning
• WSK Hanau
International cooperations
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Altis Semiconductor France
Anglo Operations Ltd., South Africa
Bar Ilan University, Israel
Ben-Gurion University of the Negev, Israel
Budapest University of Technology and
Economy, Hungary
Cambridge University, UK
CardioMag Imaging Inc., Schenectady, USA
CEA Saclay, Gif sur Yvette cedex, France
CEA/Le Ripault Mounts, France
Chalmers University of Technology, Sweden
Chengdu University, China
CNRS Grenoble, France
Comenius University, Slovakia
Commissariat a l’energie atomique, France
Consiglio Nazionale Delle Ricerche, Italy
D-wave System Inc. Canada
Edison Spa, Milano, Italy
Encom Technology Pty Ltd, Sydney, Australia
Fugro Airborne Surveys, South Africa
Geovista, Sweden
Helsinki University of Technology, Finland
ICMAB Barcelona, Spain
Institute for Superhard Materials, Kiev, Ukrain
Institute of Crystallography Moscow, Russia
Institute of Radio Engineering and
Electronics Moscow, Russia
MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS
• Lawrence Berkely National Laboratory, CA,
USA
• Leiden University, Kamerlingh Onnes
Laboratorium, The Netherlands
• Los Alamos National Laboratory, Biophysics
Group, NM, USA
• MAI Moscow, Russia
• Moscow Engineering Physics Institute
(State University), Russia
• National Physical Laboratory, Teddington, UK
• Nederlands Meetinstitut, NMi Van Swinden
Laboratorium B.V., The Netherlands
• NIST, Gaithersburg, MD, USA
• Novosibirsk University, Russia
• Philips Reseach Lab Eindhoven/NL
• PicoImages Limited, South Africa
• SAS Kosice, Slovakia
• SPEZREMONT, Moscow, Russia
• Swiss Federal Institute of Technology
Lausanne, Institute of Applied Optics (IOA),
Suisse
• Technical Research Centre of Finland
• TU Wien, Austria
• University of Oxford, Department of Physics,
Sub-department of Particle Physics, UK
• University of Twente, Faculty of Science and
Technology, The Netherlands
• Vienna Institute for Archaeological Science,
Austria
H.-G. Meyer, R. Stolz, A. Chwala, M. Schulz:
“SQUID technology for geophysical exploration”
phys. stat. sol. (c) 2 (2005) 1504–1509
Publications
R. Boucher:
“Sr2FeMoO6+x: Film structure dependence upon
substrate type and film thickness”
J. Phys. Chem. Solids, 66 (2005) 1020
M. Schmidt, M. Eich, U. Huebner, R. Boucher:
“Electrooptically tunable photonic crystals”
Appl. Phys. Lett. 87 (2005) 121110
M. Grajcar, A. Izmalkov, S. H. W. van der Ploeg,
S. Linzen, E. Il’ichev, Th. Wagner, U. Hübner,
H.-G. Meyer, Alec Maassen van den Brink,
S. Uchaikin, A. M. Zagoskin:
“Direct Josephson coupling between superconducting flux qubits”
Phys. Rev. B 72 (2005) 020503(R)
M. Grajcar, A. Izmalkov, E. Il’ichev:
“Possible implementation of adiabatic quantum
algorithm with superconducting flux qubits”
Phys. Rev. B 71 (2005) 144501
Ya. S. Greenberg, E . Il’ichev, A. Izmalkov:
“Low-frequency Rabi spectroscopy for a dissipative two-level system”
Europhys. Lett., 72 (2005) 880–886
Ya. S. Greenberg, I. L. Novikov, V. Schultze,
H.-G. Meyer:
“The influence of the second harmonic in the current-phase relation on the voltage-current characteristic of high-Tc DC SQUIDs”
Eur. Phys. J. B 44 (2005) 57–62
M. Schubert, T. May, G. Wende, H.-G. Meyer:
“A Cross-Type SNS Junction Array for a Quantum-Based Arbitrary Waveform Synthesizer”
IEEE Trans. Appl. Supercond. Vol. 15 (2) 829–
832, 2005
T. May, V. Zakosarenko, E. Kreysa, W. Esch,
S. Anders, L. Fritzsch, R. Boucher, R. Stolz,
J. Kunert, H.-G- Meyer:
“On-chip integrated SQUID readout for superconducting bolometers”
IEEE Transactions on Applied Superconductivity
Vol. 15 (2) (2005) 537–540
W. Krech, D. Born, V. Shnyrkov, Th. Wagner,
M. Grajcar, E. Il’ichev, H.-G. Meyer, Ya. Greenberg:
“Quantum dynamic of the interferometer-type
charge qubit under microwave irradiation”
IEEE Trans. Appl. Supercond. 15 (2005) 876
M. Ebel, C. Busch, U. Merkt, M. Grajcar,
T. Plecenik, E. Il’ichev:
“Supercurrent-phase relationship of a Nb/InAs
(2DES)/Nb Josephson junction in overlapping
geometry”
Phys. Rev. B 71, 052506 (2005)
R. Mattheis, K. Steenbeck:
“Beating the superparamagnetic limit of IrMn in
F/AF/AAF stacks”
J. Appl. Phys. 97(2005) 10K107
S. Questea, S. Dubourg, O. Acher, J.-C. Soret,
K.-U. Barholz, R. Mattheis:
“Microwave permeability study for antiferromagnet thickness dependence on exchange bias field
in NiFe/lrMn layers”
J. Magn. Magn. Mater. 288 (2005) 60–65
P. A. Warburton, A. R. Kuzhakhmetov, G. Burnell,
M. G. Blamire, Y. Koval, A. Franz, P. Müller, and
H. Schneidewind:
“Fabrication and Characterization of Sub-Micron
Thin Film Intrinsic Josephson Junction Arrays”
IEEE Trans. Appl. Supercond. 15 (2005) 237–240
B. Oswald, K. -J. Best, M. Setzer, M. Söll,
W. Gawalek, A. Gutt, L. K. Kovalev, G. Krabbes,
L. Fisher, H. C. Freyhardt:
“Reluctance motors with bulk HTS material”
Supercond. Sci. Technol. 18 (2005) S24–S29
27
MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS
W. Gawalek, T. Habisreuther, M. Zeisberger,
D. Litzkendorf, O. Surzhenko, S. Kracunovska,
T. A. Prikhna, B. Oswald, L. K. Kovalev,
W. Canders:
“Batch-processed melt-textured YBCO with
improved quality for motor and bearing applications”
Supercond. Sci. Technol. 17 (2005) 1185–1188
D. A. Cardwell, M. Murakami, M. Zeisberger,
W. Gawalek, R. Gonzalez-Arrabal, M. Eisterer,
H. W. Weber, G. Fuchs, G. Krabbes, A. Leenders,
H. C. Freyhardt, N. Hari Babu:
“Round robin test on large grain melt processed
Sm-Ba-Cu-O bulk superconductors”
Supercond. Sci. Technol. 18 (2005) S173–S179
M. Zeisberger, W. Gawalek, G. Giunchi:
“Magnetic levitation using magnesiumdiboride”
J. Appl. Phys. 98 (2005) 023905
J. Bierlich, T. Habisreuther, D. Litzkendorf,
C. Dubs, R. Müller, S. Kracunovska, W. Gawalek:
“Growth and investigation of melt-textured
SmBCO in air for preparation of Sm123 seed
crystals”
Supercond. Sci. Technol. 18 (2005) S194–S197
D. Litzkendorf, T. Habisreuther, J. Bierlich,
O. Surzhenko, M. Zeisberger, S. Kracunovska,
W. Gawalek:
“Increased efficiency of batch-processed melttextured YBCO”
Supercond. Sci. Technol. 18 (2005) S206–S208
S. Kracunovska, P. Diko, D. Litzkendorf,
T. Habisreuther, J. Bierlich, W. Gawalek:
“Oxygenation and cracking in melt-textured
YBCO bulk superconductors”
Supercond. Sci. Technol. 18 (2005) S142–S148
P. Diko, S. Kracunovska, L. Ceniga, J. Bierlich,
M. Zeisberger, W. Gawalek:
“Microstructure of top seeded melt-grown YBCO
bulks with holes”
Supercond. Sci. Technol. 18 (2005) S1400–S1404
T. A. Prikhna, W. Gawalek, N. V. Novikov,
V. E. Moshchil, V. B. Sverdun, N. V. Sergienko,
A. B. Surzhenko, L. S. Uspenskaya, R. Viznichenko, A. A. Kordyuk, D. Litzkendorf, T. Habisreuther, S. Kracunovska and A. V. Vlasenko:
“Formation of superconducting junctions in MTYBCO”
Supercond. Sci. Technol. 18 (2005) S153–S157
28
E. Bartolome, X. Granados, T. Puig, X. Obradors,
E. S. Reddy and S. Kracunovska:
“Critical State of YBCO Superconductors With
Artificially Patterned Holes”
IEEE Transactions on Applied Superconductivity
15 (2005) 2775–2778
M. Zeisberger, T. Habisreuther, D. Litzkendorf,
A. Surzhenko and W. Gawalek:
“Investigation of the structure of melt-textured
YBCO by magnetic measurements”
Supercond. Sci. Technol. 18 (2005) S90–S94
M. Zeisberger, I. Latka, W. Ecke, T. Habisreuther,
D. Litzkendorf and W. Gawalek:
“Measurement of the thermal expansion of melttextured YBCO using optical fibre grating sensors”
Supercond. Sci. Technol. 18 (2005) S202–S205
R. Zboril, L. Machala, M. Mashlan, J. Tucek,
R. Müller, O. Schneeweiss:
“Magnetism of amorphous Fe2O3 nanopowders
synthesized by solid-state reactions”
phys. stat. sol. (c) 1 (2004) 3710–3716
R. Müller, R. Hergt, M. Zeisberger, W. Gawalek:
“Preparation of magnetic nanoparticles with
large specific loss power for heating applications”
J. Magn. Magn. Mater. 289 (2005) 13–16
S. Dutz, W. Andrä, H. Danan, C. S. Leopold,
C. Werner, F. Steinke, M. E. Bellemann:
“Remote controlled drug delivery to the gastrointestinal tract: investigation of release profiles”
Biomedizinische Technik 50 (Suppl. 1) (2005)
601–602
C. Werner, W. Andrä, T. Kupfer, J. Seilwinder,
M. E. Bellemann:
“Out-patient magnetic marker monitoring: evaluation of temporal and spatial resolution”
Biomedizinische Technik 50 (2005) Suppl. Vol. 1,
Part 1, 605–606
W. Andrä, M. E. Bellemann:
“Remote controlled drug delivery to the gastrointestinal tract: optimizing the total system”
Biomedizinische Technik 50 (2005) Suppl. Vol. 1,
Part 1, 607–608
S. Dutz, W. Andrä, R. Hergt, R. Müller, J. Mürbe,
J. Töpfer, C. Werner, M. E. Bellemann:
“Magnetic nanoparticles for remote controlled
drug delivery to the gastrointestinal tract”
Biomedizinische Technik 50 (Suppl. 1) (2005)
1555–1556
W. Andrä, H. Danan, K. Eitner, M. Hocke,
H.-H. Kramer, H. Parusel, P. Saupe, C. Werner,
M. E. Bellemann:
“A novel magnetic method for examination of
bowel motility”
Med. Phys. 32 (2005) 2942–2944
S. Dutz, R. Hergt, R. Müller, M. Zeisberger,
W. Andrä, M. E. Bellemann:
“Application of Magnetic Nanoparticles for Biomedical Heating Processes”
MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS
VDI-Berichte Nr. 1920 – 4th Internat. Nanotechnology Symposium: 229–232 (2005) (Ed.: VDI Wissensforum IWB GmbH).
Proc. Tagung Kryoelektronische Bauelemente
„Kryo’05“, 09–11 Oktober 2005, Bad Herrenalb,
p. 66, poster
R. Müller, H. Steinmetz, R. Hergt, M. Zeisberger,
S. Dutz, W. Gawalek:
“Magnetic iron oxide nanoparticles for medical
applications”
Conference report – Chemical Nanotechnology
Talks VI, (2005) Ed.: DECHEMA Frankfurt/M.
V. Schultze, A. Chwala, R. Stolz, M. Schulz,
S. Linzen, T. Schüler, H.-G. Meyer
„SQUID-System für die geomagnetische Archäometrie“
Proc. Tagung Kryoelektronische Bauelemente
„Kryo’05“, 09–11 Oktober 2005, Bad Herrenalb,
p. 67, poster
M. Zeisberger, S. Dutz, R. Hergt, R. Müller:
“Magnetic Nanoparticles for Hyperthermia”
Conference report – Bioinspired Nanomaterials
for Medicine and Technologies: 62 (2005), Ed.:
DECHEMA
R. Hergt, R. Hiergeist, M. Zeisberger, D. Schüler,
U. Heyen, I. Hilger, W. A. Kaiser:
“Magnetic properties of bacterial magnetosomes
as potential diagnostic and therapeutic tools”
J. Magn. Magn. Mater. 293 (2005) 80–86
I. Hilger, R. Hergt, W. A. Kaiser:
“Use of magnetic nanoparticle heating in the
treatment of breast cancer”
IEE Proc. Nanobiotechnol. 152 (2005) 33–39
I. Hilger, R. Hergt, W. A. Kaiser:
“Towards breast cancer treatment by magnetic
heating”
J. Magn. Magn. Mater. 293 (2005) 314–319
I. Hilger, W. Andrä, R. Hergt, R. Hiergeist,
W. A. Kaiser:
„Magnetische Thermotherapie von Tumoren der
Brust: Ein experimenteller Ansatz“
RöFo Fortschr. Röntgenstr. 177 (2005) 507–515
Presentations (Talks and Posters)
V. Schultze, A. Chwala, R. Stolz, M. Schulz,
S. Linzen, H.-G. Meyer, T. Schüler:
“A SQUID system for geomagnetic archaeometry”
Proc. 6th Int. Conf. on Archaeological Prospection
(Archeo2005), 14–17 Sept. 2005, Rom, pp.
245–248, poster
H.-G. Meyer, A. Chwala, R. Stolz, S. Linzen,
V. Schultze, M. Schulz, T. Schüler:
„Aktuelle Anwendungen von SQUIDs zur geomagnetischen Pospektion“
Proc. Tagung Kryoelektronische Bauelemente
„Kryo’05“, 09–11 Oktober 2005, Bad Herrenalb,
p. 23, oral presentation
V. Schultze, R. IJsselsteijn, H.-G. Meyer:
„Zur Realisierung von SQIFs mit Hochtemperatur-Supraleitern“
R. IJsselsteijn, V. Schultze, H.-G. Meyer:
„Thermozyklieren von HTS-SQIFs und -SQUID“
Proc. Tagung Kryoelektronische Bauelemente
„Kryo’05“, 09–11 Oktober 2005, Bad Herrenalb,
p. 96, poster
V. Schultze, A. Chwala, R. Stolz, M. Schulz,
S. Linzen, H.-G. Meyer, T. Schüler:
„A SQUID system for geomagnetic archaeometry“
Proc. ISEC ‘05, 05.–09.09.2005, Noordwijkerhout, The Netherlands, P-H.08
V. Schultze, R. IJsselsteijn, H.-G. Meyer:
“How to puzzle out a good high-Tc SQIF?”
Proc. ISEC ‘05, 05.–09.09.2005, Noordwijkerhout, The Netherlands, P-K.06
U. Huebner, W. Morgenroth, R. Boucher,
H. G. Meyer, Th. Sulzbach, B. Brendel,
W. Mirandé, E. Buhr, G. Ehret, Th. Fries,
G. Kunath-Fandrei, R. Hild:
“Prototypes of new nanoscale CD-standards for
high resolution optical microscopy and AFM”
in Proceedings of the 5th international euspen
conference, Montepellier, 185–188, 2005, poster
U. Huebner, W. Morgenroth, R. Boucher,
W. Mirandé, E. Buhr, Th. Fries, Nadine Schwarz,
G. Kunath-Fandrei, R. Hild:
“Development of a nanoscale linewidth-standard
for high-resolution optical microscopy”
in Optical Fabrication, Testing, and Metrology II,
edited by Angela Duparré, Roland Geyl, David
Rimmer, Lingli Wang, Proc. SPIE Systems
Design Jena, Germany, Vol. 5965, (2005), poster
U. Huebner, R. Boucher, W. Morgenroth,
M. Schmidt, M. Eich:
“Fabrication of photonic crystal structures in
polymer waveguide material”
Micro & Nano Engineering MNE 2005, (2005),
poster
M. Eich, M. Schmidt, U. Huebner, R. Boucher:
“Electrooptically tunable photonic crystal”
Proceedings of SPIE Optics and Photonics San
Diego, California, (2005), 5935–18
29
MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS
G. Wende, M. Schubert, T. May, H.-G. Meyer:
“Pulse Driving of a Josephson Pulse Quantizer
for Quantum-Based Arbitrary Waveform Synthesizers, Proc. ISEC`05, 05.–09.2005, Noordwijkerhout, The Netherlands, P-K.05
G. Wende, M. Schubert, T. May, H.-G. Meyer:
“Impulsansteuerung eines Josephson-ImpulsQuantisierers für einen Quantensynthesizer
beliebiger Wellenformen”
Tagung Kryoelektronische Bauelemente “Kryo’05”,
09.–11. Oktober 2005, Bad Herrenalb, Poster
V. Zakosarenko, S. Anders, T. May, R. Boucher,
H.-G. Meyer, E. Kreysa, N. Jethava, G. Siringo:
“Time domain multiplexing for superconducting
bolometers read out by integrated SQUIDs”
Low Temperature Detectors LTD 2005, Tokio
(Japan), Poster
N. Oukhanski, R. Stolz, H.-G. Meyer:
“Concept of ultra-low-drift and very fast dc
SQUID readout electronics”
Proc. Tagung Kryoelektronische Bauelemente
“Kryo’05”, 09.–11. Oktober 2005, Bad Herrenalb,
p. 65, Poster
N. Oukhanski, R. Stolz, H.-G. Meyer:
“Ultra-low-drift and very fast dc SQUID readout
electronics”
Proc. of 7th European Conference on Applied
Superconductivity (EUCAS’05), Sept. 11–15,
2005, Vienna, Austria, P- WE-P3–138
A. Izmalkov, M. Grajcar, S. H. W. van der Ploeg,
S. Linzen, T. Plecenik, Th. Wagner, U. Hübner,
E. Il’ichev, H.-G. Meyer, A. Yu. Smirnov, P. J. Love,
A. Maassen van den Brink, M. H. S. Amin,
S. Uchaikin, A. M. Zagoskin:
“Realization of ferro- and antiferromagnetic coupling among superconducting qubits through a
common Josephson junction”
“Kryo’05”, 09–11 October 2005, Bad Herrenalb,
contributed talk
A. Izmalkov, M. Grajcar, E. Il’ichev,
S. H. W. van der Ploeg, S. Linzen, Th. Wagner,
U. Hübner, H.-G. Meyer, A. Yu. Smirnov,
S. Uchaikin, M. H. S. Amin,
A. Maassen van den Brink, A. M. Zagoskin:
“Experimental investigation of coupled flux
qubits”
7th European Conference on Applied Superconductivity (EUCAS’05), Sept. 11–15, 2005,
Vienna, Austria, poster
30
S. H. W. van der Ploeg, A. Izmalkov, M. Grajcar,
E. Il’ichev, S. Linzen, Th. Wagner, U. Hübner,
H.-G. Meyer, A. Yu. Smirnov, S. Uchaikin,
M. H. S. Amin, Alec Maassen van den Brink,
A. M. Zagoskin:
“Characterization of coupled flux qubits by
impedance measurement technique”
ISEC ‘05, 05.09.09.2005, Noordwijkerhout, The
Netherlands, contributed talk
S. H. W. van der Ploeg, A. Izmalkov, A. Maassen
van den Brink, U. Hübner, M. Grajcar,
S. Uchaikin, S. Linzen, E. Il’ichev, H.-G. Meyer:
“Realization of strong and controllable anti-ferromagnetic coupling between superconducting
flux-qubits”
Tagung Kryoelektronische Bauelemente “Kryo’05”,
09.–11. October 2005, Bad Herrenalb, contributed talk
S. Anders, T. May, R. Boucher, H.-G. Meyer,
C. Hollerith, D. Wernicke:
“Transition-edge sensors manufactured on 4-inch
wafers for reliable, cost-effective x-ray detectors”
ISEC ‘05, 05.09.2005, Noordwijkerhout, The
Netherlands, poster
S. Anders, R. Boucher, T. May, H.-G. Meyer:
“Kantenbolometer aus dem Zweischichtsystem
Mo/AuPd für Röntgendetektoren”
Tagung Kryoelektronische Bauelemente “Kryo’05”,
09.–11. Oktober 2005, Bad Herrenalb, poster
J. Fassbender, J. McCord, M. Weisheit,
R. Mattheis:
“Modifikation der magnetischen Dämpfung in
Permalloy-Schichten durch Cr-Implantation”
Vortrag, Verhandlungen Frühjahrstagung DPG,
28.02.–04.03.2005, MA 27.7
Ch. Hamann, J. McCord, R. Schäfer,
L. Schultz, R. Mattheis:
“Magnetization reversal in CoFe/IrMn exchange
biased structures”
Vortrag, Verhandlungen Frühjahrstagung DPG
28.02.–04.03.2005, MA 15.5
J. McCord, R. Mattheis:
“Asymmetric fixed and rotatable magnetic
anisotropy at the onset of exchange bias”
Poster, Verhandlungen Frühjahrstagung DPG,
28.02.–04.03.2005, MA 20.59
J. Fassbender, J. McCord, M. Weisheit,
R. Mattheis:
“Increased magnetic damping of Permalloy upon
Cr implantation”
International Magnetics Conference, Intermag
2005, Nagoya, Japan
J. Fassbender, J. McCord, R. Mattheis,
K. Potzger, A. Mücklich, J. v. Borany:
“Doping magnetic materials – tunable properties
due to ion implantation”
European Congress on Advanced materials
and processing, 5.–8.09.2005, Prague, Czech
Republics
R. Mattheis, M. Diegel, U. Huebner:
“Domain Wall motion in narrow spin valve strip
lines”
50th Conference on Magnetism and Magnetic
Materials, San Jose, California, USA
MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS
J. Fassbender, L. Bischoff, R. Mattheis, P. Fischer:
“Magnetic domains and magnetization reversal of
ion-induced magnetically patterned RKKY-coupled Ni81Fe19/Ru/Co90Fe10 films”
50th Conference on Magnetism and Magnetic
Materials, San Jose, California, USA
M. Mans, A. Grib, M. Büenfeld, R. Bechstein,
F. Schmidl, H. Schneidewind und P. Seidel:
“Elektrische Untersuchung serieller intrinsischer
Josephsonkontaktarrays an dünnen Tl2Ba2CaCu2O8+x Schichten auf r-cut Saphir und 20° vizinalem LaAlO3”
Vortrag, Verhandlungen Frühjahrstagung DPG,
28.02.–04.03.2005, TT 10.11
M. Büenfeld, R. Bechstein, M. Mans, F. Schmidl,
A. Grib, H. Schneidewind und P. Seidel:
“Elektrische Untersuchung serieller intrinsischer
Josephsonkontaktarrays an dünnen Tl2Ba2CaCu2O8+x Schichten auf r-cut Saphir und 20° vizinalem LaAlO3”
Poster, Verhandlungen Frühjahrstagung DPG,
28.02.–04.03.2005, TT 23.47
H. Schneidewind, M. Mans, M. Büenfeld,
M. Diegel:
“Misaligned Tl-2212 Thin Films with Different Tilt
Angles for Intrinsic Josephson Junctions”
7th European Conference on Applied Superconductivity (EUCAS ‘05), Vienna University of Technology, 11 to 15 September 2005, Austria
M. Büenfeld, M. Mans, A. N. Grib, F. Schmidl,
H. Schneidewind, P. Seidel:
“Untersuchung intrinsischer Josephsonkontaktarrays aus dünnen Tl2Ba2CaCu2O8+x Schichten auf
vicinalem LaAlO3”
Tagung Kryoelektronische Bauelemente, 09.–11.
Oktober 2005, in Bad Herrenalb
A. Assmann, J. Dellith, M. Wendt:
“Electron excited L X-ray spectra of the elements
_Z<
_ 33”
24 <
EMAS 2005 – 9th European Workshop on Modern
Developments and Applications in Microbeam
Analysis, Florence (Italy), May 22–26, 2005,
poster
A. Assmann, J. Dellith, M. Wendt:
“Electron excited L X-ray spectra of the elements
14 <_ Z <_ 22”
EMAS 2005 – 9th European Workshop on Modern
Developments and Applications in Microbeam
Analysis, Florence (Italy), May 22–26, 2005,
poster
A. Scheffel, A. Assmann, J. Dellith, M. Wendt:
“The L spectrum of Fe and Fe3O4”
EMAS 2005 – 9th European Workshop on Modern
Developments and Applications in Microbeam
Analysis, Florence (Italy), May 22–26, 2005,
poster and talk
J. Kirchhof, S. Unger, C. Aichele, St. Grimm,
J. Dellith:
“Borosilicate Optical Fibers and Planar Waveguides”
5th International Conference on Borate Glasses,
Crystals and Melts, July 10–14, 2005, Trento,
Italy
X. Granados, M. Torner, X. Obradors,
W. Gawalek:
“Magnetisation behaviour of Hybrid Ferromagnetic-Superconducting structures”
Proceedings of SCENET-2 Workshop “Superconducting Electric motors with HTS”, Jena, Germany, April 11–13, (2005)
M. Zeisberger, G. Giunchi, W. Gawalek:
“Magnetic levitation using magnesium diboride”
Proceedings of SCENET-2 Workshop “Superconducting Electric motors with HTS”, Jena, Germany, April 11–13, (2005)
T. A. Prikhna, W. Gawalek, Ya. M. Savchuk,
V. Moshchil, N. Sergienko, M. Wendt, T. Habisreuther, M. Zeisberger, R. Hergt, D. Litzkendorf,
Ch. Schmidt, J. Dellith, S. N. Dub, V. Melnikov,
A. Assmann, P. A. Nagorny:
“High-pressure synthesized MgB2-based nanostructural highly dense material for electromotors”
Proceedings of SCENET-2 Workshop “Superconducting Electric motors with HTS”, Jena, Germany, April 11–13, (2005)
T. A. Prikhna, W. Gawalek, Ya. M. Savchuk,
V. Moshchil, N. Sergienko, M. Zeisberger,
V. Moshchil, M. Wendt, T. Habisreuther, S. Dub,
V. Melnikov, Ch. Schmidt, J. Dellith, P. A. Nagorny:
“High-pressure synthesized superconducting
nanostructural magnesium diboride-based materials”
Euro Powder Metallurgy 2005, 3–5 October,
Prague, Czech Republic (Proceedings will be
published)
M. Zeisberger, W. Gawalek, G. Giunchi:
“Magnetic field trapping and levitation on MgB2
discs up to 35 K”
SCENET–2 Workshop “Magnesiumdiborid”,
Twente, Netherlands, March 7–8, (2005)
X. Granados, X. Obradors, M. Tornes,
E. Bartolomé, L. Rodrigues, W. Gawalek,
M. McCulloch, D. Dew Hughes, A. Campbell,
M. Ausloos, R. Cloots:
“Magnetization of Iron-YBCO Heterostructures:
A Superconducting Permanent Magnet Motor”
SCENET-2 Workshop “Superconducting Electric
motors with HTS”, Jena, Germany, April 11–13,
(2005)
31
MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS
W. Gawalek, T. A. Prikhna, L. K. Kovalev,
G. Giunchi, M. Zeisberger:
“Bulk MgB2-Superconductors: A new material for
Energy technologies?”
Keynote talk JAPMED´4: 4th Japanese-Mediterranean Workshop on Applied Electromagnetic
Engineering for Magnetic, Superconducting and
nano materials, Cairo, Egypt, September 17–20,
(2005), p. 19
T. A. Prikhna, Ya. M. Savchuk, W. Gawalek,
N. V. Sergienko, V. E. Moshchil, P. A. Nagorny,
V. B. Sverdun, A. V. Vlasenko, L. K. Kovalev,
K. L. Kovalev, V. T. Penkin:
“High-pressure high-temperature synthesis of
Nanostructural magnesium diboride for electromotors working at liquid hydrogen temperatures”
Proceedings of International Conference “Modern Materials Science: Achievements and
Problems”, September 26–30, (2005), Kiev,
Ukraine
T. A. Prikhna, W. Gawalek, Ya. M. Savchuk,
N. V. Sergienko, V. E. Moshchil, M. Wendt,
M. Zeisberger, T. Habisreuther, S. X. Dou,
S. N. Dub, V. S. Melnikov, Ch. Schmidt, J. Dellith
and P. A. Nagorny:
“Formation of magnesium diboride-based materials with high critical currents and mechanical
characteristics by high-pressure synthesis”
EUCAS 2005, Sept. 11–15, 2005, Vienna, Austria
T. A. Prikhna, W. Gawalek, V. B. Sverdun,
Ya. M. Savchuk, A. V. Vlasenko, X. Chaud,
J. Rabier, A. Joulain, V. E. Moshchil,
P. A. Nagorny, N. V. Sergienko, V. S. Melnikov,
S. N. Dub, T. B. Serbenyuk:
“Improvement of MT-YBCO properties by oxygenation and treatment under pressure”
Proceedings of International Conference “Modern Materials Science: Achievements and Problems”, September 26–30, (2005), Kiev, Ukraine
M. Eisterer, S. Haindl, M. Zehetmayer,
R. Gonzalez-Arrabal, H. W. Weber,
D. Litzkendorf, M. Zeisberger, T. Habisreuther,
W. Gawalek, L. Shlyk, G. Krabbes:
“Limitations for the Trapped Field in Large Grain
YBCO Superconductors”
PASREG 2005, 5th International Workshop on
Processing and Applications of Superconducting
(RE)BCO Large Grain Materials, October 21–23,
2005, Tokyo, Japan
32
R. Müller, H. Steinmetz, M. Zeisberger,
Ch. Schmidt, S. Dutz, R. Hergt, W. Gawalek:
“Precipitated iron oxide particles by cyclic
growth”
6. Deutschen Ferrofluid-Workshop, 19.–22. 7. 05,
Saarbrücken
S. Dutz, R. Hergt, J. Mürbe, J. Töpfer, R. Müller,
M. Zeisberger, W. Andrä, M. E. Bellemann:
“Preparation of water based dispersions of
magnetic iron oxide nanoparticles in the mean
diameter range of 15 to 30 nm”
6th German Ferrofluid-Workshop, 19.–22. 7. 05,
Saarbrücken
S. Dutz, N. Buske, R. Hergt, R. Müller, M. Zeisberger, P. Görnert, M. Röder, M. E. Bellemann:
“Magnetic Nanoparticles for biomedical heating
applications”
6. Deutschen Ferrofluid-Workshop, 19.–22. 7. 05,
Saarbrücken, poster
R. Müller, H. Steinmetz, R. Hergt, Ch. Schmidt,
M. Zeisberger, W. Gawalek:
“Preparation of Iron Oxide Nanoparticles for
Heating Applications”
6th Colloq. of DFG-Priority Program “Colloidal
magnetic fluids”, Benediktbeuern 25.–28. 9. 05
N. Palina, H. Modrow, R. Müller, J. Hormes, Ya.
B. Losovyj:
“Final results of X-ray absorption spectroscopy
and resonant photo-emission investigations on
doped Bariumhexaferrite nanoparticles”
6th Colloq. of DFG-Priority Program “Colloidal
magnetic fluids”, Benediktbeuern 25.–28.9.05
S. Dutz, W. Andrä, H. Danan, C. S. Leopold,
C. Werner, F. Steinke, M. E. Bellemann:
“Remote controlled drug delivery to the gastrointestinal tract: investigation of release profiles”
Jahrestagung der Deutschen Gesellschaft Biomedizinische Technik, Nürnberg (14.–17.09. 2005)
S. Dutz:
„Magnetische Nano-Verbundwerkstoffe für die
intrakorporale Erwärmung in der Medizin“ Jahreskolloquium des Institutes für Keramische
Werkstoffe, Bergakademie Freiberg (20.–21.10.
2005).
S. Dutz, R. Hergt, R. Müller, M. Zeisberger:
“Magnetic nanoparticles for hyperthermia”
Mitarbeitertreffen des DFG-Schwerpunktprogramms “Kolloidale magnetische Flüssigkeiten”.
Erlangen (01.–02.12.2005).
S. Dutz, R. Hergt, M. Zeisberger, M. Kettering,
I. Hilger, W. A. Kaiser:
“Magnetic hyperthermia with multivalent magnetic nanoparticles”
6th Colloq. of DFG-Priority Program “Colloidal
magnetic fluids”, Benediktbeuern 25.–28.9.2005
J. Dellith:
„Zur röntgenmikroanalytischen Werkstoffcharakterisierung mittels niederenergetischer M-Strahlung“
Kolloquium des IKW der TU Freiberg, Oktober
20–21, 2005
MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS
J. Bierlich, T. Habisreuther, M. Zeisberger,
D. Litzkendorf, S. Kracunovska, W. Gawalek:
„Multi-Seeding von massiven YBCO Supraleitern“
SDYN-Treffen, 07.–08.07.2005, Jena, Deutschland
J. Bierlich, T. Habisreuther, S. Kracunovska,
W. Gawalek, E. Müller, F. Schirrmeister:
“Modifizierte Oberflächenbekeimung von schmelztexturierten YBa2Cu3O7-x-Supraleitern”
IKW – Hauskolloquium, 20.–21.10.2005, Freiberg,
Deutschland
J. Bierlich, T. Habisreuther, D. Litzkendorf,
M. Zeisberger, S. Kracunovska, W. Gawalek:
“Multi-seeding for single domain melt-textured
YBCO”
ISS 2005, 18th International Symposium on
Superconductivity, October 24–26, 2005, Tsukuba, Japan
J. Bierlich, T. Habisreuther, D. Litzkendorf,
M. Zeisberger, S. Kracunovska, W. Gawalek:
“Multi-seeding for single domain melt-textured
YBCO”
PASREG 2005, 5th International Workshop on
Processing and Applications of Superconducting
(RE)BCO Large Grain Materials, October 21–23,
2005, Tokyo, Japan
Invited talks
A. Izmalkov, M. Grajcar, E. Il’ichev,
S. H. W. van der Ploeg, S. Linzen, Th. Wagner,
U. Hübner, H.-G. Meyer, A. Yu. Smirnov,
S. Uchaikin, M. H. S. Amin,
Alec Maassen van den Brink,
A. M. Zagoskin:
“Experimental and theoretical investigation of
multiqubit systems”
International Workshop on Physics of Superconducting Phase Shift Devices, 2–5 April 2005,
Ischia, Italy
E. Il’ichev, M. Grajcar, A. Izmalkov, Th. Wagner,
S. Linzen, T. May, U. Hübner, H. E. Hoenig,
H.-G. Meyer, M. H. S. Amin, A. Maasen van den
Brink, A. Smirnov, S. Uchaikin, A. Zagoskin:
“Continuous Impedance Measurements of a
Superconducting Flux Qubit”
American Physical Society, Los Angeles, USA,
March 21–25, 2005
E. Il’ichev, M. Grajcar, A. Izmalkov, Th. Wagner,
S. Linzen, T. May, U. Hübner, H. E. Hoenig,
H.-G. Meyer, A. Maasen van den Brink,
A. Smirnov, S. Uchaikin, A. Zagoskin:
“Impedance Measurement Technique for Investigation of Superconducting Qubits”
Pishift conference, Ischia (Naples), Italy, 2–5 April
2005
E. Il’ichev:
“Radio-Frequency Method for Investigation of
Quantum Properties of Superconducting Structures”
International Summer School and Conference on
Arrays of Quantum Dots and Josephson Junctions Kiten, Bulgaria, 9th–24th June, 2005
E. Il’ichev, M. Grajcar, A. Izmalkov, Th. Wagner,
S. Linzen, T. May, U. Hübner, H. E. Hoenig,
H.-G. Meyer, A. Maasen van den Brink,
A. Smirnov, S. Uchaikin, A. Zagoskin:
“Radio-Frequency Method for Investigation of
Quantum Properties of Superconducting Structures”
International ULTRA-1D STREP Workshop
Quantum Coherence and Decoherence at the
Nanoscale (Corfu, Greece) 28 August–2 September 2005
E. Il’ichev:
“Radio-Frequency Technique for Investigation of
Quantum Properties of Superconducting Structures”
The Mesoscopic Quantum Physics Conference
(Aussois, France) 05–09 October 2005
A. Izmalkov, M. Grajcar, E. Il’ichev, Th. Wagner,
U. Hübner, N. Oukhanski, T. May, H.-G. Meyer,
A. Yu. Smirnov, A. Maassen van den Brink,
M. H. S. Amin, A. M. Zagoskin, Ya. S. Greenberg:
“Macroscopic quantum effects in a flux qubit”
Seminar at Institute of Solid State Physics, 11
May 2005, Chernogolovka, Russia
E. Il’ichev:
“Radio-Frequency Technique for Investigation of
Quantum Properties of Superconducting Structures”
The 5th International Argonne Fall Workshop on
the Nanohysics Argonne, USA, 13–18 November
E. Il’ichev, M. Grajcar, A. Izmalkov, Th. Wagner,
S. Linzen, T. May, H. E. Hoenig, H.-G. Meyer,
D. Born, W. Krech, A. Smirnov, S. Uchaikin,
A. Zagoskin:
„Supraleitende Qubits auf dem Weg zum Quantenrechner“
Deutschen Physikalischen Gesellschaft (German
Physical Society), Berlin, Germany, March 4–9,
2005
R. Mattheis:
„Grundprinzipien von Sensoren auf der Basis
des Magnetowiderstandseffektes und deren
Anwendungsfelder in der Automobil- und Automatisierungstechnik sowie in der hochempfindlichen Magnetfeldsensorik“,
Vortrag HdT Essen, Magnetische Erkennung
von Position und Bewegung, Essen, 8. und 9.06.
2005
33
MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS
R. Mattheis:
„Multiturnsensor mit GMR“
Vortrag 8. Sympsoium „Magnetoresistive Sensoren Grundlagen-Herstellung-Anwendungen“,
Wetzlar, 8. und 9.03.2005
M. Wendt:
„Mikrostrukturcharakterisierung mittels Rasterelektronen- und Rasterkraft-Mikroskopie“
Kolloquium aus Anlass des 60. Geburtstages von
Prof. Dr. Ludwig Josef Balk, Wuppertal, May 30,
2005
M. Wendt:
„Qualitative Röntgenmikroanalyse mit Si(Li)Detektoren“
RÖNTEC – Kundenschulung, Bad Saarow, June
14–16, 2005
M. Wendt:
„Zur Systematik der weichen Röntgenemissionsspektren“
PTB-Kolloquium, Berlin, September 22, 2005
W. Gawalek T. Habisreuther, M. Zeisberger,
D. Litzkendorf:
„Magnetic levitation with Bulk YBCO and MgB2
Superconductors”
„8th International Symposium on Magnetic Suspension Technology“, Dresden, Germany, September 26–28, (2005), p.114
K. L. Kovalev, S. M.-A. Koneev, V. N. Poltavets,
W. Gawalek:
“Magnetically Levitated High-Speed Carriages on
the Basis of Bulk Elements”
“8th International Symposium on Magnetic Suspension Technology”, Dresden, Germany, September 26–28, (2005), p.51
T. Habisreuther:
„VSM – Vibrating Sample Magnetometry – Einsatz im IPHT Jena“
Uni Potsdam, Germany, June 1, 2005
T. Habisreuther:
“Processing, Characterisation and Application of
Batch Processed and Multi-Seeded Single
Domain Melt-Textured YBCO”
PASREG 2005, 5th International Workshop on
Processing and Applications of Superconducting
(RE)BCO Large Grain Materials, October 21–23,
2005, Tokyo, Japan
R. Müller:
„Magnetit – Renaissance eines alten Magnetwerkstoffs“
6th Colloq. of DFG-Priority Program „Colloidal
magnetic fluids“, Benediktbeuern 25.–28.9.05
34
R. Müller:
„Eigenschaften magnetischer Eisenoxidpartikel“
Arbeitsgruppenseminar „Grundlagen“, Klinik für
Innere Medizin II, FSU Jena, 12.10.05
Th. Klupsch:
“Prediction of macromolecular units and optimum
crystallization conditions by static and dynamic
light scattering”
Crystallization Course CC 2005, October 10–12,
2005, Nove Hrady, Czech Republik
Th. Klupsch:
“Understanding the protein solubility: classical
concepts and novel ideas”
Crystallization Course CC 2005, October 10–12,
2005, Nove Hrady, Czech Republik
Patents
V. Schultze, W. Andrä, K. Peiselt:
„Vorrichtung und Verfahren zur Lokalisierung
eines Gerätes“
DE 10 2005 051 357.3 (25.10.2005)
R. Müller, H. Steinmetz, W. Gawalek:
„Verfahren zur Herstellung von nanokristallinen
magnetischen Eisenoxidpulvern“
DE 10 2005 030 301.3 (05.07.2005)
W. Andrä, M. E. Bellemann, H. Danan, S. Dutz,
S. Liebisch, R. Schmieg:
„Kapsel zum Freisetzen von in ihr befindlichen
Wirkstoffen an definierten Orten in einem Körper“
PCT/DE 2005–001086 (15.6.2005)
W. Andrä, R. Hergt, I. Hilger, W. A. Kaiser,
D. Spitzer:
„Vorrichtung zur zielgerichteten Erwärmung“
DE 10 2005 062 746.3 (23.12.2005)
K.-U. Barholz, M. Diegel, R. Mattheis, G. Rieger,
J. Hauch:
„Stromsensor zur galvanisch getrennten Gleichstrommessung“
DE 10 2005 029 269.0 (23.06.2005)
Membership
Prof. Dr. H. E. Hoenig
Beirat Institut für Mikroelektronik
und Mechatronik Ilmenau
Beirat Forschungszentrum für Medizintechnik
und Biotechnologie e. V.
Bad Langensalza
Scientific advisor of the Materials Science
Institutes CSIC (Spain)
Auswahlgremium Forschungspreis
des Thüringer Kultusministeriums
Vorstandsvorsitzender im Verein Beutenberg
Campus e. V.
Vorstandsvorsitzender der SUPRACON AG
Scientific board of WOLTE and CRYO
MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS
Dr. R. Mattheis
Editorial Board IEEE Transactions on Magnetics
Mitglied des FA 9.4 der ITG
Mitglied des Wissenschaftlichen Beirats der
Tagung: „Sensoren und Sensorsysteme 2006“
Freiburg/Breisgau
PhD Thesis
Prof. Dr. M. Wendt
Mitwirkung im Organisationskomitee der EDOTagung
Silvia Kracunovska:
“The influence of preparation parameters on
microstructure and properties of YBCO bulk
superconductors”
Technische Universität Kosice, Slowakische
Republik, 20.09.2005
Prof. W. Gawalek
Head of SCENET-2 Working Group “Rotating
HTS Machines”
International Steering Committee JAPMED´4: 4th
Japanese-Mediterranean Workshop on Applied
Electromagnetic Engineering for Magnetic,
Superconducting and Nano Materials, Cairo,
Egypt, September 17–20, (2005)
Dr. T. Habisreuther
Arbeitsgruppe K184 Supraleiter der DKE und
TC90 WG10
Lectures
Prof. H. E. Hoenig
Vorlesung WS 04/05, Quantencomputing
Vorlesung SS 2005, Quantencomputing
Prof. M. Wendt
Vorlesung “Einführung in die Analytische Elektronenmikroskopie”
WS 2004/2005 sowie 2005/2006 an der FH Jena
Dr. H.-G. Meyer
Vorlesung SS 2005, Supraleiterelektronik
Vorlesung WS 2005/2006, Supraleitende Quanteninterferometer (SQUID) und ihre Anwendungen
Dr. H. Schneidewind
5 Vorlesungen in „Festkörperphysik für Werkstofftechniker“ von Prof. F. Schirrmeister
Vorlesung an der FH Jena, WS 2005/2006
Dr. H. Schneidewind
“Metallphysik”
Vorlesung an der FH Jena im SS 2005
Andrei Izmalkov:
“Macroscopic quantum effects in a flux qubit”
18.05.2005, Moscow Engineering Physics Institute
Diploma Thesis
André Krüger:
„Entwurf, Aufbau und Inbetriebnahme einer
mehrkanaligen, hochauflösenden 24-Bit AnalogDigital-Wandlerkarte für ein modulares Datenerfassungssystem“, 22.03.2005, Fachhochschule
Jena.
Michael Starkloff:
„Entwicklung und Aufbau eines mikroprozessorgesteuerten Messsystems zur Gleichspannungskalibrierung von Fluke-Normalen mit dem Josephson-Primärnormal“, 22.03.2005, Fachhochschule Jena.
Laboratory Exercises
H. Köbe 18 Wochen, Praktikumssemester FH
Jena
Dominique Schmidt 18 Wochen, Praktikumssemester FH Jena
Herr Oliver und Joachim Müller, Herr Jens Bartelt
und Felix Oertel, zweiwöchentliches Seminarfach
der Spezialschule Carl Zeiss, Jena
Christopher Schmidt
“Herstellung und magnetische Eigenschaften von
Eisenoxidpartikeln durch Fällung
FH Jena
Events/Exhibitions
Dr. T. Habisreuther
„Sonder- und Verbundwerkstoffe“
Vorlesung an der FH Jena, WS2004/2005
Vorlesung an der FH Jena, WS2005/2006
Dr. T. Habisreuther
„Festkörperphysik für Werkstofftechniker“
von Prof. F. Schirrmeister
Vorlesung an der FH Jena, WS2004/2005
Vorlesung an der FH Jena, WS2005/2006
„Eiskalte Energie für Europa – Supraleiter und
der Traum vom Schweben“
„International Superlife Exhibition“
Goethe-Galerie Jena, Jena, Germany, June 29–
July 2, (2005)
SCENET-2 Workshop “Superconducting Electric
motors with HTS”, Jena, Germany, April 11–13,
(2005)
35
MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS
Physik-Ausstellung „Zeit, Licht, Zufall – Physik
seit Einstein“
Highlights der Physik 2005, 13.–18.06.2005,
Berlin, Deutschland
Präsentation „Magnetschweben-Levitator“
Siemens Familien-Tag 2005, 02.07.2005, Nürnberg, Deutschland
Präsentation „Supraleitung-Schwebendes Logo“
SOLVAY Familientag, 02.09.2005, Hannover,
Deutschland
Studioexperiment „Supraleitung-Levitation“ in der
TV-Sendung Galileo
Gesendet am 14.10.2005 bei ProSieben
Awards
EMAS young scientists award an Dipl.-Ing. (FH)
Andy Scheffel
New Equipment
Präsentation „Supraleitung-Levitation“
Sternstunden. Lange Nacht der Wissenschaften
Jena, 18.11.2005, Jena, Deutschland
36
Ion-beam-etching-equipment for structuring of
high Tc-superconductors at low temperatures
OPTIK / OPTICS
2. Optik / Optics
Leitung/Head: Prof. Dr. H. Bartelt
hartmut.bartelt@ipht-jena.de
Optische Fasern
Optical Fibers
Leitung/Head:
Dr. J. Kirchhof
johannes.kirchhof@ipht-jena.de
Mikrooptik
Microoptics
Leitung/Head:
Dr. H.-R. Müller
hans.rainer.mueller@ipht-jena.de
Optische Mikrosysteme
Optical Microsystems
Leitung/Head:
Prof. Dr. R. Willsch
reinhardt.willsch@ipht-jena.de
Mikrostrukturtechnik
Micro Structuring Technology
Dr. S. Schröter
siegmund.schroeter@ipht-jena.de
Mitarbeiter des Bereiches Optik 2005 / Staff of the Optics Division in 2005.
2.1
Übersicht
Das zentrale Arbeitsgebiet des Forschungsbereichs betrifft „Optische Fasern und Faseranwendungen“. Die vom Kuratorium des IPHT im
Jahr 2005 eingesetzte Strukturkommission hat
die besondere wissenschaftliche und technologische Position des IPHT auf diesem Gebiet hervorgehoben und eine weitere Stärkung dieser
Arbeitsfelder empfohlen.
2.1
Overview
The main focus of the activities within the Optics
division is on optical fibres and fibre applications.
The structure commission, which was established for advising future focusing of activities
within the IPHT, has emphasized the special scientific and technological competence of the IPHT
in this field and has recommended a further
strengthening of this research direction.
37
OPTIK / OPTICS
Characterisation of high
precision multicore fibre
optic waveguide arrays:
cross section of an array
of 61 waveguides and light
propagation patterns.
Demonstrator of an optical
add-drop-multiplexer
(OADM) based on a photosensitive planar technology
38
Thermal elongation measurement of
melt-textured YBCO in cryogenic temperature range down to 10 K using a
fibre Bragg grating strain sensor array
(sensors attached in the three principal
axes of the anisotropic sample).
OPTIK / OPTICS
Ein wichtiges internationales Forum zur Diskussion von modernen Sensoranwendungen optischer Fasern war die 17. Optical Fibre Sensors
Konferenz (OFS) in Brügge/Belgien im Mai 2005,
an der das IPHT sowohl organisatorisch als auch
inhaltlich maßgeblich mitwirkte (Prof. Reinhardt
Willsch und Dr. Wolfgang Ecke als Conference
Chairs). Das IPHT war mit fünf wissenschaftlichen Beiträgen einschließlich einem eingeladenen Vortrag (Prof. Hartmut Bartelt) und einem
viel beachteten Ausstellungsstand vertreten, der
unsere starke Stellung auf diesem Forschungsgebiet deutlich machte. Die internationale
Rekordbeteiligung von ca. 500 Teilnehmern aus
mehr als 40 Ländern an dieser seit 1983 stattfindenden Konferenz zeigte generell das wachsende Interesse an Anwendungen optischer Fasern
in der Sensor- und Messtechnik. Dieser internationalen Entwicklung folgte auch die Ausgründung zu Fasergitter-Sensorkomponenten unter
dem Namen FBGS Technologies GmbH aus dem
IPHT gemeinsam mit einer belgischen Partnerfirma im Oktober 2005. Die technischen Grundlagen zu diesem Arbeitsfeld, nämlich die Möglichkeit der Erzeugung von Faser-Bragg-Gittern mit
einem einzelnen Laserpuls während des Faserziehens, wurde dazu im vergangenen Jahr weiter
ausgebaut. Die Herstellung von solchen Gittern
mit bis zu 50% Reflexion (Typ I) demonstriert die
weltweit führende Rolle des IPHT und seiner
Ausgründung in dieser Technologie. Mit dem Firmenstandort im Technologie- und Innovationspark am Campus Beutenberg in Jena ist auch
zukünftig die Basis für eine enge Zusammenarbeit mit dem IPHT gesichert. Anwendungsfelder
der Arbeiten des IPHT betrafen im Sensorbereich
im vergangenen Jahr vor allem temperaturbeständige faseroptische Bragg-Gitter-Sensoren
für das Turbinen- und Triebwerksmonitoring,
Fasergitter-Sensornetzwerke für die strukturintegrierte Zustandsüberwachung in der Bahntechnik und in Windenergieanlagen sowie opto-chemische Fasersensorsysteme für die in-situGewässeranalytik. Die Entwicklung neuartiger
Fasern etwa unter Nutzung von Mikro- und Nanostrukturen, die Weiterentwicklung photonischer
Kristallfasern und Arbeiten zu temperaturbeständigen Coatings bildeten dazu einen wichtigen
technologischen Hintergrund.
Die Arbeiten zu optischen Faserlasern finden
zunehmendes Anwendungsinteresse und wurden insbesondere unter Aspekten speziell strukturierter und dotierter Faserkerne zur Optimierung der Stabilität und der Pumpeffizienz weitergeführt. Die Aktualität dieses Forschungsgebietes zeigte sich auch auf einem Workshop des
OptoNet Clusters, „Neue Laserstrahlquellen“, der
im Mai 2005 mit ca. 100 Teilnehmern am IPHT
organisiert und veranstaltet wurde. Kompetenz
zu strukturierten Wellenleitern konnte erfolgreich
auch für Sensoranwendungen in speziellen planaren Strukturen genutzt werden.
A major international forum in 2005 for the discussion of modern sensor applications of optical
fibres was the 17th Optical Fibre Sensors Conference (OFS) in May 2005 in Bruges (Belgium) with
major organizational and scientific involvement of
the IPHT (Prof. Willsch as technical chair and Dr.
Ecke as program chair). The IPHT took part in
this conference with 5 presentations including an
invited talk (Prof. Hartmut Bartelt) and a well-recognized exhibition booth indicating its strong
position in this research field. The record international participation (approx. 500 participants from
40 countries) in this conference of a series started in 1983 underlines the growing interest in
such modern applications of optical fibres. Following such demands for applications, the IPHT
became involved (together with a Belgian partner) in the founding of a new company for the
development and application of draw tower fibre
gratings in October 2005 (FBGS Technologies).
The technological basis of inscribing fibre Bragg
gratings during the fibre drawing process with a
single laser pulse has been further developed in
2005. The making of such gratings (type I) with a
reflection efficiency of up to 50% has demonstrated the international leading competence in
this technology of the IPHT and of the newly
founded company. The headquarters of the
FBGS company being placed at the Beutenberg
campus in Jena ensures future close cooperation.
Investigations into sensor applications of optical
fibres covered especially temperature-stable fibre
Bragg grating sensor systems for turbine and
engine monitoring, fibre grating sensor networks
for integrated diagnosis in train systems and in
wind energy converters, and opto-chemical sensors for in-situ water analysis.
The development of new types of fibres with
micro- and nanostructures, developments for
photonic crystal fibres and activities for coatings
with high temperature stability were important
cornerstones for these activities.
The applications of fibre lasers are gaining growing interest and have been pursued with regard to
specially structured and doped fibre cores, e.g.
for optimization of pumping efficiency and stability. The general interest in this research field
became obvious also by strong participation (15
scientific presentations, 100 participants) in a
workshop on new laser sources held at the IPHT
in cooperation with the OptoNet cluster. The competence in structured waveguides was additionally exploited for sensor applications in specific planar waveguides.
The results presented in this report indicate that
optical fibres indeed offer attractive research subjects for the future and also promise fruitful applications jointly with the complementary research
field of photonic instrumentation within the IPHT.
39
OPTIK / OPTICS
Die nachfolgend präsentierten Ergebnisse in diesem Jahresbericht machen die hohe Attraktivität
der Forschung zu optischen Fasern und Faseranwendungen deutlich und bieten in Kombination
mit dem komplementären Arbeitsgebiet zur
photonischen Instrumentierung im IPHT breite
zukünftige Anwendungsmöglichkeiten.
2.2.
Scientific Results
2.2.1
Flame hydrolysis technique (FHD)
for the preparation of advanced
optical materials
(C. Aichele, St. Grimm, M. Köhler,
K. Schuster)
The flame hydrolysis technique allows the production of highest quality silica. This material is
primarily used for planar optical waveguide
devices and components or for the deposition of
substrate tubes by OVD (Outside Vapor Deposition). To utilize the potential of this technology we
are engaged in new applications.
The recent concentration of microlithography on
an excitation wavelength of 193 nm requires an
improvement of the optical materials and devices
used.
For high power density and excellent replication
quality, materials are necessary which provide
special, very well-defined properties in terms of
optical quality as well as type and distribution of
the dopant hydrogen. The flame hydrolysis technique enables the preparation of a high-quality
quartz glass material combined with the implementation of different dopant distributions in a
wide range.
40
Fig. 2.1: FHD-configuration.
A further miniaturization of the structure at the
same excitation wavelength can be achieved by
what is known as immersion lithography. Aqueous fluids (immersions) with a still higher refractive index than standard materials and good optical transparency are particularly suitable for
these processes.
By flame hydrolysis it is possible to prepare highly pure, oxidic particles with a main size of about
5–10 nm and a narrow particle size distribution.
These oxidic materials can be used as additives
to water to increase its refractive index for application as an immersion medium.
Figure 2.1 shows the burner configuration used
for the FHD technique.
2.2.2
Materials for fibre lasers: Preparation
and properties
(S. Unger, A. Schwuchow, S. Grimm,
V. Reichel, J. Kirchhof)
Recently, the performance of rare earth doped
high-power silica fibre lasers has been dramatically increased with output powers beyond 1 kW,
high efficiency and excellent beam quality.
This progress is due to new design concepts
such as non-symmetrical double clads and large
mode area core structures, but also by careful tailoring of the material properties. Extreme power
load and complicated fibre structures make high
demands on preparation technology and materials. However, up to now still little is known about
the influence of the material and the preparation
technology on the laser efficiency.
Here, the absorption and emission properties of
silica based ytterbium doped preforms, made by
Modified Chemical Vapor Deposition (MCVD)
and solution doping, and of the drawn fibres were
investigated in dependence on the atmosphere
during the preform collapsing.
The preparation was carried out under oxidizing
and reducing conditions (helium/carbon monoxide/hydrogen). The absorption measurements on
preforms and fibres with nominally identical compositions have shown the following results:
– All Yb doped preform samples show the typical
Yb3+ absorption in the wavelength region
between 800 and 1100 nm, and the absorption
coefficient is not remarkably changed by modifications during the preparation process.
OPTIK / OPTICS
Fig. 2.2: Preform absorption spectra in the UV/VIS
region.
– However, changes are observed in the UV/VIS
region. With an increasingly reducing effect of
the collapsing atmosphere (He < CO < H2, see
Fig. 2.2), the Yb related UV edge shifts partially towards longer wavelengths, and an additional band system between 300 and 400 nm
builds up, probably caused by formation of
Yb2+ ions. The tail of these absorptions
extends into the VIS region and is responsible
for the increasingly yellow tint of the preform
cores.
– Simultaneously the fibre background loss in
the NIR region is remarkably increased as a
tail of the UV/VIS bands.
The reducing treatment also influences the laser
properties.
With increasingly reduced state, the Yb fluorescence lifetimes around 1000 nm decrease, and a
Yb related fluorescence around 550 nm develops
in consequence of the atomic defect structures
formed.
Furthermore, the laser efficiency is drastically
impaired. As laser experiments carried out with
three fibre samples (type a, c and d) have shown,
the reducing treatment leads to a surprisingly
strong decrease in laser efficiency from 61% to
12%.
These basic investigations have shown that a
reducing treatment must be strictly avoided in the
preparation of high efficiency laser fibres.
2.2.3
With stress applying parts (SAPs) in the fibre
cladding (the so-called PANDA structure), a high
birefringence can be obtained also in active fibre
cores. Thereby, the linear polarization of
launched or actively generated light can be maintained over the fibre lengths.
Such fibres are prepared by the following steps:
– Fabrication of the rare earth doped preform
made by MCVD and solution doping, and
drilling of two holes parallel to the rare earth
doped core
– Preparation of the boron doped silica preform
made by MCVD
– Isolating the boron doped core by etching the
undoped silica with hydrofluoric acid
– Inserting the boron rods (diameter: 4…5 mm)
into the active preform
– Drawing of the complete preform into a fibre
with silicone rubber
To increase the birefringence, the drawing conditions (drawing temperature and velocity), geometrical parameters (diameter and distances of
the SAPs from the active core) and boron concentration of the SAPs were optimized. The
investigations have shown that boron doped
cores at concentrations above 14 mol% B2O3 and
diameter of approx. 5 mm have an elliptic crosssection and cannot be used for preform preparation.
In Fig. 2.3, a cross-section of a Yb doped polarization maintaining laser fibre is shown. The measured birefringence amounts to 2.5 · 10–4, corresponding to a beatlength of 4.2 mm at the operation wavelength (1060 nm). Surprisingly, the
birefringence can be further enhanced by annealing of the fibre at a temperature of 1100 °C in
a furnace of a value of 3.5 · 10–4 (beatlength:
3.2 mm). The pump absorption in double-clad
laser fibres is a very important point for the laser
efficiency. It is generally poor with a circular
cladding, but it can be greatly improved with different noncircular shapes. The incorporation of
the SAPs leads also to improved pump absorption in spite of the circular fibre surface.
Boron doping for polarization maintaining laser fibres
(S. Unger, S. Jetschke, J. Kobelke,
K. Schuster, J. Kirchhof)
Recently, boron doped silica has met with
increasing interest as a special material for optical devices such as polarization maintaining laser
and amplifier fibres and photosensitive fibres for
Bragg grating inscription.
For many applications of fibre lasers or amplifiers, a stable linear-polarized output is required.
Fig. 2.3: Cross-section of a Yb doped polarization maintaining laser fibre (PANDA structure).
41
OPTIK / OPTICS
2.2.4
Photonic crystal fibres for innovative
applications and devices
(J. Kobelke, K. Schuster, J. Kirchhof,
A. Schwuchow, K. Mörl, K. Oh)
Photonic crystal fibres (PCFs) are commonly
interesting as transmission media over long distances for their specific light propagation behaviour. However, the promising application potential
of photonic crystal fibres also takes effect in various novel devices, e.g. PCFs with defect super
lattice structure and PCF-based NxN fibre couplers. Such PCF couplers have a power stability
advantage, because they can be manufactured
without any dopants in the basic silica. Moreover,
the transmission behaviour is mostly effected by
air hole confinement light propagation, so a high
numerical aperture is possible. Typical power limitations of polymer-clad fibre can be avoided by
the air-clad design.
We prepared special large mode area PCFs by
variation of the geometric cross section design
parameters. They were changed by introduction
of a flexible defect in the lattice structure. The
new defect design consists of the central air hole,
surrounded by a holey germanium-doped silica
ring. It provides a large-area annulus-mode light
propagation and a chromatic dispersion with low
slope ~0.05 ps/km nm2 at 1550 nm.
42
Fig. 2.5: Scheme of the 4 × 4 coupler, micrograph
of the used air-clad index-guided PCF and lateral segments of the 2 × 2 coupler.
2.2.5
Loss measurements at silica fibres
for cladding pumped applications
(S. Jetschke, A. Schwuchow)
Fig. 2.4: Calculated dispersion curves of fundamental modes of different dcore/Λcore of the super
lattice PCF. Inset: fibre micrograph.
Silica fibres with rare-earth-doped cores for laser
or amplifier applications are often claddingpumped to benefit from commercial high-power
pump diodes. Thereby, losses of pump power
may occur in the cladding material itself or in the
adjacent coating having a refractive index lower
than silica. We investigated this attenuation in silica fibres of diameter 125 µm (without core),
drawn from F300 rods and coated with different
materials (see Tab. 2.1).
The loss measurements were done by two different, but well-known methods:
1. With the cut-back method, the loss spectra
are calculated from transmission measurements in the 300–1700 nm wavelength range
(Halogen lamp, NA 0.25) in a long (>60 m)
and a shortened fibre (10 m). Although the
fibre NA is not fully illuminated, the characteristic absorption bands of the coating materials
are clearly seen (Fig. 2.6).
PCFs with air-clad design are interesting components for optical devices. 2 ×2 and 4 ×4 multimode air-clad holey fibre couplers were prepared
at the Gwangju Institute of Science and Technology (GIST), South Korea, based on IPHT-manufactured PCFs. The couplers were fabricated by
a novel fusion tapering technology, starting from
an air-clad fibre with a core diameter of about
130 µm and a very high air fraction of the holey
clad ring. The couplers thus fabricated show a
high port-to-port coupling uniformity over a wide
spectral range from 800 nm to 1650 nm. Due to
the absence of power-limiting low refractive index
polymer materials to achieve the high numerical
aperture, the device shows a strong potential for
future high-power applications.
Fig. 2.6: Loss spectra of coated silica fibres,
measured by the cut-back method.
OPTIK / OPTICS
Coating material
NA
(coated
silica fibre)
Layer
thickness
[µm]
Cut-back method:
Loss [dB/km]
OTDR:
Loss [dB/km]
800 nm 1310 nm 1550 nm 850 nm 1310 nm 1550 nm
Silicone RT601
0.358
Ormogel HG-Li-V-T
0.410
1D3-63 (Acrylate)
0.404
Luv PC 373 (Acrylate) 0.447–0.127
Teflon AF
0.606
50
5
50
50
5–10
20
25
34
9
9
25
51
59
17
7
250
150
180
60
8
13
23
(50)
5
4
29
37
75
16
5
n.m.
(70)
n.m.
45
6
Tab. 2.1: Loss in silica fibres with different coating materials, measured by the cut-back method and by
OTDR (n.m. = not measurable, because of limited dynamic range of OTDR; cut-back method works without
limitation of measurable loss).
2 With the Optical Time Domain Analysis
(OTDR), the loss can be evaluated with a spatial resolution of some meters, but only at
selected wavelengths. Fibre lengths >60 m
can be analysed; the measurements should be
executed from both fibre ends. One of the
available devices applies a wavelength of
850nm and illuminates the fibre under test with
NA 0.20 (spot size 50 µm); another device for
1310 nm and 1550 nm implements NA 0.10
(spot size 10 µm).
Both methods supplement each other and are
suitable especially for the comparison of losses
in fibres with different coatings, but equal fibre
diameters.
The results obtained with both methods are compared in Tab. 2.1 (the wavelengths are determined by the OTDR devices) and indicate a sufficient consistency.
The low loss and the high NA achieved with the
Teflon AF coating, as well as the absence of
additional absorption bands (apart from OH
absorption) are particularly advantageous for
cladding pumping. But the Teflon layer that can
be implemented is too thin for many applications.
The low-index Acrylate Luv 370–444, but also Silicone RT601 provide a moderate pump loss and
an adequate layer thickness. However, characteristic absorption bands may be detrimental, e.g.
the Silicone absorption around the common
pump wavelength of 915 nm.
Besides the effects on fibre loss, the coating
materials differ in their mechanical and thermal
properties, which should also be taken into
account in high pump power applications.
2.2.6
out usually by repeated packaging and stretching
of rare-earth-doped elements made by the well
established MCVD technique, soaking in rareearth solutions and subsequent drawing of the
microstructured fibre by means of the “stack and
draw“ technique. Fig. 2.7 shows the central part
of a PCF with 7 × 7 active Yb-doped filaments.
Fig. 2.7: Central part of a PCF with 7 × 7 active
doped filaments .
A matter of particular interest is the mode behaviour of such structures, especially the optical coupling of the single elements (formation of a
“super-mode”). Fig. 2.8 shows the changing
mode picture at the end of a short piece of the
fibre shown in Fig. 2.7, achieved by launching
Studies of the mode behaviour
of multi-core fibre structures
(K. Mörl, J. Kobelke, K. Schuster)
There are various reasons to build-up the active
cores of microstructured fibres from single doped
filaments. One of them is to achieve a mode field
as large as possible. The preparation is carried
Fig. 2.8: Mode structure at the end of a short
piece of fibre shown in Fig. 2.7, obtained by
launching different wavelengths in the central part.
43
OPTIK / OPTICS
light in the central part of fibre core by means of
a fibre with 7 µm mode field diameter, and scanning the wavelength. We can see the beating of
modes with a period of about 7 µm. From this and
from the fibre length it is possible to compute the
mode coupling length.
Much more interesting it is to study the mode
behaviour of such multi-filament cores in the
active laser regime. Fig. 2.9 shows the large
mode field of the fundamental laser mode (supermode), and Fig. 2.10 shows the mode profile of
this mode at the same scale.
Fig. 2.9: Fundamental laser mode (super –mode)
of the fibre shown in Fig. 2.7.
Fig. 2.10: Profile of the mode field of Fig. 2.9 in
comparison to the fibre geometry.
2.2.7
44
However, because of the necessary weak coupling between the waveguides, the tolerances of
the optical properties and the relative positions of
the waveguides are quite challenging. With
respect to the state of the art, the precision of the
geometrical and material parameters should be
improved by a factor of 10.
To achieve this requirement we developed a special technology on the basis of high-quality optical materials, precision machining and a careful
control of all preparation steps. A first sample
prepared in this way is shown in Fig. 2.11. The
array consists of 61 weakly coupled single-mode
waveguides with a hexagonal symmetry. The
array is surrounded by a microstructured buffer
zone and a jacketing tube. The precision of the
array geometry fulfils the requirements.
Fig. 2.11: Precision fibre
array (designed for λ =
1.5 µm; outer diameter
585 µm); photo-micrograph with transmitted
light (a) and reflected
light DIC (b) of a cleaved
HF-etched fibre end.
The distribution of light launched into a single
waveguide follows the propagation characteristic
in a regular array. A thorough analysis of this
array sample shows that almost all (but not really all) waveguides fulfil the requirements.
Fibre-optic waveguide arrays
as model systems of discrete optics
(U. Röpke, S. Unger, K. Schuster,
J. Kobelke, H. Bartelt)
The field of optics in discrete systems is evolving
from theoretical concepts into experimental verification and discussion of its application potential.
In the framework of a DFG research group working at this topic, we developed fibre-optic waveguide arrays suitable for optical experiments on
nonlinear dynamics in two-dimensional discrete
systems.
The technology of microstructured fibres, which
succeeds in the preparation of photonic crystal
fibres, also provides a basis for waveguide arrays.
Fig. 2.12: Propagation of light (λ = 1550 nm) in
the array launched into a waveguide at a boundary corner (L: propagation length).
In conclusion we have shown that fibre-optic
waveguide arrays can be prepared that are suited as model systems in experiments of nonlinear
discrete optics.
OPTIK / OPTICS
2.2.8
High-reflectivity draw-tower fibre
Bragg gratings (FBG) at 1550 nm
wavelength
(M. Rothhardt, Ch. Chojetzki)
For making Bragg gratings with excellent
mechanical strength during the drawing tower
process of the fibre, there is a limitation in using
single pulses for the inscription of each grating.
To achieve high reflectivity Bragg gratings during
the dynamic inscription of FBG within the fibre
drawing process (draw tower gratings), three
important components are under consideration:
first of all, the laser pulse properties; second, the
UV photosensitivity of the fibre core, and third,
the optical configuration and its alignment. These
three factors have been developed and optimized
during the last years; the result is the achievement of single pulse gratings with a reflectivity
maximum of R = 51% at 1550 nm.
Useful values for fibre transmission losses of
<10 B/km at 1550 nm can be achieved.
With this kind of fibre and Bragg gratings, the
requirements can be fulfilled for a lot of applications.
Because of the achieved good laser coherence
properties, we are able to use an interferometric
set-up (the well known Talbot interferometer) for
the generation of the interference pattern needed
to write Bragg gratings into the fibre core. Further
we use cylindrical lenses with focal lengths
between 200 and 500 mm in order to increase the
energy density in the interference pattern and
thus maximize the grating’s index modulation.
Another fundamental demand for dynamically
generated fibre Bragg gratings during the fibre
drawing process is the stable position of the fibre
in the centre of the beam intensity maximum of
the excimer laser beam. We use an MCVD preform with an outer diameter of about 29 mm. The
outcome of this is a small amplitude of the fibre
oscillation of < ±100 µm during the operation time
of approx 1 h. An online monitoring system for
the controlling of the alignment of the fibre relative to the laser beam allows in-line positioning of
the cylindrical lens that focuses the laser beam
onto the fibre.
Fig. 2.13: Spectral shape of a single pulse grating made at the drawing tower with a reflectivity
of 51%.
We use a “Compex 150” KrF excimer laser from
Lambda Physics. The laser consists of an oscillator with a wavelength selection unit using 3 prisms
for beam shaping and a grating for spectral narrowing. This type of laser delivers very high temporal beam coherence as well as a high degree of
spatial coherence. By variation of the high voltage
of oscillator and amplifier we found a regime with
sufficiently high pulse energy and simultaneously
very good pulse-to-pulse repeatability at about
26 kV.
It is essential to have a high single laser pulse
photosensitivity of the fibre core. The high photosensitivity is caused by doping the fibre core with
a high content of Germanium together with special collapsing conditions in the MCVD process
during preform manufacturing.
Ge co doping increases the refractive index of
the core. This way the fibre core diameter has to
be slightly smaller compared to the standard single-mode fibre in order to achieve single-mode
behaviour of the fibre. This results in additional
coupling losses for splices or fibre coupling with
standard fibres.
Fig. 2.14: Reflection spectrum of a typical FBG
array example.
In summary, we have shown the implementation
of single pulse type I fibre Bragg gratings in
arrays up to some 100 single gratings in one fibre
with different wavelengths around 1550 nm with
more than 35% reflectivity. These FBG arrays
reach mechanical strengths similar to those of
standard telecom fibres and are highly useful for
application as optical strain gauges.
2.2.9
Travelling wave approach to directmodulated fibre Bragg-grating stabilized external cavity semiconductor
lasers
(M. Becker, M. Rothhardt)
Fibre Bragg-grating stabilized semiconductor
lasers (FGLs) are hybrid distributed Bragg reflector lasers with double resonator configuration,
45
OPTIK / OPTICS
comprising a semiconductor laser and an extended external cavity. On the one hand, the FGL concept for Non-Return-to-Zero (NRZ) data transmission is considered as a potential low-cost data
transmitter device; on the other hand, the laser
output power and emission wavelength is shown
to be sensitive to packaging, laser temperature
and device current (see IPHT annual report
2001).
FGL understanding and optimization require simulation tools, which have been developed at the
IPHT. The numerical method bases on the travelling wave model for DFB (distributed feedback)
semiconductor lasers. As the lasing condition of
the external cavity laser depends on its own history, the applied model splits the laser into individual sections, each with its own treatment of
rate equations, (Bragg) reflections and losses.
The simulation tools give access to the complex
output power behaviour, mode jumps and eye.
Additionally it is now possible to design special
laser architectures like mode-hop-free FGLs with
active wavelength stabilization and wavelengthswitchable FGLs, which are based on the interaction between the external cavity with superimposed Bragg gratings and the internal cavity,
which comprises the semiconductor optical
amplifier section.
2.2.10 Implementation of an OADM with a
data rate of 10 Gbit/s as technology
demonstrator in the PLATON project
(Planar Technology for Optical Networks)
(M. Rothhardt, C. Aichele, M. Becker,
U. Hübner)
The EU-funded PLATON Project involves collaboration and permanent feedback with a variety of
European research partners: Université des Sciences et Technologies de Lille (France), Université
Paris Sud (France), Ecole Polytechnique Fédérale
de Lausanne (Switzerland), Technische Universität Hamburg Harburg (Germany), Instituto de
Engenharia de Sistemas e Computadores do
Porto (Portugal), and two industrial partners,
Lucent Technologies GmbH (Nürnberg, Germany)
and Highwave Optical Technologies (France).
The objective of the PLATON project was to
study, develop and assess photosensitive planar
technology through key pilot devices. The main
subject of interest is demonstrating the feasibility
of the technology for making components like
channel waveguides, multimode interferometers,
Mach-Zehnder structures and Bragg gratings.
The work aims at a reconfigurable optical adddrop multiplexer (OADM) which will be the final
demonstrator.
Objectives of the IPHT were particularly:
(i) Accomplishing an optimized process for optical layer deposition
(ii) Structuring the optical waveguides of the key
pilot components (OADM)
(iii) Realizing the Bragg gratings inside the optical waveguides
(iv) UV trimming of the MZI structures (Mach
Zehnder Interferometer) of the OADM’s
(v) Packaging and fibre coupling of the optical
chips.
Fig. 2.16: OADM scheme with MZI structure, sections for UV trimming, input and output ports and
Bragg grating regions.
Fig. 2.15: Simulated eye diagrams of the virtual
fibre-grating-laser at 2.5 Gbit/s. Shown are the
eye diagrams with the emission wavelength at the
Bragg wavelength (top) and at the long-wavelength slope close to a mode-hop (bottom).
46
The main results are:
(i) Optical layer deposition
The well-mastered technology at the IPHT for
optical silica layer deposition, FHD (Flame Hydrolysis Deposition) is applied for this project. The
core layer is germanium-doped. Our parameters
achieved are:
Core layer thickness of 4.5 µm/5.2 µm and a
refractive index of n[core] = 1.469. The refractive
_ ± 1 * 10–4 and the thickindex tolerance is δn <
_ ± 0.1 µm.
ness tolerances are δd <
OPTIK / OPTICS
a
b
Fig. 2.17:
a. Scheme of cross
sections of etched
waveguides
b. Deposition and
sintering of a
cladding layer.
(iv) UV trimming
The actual trimming process applies a tuneable
laser source, an EDFA and an optical power-versus-time recorder. The number of trimming sections is four for symmetry reasons.
The cladding layer is boron co-doped, resulting in
a refractive index of n[clad] = 1,454. A level of
nearly no stress-induced birefringence was
achieved. The resulting core-cladding refractive
index difference is as specified, with ∆n ~1.5 * 10–2.
(ii) Structuring of the optical waveguides
The techniques used are photolithography and
reactive ion etching (RIE), which allow exact definition of planar waveguide structures. A square
cross section of the waveguides was achieved.
Fig. 2.18: Photomicrograph of the optical near
field of the waveguide samples obtained.
(iii) Bragg grating inscription process
For Bragg grating inscription, a two step UVprocess was applied. It starts with imprinting the
grating’s index modulation and continues with the
correction of the average index modulation envelope. This final apodisation correction is done by
exposing the grating to the inverse grating envelope intensity profile. The grating inscription setup
at the IPHT uses the holographic Talbot interferometer inscription technique with a frequency-doubled argon-ion laser operating cw at 244 nm. The
laser power at the output was 244 mW at 244 nm.
Fig. 2.19: Grating transmission spectra after index
modulation inscription before (α) and after (β)
adaptation of the average refractive index profile.
Fig. 2.20: Set-up scheme for UV trimming of the
MMI structure of the OADM.
The UV trimming procedure was performed two
times: first time with hydrogen- loaded sample
and second with presensitized trimming sections.
The resulting OADM was tested at LUCENT
Technologies in Nuremberg with a bit stream of
10 Gbit/s. The functionality of the OADM was
shown.
2.2.11 Material processing with DUV/VUV
laser radiation
(S. Brückner)
Because of their short wavelengths and their
high quantum energies, the ArF laser (193 nm)
and the F2 laser (157 nm) are excellent laser tools
for the precise and efficient micro structuring of
high band gap materials, like fused silica or PTFE
(Teflon). The measurement setups for material
processing in the DUV/VUV spectral range have
been continually improved in recent years. With
both laser systems it is possible now, by the use
of high-resolution mechanical components, to
produce complex microstructures with lateral and
depth resolutions in the sub-µm range.
Different special tasks were successfully processed with both measurement setups by maskbased structuring.
By means of the ArF laser, an array of 12 microholes with diameters smaller than 50 µm was
drilled in a silica-based Photonic Crystal Fibre
(PCF). For the implementation of a chemical sensor system it was necessary to drill holes through
the fibre cladding exactly up to the fibre core. The
drilling depth is determined by the number of
laser pulses and the fluence. With an energy
dose of 750 J/cm2 it was possible to drill the hole
just up to the fibre core, as shown in figure 2.21.
47
OPTIK / OPTICS
Fig. 2.21: Micrographs of the side view (left) and
the fractured surface (right) of a Photonic Crystal
Fibre (PCF) with a drilled hole (produced with
193 nm).
Additionally to a variety of experiments to F2 laser
material processing of glass, fused silica and
metallic layers, the micro structuring of PTFE
should be mentioned. By the use of specially
designed CaF2 lenses and an improved experimental setup, new results at sub-µm structuring
were achieved. Different gratings with sizes of
1 mm2, line widths up to 1 µm and a depth of
500 nm were produced with fluences from 0.3 to
1.5 mJ/cm2. Investigations of the ablation behaviour of PTFE in a nitrogen atmosphere show an
efficient ablation process with ablation rates of 40
nm/pulse at a fluence of 300 mJ/cm2. The assembling of a new vacuum chamber system permits
material processing with 157 nm in the high-vacuum range. In further experiments, a comparison
of material processing in vacuum and in a dry
nitrogen atmosphere will be carried out to determine the ablation behaviour and the deposition of
debris particles on the grating surface.
2.2.12 High-speed optical fibre grating
sensor system
(W. Ecke)
48
Fibre Bragg grating (FBG) sensor systems find
application in a steadily increasing number of
fields, including fast strain vibrations in electrical
machines, drive units or tools, e.g., train current
collectors, large-scale generators, wind turbines
or spot-welding grippers. These applications
require fast measuring and cost-effective signal
processing equipment. For this purpose, our concept of an FBG sensor system-based on broadband illumination and a compact spectrometer
operating at 800 nm wavelength (Fig. 2.22) has
been optimized to achieve a digital signal processing data rate of up to 1800 measurements
per second, with exactly simultaneous processing for all the 16 sensors in the fibre network. The
development of new optical mode-equalizing
components now decreases the influence of disturbances on the fibre transmission lines to well
below the detection limits of Bragg wavelength
excursions (standard deviation down to 0.3 pm).
Repeatability and accuracy of the measured
strain signals have been improved to less than
0.5 µε and 5 µε, respectively.
Although operating at a data rate 500 times higher than our previous standard design, the sensor
system is very compact (220 × 140 × 60 mm3,
Fig. 2.23) and robust, operates at temperatures
between –40 and +60 °C, and is fully suitable for
use in industrial applications in adverse environments. Our industrial partner for sensor technologies, Jenoptik LOS GmbH, is now commercializing this new high-speed sensor system in addition to the precursor “StrainaTemp”, which is dedicated to performing slower temperature and
strain measurements.
Highly topical application fields of fast fibre optic
strain measurements are, e.g., the quality monitoring of spot welding (cooperation with University of Applied Sciences Jena), defect monitoring
of train overhead contact lines (cooperation in
two European R&D projects), and load monitoring of wind turbine blades (cooperation with
Enercon GmbH and Jenoptik AG).
Fig. 2.22: Schematic of the optical fiber grating
sensor system.
Fig. 2.23: View of the high-speed sensor system
(1800 meas./s for 16 strain/vibration sensors;
Ethernet data output at the rear).
OPTIK / OPTICS
2.2.13 Monitoring of inhomogeneous flow
distributions using fibre-optic Bragg
grating temperature sensor arrays
(I. Latka, W. Ecke)
In many industrial facilities like chemical reactors,
thermodynamic engines, pipes and others, complex flow distributions occur. Knowledge of the
gas flow distributions may help to achieve an efficient system performance.
In our approach, fibre Bragg grating (FBG) sensors have been used for measuring the temperature of a heated element, in our case a steel capillary, which is cooled according to the surrounding mass flow. Because of the multiplexing capability of FBG sensors, one can measure the temperature distribution, i.e., the spatial distribution
of the gas mass flow along the sensor array. The
length of the heated and sensor-equipped element can be easily adapted to the cross section
of the gas flow, from <10 cm up to several m. The
number and distances of FBG sensors distributed over this length defines the spatial resolution
and is basically limited by the signal processing
unit used for read-out. According to FBG sensor
lengths <5 mm, spatial resolutions of gas flow
measurements of less than 1 cm should be
achieved.
The metal capillary was heated to temperatures
of 150 … 300 °C at zero gas flow, resulting in gas
flow measurement ranges of air at normal pressure between about 0.1 m/s and 10 m/s. The gas
flow cools locally the capillary and the corresponding FBG sensor in the array, depending on
its local inhomogeneity (see Fig. 2.24). The flow
sensor has a strongly non-linear characteristic:
sensitivity is highest at low gas velocities, and it is
tending to zero at the upper velocity limit (see
Fig. 2.25), the measuring signal DT is the temperature increase from the unheated to the heated state of the sensors. The response time of the
sensor, which amounts to a few seconds, is
depending on the actual sensor design.
A first field test has been performed while monitoring the closed cycle cooling system of a
206MVA generator of Siemens AG. Probes, each
Fig. 2.24: Flow velocity vs. position measured at
a probe of 7 FBG sensors exposed to an inhomogeneous gas flow.
Fig. 2.25: Sensor characteristic over flow velocity
measuring range of 0.1…10 m/s.
with 7 FBG sensors, have been used to characterise local flow distributions in areas where other
sensor types were not suitable because of limited space.
Other application fields are gas turbines, e.g., the
measurement of the total compressor inlet mass
flow, cooling flow, and exhaust flow.
2.2.14 UV-spectrophotometer for in situ
measurement of nitrate tested in the
North Sea
(H. Lehmann, G. Schwotzer)
Due to worldwide rising population and the intensification of agriculture, the load of natural water
with nutrients, especially with nitrate ions, has
been increased dramatically during the last
decades. It must be expected that this may have
serious consequences not only for the life in
freshwater, but for the whole ecosystem in the
sea and in the oceans. Therefore, the measurement of nitrate ions in seawater is an important
part of many oceanographic investigations. It is
aimed to perform most of these investigations by
automatically working stations, drifting autonomous in the ocean or dragged by ships. These
stations require fast responding, low power consuming and reliable sensors for the nutrient
analysis.
Based on a spectrophotometric nitrate sensor,
developed at IPHT to measure nitrate in fresh
water within the typical concentration range of
rivers and drinking water storage reservoirs (0.1
mg/l NO3-N to 5 mg/l NO3-N), a miniaturized sensor for nitrate in seawater was developed.
The sensor consists of two fiber coupled microoptical flow cells of different lengths and is based
on the measurement of the nitrate absorption in
the UV range near 200 nm. By using a sophisticated mathematical treatment of the obtained
spectra, the nitrate absorption band can be separated from the absorption of other ions, occurring in salt water in the same spectral region.
Hence, a detection range of 50–3000 µg/l NitrateN in seawater could be achieved.
49
OPTIK / OPTICS
After long-term laboratory tests of the sensor
system with artificial and natural seawater, field
tests of the sensor system were performed by the
GKSS-Research Centre/Institute for Coastal
Research, Geesthacht on board the ferry ship
„Duchess of Scandinavia“ during a trip between
Cuxhaven (D) and Harwich (GB) [Fig. 2.26]. The
measured nitrate profile, shown in Fig. 2.27,
reflects the nitrate load in the seawater caused by
the rivers Elbe, Weser and Schelde as well as the
nitrate pollution from the North Frisian Islands
and the big harbour cities of the Netherlands and
fits well to measurements obtained by sampling
nutrient analysers on the same ferry route.
Fig. 2.28: Comparison between water samples
measured by sensor and by autoanalyzer.
2.2.15 Novel optical dew point sensor
(T. Wieduwilt, G. Schwotzer)
Fig. 2.26: Ferry route from Harwich to Cuxhaven.
Fig. 2.27: Nitrate content profile in the North Sea,
measured during the ferry trip in Fig. 2.26.
50
Further investigations mainly directed to the
improvement of the long-term stability of the sensor were performed during a 2-week North Sea
round trip of the German research vessel
“Gauss”. On several stations the nitrate concentration was measured by the sensor and compared with the results of a commercial nutrient
autoanalyser [Fig. 2.28].
The dew or frost point is a measure of the water
content of any gas. Commercial optical dew point
hygrometers are based on the “chilled mirror”
principle. The devices consist of polished stainless steel or platinum mirrors attached to thermoelectric coolers (Peltier devices). The mirrors are
illuminated (e.g. with LED), and the reflected light
is received by photodiodes.
The gas stream whose humidity is to measure is
directed over the mirror surface. When the mirror
temperature falls below the dew or frost point of
the gas sample water condenses or forms ice
crystals onto the mirror surface. The reflected
light received by the photodiode is abruptly
reduced due to scattering.
The photodiode is tied into a servo loop which
controls the current to the Peltier cooler. This
enables the mirror to be maintained at an equilibrium temperature where the rates of condensation and evaporation of water molecules are
equal and therefore, a constant mass of water is
maintained on the mirror. The resulting temperature of the mirror is then fundamentally, by definition, equal the dew point temperature. A platinum resistance thermometer (PRT) embedded
beneath the mirror surface measures this temperature.
An inconvenience of chilled mirror hygrometers
is the falsification of the measuring by contaminations on the mirror surface. Contaminations
(e.g. organic particle) affect the light reflection
characteristics and cleaning procedures or compensation methods are necessary. The electronic schemes used for contamination compensation are often sophisticated and expensive. Other
problems are the limited miniaturization and the
unsuitable manufacturing technology for mass
production.
In cooperation with BARTEC GmbH a novel optical dew point sensor has been developed to overcome these disadvantages.
OPTIK / OPTICS
The operation principle is based on frustrated
total internal light reflection on the glass-air interface in the presence of dew drops or ice crystals
(patented by Bartec).
The optical principle is shown in Fig. 2.29. Essential features of the new dew point hygrometer are
the application of a transparent light guiding
glass slide and the reverse illumination of the
glass-gas interface through glass.
To precise measure the dew point temperature, a
platinum resistance thermometer with contact
structures has been deposited on the glass surface (see Fig. 2.30). The platinum structure is
arranged in the thermoelectric cooled condensation area. For passivation, the measuring structure is coated by a thin silicon carbide overlay to
protect the electrical resistance structure. Fig.
2.31 shows a microscopic photo of condensed
water droplets on the sensor surface.
With the presented sensor, an accuracy of ± 0.5 K
for the dew point temperature in the range of –15
to +20 °C DP has been measured.
2.3
Appendix
Partners
Fig. 2.29: Scheme of the sensor principle.
Without condensed water on the glass surface,
the light from a LED propagates without losses
through the light guide to the photodetector. If
condensed dew droplets are on the glass surface
the light penetrates the glass-droplet interfaces
and is scattered at the droplet-air interface. This
results in a decrease of the intensity at the detector. The advantage of this principle is the ruggedness in relation to contamination.
Fig. 2.30: Optical waveguide with platinum resistance thermometer.
Fig. 2.31: Condensation on the glass surface.
1. Industrial partners
• Advanced Optic Solutions GmbH, Dresden
• Analytik Jena AG
• AIFOTEC Fiber Optics GmbH, Meiningen
• BARTEC Messtechnik & Sensorik GmbH
• Carl Zeiss Jena, Oberkochen
• CeramOptec GmbH, Bonn
• Crystal Fibre A/S Lyngby, Dänemark
• DaimlerChrysler AG, Forschungszentrum Ulm
• DSM Research, Geleen, Niederlande
• EADS München-Ottobrunn
• Electro-optics Industries Ltd., Israel
• EPSA GmbH Saalfeld/Jena
• j-Fiber GmbH,Jena
• FiberTech GmbH, Berlin
• fiberware GmbH, Mittweida
• FISBA Optik, St. Gallen/Schweiz
• GESO GmbH, Jena
• GRINTECH GmbH Jena
• Heraeus Quarzglas GmbH & Co. KG
• Heraeus Tenevo AG
• Hottinger Baldwin Messtechnik GmbH, Darmstadt
• Hybrid Glass Technologies, Princeton, USA
• I.D. FOS Research, Geel, Belgien
• Jenoptik Laserdiode GmbH
• Jenoptik L.O.S. GmbH
• Jenoptik LDT GmbH, Gera
• Jenoptik Mikrotechnik GmbH
• Jenoptik Laser Solution GmbH
• Jena-Optronik GmbH
• JETI GmbH Jena
• Kayser & Threde GmbH München
• Laserline GmbH Mühlheim-Kärlich
• Layertec GmbH Mellingen
• Leica Microsystems Wetzlar
• Mikrotechnik & Sensorik GmbH Jena
• NTECH Technology, Novara, Italy
• ONERA Paris Palaiseau /Frankreich
• OVD Kinegram Corp., Zug, Schweiz
• piezosystem jena GmbH
• ROFIN SINAR Laser GmbH Hamburg
• Schott Glas, Mainz
• Schott Lithotec AG, Jena
51
OPTIK / OPTICS
•
•
•
•
•
•
•
•
•
•
•
•
52
Siemens AG, CT Erlangen und München
SUPERLUM Ltd. Moskau
SurA Chemicals GmbH Jena
Thales Avionics Massy/Frankreich
Thales Research and Technology
Orsay/Frankreich
TETRA GmbH Ilmenau
Lucent Technologies Nürnberg
unique mode AG Jena
VITRON Spezialwerkstoffe GmbH Jena
Wahl optoparts GmbH, Neustadt
4H Jena Engineering GmbH
2. Scientific partners
• Bundesanstalt für Materialprüfung und
-forschung (BAM), Berlin
• DBI Gas- und Umwelttechnologie GmbH,
Leipzig
• EMPA Dübendorf/Schweiz
• ESO European Southern Observatory,
Garching
• Fachhochschule Giessen-Friedberg
• Fachhochschule Jena
• Ferdinand-Braun-Institut für Höchstfrequenztechnik Berlin
• Fiber Optics Research Center, Moskau
• Fraunhofer Heinrich-Hertz-Institut für
Nachrichtentechnik Berlin
• Fraunhofer Institut Angewandte Optik und
Feinmechanik Jena
• Fraunhofer Institut für Silicatforschung
Würzburg
• Fraunhofer Institut für Lasertechnik Aachen
• Fraunhofer INT, Euskirchen
• GKSS Forschungszentrum Geesthacht
• Image Processing Systems Institute, Samara,
Russia
• INNOVENT e.V. Jena
• INESC Porto/Portugal
• Institut für Angewandte Photonik, Berlin
• S.I. Vavilov State Optical Institute,
St. Petersburg, Russia
• Institut für Bioprozess- und Analysenmesstechnik (IBA) Heiligenstadt
• Institut für Fügetechnik und Werkstoffprüfung
GmbH Jena
• Institute für Radiotechnik und Elektronik in
Moskau/Uljanovsk und Prag
• Laser Zentrum Hannover
• Max-Planck-Institut für Plasmaphysik, Greifswald
• Max-Born-Institut für Nichtlineare Optik und
Kurzzeitspektroskopie, Berlin
• Physikalisch-Technische Bundesanstalt Braunschweig
• Technische Universität Berlin
• Universität Braunschweig
• Technische Universität Chemnitz
• Technische Universität Darmstadt
• Technische Universität Dresden
• Universität Erlangen
• Technische Universität Hamburg-Harburg
•
•
•
•
•
•
•
•
•
•
•
•
•
Technische Universität Ilmenau
Universität Jena
Universität Kaiserslautern
Technische Universität München
University of Leeds, U.K.
University of Pardubice, Tschech. Republik
University of Rio de Janeiro (PUC), Brasilien
University of Southampton, U.K.
Verfahrenstechnisches Institut Saalfeld
Universite Catholique de Louvain/Belgien
Universite Paris-Süd/Frankreich
Universite de Lille/Frankreich
Gwangju Institute of Science and Technology,
South Korea
Publications
H. Bartelt:
Properties of microstructured and photonic
crystal fibers suitable for sensing application
Proceedings SPIE Vol. 5950, 236–242 (2005)
H. Bartelt:
Influences of micro- and nanostructuring on light
guiding
Proceedings SPIE Vol. 5855, 114–117 (2005)
Y. Kim, Y. Jeong, K. Oh, J. Kobelke,
K. Schuster, J. Kirchhof:
“Multi-port N × N multimode air-clad holey fiber
coupler for high-power combiner and splitter”
Optics Letters 30, 2697–2699 (2005)
Y. Kim, Y. Jung, U. Paek, K. Oh,
U. Röpke, J. Kirchhof, H. Bartelt:
„A new type of index guiding holey fiber with flexible modal birefringence control“
Proc. SPIE Vol 5855, 306–309 (2005)
J. Kirchhof, S. Unger, J. Kobelke, K. Schuster,
K. Mörl, S. Jetschke, A. Schwuchow:
“Materials and technologies for microstructured
high power fiber lasers”
Proc. SPIE 5951, 107/1–12 (2005)
C. Chojetzki, M. Rothhardt, J. Ommer,
S. Unger, K. Schuster, H.-R. Müller:
“High-reflectivity draw-tower fiber Bragg gratings
– arrays and single gratings of type II”
Optical Engineering 44, 60503/1–2 (2005)
M. Wegmann,J. Heiber, F. Clemens, T. Graule,
D. Hülsenberg, K. Schuster:
“Forming of noncircular cross-section SiO2 glass
fibers”
Glass Sci. Technol. 78, 69–75 (2005)
H. Lehmann, S. Brückner, J. Kobelke,
G. Schwotzer, K. Schuster, R. Willsch:
“Toward photonic crystal fiber based distributed
chemosensors”
Proc. SPIE Vol. 5855, 419–422 (2005)
OPTIK / OPTICS
K.-F. Klein, H. S. Eckhardt, C. Vincze,
S. Grimm, J. Kirchhof, J. Kobelke, J. Clarkin,
G. Nelson:
“High NA-fibers: silica-based fibers for new applications”
Proc. SPIE Vol. 5691, 30–41 (2005)
J. Kirchhof, S. Unger, A. Schwuchow,
S. Jetschke, B. Knappe:
“Dopant interactions in high power laser fibers”
Proc. SPIE Vol. 5723, 261–272 (2005)
J. Kobelke, H. Bartelt, J. Kirchhof, S. Unger,
K. Schuster, K. Mörl, C. Aichele, K. Oh:
„„Dotierte Photonische Kristallfaser – erweiterte
Möglichkeiten zur Modifizierung der Propagationseigenschaften und zur Verbesserung der Anwendungsmöglichkeiten mikrostrukturierter Fasern“
DGaO – Proceedings 2005, ISSN 1614 8436.
W. Ecke, K. Schröder, S. Bierschenk,
R. Willsch:
“Opto-chemical fibre Bragg grating sensors
based on evanescent field interaction with specific transducer layers”
Proceedings SPIE Vol. 5952, 118–125 (2005)
R. Willsch, W. Ecke, G. Schwotzer:
“Spectrally Encoded Optical Fibre Sensor Systems and their Application in Process Control,
Environmental and Structural Monitoring” (invited
paper)
Proceedings of SPIE, Vol.5952,133–146 (2005)
T. Glaser, A. Ihring, W. Morgenroth, N. Seifert,
S. Schröter, V. Baier:
“High temperature resistant antireflective motheye structures for infrared radiation sensors”
Microsystem Technologies 11, 86–90 (2005)
M. Duparré, B. Lüdge, S. Schröter:
“On-line characterization of Nd:YAG laser beams
by means of modal decomposition using diffractive optical correlation filters”
Proc. SPIE Vol. 5962, 59622G (2005)
M. Zeisberger, I. Latka, W. Ecke,
T. Habisreuther, D. Litzkendorf, W. Gawalek:
“Measurement of the thermal expansion of melttextured YBCO using optical fibre grating sensors”
Supercond. Sci. Technol. Vol. 18, 202–205 (2005)
W. Ecke, K. Schröder, M. Kautz, P. Joseph,
S. Willet, T. Bosselmann, M. Jenzer:
“On-line characterization of impacts on electrical
train current collectors using integrated optical
fiber grating sensor network”
Proceedings SPIE, Vol. 5758, 114–123 (2005)
I. Latka, W. Ecke, B. Höfer, T. Frangen,
R. Willsch, A. Reutlinger:
“Micro bending beam based optical fiber grating
sensors for physical and chemical measurands”
Proceedings SPIE Vol. 5855, 94–97 (2005)
K. Schröder, J. Apitz, W. Ecke, E. Lembke,
G. Lenschow:
“Fibre Bragg grating sensor system monitors
operational load in a wind turbine rotor blade”
Proceedings SPIE Vol. 5855, 270–273 (2005)
J. P. Dakin, W. Ecke, M. Reuter:
“Comparison of vibration measurements of elastic and mechanically lossy (visco-elastic) materials using fibre grating sensors”
Proceedings SPIE Vol. 5855, 5–8 (2005)
C. Chojetzki, M. Rothhardt, J. Ommer,
S. Unger, K. Schuster, H.-R. Müller:
“High reflectivity draw tower fiber Bragg gratings
array and single gratings of type II”
Optical Engineering Jan. (2005)
M. Becker, M. Rothhardt und H.-L. Althaus:
„Wavelength-Switchable Fiber Grating Laser with
Active Wavelength Stabilization“, Optical Engineering Dec. (2005)
S. Jetschke, V. Reichel, K. Mörl, S. Unger,
U. Röpke, H.-R. Müller:
“Nd:Yb-codoped Silica Fibers for High Power
Fiber Lasers: Fluorescence and Laser Properties”
Proc. SPIE Vol. 5709, 59–68 (2005)
A. Strauss, S. Brueckner, U. Roepke,
H. Bartelt:
“Thermal Poling of Silica”
DGAO-Proceedings, ISSN 1614–8436 (2005)
H. Bartelt, S. Schröter, J. Kobelke, K. Schuster
“Photonische Kristalle: neue Funktionalität für
integrierte Optik und optischen Fasern”
Proceedings Symposium “Optik in der Rechentechnik”, TU Ilmenau Sept. (2005)
C. Chojetzki, K. Schröder, M. Rothhardt,
W. Ecke:
“Strukturüberwachung mit Faser-Bragg-GitterSensoren am Beispiel des Rotorblattes einer
Windkraftanlage”
VDI-Berichte Nr. 1899, 209–217, (2005)
M. Rothhardt, C. Chojetzki, H.-R. Müller:
“High mechanical strength single-puls draw
tower gratings”
Proc. SPIE Vol. 5579, 127–135, (2005)
Y. Joeng, Y. Kim, K. Mörl, S. Höfer,
A. Tünnermann, K. Oh:
“Q-switching of Yb3+-doped fiber laser using a
novel micro-actuating platform light modulator”
Optics Express 13, 10302, (2005)
53
OPTIK / OPTICS
Presentations/Posters
S. Unger, J. Kirchhof, A. Schwuchow,
S. Jetschke, B. Knappe:
“Dopant interactions in high power laser fibers”
Photonics West/Optoelectronics,
22.01.–27.01.2005, San Jose, California/USA
(Poster)
S. Jetschke, V. Reichel, K. Mörl, S. Unger,
U. Röpke, H.-R. Müller:
“Nd:Yb-codoped slica fiber lasers: fluorescence
and laser properties”:
Photonics West 2005, San Jose USA
24.01.–28.01.2005
(Paper)
R. Willsch, W. Ecke, G. Schwotzer:
„Faseroptische Sensorsysteme mit Mikro- und
Nanostrukturkomponenten“
VDE /GMM Workshop „Mikrooptik im Fokus der
Photonik“, Karlsruhe 03.02.–04.02.2005
(Paper)
S. Schröter, U. Hübner, R. Boucher, H. Bartelt:
“Mikrooptische Komponenten auf der Basis von
PC-Strukturen in Ta2O5-Wechselschichtsystemen”
GMM-Workshop “Mikrooptik im Fokus der Photonik”, FZ Karlsruhe,03.02.–04.02. 2005
(Paper)
J. Kobelke, J. Kirchhof, K. Schuster, K. Gerth,
S. Unger, C. Aichele, K. Mörl:
“Photonische Kristallfasern – Möglichkeiten zur
Herstellung und Anwendung einer neuen Klasse
optischer Fasern”
Innovationsforum Strukturierung von Gläsern,
14.02.–15.02. 2005, Barleben.
(Paper)
W. Ecke, K. Schröder, M. Kautz, P. Joseph,
S. Willet, T. Bosselmann, M. Jenzer:
“On-line characterization of impacts on electrical
train current collectors using integrated optical
fiber grating sensor network”
SPIE’s 12th International Symposium on Smart
Structures and Materials, Conference “Smart
Sensor Technology and Measurement Systems”,
07.03.–09.03 2005, San Diego/USA, (Paper)
J. Kobelke, J. Kirchhof, S. Unger, K. Schuster,
K. Mörl, C. Aichele, H. Bartelt:
“Active and passive doped microstructured and
photonic crystal fibres”
Hauptjahrestagung der DPG, 04.–09.03. 2005,
Berlin.
(Poster)
54
J. Kirchhof, S. Unger, J. Kobelke, H. Bartelt:
„Hochleistungs-Laserfasern und Photonische
Mikrostrukturen“
DGG Glasforum, 10. 03.2005, Würzburg.
(Invited paper)
Y. Kim, W. Shin, S. C. Bae, K. Oh, J. Kobelke,
K. Schuster, J. Kirchhof:
“Air-clad multimode holey fiber coupler for high
power transmission”
CLEO 2005, section 09, paper CWN1.
(Paper)
W. Ecke, K. Schröder:
“Fiber Optic Health Monitoring Sensor System for
Wind Energy Turbine”
Colloquium at National Wind Technology Center
of US Department of Energy, Boulder, Colorado,
16.03.2005
(Invited paper)
K. Mörl:
„Arbeiten zu mikrostrukturierten und Hochleistungs-Laserfasern am IPHT Jena“
Universität Hamburg, 25.04.2005
(Invited paper)
V. Reichel:
„Höchstleistungsfaserlaser für cw-Betrieb“
OptoNet Workshop „Neue Laserstrahlquellen“
11.05.2005, IPHT Jena
(Invited paper)
J. Kobelke, H. Bartelt, J. Kirchhof, S. Unger,
K. Schuster, K. Mörl, C. Aichele, K. Oh:
“Doped photonic crystal fibres – Enhanced possibilities for modification of microstructured fibres”
DGaO-Jahrestagung,
17.05.–20.05.2005 Wroclaw, Polen.
(Paper)
A. Strauss, S. Brueckner, U. Roepke,
H. Bartelt:
“Thermal Poling of Silica“,
106. Jahrestagung der DGaO,
17.05.–20.05. 2005, Wroclaw/Polen
(Poster)
A. Csaki, A. Steinbrück, S. Schröter, T. Glaser,
W. Fritzsche:
“Fabrication and characterization of nanophotonic metal structures”
International Symposium Molecular Plasmonics,
Jena 19.05.–21.05. 2005
(Poster)
I. Latka, W. Ecke, B. Höfer, T. Frangen,
R. Willsch, A. Reutlinger:
“Micro bending beam based optical fiber grating
sensors for physical and chemical measurands”
17th International Conference on Optical Fibre
Sensors, 23.05.–27.05.2005, Bruges/Belgium,
(Paper)
K. Schröder, J. Apitz, W. Ecke, E. Lembke,
G. Lenschow:
“Fibre Bragg grating sensor system monitors
operational load in a wind turbine rotor blade”
17th International Conference on Optical Fibre
Sensors, 23.05.–27.05.2005, Bruges/Belgium,
(Paper)
OPTIK / OPTICS
J. P. Dakin, W. Ecke, M. Reuter:
“Comparison of vibration measurements of elastic and mechanically lossy (visco-elastic) materials, using fibre grating sensors”
17th International Conference on Optical Fibre
Sensors, 23.05.–27.05.2005, Bruges/Belgium,
(Paper)
B. Knappe, C. Aichele, St. Grimm, M. Alke,
H. Renner, E. Brinkmeyer:
“Ready-to-use silica slab waveguides for pretreatmentless UV-fabrication of customized planar lightwave circuits”
BGPP, Sydney, Australia, 04.07.–07.07.2005,
(Paper)
H. Bartelt:
“Influences of micro- and nanostructuring on light
guiding”
17th International Conference on Optical
Fibre Sensors, Bruges/Belgium,
23.05.–27.05.2005
(Invited paper)
M. Rothhardt, C. Chojetzki, H.-R. Müller,
H. Bartelt:
“Large Fiber Bragg Grating Arrays for Motoring
Applications Made by Drauring Tower Inscription”, BGPP, Sydney, Australia
04.07.–06.07.2005
(Poster)
C. Aichele, M. Becker, S. Grimm, B. Knappe
M. Rothhardt:
„Eigenschaften dotierter SiO-Wellenleiterschichten für UV-Strukturierungs-verfahren zur Realisierung passiver optischer Wellenleiterkomponenten“, VDE-ITG-Diskussionssitzung“ „Messung und Modellierung in der Optischen
Nachrichtentechnik“ (MMONT’05), Hamburg,
01.06.–03.06. 2005 (Paper)
J. Kirchhof, S. Unger, C. Aichele, S. Grimm,
J. Dellith:
“Borosilicate optical fibers and planar waveguides – Technology and properties”
5th Int. Conf. on Borate Glasses, Crystals and
Melts, Trento, Italy,10.07.–14.07.2005,
(Paper)
M. Becker, M. Rothhardt:
„Simulation direkt modulierbarer Faser-GitterLaser mit dem Wanderwellenmodell, VDE-ITG
Diskussionssitzung „Messung und Model-lierung
optischer Nachrichtensysteme“ (MMONT’05),
Hamburg, 01.06.–03.06.2005
(Paper)
C. Chojetzki, M. Rothhardt, H.-R. Müller,
M. Becker:
„Ziehturm Faser-Bragg-Gitter – kostengünstige
Bauelemente für die optische Informationstechnik“, VDE-ITG-Diskussionssitzung
“Messung und Modellierung in der Optischen
Nachrichtentechnik (MMONT’05), Hamburg,
01.06.–03.06.2005
(Paper)
K.-F. Klein, H. S. Eckhardt, C. Vincze,
J. Kirchhof, J. Kobelke:
„Numerische Apertur von mikrostrukturierten
Multimode-Fasern“
Messung und Modellierung in der optischen
Nachrichtentechnik,
Hamburg, 01.06.–03.06.2005
(Paper)
U. Röpke, S. Jetschke, S. Unger:
”Investigation of Nd:Yb-codoped Silica Fibers as
a Laser Material”, CLEO Europe 2005,
WED CJ-14, München, 12.06.–17.06.2005
(Poster)
H.-R. Müller, J. Kirchhof, V. Reichel, S. Unger:
“Fibres for High-Power Lasers and Amplifiers”
Journees Scientifique de I’ONERA, Paris
27.06.–29.06.2005
(Invited paper)
W. Ecke, K. Schröder, S. Bierschenk,
R. Willsch:
“Opto-chemical fibre Bragg grating sensors
based on evanescent field interaction with specific transducer layers”
SPIE OOC 2005, Warsaw/Poland
28.08.–02.09.2005
(Paper)
R. Willsch, W. Ecke, G. Schwotzer:
“Spectrally Encoded Optical Fiber Sensor Systems and their Application in Industrial Process
Control, Environmental and Structural Monitoring”
SPIE Optics and Optoelectronics Congress
Warsaw/Poland, 28.08.–02.09.2005
(Invited paper)
H. Bartelt:
“Properties of microstructured and photonic crystal fibers suited for sensing applications”
SPIE OOC 2005, Warsaw/Poland
28.08.–02.09.2005
(Invited paper)
J. Kirchhof, S. Unger, J. Kobelke, K. Schuster,
K. Mörl:
“Materials and technologies for microstructured
high power fiber lasers”
Optics and Optoelectronics Conference,
28.08.–02.09. 2005, Warsaw, Poland.
(Paper)
L. Kröckel, G. Schwotzer, M. Koch, K. Bley,
K. H. Venus:
“Fluorimetric Determination of Phosphate by
Reversed-FIA for In-Situ Water Analysis”
AquaLife, Kiel, 20.09.05–22.09.05
(Poster)
55
OPTIK / OPTICS
G. Schwotzer:
“Optical Components and Devices for In-Situ
Water Analysis in Project BIOSENS”
AquaLife 2005, Kiel, 20.09.–22.09.2005
(Invited paper)
C. Chojetzki, W. Ecke, M. Rothhardt,
K. Schröder:
“Structural monitoring using fibre Bragg gratings
at the example of a wind energy facility”
GESA – Symposium 2005, Saarbrücken,
21.09.–22.09.2005
(Paper)
H. Bartelt:
“Optische Fasern – geführtes Licht für Kommunikationstechnik und Sensorik”
Lehrerfortbildung, Jena, 22.09.2005
H. Bartelt, S. Schröter, J. Kobelke,
K. Schuster:
“Photonische Kristalle: Neue Funktionalität für
integrierte Optik und optische Fasern”
Vortrag auf dem 8. Workshop „Optik in der
Rechentechnik“, TU Ilmenau, 23.09.2005
(Paper)
H.-R. Müller:
“Fiber Development for Diode Pumped Fiber
Lasers”
Sino-German Workshop GZ 313
“Advances in Diodes and Diode Pumped Lasers”,
Peking, 25.09.–30.09.2005
(Invited paper)
J. Kirchhof, S. Unger, A. Schwuchow,
S. Grimm, V. Reichel:
“Materials for high-power fiber lasers”
First Conference on Advances in Optical Materials,
12.10.–16.10.2005, Tucson, Arizona/USA.
(Poster)
W. Ecke, K. Schröder:
“Optical fibre grating sensors for structural health
monitoring in adverse environment”
Colloquium at Max-Planck-Institute for Plasma
Physics, Greifswald, 04.11.2005
(Invited paper)
W. Ecke:
“Fibre Bragg grating sensor systems for structural health monitoring and optochemical measurements”
Colloquium at Institute of Materials Science and
Applied Mechanics of Wroclaw University of
Technology, Wroclaw/Poland, 16.11.2005
(Paper)
56
R. Willsch, W. Ecke, G. Schwotzer:
„Spektraloptische Fasersensorsysteme für Prozess-, Umwelt- und Strukturmonitoring“
17. Internat. Wiss. Konferenz IWKM, Mittweida,
03.11.–04.11.2005
(Invited paper)
K. Schuster, J. Kobelke, J. Kirchhof,
C. Aichele, K. Mörl, A. Wojcik,:
“High NA fibers – a comparison of optical, thermal and mechanical properties of ultra low index
coated fibers and air clad MOF’s”
54th Int. Cable and Wire Symposium,
Providence, RI/USA, 13.11.–16.11.2005,
(Paper)
A. Wojcik, K. Schuster, J. Kobelke,
C. Chojetzki, C. Michels, K. Rose,
M. J. Matthewson:
“Novel Protective coatings for high temperature
applications”
54th Int. Cable and Wire Symposium,
Providence, RI/USA,13.11–16.11. 2005,
(Paper)
J. Kobelke, K. Schuster, J. Kirchhof, S. Unger,
A. Schwuchow, K. Mörl, S. Brückner:
“Active and passive microstructured fibers”
Int. Workshop on Emerging Areas of Fibre Optics
and Future Applications,
Kalkutta, India
08.12.–10.12.2005,
(Invited paper)
Lectures
Prof. Dr. H. Bartelt:
Wahlvorlesung
Friedrich-Schiller-Universität Jena
Optische Nachrichtentechnik
Winter-Semester
und 2004/2005
Wahlvorlesung
Friedrich-Schiller-Universität Jena
Mikrooptik und integrierte Optik
Sommer-Semester 2005
Prof. Dr. R. Willsch:
Fachhochschule Jena,
Fachbereiche/Studienrichtungen
Elektrotechnik/Informationstechnik,
Physikalische Technik, Umwelttechnik und
Biotechnologie, “Sensortechnik”
Wintersemester 2004/2005 und 2005/2006
Dr. W. Ecke:
Fachhochschule Jena,
Masterstudiengang Laser- und Opto-Technologien LOT “Faseroptik” Sommersemester 2005
Patents
J. Bolle, J. Bliedtner, K. Zweinert, W. Ecke,
R. Willsch, W. Bürger:
„Schweißanordnung, insbesondere zum Verbinden von Werkstücken durch Widerstands- und
Pressschweißen“
DE 10 2005 017 797.2
OPTIK / OPTICS
W. Ecke, K. Schröder:
„Anordnung zur Erhöhung der Messgenauigkeit
von Fasergitter-Sensorsystemen“
DE 10 2005 062 749.8 (25.08.2005)
H.-R. Müller, S. Unger, K. Mörl, K. Schuster:
„Optische Fasern für polarisiert emittierende
Faserlaser und -verstärker sowie ein Verfahren
zu deren Herstellung“,
DE 10 2005 062 749.8 (23.12.2005)
Diploma
Y. Eberhardt
„Konzeption, Aufbau und Erprobung von Küvetten zur Messung kleiner Flüssigkeits-Volumina“
Fachhochschule Jena, 15.06.2005
R. Roth
„Optische Untersuchungen ausgewählter Laserdioden und VCSEL hinsichtlich ihrer Eignung für
Sensoranwendungen“
Fachhochschule Jena, 16.07.2005
Th. Frangen.
„Entwicklung, Aufbau und Test eines FasergitterMikrobiegebalkens zur Messung kleiner Biegekräfte und Anwendung als Viskosimeter“
Fachhochschule Jena, 23.09.2005
L. Kröckel:
„Untersuchungen zum fluorimetrischen Nachweis
von Phosphat in Wasser mittels Fließ-InjektionsAnalyse“
Fachhochschule Jena, 28.09.2005
D. Reinisch:
„Konstruktion eines Simulators für die optische
Messung von Temperatur und Feuchte in Zahnradgetrieben“
Fachhochschule Jena 16.12.2005
Master Thesis
M. Giebel:
„Entwicklung einer Labormesseinrichtung zur
Messung von Brechzahlen in Wasser“
Fachhochschule Jena, 24.03.2005
S. Bierschenk:
“Application of specifically sensibilised layers in
an optical fibre grating refractometer”
Fachhochschule Jena, 11.04.2005
Mirko Wittrin:
„Untersuchungen zum Potential des RNF-Verfahrens für Brechzahlprofilmessungen an optischen ,Silica on Silicon‘-Wellenleitern“
Fachhochschule Jena, Oktober 2005
Laboratory exercises
Th. Frangen
L. Kröckel
D. Mitrenga
E. Lindner
M. Klube
M. Wittrin
D. Reinisch
M. Leich
R. Roth
N. Westphal
T. Rohrbach
T. Rathje
K. Wolter
F. Just
01.01.05–31.01.05
21.02.05–31.12.05
14.02.05–31.07.05
15.02.05–18.02.06
01.03.05–30.04.06
01.03.05–30.09.05
01.04.05–30.11.05
04.04.05–12.08.05
26.04.04–16.07.05
18.07.05–29.07.05
05.10.05–21.02.06
19.10.05–30.06.06
21.11.05–31.05.06
01.12.05–30.06.06
Guest scientists
Dr. Y. Joeng
Gwangju Institute of Science
and Technology, Korea
März 2005
Dr. Aleksey Tchertoriski, Institute for Radio
Engineering and Electronics, Ulyanovsk, Russia,
01.04.–27.06.2005
Prof. Kyunghwan Oh
Gwangju Institute of Science
and Technology, Korea
01.12.04–28.02.2005
Memberships
Prof. Dr. H. Bartelt:
• Mitglied im Arbeitskreis Mikrooptik der
Deutschen Gesellschaft für Angewandte Optik
• Deutscher Vertreter in WG7 der ISO zum
Thema „Diffractive Optics“
• Mitglied des Editorial Board der Fachzeitschrift
„Optik“
• Vorstandsmitglied des Mikrotechnik Thüringen
e.V.
• Mitglied im Kuratorium der Stiftung für
Forschung und Technologie STIFT
• Mitglied im wissenschaftlichen Beirat der
Jenaer Technologietage 2004 und 2005
• Mitglied im Beirat des BioRegio Jena e.V.
• Mitglied im Beirat des Technologie- und Innovationspark Jena
• Conference Chair Optical sensing II
Photonics Europe, April 2006,
Strasbourg/France
Prof. Dr. R. Willsch:
• Mitglied des Redaktionsbeirates der
Fachzeitschrift „SENSOR report“
• Member of Optical Fibre Sensors (OFS)
International Steering Committee, Chair of
OFS-17, International Conference May 2005
Bruges/Belgium
57
OPTIK / OPTICS
• Mitglied im Kongressbeirat und Session-Chairman OPTO-Kongress Nürnberg, Mai 2006
• Stellv. Vorsitzender AMA-Fachausschuss
„Optische Sensorik“
Dr. W. Ecke:
• Program Chair and Member of Technical
Program Committee of International Optical
Fiber Sensors Conference OFS-17,
Bruges/Belgium, May 2005
• Co-Chair of Conference „Smart Sensor
Technology and Measurement Systems“
of SPIE International Symposium on Smart
Structures and Materials, San Diego/CA
USA, March 2005
• Member of Technical Program Committees
of Optical Fibre Technology (OFT) and
Optical Fibre Applications (OFA)
conferences of SPIE Optics and Optoelectronics Congress,
Warsaw/Poland, August 2005
58
Participation in fairs/expositions
• Exhibition at OFS-17 Conference
23.05.–27.05.2005 Bruges, Belgium
• „Lange Nacht der Wissenschaften“
18.11.2005 IPHT Jena
• Optonet Workshop
„Neue Laserstrahlquellen“
11.05. 2005, IPHT, Jena
• LASER 2005 – World of Photonics,
Neue Messe München,
3.–16. 06.2005,
Ausstellung am Gemeinschaftsstand
Sachsen/Thüringen
• TRANSFER X, Messe Dresden,
9.–11.11.05
Gemeinschaftsstand IPHT
MIKROSYSTEME / MICROSYSTEMS
3. Mikrosysteme / Microsystems
Leitung/Head: Prof. Dr. J. Popp
e-mail: juergen.popp@ipht-jena.de
Stellvertreter/Vice Head: Dr. H. Dintner
helmut.dintner@ipht-jena.de
Spektral-optische Verfahren
und Instrumentierung
Spectral Optical Techniques
and Instrumentation
Photonische Chipsysteme
Photonic Chip Systems
Mikrosystemtechnologie
Microsystem Technology
Leitung/Head: Prof. Dr. J. Popp
Leitung/Head: Dr. W. Fritzsche
wolfgang.fritzsche@ipht-jena.de
Leitung/Head: Dr. Th. Henkel
thomas.henkel@ipht-jena.de
Spectral Optical Sensing
Dr. R. Riesenberg
rainer.riesenberg@ipht-jena.de
Microtechnology
Dr. G. Mayer
guenter.mayer@ipht-jena.de
Thermal Microsensors
Dr. E. Keßler
ernst.kessler@ipht-jena.de
Sensor Preparation
Dr. A. Lerm
albrecht.lerm@ipht-jena.de
3.1
Überblick
2005 war für den Bereich „Mikrosysteme“ ein
bewegtes Jahr, das im Rückblick mit den Begriffen Kontinuität und Veränderung umrissen werden kann.
Kontinuität insofern, dass in den Gruppen die
fachliche Arbeit auf den verschiedenen Themengebieten systematisch weiter vorangetrieben
wurde und zu einer Reihe sehr beachtlicher wissenschaftlicher Ergebnisse, verbunden mit
erfolgreicher Projektakquisition, geführt hat. Die
nachfolgenden Abschnitte geben darüber Auskunft.
Veränderung benennt vor allem zwei wichtige,
eng miteinander verkoppelte Entwicklungen. Zum
Einen hat das Kuratorium mit Wirkung vom 1. Mai
2005 Prof. Jürgen Popp zum neuen Bereichsleiter berufen. Prof. Popp ist Lehrstuhlinhaber für
Physikalische Chemie an der hiesigen Universität
und Leiter des Institutes für Physikalische Chemie. Er wird diese Funktionen auch weiterhin
ausüben, so dass die Verflechtung des IPHT mit
der Universität in seiner Person eine substanzielle, für die Zukunft des IPHT entscheidende Stärkung erfährt. Als weithin anerkannter Experte auf
dem Gebiet der Laserspektroskopie und der Biophotonik bringt Prof. Popp – mit seiner Gruppe an
der FSU – ein hochaktuelles und zukunftsträchtiges wissenschaftliches Feld in das IPHT ein, welches sich in idealer Weise mit dem KnowHow
3.1.
Overview
2005 was a rather exciting year for the microsystems division. The year 2005 can be sketched by
the terms continuity and change.
Continuity insofar as the scientific work of the
various research fields within the division has
been pursued systematically resulting in a lot of
remarkable scientific results and a very successful acquisition of new projects. The following
chapters provide a more detailed insight into the
recent achievements of the microsystems division.
The term change marks two important and
strongly coupled developments. Firstly, Prof.
Juergen Popp was appointed as the new head of
the division starting at May 1 by the supervisory
board of the institute. Prof. Popp holds a chair at
the Friedrich-Schiller-Universität of Jena where
he is the director of the institute for physical
chemistry. Since he will carry on this position, the
scientific interlocking between the IPHT and the
university being an essential factor for the future
of the IPHT will be strengthened by Prof. Popp in
a substantial manner. As a widely recognized
expert in the field of laser spectroscopy and biophotonics Prof. Popp – together with his group at
the university – will establish a highly attractive
and longreaching research field at IPHT which
can be suitably combined with the know how of
the division on the development of chip systems
59
MIKROSYSTEME / MICROSYSTEMS
The staff of the microsystems division.
Fig. 3A: NIR Raman spectral sensor. The sensor
works in the wavelength range of 780 nm to
1100 nm, is equipped with a 1024 × 128 pixel
CCD and has a spectral resolution of 0.3 nm
(5 cm–1 to 2.5 cm–1).
60
Fig. 3B: Relative irradiance on the CCD of the
multi-signal-polychromator. Positions of 4 rows of
25 spectra, dot-distance 31 nm.
Fig. 3C: 16 × 16 thermopile array of a calorimetric
space debris detector on PC.
MIKROSYSTEME / MICROSYSTEMS
Fig. 3D: Silver nanoparticles were coated with a gold shell in order to tune the plasmon surface resonance
band. Spectra (left), scheme (center), photos of droplets with various gold shell thickness (center right) and
SEM and TEM images of the sample (right).
Fig. 3E: Single particle spectroscopy on immobilized 90 nm silver (left) and 110 nm gold (right) nanoparticles. The presented spectra were measured on a single particle each.
Fig. 3F: LabOnChip system for droplet-based micro flow-trough PCR. Sample droplets are moved along a
winding micro channel over the different temperature zones according the thermal protocol. The fluidic
module is in thermal contact with a micro system-based heat plate. The thermal distribution as measured
with an infrared camera is shown in the upper right corner. A detailed view of sample droplets inside the
microchannel is given in the lower right corner.
61
MIKROSYSTEME / MICROSYSTEMS
des Bereiches zur mikrotechnisch basierten
Chip- und Instrumentenentwicklung ergänzt und
das fachliche Profil des Bereiches, aber auch des
IPHT insgesamt, maßgeblich prägen wird.
Damit ist zugleich die zweite wesentliche Veränderung des vergangenen Jahres angesprochen:
Die erreichten Fortschritte in der Diskussion zu
der zukünftigen Ausrichtung und Positionierung
des IPHT. Die vom Kuratorium bestellte Strukturkommission hat für den optisch orientierten Teil
des IPHT, und damit auch für den Bereich „Mikrosysteme“, Empfehlungen zur inhaltlichen Fokussierung und strukturellen Anpassung ausgesprochen. Von den beiden identifizierten Forschungsschwerpunkten Optische Fasern und Photonische Instrumentierung beschreibt vor allem der
Letztere die avisierte thematische Ausrichtung
des Bereiches, auf welche sich die Arbeiten in
den kommenden Jahren fokussieren werden.
Fachlich bedeutet der Fokussierungsprozess einerseits die kontinuierliche Fortführung von
Arbeitsrichtungen, welche sich unmittelbar in das
neue Bereichsprofil einordnen (Verknüpfung
optisch basierter Chiparrays, mikroanalytischer
Systeme, infrarotoptischer Sensoren mit laserspektroskopischen Verfahren). Andererseits sind
mit der Neuausrichtung auch inhaltliche Umorientierungen
verbunden
(Mikrosystemkonzepte
außerhalb der Optik) und muss mit Blick auf die
kompetente Besetzung der Forschungsfelder
zusätzliche Expertise auf- bzw. ausgebaut werden (Plasmonik, molekulares und funktionales
Imaging, THz-Technik). Hierzu sollen insbesondere Nachwuchsgruppen zeitnah etabliert werden.
62
and instruments defining not only the future
scientific profile of the division, but also a main
research topic of the IPHT.
For this reason, the second essential change
within the last year was already addressed: the
progress achieved in the discussion about the
future orientation and positioning of the IPHT.
The structure commission being established by
the supervisory board submitted a strategic recommendation for a scientific focusing and structural adaption of the optical orientated parts of
IPHT, hence, also for the microsystems division.
The future scientific direction of the division is
described by “Photonic Instrumentation” being
one of the newly identified research fields “Optical Fibers” and “Photonic Instrumentation”.
With respect to the research activities of the division the focusing process stands on the one hand
for a steady continuation of those approaches
which fit into the new scientific profile i.e. combination of optical based chip arrays, microanalytical systems and infrared sensors with laser spectroscopic methods. However on the other hand, a
focusing on photonic instrumentation is associated with significant changes in some traditional
areas like microsystem concepts not based on
optical principles. Furthermore the establishment
and strengthening of new research fields
requires a build-up or extension of new expertise
like e.g. plasmonics, molecular and functional
imaging, and THz techniques etc. For these purposes, young scientists groups need to be
installed.
Um die fachliche Profilierung zu befördern, hat
sich der Bereich im vergangenen Jahr eine neue
Abteilungsstruktur gegeben, welche im obigen
Organigramm dargestellt ist. Die einzelnen
Arbeitsgruppen sind dabei in sich weitgehend
unverändert geblieben, wurden aber durch die
geänderte Zuordnung in einen neuen Kontext
gestellt. Dies betrifft vor allem die Vereinigung
von spektraloptischer Verfahrens- und Systementwicklung sowie die Herausstellung der Mikrosystemtechnik (Mikroreaktorik, Mikrofluidik) als
unverzichtbare enabling technology für die photonische Instrumentierung.
The division has changed its department structure in accordance to the recommended focusing
process (see scheme given above). In doing so
the various groups remained largely unchanged
however are put into a new context due to the
changed classification. This restructuring process
mainly concerns the association between spectral-optical techniques and instrumentation as
well as the emphasis on microsystem technology
(including microreactors, microfluidics) as an
essential enabling technology for photonic instrumentation.
Damit sind intern bereits wichtige Weichen
gestellt, um den Fokussierungsprozess des
Bereiches forciert weiterzuführen. Zugleich sind
diese Maßnahmen eingebunden in zentrale forschungsstrategische Aktivitäten der Universität
und des Campus Beutenberg (z.B. Ernst-AbbeCenter for Photonics, Jenaer Innovationscluster
„Optische Technologien“). Insgesamt sieht sich
der Bereich „Mikrosysteme“ daher gut aufgestellt,
um die Herausforderungen der inhaltlichen Profilierung als Chance für die weitere wissenschaftliche und struklurelle Entwicklung des Bereiches
zu nutzen.
All these efforts are setting internally the course
for a successful continuation of the department’s focusing process. Additionally, these
decisions are embedded into central strategic
activities of the university and the campus (e.g.
Ernst-Abbe-Center for Photonics, Jena innovation cluster “Photonic Technologies”). Overall
the microsystems division is in a very good position not only to face the challenges arising due
to the new profile of the IPHT but also to use this
profiling opportunity as a chance to further pursue the scientific and structural development of
the division.
MIKROSYSTEME / MICROSYSTEMS
3.2
Scientific Results
3.2.1
Spectral optical techniques and
instrumentation
(J. Popp)
The main objectives of the department “Spectral
optical techniques and instrumentation” are the
development of innovative optical and spectroscopical techniques as well as the design and
experimental realization of advanced spectral
optical devices and instruments for material and
life sciences applications. A fundamental understanding of the processes taking place when light
interacts with matter is an indispensable prerequisite for such developments. The ultimate
goal in life sciences is a deeper understanding of
the molecular processes occuring inside living
cells. Furthermore chemical reactions, metabolite or bioactive compounds driven functionalities
of biological cells as well as cell-cell communication need to be studied. Optical and spectroscopical techniques are extremely capable methods
to study the aforementioned processes on a
molecular level. Based on such knowledge e.g. in
the field of health care the origin of diseases can
be resolved, therapies can be optimized, and the
occurence of diseases might be prevented or at
least minimized.
Apart from the derivation of structure-property
relationships, the derivation of structure-dynamic
relationships is one of the most challenging topics. Utilizing advanced nanostructuring technologies artificial bioinspired materials with new
promising properties can be realized.
To achieve all the aformentioned ambitious goals
in material and life sciences innovative optical
components and sophisticated frequency-, timeand spatially resolved innovative laser spectroscopical methods and systems ranging from the
UV to the THz with unparalleled functionalities
need to be developed. Therefore, future research
activities have to focus on the development of
innovative optical spectroscopy techniques and
instruments like e.g.:
– Frequency resolved spectroscopical techniques exploiting novel spectral ranges to access
innovative matter structures,
– Time-resolved methods ranging from nanosecond to subfemtosecond time resolution to
study the entire range of time dependent structural changes,
– Functional and molecular imaging – e.g. CARS
microscopy, TIP-SERS,
– High-efficient spectral imaging for diagnostics,
– Applied plasmonics for the ultra-sensitive diagnostics,
– Lensless microscopes,
– THz-spectroscopy and -technique.
Another research topic together with the Department “Photonic Chip Systems” shall combine the
achievements of photonics especially of biophotonics with those from micro- and nano-technology. The main goal is the realization of new industrial products, like e.g. the development of a new
generation of optical and spectroscopical microchips for a powerful point-of-care diagnostics.
A.
Spectral optical sensing
(R. Riesenberg)
The annual report 2004 was entitled “Micro-aperture arrays in optics” and that oft 2003 “Ultra-sensitive optical sensing”. The annual report 2005,
presents innovative high performance optical
sensing set-ups for spectral sensors, for a multisignal-reader and for micro-imaging.
Future research topics might be high performance optical spectral and 5D-sensing architectures and lensless micro-imaging with synthetic apertures.
Compact Raman spectral sensors
(A. Wuttig, R. Riesenberg)
The project “OMIB online monitoring and identification of microorganisms and bio aerosols”
deals with a rapid identification of single microorganisms by means of micro Raman-spectroscopy in combination with statistical data evaluation procedures. Such a point-of-care detection demands compact high performance sensors. Therefore, two sensors based on new technologies were designed and manufactured: one
for the UV-region and another for the NIR-region.
For that reason, a special 2D-entrance aperture
array implementing a set of 10 little different
spectrometers in one design can be applied. The
reconvolution of the different images avoids aberrations and increases the spectral resolution as
well as the throughput (patent pended arrangements). The UV spectral sensor established in
2004 has been successfully tested by recording
Raman spectra of bacteria and minerals. More
than 10.000 spectral points are detected by
the UV-sensor exhibiting a detector-array of
2048 × 512 pixels (spectral region 245 nm – 360 nm,
spectral resolution up to 0.035 nm) simultaneously (see Fig. 3.1).
A second NIR Raman spectral sensor (see
Fig. 3A on color page) operates in the wavelength range of 780 nm to 1100 nm at a wavelength resolution of 0.3 nm (corresponding
wavenumber resolution: 5 cm–1 at λ = 780 nm …
2.5 cm–1 at λ = 1100 nm) using only a 1024 × 128
pixel detector.
63
MIKROSYSTEME / MICROSYSTEMS
Unconventional micro-imaging
(R. Riesenberg, A. Grjasnow, M. Kanka,
J. Bergmann)
a)
The coherent illumination of a sample by a pinhole generates an interference image (inlineholography). Results are given by unconventional
microscopic imaging by illumination with a pinhole array, see Fig. 3.2. The microscopy by multiplane interference detection uses three or more
interference pictures to reconstruct the objects.
The actual technique is adapted to microscopic
imaging. No reference is needed and a sub-pixel
algorithm is implemented.
The lensless technique is applied for wide field
imaging. The illumination by a pinhole-array
leads to a homogenous illumination with more
intensity and so with an increased sensitivity. The
field of view can be extended without loosing resolution (see Fig. 3.3).
b)
Fig. 3.1: a) View of the compact UV-Raman
spectral sensor (circled) with a commercial
Raman spectrometer HR 600 with nearly the
same performance and b) measured spectra of
bacillus pumius, DSM 361, excitation wavelength
257 nm, with both instruments.
64
Fig. 3.2.: Arrangement of illumination of the
sample by a pinhole-array and interference
detection by a CCD.
Fig. 3.3: a…d above: Digital inline holography. Objects (diameter of 0.5 µm) at the edge of the illumination
cone (object plane in 10 µm distance from the pinhole-plane) can not be detected and reconstructed. For
a pinhole diameter of 1 µm the aperture is limited. The field of view is limited [hologram at a distance of
220 µm from the pinhole-plane, image area (200 µm)2, the field of view in the example is limited to about
(9 µm)2.
e… h below: The single pinhole is replaced by a pinhole-array (9 pinholes). Nearly all objects can be illuminated and reconstructed. The field of view is extended.
MIKROSYSTEME / MICROSYSTEMS
Spectral-reader-technologies
(G. Nitzsche, R. Riesenberg)
A concept and an optical design of a fluorescence reader for real-time PCR was developed
which enables for the first time the detection of
four different dyes in 96 samples simultaneously.
It uses fiber-arrays, a lens-array and microaperture entrance arrays for parallel illumination as
well as for highly parallel spectral detection. The
design of the multi-signal polychromator with
the 2D-slit-array consists of 4 × 25 single slits
to generate 4 × 25 spectra on the CCD-chip (see
Fig. 3B on color page). The design was adapted
to a CCD-camera with 1024 × 1024 pixels of a
pitch of 13 µm.
B.
Thermal microsensors
(E. Keßler)
Two projects (ISEL and FANIMAT-nano) could
be started in 2005 while the MICRO-THERM
project was finished. All these projects fit in the
strategic orientation of the Thermal Microsensors group aimed at research and development of miniaturized thermal sensors (in particular for sensing electromagnetic radiation in
the infrared and neighboring spectral regions)
with a high and relatively uniform sensitivity/
detectivity in a broad spectral region and in a
wide range of operating temperatures up to
200 °C and more based on high-performance
materials of the functional layers, e.g., the
absorber, the thermoelectric transducer and the
isolation/passivation layers.
inalienable condition, the detector operating in a
high-vacuum ambiance.
The floating membrane pattern is generated by
dry etching processes. Several chip designs and
types of thermopiles comprising four and eight
thermocouples with leg widths of 2 and 4 µm,
respectively, deposited on stress-controlled silicon nitride, have been tested and provided for
packaging (see. Fig. 3.4). Under vacuum conditions, responsivities of up to approximately
3000 V/W and specific detectivities of 1.4 × 109
cm Hz1/2/W were measured with the thermoelectric materials combination BiSb and Sb. Variations of the multi-layer absorber system aiming at
the lowering of its thermal mass to decrease the
thermal time constant resulted in responsivities of
about 2400 V/W and time constants in the order
of 40 ms for an optimized design.
A significant potential for a further increase in
responsivity and detectivity arises from substituting the p-material Sb by the high-figure-of-merit
material BiSbTe and by the application of a new
membrane technology based on SU-8. These
efforts were continued after the termination of
the project in September 2005.
The scaled-down geometrical dimensions of the
micro-thermopiles connected to the accomplishable high detectivities are an important first step
towards the development of thermopile arrays
with high spatial resolution; hence, this project is
of particular importance for the further development of thermopile sensors at the IPHT.
New generation of micro-thermopiles
with high detectivity (MICRO-THERM)
(E. Kessler, V. Baier, U. Dillner, A. Ihring)
The main goal of the project MICRO-THERM,
started in July 2004, was the development of
microthermopiles for high-resolution low-temperature radiation thermometry (spectral range 8 to
14 µm). The work was carried out in close cooperation with Optris GmbH, Berlin and Mikrotechnik & Sensorik GmbH, Jena.
Essential specifications of this new generation of
detectors are reduced dimensions of the receiving area (diameters ranging from 100 to 150 µm,
thus permitting the enhancement of the distance
ratio and the optical resolution of pyrometers up
to 1 : 200 even with small optics), high specific
detectivities above 1 × 109 cm Hz1/2/W and comparatively low thermal time constants in the range
of 100 ms. These features are achieved by a
thermally optimized thermopile arrangement on a
floating membrane with supporting bridges smaller than 10 µm and reduced thicknesses of active
and passive layers, thereby reducing parasitic
thermal conductances and masses, and, as an
Fig. 3.4: MICRO-THERM thermopile chip on
TO-5 base plate, wire-bonded.
Infrared sensors having increased standards
of performance (ISEL)
(E. Kessler, V. Baier)
Basically, the aims of this project are both to shift
the long-term operating temperature of thermopile IR sensors beyond the limit of 180 °C,
reached in the former project HOBI, towards
250 °C and enhancing the responsivity of the
sensors. This shall be achieved by replacing the
65
MIKROSYSTEME / MICROSYSTEMS
typically used thermoelectric materials BiSb and
Sb with materials of higher thermoelectric figures
of merit, which moreover have higher temperature stabilities. For the prediction of sensor properties by parametric thermal modeling the transport coefficients of these materials have to be
characterized up to 300 °C. The according measurement equipment shall be built in 2006.
The high-effective ternary BiSbTe was chosen
as thermoelectric p-material. It was sputtered
by dc technology under optimized conditions.
Thereby a power factor of P = α2 σ = 1.9 10–3 W /
(m K2) (Seebeck coefficient α = 189 µV / K and
electrical conductivity σ = 53 540 (Ω m)–1) was
obtained at room temperature. In a first run sensors of TS 80 type were manufactured for high
temperature applications with this technology
using CuNi as n-material. However, some problems appeared in the wet-chemical patterning of
the BiSbTe films, which can most likely be attributed to the specific sputtering conditions. The
averaged responsivity S = 51 V / W is enhanced
by a factor of 1.6 compared with BiSb/Sb and
the temperature coefficient of responsivity is
lowered by a factor of 2.7 in the room temperature range. Sensors of this type were delivered
for testing and qualifying to the project partner
Micro-Hybrid Electronic.
in vacuum-tight sensor housings are planned to
test the compatibility of the ceramic films with
high-temperature interconnection and packaging
techniques. Thus, the project combines the competence of the three partners HITK (ceramic
nano-powders), IPHT (thermoelectric sensor
functional layers) and MHE (interconnection and
packaging techniques).
In 2005, first investigations concerning new
absorber layers were carried out. The absorption
coefficients of several high-temperature resistant
layers supplied by HITK and based on different
materials were measured at IPHT using a FTIRspectrometer. Moreover, the morphology of the
layers was characterized by SEM (see Fig. 3.5).
For layers of a special soot, absorption coefficients exceeding 90% were found in the wavelength range between 8 and 14 µm.
Nanotechnologies for the functionalization
of ceramic materials (FANIMAT-nano)
(E. Kessler, U. Dillner)
66
FANIMAT-nano represents one so-called “growth
core” in the Program “Innovative Regional
Growth Cores” launched by the Federal Ministry
of Education and Research (BMBF). This is a
development support program aimed towards
regional cooperations with platform technology
and important features which make them unique
in their field of competence. The target region of
FANIMAT-nano is the region Jena-Hermsdorf in
the federal state Thuringia. Within the FANIMATnano growth core, the Thermal Microsensors
group at IPHT Jena is involved in a project called
“Structurable ceramic thin films for high-temperature stable infrared (HT-IR) sensors” which started in September 2005. Our partners in this project are the Hermsdorf Institute for Technical
Ceramics (HITK) and the Micro-Hybrid Electronics GmbH (MHE), also located in Hermsdorf.
The development objectives of this project
include the creation and characterization of
structurable polyceramic or solgel thin film materials which can be integrated in the stacks of
functional layers of thermoelectric infrared
microsensors as high-temperature resistant
absorber layers and isolation or passivation layers, respectively. Furthermore, the development
of thermopile sensor chips with operating temperatures up to 250 °C employing those ceramic
films is envisioned. Investigations of these chips
Fig. 3.5: A SEM micrograph of a special hightemperature resistant soot absorber layer.
Calorimetric space debris detector
(E. Kessler, V. Baier, U. Dillner, A. Ihring)
A detector array of 16 × 16 thermopile sensors
based on the TS100/Flow design was developed
as an integrated part of a breadboard model of a
new type of in-situ space debris and meteoroid
detector to determine the impact energy of
micron-sized particles by calorimetric measurements (see Fig. 3C on the color page). The partners of this project are the eta_max Space
GmbH, Braunschweig, the Physikalisch-Technische Bundesanstalt, and the TU Braunschweig.
The thermopile array is completed with an appropriate plate absorber array supported by small
spacing columns of 20 µm height made of SU-8
and thermally connected to the sensitive areas of
the thermopiles each to convert the kinetic energy of the impacting particles into a temperature
increase. An estimate of an average thermal
effect gives temperature rises of 2…3 mK which
can be clearly detected by the thermopiles. Initial
tests using laser pulse heating were successfully
performed.
MIKROSYSTEME / MICROSYSTEMS
3.2.2
Photonic chip systems
(W. Fritzsche)
The detection and manipulation of molecular
ensembles as well as individual molecules based
on miniaturized and paralleled photonic approaches represent the main objective of the department.
It is therefore aimed at two main research directions: (I) molecular construction techniques in
order to develop required novel methods for
manipulation and detection at the molecular level
and (II) chip technology to convert these developments into (bio)analytical applications.
The ultimate goal for both ultrasensitive bioanalytics and other possible applications for molecular complexes (such as nano-electronics and
-optics) is the control of the constructs at the
nanoscale and the single molecule level. During
the last years novel approaches for single molecule handling have been developed in the
department. They address the integration problem by aiming at parallel approaches to position
individual molecular structures in prestructured
microsystem environments, such as microelectrode gaps. In 2005, this development was
advanced by the adaptation of dielectrophoretic
methods. The last years witnessed also impressive results in the synthesis and optical characterization of designer metal nanoparticles, providing particles with defined spectral properties.
Thereby, the main focus of the department
shifted towards molecular plasmonics, a field
that combines the effect of surface plasmon
resonance at metal nanostructures, such as
metal nanoparticles, with molecular components. These molecular structures can either be
used to influence the optical properties, thus representing the analyte (bioanalytics), or to realize
novel nanoscale hybrid complexes of metal
nanoparticles and molecular components. In
these complexes, the molecules act as backbone to realize a connection with defined geometry (distance, angle etc.) at the nanometer
scale. This research field was massively pushed
by the international symposium “Molecular Plasmonics” that was organized in May by the
department and brought many of the world leading scientists in this field to the IPHT.
In order to convert these developments into applications the established platform technologies for
DNA arraying and model system evaluation has
been further extended. These activities included
the first successful demonstration of the electrical DNA chip detection system for a biological
application and the further extension of partnerships with innovative bioanalytic companies in
order to get market-driven and application-oriented impulses for future research and development
in this promising field.
A.
Molecular nanotechnology
and plasmonics
Electrical manipulation of DNA
(A. Csaki, A. Wolff, R. Kretschmer, W. Fritzsche)
The control of a precise positioning of (bio) molecular complexes onto microstructured substrates is a key requirement for molecular nanotechnology. The application of electrical fields
represents an interesting alternative for this purpose. Electrical fields are a well-established technique for molecular manipulation and they are
easily directed with microscale precision using
microelectrodes. Therefore, prestructured microelectrodes that will later act as contacts to the
complexes were utilized to apply fields of alternating current in order to position polarizable
molecular structures from solution by dielectrophoresis. Molecules of lambda-phage DNA
(about 16 µm long) could be successfully positioned in electrode gaps as revealed by fluorescence and scanning force microscopy.
Fig. 3.6: Defined positioning of DNA molecules in
microelectrode gaps (100 nm gold) on silicon oxide
substrates by dielectrophoresis using 300 ng/µl
lambda-phage DNA and a field with 1 V/µm and
1 MHz. AFM-images (left and center) and fluorescence image (YOYO-1 as DNA-specific dye).
Substrate-controlled orientation of DNA
superstructures
(J. Vesenka, A. Wolff, A. Reichert, W. Fritzsche)
Another approach for aligned positioning of (bio)
molecular structures is the utilization of substrate-inherent patterns of e.g. electrostatic
charges. The observed effect of alignment of
DNA superstructures (G wires) on mica substrates following three major directions was characterized and studied. By resolving the substrate
of such samples with atomic resolution in the
same experiment, it was found that the G-wires
seem to align with the next nearest neighbor
potassium vacancy sites of mica. Such auto-orientation phenomena could be utilized to address
the fine-positioning of molecular structures e.g. in
network formation. The self-organization character and the massive parallelization are features
that make this approach very promising for future
applications.
67
MIKROSYSTEME / MICROSYSTEMS
particles with defined optical features are
required. Therefore, core-shell particles consisting of Ag/Au or Au/Ag were identified as especially promising systems to tune the resulting plasmon resonance (see figure 3D on the color
page).
Moreover, optical characterization at both ensemble and single particle level are needed. The last
year witnessed the set-up of a spectroscopy system with single particle capabilities in the department (see figure 3E on the color page). Experiments demonstrated the ability to yield UV-VIS
spectra of individual nanoparticles, together with
AFM and optical images of this structure.
Fig. 3.7: Alignment of DNA structures (G wires)
following the atomic arrangement in mica crystal
planes. (Top) Overview AFM image (left) with histogram of orientation of G wire segments (right),
(bottom) orientation of G wires as compared to
the crystal arrangement of the underlying mica
(insets) on air (left) and in buffer (right).
Metal nanoparticles for molecular plasmonics
(A. Steinbrück, A. Csaki, W. Fritzsche)
Utilizing the optical properties of metal nanoparticles in combination with molecular complexes
represents a promising recent development in
molecular nanotechnology with envisioned applications especially for bioanalytics but also in
nanophotonic devices. This field is based on the
surface plasmon resonance effect in the particles. In order to realize complex systems the optical properties of the nanostructures have to be
tuned and approaches to synthesize designer
Photonic nanostructures combined
with metal nanoparticles
(A. Csaki, A. Steinbrück, S. Schröter,
W. Fritzsche)
Photonic nanostructures, such as nanoaperture
arrays, show promising novel effects regarding
e.g. transmission of light. The established experience with nanoparticle handling and ultramicroscopic characterization was applied in order to
position metal nanoparticles in nanoapertures.
Comparison of the transmission characteristics
of the apertures with and without particles
showed a higher transmission in the case of particle-modified openings. This effect seemed even
enhanced when the particle where enlarged
using specific metal deposition.
Fig. 3.9: Light transmission of microfabricated
holes with sub-wavelength dimensions in a
chromium layer in dependence on the presence
of metal nanoparticles. AFM images (top) and
optical images (bottom) of three holes without
particle (left), with an individual particle (center),
and with a particle aggregate (right).
68
Fig. 3.8.: Synthesis of gold-silver core-shell nanoparticles yields designer particles with adjustable
surface plasmon resonance peak between the
bands of pure gold and pure silver nanoparticles.
The particles were formed using specific silver
deposition onto gold particles using various silver
salt concentrations. All spectra are ensemble
measurements.
MIKROSYSTEME / MICROSYSTEMS
B.
DNA-chip Technology
Characterization of specific metal deposition
at single particle level
(G. Festag, W. Fritzsche)
Specific reductive deposition of silver on gold
nanoparticles has a tremendous importance for
numerous processes in molecular construction
as well as in various kinds of bioanalytical methods for signal enhancement. AFM was used to
study this process at the single particle level in
order to reveal the influence of parameters like
particle size, composition of enhancement solution, length of incubation etc. Because on-line
measurements were not feasible, techniques
were developed to relocate certain positions at
the sample in order to image particle arrangements after every enhancement step.
Fig. 3.10: AFM study of the growth of a silver
shell on gold nanoparticles at the single particle
level. Top: Three images of the same sample
position after different growth times; Bottom:
Dependence of particle height on growth time
and various start diameters.
Electrical identification of microorganisms
by DNA-chip technology
(T. Schüler, R. Möller, W. Fritzsche)
The electrical DNA-detection system that has
been developed at the IPHT was for the first time
applied to biological samples (PCR fragments).
In collaboration with the Leibniz Institute for Natural Product Research and Infection Biology –
Hans-Knöll-Institute (HKI) Jena, the electrical
DNA detection was utilized to identify species
of microorganisms. Therefore, capture DNA
sequences, specific for each of the studied
species, were immobilized into the electrode
gaps prior to incubation with the target DNA.
Target DNA binding is detected by a significantly
reduced resistance in the respective gap
because binding of the labeled target DNA will
lead to metal deposition in a subsequent signal
enhancement step. The results showed that the
electrical DNA chip detection is able to clearly
differentiate between the different species and
allows for a straightforward identification of
microorganisms.
Fig. 3.11: Measurements from a typical experiment with the electrical DNA-chip system show a
clear signal for the species K. setea (set, left column) and the positive control from a consensus
sequence (uni). An optical view on an electrical
chip visualizes the silver deposition (especially in
the 1+2 row and the last one) that leads to the
electrically detectable signal at these positions.
3.2.3
Micro system technology
(Th. Henkel)
Photonic instrumentation strongly depends on
the integration of micromechanical and microoptical components with critical dimensions in the
nanometer scale. Furthermore, LabOnChip systems for integrated sample placement and sample preparation are required for high-throughput
microoptical applications, the retrieval of spatialand time-resolved spectral information and localized photochemical activation of sample ingredients. The aim of the microsystem technologies
department is the development and fabrication of
components for photonic instrumentation and the
69
MIKROSYSTEME / MICROSYSTEMS
application of LabOnChip based microfluidic
devices for integrated sample preparation and
placement in micro optical systems. The newly
developed technology for the preparation of allglass microfluidic devices with coplanar faces are
in compliance with the requirements of microoptical systems.
A.
Microfluidics of liquid-liquid
segmented sample streams
Liquid-liquid segmented flow based on highly
integrated LabOnChip devices offers a powerful
and versatile approach for high-throughput processing of linearly organized sample streams.
Currently, these fluidic networks are built up from
individual chip modules which are interconnected
by HPLC-capillaries. Since all operations have to
be in plug mode, micro droplets need to be large
enough, to seal a given channel completely. For
widely used HPLC capillaries with an inner diameter of 0.5 mm this critical volume is about
64 nl. With respect to this, modular systems are
limited in compartment size and thus in throughput and sample density. Processing of segmented sample streams uses interface-generated
forces for the maniplation of the micro droplets at
functional nodes with optimized geometry and
wetting conditions. Miniaturization of the channel
system and the droplet volume increases the curvature of the interfaces and thus the pressure
drop generated at the interface. In conclusion,
not only throughput and sample density, but also
reliability of the processes benefit from miniaturization and integration. Considering this, our work
in development of LabOnChip devices is focused
on the development of integrated LabOnChip
devices for segmented flow based application.
Toolkit for computational fluidic simulation
and interactive parametrization
of segmented-flow based fluidic networks
(N. Gleichmann, M. Kielpinski, D. Malsch,
T. Henkel)
70
are derived from experimental data and Computational Fluid Dynamics (CFD) simulations of the
functional element. The geometry is dynamically
generated from photolithographic mask data and
process parameters. Segmented sample streams
are implemented as lists. For interactive inspection of the interface geometries inside a functional node a software interface to the surface evolver
is implemented.
The main objectives of this work are the application of principles of electronic design automation
(EDA) to the model based design and parameterization of segmented-flow based micro fluidic
networks. This approach will significantly increase the efficiency in development of highly
integrated LabOnChip devices for custom fluidic
and micro chemical protocols. By that way,
research and development of micro chemical and
screening applications will benefit of the promising micro droplet-based approach of segmented
flow. Our toolkit is based on a computational network of fluidic nodes, which are interconnected
by virtual fluid ports for the transfer of segment
streams. The particular behaviour of a functional
node may be given by user definable rules, which
Fig. 3.12: Geometry of a drop passing a Tshaped junction with nozzle.
The surface evolver starts with a dynamically
generated mesh of the node itself and the correct position of the micro droplets inside the element. Wetting conditions and local contact angles
are non-constraints and dynamically calculated
from the interface energies. Channel geometry is
generated from the photo lithographical mask
data and the parameters of the etch process. The
parameterization is realized by interactively
changing the mask geometry of the fluidic nodes
and analysing the results of the fluidic simulation.
A complete run for a dynamic simulation takes a
view minutes only. The network can operate with
pressure and volume flow constraints. Currently it
is implemented for non compressible liquid/liquid
two-phase flows and the micro system technology of isotropic wet etching. The Toolkit consists of
a C++ class library of components for fluidic network simulation, for user interaction and network
visualization and for interfacing the surface
evolver. In a first test case it was successfully
applied for modelling a double injector module.
Conceptual work on self-controled fluidic
networks for segmented-flow based applications
(M. Kielpinski, D. Malsch, G. Mayer, J. Albert,
T. Henkel)
Functional elements for sample generation, dosing of liquid into droplets and retrieval of individual samples from the sample stack, generation of
stacked sequences and controlled fusion of adjacent segments within it’s segment stream have
been reported and successfully applied for highthroughput applications. These processes are
mainly effected and controlled by the dynamics of
interface evolution at functional nodes and spe-
MIKROSYSTEME / MICROSYSTEMS
cial flow dynamics inside the micro droplets.
Additional functionality is requested and proposed. This includes controlled 1:N fusion of multiple droplet sequences and controlled 1:N segment splitting. Unfortunately, these operations
require synchronization of the flow of multiple
droplet sequences and seem to require integration of actors and sensors for closed loop flow
control into the micro fluidic device. Application of
these approaches to fluidic networks would
require a huge amount of integrated sensors and
actors, each of them interfering with the others
and thus, the software for control of these networks would be very complicated.
Analyzing a segmented flow based system we
can recognize, that all prerequisites for application of self control to these special micro fluidic
systems are available. There are mobile interfaces, which can be used to seal junctions of the
main channels temporarily. Obstructions can be
used to increase or widenings to decrease the
pressure, generated by the curved droplet inter-
Fig. 3.14: y-Shaped junction for self syncronized
droplet fusion of two generated sample streams
(above) and microfluidic device, consisting of the
element and a total of four injectors for sample
stream generation and postprocessing by dosing
operations (below).
face. By that way, segmented flow provides the
basics for the implementation of self-controlled
functional elements and their integration into
micro fluidic networks.
Actual development has been focused on a first
implementation of these concepts for the selfsynchronized 1:1 fusion of two segment sequences. The functional node consists of a Y-shaped
junction, where each inlet is equipped with an
obstruction. The two inlet ports are connected by
a bypass. If one segment reaches the obstruction
it stops and the carrier flow is guided along the
bypass to the second inlet of the Y-junction. It
remains at the obstruction until a second droplet
from the opposite channel reaches the junction.
After this, fusion occurs followed by ejection of
the formed droplet.
Microfluidic devices for investigation of the fusion
process have been developed and fabricated.
Fig. 3.13: CFD-Simulation (right column) and
experimental data (left column) of self-synchronized 1:1 droplet fusion at a Y-junction with integrated bypass. Two sequences of micro droplets
are transported each with constant flow rate to
the Y-junction. The droplet, which first arrives at
the stricture stops (Part B) and the carrier flow is
guided through the bypass until a droplet from the
opposite sequence arrives (Part C). Now droplet
fusion occures (Part D) and the coalesced volume is ejected from the element.
LabOnChip based system for identification
of cancer cells
(J. Felbel, M. Urban, M. Kielpinski, G. Mayer,
T. Henkel)
Main aim of the collaboration between health professionals, molecular biologists and micro system
experts is the development of a LabOnChip based
analysis system permitting the partly automated
execution of micro flow-through-RT-PCR for the
detection and counting of cancer cells in samples
71
MIKROSYSTEME / MICROSYSTEMS
from cancer patients. The device combines techniques of segmented flow with thermal management of sample streams, according the given molecular biological protocol and real-time optical
readout of the amplification process. The PCR
reaction unit was developed as all-glass microchannel chip module, which is based on a patented flow-through thermocycler-chip. Thermal management is realized by a micro system made heat
plate, providing thermal control and management
for up to four thermal zones with minimized dimensions of the thermal gap between the heater
zones. The PCR sample droplets are cycled during
the flow over specific temperature zones (see figure 3F on the color page). Main advantage of this
LabOnChip module is the ability to process a high
number of individual samples, each embedded in
a single micro droplet by the serial flow regime.
oxygen and hydrogen. Detailed results on the
analysis of these micro chemical high temperature processes are shown in the contribution of
the laser diagnostics department in this annual
report.
Possible fields of application of the RT-PCR are
clinical diagnostics. For the establishment of the
system disseminated tumour cells in the blood of
patients with cervical carcinoma will be detected.
A special characteristic of these tumour cells is
the expression of oncogenes encoded by Human
Papillomaviruses (HPV), which can be specifically amplified by this procedure.
A successful PCR reaction of HPV targets in
microchannels was demonstrated.
•
B.
Chipmodules for analysis
of micro combustion
(G. Mayer, J. Albert, T. Henkel)
Chip modules for investigation of miniaturized
combustion processes have been developed and
successfully tested during an internal collaboration.
Integrated static micro-mixers allow the efficient
mixing of fuel gas and oxygen at macroscopic
explosive conditions and the controlled combustion at the outlet nozzle. Up to 2300 K may be
generated in micro-flames with a width of 2 mm
and a height of 3 mm during micro combustion of
3.3
Partners
National co-operation
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
72
Fig. 3.15: All-glass chip with integrated static
mixer for analysis of micro flames.
Appendix
•
•
•
•
•
Alphacontec, Berlin
Analytik AG, Jena
Applikationszentrum Mikrotechnik, Jena
ART-Photonics GmbH, Berlin
Bartec Componenten und Systeme GmbH,
Gotteszell
Berliner Glas KGaA Herbert Kubatz GmbH &
Co., Berlin
Bosch und Siemens Hausgeräte GmbH,
Traunreuth
Cetoni GmbH, Gera-Korbußen
Deutsches Zentrum für Luft- und Raumfahrt
e.V., Berlin
Entec GmbH, Ilmenau
eta_max space GmbH, Braunschweig
Fachhochschule Jena
Fachhochschule Hannover, FB Elektrotechnik
Fachhochschule Wiesbaden,
FB Physikalische Technik
Faseroptik Jena GmbH, Bucha
Fraunhofer Institut für Biomedizinische
Technik (IBMT) Nuthetal
Friedrich-Schiller-Universität Jena
– Institut für Materialwissenschaft und Werkstofftechnologie
– Institut für Physikalische Chemie
– Institut für Physiologie II
– Klinik für Frauenheilkunde
Fritz-Lipmann-Institut, Jena
Hans-Knöll-Institut, Jena
Hermsdorfer Institut für Technische Keramik
e.V., Hermsdorf
HL-Planartechnik, Dortmund
HSG, Institut für Mikrotechnik und Informationstechnik e.V., Villingen-Schwenningen
IL Metronic Sensortechnik GmbH, Ilmenau
IMPAC Infrared GmbH, Frankfurt/Main
Industrieanlagen-Betriebsgesellschaft mbH,
Ottobrunn
Institut für Bioprozess- und Analysenmesstechnik e.V. (iba), Heiligenstadt
Institut für Mikrotechnik (IMM), Mainz
Jena Bioscience GmbH, Jena
JENOPTIK Laser, Optik, Systeme GmbH,
Jena
JENOPTIK Mikrotechnik GmbH, Jena
Kayser-Threde GmbH, München
Labor Diagnostik Leipzig GmbH, Leipzig
Max-Born-Institut, Berlin
Micro-Hybrid Electronic GmbH, Hermsdorf
MIKROSYSTEME / MICROSYSTEMS
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Mikrotechnik + Sensorik GmbH, Jena
NFT Nanofiltertechnik, Bad Homburg
Optris GmbH, Berlin
PTB, Labor „Wechsel-Gleich-Transfer“,
Braunschweig
Quantifoil Instruments GmbH, Jena
RapID, GmbH, Berlin
Raytek GmbH, Berlin
Scanbec GmbH, Halle/Saale
Schering AG, Berlin
Seleon GmbH, Dessau
SurA Chemicals GmbH, Jena
Technische Universität Bergakademie
Freiberg, Institut für Physikalische Chemie
Technische Universität Ilmenau
– Physikalische Chemie/Mikroreaktionstechnik
– Zentrum für Mikro- und Nanotechnologie
Universität Leipzig, Institut für Virologie
Universität Dortmund
Universität Würzburg
International co-operation
• ALBEDO Technologies, Razès, France
• Anhui Institute of Optics and Fine Mechanics,
Hefei, China
• Bundesamt für Eich- und Vermessungswesen
(BEV), Wien, Austria
• CAL-Sensors, Inc., Santa Rosa, CA, USA
• CEA, Saclay, France
• Centro National de Metrologia (CENAM),
Querétaro, Mexico
• Dalhousie University, Dept. of Physics and
Atmospheric Science, Halifax, Canada
• EDAS-Astrium-CRISA, Madrid, Spain
• Foster-Miller, Waltham, MA, USA
• Hebrew University, Jerusalem, Israel
• HORIBA Jobin Yvon, Villeneuve, France
• IR System Co. Ltd., Tokyo, Japan
• Institutul National de Metrologie (INM)
Bukarest, Romania
• Istituto Elettrotecnico Nazionale (IEN), Turin,
Italy
• Karolinska Institutet, Clinical Research Center,
Stockholm, Sweden
• Key Techno Co., Ltd. Tokyo, Japan
• Nanoprobes, Inc., Yaphank, NY, USA
• Nanotec Electronica S.L., Madrid, Spain
• National Institute of Metrology (NIMT),
Bangkok, Thailand
• National Measurement Institute (MNI),
Lindfield, Australia
• National Metrology Laboratory (NML), Sepang,
Malaysia
• National Research Counsil (NRC), Ottawa,
Canada
• Országos Mérésügyi Hivatal (OMH),
Budapest, Hungary
• Politechnika Śla̧ska, Gliwice, Poland
• Slovenian Institute of Quality and Metrology
(SIQ), Ljubljana, Slovenia
• Standards, Productivity and Innovation Board
(SPRING), Singapore
• Tokyo University, Mechanical Engineering,
Japan
• Ukrmetrteststandart (UkrCSM), Kiev, Ukraine
• Ulusal Metroloji Enstitüsü (UME), Gebze,
Turkey
• University of Bologna, Dipartimento di Biochimica, Italy
• Universidad Carlos III, Optoelectronics and
Laser Technology Group, Madrid, Spain
• University of Copenhagen, Department Medical Biochemistry and Genetics, The Panum
Institute, Denmark
• University of Newcastle, Department of
Chemistry, UK
• University Warsaw, Institute of Micromechanics and Photonics, Poland
Editor
W. Fritzsche, W. Knoll:
Special Issue “Nanoparticles for Biotechnology
Applications”
IEE Proceedings Nanobiotechnology, 2005
Book chapters
G. Festag, U. Klenz, T. Henkel, A. Csáki,
W. Fritzsche:
“Biofunctionalization of metallic nanoparticles
and microarrays for biomolecular detection”
in “Nanotechnologies for the Lifesciences”
(book series) – Vol.1 “Biofunctionalization of
Nanomaterials” (Ed. by C. Kumar, Wiley-VCH,
2005)
Publications
V. Baier, R. Födisch, A. Ihring, E. Kessler,
J. Lerchner, G. Wolf, J. M. Köhler, M. Nietzsch,
M. Krügel:
“Highly sensitive thermopile heat power sensor
for micro-fluid calorimetry of biochemical processes”
Sensors and Actuators A 123–124 (2005)
354–359
B. Dietzek, R. Maksimenka, W. Kiefer,
G. Hermann, J. Popp, M. Schmitt:
“The excited state dynamics of magnesium
octaethylporphyrin studied by femtosecond timeresolved four-wave-mixing”
Chem. Phys. Lett. 415, (2005) 94–99
T. Eick, A. Berger, D. Behrendt, U. Dillner,
E. Kessler:
“An Alternative Method for Measuring the
Responsivity of Thermopile Infrared Sensors”
Proceedings of Sensor 2005, 12th International
Conference, Vol. I (2005) 109–114
73
MIKROSYSTEME / MICROSYSTEMS
J. Felbel, A. Reichert, M. Kielpinski, M. Urban,
D. Malsch, T. Henkel:
„Entwicklung von mikrofluidischen Chipsystemen
für biologische Anwendungen“
7. Dresdner Sensor-Symposium in Dresdner
Beiträge zur Sensorik (Editor: G. Gerlach, H. Kaden), TUDpress Vol. 24 (2005), Ergänzungsband, Seite LMP3
J. Felbel, A. Sondermann, M. Kielpinski,
M. Urban, T. Henkel, N. Häfner, M. Dürst,
J. Weber, W. Fritzsche:
“Single-cell-diagnostics with in-situ RT-PCR in
flow-through microreactors: thermal and fluidic
concepts”
Proceedings of BioPerspektives 2005, Pub.
Dechema, Vol. 2 (2005) 265
G. Festag, A. Steinbrück, A. Wolff, A. Csaki,
R. Möller, W. Fritzsche:
“Optimization of Gold Nanoparticle-Based DNA
Detection for Microarrays”
Journal of Fluorescence 15 (2005) 161–170
T. Funck, M. Kampik, E. Kessler, M. Klonz, H. Laiz,
R. Lapuh:
“Determination of the AC/DC Voltage Transfer
Standards at Low Frequencies”
IEEE Transactions on Instrumentation and Measurement Vol. 54, No. 2 (2005) 807–809
F. Garwe, A. Csaki, G. Maubach, A. Steinbrück,
A. Weise, K. König, W. Fritzsche:
“Laser pulse energy conversion on sequencespecifically bound metal nanoparticles and its
application for DNA manipulation”
Medical Laser Application 20 (2005) 201–206
A. Grjasnow, R. Riesenberg, A. Wuttig:
“Lenseless coherent imaging by multi-plane interference detection”
Proceedings of the 106th Conference of the
DGaO (2005) A39
P. M. Günther, F. Möller, T. Henkel, J. M. Köhler,
G. A. Groß:
“Formation of Monomeric and Novolak Azo Dyes
in Nanofluid Segments by Use of a Double Injector Chip Reactor”
Chemical Engineering & Technology 28, Iss. 4
(2005) 520–527
Z. Guttenberg, H. Müller, H. Habermüller,
A. Geisbauer, J. Pipper, J. Felbel, M. Kielpinski,
J. Scriba, A. Wixforth:
“Planar chip device for PCR and hybridization
with surface acoustic wave pump”
Lab on a Chip, Vol. 5, Iss. 3 (2005) 308–317
74
M. Harz, P. Rösch, K.-D. Peschke,
O. Ronneberger, H. Burkhardt, J. Popp:
“Micro-Raman spectroscopic identification of
bacterial cells of the genus Staphylococcus and
dependence on their cultivation conditions”
Analyst, 130 (2005) 1543–1550
E. Kessler, V. Baier, U. Dillner, J. Müller, A. Berger,
R. Gärtner, S. Meitzner, K.-P. Möllmann:
“High-Temperature Resistant Infrared Sensing
Head”
Proceedings of Sensor 2005, 12th International
Conference, Vol. I, (2005) 73–78
J. M. Köhler, T. Henkel:
“Chip devices for miniaturized biotechnology”
Applied Microbiology and Biotechnology 69,
Iss. 2 (2005) 113–125
J. M. Köhler, J. Wagner, J. Albert, G. Mayer,
U. Hübner:
„Bildung von Goldnanopartikeln und Nanopartikelaggregaten in statischen Mikromischern in
Gegenwart von Rinderserumalbumin“
Chemie Ingenieur Technik 77, No. 7 (2005)
867–873
J. Lerchner, A. Wolf, G. Wolf, V. Baier,
E. Kessler:
„Chip-Kalorimeter zur on-line-Detektion biomolekularer Prozesse“
7. Dresdner Sensor-Symposium (Editor: G. Gerlach, H. Kaden) TUDpress (2005) 211–214
An-Hui Lu, W. Schmidt, S. Tatar, B. Spliethoff,
J. Popp, W. Kiefer, F. Schueth:
“Formation of amorphous carbon nanotubes on
ordered mesoporous silica support”
Carbon, 43(8) (2005) 1811–1814
G. Maubach, D. Born, A. Csaki, W. Fritzsche:
“Parallel Fabrication of DNA-Aligned Metal
Nanostructures in Microelectrode Gaps by a SelfOrganization Process”
Small 1 (2005) 619–624
R. Möller, R. D. Powell, J. F. Hainfeld
W. Fritzsche:
“Enzymatic control of metal deposition as key
step for a low-background electrical detection for
DNA chips”
Nano Letters (2005) 1475–1480
R. Möller, W. Fritzsche:
“Chip-based electrical detection of DNA”
IEE Proceedings Nanobiotechnology 152 (2005)
47–51
U. Neugebauer, A. Szeghalmi, M. Schmitt,
W. Kiefer, and J. Popp:
“Vibrational Spectroscopic Characterization of
Fluoroquinolones”
Spectrochimica Acta Part A, 61 (2005) 1505–1517
R. Riesenberg:
“Pinhole array and lenseless microscopic microimaging”
Proceedings of the 106th Conference of the
DGaO (2005) A26
MIKROSYSTEME / MICROSYSTEMS
P. Rösch, M. Schmitt, K.-D. Peschke,
O. Ronneberger, H. Burkhardt, H-W. Motzkus,
M. Lankers, S. Hofer, H. Thiele and J. Popp:
“Chemotaxonomic identification of single bacteria by micro-Raman spectroscopy: Application to
clean room relevant biological contaminations”
Appl. Environm. Mikrobiol. 71 (2005) 1626–1637
P. Rösch, M. Harz, M. Schmitt, J. Popp:
“Raman spectroscopic identification of single
yeast cells”
J. Raman Spectrosc. 36 (2005) 377–379
M. Schmitt and J. Popp:
„Femtosekundenlaser-Mikroskopie“
Laser Technik Journal, 4 (2005) 67–71
M. A. Strehle, P. Rösch, M. Baranska, H. Schulz,
J. Popp:
“On the way to a quality control of the essential
oil of fennel by means of Raman spectroscopy”
Biopolymers, 77(1) (2005) 44–52
A. Wuttig:
“Optimal transformations for optical multiplex
measurements in the presence of photon noise”
Appl. Opt. 44 (14) (2005) 2710–2719
Invited talks
W. Fritzsche, G. Maubach, R. Kretschmer,
A. Csáki, D. Born:
“Parallel approaches for the integration of individual molecular structures into electrode arrangements”
EU Workshop “Nanotechnology Information
Devices”, Madrid (Spain), January 31–February
2, 2005
W. Fritzsche:
“Nanoparticle-Based Detection of DNA”
German BioSensor Symposium, Regensburg,
March 15–18, 2005
W. Fritzsche:
“Nanoparticle-Based DNA Nanotechnology”
German-Israeli Foundation G.I.F. Meeting on
Nanotubes and Nanowires, Dresden, June
18–23, 2005
W. Fritzsche:
„Mikro- und Nanosysteme für die Biosensorik“
2. Jenaer Technologietag, September 12, 2005
W. Fritzsche:
“Metal Nanoparticles in Bioanalytics”
Bioinspired Nanomaterials for Medicine and
Technologies BioNanoMaT, DECHEMA Conference, Marl, November 23–24, 2005
M. Kittler, X. Yu, M. Birkholz, T. Arguirov,
M. Reiche, A. Wolff, W. Fritzsche, M. Seibt:
“Self Organized Pattern Formation Of Biomolecules At Si Surfaces”
European Materials Research Society Meeting,
Strasbourg (France), May 31–June 3, 2005
R. Möller, W. Fritzsche:
“Metal nanoparticle-based molecular detection:
Principles and applications”
Annual Meeting of the German and Austrian
Societies for Clinical Chemistry and Laboratory
Diagnostics, Jena, October 6–8, 2005
J. Popp:
“Raman-Spectroscopy for a Rapid Identification
of Single Microorganisms”
5th International Conference on Photonics,
Devices and Systems, Prague (Czech Republic),
June 8–11, 2005
J. Popp:
“Photonics meets Life Science – Innovative
Aspects of Laser Spectroscopy”
XIV. Krakow – Jena Symposium on Physical
Chemistry, Dornburg, October 4–6, 2005
J. Popp:
„Innovative Bioanalytik mit Laserspektroskopischen Methoden“
Jenaer Technologie Tage (JETT), Jena, September 12, 2005
J. Popp:
„Schwingungsspektroskopie zur Identifikation
von einzelnen Mikroorganismen“
Fraunhofer IPA Technologieforum, Institutszentrum der Fraunhofer-Gesellschaft, Stuttgart-Vaihingen, November 24, 2005
J. Popp:
“Rapid Microbe Identification by means of
Raman-Spectroscopy”
ECSBM 2005, Aschaffenburg, September 3–8,
2005
W. Fritzsche:
“Nanoparticle-Based DNA Nanotechnology”
EU Workshop “DNA-Based Nanowires”, Modena
(Italy), October 7–8, 2005
J. Popp:
„Vision Biophotonik – Licht für die Gesundheit:
Ein BMBF-Forschungsschwerpunkt stellt sich
vor“
Kaiser-Friedrich-Forschungspreis 2005 – Biophotonik, Goslar, May 3, 2005,
W. Fritzsche:
„Metallische Nanopartikel für die Bioanalytik“
BioHyTec Workshop „Moderne Aspekte der Biosystemtechnik“, Luckenwalde, November 17, 2005
J. Popp:
“Biophotonik – Photonics meets Life Science”,
Instituts-Kolloquium, Hochschule Reutlingen –
Reutlingen University, May 18, 2005
75
MIKROSYSTEME / MICROSYSTEMS
J. Vesenka:
“Progree Towards Growth and Colloidal Gold
Decoration of G-wire DNA”
EU Workshop “DNA-Based Nanowires”, Modena,
(Italy), October 7–8, 2005
T. Eick, A. Berger, D. Behrendt, U. Dillner,
E. Kessler:
“An Alternative Method for Measuring the
Responsivity of Thermopile Infrared Sensors”
Sensor 2005, 12th International Conference,
Nürnberg, May 10–12, 2005, talk B1.1
Presentations/Posters
J. Felbel, A. Sondermann, M. Kielpinski,
M. Urban, I. Bieber, T. Henkel, W. Fritzsche:
„Chip-Thermocycler für die Polymerase Kettenreaktion (PCR)“
Micro Systems Technology Congress 2005,
Freiburg, October 10–12, 2005, Proceedings: VDE
VERLAG GMBH•Berlin•Offenbach, p. 54, talk
A. Brösing, B. R. Kracht, J. Felbel, M. Urban,
M. Kielpinski, A. Reichert, T. Henkel, J. Weber,
C. Gärtner, H.-P. Saluz, H. Krügel, T. Häfner,
M. Dürst, U. Liebert, J. M. Köhler:
“Serial DNA Amplification in Submicroliter Volumes by Implementation of Segmented Flow in
Flow-through Micro Devices”
14th International Conference of Medical Physics
and 39th Annual Meeting of the German Society
for Biomedical Engineering, Nürnberg, September 14–17, 2005, talk
A. Csáki, G. Maubach, F. Garwe, A. Steinbrück,
K. König, W. Fritzsche:
“A novel DNA restriction technology based on
laser pulse energy conversion on sequence-specific bound metal nanoparticles”
SPIE Photonics West, San Jose (USA), February
23–28, 2005, poster
A. Csáki, G. Maubach, F. Garwe, A. Steinbrück,
K. König, W. Fritzsche:
“Sequence-Specific Bound Nanoparticles For A
Novel Sub-Wavelength DNA Restriction Technology Based On Laser Pulse Energy Conversion”
International Meeting “Focus on Microscopy”,
Jena, March 20–23, 2005, poster
A. Csáki, A. Steinbrück, S. Schröter, T. Glaser,
W. Fritzsche:
“Fabrication and characterization of nanophotonic
metal structures”
Intern. Symposium on Molecular Plasmonics,
Jena, May 19–21, 2005, poster
A. Csáki, F. Garwe, A. Steinbrück, A. Weise,
G. Maubach, K. König, W. Fritzsche:
“Laser-based sequence-specific DNA processing
with sub-wavelength precision using DNAnanoparticle conjugates”
Intern. Symposium on Molecular Plasmonics,
Jena, May 19–21, 2005, poster
A. Csáki, A. Steinbrück, W. Fritzsche:
“Nanoparticle-based molecular plasmonics”
3. German-Canadian Workshop “Young Scientist
in Photonics”, München, June 10–14, 2005, talk
76
A. Csáki, F. Garwe, A. Steinbrück, A. Weise,
G. Maubach, K. König, W. Fritzsche:
“Novel DNA restriction technology based on laser
pulse energy conversion on sequence-specific
bound metal nanoparticles”
3. German-Canadian Workshop “Young Scientist
in Photonics”, München, June 10–14, 2005, poster
W. Fritzsche, A. Csáki, A. Steinbrück,
M. Raschke:
“Metal nanoparticles as passive and active tools
in bioanalytics”
SPIE Photonics West, San Jose (USA), February
23–28, 2005, talk
W. Fritzsche, A. Csaki, A. Steinbrück, F. Garwe,
K. König, M. Raschke:
“Metal Nanoparticles As Passive And Active SubWavelength Tools For Biophotonics”
International Meeting “Focus on Microscopy”,
Jena, March 20–23, 2005, talk
W. Fritzsche:
“DNA-based nanoparticle plasmonics for a highly
parallel and integrated molecular nanotechnology”
International Symposium on Molecular Plasmonics, Jena, May 19–21, 2005, talk
W. Fritzsche:
“DNA nanotechnology with metal particle conjugates for applications in bioanalytics and molecular construction”
University of Southern Danemark, Odense, February 11, 2005, talk
W. Fritzsche:
„Charakterisierung im Nanobereich“
Weiterbildungsveranstaltung „Nanotechnologie“
im Haus der Technik, Essen, March 4, 2005, talk
W. Fritzsche, A. Csáki, F. Garwe, G. Maubach,
R. Möller, A. Steinbrück, M. Raschke, K. König:
„Biokonjugierte metallische Nanopartikel als Tool
für optische Detektion und Manipulation mit
molekularer Spezifität“
Symposium im Rahmen des BiophotonikSchwerpunkts „Struktur und Dynamik biologischer Zellen mit optischen Methoden auf der
Spur“, Jena, March 15–17, 2005, talk
W. Fritzsche:
“Nanoparticle-DNA-complexes for bioanalytics,
nanoelectrics and nanophotonics”
Weizmann Institute Rehovot, December 1, 2005
and Hebrew University Jerusalem, December 4,
2005, (Israel), talks
MIKROSYSTEME / MICROSYSTEMS
P. Grigaravicius, K. O. Greulich, S. Peters,
P. Schellenberg:
“Examining the influence of immobilization of
proteins and their binding to ligands by probing
their intrinsic UV-fluorescence decay”
BioNanoMaterials, Marl, November 23–24, 2005,
poster
T. Henkel:
“Measurement of phase internal flow of liquid/
liquid two phase flow in microchannels –
approaches for control of mixing efficiency in
microdroplets”
Joint International PIVNET II/ERCOFTAC Workshop on Micro PIV and Applications in Microsystems, Delft (The Netherlands), April 7–8, 2005,
talk
E. Kessler, V. Baier, U. Dillner, J. Müller, A. Berger,
R. Gärtner, S. Meitzner, K.-P. Möllmann:
“High-Temperature Resistant Infrared Sensing
Head”
Sensor 2005, 12th International Conference,
Nürnberg, May 10–12, 2005, talk A3.1
M. Kittler, X. Yu, O. F. Vyvenko, M. Birkholz,
W. Seifert, M. Reiche, T. Wilhelm, T. Arguirov,
A. Wolff, W. Fritzsche, M. Seibt:
“Self-organized pattern formation of biomolecules at silicon surfaces”
2nd International Symposium on Complex Material, Volkswagen Foundation, Stuttgart, June 2–3,
2005, talk
J. Lerchner, A. Wolf, G. Wolf, V. Baier,
E. Kessler:
“A new micro-fluid chip calorimeter for screening
applications”
7th MEDICTA 2005, Thessaloniki (Greece), July
2–6, 2005, talk
J. Lerchner, R. Hüttl, A. Wolf, G. Wolf, V. Baier,
R. Födisch:
“Chip Calorimeter for Bioanalytical Applications”
4. Deutsches BioSensor Symposium 2005,
Regensburg, March 13–16, 2005, talk
R. Petry, K. Gaus, K.-D. Peschke, H. Burkhardt,
A. Wuttig, R. Riesenberg, J. Popp:
„Modifiziertes, hochauflösendes UV-Mikro-Raman-Setup zur schwingungsspektroskopschen
Untersuchung von Mikroorganismen“
Biophotonik-Symposium „Struktur und Dynamik
biologischer Zellen mit optischen Methoden auf
der Spur“, Jena, March 15–17, 2005, poster
R. Riesenberg, A. Wuttig, R. Petry:
„Neue leistungsfähige Spektrometer-Architekturen“
Biophotonik-Symposium „Struktur und Dynamik
biologischer Zellen mit optischen Methoden auf
der Spur“, Jena, March 15–17, 2005, talk
R. Riesenberg:
“Spectral Bioreader, spectral High-Throughput
Screening”
Presentation of the Campus Beutenberg in the
MIREIKAN, Tokyo (Japan), September 11–14,
2005, poster
A. Steinbrück, A. Csaki, C.-C. Neacsu,
M. Raschke, W. Fritzsche:
“Preparation and optical characterization of coreshell bi-metal nanoparticles”
International Symposium on Molecular Plasmonics, Jena, May 19–21, 2005, poster
A. Steinbrück, A. Csáki, G. Festag, W. Fritzsche:
“Preparation and optical characterization of coreshell bi-metal nanoparticles”
3. German-Canadian Workshop “Young Scientist
in Photonics”, München, June 10–15, 2005, poster
A. Steinbrück, J. Vesenka, A. Csaki, G. Festag,
W. Fritzsche:
“Bi-metal nanostructures: Fabrication and characterization”
4. Internationaler Workshop “Scanning Probe
Microscopy in Life Sciences”, Berlin, October 13,
2005, poster
J. Vesenka, A. Wolff, A. Reichert, C. Holste,
R. Möller, W. Fritzsche:
“Progress towards growth and decoration of Gwire DNA with gold nanoparticles”
EU Workshop “DNA-Based Nanowires”, Modena
(Italy), October 7–8, 2005, poster
J. Weber, J. Felbel, W. Fritzsche:
„Biologische Gefahrstoffe unter Beobachtung –
Biotechnologische Mikrosysteme zur Gewinnung
von Sicherheitsinformationen“
Workshop „Neue Technologien – Ausblick in eine
wehrtechnische Zukunft“, BMVg Bonn, November 17, 2005, talk
A. Wolff, A. Csaki, W. Fritzsche:
“Directed DNA-Immobilization on Solid Substrates”
2nd International Symposium on Complex Material, Volkswagen Foundation, Stuttgart, June 2–3,
2005, poster
A. Wolff, A. Csaki, W. Fritzsche:
“DNA Stretching and Positioning for Nano-electronics”
German-Israeli Foundation G.I.F. Meeting on
Nanotubes and Nanowires, Dresden, June 18–23,
2005, poster
Patents
R. Riesenberg, A. Wuttig:
„Anordnung zur hochauflösenden digitalen InlineHolographie“
DE 10 2005 023 137.3 (15.05.2005)
77
MIKROSYSTEME / MICROSYSTEMS
Lectures
W. Fritzsche:
„Nanobiotechnologie“
FSU Jena, Chemisch-Geowissenschaftliche Fakultät, Sommersemester 2005
G. Festag, Th. Schüler:
„DNA-Goldnanopartikel-Addukte auf Chipoberflächen“
Praktikum „Molekulare Nanotechnologie“ für Studenten der TU Ilmenau, 12.–14.09.2005
W. Fritzsche:
„Metallische Nanopartikel – Präparation, Charakterisierung, Anwendungen“
FSU Jena, Chemisch-Geowissenschaftliche Fakultät, Wintersemester 2005
G. Festag, G. Nitzsche:
„Sequenzspezifischer DNA-Nachweis mittels Glasfasern“
Praktikum „Nanobiotechnologie“ für Schüler des
Gymnasiums Rudolstadt (11. Klasse),
17.–28.10.2005
W. Fritzsche:
„Nanocharakterisierung“
TU Ilmenau, Fakultät für Mathematik und Naturwissenschaften, Wintersemester 2005
T. Henkel, D. Malsch:
“Microparticle imaging velocimetry (µ-PIV)”
Praktikum für Studenten der TU Ilmenau
September 2005
P. Schellenberg (mit R. Glaser, K. O. Greulich):
„Biophysikalische Chemie II“
FSU Jena, Biologisch-Pharmazeutische Fakultät,
Sommersemester 2005
R. Möller, G. Festag, W. Fritzsche:
„Mikroskopische Untersuchungen an DNA-Nanopartikel-Komplexen“
Praktikum „Biophysikalische Chemie“ (Biochemie
5. Semester) für Studenten der FSU Jena
WS 2004/2005, SS 2005, WS 2005/2006
P. Schellenberg:
„Biomoleküle: Visualisierungen und Rechnungen
am Computer“
FSU Jena, Biologisch-Pharmazeutische Fakultät
und Multimediazentrum, Wintersemester 2005/
2006
A. Wolff, A. Csaki:
„Einführung in die Mikrosystemtechnik“
Betriebspraktikum des Carl-Zeiss-Gymnasiums
Jena (9. Klasse)
31.01–03.02.05, 30.06.–12.07.05
Diploma Thesis
Practical Trainee
Thomas Schüler:
„Chip-basierter elektrischer DNA-Nachweis zur
Identifikation von Mikroorganismen“
Fachhochschule Jena, FB Medizintechnik, 09/05
Eileen Heinrich:
„Chip-basierter Nachweis von DNA und Proteinen mittels Molekülklassen-spezifischer Markierung“
Fachhochschule Jena, FB Medizintechnik, 12/05
Laboratory exercises
A. Csáki, A. Wolff, W. Fritzsche:
„AFM-Untersuchungen an gestreckt-immobilisierter DNA“
Praktikum „Biophysikalische Chemie“ (Biochemie
5. Semester) für Studenten der FSU Jena
WS 2004/2005, SS 2005, WS 2005/2006
A. Csáki, A. Wolff, W. Fritzsche:
„AFM-Untersuchungen von DNA-Molekülen“
Ergänzungspraktikum für Genetik (11. Klasse)
27.6.2005–1.7.2005
78
J. Felbel, A. Reichert, W. Fritzsche:
„PCR in Chip-Bauelementen“
Praktikum „Biophysikalische Chemie“ (Biochemie
5. Semester) für Studenten der FSU Jena
WS 2004/2005, SS 2005, WS 2005/2006
Georg Ziegenhardt:
„Aufbau von Anordnungen zur objektivlosen
Mikroskopie“
practical semester, Fachhochschule Jena,
04–09/05
Guest Scientists
Prof. Dr. J. Vesenka
University of New England, Department of
Chemistry and Physics, Biddeford, ME (USA)
September 2005–January 2006
Dr. Shin-ichi Tanaka
Osaka University, Graduate School of Frontier
Biosciences (Japan)
May 2004–April 2005
Memberships
V. Baier
Deutscher Verband für Schweißen und verwandte Verfahren e.V. (DVS), AG Waferbonden
H. Dintner
• Member of the Thuringian VDI/VDE working
group „Mikrotechnik”
MIKROSYSTEME / MICROSYSTEMS
• Member of scientific council of AMA, Fachverband für Sensorik e.V.
W. Fritzsche
• Scientific Advisory Committee of the International Society for Nanoscale Science, Computation and Engineering (ISNSCE),
• Working Committee “Micro Systems for Biotechnology”
E. Keßler
Gesellschaft für Thermische Analyse e.V.,
AK Thermophysik
J. Popp
• Editorial Board Member Journal of Raman
Spectroscopy
• Editorial Board Member ChemPhysChem
• Member of Steering committee “International
Conference on Raman Spectroscopy”
• Member of Steering committee “Advanced
Spectroscopies on Biomedical and Nanostructured Systems”
• Member advisory board BioRegio Jena e.V.
• Personal member: DPG, GDCh,
Bunsen society
R. Riesenberg
• IRS2, International Conference and Exhibition
on Infrared Sensors & Systems, programme
committee and chair
• CLEO Europe, 16th International Conference
on Lasers and Electrooptics Europe of the
Optical Society of America (OSA), programme
committee
• Participant of the Humboldt Foundation,
German-American Frontiers of Engineering
in Optics
• Personal member: SPIE, DPG
Awards
Winner of the Poster Award of the 7. Dresdner
Sensor Symposium, 12.–14.12.2005, Dresden,
Poster Title: „Entwicklung von mikrofluidischen
Chipelementen für biologische Anwendungen”
The Cetoni GmbH was the winner of the “Innovationspreis Thüringen Ost 2005” for the development of an innovative microsyringe based multichannel, high precision liquid handling plattform,
optimized for R&D and automation of microfluidic
applications. The device is based on results of a
joint project, between Cetoni GmbH and the
IPHT, funded by the German Federation of Industrial Cooperative Research Associations “Otto
von Guericke” (AiF).
Conference Organization
W. Fritzsche
International Symposium “Molecular Plasmonics”, Jena, May 19–21, 2005
J. Popp
Symposium „Struktur und Dynamik biologischer
Zellen mit optischen Methoden auf der Spur“,
Jena, March 15–17, 2005
79
LASERTECHNIK / LASER TECHNOLOGY
4. Lasertechnik / Laser Technology
Leitung/Head: Prof. Dr. H. Stafast
e-mail: herbert.stafast@ipht-jena.de
Laserchemie / Laser Chemistry
Leitung/Head: PD Dr. F. Falk
fritz.falk@ipht-jena.de
4.1
80
Überblick
Der Bereich Lasertechnik nutzt Laser als subtiles Werkzeug (Laserchemie) und als kontaktfreie Sonde (Laserdiagnostik). Die Hauptanwendungen als Werkzeug betreffen die
Laserkristallisation von Silizium-Dünnschichten
hauptsächlich für Solarzellen und zunehmend
die Präparation von Silizium-Nanodrähten. Die
Laserdiagnostik dient im Wesentlichen zur Charakterisierung von optischen Materialien, Dünnschichten und Komponenten sowie von Flammen. Für die Flammendiagnostik unter Mikrogravitation wird für den Fallturm Bremen ein
abstimmbares und gepulstes UV-Scheibenlasersystem entwickelt. In allen genannten Gebieten zeigen die konsequente Aufbauarbeit in der
Lasertechnik und ihre hohen Qualitätsstandards sehr gute Erfolge.
Laserdiagnostik / Laser Diagnostics
Leitung/Head: Prof. Dr. W. Triebel
wolfgang.triebel@ipht-jena.de
4.1
Overview
The division for Laser Technology applies lasers
as subtle tools and as remote probes. The most
important applications as a tool refer to laser
crystallisation of silicon thin films for solar cells
and increasingly to the preparation of silicon
nanowires. Laser diagnostics is essentially used
to characterise optical materials, thin films, and
components as well as flames. For flame diagnostics under microgravity in the drop tower Bremen, a tuneable and pulsed UV disk laser system
has been developed. Overall, the thorough establishment of laser technology and high quality
standards are putting forth very good results.
The Laser Chemistry section at IPHT is dominantly active in the field of solar cells (design and
preparation) and is well established in the photo-
LASERTECHNIK / LASER TECHNOLOGY
Combination of prisms and mirror to achieve single line operation in the F2 laser of TUI Laser company.
Diode laser crystallised seed layer with large grained crystalline silicon on glass (grains 10 – some
100 µm wide, several mm long).
81
LASERTECHNIK / LASER TECHNOLOGY
Die Abteilung Laserchemie arbeitet zum größten
Teil auf dem Gebiet der Solarzellen (Design und
Herstellung) und ist in der Photovoltaik(PV) fest
verankert, in F&E-Fachkreisen (z.B. PVUniNetz
und Solar INPUT) und Industriepartnerschaften
(z.B. Firma Ersol, Erfurt und Antec Solar, Arnstadt). Herausragendes Projektergebnis im Jahr
2005 ist die produktionsnahe Präparation von
Silizium-Kristallkeimschichten mit einem industrietauglichen Diodenlasersystem, das neben
einer deutlichen Kapazitätssteigerung durch eine
Laserleistung von 0,7 kW gegenüber 10–20 W
aus einem Ar+-Laser auch eine Kristallkeimvergrößerung von 0,01–0,1 mm auf 0,1 bis wenige mm bewirkt (s. Farbbildseite).
In enger Zusammenarbeit mit dem Institut für
Festkörperphysik der Friedrich-Schiller-Universität, dem MPI für Mikrostrukturphysik, Halle und
der Uníversität Halle ist das neue Arbeitsfeld mit
nanostrukturierten Halbleitern auf eine breitere
Basis gestellt worden. Zu der bereits 2004 etablierten CVD-Methode sind zur Präparation von
Nanodrähten aus Silizium die Elektronenstrahlverdampfung und die Laserablation hinzugekommen. Inzwischen gelingt es, Nanodrähte in
Vorzugsrichtungen wachsen zu lassen (Abb. 4.2).
Die Abteilung Laserdiagnostik hat ihre Methodenvielfalt um die Frequenzverdopplung (SHG =
second harmonic generation) von Femtosekundenlaserpulsen an Grenzflächen erweitert (Doktorarbeit T. Scheidt „summa cum laude“, vgl. auch
Abb. 4.6) und kann damit selbst monomolekulare
Dünnschichten diagnostizieren. Die an optischen
Massivmaterialien erprobten Transmissions- und
Absorptionsmessungen haben mit der Doktorarbeit von Ch. Mühlig („magna cum laude“) einen
neuen Qualitätsstandard erreicht (Abb. 4.4 und
4.5). Absorptionsmessungen mit Teststrahlablenkung (LID = laser induced deflection) und die
laserinduzierte Fluoreszenz (LIF) gelingen zunehmend auch an Dünnschichten und optischen
Komponenten durch Empfindlichkeitssteigerungen und/oder Konzeptverbesserungen der Messmethoden.
82
Die Entwicklung des Scheibenlasersystems
(ADL-FT = Advanced Disk Laser für Fallturm)
machte 2005 – in bewährter Zusammenarbeit mit
dem IFSW (Stuttgart) und ZARM (Bremen) –
große Fortschritte. Die Ergebnisse aus den
ersten Fallturm-Abwürfen haben inzwischen zu
Konzeptverbesserungen geführt. Im IPHT gelang
mit diesem Lasertyp auch die kurzwellige Anregung von OH-Radikalen für die Flammendiagnostik, in Zusammenarbeit mit dem Bereich
Mikrosysteme auch an Mikroflammen (ca. 5 mm
breit, 35 mm hoch, Abb. 4.7). In Kooperation mit
dem Bereich Optik gelang auch die Laserdiagnostik an Partikel-„beladenen“ Flammen, die beispielsweise zur Glassynthese dienen.
voltaics R&D community (e.g. PVUniNetz and
Solar INPUT) and in industrial partnerships (e.g.
Ersol company, Erfurt and Antec Solar, Arnstadt).
The prominent success in 2005 consists of the
production relevant preparation of silicon crystalline seed layers with a laser diode system suitable for industrial application. Not only was
the throughput increased by using a 0.7 kW
diode laser instead of the previous 10–20 W Ar+
laser but also an enlargement of the crystallite
size from 0.01–0.1 mm to 0.1–several mm was
achieved (cf. coloured page).
In close cooperation with the Institute of Solid
State Physics at the Friedrich-Schiller-University,
the Max-Planck-Institute of Microstructural Physics
at Halle and the University of Halle, the new field
of nanostructured semiconductors has been put
onto an enlarged basis. The CVD method available in 2004 for nanowire preparation has been
complemented by electron beam evaporation
and laser ablation of silicon. Meanwhile we manage to grow epitaxial nanowires into preferred
directions (Fig. 4.2).
The Laser Diagnostics section has added frequency doubling (SHG = second harmonic generation) of femtosecond laser pulses on surfaces
to its variety of experimental methods (PhD thesis of T. Scheidt “summa cum laude”, also cf.
Fig. 4.6) enabling to characterize even monomolecular thin layers. The transmission and absorption measurement methods established with optical bulk materials achieved a new quality standard (PhD thesis of Ch. Mühlig, “magna cum
laude”, also cf. Figs. 4.4 and 4.5). Absorption
measurements with laser induced deflection
(LID) of a probe beam and the laser induced fluorescence (LIF) now can more and more be
transferred to thin films and optical components
due to sensitivity enhancements and/or improved
concepts of the measurement methods.
The development of the disk laser system (ADL
FT = Advanced Disk Laser for “Fallturm”) showed
– in the experienced cooperation with IFSW
(Stuttgart) and ZARM (Bremen) – much progress
in 2005. The results of the first experiments in the
drop tower meanwhile induced several conceptual improvements. At IPHT, experiments with this
kind of laser were performed at short wavelengths suitable to excite OH radicals in flames, in
cooperation with the division for Microsystems
even in microflames (5 mm broad, 35 mm high,
Fig. 4.7). In cooperation with the Optics division
laser diagnostics could be shown for particle
“loaded” flames suitable e.g. for glass synthesis.
Due to the extraordinary efforts of all coworkers
during 2005 the division for Laser Technology
managed to nearly maintain its project funds,
level of publications, and patents in spite of the
tough situation with governmental funds and the
LASERTECHNIK / LASER TECHNOLOGY
Dank besonderem Engagement aller Mitarbeiter
konnte der Bereich Lasertechnik 2005 trotz der
verschärften Situation bei den öffentlichen Fördermitteln und des allgemein geringen Wirtschaftswachstums sein Niveau bei den Drittmittelprojekten, Veröffentlichungen und Patenten wenigstens
in etwa halten. Das Drittmittelaufkommen von rund
1,0 Mio “ liegt merklich unter dem Niveau des Vorjahres (1,2 Mio “). Insgesamt haben jedoch die
mit dem Umzug erreichten kurzen Wege zu den
anderen IPHT-Forschungsbereichen einen deutlichen Zuwachs bei der bereichsübergreifenden
Zusammenarbeit bewirkt.
generally poor rate of economic growth. The project funds in 2005 of about 1.0 Mio are close to
the amount of 2004 (1.2 Mio “). Overall the move
to the Beutenberg campus yielded, however, a
considerable strengthening of trans-divisional
cooperation due to the short distances to the
other IPHT research divisions.
4.2
Selected Results
4.2.1
Laser chemistry
Berlin, Solar-Zentrum Erfurt at CiS, Ersol company at Erfurt, and INPUT Solar, a Thuringian association of photovoltaic industrial companies and
R&D institutes.
Laser chemistry at IPHT is essentially concerned
with the deposition of thin films and thin film systems, their physicochemical modification (particularly laser crystallisation) and some special
items like spectroscopic diagnostics of thin film
processing, nanowire preparation, and fs laser
micromachining.
Laser crystallisation
(Gudrun Andrä, Joachim Bergmann,
Arne Bochmann, Fritz Falk, Annett Gawlik,
Ekkehardt Ose)
For several years, IPHT has been aiming at the
preparation of thin film solar cells consisting of
large grained crystalline silicon on glass. The
development of this new cell type is based on the
deposition of amorphous silicon either by plasma
CVD from SiH4 (13.6 MHz) or by electron beam
evaporation of bulk silicon and its in situ laser
crystallisation. In a first step large crystal grains
are obtained from 300–500 nm thick amorphous
silicon layers by cw laser crystallisation (seed
layer formation). Subsequently the seed layer
undergoes epitaxial thickening by pulsed Layered
Laser Crystallisation (LLC), an IPHT patented
method. So far laboratory cells with an open circuit voltage of 510 mV and a conversion efficiency of 4.8% based on an absorber thickness of
5 µm were obtained. Recent work addressed the
acceleration (industrial application) and optimisation of the seed layer formation by applying a
700 W diode laser focused to a line and scanned
across the substrates to achieve crystallite sizes
of 0.1 to several mm (cf. coloured page). Additional progress for the solar cell performance is
expected from improving light trapping, improving
contact and shunt resistances as well as minimising charge carrier recombination. The related
work benefits from the discussions and cooperation with the Hahn-Meitner-Institute (HMI) at
Thin film deposition and nanowire growth
(Gudrun Andrä, Fritz Falk, Herbert Stafast,
Thomas Stelzner)
The deposition of Si/C/N thin films for tribological
applications by RF plasma enhanced CVD using
single source precursors was performed within
the DFG program SPP 1119 in close cooperation
with TU Darmstadt and RWTH Aachen. IPHT
contributed to the understanding of the complex
CVD processes by comparing Si/C/N thin films
obtained from two precursors, hexamethyldisilazane (CH3)3Si-NH-Si(CH3)3 (HMDS) and
bis(trimethylsilyl)carbodiimide (CH3)3Si-N=C=NSi(CH3)3 (BTSC). Hard Si/C/N thin films were
obtained on the RF powered, but not on the
grounded electrode. Therefore a heating system
for the RF electrode was developed which
allowed to investigate the substrate temperature
dependence of the thin film properties. As an
example the temperature dependence of the film
hardness is sketched out in Fig. 4.1.
Fig. 4.1: Martens hardness of Si/C/N thin films
obtained from HMDS or BTSC as a function of
the subtrate temperature.
83
LASERTECHNIK / LASER TECHNOLOGY
As a new field of research at IPHT, silicon
nanowires are grown by thermal and plasma
enhanced CVD from SiH4 or electron beam evaporation via a gold nanodot supported vapor-liquid-solid mechanism. This work is performed in
close cooperation with the universities of Jena
and Halle as well as the Max-Planck-Institute of
Microstructural Physics at Halle. Evidently the
nanowire growth conditions now can be sufficiently controlled to achieve well oriented epitaxial silicon wires with diameters ranging from
50 nm to 1 µm (Fig. 4.2).
Laser ablation
(Gudrun Andrä, Fritz Falk, Joachim Bergmann,
A. Bochmann)
Femtosecond (fs) laser ablation for micromachining of hard metal tools as a spin-off from an
InnoRegio project was presented at the LASER
2005 fair at Munich. The potential of fs laser
micromachining could, in addition, be demonstrated in case of a diamond tip sharpened by fs
laser ablation (Fig. 4.3). This result demonstrates
the importance of nonlinear processes as diamond has an indirect bandgap of 5.48 eV (direct:
7.3 eV) which is very large in comparison to the
laser photon energy of 1.6 eV.
Fig. 4.3: Diamond tip sharpened by fs laser ablation.
4.2.2 Laser diagnostics
The Laser Diagnostics section applies different
types of lasers as remote and contactless probes
particularly to characterise optical materials,
components, and thin films and to investigate
flames. Some years ago, the development of
solid state lasers dedicated to flame diagnostics
has been successfully established.
Fig. 4.2: Silicon nanowires grown by CVD on
Si(111), Si(100), and Si(110) surfaces (top to
bottom).
84
In 2005 two high ranking PhD theses were
submitted to the Friedrich-Schiller-University:
Ch. Mühlig could considerably improve the
understanding of the ArF laser pulse absorption
by fused silica and CaF2 (magna cum laude). In
both materials laser absorption is related to the
generation and annealing of defects. T. Scheidt
revealed 5 new laser induced effects at the technologically important Si/SiO2 interface applying
the surface second harmonic generation (SSHG)
method using fs laser pulses (summa cum
laude). He performed his experiments at the
Laser Research Institute at the University of Stellenbosch, South Africa, after having built up the fs
laser laboratory from scratch.
LASERTECHNIK / LASER TECHNOLOGY
UV optical materials
(Alfons Burkert, Siegfried Kufert,
Christian Mühlig, Wolfgang Triebel)
UV laser lithography and other laser applications
impose severe challenges on the optical quality
and laser durability of bulk and thin film materials.
IPHT has specialised for more than one decade
on selected methods for their characterisation.
Experience has been accumulated in close cooperation with Schott Lithotec company as the longstanding industrial partner as well as Jenoptik
L.O.S. and Layertec companies and the FhG IOF
within the last few years. The facilities, knowledge and experience of these institutions and
IPHT complement each other to their mutual benefit, making Jena a place of high standards at the
leading edge worldwide.
The measurement methods at IPHT using
excimer lasers at 248, 193, and 157 nm comprise
(i) UV laser beam transmission, (ii) measurement
of absorption by the laser induced probe beam
deflection (LID) method, (iii) laser induced fluorescence (LIF), (iv) pulsed UV laser Raman spectroscopy, (v) vacuum UV spectroscopy, and (vi)
wavefront deformation (S-H sensor). These have
been complemented by (vii) surface second harmonic generation (SSHG) using fs laser pulses.
small H values and unequivocally revealed a nonlinear dependence. This finding has a great
impact on the extrapolation of the α(H=0) values
which usually are used to estimate the materials`
quality and laser durability. The α(H) data are
reproduced by an empirical absorption model in
the whole investigated H range (Fig. 4.4: solid
line).
In addition, the LID method can be calibrated
absolutely and can separate laser absorption in
the bulk material from that on surfaces. Bulk and
surface absorption are calibrated by applying
electrical resistance heaters introduced into the
sample or attached to the selected sample surface area, respectively (Fig. 4.5). The method of
sample surface heating has also been used to
calibrate laser absorption in optical thin films, e.g.
absorption in dielectric layers of highly reflective
mirrors.
The progress in investigating bulk absorption of
excimer laser pulses by fused silica gained by
applying the LID method becomes easily apparent in Fig. 4.4. Looking at the fluence dependence of the ArF laser absorption, it previously
appeared to be a linear relation between the
absorption coefficient α and the fluence H. These
results from the Laser Laboratory Göttingen
obtained by calorimetry were, however, limited to
the high H region. The improved sensitivity of the
LID method at IPHT (cf. e.g. annual report 2004)
enabled us to investigate the α(H) behaviour at
Fig. 4.5: Samples prepared for absolute calibration of laser absorption by using electrical resistance heaters introduced into the sample (bulk
absorption) or attached to the sample surface
(surface absorption).
Fig. 4.4: ArF laser absorption coefficients α of
fused silica as a function of the applied laser
energy fluence H; α values in high H range
obtained by calorimetry and α values in low H
range by LID method (cf. text).
The investigation of (inner) surfaces and thin
films can be conveniently performed by SSHG.
As an example Fig. 4.6 demonstrates that the
SSHG signal obtained from the interface
between silicon and its 5 nm thin natural oxide
layer is sensitive to p-type doping of the silicon
sample: The electric field induced SH (EFISH)
signal at the beginning of irradiation is very small
(no or low doping, upper part) or large (high doping, lower part). The signal development during
irradiation shows how the doping induced field
85
LASERTECHNIK / LASER TECHNOLOGY
Fig. 4.7: 2D-LIF image of OH in small flame on
top of microburner with 380 µm channel width.
Fig. 4.6: EFISH signal development (cf. text) at
Si/SiO2 surfaces with oxidized silicon of low
(upper part) and high p-type doping (lower part).
across the Si/SiO2 interface is steadily compensated and overwhelmed by laser induced electron injection into the SiO2 layer building up an
electric field of opposite direction. In addition the
SSHG method was successfully applied to detect
the damage of monomolecular surface layers
induced by excimer laser irradiation.
Further investigations of optical materials and
components in 2005 refer to the laser durability of
fused silica (undesired microchannel formation),
CaF2 (HELD = high energy laser durability project), optical layers (impurity and defect detection) as well as the performance of optical functional elements.
Combustion processes
(Dirk Müller, Wolfgang Paa, Wolfgang Triebel)
Laser diagnostics is applied to investigate steady
state and dynamic flames up to pulse repetition
rates of 1 kHz. The well-established detection of
OH radicals by LIF now has – in cooperation with
the Optics division – also successfully been
applied to flames of industrial burners containing
particles (loaded flames) and used to determine
local gas temperatures. On the other hand, the LIF
method is capable of characterising very small
flames created by microburners which were prepared in the division for Microsystems (Fig. 4.7).
86
The breadboard model of the advanced disk
laser system (ADL) at IPHT Jena was further
improved and tested to generate 2D-LIF images
of OH in flames. This required generating the
third harmonic of the ADL pulses efficiently with
sufficiently high pulse energy. Furthermore, some
preliminary work has been performed towards
fast wavelength switching of the ADL system
using the available tuning components at the high
laser pulse repetition rate.
Moreover the ADL-FT (Fallturm) system was tested
in several drops with maximum deceleration of
about 35 g in polystyrene granulate: Evidently the
laser system survives these procedures. Convection, however, is still present in front of the laser
disk and changes when microgravity conditions
start. These changes are small but sufficient to
influence the laser operation so that some revisions
of the laser system and operation are required.
4.3
Appendix
Partners (in alphabetical sequence)
in Jena and Thuringia:
• CiS Institut für Mikrosensorik, Erfurt
• Ersol Solar Energy AG, Erfurt
• Fachhochschule (University of Applied Sciences) Jena
• Fraunhofer-Institut für Angewandte Optik und
Feinmechanik (IOF), Jena
• Friedrich-Schiller-Universität, Jena
Institut für Festkörperphysik und Astrophysikalisches Labor
• Institut für Fügetechnik und Werkstoffprüfung
(IFW), Jena
• ITP GmbH, Weimar
• Jenoptik Laser.Optik.Systeme GmbH, Jena
• Jenoptik Laserdiode GmbH, Jena
• Layertec GmbH, Mellingen
• LLT Applikation GmbH, Ilmenau
• MWS Schneidwerkzeuge GmbH&Co. KG,
Schmalkalden
LASERTECHNIK / LASER TECHNOLOGY
• PV Silicon GmbH, Erfurt
• Schott Lithotec AG, Jena
• Technische Universität Ilmenau, Institut für
Physik
• Technische Universität Ilmenau, Institut für
Werkstofftechnik
• U. Speck Sensorsysteme GmbH, Jena
in Germany:
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Carl Zeiss Oberkochen GmbH (CZO)
Carl Zeiss SMT AG
DLR Verbrennungsforschung, Stuttgart
Hahn-Meitner-Institut (HMI), Berlin
Heraeus Tenevo, Bitterfeld
Innovavent GmbH, Göttingen
Institut für Solarenergieforschung GmbH,
Hameln
Lambda Physik AG, Göttingen
Laser Labor Göttingen (LLG)
Laser Zentrum Hannover (LZH)
Leica Microsystems Wetzlar GmbH
Martin-Luther-Universität Halle, Fachbereich
Physik
Max-Planck-Institut für Mikrostrukturphysik,
Halle
Neon Products GmbH (NP), Aachen
Neon Technik Leipzig GmbH (NEL)
Öl-Wärme-Institut gGmbH, Aachen
Schott FT, Mainz
Technische Universität München, Lehrstuhl für
Thermodynamik
TUI Laser AG, Germering/München
Universität Erlangen, Lehrstuhl für Technische
Thermodynamik
Universität Stuttgart, Institut für Strahlwerkzeuge
Universität Stuttgart, Institut für Thermodynamik
TU Dresden, Lehrstuhl für Verbrennungsmotoren
Zentrum für Angewandte Raumfahrttechnik
and Mikrogravitation (ZARM), Universität
Bremen
in foreign countries:
• NASA, Glenn Research Center, Cleveland,
Ohio, USA
• University of Lund, Sweden, Combustion
Physics
• University of New Mexico, USA, Dept. Physics
and Astronomy
• University of Rennes I, France, Sciences et
Propriete de la Matiere
• University of Stellenbosch, South Africa,
Physics Department
• University of Vigo, Spain, Dept. of Applied
Physics
G. Andrä, J. Bergmann, F. Falk
“Laser crystallized multicrystalline silicon thin films
on glass”
Thin Solid Films 487 (2005) 77–80
A. Baum, D. Grebner, W. Paa, W. Triebel,
M. Larionov, A. Giesen
“Axial Mode Tuning of a Single Frequency Yb:YAG
Thin Disk Laser”
Appl. Phys. B 81 (2005) 1091–1096
A. Burkert, W. Triebel, Ch. Mühlig, D. Keutel,
L. Parthier, U. Natura, S. Gliech, S. Schröder,
A. Duparré
“Investigating the ArF laser stability of CaF2 at
elevated fluences”
Proc. SPIE 5878 (2005) pp. E-1–E-8
F. Garwe, U. Hübner, T. Clausnitzer, E.-B. Kley,
U. Bauerschäfer
“Elongated gold nanostructures in silica for metamaterials: theory, technology and optical properties”
Proc. SPIE 5955 (2005) pp. 59550T-1–59550T- 8
Ch. Mühlig, W. Triebel, J. Bergmann, S. Kufert,
S. Bublitz, H. Bernitzki, M. Klaus
“Absorption and fluorescence measurements of
DUV/VUV coatings”
Proc. SPIE 5963 (2005) pp. 59630P-1–59630P-8
D. Müller, W. Paa, W. Triebel, C. Menzel,
K. Lucka, H. Köhne
„PLIF – Diagnostik von Formaldehyd mit kHzRepetitionsrate in der Mischzone von flüssigen
Brennstoffen und vorgeheizter Luft“
VDI-Berichte Nr. 1888 (2005) 355–360
W. Paa, D. Müller, A. Gawlik, W. Triebel
“Combined Multispecies PLIF Diagnostics with
kHz Rate in a Technical Fuel Mixing System
Relevant for Combustion Processes”
Proc. SPIE 5880 (2005) pp. N-1–N-8
D. Probst, H. Hoche, H. Scheerer, E. Broszeit,
C. Berger, Y. Zhou, R. Hauser, R. Riedel,
Th. Stelzner, H. Stafast
“Development of PE-CVD Si/C/N:H-films for Tribological and Corrosive Complex-Load Conditions”
Surf. Coat. Technol. 200/1-4 (2005) 355–359
T. Scheidt, E. G. Rohwer, H. M. v. Bergmann,
H. Stafast
“Femtosecond laser diagnostics of thin films, surfaces and interfaces”
South African J. Science 101(2005) 267–271
Publications
T. Scheidt, E. G. Rohwer, H. M. von Bergmann,
E. Saucedo, L. Fornaro, E. Dieguez, H. Stafast
“Optical second harmonic imaging of PbxCd1-x Te
ternary alloys”
J. Appl. Phys. 97 (2005) 103104-1–103104-6
G. Andrä, J. Bergmann, F. Falk, E. Ose,
S. Dauwe, T. Kieliba, C. Beneking
“Characterization and Simulation of Multicrystalline LLC-Si Thin Film Solar Cells”
Proc. 20th Europ. PVSEC, Barcelona, Spain, June
06–10, 2005, pp. 1171–1174
Th. Stelzner, M. Arold, F. Falk, H. Stafast,
D. Probst, H. Hoche
“Single source precursors for plasma-enhanced
CVD of SiCN films, investigated by mass spectrometry”
Surf. Coat. Technol. Vol 200/1-4 (2005) 372–376
87
LASERTECHNIK / LASER TECHNOLOGY
Th. Stelzner, F. Falk, H. Stafast, D. Probst,
H. Hoche
“Plasma-enhanced CVD of hard SiCN thin films
using bis-(trimethylsilyl)-carbodiimide or hexamethyl disilazane as single source precursors”
Proc. Internat. Symp. EUROCVD-15, Bochum
Vol. 2005-09 pp.1014–1020
A. Burkert, W. Triebel, Ch. Mühlig, D. Keutel,
L. Partier, U. Natura, S. Gliech, S. Schröder,
A. Duparré
“Investigating the ArF laser stability of CaF2 at
elevated fluences”
Talk at SPIE Optics & Photonics, San Diego, USA,
July 31–August 4, 2005
W. Triebel, Ch. Mühlig, S. Kufert
“Application of the laser induced deflection (LID)
technique for low absorption measurements in
bulk materials and coatings”
Proc. SPIE 5965 (2005) pp 59651J-1–59651J-10
F. Garwe, U. Hübner, T. Clausnitzer, E.-B. Kley,
U. Bauerschäfer
“Elongated gold nanostructures in silica for metamaterials: theory, technology and optical properties”
Talk at SPIE, Warschaw, Poland, August 28–
September 2, 2005
Presentations (Talks and Posters)
H. Stafast
„Der Laser als kontaktfreie Sonde“
Vortragsreihe Heinrich-Böll-Gymnasium/Rotary
Club
Talk at Heinrich-Böll-Gymnasium, Saalfeld,
February 14, 2005
H. Stafast, D. Müller, W. Paa, W. Triebel,
A. Burkert
„Moderne Entwicklungen der planaren
laserinduzierten Fluoreszenz für die Laserdiagnostik von Verbrennungsprozessen“
Poster at 19. Vortragstagung GDCh-Fachgruppe
Photochemie, Jena, March 29–31, 2005
F. Falk
„Laserkristallisation von Halbleitern“
Talk at WIAS-Kolloquium, Berlin, April 4, 2005
H. Stafast
„Laserdiagnostik an Flammen – Methoden- und
Geräteentwicklung“
Talk at Colloquium, Institute of Physical and Theoretical Chemistry, University of Frankfurt/Main,
May 23, 2005
G. Andrä, J. Bergmann, F. Falk, E. Ose,
S. Dauwe, T. Kieliba, C. Beneking
“Characterization and Simulation of Multicrystalline LLC-Si Thin Film Solar Cells”
Poster at 20th Europ. PVSEC, Barcelona, Spain,
June 06–10, 2005
J. Bergmann, A. Bochmann, R. Stober
„Mikromaterialbearbeitung mit dem Ultrakurzpulslaser“
Poster at “Laser 2005”, München, June 13–16,
2005
F. Falk
“Laser crystallization – a way to produce crystalline silicon films on glass or on polymer substrates”
Talk at 16th Amer. Conf. Crystal Growth and Epitaxy, Big Sky, Montana, USA, July 10–14, 2005
88
W. Paa, D. Müller, A. Gawlik, W. Triebel
“Combined Multispecies PLIF Diagnostics with
kHz Rate in a Technical Fuel Mixing System
Relevant for Combustion Processes”
Talk at SPIE Optics & Photonics 2005, San Diego,
USA, July 31–August 4, 2005
Th. Stelzner, F. Falk, H. Stafast, D. Probst,
H. Hoche
“Plasma-enhanced CVD of hard SiCN thin films
using bis-(trimethylsilyl)-carbodiimide or hexamethyl disilazane as single source precursors”
Talk at EUROCVD-15, Bochum, September
04–09, 2005
W. Triebel, Ch. Mühlig, S. Kufert
“Application of the laser induced deflection (LID)
technique for low absorption measurements in
bulk materials and coatings”
Talk at SPIE Optical Systems Design, Jena, September 12–16, 2005
Ch. Mühlig, W. Triebel, J. Bergmann, S. Kufert,
S. Bublitz, H. Bernitzki, M. Klaus
“Absorption and fluorescence measurements of
DUV/VUV coatings”
Talk at SPIE Optical Systems Design, Jena, September 12–16, 2005
W. Triebel
“Characterization of DUV optical materials by LIF
and direct absorption measurements”
Talk at Boulder Damage Symposium, Boulder,
USA, September 19–21, 2005
D. Müller, W. Paa, W. Triebel, C. Menzel,
K. Lucka, H. Köhne
„PLIF – Diagnostik von Formaldehyd mit kHzRepetitionsrate in der Mischzone von flüssigen
Brennstoffen und vorgeheizter Luft“
Talk at 22. Deutscher Flammentag, Braunschweig,
September 21–22, 2005
H. Stafast
“Laserdiagnostics in Flames – Development of
methods and tools”
Talk at Colloquium of Laser Research Institute,
University of Stellenbosch, South Africa, October
11, 2005
F. Falk, G. Andrä
„Herstellung von Dünnschichtsolarzellen mit Hilfe
von Excimerlasern“
Talk at Technologieseminar: Laseranwendungen
in der Photovoltaik, Göttingen, November 8, 2005
LASERTECHNIK / LASER TECHNOLOGY
F. Falk
„Mikromaterialbearbeitung mit dem Ultrakurzpuls-Laser“
Poster at TransferX-Messe, Dresden, November
09–11, 2005
Björn Eisenhawer: Wachstum von Si-Nanowires
mittels Chemical Vapor Deposition
Friedrich-Schiller-University, Jena, Faculty of Physics and Astronomy
Supervisors: Dr. F. Falk/Dr. G. Andrä
W. Triebel
„Charakterisierung UV-optischer Dünnschichten
durch LIF und direkte Absorptionsmessung“
Talk at TransferX-Messe, Dresden, November
09–11, 2005
Sven Germershausen: Untersuchungen zur
Laserkristallisation von Germaniumschichten auf
Glassubstraten
University of Applied Sciences, Jena, SciTec
Supervisor: Dr. G. Andrä
Patents
G. Andrä, F. Falk
„Dünnschichtsolarzelle und Verfahren zur Herstellung eines Halbleiterbauelements“
DE 10 2005 045 096.2 (21.09. 2005)
Michael Kaiser: Präparation von Solarzellen in
multikristallinen LLC-Si-Schichten
Technical University of Ilmenau, Mechanical
Engineering
Supervisors: Dr. F. Falk/Dr. G. Andrä
Laboratory Exercises
Lectures
H. Stafast
„Angewandte Lasertechniken“, 2-stündige Wahlvorlesung über 4 Semester an der FriedrichSchiller-Universität, Winter 2004/2005 bis Winter
2005/2006
F. Falk
„Photovoltaik“, 2-stündige Wahlvorlesung an der
Friedrich-Schiller-Universität, Winter 2004/2005
„Elastizitätstheorie“, 2-stündige Wahlvorlesung
an der Friedrich-Schiller-Universität, Sommer 2005
„Thermodynamik der Phasenübergänge“, 2stündige Wahlvorlesung an der Friedrich-SchillerUniversität, Winter 2005/2006
PhD Theses
Torsten Scheidt: Charge Carrier Dynamics and
Defect Generation at the Si/SiO2 Interface
Probed by Femtosecond Optical Second Harmonic Generation*)
Friedrich-Schiller-University, Jena, Faculty of Physics and Astronomy
Supervisor: Prof. H. Stafast
*) work at University of Stellenbosch, South Africa
Christian Mühlig: Zur Absorption gepulster ArFLaserstrahlung in hochtransparenten optischen
Materialien
Friedrich-Schiller-University, Jena, Faculty of Physics and Astronomy
Supervisor: Prof. H. Stafast
Diploma and Bachelor Theses
Markus Arold: Massenspektroskopie an Ausgangsstoffen zur PE-CVD von Si-C-N-Schichten
Friedrich-Schiller-University, Jena, Faculty of Physics and Astronomy
Supervisor: Prof. H. Stafast
Ch. Noppeney, Fachhochschule Jena, Physikalische Technik
Ch. Voigtländer, Friedrich-Schiller-Universität, Jena,
Technische Physik
J. Grasemann, O. Pabst, D. Rettig, Carl-ZeissGymnasium (Spezialklasse), Jena
M. Aubel und R. Pagel, Staatl. Berufsbildendes
Schulzentrum Jena Göschwitz, Höhere Berufsfachschule
M. Röder, FH Coburg
Commitees
G. Andrä
– Executive Committee, INPUT Solar, Thuringia
W. Triebel
– Program Committee “Optical Diagnostics”,
SPIE Conf., San Diego, USA, August 2005
– DUV/VUV Optics, Common working group
of PhotonicNet and OptoNet
– GET-UP initiative for start-up companies
Award
H. Stafast, professor extraordinary of University
of Stellenbosch, South Africa
Exhibitions
– LASER 2005, World of Photonics, Munich
– TransferX fair, Dresden
– Faszination Licht, Goethegalerie, Jena
New Equipment
Thin film deposition unit with several material
sources
89
INNOVATIONSPROJEKT / INNOVATION PROJECT
E. Innovationsprojekt 2005 / Innovation Project 2005
Nanostructured Ta2O5 layers
for optochemical/biophotonic
sensors and solar cells
(S. Schröter, U. Hübner, W. Morgenroth,
R. Boucher, R. Pöhlmann, G. Schwotzer,
T. Wieduwilt, S. Brückner, U. Jauernig,
A. Csáki, W. Fritzsche, G. Andrä, E. Ose)
Tantalum pentoxide layers are particularly suitable for a variety of optical applications due to
their high refractive index, low absorption from
the visible to the infrared, good adhesion to glass
and silicon substrates, and high resistance to
acids and bases. Furthermore, nanoporous
Ta2O5 layers could be a promising material for
optical sensors. We have investigated several
fabrication technologies for optical waveguide
grating couplers and two-dimensional resonant
gratings in compact and nanoporous Ta2O5 layers
as devices for optochemical and biophotonic sensors, and characterised their optical properties.
Because of the afore mentioned optical properties and the high melting point of about 1800 °C,
Ta2O5 has potential as an intermediate layer for
thin film solar cells.
Waveguide grating couplers
Electron beam exposure (LION LV1) or DUV
interference lithography at 244 nm were applied
to the patterning of about 300 nm thick resist
(ZEP or ARP610) gratings with periods of 410 to
420 nm atop a NiCr/C/NiCr hard mask sputtered
onto the Ta2O5 layers on quartz or borofloat glass
substrates. The resist gratings were transferred
by a multi-step etching process into the bottom
NiCr layer, and from this by Ar-IBE, 40 to 70 nm
into the Ta2O5 layer. An example is shown in
Fig. E1.
For the nanoporous layers it was necessary to
cool the substrate down to –20 °C during etching
in order to maintain porosity. At higher temperatures it is supposed that a compaction of the
material occurs. The sensor functionality for the
nanoporous layers was also verified by considering the adsorption isotherms in water vapour as
an example.
Fig. E2 shows the transmission spectra of a grating coupler for the case of a grating with a period
of 416 nm etched into a 600 nm thick nanoporous Ta2O5 layer at two different water vapour
pressures of 3.5 ·10–2 mbar (dry) and 22 mbar
(wet). The magnitude of the spectral shifts
depends on the quantity of water molecules
adsorbed in the nanopores and the related
refractive index change.
Fig. E2: Spectral shift of transmission minima
with humidity due to the coupling of the normally
incident TE polarised light with two different
waveguide modes.
The observed shifts of 8.5 and 9.3 nm for the
short and long wavelength minimum, respectively, are in good agreement with a change in the
refractive index from about 2.01 to 2.05.
90
Fig. E1: SEM picture of a grating with a period of
416 nm etched 67 nm into a 147 nm thick Ta2O5
layer. The visible surface texture is created by the
gold coating for the SEM.
2D resonant waveguide gratings
Resonance diffraction effects from 2D dielectric
gratings can be used to create very sensitive
angle and/or wavelength encoded sensors. Ta2O5
layers perforated with square or triangular lattices
of air holes are suitable for this purpose. Gratings
with a period of e.g. 620 nm exhibit, for hole
diameters between about 200 and 400 nm, pronounced resonant diffraction properties at least
within the spectral region from 700 to 1350 nm.
The fabrication technology was essentially the
same as for the grating couplers. The ARP671
resist masks were created by e-beam exposure
(ZBA23). In order to obtain steep edge profiles an
ECR-RIE process with a CF4/CHF3 plasma was
applied to transfer the pattern from the NiCr mask
INNOVATIONSPROJEKT / INNOVATION PROJECT
into the Ta2O5 layers. Unlike for porous layers the
samples of compact material had to be heated
up to 150 °C for optimal results.
An example of a triangular grating in nanoporous
Ta2O5 is shown in Fig. E3.
Fig. E3: Triangular grating with a period of
620 nm and an average hole diameter of about
230 nm at the top etched 150 nm into a 600 nm
thick layer of porous Ta2O5 imaged at 0° and
60°.
The polarisation independent transmission spectra for normal incident light for the case of a dry
and wet environment are displayed in Fig. E4.
The pronounced transmission minima at λ >
830 nm are caused by resonant diffraction
effects.
Fig. E5: Simulated transmission properties of a
grating with the parameters given in Fig. E3,
assuming cylindrical holes with a diameter of
210 nm.
A variety of different devices which include the
square lattices of holes have been fabricated in
compact and humidity sensitive Ta2O5 layers and
are currently under detailed investigation.
The nanoporous tantalum pentoxide samples
were provided by the Fraunhofer IOF in Jena and
investigated here mainly because it could be possible selectively to measure the moisture content
of other than water vapour analytes.
The filling of the holes of two-dimensional gratings with metallic nanoparticles provides an
opportunity for the biosensing of e.g. DNA molecules immobilised on gold nanoparticles. This
method utilises the special plasmon scattering
properties of the ordered arrays.
Chemically activated samples with 2D-gratings
were placed at an angle into preheated (80 °C)
colloidal nanoparticle solutions (30 nm in diameter) with a concentration of 2 · 1011 particles/ml.
During the drying process the receding meniscus
causes an influx of the metal nanoparticles into
the holes, see Fig. E6.
Fig. E4: Spectral shift of the transmission minima
between dry and wet samples (∆λmin = 10.4 and
13.5 nm for the first and second resonance wavelength, respectively).
By simulating the transmission behaviour with a
rigorous coupled wave method, a sufficient
agreement with the experiment was obtained for
150 nm deep cylindrical holes with a diameter of
210 nm, see Fig. E5.
A change of the refractive index from 1.97 to 2.01
yields ∆λmin = 13 and 15 nm for the first and second transmission minimum, respectively, and all
wavelengths of the transmission minima differ
from the experimental values by less than 1.5 nm.
Fig. E6: Transmission mode optical micrograph of
a 2D grating in Ta2O5 (square array with a period
of 620 nm) when the holes are partially filled with
gold particles.
91
INNOVATIONSPROJEKT / INNOVATION PROJECT
The varying shades (spectrum from white to
greenish-blue in a colour picture) indicate the different level of filling and positioning accuracy. In
order to improve the homogeneity a further optimisation of this technique is required.
Thin film solar cells
For the first time layered laser crystallised (LLC)
thin film solar cells were prepared on borofloat
glass substrates covered with a tantalum pentoxide layer.
Our standard cell structure is sketched in Fig. E7.
Immediately on top of the borofloat glass sub-
Fig. E7: Design of a standard LLC cell.
strate a multicrystalline silicon layer system with
grains exceeding 100 µm in size is deposited.
The layer system consists of a p+-doped highly
conductive seed layer, a p-doped absorber layer
and an n-doped emitter layer. A metal electrode
acts as a light reflector. The seed layer is prepared by cw laser crystallisation of amorphous
silicon. The absorber and emitter are prepared by
continuously depositing amorphous silicon on top
of the seed combined with repeated excimer
laser irradiation in order to guarantee epitaxial
growth. In various papers it has been demonstrated that intermediate layers between the
glass and silicon may increase the cell efficiency
by reducing the reflection loss. Moreover, the barrier may act as a light trapping structure due to
surface scattering and as a diffusion barrier
against foreign atoms of the glass. In the case of
LLC cells the intermediate layer has to withstand
the laser crystallisation process. Standard layers
92
usually applied in solar cells such as SnO2, ZnO
or a-SiNx:H do not meet this requirement.
Because of its suitable optical properties and
high melting point of above 1800 °C we expect
tantalum pentoxide layers to be an interesting
alternative. Therefore, we tested the laser stability of this material. We demonstrated that on
Ta2O5 layers LLC solar cells can be prepared successfully. However, it turned out that Ta2O5 layers
require an excimer laser pretreatment. Without
the pretreatment layer damage was observed
after laser crystallisation of amorphous silicon
due to the formation of gas bubbles. Moreover,
due to the laser pretreatment the Ta2O5 layer surface roughens so that increased light scattering
is observed which is beneficial for the solar cell.
In Fig. E8 a current-voltage diagram of a 2 µm
thick cell with a tantalum pentoxide intermediate
layer is shown, as compared to a standard cell. In
both cases no metal reflector for light trapping
was present. Even though the Ta2O5 cell has inferior properties as compared to the standard cell it
is still a positive result. It was demonstrated that
the intermediate layer has the desired properties.
In order to improve the cell parameters the
excimer laser pretreatment has to be optimised
so that the crystal quality of the silicon is
increased to that of the standard cells.
Fig. E8: I–V-diagram of a LLC cell with tantalum
pentoxide intermediate layer (full line) as compared to a standard LLC cell (broken line).