Bibliografie Sprint (Ausdauerdisziplinen)
Transcription
Bibliografie Sprint (Ausdauerdisziplinen)
Auswahlbibliografie Besonderheiten der Sprint-Disziplinen in den Ausdauersportarten – eine Literaturübersicht Erarbeitet von: Birgit Franz unter Mitarbeit von Dr. Roland Regner, Dr. Hartmut Sandner, Barbara Kühn, Heike Vorwerk Fachbereich Information Kommunikation Sport Institut für Angewandte Trainingswissenschaft Leipzig Erstellt am 12.01.2011 (Redaktionsschluss: 01.01.2011) 2 Vorwort Wichtige Grundlage und zugleich Teil der wissenschaftlichen Arbeit des Instituts für Angewandte Trainingswissenschaft (IAT) sind die Weltstandsanalysen. Dabei werden die sportliche Leistung, Leistungsfaktoren und die Leistungsstruktur in einer Sportart oder Sportartengruppe in wissenschaftlichen Verfahren ermittelt und bewertet. Die erreichte Wettkampfleistung wird in Beziehung zu Trainingsdaten und organisationsstrukturellen Aspekten gesetzt. Eine wesentliche Erkenntnis aus den Weltstandsanalysen sowohl der Sommer- als auch der Wintersportarten sind Veränderungen der nationalen und internationalen Wettkampfsysteme, die in der Regel auch erhebliche Einflüsse auf die Trainingssysteme haben und zu trainingsmethodischen Konsequenzen führen müssen. Dieser Prozess ist insbesondere in den Ausdauersportarten in jüngster Zeit vor dem Hintergrund der Erhöhung der Attraktivität und damit Medienwirksamkeit der Wettkämpfe letztlich im Ringen um Aufnahme oder Verbleib im olympischen Programm von einer außerordentlichen Dynamik geprägt. Mit der Kleinkonferenz „Entwicklung der Wettkampfleistung Sprint/Kurze Strecken“ möchten wir, einer im Fachbereich Ausdauer des IAT guten Tradition folgend, den sportartübergreifenden Erfahrungsaustausch hierzu anregen. Wir sind uns durchaus bewusst, dass zwischen Sprint/Kurze Strecken im Eisschnelllauf, Schwimmen und Kanu einerseits und dem „Sprint“ im Biathlon andererseits leistungsphysiologisch und trainingsmethodisch „Welten“ liegen. Von großem Interesse ist wiederum, welche Entwicklungen die Trainingssysteme in den einzelnen Sportarten genommen haben und welche Erfahrungen es Wert sind, weitergegeben zu werden. Ansatzpunkte bieten aus unserer Sicht die Spezialisierung im Eisschnelllauf in Richtung Sprint und Mehrkampf, das Streben des Internationalen Skiverbands FIS nach „Allroundern“, die eindeutige Gewichtung auf den Sprint (mit unmittelbarer Auswirkung auf die Disziplin Verfolgung) im Biathlon sowie die Aufnahme der Sprintwettkämpfe über 200 m innerhalb eines Olympiazyklus im Kanurennsport. Unsere Aufmerksamkeit gilt den praktischen Erfahrungen der Trainerinnen und Trainer genauso wie den Erkenntnissen aus Wettkampf- und Trainingsanalysen sowie leistungsdiagnostischen Untersuchungen der Kolleginnen und Kollegen des IAT, von Universitäten und Olympiastützpunkten im Interesse einer facettenreichen Diskussion zum Nutzen unserer Athletinnen und Athleten in Vorbereitung auf die Olympischen Spiele in London 2012 und Sotschi 2014. Hierfür möchte ich mich schon jetzt bei allen Beteiligten sowie bei den Mitarbeiterinnen und Mitarbeitern des Fachbereichs Information Kommunikation Sport für die kurzfristige Zusammenstellung einer Auswahlbibliografie zu diesem Thema bedanken. Jürgen Wick Fachbereichsleiter Ausdauer am IAT Leipzig, im Januar 2011 3 4 Einleitung Das Thema „Sprint“ hat auch in den Ausdauersportarten in den letzten Jahren eine enorme Bedeutung gewonnen. Neue Sprintdisziplinen sind in die Wettkampfprogramme der Ausdauersportarten und ins olympische Programm aufgenommen worden. Damit haben sich die Wettkampfsysteme und so auch die Trainingssysteme und die Anforderungsstrukturen an die Athleten verändert. Dieser Trend spiegelt sich auch in der internationalen Literatur wider. In zahlreichen Veröffentlichungen beleuchten Autoren die verschiedenen Aspekte und Besonderheiten der Sprintdisziplinen in den Ausdauersportarten. Mit dieser Auswahlbibliografie möchte der Fachbereich Information Kommunikation Sport des IAT die Kleinkonferenz „Entwicklung der Wettkampfleistung Sprint/Kurze Strecken“ des Fachbereichs Ausdauer im Januar 2011 in Leipzig bzw. darüberhinaus gehend die Beschäftigung mit dieser aktuellen Thematik unterstützen. Wir haben für Sie in den Datenbanken des IAT und darüber hinausgehend über die Vifa Sport in weiteren Datenbanken zum Thema recherchiert. Letztendlich haben wir für Sie 90 Nachweise ausgewählt (81 aus den Datenbanken des IAT, 8 aus den Datenbanken des BISp), die wir inhaltlich nach folgenden Schwerpunkten gegliedert haben: 1 Leistungsstruktur/Leistungsvoraussetzungen/Leistungsdiagnostik (25 Nachweise), 2 Training (31 Nachweise), 3 Biomechanik/Technik/Sportgeräte (17 Nachweise), 4 Physiologie/Energiestoffwechsel/Muskelphysiologie (15 Nachweise), 5 Ernährung/Supplementierung (2 Nachweise). Der Bibliografie folgt ein Index (die Nummern beziehen sich auf die Reihenfolge in der Bibliografie). Redaktionsschluss für die Auswahl und Bearbeitung der Quellen war der 1. Januar 2011. Die Referate wurden aus den Datenbanken ohne weitere Bearbeitung übernommen. Die Quellen aus der Datenbank SPONET verfügen alle über eine URL, über die Sie die Dokumente selbst im Internet anschauen können. Sollten Sie dabei Probleme haben oder Sie an Volltexten Interesse haben, die für Sie nicht zugängig sind, wenden Sie sich bitte an eine wissenschaftliche Bibliothek in Ihrer Nähe oder an die Leiterin der wissenschaftlichen Bibliothek des IAT, Frau Heike Vorwerk (iatbib@iat.uni-leipzig.de, Tel.: 03414945127). Birgit Franz Wissenschaftliche Mitarbeiterin Fachbereich Information Kommunikation Sport des IAT 5 6 Leistungsstruktur/Leistungsvoraussetzungen/Leistungsdiagnostik 1. MFNR 307387 Cholewa, J., Gerasimuk, D. & Kudrys, R. l. (2005). Czynniki determinujace wynik w biatlonowym biegu sprinterskim. Sport wyczynowy, 43 (1-2), 27-35. (Leistungsbestimmende Faktoren im Biathlonsprint) Biathlon | Leistungsvoraussetzung | Leistungsfaktor | Sprint Verf. gehen in ihrer Arbeit den Fragen nach, welcher Zusammenhang zwischen der Laufzeit, Treffgenauigkeit und Schießzeit einerseits sowie dem Endergebnis des Biathleten im Sprint andererseits bestehen, welches dieser Elemente grundlegenden Einfluss auf die Endleistung der Sportler hat und ob der Einfluss dieser Elemente vom Leistungsniveau der Athleten abhängt. In diesem Zusammenhang wurden die Wettkampfleistungen des Weltcups und der Olympischen Spiele aus der Saison 2001/2002 (Anzahl der Athleten zwischen 67 und 110, Durchschnittsalter 28,4 Jahre, durchschnittliches Trainingsalter 12,8 Jahre) ausgewertet. Aus den Ergebnissen lassen sich folgende Schlussfolgerungen ziehen: 1. Aus den untersuchten Faktoren (Laufzeit, Treffgenauigkeit, Schießzeit) hat den größten Einfluss auf die Endleistung im Biathlonsprint die Laufzeit; 2. Die größte Variabilität bei den Wettkampfergebnissen hat die Schießgenauigkeit (hohe Werte der Variabilitätsparameter); 3. Im Zusammenhang mit dem Anstieg des sportlichen Niveaus verringern sich die Werte der Korrelationskoeffizienten zwischen der Endzeit und den Laufkomponenten, was auf die Zunahme des Einflusses anderer Faktoren außerhalb der beschriebenen Untersuchungen auf die Endleistung hinweist. Schnürer (Dokument übernommen aus Datenbank SPOLIT) Polnischer Volltext unter: http://www.cos.pl/sw/1205/27.pdf 2. MFNR 301657 L319; I.G.2.; 27024 Dorel, S., Hautier, C., Rambaud, O., Rouffet, D., Lacour, J. R. & Bourdin, M. (2004). Modelling the power demand during the 200 m flying start cycling event: application to a world-class track cyclist. In E. Van Praagh & J. Coudert (Hrsg.), Book of Abstracts - 9th Annual Congress European College of Sport Science, July 3-6, 2004, Clermont-Ferrand, France. Clermont-Ferrand: UFR STAPS Clermont-Ferrand II, Faculte de Medecine. (Modellierung der Leistungsanforderungen beim 200 m fliegenden Start Sprint im Radsport: Anwendung auf einen Weltklassebahnradfahrer) Radsport | Bahnradsport | Sprint | Analyse | Leistungsstruktur | Leistung | Biomechanik | Modellierung | Theorie The aim of this study was, therefore, to apply an adapted mathematical model to sprint track cycling in order to assess the contribution of each component in power demand during the 200 m event. 3. SPONET-NR 018619 Enqvist, J., Holmberg, H.-C. & Stöggl, T. (2009). Anthropometry as a predictor of sprint skiing performance. In S. Loland, K. Boe, K. Fasting, J. Hallen, Y. Ommundsen, G. Roberts & E. Tsolakidis (Hrsg.), 14th annual Congress of the European College of Sport Science, Oslo/Norway, June 24-27, 2009, Book of Abstracts (S. 293-294). Oslo: The Norwegian School of Sport Sciences. (Anthropometrie als ein Vorhersagewert für die Sprintleistung im Skilanglauf; Internetzugriff unter: 7 http://www.ecsscongress.eu/OSLO2009/images/stories/Documents/BOAOSLO0610bCont ent.pdf) Skilanglauf | Anthropometrie | Körpermaß | Hochleistungssport | Leistungssport | Prognose | Leistung | Sprint Anthropometric measurements have been used in sports for finding performance limiting factors (Reilly et al. 2000; Drinkwater et al. 2008). Studies concerning relationships between anthropometric characteristics and performance in XC skiing are limited (Bergh 1987; Larsson and Henriksson-Larsen 2008). The aims of the present study were to examine possible relationships between anthropometric values and sprint skiing performance. Methods: Fourteen elite sprint skiers (mean age 26.4±4.8 yrs; body weight 76.7±5.4kg; body height 180.4±4.6cm; VO2max 5.2±0.5 l/min, volunteered to participate in the study. Subjects were examined with DXA to determine body composition and body dimensions (Lunar iDXA, General Electric Company, Madison, USA) and performed two incremental maximal sprint tests using the double poling (DP) and the V2 skating techniques, both performed with roller skis on a treadmill. Results: BMIlean displayed the highest positive relationships towards DP maximal speed (r=0.80, p<0.001) of all the measured variables. Body weight, total lean mass and total trunk mass were all positively correlated to DP performance (r=0.57; p<0.05; r=0.69, p<0.01; r=0.53, p<0.05). Absolute and relative (%trunk mass) lean mass of the trunk was positively related to DP maximal speed (abs. value r=0.75; p<0.01; rel. value r=0.550, p<0.05). The ratio between trunk mass to trunk length and the ratio between trunk mass and the mass of the head and the neck were positively related to DP maximal speed (r=0.58, p<0.05; r=0.69, p<0.01). None of the measured anthropometrical variables were significantly associated with V2 skating maximal speed. Discussion: The findings in this study agree with Bergh (1987), suggesting that heavier skiers are favoured over all parts of a racing course except for steep uphills. However, this aspect was only valid in the current study in DP. Based on the results, we suggest that skiers should aim to achieve an optimal body composition that has a high percentage of lean mass and low fat mass, with a particular focus on high trunk mass in order to have the proper body composition for DP sprint performance. No anthropometrical predictors of performance were found for the V2 skating technique, suggesting that high maximal speed in that technique is not associated with body morphology. The results suggest that maximal speed in DP and V2 skating is not determined by genetic body dimensions but, particularly for DP, by trainable factors such as total mass, muscle mass and body fat. 4. SPONET-NR 020545 Fabre, N., Bortolan, L., Pellegrini, B. & Schena, F. (2009). Main differences between distance and sprint world-class cross-country skiers. In S. Loland, K. Boe, K. Fasting, J. Hallen, Y. Ommundsen, G. Roberts & E. Tsolakidis (Hrsg.), 14th annual Congress of the European College of Sport Science, Oslo/Norway, June 24-27, 2009, Book of Abstracts (S. 434). Oslo: The Norwegian School of Sport Sciences. (Hauptunterschiede zwischen Langstrecken- und Sprintskiläufern des Weltspitzenbereichs; Internetzugriff unter: http://www.ecsscongress.eu/OSLO2009/images/stories/Documents/BOAOSLO0610bCont ent.pdf) Skilanglauf | männlich | Hochleistungssport | Leistungssport | Leistungsfähigkeit | Sprint | O2-Aufnahme | maximal | Körpermaß | Kraft | Technik The best predictors of a cross-country skiing sprint performance have already been studied (1,2). However and to our knowledge, specialists of sprint and distance races have 8 never been compared. The purpose of this study was to determine the main physiological and biomechanical differences between distance and sprint cross-country skiers. Methods: Ten elite male skiers from the national Italian ski team [6 from the world-cup distance group (D) and 4 from the world-cup sprint group (S)] were evaluated on the basis of a roller-skiing test on treadmill using the double poling technique. The start speed was fixed at 10 km/h and increased by 0.5 km/h every 30-sec work period until exhaustion with a constant inclination of 6%. Oxygen uptake was continuously measured. Biomechanical data [maximal poling frequency and maximal poling force (Fmax)] were obtained using load cells inserted under the poles handgrips. The total power output was calculated across each speed as the power required to overcome rolling resistance and to lift the body against gravity. Results: Body-weight (BW) and Fmax were significantly higher (P<0.05) for the group S (78.5±5.8 kg and 156.0±9.8 N, respectively) compared to the group D (70.0±5.0 kg and 136.4±13.7 N, respectively). S and D groups did not significantly differ in peak oxygen uptake (4.4±0.4 L/min and 4.8±0.4 L/min, respectively), maximal power (328.4±21.2 W and 330.1±25.7 W, respectively), maximal poling frequency (63.9±4.4 cycles/min and 68.0±5.9 cycles/min, respectively) and Fmax/BW (2.0±0.1 N/kg and 2.0±0.1 N/kg, respectively). When peak oxygen uptake (VO2peak) and maximal power (Pmax) were expressed relatively to BW, values of the S group (56.3±4.3 mL/min/kg and 4.2±0.3 W/kg, respectively) were significantly lower (P<0.01) than the values of the D group (70.8±2.9 mL/min/kg and 4.7±0.1 W/kg, respectively). Finally, among the parameters measured during this test, Fmax appeared as the best predictor (irrespective to the S or D group) of sprint racing performance (estimated by means of the specific sprint International Ski Federation ranking). The correlation showed that 70% of the variability of the performance in sprint races could be explained by absolute Fmax (r2=0.70). Discussion: The higher BW and Fmax appeared to be the main different parameters (among those measured with this kind of test) between a sprint and a distance specialist in cross-country skiing. Moreover, BW-to-power (aerobic and mechanical) ratio was optimized in distance skiers. Expressed in absolute value, no difference was observed in VO2peak between sprint and distance skiers. Thus, as suggested by Stogll T. et al., the sprint performance seems to be mainly dependent of muscular factors but a high aerobic capacity is a prerequisite. 5. MFNR 181770 L319 Gardner, A., Martin, D., Barras, M., Jenkins, D. & Hahn, A., (2003). Power output demands of elite track sprint cycling. J. Sci. Med. Sport, 6 (4 Suppl), 70. (Anforderungen an die Leistungsabgabe im Radsprint auf der Bahn) Bahnradsport | Sprint | Leistung | Leistungsstruktur | Hochleistungssport | Leistungssport | Technik Untersucht wurden die Leistungsabgabeprofile der australischen Spitzenradsprinter bei Rennen zu Hause (DOM) und bei internationalen (INT) Rennen. Drei männliche Sprinter (19-33 Jahre, 82-101 kg, 39-47 mm Summe der sieben Hautfettfalten, 1729-2282 maximale Leistung unter Laborbedingungen) wurden mithilfe eines kalibrierten SRMPowermeters bei 18 DOM und 18 INT untersucht. Die Leistungsdaten der Finalrunden der Wettkämpfe wurden mit Konsumersoftware summiert. Die DOM- und INT-Daten wurden mit T-Tests verglichen. Die Frequenz bei maximaler Leistung war bei DOM höher als bei INT (133.4+/-8.-4 vs. 126.6+/-9.9 Umdrehungen pro Minute, p=0.02), andere signifikante Unterschiede wurden zwischen DOM und INT nicht festgestellt. Die Analyse über alle 36 Wettkämpfe ergab folgende Leistungskennzeichen im Spitzenbereich des Radsprints (jeweils Durchschnittswert und Bereich): durchschnittliche Leistung 532 W, 360-804 W6.1 9 W/kg, 4.3-8.3 W/kg), Spitzenwert der Leistung (1934 W, 1325-2363 W, 22.1 W/kg, 15.824.8 W/kg), Spitzenwert der Trittfrequenz (160 U/Min, 153-168 U/Min), maximale durchschnittliche Leistung über 5 Sekunden /MMP5s/ (1683 W, 1201-2194 W), MMP10s (1529 W, 113-2093 W) und MMP15s (1449 W, 1130-1896 W). 6. SPONET-NR 010318 Geladas, N. D., Nassis, G. P. & Pavlicevic, S. (2005). Somatic and physical traits affecting spring swimming performance in young swimmers. Int. J. Sports Med., 26 (2), 139-144. (Körperbaumerkmale, die die Leistung junger Schwimmer über die Sprintstrecke beeinflussen; Internetzugriff unter: http://www.thieme-connect.de/ejournals/abstract/sportsmed/doi/10.1055/s-2004-817862) Schwimmen | Sprint | Leistung | Nachwuchsleistungssport | Relation | Körperbau | Anthropometrie | Prognose The aim of this study was to examine the relationship between anthropometry, physical capacity, and sprint swimming performance in swimmers of both genders aged 12 - 14 years old. Anthropometric characteristics (body height and mass, total upper extremity, hand and foot lengths, chest circumference, certain body breadths, and skinfolds), as well as leg explosiveness (horizontal jump) and arm strength (handgrip strength test) were evaluated in 263 competitive swimmers (178 boys and 85 girls) aged 12 - 14 years. Skeletal age was assessed with the Tanner-Whitehouse method. All variables, except for the ankle and shoulder flexibility as well as the skeletal age, correlated with 100 m freestyle performance in boys (r = - 0.46 to - 0.73, p < 0.01). Using a split-sample approach, upper extremity length, horizontal jump, and grip strength were detected as significant predictors of 100 m freestyle performance in boys (R2 = 0.59, p < 0.01). In girls, body height, upper extremity and hand length, shoulder flexibility, and horizontal jump were all significantly related to 100 m freestyle time (r = - 0.22 to - 0.31, p < 0.05) but the degree of association was markedly lower than in boys. In addition, only 17 % of the variance in performance was explained by a combination of body height, hand length, and horizontal jump in girls. These results suggest that 100 m freestyle performance can be partially explained by anthropometry and physical capacity tests in young swimmers. The contribution of these factors to sprint swimming performance is different in boys and girls and this requires further research. These findings could be used for male young swimmers' selection. 7. SPONET-NR 014964 Glaister, M., Stone, M. H., Stewart, A. M., Hughes, M. G. & Moir, G. L. (2006). Aerobic and anaerobic correlates of multiple sprint cycling performance. J. Strength & Condit. Res., 20 (4), 792-798. (Aerobe und anaerobe Korrelate der multiplen Radsprintleistung; Internetzugriff unter: http://www.nsca-jscr.org/pt/re/jscr/abstract.00124278-200611000-00011.htm) Radsport | Sprint | Leistung | Leistungsfaktor The aims of this study were to examine (a) the relationship between maximal oxygen uptake (VO2max) and several performance indices of multiple sprint cycling; (b) the relationship between maximal accumulated oxygen deficit (MAOD) and those same performance indices; and (c) the influence of recovery duration on the magnitude of those relationships. Twenty-five physically active men completed a VO2max test, a MAOD test, and 2 maximal intermittent (20 x 5 seconds) sprint cycling tests with contrasting recovery periods (10 seconds or 30 seconds). Mean +/- SD for age, height, and body mass were 10 20.6 +/- 1.5 years, 177.2 +/- 5.4 cm, and 78.2 +/- 8.2 kg, respectively. All tests were conducted on a friction-braked cycle ergometer with subsequent data normalized for body mass. Moderate (0.3 <= r < 0.5) positive correlations were observed between power output data and MAOD (range, 0.31-0.46; 95% confidence limits, -0.10 to 0.72). Moderate to large positive correlations also were observed between power output data and VO2max, the magnitude of which increased as values were averaged across all sprints (range, 0.450.67; 95% confidence limits 0.07-0.84). Correlations between fatigue and VO2max were greater in the intermittent protocol with 30-second recovery periods (r = -0.34; 95% confidence limits, 0.06 to -0.65). The results of this study reflect the complex energetics associated with multiple sprint work. Though the findings add support to the idea that multiple sprint sports demand a combination of speed and endurance, further longitudinal research is required to confirm the relative importance of these parameters. 8. MFNR 176108 L319; II.B.2.; 260040 Gruber, C. & Haber, P. (1997). Die Maximalkraft ist eine Determinante für die maximale Schwimmgeschwindigkeit im Kraulsprint. In 35. Deutscher Sportärztekongress, 25.-27. September 1997, Tübingen, Abstracts (S. 106). Wehr: Novartis Pharma Verlag. Schwimmen | Kraulschwimmen | Sprint | Maximalkraft Krafttraining ist seit vielen Jahren integraler Bestandteil des Schwimmtrainings. In der Literatur werden einerseits signifikante Korrelationen zwischen Krafteigenschaften und der maximalen Schwimmgeschwindigkeit (Vmax) berichtet, andererseits aber fehlende oder negative Effekte eines begleitenden Krafttrainings gegenüber einer Kontrollgruppe. Wir untersuchten den korrelativen Zusammenhang der Maximalkraft (Einwiederholungsmaximum (EWM) in kg der Übungen Bankdrücken und Bankziehen und Höhe in cm des Standhochsprunges) zur Vmax über 25, 100, 400 und 1500 m Kraul. Alle 3 Übungen zeigten hochsignifikante Korrelationen zu 25 m (r = 0,65; 0,68; 0.72 resp.). signif. zu 100 m und nicht signifikant zu 400 und 15 m. Die mit dem EWM unspezifisch gemessene Maximalkraft der Arme und Schultern, sowie die Maximalkraft der Beine ist eine Hauptdeterminante für die Vmax im Kraulsprint von 25-100 m. Aufgrund der Regressionsgleichungen lassen sich für das Nachwuchstraining langfristige Trainingsziele für die motorische Grundeigenschaft Kraft definieren, deren Erreichung eine der wesentlichen Voraussetzungen für das Erreichen von hochklassigen Leistungen im Kraulsprint ist. 9. SPONET-NR 008199 Gulbin, J. (2002). Talent "Re-Cycling". A women's sprint cycling initiative. Zugriff am 28.06.2002 unter: http://www.ais.org.au/talent/cycling.asp (Talent-Recycling: Eine Initiative im Radsprint der Frauen) Australien | Auswahl | Bahnradsport | Nachwuchsleistungssport | Radsport | Sprint | Talent The AIS tested interested athletes in NSW and the ACT in an attempt to identify women that had the ability and desire to compete nationally and if possible, internationally in this event. 10. MFNR 173991 L319; I.L.7.; 26001 Hohmann, A., Dierks, B., Lühnenschloß, D., Seidel, I. & Wichmann, E. (1999). The influence of strength, speed, motor coordination and technique on the performance in crawl sprint. In University of Jyväskylä, Dep. of Biology and Physical activity (Hrsg.), Biomechanics and medicine in swimming VIII (S. 191-196). Jyväskylä: Eigenverlag. 11 (Der Einfluss von Kraft, Schnelligkeit, Bewegungskoordination und Technik auf die Leistung im Kraulsprint) Schwimmen | Leistungsstruktur | Kraulschwimmen | Leistungsfaktor | Sprint | Kraft | Schnelligkeit | Beweglichkeit | Körperbau | koordinative Fähigkeit | Technik Es wurden Einflussfaktoren auf die Kraulsprintleistung im Schwimmen untersucht. Die Leistung im Schwimmsprint ist von verschiedenen motorischen Fähigkeiten abhängig. Die Struktur der 50-m-Kraulsprintleistung ist auf einer ersten Stufe von zwei Hauptfaktoren abhängig: der Schwimmtechnik und Koordination sowie der Sprint- und Zugkraft. Beide Faktoren werden auf einer zweiten Stufe beeinflusst durch Beweglichkeit, anthropometrische Komponenten, Maximalkraft resp. Explosivkraft. An der Studie nahmen 134 Schwimmerinnen und Schwimmer (10-19 Jahre) teil. Die Untersuchungen ergaben zwei nur leicht unterschiedliche Regressionsmodelle der Struktur der Schwimmleistung im Kraulsprint bei Männern und Frauen. 11. MFNR 178704 L319; I.C.3.; 25605 Hohmann, A. (1998). Elementare Schnelligkeit im Schwimmen - Diagnose leistungsbestimmender Voraussetzungen für den Kraulsprint. In Bundesinstitut für Sportwissenschaft (Hrsg.), BISp Jahrbuch 1997 (S. 175-180). Köln: Sport und Buch Strauß. Schwimmen | Kraulschwimmen | Sprint | Nachwuchsleistungssport | Hochleistungssport | Leistungssport | Bundesrepublik Deutschland | Test | Schnelligkeit | Technik | Bewegung | Talent | Eignung | Auswahl In der Betrachtung der Leistung im Kraulsprint nehmen elementare Schnelligkeitsfähigkeiten eine herausgehobene Bedeutung ein, die sich u. a. daraus ergeben, dass sie bereits vor der Pubertät erworben werden können. Falls für Sportler am Ende dieses Altersbereichs diesbezügliche Defizite zu konstatieren sind, können diese längerfristig die weitere Leistungsentwicklung beeinträchtigen bzw. limitieren. In Analysen mit 23 Nachwuchsschwimmern (Alter 11-12 Jahre) und 17 Spitzenschwimmern (Alter 17-19 Jahre) des SC Magdeburg, 26 Nachwuchsschwimmern des SC Wasserfreunde Fulda (Alter 9-19 Jahre) und 15 Sportlern des VfL Sindelfingen bzw. der Landesauswahl BadenWürttemberg (Alter 14-22 Jahre) konnten in 7 sportmotorischen Tests aussagefähige Merkmale zur schwimmerische Qualität im Kraulsprint ermittelt werden. Dabei wurden Arm- und Beintapping als elementare Schnelligkeitsfähigkeiten und die Armstützzeit (bei einem angefallenen Liegestütz aus dem Kniestand) und das Armeinstechen (im Wasser) als komplexe Schnelligkeitsfähigkeiten identifiziert. 12. SPONET-NR 018469 Holmberg, H.-C. (2009). Sprint skiing. Zugriff am 01.12.2009 unter: www.ussa.org/magnoliaPublic/dms/athletics/cross-country/docs/Sprint_for-US/Sprint_for US.pdf (Sprintrennen im Skilanglauf) Skilanglauf | Sprint | Hochleistungssport | Leistungssport | Training | Trainingsplanung | Belastungsgestaltung | Sportphysiologie | Adaptation | Laktat | O2Aufnahme | maximal | Leistung Power-Point-Präsentation zu den Perspektiven des Sprints im Skilanglauf 2001-2009. 12 13. SPONET-NR 015583 Holmberg, H.-C. (09.07.2008). Sprint pa längdskidor. Zugriff am 09.07.2008 unter http://www2.skidor.com/langdakning/files/%7BF12AE555-A1A1-4433-B7B9-8BB8A55996F 4%7D.pdf (Sprint im Skilanglauf) Skilanglauf | Ausdauerdisziplinen | Sprint | Leistungsstruktur | Leistungsentwicklung | Sportphysiologie | Physiologie | Leistungsfähigkeit | international | Hochleistungssport | Leistungssport Powerpoint-Präsentation zur Leistungsstruktur und Leistungsentwicklung in Ausdauersportarten mit besonderem Augenmerk auf den Skilanglauf und die sich dort etablierenden Sprintdisziplinen. Ein typischer, sehr guter Skilangläufer sollte danach folgende Charakteristika aufweisen: - hohes maximales Sauerstoffaufnahmevermögen l/min, ml/kg, ml/kg 2/3 - hoher Maximalwert VO2 bei Oberkörperbelastungen - hoher Anteil langsam kontrahierender Muskelfasern in Beinen und Armen(ca 75 %) (Rusko, 1976; Bergh et al., 1978; Mygind, 1995) - Untrainierte haben normal 5-20 % weniger Typ I-Fasern in den Armen als in den Beinen (Saltin, 1997) - hoher Grad der Kapillarisierung - Untrainierte 1 kap/fiber – Skilangläufer 5-7 kap/fiber (>600 kap/mm2) - 2-3 mal so viele oxidative Enzyme in den Beinen im Vergleich mit Untrainierten - im Oberkörper nähert sich die Situation der in den Beinen, liegt aber noch darunter - relativ große Muskelfaserquerschnitte (Typ I + II) – aktiv -90 15-25 % größer als -70 - hoch entwickelte Fähigkeit der Ausnutzung von FFA als Energiequelle bei einem hohen prozentualen Anteil von VO max (niedriger RQ) 14. MFNR 307390 Koning, J. J. de, Groot, G. de & Ingen Schenau, G. J. van (1992). A power equation for the sprint in speed skating. J. Biomech., 25 (6), 573-580. (Eine Kraftgleichung für den Sprint im Eisschnellauf) Eisschnelllauf | Sprint | Start | Beschleunigung | Kraft | Schnellkraft An analysis of the start of the 500 m speed skating races during the 1988 Olympic Winter Games showed a remarkably high correlation between the acceleration of the skater in the first second of the sprint and the final time. In this study a power equation is used to explain this high coefficient of correlation. The performance in speed skating is determined by the capability of external power production by the speed skater. This power is necessary to overcome the air and ice friction and to increase the kinetic energy of the skater. Numerical values of the power dissipated to air and ice friction, both dependent on speed, are obtained from ice friction and wind tunnel experiments. Using aerobic and anaerobic power production as measured during supra maximal bibycle tests of international-level speed skaters, a model of the kinetics of power production is obtained. Simultation of power production and power dissipation yields values of speed and acceleration and, finally, the performance time of the sprint during speed skating. The mean split time at 100 m and the final time at 500 m in these races, derived from simulation, were 10.57 s and 37.82 s, respectively. The coefficient of correlation between the simulated 500 m times and the actual 500 m times was 0.90. From the results of this study it can be concluded that the distribution of the available anaerobic energy is an important factor in the short lasting events. Verf.-Referat (Dokument übernommen aus Datenbank SPOLIT) 13 15. SPONET-NR 020884 Lätt, E., Jürimäe, J., Mäestu, J., Purge, P., Rämson, R., Haljaste, K., Keskinen, K. L., Rodriguez, F. A. & Jürimäe, T. (2010). Physiological, biomechanical and anthropometrical predictors of sprint swimming performance in adolescent swimmers. J. Sports Sci. & Med., (9), 398-404. (Physiologische, biomechanische und anthropometrische Vorhersagewerte der Leistung in den Sprintdisziplinen des Schwimmens bei jugendlichen Sportlern; Internetzugriff unter: http://www.jssm.org/vol9/n3/7/v9n3-7abst.php) Schwimmen | Sprint | Anthropometrie | Biomechanik | Test | Laktat | Kraulschwimmen | Energie | Stoffwechsel | Energiestoffwechsel | Untersuchungsmethode | Technik | Leistung | Jugend | Nachwuchsleistungssport The purpose of this study was to analyze the relationships between 100-m front crawl swimming performance and relevant biomechanical, anthropometrical and physiological parameters in male adolescent swimmers. Twenty five male swimmers (mean ± SD: age 15. 2 ± 1.9 years; height 1.76 ± 0.09 m; body mass 63.3 ± 10.9 kg) performed an all-out 100-m front crawl swimming test in a 25-m pool. A respiratory snorkel and valve system with low hydrodynamic resistance was used to collect expired air. Oxygen uptake was measured breath-by-breath by a portable metabolic cart. Swimming velocity, stroke rate (SR), stroke length and stroke index (SI) were assessed during the test by time video analysis. Blood samples for lactate measurement were taken from the fingertip pre exercise and at the third and fifth minute of recovery to estimate net blood lactate accumulation (?La). The energy cost of swimming was estimated from oxygen uptake and blood lactate energy equivalent values. Basic anthropometry included body height, body mass and arm span. Body composition parameters were measured using dual-energy Xray absorptiometry (DXA). Results indicate that biomechanical factors (90.3%) explained most of 100-m front crawl swimming performance variability in these adolescent male swimmers, followed by anthropometrical (45.8%) and physiological (45.2%) parameters. SI was the best single predictor of performance, while arm span and ?La were the best anthropometrical and physiological indicators, respectively. SI and SR alone explained 92.6% of the variance in competitive performance. These results confirm the importance of considering specific stroke technical parameters when predicting success in young swimmers. 16. SPONET-NR 008424 Liebermann, D. G., Maitland, M. E. & Katz, L. (2002). Lower-limb extension power: How well does it predict short distance speed skating performance? Isokinetics and Exercise Science, 10 (2), 87-95. (Beinstreckkraft: Wie gut sagt sie die Leistung im Eissprint voraus? Internetzugriff unter: http://iospress.metapress.com/(fwuw3fijgjny3355mn4f1r55)/app/home/contribution.asp?ref e rrer=parent&backto=searchcitationsresults,1,1;) Bein | Eisschnelllauf | Kraft | Leistung | Leistungsdiagnostik | Muskel | Sprint Purpose: This study was aimed to explore the relationship between lower limb extension power measured by isokinetic knee extensions (IK) and vertical jumps performed on a force plate (VJ) and speed skating (SS) sprint power measured by a laser device. Methods: Twenty elite short- and long-track speed skaters performed 100 m sprints followed by VJ and IK trials. Power-time curves were calculated off-line. Pearson correlation coefficients were used to determine the degree of association between the variables. Results: SS sprint power correlates strongly with VJ power (r=0.870; p<0.001) 14 while IK power showed a weaker but significant correlation to both (r=0.707 and r=0.706, respectively; p<0.01). As expected, SS times at 15 m and 100 m were inversely associated with SS sprint power (r=-0.818 and r=-0.909; p<0.001) and VJ power (r=-0.730 and r=-0.763; p<0.001), and to a lesser degree with IK power (r=-0.602; r=-0.618; p<0.01). Conclusion: The analyses differentiate between methods of estimating power in speed skaters, and show a strong relationship between initial SS performance and muscular power. Given that 100 m split times strongly relate to final 500 m results (r=0.972; p<0.001, N=332), it is reasonable to believe that an initial power and a stable peak speed before the first curve may lead to achieving the winning edge in short SS events. A finding of particular interest is that isokinetic power results are correlated significantly with the practical outcomes of the performance in spite of the high specificity of the isokinetic testing method. 17. SPONET-NR 017542 McCabe, C. B. (2009). Sprint and distance swimmers: The same animal? In Applied Swimming Programme Schedule - 27th International Conference on Biomechanics in Sports (S. 17). Limerick: ISBS. (Sprint- und Langstreckenschwimmer: Dieselbe Spezies? Internetzugriff unter: http://w4.ub.uni-konstanz.de/cpa/article/view/3066) Schwimmen | Langstrecke | Sprint In this talk the techniques of sprint and distance swimmers are discussed with a view to informing coaches of the similarities and differences between these groups. In the past it has been reported that sprint and distance swimmers are different in several aspects of technique. However, previous comparisons were at the respective race pace and sprint and distance specialists have not been compared when swimming at the same pace. Therefore it is difficult for coaches to know whether to teach the swimmers the same way when developing good technique. This talk presents new information based on recent scientific research conducted at the Centre for Aquatics Research and Education (CARE). The variables of interest were: average swim speed, stroke length, stroke frequency, stroke index, hand stroke pattern, foot range of motion, elbow angle, shoulder and hip roll angle and stroke phase durations. Interesting and unexpected findings emerged that have implications for the way specialist sprint and distance swimmers should be coached. 18. MFNR 176554 L319 Someren, K. A. van, Backx, K. & Palmer, G. S. (2001). The anthropometric and physiological profile of the international 200-m sprint kayaker. J. Sports Sci., 19 (1), 32. (Das anthropometrische und physiologische Profil des internationalen 200-mKajaksprinters) Kanusport | Kajak | Sprint | Anthropometrie | Körperbau | aerob | Leistungsfähigkeit | Kraft 13 männliche Kajaksportler der britischen Nationalmannschaft, die an 200-m-Rennen teilgenommen haben, wurden hinsichtlich ihrer anthropometrischen und physiologischen Merkmale untersucht und diese mit der Wettkampfleistung im 200-m-Kajakfahren verglichen. Es zeigte sich, dass die besten Sportler einen relativ hohen Fettanteil und eine relativ niedrige aerobe Leistungsfähigkeit angeglichen an die Körpermasse auswiesen. Die Ergebnisse stehen in Kontrast mit früheren Literaturdaten, die angaben, dass ein niedriges Körperfett und eine hohe aerobe Leistungsfähgkeit mit einer erfolgreichen 1000-m- und 500-m-Kajaksprintleistung in Beziehung stehen. 15 19. SPONET-NR 013838 Stöggl, T., Lindinger, S. & Müller, E. (2007). Evaluation of an upper-body strength test for the cross-country skiing sprint. Med. Sci. Sports Exerc., 39 (7), 1160-1169. (Evaluierung eines Oberkörperkrafttests für Skilanglauf-Sprinter; Internetzugriff unter: http://www.acsm-msse.org/pt/re/msse/abstract.00005768-200707000-00018.htm) Skilanglauf | Sprint | Test | Kraft | Maximalkraft | Explosivkraft | Thorax | Arm | Leistungsdiagnostik Purpose: The scope of the study was (a) to develop a test concept for specific upper-body power and strength diagnostics of cross-country (XC) skiing sprint athletes, (b) to check test reliability and validity, and (c) to test the hypothesis that maximal power, explosive strength, and power-endurance predict double-poling (DP) sprint performance over race distance. Methods: Nineteen elite XC skiers performed test-retest of the two-phase test (2PT) on a rollerboard, with the four-repetition maximal test (4RmaxT) as phase 1 and the 40-repetition test (40RT) as phase 2, both for determination of specific upper-body power and explosive strength. To check validity, 31 subjects performed the 2PT and a DP sprint test for 50 m, and a subgroup (N = 19) also performed a DP maximal-speed test and a 1000-m DP sprint test, both on a treadmill. Results: The 4RmaxT was highly reliable (r = 0.90-0.99, P < 0.001), except for explosive force and time to peak force. The 40RT was highly reliable for all variables concerning velocity and power (r = 0.92-0.99, P < 0.001). Peak lactate showed only low reliability (r = 0.69, P < 0.01). The peak values (maximal power, peak velocity, etc.) measured in the 4RmaxT contributed to up to 84% of the variation in 50-m DP sprint time and up to 61% of the variation in 1000-m performance. Moderate to high correlations in 1000-m DP sprint performance were found between the mean values and the fatigue indices of the 40RT. Conclusions: The 2PT is a reliable, valid, short-lasting test. The relationship between maximal power output (measured in the 4RmaxT) to 50- and 1000-m sprint performance suggests increasing the proportion of training aimed at the improvement of specific explosive strength and maximal power. 20. SPONET-NR 018943 Stöggl, T., Enqvist, J., Müller, E. & Holmberg, H.-C. (2010). Relationships between body composition, body dimensions, and peak speed in cross-country sprint skiing. J. Sports Sci., 28 (2), 161-169. (Zusammenhänge zwischen Körperbau, Körpermaßen und Spitzengeschwindigkeit im Sprint im Skilanglauf; Internetzugriff unter: http://www.informaworld.com/smpp/content~db=all~content=a918927318) Skilanglauf | Sprint | Leistung | Geschwindigkeit | Relation | Körperbau | Körpermaß | Anthropometrie In modern sprint cross-country skiing, strength and maximal speed are major determinants of performance. The aims of this study were to ascertain the anthropometric characteristics of world-class sprint skiers and to evaluate whether a specific body composition and/or body dimension characterizes a successful sprint skier. Our hypothesis was that body height and lean body mass are related to peak speed in double poling and diagonal stride. Fourteen male national and international elite skiers performed two peak speed tests in double poling and diagonal stride roller skiing on a treadmill and were analysed using dual-energy X-ray absorptiometry to determine body composition and body dimensions. Relative pole length was positively correlated with both techniques (double poling: r = 0.77, P < 0.01; diagonal stride: r = 0.60, P < 0.05) and was the only variable that 16 was part of the multiple regression model for both double poling and diagonal stride peak speed. Body height was not correlated with any technique, whereas lean trunk mass (r = 0.75, P < 0.01), body mass index (r = 0.66, P < 0.01), total lean mass (r = 0.69, P < 0.01), and body mass (r = 0.57, P < 0.05) were positively related to double poling peak speed. Total lean mass (absolute: r = 0.58, P < 0.05; relative: r = 0.76, P < 0.001) and relative lean mass of the trunk, arms (both r = 0.72, P < 0.01), and legs (r = 0.54, P < 0.05) were positively related to diagonal stride peak speed. In conclusion, skiers should aim to achieve a body composition with a high percentage of lean mass and low fat mass. A focus on trunk mass through increased muscle mass appears to be important, especially for double poling. The use of longer poles (percent body height) seems to be advantageous for both double poling and diagonal stride peak speed, whereas body dimensions do not appear to be a predictive factor. 21. SPONET-NR 017415 Stöggl, T., Lindinger, S. & Müller, E. (2007). Predictors of performance of the classical cross-country skiing sprint. In J. Kallio, P. V. Komi, J. Komulainen & J. Avela (Hrsg.), 12th Annual Congress of the European College of Sport Science, Jyväskylä, Finland - July 1114th 2007. Book of Abstracts (S. 467-468). Jyväskylä: University of Jyväskylä. (Prognosewerte für die Leistung im Skisprint im klassischen Stil; Internetzugriff unter: http://ecss2007.cc.jyu.fi/schedule/proceedings/pdf/1361.pdf) Skilanglauf | Sprint | Technik | Analyse | Biomechanik | Leistung | Hochleistungssport | Leistungssport | Physiologie | Sportphysiologie | O2-Aufnahme | Geschwindigkeit | Laktat | Bewegungskoordination | Bewegungsschnelligkeit | Bewegungsfertigkeit Sprint XC skiing was introduced in the mid f the 90s. Interestingly, the theme sprint-skiing is nearly untouched by scientific research up to now. Therefore published investigations are lacking and only a few comments about the sprint can be found. Hence, most knowledge is based on coaches’ experience or is adapted from studies in other sports. The specific aims of that project were a) to summarize results of numerous studies for the cross-country skiing sprint, and b) to examine relationships of measured biomechanical and physiologic variables and consequently extract the main predictors of performance for sprint cross country skiing. Methods: 31 XC skiers volunteered in the single studies. The level of performance ranged from national to World-Cup level. All used tests have already been investigated on reliability and validity in separate studies (see references). The majority of the tests were performed using roller skis on a large treadmill. A) For determination of maximal speed in double poling (DP) (grade 1.5 ) and diagonal stride (8 ), treadmill speed was steadily increased until the athlete was no longer able to handle the speed. B) In the VO2max test inclination was raised gradually every 30s at constant speed. C) Maximal power output and power endurance of the upper body was determined by a rollerboard test. D) DP sprint performance over race distance was measured in a 1000m test on the treadmill (1.5 ) using a velocity self control device. Athletes had to perform the 1000m with maximal possible speed from the beginning to calculate a fatigue index. E) A classical sprint competition was simulated on the treadmill, using the profile of the WC in Stockholm. Athletes passed through 3 sprint heats using the velocity self control device. Heart rate (HR), VO2, lactate, and cycle characteristics (video analysis) were measured. Finally all measured variables were correlated to 1000m DP performance and performance in the classical sprint competition. Results: High correlations towards sprint performance in the heats were found for maximal speed in DP (r=0.93) and diagonal stride (0.87), peak lactate post heat 3 (0.80), cycle length (0.77), and test time of the VO2max 17 test (0.74). No correlations were found for VO2max (0.51), VO2peak during the heats (<0.43), HR (0.16), and cycle frequency (0.06). Maximal DP speed showed the highest correlation to 1000m DP performance (r=0.95), followed by the fatigue index (-0.89), power endurance (0.83) and peak power output (0.78) of the upper body. Again no correlations between physiological parameters and 1000m performance were found. Discussion: Maximal speed in the single techniques was found to be the most predicting variable for classical sprint skiing. The high correlation of cycle length, but non existing correlation of cycle frequency to sprint performance illustrated that faster athletes could produce more propulsion at equal frequency. Additionally fastest athletes showed higher power output of the upper body and less fatigue. Together with the non significant correlation of VO2max and VO2peak it might be suggested that sprint performance was more dependent on muscle power factors than high aerobic performance. Owing to a relatively high level of VO2max in the group it might be argued that high VO2max should be the basis, but the ability of achieving maximal running speeds represents the cherry on the cake. 22. SPONET-NR 010031 Stone, M. H., Sands, W. A., Carlock, J., Callan, S., Dickie, D., Daigle, K., Cotton, J., Smith, S. L. & Hartman, M. (2004). The importance of isometric maximum strength and peak rateof-force development in sprint cycling. J. Strength & Condit. Res., 18 (4), 878-884. (Die Bedeutung der isometrischen Maximalkraft und der maximalen Kraftentwicklungsrate im Radsprint. Internetzugriff unter: http://journals.lww.com/nscajscr/Abstract/2004/11000/The_Importance_of_Isometric_Maximum_Strength_and.34.aspx) Radsport | Sprint | Kraft | Maximalkraft | Explosivkraft This study was designed to investigate the relationship of whole-body maximum strength to variables potentially associated with track sprint-cycling success. These variables included body composition, power measures, coach's rank, and sprint-cycling times. The study was carried out in 2 parts. The first part (n = 30) served as a pilot for the second part (n = 20). Subjects for both parts ranged from international-caliber sprint cyclists to locallevel cyclists. Maximum strength was measured using an isometric midthigh pull (IPF). Explosive strength was measured as the peak rate-of-force development (IPRFD) from the isometric force-time curve. Peak power was estimated from countermovement (CMJPP) and static vertical jumps (SJPP) and measured by modified Wingate tests. Athletes were ranked by the U.S. national cycling coach (part 1). Sprint times (from a standing start) were measured using timing gates placed at 25, 82.5, 165, 247.5, and 330 m of an outdoor velodrome (part 2). Maximum strength (both absolute and body-mass corrected) and explosive strength were shown to be strongly correlated with jump and Wingate power. Additionally, maximum strength was strongly correlated with both coach's rank (parts 1 and 2) and sprint cycling times (part 2). The results suggest that larger, stronger sprint cyclists have an advantage in producing power and are generally faster sprint cyclists. 23. SPONET-NR 009810 van Someren, K. A. & Palmer, G. S. (2003). Prediction of 200-m sprint kayaking performance. Can. J. Appl. Physiol., 28 (4), 505-517. (Voraussage der 200-m-Kajaksprint-Leistung; Internetzugriff unter: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract& l ist_uids=12904631) Kanurennsport | Kajak | Sprint | Anthropometrie | Leistung | Sportphysiologie | Leistungsfaktor 18 The aim of this study was to determine the anthropometric and physiological profile of 200m sprint kayakers and to examine relationships with 200-m race performance. Twenty-six male kayakers who were categorised in two ability groups, international (Int) and national (Nat) level, underwent a battery of anthropometric and physiological tests and a 200-m race. Race time was significantly lower in Int than Nat (39.9 +/- 0.8 s and 42.6 +/- 0.9 s, respectively). Int demonstrated significantly greater measures of mesomorphy, biepycondylar humeral breadth, circumferences of the upper arm, forearm and chest, peak power and total work in a modified Wingate test, total work in a 2-min ergometry test, peak isokinetic power, and peak isometric force. Significant relationships were found between 200-m time and a number of anthropometric variables and anaerobic and dynamometric parameters. Stepwise multiple regression revealed that total work in the modified Wingate alone predicted 200-m race time (R2=0.53, SEE=1.11 s) for all 26 subjects, while biepycondylar humeral breadth alone predicted race time (R2 = 0.54, SEE = 0.52 s) in Int. These results demonstrate that superior upper body dimensions and anaerobic capacities distinguish international-level kayakers from national-level athletes and may be used to predict 200-m performance. 24. SPONET-NR 017501 Westergren, J. (2007). Validity of laboratory sprint cycling. In J. Kallio, P. V. Komi, J. Komulainen & J. Avela (Hrsg.), 12th Annual Congress of the European College of Sport Science, Jyväskylä, Finland - July 11-14th 2007. Book of Abstracts (S. 615). Jyväskylä: University of Jyväskylä. (Validität von Radsprints unter Laborbedingungen; Internetzugriff unter: http://ecss2007.cc.jyu.fi/schedule/proceedings/pdf/2404.pdf) Radsport | Sprint | Test | Ergometrie | Untersuchungsmethode | Messverfahren A common practice in laboratories specialising in cycling related research is to modify stationary ergometers to allow for a more cycling specific lateral movement of the bicycle ergometer. Few studies have validated the need for such modifications. Aim: The aim of the present study was to compare power output in 2 types of sprint cycling tests performed either on a stationary ergometer or a mobile ergometer. To identify possible differences in performance related to the specifity of the ergometer. Methods: 8 male competitive cyclists age 21.3 (18-28) years, weight 74.4 (62-94) kg, height 178 (173-185) cm volunteered for the study. Each cyclist performed 3 low speed sprints from a standing start (LSS) and 3 high speed sprints (HSS) from a rolling start (100 rpm) on each ergometer on separate days in a counterbalanced crossover design. The stationary ergometer was a Monark 894E Peak Bike ergometer equipped with a SRM Training System professional Powermeter and the mobile ergometer was a Scott CR1 road racing bicycle equipped with the same SRM Powermeter. Sprints on the stationary ergometer were performed in a laboratory setting, sprints on the mobile ergometer were performed on a 400 m outdoor running track. All sprints on the stationary ergometer were performed against a load of 10, 12.5, 15% bodyweight. LSS sprints on the mobile ergometer were performed in a 53 X 17 gear and HSS were performed with gear changes allowed and freely chosen initial gear. Peak power output (PPO) for each sprint was recorded as the highest 0.5 second value and mean power output (MPO) was recorded as the highest 5.5 seconds value. Results: There was no difference in the PPO or MPO between the two ergometers for the two types of sprints. However there were large intraindividual differences between performance on the two ergometers. For one of the subject the difference was 23% between the two ergometers. The correlation for MPO was 0.83 and 0.89 for the LSS and HSS respectively. This suggests that modification of ergometers to allow for lateral movement is justified. 19 25. MFNR 307392 Zachariev, L. (2002). Finalnite bjaganija na 500 metra - zeni i maze, v sort treka na svetovnite parvenstva ot 1989 do 1995 godina. Sport i nauka , 46 (1), 50-63. (Finalläufe über 500 m – Männer und Frauen, Shorttrack - Weltmeisterschaften 19891995) Eisschnelllauf | Sprint | Shorttrack | Training | Biomechanik | Taktik | Technik Auf der Grundlage der Auswertung der Videoaufzeichnungen, der offiziellen Wettkampfprotokolle, persönlicher Beobachtungen und der Fachliteratur zu den Weltmeisterschaften über 500 m Männer und Frauen in den Jahren 1989-1995 geht Verf. die Lösung folgender Aufgaben an: 1. Analyse der Trainingsprogramme; 2. Ermittlung der typischen Laufweise der verschiedenen Laufschulen; 3. Ermittlung der Zahl der Laufschritte für jede einzelne Runde und der Startbeschleunigung; 4. Bestimmung der Zeit der Startrundenhälfte und der übrigen vier Runden; 5. Ermittlung der Zeit für einen Laufschritt der Startrundenhälfte und der übrigen vier Runden. Für die Sportpraxis gibt Verf. folgende Empfehlungen: 1. Über die 500-m-Strecke sollten die Athleten gleichmäßig gut laufen sowohl bei einer hohen als auch niedrigen Bewegungsfrequenz; 2. Das Trainingsprogramm sollte eine komplexe Entwicklung aller physischen Eigenschaften enthalten; 3. Auf der 500-m-Strecke sollte auf die Entwicklung der Schnellkraftausdauer Hauptaufmerksamkeit gelegt werden; 4. Um gute Leistungen im Sprint zu erzielen, muss der Athlet die Technik perfekt beherrschen; 5. Über die 500-m-Strecke sollte für jeden Läufer entsprechend seinen Eigenschaften und der Gleittechnik der geeignetste Rhythmus und die entsprechende Lauffrequenz gewählt werden. Schnürer (Dokument übernommen aus Datenbank SPOLIT) Training 26. SPONET-NR 001483 (1999). Hundred-meter freestyle-specific training using various interval training set designs. Zugriff am 01.09.1999 unter: http://wwwrohan.sdsu.edu/dept/coachsci/swimming/bullets/icar9091/icar27.htm (Spezifisches Training für die 100 m Freistil durch verschiedene Intervalltrainingsmethoden) Intervallmethode | Kraulschwimmen | Schwimmen | Sprint | Training The aerobic:anaerobic contribution to 100 m swimming is 40:60. This balance of energy demands can be provided by including the following sets in training: 10 x 50 m on 1:4 (best) or 1:8 work:recovery ratios and 5 x 100 m on 1:8 work:recovery ratio. The pace for each of the 50 or 100 m repeats should be as fast as possible. Implications: 20 A key consideration for sprint training is not tolerance of lactate or ability to maintain high lactate values but rather, the ability to always deliver energy at very high rates that result from specific energy adaptations. The recommended sets match the energy demands and hone the pace required for a maximum 100 m swim. By training the appropriate movement patterns in harmony with the correct balance of energy supply, the training effect will be a very specific form of adaptation that will transfer to the competitive 100 m event. (ICAR 1990-91 Report) 27. SPONET-NR 015501 (2008). Short Track Trainingskonzept 2006 - SLIC München e.V. Zugriff am 30.06.2008 unter: http://cmflex.slic.de/medienpool/slci_m77_37000000003/slci_slic_20070228195657_1_56 0244.pdf Organisierung | Belastungsumfang | Trainingsmethode | Wettkampf | Trainer | Ausbildung | Training | Shorttrack | Sportverein Zu den Inhalten des Trainingskonzepts 2006 des SLIC München e.V.: 1. Trainingsgruppen, Trainer 2. Trainingsumfänge und -anlagen 3. Übungsmethoden 4. Kriterien des Gruppenwechsels 5. Ziele 6. Wettkämpfe, Teilnahmeregeln 7. Lehrgänge 8. Kader, Einstufungen 9. Trainerausbildung 28. MFNR 178862 L319 Fekete, M. (1998). Periodized strength training for sprint kayaking/canoeing. Strength & Condit. J., 20 (6), 8-12. (Periodisiertes Krafttraining für die Sprintstrecke im Kanurennsport (Kajak/Canadier)) Kanurennsport | Sprint | Trainingsplanung | Kraft | Belastungsgestaltung | Wettkampfperiode Übersicht über Mesozyklen (MEZ), die im Jahresverlauf im Kanurennsport-Training absolviert werden: 1. MEZ "Allgemeine anatomische Vorbereitung": Dabei trägt das Krafttraining korrektiven/ regenartiven Charakter und ist stark individualisiert. Das muskuläre Gleichgewicht zwischen externen und internen Rotatoren ist wieder herzustellen. Krafttraining wird wöchentlich drei- bis viermal mit mittlerem Umfang, mittlerer Intensität und Übungsdichte absolviert. Es sollte mit 8 bis 12 Wiederholungen in guter technischer Ausführung langsam und technisch gut trainiert werden. Ziel ist es, die Knochenmasse und die Knochenmineraldichte, die Muskelmasse zu erhöhen, die Kraft in den Sehnen und Bändern zu erhöhen, das muskuläre Gleichgewicht zu verbessern und eine verbesserte Gewebebeweglichkeit zu erzielen. 2. MEZ "Kraftmaximierung": Es werden Verbesserungen in allen Bereichen der Kraft angestrebt (z. B. muskuläre Ausdauer, Schnelligkeitsausdauer). Das Krafttraining wird dreimal pro Woche mit mittlerem Umfang als komplexes Training und mit mittlerer bis mittelhoher Belastungsintensität absolviert. In diesem Mesozyklus werden zwei oder drei dynamische Strukturübungen in das Trainingsprogramm aufgenommen (Kraftumsetzen, Kraftreißen u. a.). Diese Übungen sollten unmittelbar nach der Erwärmung absolviert 21 werden. Daran sollten sich Übungen für den Oberkörper anschließen, in denen die Muskelgruppen angesprochen werden, die für den Kanurennsport entscheidend sind. Die Übungen sollten relativ sportartspezifisch sein und mit 6 bis 8 Wiederholungen und mit drei Serien trainiert werden (drei Minuten aktive Erholung dazwischen). Wichtig ist, die Belastung schrittweise zu erhöhen. Wenn eine Übung mit 12 Wiederholungen trainiert werden kann, ist es an der Zeit, die Last um 5-10 Prozent zu steigern (Wiederholungszahl dann 6 bis 8). In der vierten Woche sollte die Belastungsintensität wieder auf die Intensität der zweiten Woche gesenkt werden, um die Steigerung der Belastung zu verarbeiten. Der Mesozyklus dauert acht bis zwölf Wochen. 3. MEZ "spezifische Vorbereitung": Anfangs mit mittlerem Umfang, schrittweise Steigerung der Intensität durch schnellere Bewegungsausführung, nicht durch mehr Last. Training wird vor allem mit sportartspezifischen Übungen durchgeführt. Die Zahl der Wiederholungen und Serien wird erhöht, die Übungen werden auch schneller durchgeführt, die Erholungspausen werden verkürzt. Ziel ist die Steigerung der maximalen Kraftausdauer in der ersten Teilphase und der Schnelligkeitsausdauer in der zweiten Teilphase. Der Mesozyklus hat eine Länge von acht Wochen. Die trainierten Übungen sind u.a. Umsetzen aus dem Hang mit hoher Ausführungsgeschwindigkeit (2 Serien mit 8 bis 12 Wiederholungen und 60 bis 80% der maximalen Last). Belastungsintensität und -dichte sollte mittel mit aktiven Erholungsphasen von drei Minuten sein. In den ersten vier Wochen werden drei Krafttrainingseinheiten mit sportartspezifschen Übungen absolviert. Es werden schnelle konzentrische Aktionen mit totaler Relaxation des Antagonisten trainiert. Zwischen der konzentrischen und der exzentrischen Phase gibt es keine Pause. Die exzentrische Phase ist fast ein freier Fall mit einer nur minimalen exzentrischen Aktion. Kombinationsserien, in denen mehrere Übungen unter Einbeziehung der gleichen Hauptmuskelgruppen nur mit etwas veränderten Winkeln und Muskelrekrutierungsmustern trainiert werden, werden mit nur kurzen Erholungsphasen (20-25 Sekunden) zwischen den Serien absolviert. Die Wiederholungs- und Serienanzahl wird schrittweise erhöht. Das trifft auf diese Teilphase insgesamt zu. In der 2. Teilphase dieses Mesozyklus (Dauer acht Wochen) wird der Trainingsinhalt von Kombinationsserien hin zum Kreistraining verändert. Dabei wird mit hoher Ausführungsgeschwindigkeit trainiert, um zum Ende dieser Phase die Bewegungsgeschwindigkeit während des Wettkampfes zu übertreffen. Ziel ist die Maximierung der Schnelligkeitsausdauer. Diese Teilphase fällt mit dem Beginn des Wassertrainings zusammen. Das Krafttraining wird zweimal wöchentlich absolviert. Wenn bei den Trainingseinheiten auf dem Wasser bereits mit Intervallen trainiert wird, sollte das Kreistraining nach "leichten" Tagen auf dem Wasser absolviert werden. 4. MEZ "Wettkampfperiode": Erhaltung der Kraft, Schnellkraft und Kraftausdauer. Pro Wochen sollten zwei Einheiten mit relativ niedrigem Umfang, niedriger Intensität und Dichte im Krafttraining absolviert werden, die sechs bis sieben Tage vor dem Wettkampf abgeschlossen sein sollten. Diese Einheiten sollten enhalten: zwei bis drei serien mit dynamischen Strukturübungen bei 60 % des Maximums und drei Serien mit 8 bis 12 Wiederholungen mit vier bis sechs sportartspezifsichen Übungen bei 60 % des Belastungsmaximums. Die aktive Erholung sollte drei Minuten betragen. Die Einheitehn sollten durch mittleren Umfang und niedrige bis mittlere Intensität bei relativ schnellen Bewegungsausführungen, etwas unter Wettkampfgeschwindigkeit, gekennzeichnet sein. 29. MFNR 173228 L319; I.L.7.; 25899 Freas, S. J. (1995). Sprinting - A coach's challenge. Fort Lauderdale: ISHOF Publ. (Sprint - Eine Herausforderung für den Trainer) Schwimmen | Sprint | Training | allg. athlet. Ausbildung | Reaktion | Beweglichkeit | Trainingsplanung | Trainingsmethode | Wettkampfperiode | Vorbereitungsperiode 22 Das Buch wendet sich umfassend dem Training und der Vorbereitung für SprintSchwimmer zu. Verf. beleuchtet u. a. folgende inhaltlichen Aspekte: Ausrüstung für den Sprinter, Übungen an Land und zum Training der Reaktionsschnelligkeit, Beweglichkeit, Trainingsmethoden im Wasser, Besonderheiten von Srintern, Sasionplanung, Vorsaisoon, Wettkampfperiode, weitere wichtige Aspekte. Die zehn wichtigsten Punkte für den Sprinter sind: - Schwimme jeden Tag mit Wettkampftempo. - Schwimme das gesamte Jahr über bei 100 %, nicht nur während des Taperings. - Schwimme superschnell das gesamte Jahr über, nicht nur während des Taperings. - Absolviere kontinuierlich Landtraining zur Verbesserung von Kraft, kardiovaskulärerAusdauer, Muskelausdauer, Gewandheit und Beweglichkeit. - Absolviere spezielles Start- und Wendentraining (mindesten in 5 TE/Woche). - Übe Schwimmen ohne Atmung über 50 m bzw. mit nur sehr wenigen Atemzügen über 100 m (höhere Geschwindigkeit, bessere Körperlage). - Realisiere einen hohen Beinschlag (Fersen 22-38 cm über der Wasseroberfläche) (bessere Körperlage). - Absolviere Reaktionstraining jeden Tag. - Verändere das Training bei Verringerung der Geschwindigkeit. - Sei fröhlich und zuversichtich, schlafe reichlich, ernähre dich gesund. Vier wichtige Punkte zu Start und Wende: - Je flacher der Körper bezüglich zur Wasserfläche, desto schneller bzw. weiter wendet der Körper bzw. drückt sich ab. - Je länger der Kopf in einer stromlinienförmigen Position verbleibt, desto höher wird die Geschwindigkeit und desto größer die bei der Wende zurückgelegte Strecke. Der Kopf sollte mindestens für 4 Züge in dieser Position verbleiben. - Es kann nach Start bzw. Wende nicht schnell genug mit dem Einsatz der Beine begonnen werden. - Entscheidend ist ein exakter Anschlag am Ende. Der Kopf sollte flach nach unten gehalten werden, während die Fingerspitzen beim Anschlag verfolgt werden. Weitere wichtige Punkte: - Im Freistilschwimmen kommt es immer zu einem Geschwindigkeitsverlust, wenn die Schulter durch Längsrotation ins Wasser geführt wird. - Es ist wichtig für Sprinter, die Schmerzgrenze nach oben zu verschieben. - Unnötige Ablaufstörungen im Umfeld eines Sprinters sollten vermieden werden. - Übertraining in der Vorsaison ist zu vermeiden. - Es ist ständig mehr zu fordern, jedoch immer unter Beachtung der mentalen Verfassung. - Sprinter sollten nie das Gefühl haben, härter als andere zu arbeiten. 30. MFNR 304437 L319; I.L.7.; 27772 Girold, S., Maurin, D., Dugue, B. & Millet, G. (2006). Dry-land vs. resisted and assisted sprint exercises on swimming sprint performances. In P. Hellard, M. Sidney, C. Fauquet & D. Lehenaff (Hrsg.), First international symposium sciences and practices in swimming (S. 148-150). Biarritz: Atlantica. (Der Einfluss von Landtraining vs. erschwerter und unterstützter Sprintübungen auf die Leistung im Schwimmsprint) Schwimmen | Sprint | Training | Kraft | Technik | Trainingsmethode | Trainingsmittel | Relation | Leistung Twenty-one competition-level swimmers were randomly divided into three groups: Strength (S), Resisted-and Assisted-Sprint (RAS) and Control (C). During 12 weeks, all 23 swimmers trained six days per week, with two strength dry-land or two RAS sessions for S and RAS, respectively. Barbells were used in Strength training and elastic tubes were used to generate over-strength and over-speed in RAS training. Prior, during (6* week) and after the training period, strength of the elbow flexors and extensors was measured with an isokinetic dynamometer and speed, stroke rate, stroke length and stroke depth recorded using an underwater video System during a 50 m sprint event. After the training period, swimming velocity, elbow flexors and extensors strength increased (p<0.05) while stroke depth decreased in S and RAS (p<0.05). In addition, stroke rate increased in RAS (p<0.05). However, Overall, only slight differences between S and RAS methods were observed despite the greater specificity of RAS in swimmers. No increase in swimming velocity was observed in C. 31. SPONET-NR 013524 Girold, S., Calmels, P., Maurin, D., Milhau, N. & Chatard, J. C. (2006). Assisted and resisted sprint training in swimming. J. Strength & Condit. Res., 20 (3), 547–554. (Unterstütztes und erschwertes Sprinttraining im Schwimmen; Internetzugriff unter: http://nsca.allenpress.com/nscaonline/?request=get-abstract&doi=10.1519%2FR-16754.1) Schwimmen | Sprint | Training | Trainingsmethode | Widerstand | Kraft | Schnelligkeit | Geschwindigkeit This study was undertaken to determine whether the resisted-sprint in overstrength (OSt) or the assisted-sprint in overspeed (OSp) could be efficient training methods to increase 100-m front crawl performance. Thirty-seven (16 men, 21 women) competition-level swimmers (mean ± SD: age 17.5 ± 3.5 years, height 173 ± 14 cm, weight 63 ± 14 kg) were randomly divided into 3 groups: OSt, OSp, and control (C). All swimmers trained 6 days per week for 3 weeks, including 3 resisted or assisted training sessions per week for the groups OSt and OSp respectively. Elastic tubes were used to generate swimming overstrength and overspeed. Three 100-m events were performed before, during, and after the training period. Before each 100-m event, strength of the elbow flexors and extensors was measured with an isokinetic dynamometer. Stroke rate and stroke length were evaluated using the video-recorded 100-m events. In the OSt group, elbow extensor strength, swimming velocity, and stroke rate significantly increased (p < 0.05), while stroke length remained unchanged after the 3-week training period. In the OSp group, stroke rate significantly increased (p < 0.05) and stroke length significantly decreased (p < 0.05) without changes in swimming velocity. No significant variations in the C group were observed. Both OSt and OSp proved to be more efficient than the traditional training program. However, the OSt training program had a larger impact on muscle strength, swimming performance, and stroke technique than the OSp program. 32. SPONET-NR 015007 Girold, S., Maurin, D., Dugue, B., Chatard, J. C. & Millet, G. (2007). Effects of dry-land vs. resisted-and assisted-sprint exercises on swimming sprint performance. J. Strength & Condit. Res., 21 (2), 599-605. (Auswirkung von Landtraining vs. Widerstands- bzw. unterstütztes Training auf die Schwimmsprintleistung; Internetzugriff unter: http://www.nsca-jscr.org/pt/re/jscr/abstract.00124278-200705000-00054.htm) Schwimmen | allg. athlet. Ausbildung | Training | Trainingsmittel | Trainingsmethode | Trainingswirkung | Leistung | Sprint This study was undertaken to compare the effects of dry-land strength training with a 24 combined in-water resisted- and assisted-sprint program in swimmer athletes. Twenty-one swimmers from regional to national level participated in this study. They were randomly assigned to 3 groups: the strength (S) group that was involved in a dry-land strength training program where barbells were used, the resisted- and assisted-sprint (RAS) group that got involved in a specific water training program where elastic tubes were used to generate resistance and assistance while swimming, and the control (C) group which was involved in an aerobic cycling program. During 12 weeks, the athletes performed 6 training sessions per week on separate days. All of them combined the same aerobic dominant work for their basic training in swimming and running with their specific training. Athletes were evaluated 3 times: before the training program started, after 6 weeks of training, and at the end of the training program. The outcome values were the strength of the elbow flexors and extensors evaluated using an isokinetic dynamometer, and the speed, stroke rate, stroke length, and stroke depth observed during a 50-meter sprint. No changes were observed after 6 weeks of training. At the end of the training period, we observed significant increases in swimming velocity, and strength of elbow flexors and extensors both in the S and RAS groups. However, stroke depth decreased both in the S and RAS groups. Stroke rate increased in the RAS but not in the S group. However, no significant differences in the swimming performances between the S and RAS groups were observed. No significant changes occurred in C. Altogether, programs combining swimming with dryland strength or with in-water resisted-and assisted-sprint exercises led to a similar gain in sprint performance and are more efficient than traditional swimming training methods alone. 33. SPONET-NR 011717 Glaister, M., Stone, M. H., Stewart, A. M., Hughes, M. & Moir, G. L. (2005). The influence of recovery duration on multiple sprint cycling performance. J. Strength & Condit. Res., 19 (4), 831-837. (Der Einfluss der Erholungsdauer auf die Mehrfach-Sprint-Leistung im Radsport; Internetzugriff unter: http://www.nsca-jscr.org/pt/re/jscr/abstract.00124278-20051100000018.htm;jsessionid=J4RWv9J2Rhv654rxbphGdgTCmG2WMJz3vPMQQ8jC3JsynLXGL myM!976670012!181195 629!8091!-1) Radsport | Leistung | Sprint | Belastungsgestaltung | Wiederherstellung | Relation | Intervallmethode The purpose of this study was to examine the influence of recovery duration on various measures of multiple sprint cycling performance. Twenty-five physically active men completed 2 maximal multiple sprint (20 × 5 seconds) cycling tests with contrasting recovery periods (10 or 30 seconds). The mean ± SD values for age, height, and body mass were 20.6 ± 1.5 years, 177.2 ± 5.4 cm, and 78.2 ± 8.2 kg, respectively. All tests were conducted on a friction-braked cycle ergometer. Longer (30 seconds) recovery periods resulted in significantly (p < 0.05) higher measures of maximum ( 4%) and mean (26%) power output, the former appearing to result from a potentiation effect during the first few sprints. Thirty-second recovery periods also corresponded with significantly lower measures of fatigue (absolute difference: 16.1%; 95% likely range: 14.1-18.2%), heart rate, respiratory exchange ratio, and oxygen uptake. Blood lactate and ratings of perceived exertion (6-20 scale) increased progressively throughout both protocols and were significantly lower with 30-second recovery periods. The results of this study illustrate the considerable influence of recovery duration on various measures of multiple sprint work. Although the precise mechanisms of this response require further investigation, coaches and sport scientists should consider these findings when attempting to develop or evaluate the performance capabilities of athletes involved in multiple sprint sports. 25 34. SPONET-NR 015008 Glaister, M., Stone, M. H., Stewart, A. M., Hughes, M. G. & Moir, G. L. (2007). The influence of endurance training on multiple sprint cycling performance. J. Strength & Condit. Res., 21 (2), 606-612. (Der Einfluss von Ausdauertraining auf die Mehrfach-Sprintleistung im Radsport; Internetzugriff unter: http://www.nsca-jscr.org/pt/re/jscr/abstract.00124278-200705000-00055.htm) Radsport | Sprint | Leistung | Training | Ausdauer The aims of the present study were to examine the effects of endurance training on multiple sprint cycling performance and to evaluate the influence of recovery duration on the magnitude of those effects. Twenty-one physically active male university students were randomly assigned to either an experimental (n = 12) or a control (n = 9) group. The experimental group cycled for 20 minutes each day, 3 times per week, for 6 weeks at 70% of the power output required to elicit maximal oxygen uptake (VO2max). Multiple sprint performance was assessed using 2 maximal (20 X 5 seconds) sprint cycling tests with contrasting recovery periods (10 or 30 seconds). All tests were conducted on a frictionbraked cycle ergometer. Relative to controls, training resulted in a 0.2 L/min increase in mean VO2max (95% likely range: -0.04 to 0.44 L/min). Changes in anaerobic capacity (determined by maximal accumulated oxygen deficit) over the same period were trivial (p = 0.96). After training, the experimental group showed significant improvements (~40 W), relative to controls, in multiple sprint measures of peak and mean power output. In contrast, training-induced reductions in fatigue were trivial (p = 0.63), and there were no significant between-protocol differences in the magnitude of any effects. In summary, 6 weeks of endurance training resulted in substantial improvements in multiple sprint cycling performance, the magnitude of the improvements being largely unaffected by the duration of the intervening recovery periods. 35. SPONET-NR 016886 Gmünder, F. K. (2009). Neue australische Sprint-Trainingsmethode. Zugriff am 20.05.2009 unter http://www.svl.ch/AustralianTraining) Schwimmen | Sprint | Training | Trainingsmethode | Australien Videosequenz zu einer neuen Methodik zur Verbesserung des Sprinttrainings im Schwimmen im Norden Australiens. Ein Fernsehteam von CNN hatte Gelegenheit, dem Schwimmteam aus Darwin beim Training zuzuschauen. 36. SPONET-NR 016667 Gmünder, F. K. (2009). Gary Halls Meinung: Wie ein Sprinter trainieren muss. Zugriff am 06.04.2009 unter: http://www.svl.ch/SprinterGaryHall/ Schwimmen | Sprint | Training | Belastungsumfang | Belastungsintensität In diesem Artikel philosophiert Gary Hall, 10-facher Olympiamedaillengewinner trotz Zuckerkrankheit, über den Sinn des Distanztrainings für Sprinter. 37. MFNR 305534 L319 Goldsmith, W. (2008). Faster free: The 7-step approach to the ultimate 50. Swimm. World Mag., 49 (11), 40-41. (Schneller Kraulschwimmen: Die 7 Schritte zum ultimativen 50er) Schwimmen | Kraulschwimmen | Sprint 26 Die 7 wichtigsten Tipps für ein schnelles 50-m-Freistilrennen: 1. Im Vorstartbereich: relaxen! 2. Hinter dem Startblock: Fokussieren! 3. Auf dem Block: Explosivität aufbauen, ruhig atmen, die Energie steuern. 4. Den Fluss unter Wasser nutzen, konzentrierte Beinarbeit. 5. Zwischen 15 und 35 m einen ruhigen Rhythmus durchziehen, nicht verspannen! 6. Finish: Auf den letzten 15 m alles geben! Schmerzen und das Verlangen nach Atmen ignorieren, nicht "austrudeln"! 7. Die letzten 5 m sehr kontrolliert schwimmen (Armzüge, Beinschläge und Atmung kontrollieren) - sicherstellen, dass der Anschlag mit maximaler Geschwindigkeit erfolgt. 38. MFNR 178602 L319 Graham, J. F. (1998). Strength training for elite sprint cyclists. Strength & Condit. J., 20 (2), 53-60. (Krafttraining für Radsprinter der Spitzenklasse ) Radsport | Sprint | Training | Kraft | Trainingsplanung | Übungszusammenstellung | Leistungssport | Hochleistungssport Vorgestellt wird ein Krafttrainingsprogramm, das sich nach Aussage des Autors für Radsprinter im Spitzenbereich als erfolgreich erwiesen hat. Das Programm untergliedert sich in Teilprogramme für - die Übergangsphase von der Wettkampfsaison in das Sommertraining (15.-30.9./15.30.1.) - Hypertrophiephase in einem frühen Stadium des Trainingsprozesses (1.-15.10./1.15.1./16. - 31.10./16.-31.1.) - Phase des allgemeinen Krafttrainings (1.-15.11./1.-21.2./16.-30.11./22.2.-15.3.) - Schnellkraftphase (1.-15.12./16.3.-7.4./16.-31.12./8.-30.4.) - Wettkampfphase (1.-31.Mai/1.-30.6.). Für jede der Phasen wird ein Trainingsplan mit den Kennzeichen: Bewegungsschnelligkeit, Belastunsintensität, Wiederholungszahl, Anzahl Sätze/Übungen, Verhältnis Belastung - Erholung, Schritte in der Belastungssteigerung und Trainingsübungen vorgestellt. Als besonders bedeutsam wird der Einsatz von Trainingsübungen mit geschlossenen kinetischen Ketten gekennzeichnet, da sie dem Bewegungsmuster beim Radsprint entsprechen. Außerdem wird betont, daß mit den eingesetzten Übungen das grundlegende Bewegungsmuster und die Belastungen in den beteiligten Gelenken simuliert werden sollen, die für den Radsprint typisch sind (konzentrische und exzentrische Bewegungsmuster bei gleichzeitiger Stabilisierung und Beschleunigung bzw. Abbremsung der Bewegung). 39. MFNR 179320 L319 Heim, S. (2002). Erfahrungen mit dem differenzierten Trainingsansatz im Schwimmsport. Leistungssport, 32 (3), 64-70. Schwimmen | Training | Trainingskonzeption | Belastungsgestaltung | Belastungsumfang | Sprint | Langstrecke | Spezialisierung Es werden die Notwendigkeit einer Trainingsdifferenzierung im Schwimmsport für Sprinter und Langstreckler aufgrund sportmedizinischer und trainingswissenschaftlicher Erkenntnisse dargestellt und die Effektivität einer Trainingsdifferenzierung belegt. 27 40. MFNR 304245 L319 Herland, C.-T. (2007). Noen sekunder med full fart. SkiSport, (6), 72-73. (Einige Sekunden mit vollem Tempo) Skilanglauf | Hochleistungssport | männlich | Norwegen | Training | Trainingsplanung | Sprint | Belastungsumfang | Belastungsintensität Kurzbericht vom Herbsttraining der norwegischen Nationalmannschaft Sprint-Skilanglauf in Indre Ostfold. Nationalmannschafttsrainer U. M. Aune zum Training seines Teams: "Es wird öfter und intensiver Kraft trainiert. Es gibt mehr intensive Einheiten für die Beine, an Treppen, auf Skirollern und auf Ski. In der Sprintnationalmannschaft werden die auf Kraft und Schnelligkeit orientierten Einheiten zu den harten Einheiten gezählt. Von rund 550 Trainingseinheiten (800 Stunden) eines Mitglieds der Sprint-Nationalmannschaft sind 180225 zu den harten Einheiten zu rechnen. Der Rest ist locker, Einheiten mit mittlerer Intensität gibt es eigentlich nicht, nur noch Ausdauer orientierte Einheiten zur Grundlangenausbildung. Die Wettkampfzeit im Sprint liegt zwischen 1:50 und 3:30 Minuten. Diese Leistung wird viermal hintereinander abgefordert, die Besten müssen dann innerhalb einer Stunde dreimal 'ran. Die mit der besten Ausdauer werden im Wettkampfverlauf immer besser, haben es aber manchmal schwer, in der Qualifikation und im Viertelfinale gegen die ausgeprägten Sprinter zu bestehen. Die Belastungsanforderungen haben sich bei den Skilangläufern in den letzten Jahren wesentlich verändert (weniger Strecken über 15 km). Meistens handelt es sich um ein hohes Tempo und Tempowechsel (kürzere und flachere Kurse). Und es gibt kaum noch eine Strecke und Massenstart. Das Sprinttraining ist dabei besonders hart, nicht zuletzt mental." Es werden Beispiele für Trainingswochen vorgestellt: harte Trainingswoche: Montag Einheit 1: russisches Intervall 3-5 Minuten, 6 hoch intensive Einlagen Einheit 2: Kraft, zuerst Medizinballtraining 20-30 Min., danach Kraftraum für 45 Min. mit freien Gewichten, 6-8 Wiederholungen pro Serie, individuell angepasst, Übungen für die Beine, den Rücken, den Bauch und den Oberkörper. Seitdem die Sportler mit freien Gewichten trainieren steht auch Gleichgewichtsttraining für alle Körperregionen auf dem programm. Dienstag Einheit 1: Skiroller mit Schlittschuhschritt 9 hochintensive Belastungsphasen von 15-25 Sekunden Einheit 2: Treppentraining, 25 Runden treppauf, 90-120 Stufen, verschiedene Übungen Mittwoch (immer der Tag für lange Touren) Einheit 1: lange Tour auf Skirollern, 2 Std. Einheit 2: Lauftour - 1.30-2 Std. Donnerstag Einheit 1: Distanztraining, Skiroller klassischer Stil, 45 Minuten Einheit 2: Schnelligkeit, Lauf, 6-9 hochintensive Belastungsphasen mit je 25 Sek. Freitag Einheit 1: Kraft Einheit 2: Wiederherstellung, Lauf/Rad 28 Sonnabend Einheit 1: Imitationsübungen Einheit 2: Wiederherstellungseinheit oder frei Sonntag lange Tour mittel harte Trainingswoche: hier müssen im Vergleich zur harten Trainingswoche nur die Schnelligkeitseinheit und eine Kraft- oder Ausdauereinheit weggelassen werden, ansonsten sehr ähnlich leichte Trainingswoche: Montag Einheit 1: Intervalltraining – kann auf längeren Strecken erfolgen Einheit 2: Kraft Dienstag Treppentraining Mittwoch lange Tour (3 Std. oder 1.5 Std.) Donnerstag Einheit 1: Schnelligkeit Einheit 2: Wiederherstellung Freitag lange Tour, 2 Std. Sonnabend Einheit 1: Intervalltraining Einheit 2: freiwillige Teilnahme Sonntag lange Tour Das in dieser Saison gewählte Trainingsmodell wurde komplett von der Abteilung Trainingswissenschaft von Olympiatoppen entwickelt. Um die Sprintnationalmannschaft wurde folgendes Trainer- und Beraterteam gebildet: NM-Trainer: Ulf Morten Aune, Sportlicher Leiter: Age Skinstad, verantwortlicher Trainer für Schnelligkeit, Explosivität und Ausdauer: Bevorn Rodal, verantwortlicher Trainer für Kraft: Katarina Sederholm Hoff, Kontaktperson Olympiatoppen: Atle Kvalsvoll ("er stellt die kritischen Fragen"), Physiologe mit Höhentrainingserfahrungen: Erlend Hem, Verantwortlicher für Lauftechnik, Wachs und medizinische Maßnahmen: Vidar Lofshus. 41. SPONET-NR 018468 Holmberg, H.-C. (2009). Some reflections re: the Training Puzzle for a competitive XC Skier. Zugriff am 01.12.2009 unter: http://www.ussa.org/magnoliaPublic/dms/documents/2007-08/US-TR-CENTER-C-SPRING S-L1/US%20TR%20CENTER%20C%20SPRINGS%20L1.pdf (Einige Gedanken zum Trainingspuzzle eines Skilangläufers im Leistungssport) Skilanglauf | Sprint | Hochleistungssport | Leistungssport | Training | Trainingsplanung | Belastungsgestaltung | Sportphysiologie | Adaptation | Laktat | O2Aufnahme | maximal | Leistung PowerPoint-Präsentation zu verschiedenen Aspekten des Trainings von Skilangläufern im Leistungssport aus der Sicht der Forschungsabteilung des schwedischen NOK. 29 42. MFNR 307395 Kolev, I. & Dojcev, P. (2006). Optimizirane na podgotovkata za disciplinata 1000 m ot mjasto v koloezdacnija sport. Sport i nauka, 50 (4), 35-40. (Optimierung des Radsporttrainings in der Disziplin 1000 m stehender Start) Radsport | Bahnradsport | Training | Sprint Ziel vorliegender Studie ist der Versuch zur Effektivierung des Trainingsprozesses durch Optimierung der Vorbereitung und Krafteinteilung auf der Wettkampfstrecke, wobei folgende Aufgaben in Angriff genommen werden: 1. Ermittlung des Niveaus der physischen Vorbereitung bei Radsportlern mittleren und hohen Niveaus; 2. Festlegung eines optimalen Testkomplexes zur Kontrolle, Bewertung und Optimierung der körperlichen Vorbereitung; 3. Vergleich der Aufteilung der Kräfte auf der Wettkampfstrecke. An den Untersuchungen (morphologische Erhebungen, sportpädagogische Tests zur Kontrolle, Bewertung und Systematisierung der körperlichen Vorbereitung, Tests zur Kontrolle der Krafteinteilung) nahmen 20 Radsportler mit mittlerem und hohem Niveau teil. Die statistische Auswertung führt zu folgenden Ergebnissen: 1. Auf der Basis einer guten körperlichen Vorbereitung, einer richtig gewählten Tretfrequenz und Pedalarbeit wird die Qualität des Rennens bestimmt. Ein ideales Mittel zur Kontrolle sei zu diesem Zweck die grafische Darstellung des Rennverlaufs, wobei deutlich wird, in welchen Amplituden gefahren wurde; 2. Die Kultivierung eines gleichmäßigen Rhythmus in der Vorbereitung verbessert die Leistungen eines jeden Fahrers um 1-3 Sekunden; 3. Es sollte mehr Aufmerksamkeit auf solche Tests gelegt werden, die ein höheres Faktorengewicht haben und in größerem Maße die sportliche Leistung bestimmen. Schnürer (Dokument übernommen aus Datenbank SPOLIT) 43. SPONET-NR 009569 Liow, D. K. & Hopkins, W. G. (2003). Velocity specificity of weight training for kayak sprint performance. Med. Sci. Sports Exerc., 35 (7), 1232-1237. (Die Geschwindigkeitsspezifik des Krafttrainings für die Leistung im Kajaksprint; Internetzugriff unter: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract& l ist_uids=12840647) Kajak | Kanurennsport | Kanusport | Kraft | Schnelligkeit | Sprint | Training | Trainingsmethode Purpose: Athletes often use weight training to prepare for sprint events, but the effectiveness of different types of weight training for sprinting is unclear. We have therefore investigated the effect of slow and explosive weight training on kayak sprint performance. Methods: Twenty-seven male and 11 female experienced sprint kayakers were randomized to slow weight training, explosive weight training, or control (usual training) groups. Weight training consisted of two sessions per week for 6 wk; in each session the athletes performed 3-4 sets of two sport-specific exercises with a load of 80% 1-repetitionmaximum. The two training programs differed only in the time taken to complete the concentric phase of the exercises: slow, 1.7 s; explosive, <0.85 s. To determine the effects of training on sprint acceleration and speed maintenance, the athletes performed 15-m kayaking sprints pre- and posttraining; an electronic timing system provided sprint times at 3.75-, 7.5-, and 15-m marks. Results: Relative to control, both types of weight training substantially improved strength and sprint performance. The improvements in mean sprint time over 15 m in each group 30 were: slow, 3.4%; explosive, 2.3%; control, -0.2% (90% confidence limits for pairwise differences, approximately +/-1.4%). Over the first 3.75 m, the improvements were: slow, 7.1%; explosive, 3.2%; control, 1.4% ( approximately +/-2.6%). Over the last 7.5 m, the improvements were: slow, 2.1%; explosive, 3.0%; control, -0.8% ( approximately +/-1.9%). Conclusions: Slow weight training is likely to be more effective than explosive training for improving the acceleration phase of sprinting, when force is high throughout the length of the stroke. Explosive weight training may be more effective in speed maintenance, when forces are developed rapidly over a short period at the start of the stroke. 44. MFNR 307396 Lychatz, S. (1993). Grundprinzipien der Ausprägung maximaler Geschwindigkeiten im Radsport-Sprint und Folgerungen für Sprint und Kurzzeitausdauer-Disziplinen. In R. Mouchbahani/Württembergischer Leichtathletik-Verband e.V. (Hrsg.), Seminarbericht Trainerseminar Schnelligkeit: 03.-05. April 1993 (S. 41-52). Kornwestheim: SalamanderDruck. Radsport | Sprint | Schnelligkeit | Training | Kurzzeitausdauer Die vorrangigen physischen Fähigkeiten des Radsprinters sind die Sprintkraft, die Sprintschnelligkeit und die Sprintausdauer. Diese Fähigkeiten werden in Standardprogrammen geschult und mit Trainingsformen zur Schaffung des Grundlagenausdauervermögens (18 % des Ganzjahrestrainings) verbunden. Der Erarbeitung eines hohen Sprintkraftniveaus wurden 1985/86 im Jahr etwa 240 Stunden im Kraftraum, 60 Stunden auf dem Ergometer und 80 Stunden auf der Rennbahn gewidmet (= 30 % des Gesamtjahrestrainings). Das methodische Ziel der Sprintkrafterarbeitung ist, höchste Widerstände in der Startphase bewältigen zu können. Dabei ist das Grundprinzip, höhere Widerstände im Training als im Wettkampf zu verwenden. Wesentlich ist, dass das Sprintkrafttraining ganzjährig realisiert wird und in Schwerpunktphasen bis zu vier Trainingseinheiten im Maximalkrafttraining pro Woche erfolgt. Die Grundform des Sprint-Schnelligkeitstrainings (15 % des Ganzjahrestrainings) ist im Radsprint das Standardprogramm über 300 m fliegend. Neben der Schulung der energetischen Prozesse steht im SprintSchnelligkeitstraining die innermuskuläre Koordination und nerval-muskuläre Ansteuerung bei zu steigernden Bewegungsfrequenzen im Vordergrund. Das Sprintausdauertraining wird als Überdistanztraining bis zu 500 m fliegend mit submaximalem Charakter bestritten, wobei im Wiederholungstraining die Pausenlänge bei 25 min liegt. Etwa 30 % Aufwand am Ganzjahrestraining wird für das Sprintausdauertraining zur Schulung laktazid-anaerober Prozesse verwendet. Schiffer (Dokument übernommen aus Datenbank SPOLIT) 45. MFNR 176921 L319; I.G.2.; 26338 Peyrebrune, M., Toubekis, A., Lakomy, H. & Nevill, M. (2001). Effects of active and passive recovery on performance during repeated sprint swimming. In Book of abstracts of the 6th annual congress of the European College of Sport Science, 15th congress of the German Society of Sport Science. Cologne, 24-28 July 2001 (S. 1178). Köln: Sport und Buch Strauß. (Wirkungen von aktiver und passiver Wiederherstellung auf die Leistung während wiederholter Schwimmsprints) Schwimmen | Wiederherstellung | Sprint | Ermüdung | Belastungsgestaltung 31 Zielstellung: Untersuchung der Wirkung von aktiver und passiver Wiederherstellung während wiederholter Schwimmsprintserien. Probanden/Methoden: 8 männliche Eliteschwimmer, 3 separate zufällig angeordnete Versuche bestehend aus 2 Kraulschwimmserien. Serie A: 4x30 s hochintensives angebundenes Schwimmen mit 30 s passiver Ruhe bei allen Versuchen. Serie B: 5 min nach Beendigung von Serie A, 5x50 Yards maximale Schwimmsprintwiederholungen in Intervallen von 2 min. Die 5 min Pause zwischen Serie A und B und die Wiederherstellung zwischen den Wiederholungen in Serie B erfolgte in einem Fall passiv (PP-Versuch). In den zwei anderen Fällen war die Pausengestaltung zwischen Serie A und B aktiv, die Wiederherstellung zwischen den Wiederholungen in Serie B entweder aktiv (AA-Versuch) oder passiv (AP-Versuch). Das Tempo der aktiven Wiederherstellung betrug 60 % der Durchschnittsgeschwindigkeit der individuellen Bestleistung über 100 m Kraulschwimmen. Ergebnisse: - Leistung und Stoffwechselreaktion nach Serie A war zwischen den Versuchen gleich. - Die Abnahme der Leistung während Serie B des AP-Versuchs war weniger ausgeprägt als bei AA oder PP. Die kombinierten Zeiten für die 4 Wiederholungen während AP waren ca. 1 % und 2,5 % schneller als bei PP und AA. - Blutlaktat nach Serie B war höher und Blut-pH niedriger bei PP und AP im Vergleich zu AA. Die mittlere Schlagfrequenz während Serie B war bei AA niedriger im Vergleich zu AP und PP. Schlussfolgerung: Aktive Erholung wird als nützliches Mittel zur Verzögerung der Ermüdung während Sprintschwimmtraining angesehen. 46. MFNR 307389 L319 Povarescenkova, Ju. A. & Avdeev, A. A. (2006). Issledovanie dvigatel’nych sposobnostej lyznikov-gonscikov pri podgotovke k sprinterskim distancijam. Teor. i Prakt. fiz. Kul't., (11), 37-38. (Untersuchung der motorischen Fähigkeiten von Skilangläufern bei der Vorbereitung auf Sprintstrecken) Skilanglauf | Sprint | Training | Bewegungsfertigkeit | motorisches Lernen Verf. berichten über ihre Untersuchungen zur Entwicklung der motorischen Fähigkeiten beim Skilauf über kurze Strecken zum Zwecke einer rationellen Nutzung der verbreitetsten Vorbereitungsmittel und- methoden. Tests für die etappenweise Kontrolle zur Bestimmung des Einflusses der motorischen Fähigkeiten auf die sportliche Leistung im Skisprint wurden auf logischer und empirischer Basis durchgeführt. In der ersten Etappe wurden Tests gewählt, die in der Struktur der Ausführung und im Charakter der Energiebereitstellung ähnlich der Wettkampftätigkeit waren. In der zweiten Etappe wurde der Informationsgrad der Tests durch eine Korrelationsanalyse bestimmt. Die Tests erfolgten zu Beginn der Vorbereitung über einige Tage hinweg. Zunächst wurden unter Laborbedingungen PWC170-Tests, am zweiten Tag Tests auf einem Ergometer, am dritten Tag Klimmzüge und ein 1500 m Geländelauf und am vierten Tag ein 5000 m Geländelauf durchgeführt. Die Auswertung der Versuchsergebnisse führte zu der Schlussfolgerung, dass zur Intensivierung der Vorbereitung auf Sprints die Kraft der Muskeln der unteren Extremitäten und der Muskeln der Unterarme zu entwickeln ist. Informative Tests für die etappenweise Kontrolle der Entwicklung der motorischen Eigenschaften der Sprinter sind der 30-er Sprung und der Geländelauf über 5000 m. Schnürer (Dokument übernommen aus Datenbank SPOLIT) 32 47. SPONET-NR 006988 Reid, A. K. & Sleivert, G. G. (1999). The effects of concurrent aerobic and anaerobic training versus sequenced training on 80 s cycling. Med. Sci. Sports Exerc., 31 (5), 789. (Die Wirkungen von gleichzeitigem versus aufeinanderfolgendem aeroben und anaeroben Training auf die 80-s-Radfahrleistung; Internetzugriff unter: http://coachsci.sdsu.edu/csa/vol71/reid.htm) aerob | anaerob | Leistung | Radsport | Sprint | Trainingsmethode This study investigated the influence of concurrent versus sequenced aerobic and anaerobic training on supramaximal cycling performance. Trained cyclists of both genders (N = 24) trained for a total of 19 weeks. The first five weeks established a stable baseline level of fitness. Then Ss were randomly assigned to either a concurrent 12-week aerobicanaerobic training group, or a sequential 6-week aerobic, 6-week anaerobic training group. Sixty training sessions were completed, at a rate of five training sessions per week. Assessments were made at the end of each 6-week block of training. Both groups improved similarly in performance after 12 weeks of training. However, the way in which the 80-s test was completed differed between the groups. The concurrent group improved mainly because of an increase in maximal power at each stage of the test. No changes in aerobic function were revealed. The aerobic training group demonstrated changes associated with metabolic factors. The order or mix of anaerobic and aerobic training does not differentially affect cycling performance. Rather, the total training volume is associated most with performance changes. Implication: Training volume, not type of training, is associated most with sprint performance improvements in cyclists. 48. SPONET-NR 001075 Rushall, B. S. (1999). An ignored scientific component of sprint swimming training. Zugriff am 06.07.1999 unter: http://www-rohan.sdsu.edu/dept/coachsci/swimming/bullets/ultra28.htm (Eine ignorierte wissenschaftliche Komponente im Sprint-Schwimm-Training) Trainingsplanung | Schwimmen | Training | Sprint The following discussion concerns a factor that governs the maximization of sprinting ability in swimming. Its contents have been known for more than 30 years but have largely been ignored by coaches. Some of the main aspects: - Speed improvements are primarily neural, not physiological. - Training should be specific to the final desired performance. - To learn skilled movement patterns that are to be executed under fatigued conditions, that learning has to occur in non-fatigued states. - The skill factor in producing maximal and optimally efficient sprint performances is de pendent largely upon the amount of skill executions at a specific performance velocity. 49. SPONET-NR 009021 Stott, M. (2003). Auburn sprint workouts. Swimm. Technique, 40 (3), 21-23. (Sprint-Trainingseinheiten der Auburn University; Internetzugriff unter: http://www.swiminfo.com/articles/swimtechnique/articles/200310-01st1_art.asp) Training | Sprint | USA | Programm | Schwimmen This article presents three sprint sets that are incorporated into the sucessful Auburn University sprint program (2003 winner of NCAA Division I Swimming Championships.) 33 50. MFNR 304404 L319 Stott, M. J. (2008). Season plans for elite sprinters. Swimm. World Mag., (1), 38-40. (Saisonpläne für Spitzen-Sprinter) Schwimmen | Sprint | Training | Trainingsplanung | Jahr | Belastungsgestaltung Zur Saisontrainingsplanung für Sprintschwimmer anhand des Trainings von Jon Howell, Trainer der Emory University. Er unterteilt seinen Saisontrainingsplan (21 Wochen) in vier Phasen: 1. Allgemeine Konditionierung (vor der Saison, sowie Wochen 1-2 oder 1-3 und 11/ Prüfungen und Winterferien), 2. Spezifische Konditionierung (Wochen 3-5 und 12-14), 3. Schnelligkeits- und Kraftentwicklung (Wochen 6-8 oder 6-10 und 15-17 oder 15-19), 4. Tapering (Wochen 9-10 und 18-20 bzw. bis zu den NCAA-Meisterschaften). Seine Grundsätze sind Vielseitigkeit und Individualisierung. Er versucht immer herauszufinden, worin sich das Training eines jeden Sportlers von dem anderer unterscheiden kann. Es werden 8-10 Trainingseinheiten pro Woche absolviert. Es wird dargelegt, wie sich die einzelnen Phasen im Saisonverlauf wiederholen und welche Schwerpunkte jeweils im Mittelpunkt des Technik-, Wasser- und Landtrainings stehen. 51. MFNR 304364 L319 Stott, M. J. (2007). Taper strategies for sprinters. Swimm. World Mag., 48 (9), 37-39. (Tapering-Strategien für Sprinter) Schwimmen | Sprint | Tapering | Training | UWV Zur Frage des Taperings im Sprintschwimmen wurden die Herangehensweisen von Tom Jager (früherer Olympiasieger und Weltrekordhalter über 50 m Freistil) und David Marsh (zehnfacher NCAA-Trainer des Jahres) betrachtet. Beide stimmen darin überein, dass insbesondere im Sprint die mentale Stärke von außerordentlicher Bedeutung ist. Jager taperte genauso lange, wie seine härteste Trainingsphase lang war (6-8- Wochen). Wenn ein kürzeres Tapering erforderlich war, ging er völlig ausgeruht in diese Phase. Ähnlich setzt er heute als Trainer das Tapering um - wobei ein zweiwöchiges Zeitfenster einer "Wohlfühlphase" entsteht. Außerdem wird unter Jager stark zielorientiert (lang-, mittel- und kurzfristige Ziele) und unter Hypoxie trainiert (z. B. 10 x 50 ohne Atmung in 5-6 Minuten). Eine weitere Trainingsform ist das Schwimmen von 500 m: Wenn die Technik schlechter wird, wird angehalten, einige male tief durchgeatmet und weitergeschwommen. Starts und Pausen gehören zu jeder Trainingseinheit dazu (5-20). Unter David Marsh wird die Saison in drei Phasen eingeteilt: die körperliche/aerobe Vorbereitung, Wettkämpfe (Laktattoleranz) und individuelle Anpassung/Wiederherstellung. Einige Athleten hören acht Wochen vor dem Hauptwettkampf mit Krafttraining auf, andere erst eine Woche vorher. Andere Schwimmer wiederum absolvieren Schmetterlingssprints mit Flutterkick, was der Transformation des Krafttrainings an Land ins Schwimmen unterstützen soll. Außerdem wird Wert gelegt auf die Verfeinerung der Technik, das Wendentraining und die Zusammenarbeit mit dem besten Physiotherapeuten. Auch verschiedene Hilfsmittel werden eingesetzt. Gewichte werden in den letzten sechs Wochen vor dem Wettkampf gezielt als spezielle neuromuskuläre Stimulation eingesetzt. Alle Sportler gehen bis zum Wettkampf in den Kraftraum (und wenn sie die Geräte zur psychologischen Stärkung nur berühren). In der Taperingphase findet 2x wöchentlich ein 30- bis 40-minütiges "Power-Training" statt, in dem mit vielerlei Hilfsmitteln (Flossen, Paddles, Powerracks etc.) gearbeitet wird. Sprinter lieben derartige Trainingsmittel ... Es gibt auch 34 Unterschiede zwischen Männern und Frauen, wobei letztere sozialer, "weicher" eingestellt sind. Generell sollte eine Sprinterin einen zweitrangigen Sprinter schlagen, wenn sie ihren Wettkampf gewinnen will. 52. MFNR 307391 Strolia, M., Stroliene, K., Milasius, K. & Skernevicius, J. (2010). Lietuvos slidininku sprinteriu rengimosi ir ju pasrengtumo charakteristika paskutiniais olimpinio ciklo metais. Sporto mokslas, 6 (2), 23-28. (Charakteristika des Trainings der litauischen Skisprinter und ihrer Fitness während des letzten Jahres des Olympiazyklus) Skilanglauf | Sprint | Litauen | Training | Trainingsplanung | Belastungsgestaltung | Jahr Since 2002, when the event of skiing sprint has been included into the programme of Winter Olympic Games, Lithuanian ski sprinters used to participate in it. For the first time they competed in team sprint in 2010 Olympic Games. For the events of individual and team competitions, Lithuanian athletes were preparing according to special requirements, following the objectives of the programme “Vancouver 2010”. Ski sprinters’ training technology differs considerably from that of long-distance skiers; however, this fact must be supported by scientific research. The aim of the research was regarding the increased significance of sprint events, to analyze the structure of Lithuanian Olympic team ski sprinters’ winter preparatory Olympic yearly cycle, as well as the change of performed physical loads and the athletes’ organism adaptation to them. The research in the activity of two Lithuanian ski sprinters was carried out and their experienced physical loads during yearly training cycle were analyzed. The efficiency of separate mesocycles was measured conducting laboratory works. The indices of physical development, muscle capacity in various energy production zones, also aerobic capacity were estimated. lt was established that the program objectives of Lithuanian ski sprinters preparation for the Olympic Games were achieved. Skiers sprinters training lasted for 876 hours a year. 69.8 per cent of it were devoted to development of aerobic capacity and 30.2 per cent for the aerobic capacity. The estimated indices in athletes’ anaerobic alactic and anaerobic glycolytic capacity during the yearly preparatory cycle were high. Their aerobic capacity satisfied the level required for ski sprinters. Verf.-Referat (Dokument übernommen aus Datenbank SPOLIT) Litauischer Volltext unter: http://www.olimpineakademija.lt/images/dokumentai/spmokslas/SM20102.pdf 53. SPONET-NR 016183 Toubekis, A. G., Peyrebrune, M. C., Lakomy, H. K. A. & Nevill, M. E. (2008). Effects of active and passive recovery on performance during repeated-sprint swimming. J. Sports Sci., 26 (AA4), 1497-1505. (Auswirkung akiver vs. passiver Wiederherstellung auf die Leistung bei wiederholten Sprints im Schwimmen; Internetzugriff unter: http://www.ncbi.nlm.nih.gov/pubmed/18979341) Schwimmen | Sprint | Wiederholungsmethode | Leistung | Relation | Wiederherstellung | Ermüdung The effect of active and passive recovery on repeated-sprint swimming bouts was studied in eight elite swimmers. Participants performed three trials of two sets of front crawl swims with 5 min rest between sets. Set A consisted of four 30-s bouts of high-intensity tethered 35 swimming separated by 30 s passive rest, whereas Set B consisted of four 50-yard maximal-sprint swimming repetitions at intervals of 2 min. Recovery was active only between sets (AP trial), between sets and repetitions of Set B (AA trial) or passive throughout (PP trial). Performance during and metabolic responses after Set A were similar between trials. Blood lactate concentration after Set B was higher and blood pH was lower in the PP (18.29 ± 1.31 mmol/l and 7.12 ± 0.11 respectively) and AP (17.56 ± 1.22 mmol/l and 7.14 ± 0.11 respectively) trials compared with the AA (14.13 ± 1.56 mmol/l and 7.23 ± 0.10 respectively) trial (P < 0.01). Performance time during Set B was not different between trials (P > 0.05), but the decline in performance during Set B of the AP trial was less marked than in the AA or PP trials (main effect of sprints, P < 0.05). Results suggest that active recovery (60% of the 100-m pace) could be beneficial between training sets, and may compromise swimming performance between repetitions when recovery durations are short (< 2 min). 54. MFNR 305180 L319; I.L.10.; 27981 Unterdörfel, A. (2008). Eisschnelllaufspezifisches Shorttrack-Training für eine optimale Eisschnelllauftechnik im Nachwuchs- und Hochleistungsbereich. Diplomarbeit, Köln: Trainerakademie. Eisschnelllauf | Training | Trainingsmittel | Shorttrack | Technik | Übung | Übungszusammenstellung Die Arbeit soll eine Handreichung für Eisschnelllauftrainer für den Einsatz des ShorttrackLaufens als Mittel im Techniktraining Eisschnellllauf sein. Die Bewegungsstrukturen der beiden Sportarten werden erläutert, Synergieeffekte dargestellt. Spezielle Übungen für die unterschiedlichen Schwerpunkte der Technik werden dargelegt (Übungskatalog). 55. SPONET-NR 009238 Whitten, P. (2001). The Bottom line on sprint training. Swimm. Technique, 37 (4), 10-15. (Mike Bottoms Sprinttraining; Internetzugriff unter: http://www.swiminfo.com/articles/swimtechnique/articles/200101-01st_art.asp) Schwimmen | Sprint | Training | USA Ein Teil des Schwimmteams des Phoenix Swim Club wurde in Richtung Olympische Spiele 2000 zu einem World Sprint Team 2000, welches von Erfolgscoach Mike Bottom trainiert wurde, zusammengeschlossen. Zu dem aus 11 hoch motivierten Männern bestehenden Team (davon 9 Kraulsprinter) gehörten u. a. Gary Hall Jr. und Anthony Ervin sowie neben den 5 Amerikanern auch 6 Ausländer wie z. B. G. Kozulj, F. Delgado u. a. Die Sportler wurden in drei Gruppen eingeteilt: "Oldies", "Amigos" und "Gruppies". Bottom standen zwei Assistenztrainer und ein Konditionstrainer zur Seite. Es wurde ein außergewöhnliches, anspruchsvolles Trainingsprogramm erarbeitet und umgesetzt. Die Ergebnisse waren "phänomenal": Hall und Ervin brachen T. Jagers zehn Jahre alten US-Rekord über 50F und erreichten damit die 2. und 3. schnellste Zeit der ewigen WBL; Kozulj wurde Europameister, acht der 11 Sportler erreichten die Olympiaqualifikation in ihren Ländern, bis auf zwei Ausnahmen erreichten alle Teammitglieder persönliche Bestzeiten. Verf. veröffentlicht Auszüge aus Bottoms "Geheimrezept" zum Training in diesem Team, welches auch von Sponsoren unterstützt wurde. Unter anderem nannte Bottom folgende Eckpunkte des Sommertrainings vor Olympia: - fast täglich 8 h Training, - davon mindestens 50 % Techniktraining 36 - 3x wöchentlich 75-90 min Krafttraining (davon 2x für Oberkörper, 1x Unterkörper) - täglich 15 min Stretching - 1x wöchentlich 60 min Ganzkörperstretching - zwei verschiedene Kreistrainings zur Verbesserung der Kraft (Kernbereich und Schultermuskulatur), des Gleichgewichts, der Stabilität und der aeroben Kapazität, eines im Freien, eines in der Halle für jeweils 45-50 min mit Herzfrequenzen zwischen 140 und 180, jedes der beiden Trainings wird 2x/Woche absolviert. Das Dienstag und Freitag stattfindende Training im Freien (z. B. Laufen von 2 Stadionrunden, anschließend Training mit Hürden und Hindernissen, Basketball, Sprünge, plyometrische Übungen) wird meist mit anschließendem Beinetraining im Wasser gekoppelt. Einige Übungen des Hallentrainings werden von den Sportlern selbst erfunden und, wenn sie geeignet sind, vom Team übernommen. - Wassertraining: Mi und Sa: Laktat-Sets (z. B. 5x100 sehr schnell + 300 Ausschwimmen), teilweise werden Flossen und Paddles verwendet - Es werden auch unkonventionelle Trainingsformen praktiziert, z. B. eine "Licht-und-TonTherapie" oder jeden Donnerstag Abend Zusammenkommen zu "freier Diskussion" zu allem, was rund um den Leistungssport wichtig ist. - Auch spirituelle Elemente (Dank an Gott o. ä., Wertschätzen aller, die an der Leistung beteiligt sind) werden ernst genommen. Das Training wird durch den Konditionstrainer Tim McClellan vervollständigt, der dafür zuständig ist, die Schwimmer durch Kraft- und andere spezielle Trainingsformen schneller zu machen. 56. SPONET-NR 014153 Whitten, T. & Crawford, C. (2007). Sprinting tips. Zugriff am 15.10.2007 unter http://www.fastandfemale.com/Sprinting080207.pdf (Sprint-Tipps) Skilanglauf | Sprint It’s time to get race-ready. It’s time to gather the threads of hard training and things learned from the summer, and weave them into a super strong rope that you can trust like it is supporting your life on a huge cliff face… or use it to lasso Beckie Scott in the next sprint race and hang on for dear life! Let’s call the latter option “plan B” and instead focus on the things we need to do well to race as fast as possible come race day. Below is a notso-brief compilation of some of the things that are important to my teammate Tara and I in training and racing. The emphasis is on sprint racing, but you can see how putting these ideas into action could improve your distance races as well. Biomechanik/Technik/Sportgeräte 57. SPONET-NR 011793 Abe, D., Tokumaru, H., Niihata, S., Muraki, S., Fukuoka, Y., Usui, S. & Yoshida, T. (2006). Assessment of short-distance breaststroke swimming performance with critical velocity. J. Sports Sci. & Med., 5 (2), 340-348. (Beurteilung der Leistung im Kurzstrecken-Brustschwimmen mit kritischer Geschwindigkeit; Internetzugriff unter: http://www.jssm.org/vol5/n2/20/v5n2-20pdf.pdf) Schwimmen | Sprint | Brustschwimmen | Technik | Geschwindigkeit | Statistik 37 For high-velocity running or swimming, the relationship between velocity (v) and its sustainable duration (t) can be described by a hyperbolic relationship: (v - Vcrit) x t = D', where Vcrit is termed critical velocity, and D' is defined as a curvature constant of the hyperbolic curve. The purposes of this study were to examine whether the Vcrit could be applied to evaluate short-distance breaststroke swimming performance and to evaluate the relative contribution of D' in short-distance swimming performance. Eleven male swimmers performed a series of time trials corresponding to 75, 100, and 150-m in an indoor 50-m swimming pool. The observed records were calculated into average velocities of each event to determine Vcrit and D'. After the determination of Vcrit and D', all subjects performed 50-m time trial on another day. A maximal anaerobic power test using cycle ergometer was also performed in the laboratory. The average velocity of the 50-m time trial significantly correlated with the obtained Vcrit, but not with D'. D' was significantly correlated with the residual error, calculated from the regression analysis for the relationship between Vcrit and the average velocities of 50-m time trial. A cluster analysis showed that most of the subjects were classified as Vcrit dependency when performing 50-m time trial. Those results indicated that Vcrit could be applied to evaluate shortdistance swimming performance, and it determined around 80% of the short-distance breaststroke swimming performance. 58. SPONET-NR 005546 Allinger, T. L. & Smith, J. (2001). Side-jump impulse correlates with speed skating sprint times. Zugriff am 16.01.2001 unter http://www.ausport.gov.au/fulltext/1999/iocwc/abs253.htm (Der Seitsprungimpuls korreliert mit der Eisschnelllaufsprintzeit) Biomechanik | Eisschnelllauf | Leistung | Leistungsdiagnostik | Sprint | Sprung | Test Laboratory tests are used to evaluate the training status and potential performance of elite athletes. One test that may be useful for predicting speed skating performance is the sidejump. The side-jump is an explosive leg extension in the lateral direction, similar to the skating stroke and is used for off-ice training. The purpose of this study was to determine if the impulse generated during a side-jump correlated with skating performance. Sixteen members of the U.S. National Speedskating Team volunteered for testing (7 female, 9 male). Each athlete performed maximal effort side jumps from a force platform (AMTI, 1000 Hz), wearing running shoes. Three jumps from their left and right legs were recorded. Total impulse was calculated by numerical integration of the force-time components of the ground reaction force. The trials with the largest impulse (left and right legs) were averaged for each subject. These measurements were made one month after the skating season. The fastest skating time from the previous season ('98-'99) at World Cup and World Championship events was selected for each athlete at each distance they raced. The race distances included the 500, 1000, 1500, 3000 (female only), 5000, and 10,000m (male only). Race times were normalized for each distance to 500m (e.g., 1500m time / 3 = normalized 500m time). The sprint distances (500m, 1000m) were analyzed in a second group. Skaters (3 female, 1 male) with less than elite times in the 500m and 1000m distances were disqualified from the sprint data set (i.e., normalized times greater than 41s and 39s, women and men respectively). Because all-around World Cup races do not include a 1000m race, the five all-around skaters had only a 500m tme and the seven sprint skaters had both 500m and 1000m times in this data set. Two linear regressions were computed between total impulse and normalized times for (1) all the distances and (2) only the sprint distances. No significant correlation between the side-jump impulse and 38 the normalized skating times existed when the data were examined over all the distances. For the sprint distances, the side-jump impulse showed a significant relation with the normalized race times (slope=-0.023, r=0.80, p<0.001, n=19), with larger impulses corresponding to faster skating times. Group values (mean±S.D.) for the normalized time and impulse were 38.11±0.85 s and 193.7±29.9 N-s, respectively. Based on these results, a maximal effort side-jump appears to reflect performance in a sprint race more closely than a distance race for elite speed skaters. Impulse measurements from a side-jump may be useful for evaluating training status and predicting skating performance for the sprint distances (500m and 1000m) in speed skating. 59. MFNR 307394 Bakker, C., Aaftink, C. & Koning, J. de (1990). De schaatssprint: een kwestie van goed starten. Geneeskunde en sport, 23 (6), 229-236. (Der Eisschnelllauf-Sprint: Untersuchung guter Starts) Eisschnelllauf | Biomechanik | Sprint | Technik | Start This paper describes the sprint in speedskating. A 3D analysis of kinetics and kinematics was made on the basis of filmdata of 500 meter speedskaters, obtained at the 500 meters speedskating during the Olympic Games in Calgary (1988). Attention is paid to the technical aspects of speed skating as well as to some technical and physiological differences between male and female speedskaters. The start technique in speedskating which shows many similarities to the sprint start in athletics, is characterised by a push-off in backward direction combined with a powerful plantar flexion. Achieving higher speeds requires a change from the start to the gliding technique: a sideward push-off without flexion of the ankle. It is shown that high accelerations during the start result in fast final times. These high accelerations can be achieved by delivering high power outputs in the very first strokes. This strategy results in faster final times than the strategy of building up speed more slowly while reaching a higher final value. Verf.-Referat (Dokument übernommen aus Datenbank SPOLIT) 60. SPONET-NR 017472 Barden, J. & Kell, R. (2007). Stroke characteristics of elite swimmers during a sprint interval training set. In J. Kallio, P. V. Komi, J. Komulainen & J. Avela (Hrsg.), 12th Annual Congress of the European College of Sport Science, Jyväskylä, Finland - July 11-14th 2007. Book of Abstracts (S. 590). Jyväskylä: University of Jyväskylä. (Technikkennzeichen (Armzug) von Spitzenschwimmern während Intervalltraining Sprint; Internetzugriff unter: http://ecss2007.cc.jyu.fi/schedule/proceedings/pdf/1600.pdf) Schwimmen | Hochleistungssport | Leistungssport | Technik | Intervallmethode | Training | Sprint| Bewegungskoordination | Bewegungsfertigkeit | Bewegungsmerkmal | Bewegungsschnelligkeit | Analyse | Biomechanik Understanding the relationships between swimming velocity (V), stroke rate (SR) and stroke length (SL) can provide important information about the training status and technical development of competitive swimmers (1,2,4). Most stroke parameter relationship (i.e., V, SR and SL) studies have taken place during major competitions which permit rare opportunities to study the technique of the world’s best swimmers (1,3). Surprisingly, few studies have been conducted during training, either across several training sessions or during a controlled interval training set (4). The purpose of this study was to investigate V, SR and SL relationships during a sprint interval training set that progressively increased in intensity. Eleven (3 male, 8 female) elite national-calibre swimmers performed a series of 39 8 x 100m swims in a 25m pool. The swimmers were paced so that the first 100m swim was equal to 65% of their best time. The target time for each subsequent 100m repeat decreased by 5%, so that the last 100m swim was equal to the swimmer’s best time (a maximal effort). Rest intervals were individualized according to a 1:2 work/rest ratio. Each subject completed the set using his/her best stroke, with 5 subjects swimming freestyle, 3 backstroke, 2 butterfly and 1 breaststroke. A 5m recording zone (mid-pool, 10m on either side) was used to measure V and SR for each 25m length. Stroke parameter data were compared between and within subjects using Pearson correlation and repeated measures ANOVA. For all subjects and strokes, V was highly correlated with SR (r = 0.90 ± 0.07), both within and between each 100m repetition of the set. For 5 subjects, SL was consistently maintained as V increased (r = 0.02 ± 0.12), while the remaining subjects showed a significant decrease in SL (r = -0.61 ± 0.12; p < 0.05) during the latter half of the set . The results suggest that the interdependency of V & SR is related to propulsion, such that a greater hand/arm speed through the water and an increased number of strokes is related to an increased capacity to generate propulsive forces. The findings also demonstrate that SL is essentially fixed (presumably at its maximum level), until a point is reached at which it can no longer be maintained (a point likely related to anaerobic threshold). Future studies should attempt to describe the specific biomechanical and/or physiological relationships associated with V/SR dependency in competitive swimming. 61. SPONET-NR 017148 Bugalski, T. J. (2009). Hydromechanics for development of sprint canoes for the Olympic Games. Zugriff am 02.07.2009 unter https://www.hckt.org/hcktblog/wpcontent/uploads/2009/09/HydromechanicsofSprintCanoe s.pdf (Hydromechanik zur Entwicklung von Sprintkanus für die Olympischen Spiele (Vortrag auf dem ICF Coaches Symposium 2009 in Warschau) Hydrodynamik | Biomechanik | Kanusport | Kanurennsport | Sprint | Sportgerät The current paper focuses on evolution of hull form of sprint canoes from the Olympic Games in Berlin (1936) to the Olympic Games in Beijing (2008) and the influence of hydrodynamics aspects on design of sprint canoes. The paper describes the process of the Olympic canoes design and optimization, carried out by the Ship Design and Research Centre (CTO, CTO S.A.) in Gdansk and the Plastex Composite PPH (Plastex) in Warsaw – the renowned manufacturer of sport boats. The existing canoes (used as a starting point) and the newly designed ones were analysed with the use of Computational Fluid Dynamics (CFD) methods, simplified potential methods and tested experimentally. The paper concludes the final results during Olympic Games competitions. 62. SPONET-NR 017156 Henderson, D. (2009). Canoe sprint biomechanics. Zugriff am 03.07.2009 unter http://www.canoeicf.com/site/canoeint/if/downloads/publications/ICF%20Coaches%20Sym posium%202009/Biomechonics%20by%20Dan%20Henderson.pdf?MenuID=Publications/ 1016/0 (Biomechanik des Kanu-Sprints (Vortrag auf dem ICF Coaches Symposium 2009 in Warschau)) Kanusport | Kanurennsport | Sprint | Biomechanik | Untersuchungsmethode Author gives a review on practical laboratory and on-the the-water applications concerning the biomechanics of canoe sprint. He mentions some investigation methods (ergometer [lab], motion capture, motion analysis [lab and on-water], strain gauge [field]). 40 63. SPONET-NR 005940 Hintzy, F. & Belli, A. (2001). Influence of toe clips on mechanical characteristics of sprint cycling. Zugriff am 02.03.2001 unter http://w4.ub.uni-konstanz.de/cpa/article/view/969 (Einfluss von Schuhclips auf mechanische Merkmale des Radsprints; Internetzugriff) Hilfsgerät | Kraft | Mechanik | Radsport | Sprint | Schuh | Biomechanik Introduction: Toe-clips are assumed to enhance the mechanical efficiency of pedaling. However, the effect of toe-clips on power production during the maximal sprint has not been extensively studied, especially when friction loaded cycle ergometers are used (Arsac et al., 1996, Capmal and Vandewalle, 1997). The aim of this study was to evaluate the effect of toe clips during maximal sprints performed on a friction loaded ergometer. Methods: Force, velocity and power-production in cycling were studied during all-out sprints with (WI) and without (WO) toe-clips on a friction loaded ergometer. This friction loaded cycle ergometer (Monark 818E) was specifically equipped with both an optical encoder and a strain gauge in order to measure the instantaneous flywheel velocity and the friction force, respectively (Arsac et al., 1996). The power output at each pedal down stroke was computed as the product of velocity and total force (inertial force + friction force). Values of maximal force (F), maximal velocity (V), maximal power (P), optimal force at P (FP) and optimal velocity at P (VP) were determined. Twenty-four subjects volunteered for this study. They were specialists in cycling, whose age, height and body mass were 24 ± 5 years (mean ± SD), 178.3 ± 5.4 cm and 69 ± 7 kg respectively. Each subject performed four maximal sprints of 6-s duration with different (i) shoe-pedal interface (WI or WO) and (ii) friction force applied to the friction belt (0.5 or 1.1 N.kg-1 body mass). Results: The mechanical data obtained in the WI and WO conditions are presented in table 1. F, V, P and FP were significantly higher in the WI than in the WO condition. These differences were observed at both 0.5 and 1.1 N.kg-1. VP was higher in the WI condition at 1.1 N.kg-1 only. See text for legend. Discussion: Values of F, V and P were in agreement with the literature (Arsac et al., 1996, Capmal and Vandewalle, 1997). The significant enhancement observed on mechanical force and power production in the WI compared to the WO condition further support the hypothesis that toe clips could have a positive effect on the performance of sprint cycling. Higher force and power in WI are probably due to the fact that toe clips allow greater and longer activity of flexor and extensor lower limb muscles during a complete pedal revolution (Tate and Sherman, 1977). However, VP was not improved in the WI condition at 0.5 N.kg-1, suggesting that the toe clips effect is more efficient at high friction force and high power. 64. SPONET-NR 018734 Martin, J. C., Davidson, C. J. & Pardyjak, E. R. (2007). Understanding sprint-cycling performance: The integration of muscle power, resistance, and modeling. Int. J. Sports Physiology and Performance, 2 (AA), 5-21. (Die Sprintleistung im Radsport verstehen: Die Integration von Muskelleistung, Widerstand und Modellierung; Internetzugriff unter: http://hk.humankinetics.com/IJSPP/viewarticle.cfm?jid=68tAs86T67sRcWm762xFyD2h63 w RhJkY64eBy&aid=7102&site=68tAs86T67sRcWm762xFyD2h63wRhJkY64eBy) Radsport | Bahnradsport | Straßenradsport | Sprint | Leistung | Theorie | Modellierung | Widerstand | Taktik | Wettkampf 41 Sprint-cycling performance is paramount to competitive success in over half the worldchampionship and Olympic races in the sport of cycling. This review examines the current knowledge behind the interaction of propulsive and resistive forces that determine sprint performance. Because of recent innovation in field power-measuring devices, actual data from both elite track- and road-cycling sprint performances provide additional insight into key performance determinants and allow for the construction of complex models of sprintcycling performance suitable for forward integration. Modeling of various strategic scenarios using a variety of field and laboratory data can highlight the relative value for certain tactically driven choices during competition. 65. SPONET-NR 017845 Mason, B., Alcock, A. & Fowlie, J. (2007). A kinetic analysis and recommendations for elite swimmers performing the sprint start. In H. J. Menzel & M. H. Chagas (Hrsg.), Proceedings of the XXV International Symposium on Biomechanics in Sports (S. 192-195). Ouro Preto: International Society of Biomechanics. (Eine Bewegungsanalyse und Empfehlungen für Spitzenschwimmer zur Ausführung des Sprintstarts; Internetzugriff unter: http://w4.ub.uni-konstanz.de/cpa/article/view/433/373) Untersuchungsmethode | Biomechanik | Bewegung | Schwimmen | Start | Sprint The object of this project was to identify on block characteristics of superior grab starts and identify if these also applied to the track start. Six elite swimmers were selected for the study. The characteristic most closely observed in excellent off block starting ability for the grab start was peak power normalised to body mass. Average power and maximum horizontal propulsive force normalised to body mass were closely linked as was work output, but not as highly as the previous parameters. Horizontal velocity off the block was not a good predictor of off block ability as the angle at which the swimmer left the block played an important role in the outcome. Time off the block and first movement time were poor indicators of starting ability. Similar characteristics, but with completely different force and power profiles, were evident for swimmers that utilised a track start. 66. SPONET-NR 017413 Mikkola, J., Talkkari, J., Hynynen, E. & Nummela, A. (2007). Cycle characteristics of double poling in cross-country skiing sprint competition. In J. Kallio, P. V. Komi, J. Komulainen & J. Avela (Hrsg.), 12th Annual Congress of the European College of Sport Science, Jyväskylä, Finland - July 11-14th 2007. Book of Abstracts (S. 467). Jyväskylä: University of Jyväskylä. (Kennzeichen des Bewegungszyklus mit Doppelstockeinsatz in Sprintwettkämpfen des Skilanglaufs; Internetzugriff unter: http://ecss2007.cc.jyu.fi/schedule/proceedings/pdf/1340.pdf) Skilanglauf | Sprint | Technik | Analyse | Bewegungsfertigkeit | Bewegungsschnelligkeit | Bewegungskoordination | Hochleistungssport | Leistungssport | Schnelligkeit Cross-country skiing sprint (XC SS) has been established to FIS calendar in this millennium. There is lack of published data on both biomechanical and physiological characteristics in XC SS. In XC SS race velocities are greater than in normal distances because of shorter performances. This increases demands of skier’s neuromuscular characteristics and technique (Stöggl et al. 2006). Thus, it has already been introduced a new sprinter-like double poling technique by Holmberg et al. (2005). The aim of this study was to investigate the influence of different cycle parameters of double poling on time trial 42 performance (TTP) in classical XC SS. The data was collected from the national championship race in January 2007. Sixteen women and 24 men skiers were filmed (Sony DCR-TRV900E, 50 frames / s, 1/215 s of shutter speed) at constant 20 meter flat section of the course during the time trial. Time of the poling phase (PP) and recovery phase (RP), cycle time (= PP + RP) and frequency of the double poling technique used were analyzed from the video. The mean of 2-3 cycles were used in the results and further analysis. The mean velocity (V20) and mean cycle length of 20 m, relative RP (% of cycle time) and relative PP (% of cycle time) were calculated. TTP was determined as the mean velocity of the 1300 m time trial. Both men and women were divided to subgroups by TTP performance: 12 fastest men and 8 women and 12 slowest men and 8 women. Faster men had greater V20 (p<0.001), cycle length, RP and relative RP (p<0.05) but smaller PP and relative PP (p<0.05) than slower men, respectively. Similarly, faster women had greater V20 (p<0.001) and relative RP (p<0.05) but smaller PP and relative PP (p<0.05) than slower women, respectively. There were no significant differences in poling frequency in men or women between the groups. In pooled data of men TTP correlated with V20 (r = 0.72) (p<0.001), cycle length (r = 0.46), relative RP (r = 0.41) and relative PP (r = -0.41) (p<0.05). In pooled data of women TTP correlated strongly with V20 (r = 0.97) (p<0.001) and PP (r = -0.62) (p<0.01). These results indicated that PP is an important parameter to separate fast and slow skiers. The present results are in line with recent studies of Stöggl et al. (2006) and Holmberg et al. (2005). Faster skiers seem to be able to produce more force or the necessary force levels in a shorter time than slower skiers. Thus, skiers should emphasize to increase the ability to produce force rapidly in their training which leads to a sufficient propulsion impulse in a shorter poling time. 67. MFNR 302341 L319 Ong, K., Elliott, B., Ackland, T. & Lyttle, A. (2006). Performance tolerance and boat set-up in elite sprint kayaking. Sports Biomech., 5 (1), 77-94. (Leistungstoleranz und Bootsaufbau im Spitzenbereich des Kajak-Sprints) Kajak | Kanurennsport | Sprint | Sportgerät Das Ziel der Studie war die Untersuchung der Beziehungen zwischen der Morphologie des Athleten, der Ausrüstung und der Leistung im Kajak-Sprint. Es wurden Korrelationen von Daten der Olympischen Spiele 2000 für die Findung der wichtigsten Beziehungen zwischen Morphologie und Bootsbau - Paddelgriffweite und Fußabstand - verwendet. Die Untersuchungen erfolgten mit drei Testpersonen. Die Ergebnisse der Untersuchungen haben gezeigt, dass die Sportler konstante Bewegungsmuster ausführen. Veränderungen am Boot führten zu Veränderungen der Bootsgeschwindigkeit. Die mittlere bevorzugte Bootsgeschwinidgkeit der drei Kanuten von 4,47 m/s verringerte sich um 0,07 und 0,1 m/s bei den durchgeführten Veränderungen am Boot. Diese Geschwindigkeitsveränderungen waren die Folge von Veränderungen der Mechanik der Paddeltechnik. 68. MFNR 181747 L319 Ong, K., Ackland, T., Hume, P., Ridge, B. & Kerr, D. (2003). Relationship between morphological and equipment set-up for male Olympic sprint paddlers. J. Sci. Med. Sport, 6 (4), 535. (Beziehung zwischen morphologischen Voraussetzungen und entsprechender Gestaltung der Sportgeräte bei männlichen Kanurennsportlern (Sprintdisziplinen)) Kanurennsport | Sprint | Körperbau | Sportgerät | Olympische Sommerspiele 2000 43 Untersucht wurden bei 31 Kanurennsportlern, die an den Olympischen Sommerspielen 2000 in Sydney teilnahmen, sowohl die anthropometrischen Verhältnisse als auch die Sportgeräte, die sie verwendeten. Die Messungen fanden 15 Tage vor den Olympischen Spielen statt. Die Unterschiede zwischen den leistungsstärksten und den anderen Kanuten waren minimal. Sie drückten sich in einer etwas erhöhten Sitzposition und dem Einsatz längerer Paddel, die auch etwas breiter waren, aus. Beziehungen zwischen Körperbaumerkmalen und den eingesetzten Sportgeräten wurden mit Pearsons Korrelationsmatrix ermittelt, um die logische Auswahl von unabhängigen Variablen als Eingabewerte für Regressionsgleichungen zu unterstützen. Danach wurden schrittweise Regressionsanalysen durchgeführt, um die besten morphologischen Prädikatoren für den Fuß-Brett-Abstand und die Handgriffposition zu ermitteln. Es wurden signifikante Regressionsgleichungen entwickelt, die für die Vorhersage des Fuß-Brett-Abstandes und für die Handgriffpositionen genutzt werden können. Die Regressionsanalysen zeigten auch signifikante Beziehungen zwischen den Messergebnissen des Körperbaus und sowohl der Länge als auch der Breite der Paddel. Obwohl diese Parameter der Ausrüstung nur für 20-25 % der Varianz der abhängigen Variablen zuständig sind, ist die positive Beziehung zwischen ihnen und der Körperhöhe, der biacromialen Breite, des Brustkorbumfangs, der Armlänge und der Spannweite bemerkenswert. 69. MFNR 303885 L319; I.L.7.; 27571 Thanopoulos, V., Dopsaj, M. & Nikolopoulos, A. (2006). The relationship of anthropomorphological characteristics of crawl sprint swimmers of both genders with critical speed at 50 and 100 m. In Xth International Symposium Biomechanics and Medicine in Swimming, Porto, Portugal, 2006 (S. 107-109). Porto: Faculdade de Desporto da Universidade do Porto. (Zusammenhang zwischen anthropo-morphologischen Merkmalen von Kraulsprintern beiderlei Geschlechts und der kritischen Geschwindigkeit über 50 und 100 m) Schwimmen | männlich | weiblich | Kraulschwimmen | Sprint | Körperbau | Anthropometrie | Relation | Geschwindigkeit The aim of this work is to establish a relationship between the various anthropomorphological (AnthMorph) characteristics of crawl sprint swimmers of both genders in relation to critical speed at 50 and 100 meters (sprint distances). The research has been carried out over a sample of 13 male and 12 female swimmers in sprint crawl style. The given value of the critical speed at 50 and 100 meters was obtained by applying the mathematical modelling of Distance - Time ratio, calculated from the 15, 25, 50 and 100m distances covered in crawl style. The AnthMorph characteristics of swimmers are evaluated over a set of eight variables: BMI, LBM, and percentage of fat, leg-length and arm-length index, the shape of the chest, the trunk and the body. With regards to men, a higher level of critical speed had those with a more pronounced rectangular shape of trunk (the same proportion of the width of shoulders and hips in relation the the body height) and a higher level of lean body mass - LBM. With regards to women, a higher level of critical speed had swimmers with a shorter arm length in relation to body height and a higher LBM. 70. SPONET-NR 011920 Toubekis, A., Tokmakidis, S., Mavridis, G. & Tahtalis, T. (2004). Different intensities of active recovery impair performance during repeated swimming sprints. In Pre-olympic Congress 2004. Thessaloniki, Grécia, de 6 a 11 de Agosto de 2004(S. O.285). Thessaloniki: ICSSPE. 44 (Unterschiedliche Intensitäten der aktiven Wiederherstellung beeinflussen die Leistung wiederholter Sprints im Schwimmen; Internetzugriff unter: http://cev.org.br/biblioteca/different-intensities-of-active-recovery-impair-performanceduring -repeated-swimming-sprints) Belastungsintensität | Schwimmen | Sprint | Wiederherstellung | Belastungsgestaltung | Relation | Leistung The purpose of the present study was to examine the effect of different active recovery intensities on sprinting performance. Discussion/Conclusions: Sprinting ability of well-trained swimmers decreases when active recovery is performed during the resting interval separating 25 m swimming bouts. The decreased performance is independent of the intensity of active recovery within the range of 50-60% of the 100 m velocity. Active recovery should not be applied during the resting interval of swimming sets designed to improve sprinting ability. 71. SPONET-NR 005445 van Soest, O. & Casius, L. J. (2000). Which factors determine the optimal pedaling rate in sprint cycling? Med. Sci. Sports Exerc., 32 (AAAA), 1927-1934. (Welche Faktoren bestimmen die optimale Tretfrequenz beim Radsprint? Internetzugriff unter: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=1107 9 524&dopt=Abstract) Leistung | Biomechanik | Geschwindigkeit | Radsport | Sprint Introduction: Mechanical power output in sprint cycling depends on pedaling rate, with an optimum at around 130 revolutions per minute (rpm). In this study, the question is addressed if this optimal pedaling rate can be understood from a Hill-type description of muscular dynamics. In particular, it is investigated how 1) the power-velocity relationship that follows from Hill's force-velocity relationship and 2) activation dynamics (from the perspective of which the optimal pedaling rate is near-zero) affect the optimal pedaling rate. Methods: A forward dynamics modeling/simulation approach is adopted in this study. The skeletal model is a 2D linkage of rigid segments; it is actuated by eight Hill-type "muscles." Input of the model is the neural stimulation of the muscles, output is the resulting movement and variables dependent thereupon, such as pedal forces. For a wide range of isokinetic pedaling rates, the neural stimulation is optimized with respect to the average mechanical power output. Results: Correspondence between experimental data and simulation results regarding 1) the (pedaling-rate dependent) muscle phasing, 2) pedal forces, and 3) the power-pedaling rate relationship is good. At the optimal pedaling rate predicted by the model (120 rpm), muscles contract at velocities well below those that maximize their power output. Finally, when a model is considered that lacks activation dynamics, it is found that both the optimal pedaling rate and the maximal power output increase substantially. Discussion: From the results pertaining to the standard model, it is concluded that the optimal pedaling rate is not uniquely specified by the power-velocity relationship of muscle, as suggested in literature. From the results pertaining to the model lacking activation dynamics, it follows that activation dynamics plays a surprisingly large role in determining the optimal pedaling rate. It is concluded that the pedaling rate that maximizes mechanical power output in sprint cycling follows from the interaction between activation dynamics and Hill's power-velocity relationship. 45 72. SPONET-NR 016071 Zory, R., Vuillerme, N., Pellegrini, B., Schena, F. & Rouard, A. (2008). Effect of fatigue on double pole kinematics in sprint cross-country skiing . Human Movement Science, 28 (AA), 85-98. (Auswirkung von Ermüdung auf die Biomechanik des Doppelstockschubs im Skilanglauf Sprint; Internetzugriff unter: http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V8T-4TK7X451&_user=1467461&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000052823& _version=1&_urlVersion=0&_userid=1467461&md5=6215553935c3c19203c49810b99b90 e3) Technik | Biomechanik | Skilanglauf | Sprint The aim of the present study was to examine the effect of fatigue (physiological, mechanical, and muscular parameters) induced by a sprint simulation on kinematic parameters (cycle, phases, and joints angles) of the double pole technique. Eight elite skiers were tested for knee extensor strength and upper body power both before and after a three-bout simulation of sprint racing. They were video analyzed during the final part of the test track of bouts 1 and 3 using a digital camera. Results showed that skiers were in a fatigue state (decrease of the knee extensors voluntary force (-10.4 ± 10.4%) and upper body power output (-11.1 ± 8.7%) at the end of the sprint. During bout 3, the final spurt and cycle velocities decreased significantly (-7.5 ± 12.3%; -13.2 ± 9.5%; both p < .05). Angular patterns were only slightly modified between bouts 1 and 3 with trunk, hip, and pole angles being significantly greater for the third bout. The decrease of hip and trunk flexion and the lower inclination of the pole during the poling phase suggested a reduced effectiveness of the force application which could lead to a decrease in the cycle velocity. 73. SPONET-NR 014854 Zory, R., Millet, G., Schena, F., Bortolan, L. & Rouard, A. (2006). Fatigue induced by a cross-country skiing KO sprint. Med. Sci. Sports Exerc., 38 (AA2), 2144-2150. (Ermüdung beim K.O.-Sprint im Skilanglauf; Internetzugriff unter: http://www.acsmmsse.org/pt/re/msse/abstract.00005768-200612000-00015.htm) Skilanglauf | Sprint | Ermüdung | Neurophysiologie Purpose: The aims of the present study were 1) to analyze whether the KO sprint simulation induced a phenomenon of fatigue of upper and lower limbs and 2) if there was any fatigue, to determine its origin. Methods: Seven elite male skiers were tested before and after a simulation of KO sprints consisting of three 1200-m laps separated by 12 min of recovery. Surface electromyographic activity and force obtained under voluntary and electrically evoked contractions (single twitch) on knee-extensor muscles were analyzed to distinguish neural adaptations from contractile changes. A maximal power output test of the upper limbs was also performed. Results: During the last lap, the final sprint velocity was significantly lower than during the first lap. After the KO sprint, knee-extensor voluntary (-9.8 +/- 9.5%) and evoked (-16.2 +/11.9%) isometric force and upper-limb power output (-11.0 +/- 9.3%) and force (-11.3 +/8.7%) significantly decreased, whereas the blood lactate concentration increased to 11.6 mM. On the other hand, no changes were seen in RMS measurement during maximal voluntary contractions, RMS normalized by M-wave amplitude, or M-wave characteristics. Conclusion: Changes in performance, lactate concentration, knee-extensor strength, and upper-limb power indicated that the KO sprint test led the skiers to a state of fatigue. On 46 lower-limb muscles, the decrease of knee-extensor strength was exclusively caused by peripheral fatigue, which was at least in part attributable to a failure of the excitationcontraction coupling. Physiologie/Energiestoffwechsel/Muskelphysiologie 74. SPONET-NR 010777 Akima, H., Kinugasa, R. & Kuno, S. (2005). Recruitment of the thigh muscles during sprint cycling by muscle functional magnetic resonance imaging. Int. J. Sports Med., 26 (5), 245252. (Rekrutierung der Oberschenkelmuskeln während Sprintbelastungen im Radsport, ermittelt mit Muskelfunktions-MRT; Internetzugriff unter: http://www.thiemeconnect.de/ejournals/abstract/sportsmed/doi/10.1055/s-2004-821000) Radsport | Sprint | Muskel | Faser | Belastung The purpose of the present study was to investigate recruitment patterns of the thigh muscles during maximal sprint cycling by muscle functional magnetic resonance imaging (mfMRI). Twelve healthy men participated in this study and performed 2, 5, and 10 sets of 6-s supramaximal cycling with a load of 7.5 % of their body weight with 0.5 min of rest between the sets. Before and immediately after the exercise, T2-weighted MR images, i.e. mfMRI, of the right-thigh were taken to calculate T2 of eleven thigh muscles. Vastus lateralis, semitendinosus, and sartorius were the highest activated, i. e. had the greatest T2 change, among the quadriceps, hamstring, and adductors, respectively, compared with other muscles. Total power output during 2, 5, and 10 sets of sprint cycling was correlated with percent change in T2 in the quadriceps correlated (r2 = 0.507 to 0.696, p < 0.01), the hamstring (r2 = 0.162 to 0.335, p < 0.05 ~ 0.001), and the adductor muscles (r2 = 0.162 to 0.473, p < 0.05 ~ 0.0001). With use of stepwise regression analysis, total power output was significantly correlated with % change in T2 of the vastus medialis (VM) (p < 0.0001) and vastus intermedius (VI) (p < 0.05) (r2 = 0.698, p < 0.0001). We concluded that eleven thigh muscles were activated non-uniformly, and that the VM and VI play a key role during maximal sprint cycling. 75. SPONET-NR 017483 Avdeev, A. (2007). Energy supply mechanisms in ski-sprinters muscle work. In J. Kallio, P. V. Komi, J. Komulainen & J. Avela (Hrsg.), 12th Annual Congress of the European College of Sport Science, Jyväskylä, Finland - July 11-14th 2007. Book of Abstracts (S. 600). Jyväskylä: University of Jyväskylä. (Mechanismen der Energiebereitstellung im Muskel von Sprintern im Skilanglauf; Internetzugriff unter: http://ecss2007.cc.jyu.fi/schedule/proceedings/pdf/1931.pdf) Skilanglauf | Sprint | Energiestoffwechsel | anaerob | aerob | Stoffwechsel | Ergometrie | Leistung | Leistungssport | Test In view of skiing sprint inclusion into the competition schedule the necessity of a detailed study of methodic aspects in ski-sprinters‘ training process has arisen. The base of skisprinters training modernization is a physiological substantiation of muscle work in sprint distances. Ski-sprinters‘ work is mainly anaerobic. However the aerobic energy supply system also contribute to it. Accordingly ski-sprinters‘ results depend on both anaerobic and aerobic efficiency. The goal of our research was to study how the two energy supply 47 systems affect sprint performances. 16 qualified ski-racers participated in the research. We elicited the effect of anaerobic energy supply system by Wingate Test results. The athletes performed 30 s pedalling on the cycloergometer Monarch – 894 E. Power output was registered every 5 s. During first 5 s we recorded maximal power output, in the interval from 0 to 30 s – mean power output, last 5 s – final power. The values were measured absolutely (w) and relative to body weight (w/kg). To study the effect of aerobic and anaerobic energy supply systems the correlative analysis of Wingate Test results and sprint race performance has been made. The most marked correlation was discovered between the indices of minimal (r= 0.42, p<0.05) and mean (r=0.61, p<0.05) work power. The maximal power indices (r=0.21, p>0.05) have a poor correlation. The most pronounced correlation between sprint race performances and work power was revealed from 10 to 15 s (r=0.66) and from 15 to 20 s (r=0.68). Analyzing the number of revolutions during cycloergometer pedalling we revealed the highest correlation factor in the same time interval (r=0.51, p<0.05). Thus, the most significant evidences of a successful sprint performance are anaerobic glycolyses level in work muscles and anaerobic endurance. The research showed that high anaerobic efficiency determined the performance in sprint contests. Wingate Test results in the interval of 10-20 s are the most informative for the evaluation of anaerobic system contribution to the energy supply of ski-sprinters‘ muscle work. The revealed regularities must become the basis for modelling the training session structure in a year‘s training cycle. 76. SPONET-NR 003026 Byrnes, W. C. & Kearney, J. T. (1997). Aerobic and anaerobic contributions during simulated canoe/kayak sprint events. Med. Sci. Sports Exerc., 29 (5), Suppl. 1256. (Aerobe und anaerobe Anteile während simulierter Kanu/Kajak-Sprintdisziplinen; Internetzugriff unter: http://www-rohan.sdsu.edu/dept/coachsci/csa/vol55/byrnes.htm) aerob | anaerob | Energiestoffwechsel | Kajak | Kanurennsport | Sprint US kayakers (M = 6; F = 4) and canoeists (N = 2) completed submaximal/maximal tests and simulated 200 m, 500 m, and 1,000 m race efforts. Data were pooled revealing the average percentage contribution of aerobic energy to each distance being 36.5%, 63.5%, and 84.5% respectively. Females recorded higher contributions of aerobic energy (40, 69, 86%) than males to each task (37, 62, 82%) supporting the recognized fact that females use more aerobic energy when compared to males in extended-effort tasks. Implication: The contribution of aerobic energy to canoe/kayak races is extensive. It is dominant in 500 and 1000-m races and higher in females than males. (Only as summary available) 77. SPONET-NR 020298 Carlsson, T., Carlsson, M., Hammarström, D. & Tonkonogi, M. (2009). Physiological demands or real elite cross-country skiing performances. In S. Loland, K. Boe, K. Fasting, J. Hallen, Y. Ommundsen, G. Roberts & E. Tsolakidis (Hrsg.), 14th annual Congress of the European College of Sport Science, Oslo/Norway, June 24-27, 2009, Book of Abstracts (S. 351-352). Oslo: The Norwegian School of Sport Sciences. (Physiologische Anforderungen eines echten Wettkampfs auf Hochleistungsniveau im Skilanglauf; Internetzugriff unter: http://www.ecsscongress.eu/OSLO2009/images/stories/Documents/BOAOSLO0610bCont ent.pdf) Skilanglauf | Technik | Hochleistungssport | Leistungssport | O2-Aufnahme | maximal | Körpermaß | Relation | Leistung | aerob | Belastungsintensität | Wettkampf | Sportphysiologie | Physiologie | Sprint | aerob-anaerobe Schwelle 48 Introduction: Which are the main physiological differences between a successful and less successful cross-country skier? To our knowledge no previous studies have examined a real elite cross-country ski competition. Main purpose of this study was therefore to validate commonly used test parameters to skiing time and to International Ski Federation (FIS) overall seasonal ranking points and to create multiple regression models to predict skiing performances. Methods: Twelve highly motivated male Swedish national elite cross-country skiers completed a test battery consisting of: isokinetic knee extensor peak torque tests at three different velocities; three different vertical jumps tests; two-part treadmill roller skiing test determining lactate markers, maximal oxygen consumption (VO2max) and time to exhaustion; 60 and 360 s double poling tests determining mean upper-body power (DP60Pmean) (DP360Pmean) and mean oxygen consumption (DP60VO2mean) (DP36VO2mean). Performance data were collected from the Swedish National Championship (SNC) in cross-country skiing (13-17 March 2008): 15-km with individual start in classical technique (SNC15); 30-km double pursuit with mass-start (SNC30); sprint prolog in free-style technique (SNCsprint). In addition to ski races, overall seasonal ski ranking points were collected from FIS 3rd Cross-Country Points List 2007/2008 published before SNC for distance (FISdist) and sprint (FISsprint) races. Correlations between test parameters and performance data were established using Pearson´s correlation analysis. Prediction models were created using standard multiple linear regression analysis. Results: Time to exhaustion during the incremental treadmill roller ski test is best correlated with both SNC15 (r = -0.86, p < 0.001) and SNC30 (r = -0.81, p < 0.01). For SNC15 significant correlations were shown with VO2max both absolute and relative to body weight, lactate markers, DP60Pmean and DP60VO2mean. Corresponding correlations for SNC30 were: lactate markers, DP60VO2mean and percentage decrease in mean knee extension peak torque when comparing highest and lowest velocities. Highest correlation coefficient for SNCsprint was found for DP60Pmean (r = -0.93, p < 0.05). Significant correlations for SNCsprint was also detected for DP360Pmean as well as DP360VO2mean and jump height in squat jump. Prediction models explain 68, 91, 68, 77 and 82% of the variance in performance for SNC15, SNC30, SNCsprint, FISdist and FISsprint, respectively. Discussion: Correlations found in this study have validated several commonly used physiological tests with real elite cross-country skiing performances. Frequently investigated test parameters like VO2max and anaerobic thresholds are of great importance for success in cross-country skiing. Many recent research studies have focused on upper-body capacity and we could confirm that high mean power production in double poling is necessary to be successful as elite skier in both sprint and distance races. 78. MFNR 179183 L319; I.L.7.; 26001 Dopsaj, M., Milosevic, M., Matkovic, I., Arlov, D. & Blagojevich, M. (1999). The relation between sprint ability in free-style swimming and force characteristics of different muscle groups. In University of Jyväskylä, Dep. of Biology and Physical activity (Hrsg.), Biomechanics and medicine in swimming VIII (S. 203-208). Jyväskylä: Eigenverlag. (Zusammenhang zwischen Sprintfähigkeit im Freistilschwimmen und den Kraftmerkmalen verschiedener Muskelgruppen) Muskelphysiologie | Muskel | Kraft | Schwimmen | Kraulschwimmen | Sprint | Biomechanik Ziel der Untersuchungen war die Aufhellung des Zusammenhangs zwischen Sprintfähigkeit im Freistilschwimmen (SA) und den Kraftmerkmalen verschiedener Muskelgruppen. 49 SA wurde repräsentiert durch die maximale Geschwindigkeit beim Schwimmen über 25 m. Die charakteristischen Muskelkräfte der Kniestrecker, Oberkörperstrecker und -beuger, Fingerbeuger und Schulterbeuger wurden repräsentiert durch die Maximalkraft (Fmax), die Zeit bis zum Erreichen der Maximalkraft (tFmax), den Maximalwert der Muskelinvolvementgeschwindigkeit (Cmax), den Kraftimpuls (ImpF) und die Rate der Kraftentwicklung (RFD). Die Messungen erfolgten unter isometrischen Bedingungen der Muskelkontraktion, Probanden waren 16 Schwimmer. Ergebnisse: Die Ergebnisse zeigen, dass lediglich RFD eine statistisch signifikante Beschreibung der SA lieferte. Bezüglich eines teilweisen Einflusses wurde festgestellt, dass nur die Schulterbeuger in der sagittalen Ebene (simulierte Armzugposition bei 90°) und die Oberkörperbeuger als statistisch signifikante Variablen anzusehen sind. Es wurde deutlich, dass die Fähigkeit des Muskels, die größtmögliche Kraft in einer bestimmten Zeiteinheit zu entwickeln, statistisch signifikanten Einfluss auf die Sprintfähigkeit bei Freistilschwimmern hat. Die Ergebnisse zeigen, dass es empfehlenswert ist, das Training zur Steigerung der Krafterzeugung bei Freistilschwimmern als eine der Haupttrainingsmethoden zur Entwicklung der Muskelkraft mit speziellen Zugübungen und Übungen für die Oberkörperbeuger zu nutzen. 79. SPONET-NR 009312 Falgairette, G., Billaut, F., Giacomoni, M., Ramdani, S. & Boyadijan, A. (2004). Effect of inertia on performance and fatigue pattern during repeated cycle sprints in males and females. Int. J. Sports Med., 25 (3), 235-240. (Trägheitsauswirkungen auf die Leistung und das Ermüdungsmuster bei wiederholten Sprints im Radsport der Männer und Frauen; Internetzugriff unter: http://www.thiemeconnect.com/ejournals/abstract/sportsmed/doi/10.1055/s-2003-45262) anaerob | Ermüdung | Leistung | männlich | Radsport | Sprint | weiblich | Wiederherstellung The effect of recovery duration on performance and fatigue pattern during short exercises was studied including and excluding the flywheel inertia. Subjects (11 males and 11 females) performed a force-velocity test to determine their optimal force (fopt). On the following day, subjects performed randomly 4 series of two 8-s sprints against fopt, with 15 s (R15), 30 s (R30), 60 s (R60), and 120 s (R120) recovery between sprints. The cycle (Monark 824 E, Stockholm, Sweden) was equipped with an optical sensor to calculate the revolution velocity of the pedal. For each sprint, peak power (Ppeak), mechanical work (W) and time to reach Ppeak (tPpeak) were calculated including (I) and excluding (NI) the acceleration of the flywheel. For a given sprint, Ppeak and W were greater and tPpeak was lower in I compared to NI condition (p < 0.05). Differences averaged 13 % for Ppeak, 20 % for W, 34 % for tPpeak, and remained constant between sprints 1 and 2. In sprint 2, Ppeak and W were significantly reduced compared to sprint 1 only after R15 and R30 in I and NI (p < 0.05), and no gender differences occurred. In each sprint, Ppeak and W were higher (p < 0.001) and tPpeak was shorter (p < 0.05) in males than in females, and gender differences were the same including or excluding the flywheel inertia. In conclusion, values excluding inertia underestimated mechanical performance and consequently the total energy supply. However, the pattern of fatigue and gender differences in performance and fatigue remained unchanged whatever the condition (I or NI). This result may have practical implications when the flywheel inertia can not be taken into account in the calculation of mechanical work and power output. 50 80. SPONET-NR 002348 Passfield, L. & Doust, J. H. (1999). Effect of endurance exercise on 30 s Wingate sprint in cyclists. Zugriff am 02.12.1999 unter http://physiology.cup.cam.ac.uk/Proceedings/Abstracts/506P/Cambridge/human/S08 (Auswirkung von Ausdauerbelastung auf den 30-Sekunden-Wingate-Sprint bei Radsportlern) Ausdauer | Bahnradsport | Ermüdung | Kraft | Leistung | Radsport | Sprint | Test | Sportphysiologie The effects of exercise on subsequent muscle function have been variously documented (e.g. Sargeant & Dolan, 1987; Rademaker et al. 1994). To our knowledge, changes in sprint performance following prolonged, non-exhaustive, moderate intensity exercise in trained, endurance racing cyclists has not been examined. We studied the effect of extended moderate intensity exercise (70 min, 65 % VO2,peak) on 30 s maximal unpaced (Wingate) performance in nine male cyclists. A modified Monark ergometer (model 814) with SRM powermeter (Julich, Germany), infinitely adjustable saddle height, racing saddle and the subjects' own pedals was used for all exercise trials. Power output and cadence were measured by use of the SRM powermeter, which measures torque directly from the crank with strain-gauges. Subjects performed two conditions: control (C) and exercise (E), both consisting of two 30 s sprints separated by 60 min of either rest or pedalling at 65 % VO2,peak, respectively. Immediately prior to each sprint, subjects worked at a controlled cadence of 100 rev min-1 for an additional 10 min. Between sprints subjects ingested 500 ml of a 12 %, or 10 ml kg-1 h-1 of an 8 % carbohydrate solution during C and E, respectively. Peak power output (PPO) measured as the highest 1 s value, mean power (MPO) and fatigue index (FI) were calculated for each test. A thumb-prick capillary blood sample was taken 3 min post-sprint to determine blood lactate concentration [Lac]post. A paired t test on the difference between first and second sprint was used to compare the effect of exercise with rest. Exercise at 65 % VO2,peak caused a significant drop in PPO and MPO when compared with the control trial, whilst FI did not change significantly from 55 ± 14 to 56 ± 13 % (P > 0·4) (see Table 1). A significant reduction in [Lac]post (P < 0·005) following the exercise trial was also observed, from 3·6 (1·2) to 6·6 (1·5) mM. An extended bout of prior moderate exercise appears to compromise both peak and average sprinting power. The mechanism for these changes in Wingate performance is unknown. 81. SPONET-NR 003171 Robergs, R. A., Costill, D. A., Fink, W. J., Williams, C., Pascoe, D. D., ChwalbinskaMoneta, J. & Davis, J. A. (1990). Effects of warm-up on blood gases, lactate and acid-base status during sprint swimming. Int. J. Sports Med., 11, 273-278. (Auswirkungen der Erwärmung auf die Blutgase, das Laktat sowie den Säure-BasenStatus beim Sprintschwimmen; Internetzugriff unter: http://www-rohan.sdsu.edu/dept/coachsci/csa/vol44/robergs.htm) Sprint | Sportphysiologie | Schwimmen | pH-Wert | Aufwärmung Warm-up reduced the disturbance in blood acid-base balance during the swimming exercise. Warm-up was found to be beneficial and not a hindrance to performance. Warmup swimming can be used for reasons other than performance improvements (e.g., environmental familiarization, injury prevention, psychological focusing, neuromuscular facilitation). If it produces additional physiological benefits then its justification is even further supported. 51 82. MFNR 301809 L319; FB 326 Sadzeviciene, R. & Poderys, J. (2005). Long term adaptation of sprinters to training mezcoycle of concentrated aerobic workouts. Forschungsbericht, Vilnius: Lithuanian Sports Information Centre. (Langzeitanpassung von Sprintern an konzentrierte aerobe Trainings-Mesozyklen) Schwimmen | Adaptation | Training | Mesozyklus | aerob | Sprint Aim: The aim of the study (nine national level male sprinters take part in this study) was to evaluate the influence of training-mezocycle of concentrated aerobic workouts to various body functions of sprinters. Results and Discussion: The results obtained in this study showed that was no any significant changes in CNS (Teping-test indices) and was found a significant higher values (p<0,05) in muscle power during the first assessment, i.e. before the aerobic trainingmezocycle. This indicates that the total amount of training workouts performed during the mezocycle was enough difficult, even gruelling. The dynamics of cardiovascular indices during the Rufier and jump tests shoved the increase in performance abilities of cardiovascular system after the concentrated aerobic training-mezocycle. Among these indices were heart rate, JT interval, and systolic blood pressure. Some genetic markers that are exclusively associated with elite athletes have been identified yet. One of them is in the renin-angiotensin system, which plays a key role in the regulation of cardiovascular physiology, namely ACE (angiotensin I converting enzyme) [1, 3]. There was found the differences in long-term adaptation of cardiovascular system to excessive training loads in dependence on genetic peculiarities [3]. Some of these adaptation are concerned as inevitable, i.e. myocardial hypertrophy and may lead to some limitations of cardiovascular and performance abilities [2, 3]. The results obtained in our study have showed that training-mezocycle of concentrated aerobic workouts duration of two weeks was optimal for the development of cardiovascular abilities. It has been concluded that short-term training-mezocycle of concentrated aerobic loads has a positive influence to muscular and cardiovascular adaptation of athletes. The obtained results might be interest in understanding of the more accurate relationship between type of performed training loads and peculiarities of adaptation. 83. SPONET-NR 018618 Sandbakk, O., Welde, B. & Holmberg, H.-C. (2009). Endurance training and sprint performance in elite junior cross-country skiers. In S. Loland, K. Boe, K. Fasting, J. Hallen, Y. Ommundsen, G. Roberts & E. Tsolakidis (Hrsg.), 14th annual Congress of the European College of Sport Science, Oslo/Norway, June 24-27, 2009, Book of Abstracts (S. 293). Oslo: The Norwegian School of Sport Sciences. (Ausdauertraining und Sprintleistung bei Nachwuchsleistungssportlern im Skilanglauf; Internetzugriff unter: http://www.ecsscongress.eu/OSLO2009/images/stories/Documents/BOAOSLO0610bContent.pdf) Nachwuchsleistungssport | Skilanglauf | Ausdauer | Training | Leistung | Sprint | O2Aufnahme | maximal | Leistungsfähigkeit | aerob Sprint races in modern cross-country (XC) skiing have a shorter racing time, as well as a relatively flat terrain profile, when compared to traditional races. Several studies have thus suggested that maximal speed is the most important performance predictor (e.g. Stöggl et al., 2007). However, the energy release for comparable racing times in other sports is reported to be 70-85% aerobic (Gastin, 2001). The present study therefore investigated the importance of aerobic capacity in sprint performance. The effects of a major change in 52 training stimuli, due to increased emphasis on high-speed moderate intensive endurance training upon sprint performance, maximal O2-uptake (VO2max) and O2-uptake at the ventilatory threshold (VO2VT) were also examined. Methods: 15 (10 males and 5 females) elite junior XC skiers (age 17.4±0.5 yr, VO2max 68±6 ml/kg min) participated in this study. After an eight week baseline training period, all subjects performed a freestyle 1.5 km sprint time-trial on roller skis. In addition, VO2max and VO2VT were measured in the laboratory. Thereafter, an eight week intervention training period was performed. Subjects were split into a control group (CG, n=8) and an intervention group (IG, n=7). The IG increased their training at intensities near the ventilatory threshold, emphasizing level and mixed terrain in order to induce more highspeed training, while the CG continued their traditional polarized training model with 7080% slow distance training and the remainder as high-intensity interval training. After the intervention training period the sprint race and tests on VO2max and VO2VT, were rerun. Results: Close relationships were found between VO2max (r = -0.79, p<0.01) and VO2VT (r = -0.67, p<0.01) and sprint performance. The mean sprint time in all athletes was 3:36±0:19 min in the pre-test. The IG improved sprint performance by 4.5±2.9% (p<0.01), VO2max by 3.9±1.9% (p<0.01) and VO2VT by 9.9±3.1% (p<0.01) from pre- to post-test. No significant changes were found in the CG. Discussion: Our findings suggest an association between sprint performance and aerobic capacity. The improvements in the IG are potentially related to the major change in training stimuli and demonstrate the effects of training at these moderate intensities, as well as the importance of training periodization. 84. SPONET-NR 021332 Sandbakk, Ø, Holmberg, H.-C., Leirdal, S. & Ettema, G. (2010). Metabolic rate and gross efficiency at high work rates in world class and national level sprint skiers. Eur. J. Appl. Physiol., 109 (3), 473-481. (Stoffwechselrate und Gesamteffektivität bei hoher Belastungsintensität unter Skisprintern des Weltspitzen- und nationalen Spitzenbereichs; Internetzugriff unter: http://www.divaportal.org/smash/record.jsf?searchId=1&pid=diva2:284346) Skilanglauf | Sprint | Hochleistungssport | Leistungssport | Leistungsfähigkeit | O2Aufnahme | maximal | Ermüdung | Geschwindigkeit | Video | Analyse | Laktat | Blut | Belastungsintensität | Stoffwechsel | Energiestoffwechsel The present study investigated metabolic rate (MR) and gross efficiency (GE) at moderate and high work rates, and the relationships to gross kinematics and physical characteristics in elite cross-country skiers. Eight world class (WC) and eight national level (NL) male sprint crosscountry skiers performed three 5-min stages using the skating G3 technique, whilst roller skiing on a treadmill. GE was calculated by dividing work rate by MR. Work rate was calculated as the sum of power against gravity and frictional rolling forces. MR was calculated using gas exchange and blood lactate values. Gross kinematics, i.e. cycle length (CL) and cycle rate (CR) were measured by video analysis. Furthermore, the skiers were tested for time to exhaustion (TTE), peak oxygen uptake (VO2peak), and maximal speed (Vmax) on the treadmill, and maximal strength in the laboratory. Individual performance level in sprint skating was determined by FIS points. WC skiers did not diVer in aerobic MR, but showed lower anaerobic MR and higher GE than NL skiers at a given speed (all P < 0.05). Moreover, WC skiers skated with longer CL and had higher Vmax and TTE (all P < 0.05). In conclusion, the present study shows that WC skiers are more eYcient than NL skiers, and it is proposed that this might be due to a better technique and to technique-speciWc power. 53 85. SPONET-NR 018447 Sandbakk, Ø., Leirdal, S., Holmberg, H.-C. & Ettema, G. (2009). The physiology of world class sprint skiers. In S. Loland, K. Boe, K. Fasting, J. Hallen, Y. Ommundsen, G. Roberts & E. Tsolakidis (Hrsg.), 14th annual Congress of the European College of Sport Science, Oslo/Norway, June 24-27, 2009, Book of Abstracts(S. 208). Oslo: The Norwegian School of Sport Sciences. (Die Physiologie von Ski-Sprintrennen im Weltspitzenbereich; Internetzugriff unter: http://www.ecsscongress.eu/OSLO2009/images/stories/Documents/BOAOSLO0610bCont ent.pdf) Skilanglauf | Sprint | Sportphysiologie | Physiologie | Beschleunigung | Geschwindigkeit | O2-Aufnahme | maximal | Laktat | aerob | Leistungsfähigkeit | Training During sprint competitions in cross-country skiing, athletes perform four separate races of 1200-1800m (2 to 4 min), starting with a time-trial qualification race, and thereafter heats based on a knock-out system. In order to better understand world class sprint performance, the present study investigated the differences between world class and national class sprint skiers with regard to their physiological characteristics. Methods: Eight world class (26.1±3.5 yr, 184.8±5.6 cm, 83.3±6.4 kg, sprint FIS-points 22.2±12) and eight national class (24.5±2.3 yr, 186.4±6.6cm, 82.8±6.6 kg, sprint FIS-points 100.6±45.6) sprint skiers participated in the study. They performed three standardized tests using the freestyle V-2 technique while roller skiing on a treadmill: 1) an absolute submaximal velocity test, 2) an incremental peak aerobic capacity (VO2peak) test, and 3) an incremental treadmill velocity test, leading to a maximal obtainable speed after 60-90s (Vmax). Moreover, all the subjects performed 30m acceleration and 30m maximal speed tests in the skating V-2 technique outdoors on an asphalt road. Additionally, the amount of training was quantified for different intensity zones, from low intensity endurance training to strength and speed training, according to training logbook entries. Comparisons between groups were made using the t-test procedure. Results: World class athletes showed significantly lower blood lactate levels, respiratory exchange ratio and heart rate, as well as better gross efficiency, at the submaximal velocity (all P<0.05). Furthermore, they had higher VO2peak, speed at VO2peak, Vmax-speed, and faster lactate clearance after the Vmax (all P<0.05). No differences in acceleration, maximal speed and peak lactate levels were found. World class athletes performed more endurance training and speed training (P<0.05). Discussion: World class sprint skiers are similar to national class sprint skiers as regards maximal speed and acceleration. However, they are superior in aerobic capacity, efficiency and lactate clearance. Among sprint skiers, we hypothesize that a certain level of speed is needed, however, the aerobic characteristics are what differentiates different performance levels. It is suggested that national class athletes with already high speed capacities should increase their emphasis on endurance training to further improve sprint performance. 86. SPONET-NR 011203 van Someren, K. (2005). Physiology of kayaking. Zugriff am 14.11.2005 unter http://www.kayak.plus.com/200m/resource/vansomeran-analysis.pdf (Physiologie des Kajakfahrens im Kanurennsport) Kanurennsport | Kajak | Sprint | Physiologie | Sportphysiologie | Test | Ergometrie | Theorie | Leistung | aerob 54 Since 1994 the 200 m event has been included in the international and world championship sprint kayak racing programme. As a result, the shortest duration event has been reduced from approximately 1 min 40 sec for elite men’s K1 500 m to less than 40 sec. There is plenty of anecdotal evidence and some scientific research (e.g. Tesch et al., 1976; Fry and Morton, 1991) demonstrating that the differences in the physiological demands and requirements of the 1,000 m and 500 m events are fairly subtle. However, with this much shorter event it is expected that quite different demands will be imposed upon the paddler. The fact that very few data have been published regarding this event has prompted such research. The aims of the current research were: – to determine the physiological responses to 200 m kayak racing to identify the anthropometric(2) and physiological profile of 200 m kayakers of a range of abilities, and to determine the relationship of these with performance – to question whether these findings could be used to prescribe an effective 200 m training – programme In addition, in order to determine the physiological characteristics of paddlers it was necessary to identify a suitable kayak ergometer. The conclusions of this research are as follows: – The 200 m event requires a large contribution of both aerobic and anaerobic energy and therefore paddlers must address both of these in their training plan – Elite 200 m paddlers are characterised by high levels of muscularity and muscle strength, very high levels of speed and speed endurance, and perhaps surprisingly, well developed capacities for endurance exercise – These data can be used to prescribe specific 200 m training – The K1 ERGO is a suitable ergometer for the physiological assessment of paddlers 87. SPONET-NR 017730 Vesterinen, V., Mikkola, J., Nummela, A., Hynynen, E. & Häkkinen, K. (2009). Fatigue in a simulated cross-country skiing sprint competition. J. Sports Sci., 27 (AA0), 1069-1077. (Ermüdung in einem simulierten Skilanglauf-Sprint-Wettkampf; Internetzugriff unter: http://www.informaworld.com/smpp/content~db=all~content=a914091611) Skilanglauf | Wettkampf | Sprint | Simulation | Ermüdung | Laktat | O2-Aufnahme | Technik | Sportphysiologie | Muskelphysiologie The aim of this study was to assess fatigue during a simulated cross-country skiing sprint competition based on skating technique. Sixteen male skiers performed a 30-m maximal skiing speed test and four 850-m heats with roller skies on a tartan track, separated by 20 min recovery between heats. Physiological variables (heart rate, blood lactate concentration, oxygen consumption), skiing velocity, and electromyography (EMG) were recorded at the beginning of the heats and at the end of each 200-m lap during the heats. Maximal skiing velocity and EMG were measured in the speed test before the simulation. No differences were observed in skiing velocity, EMG or metabolic variables between the heats. The end (820-850 m) velocities and sum-iEMG of the triceps brachii and vastus lateralis in the four heats were significantly lower than the skiing velocity and sum-iEMG in the speed test. A significant correlation was observed between mean oxygen consumption and the change in skiing velocity over the four heats. Each single heat induced considerable neuromuscular fatigue, but recovery between the heats was long enough to prevent accumulation of fatigue. The results suggest that the skiers with a high aerobic power were less fatigued throughout the simulation. 55 88. SPONET-NR 017457 Vesterinen, V., Mikkola, J., Nummela, A., Hynynen, E. & Häkkinen, K. (2007). Neuromuscular and metabolic responses during a simulated cross-country skiing sprint competition. In J. Kallio, P. V. Komi, J. Komulainen & J. Avela (Hrsg.), 12th Annual Congress of the European College of Sport Science, Jyväskylä, Finland - July 11-14th 2007. Book of Abstracts (S. 537). Jyväskylä: University of Jyväskylä. (Neuromuskuläre und Stoffwechselreaktionen während eines simulierten Sprintrennens im Skilanglauf; Internetzugriff unter: http://ecss2007.cc.jyu.fi/schedule/proceedings/pdf/2576.pdf) Skilanglauf | Sprint | Simulation | Wettkampf | O2-Aufnahme | Laktat | aerobanaerobe Schwelle | Herzfrequenz | Ermüdung | Wiederherstellung | Belastungsintensität | Stoffwechsel | Energiestoffwechsel | EMG | Sportphysiologie In the last decade, a new competition form, cross-country (XC) skiing sprint, has been developed. XC skiing sprint differs from normal distances because of shorter and repeated performances. Up to present, there is no data about muscle activation and only a little knowledge about physiological loading during XC skiing sprint competition. The aim of this study was to investigate loading during a simulated XC skiing sprint competition (SC) in free technique. Sixteen male skiers performed SC on roller skies on an indoor tartan track. SC consisted of four 850 m heats separated by 20 min of recovery. Skiers were instructed to ski the first and the last 50 m of each heat at the maximal effort and mid part of the heat with the maximal race velocity. Heat times, heart rate (HR) and oxygen consumption (VO2) were measured during the heats. Peak lactate (LApeak), as the highest value during recovery, and lactate before (LApre) each heat were also measured. EMG and velocity was measured from the triceps brachii and vastus lateralis in the beginning (20-50 m) and at the end (820- 850 m) of each heat. The EMG signals from individual muscles were summed to represent overall electrical activity of these muscles (sum-iEMG). Maximal skiing velocity (Vmax) and iEMG-activity (EMGmax) were measured before SC by performing a 30 m speed test. Heat times of SC in heat 1 (H1), heat 2 (H2), heat 3 (H3) and heat 4 (H4) were 142.6 ± 5.0, 142.6 ± 5.1, 142.4 ± 5.5, 141.9 ± 5.3 s and VO2max were 64.4 ± 4.0, 65.7 ± 3.9, 65.7 ± 3.6, 65.9 ± 4.0 ml/kg/min, respectively. Mean HRmax was 180 ± 7 bpm with no change over the four heats. LApeak was 12.8 ± 2.4, 13.3 ± 3.0, 13.5 ± 2.8, 13.8 ± 2.7 mmol/l and LApre 1.6 ± 0.7, 5.3 ± 3.6, 5.9 ± 4.1, 6.2 ± 4.0 mmol/l. The above mentioned variables did not change between the four heats, except LApre which was higher in H2 (p<0.05), H3 and H4 (p<0.01) compared to H1. The final sprint (820-850m) velocities of H1, H2, H3 and H4 were 14 ± 5, 13 ± 5, 13 ± 3, 15 ± 5 % (all, p<0.001) lower than Vmax and sum-iEMG at the same measuring phases were 27 ± 13, 28 ± 15, 24 ± 10, 27 ± 14 % (all, p<0.001) lower than EMGmax. However, sumiEMG in the beginning phases of each heat did not differ from that of the Vmax test. The present metabolic findings are mainly in line with Stöggl et al. (2006). We observed significant decreases in muscle activation and velocities during the single heats which may partly indicate neural fatigue. These decreases in sport specific EMG are in line with Peltonen et al. (1997), showing the important role of the central nervous system in short duration endurance performance. In conclusion, each single heat induced neuromuscular fatigue but the recovery between the heats seems to be long enough for preventing accumulation of fatigue. 56 Ernährung 89. SPONET-NR 004438 Hansen, C. A. (2000). The effects of ergogenic aid supplementation on the sprint capacity of male cyclists. (Die Auswirkungen der Supplementierung ergogener Mittel auf die Sprintleistungsfähigkeit männlicher Radsportler; Internetzugriff unter: https://millrace.uoregon.edu/kinpubs/newsearch.cfm?CFID=175521&CFTOKEN=2303477 5&viewmode=detail&pdfsonly=unlimit&specdet=86) ergogenes Mittel | Leistungsfähigkeit | Radsport | Sprint | Supplementierung The purpose of this investigation was to evaluate the effects of ergogenic aid supplementation, specifically different formulated sports drinks with reference to magnesium, on the sprint capacity (mean anaerobic power, peak anaerobic power, lowest anaerobic power, rate of fatigue, and blood lactate concentrations) in male cyclists. The investigation followed a double-blind format with participants randomly assigned into treatment groups. All participants completed a three-day diet analysis during each supplementation period. At the end of each supplementation period participants performed a 40-km bicycle ride on a stationary trainer at 80% of their maximum heart rate followed by a Wingate Anaerobic Power Test at 0.075 kp/kg. Three minutes post Wingate, an Accusport portable blood lactate analyzer measured blood lactate concentrations. A repeated measures ANOVA revealed significant differences in mean anaerobic power (F=5.680, p=0.035) between ergogenic aid A (392 mg of magnesium per day) and ergogenic aid B (60.6 mg of agnesium per day). However, significance was not reached in peak anaerobic power (F=2.737, p=0.124), lowest anaerobic power (F=2.083, 0.175), rate of fatigue (F=0.071, p=0.794), and blood lactate concentrations (F=0.282, p=0.607). Dependent t-tests revealed no significant differences between ergogenic aid A and B when added to the participants diet: potassium (p=0.072), calcium (p=0.503), carbohydrates (p=0.270), and total kilocalories (p=.064). In contrast, there was a significant difference in magnesium (p<0.001) between ergogenic aid A and B. In conclusion, supplementation of magnesium (392 mg per day) may be beneficial in the enhancement of anaerobic performance in competitive male cyclists. 90. SPONET-NR 002299 Maughan, R. J., Greenhaff, P. L., Leiper, J. B., Ball, D., Lambert, C. P. & Gleeson, M. (1997). Diet composition and the performance of high-intensity exercise. J. Sports Sci., 15 (3), 265-275. (Nahrungszusammensetzung und Leistung bei hochintensiver Belastung; Internetzugriff unter: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids =92325 52&dopt=Abstract) Stoffwechsel | Kurzzeitausdauer | Kohlenhydrat | Fett | Ernährung | Eiweiß | Belastung | Ausdauer The crucial role of muscle glycogen as a fuel during prolonged exercise is well established, and the effects of acute changes in dietary carbohydrate intake on muscle glycogen content and on endurance capacity are equally well known. More recently, it has been recognized that diet can also affect the performance of high-intensity exercise of short (2-7 min) duration. If the muscle glycogen content is lowered by prolonged (1-1.5 h) exhausting cycle exercise, and is subsequently kept low for 3-4 days by consumption of a diet 57 deficient in carbohydrate (<5% of total energy intake), there is a dramatic (~10-30%) reduction in exercise capacity during cycling sustainable for about 5 min. The same effectis observed if exercise is preceded by 3-4 days on a carbohydrate-restricted diet or by a 24 h total fast without prior depletion of the muscle glycogen. Consumption of a diet high in carbohydrate (70% of total energy intake from carbohydrate) for 3-4 days before exercise improves exercise capacity during high-intensity exercise, although this effect is less consistent. The blood lactate concentration is always lower at the point of fatigue after a diet low in carbohydrate and higher after a diet high in carbohydrate than after a normal diet. Even when the duration of the exercise task is kept constant, the blood lactate concentration is higher after exercise on a diet high in carbohydrate than on a diet low in carbohydrate. Consumption of a low-carbohydrate isoenergetic diet is achieved by an increased intake of protein and fat. A high-protein diet, particularly when combined with a low carbohydrate intake, results in metabolic acidosis, which ensues within 24 h and persists for at least 4 days. This appears to be the result of an increase in the circulating concentrations of strong organic acids, particularly free fatty acids and 3-hydroxybutyrate, together with an increase in the total plasma protein concentration. This acidosis, rather than any decrease in the muscle glycogen content, may be responsible for the reduced exercise capacity in high-intensity exercise; this may be due to a reduced rate of efflux of lactate and hydrogen ions from the working muscles. Alternatively, the accumulation of acetyl groups in the carbohydrate-deprived state may reduce substrate flux through the pyruvate dehydrogenase complex, thus reducing aerobic energy supplyand accelerating the onset of fatigue. 58 Nachtrag Folgende fünf Quellen zur Thematik der Bibliografie wurden nach Redaktionsschluss, aber noch vor der Kleinkonferenz, in unsere Datenbanken aufgenommen. 91. MFNR 307416 L319; I.L.10.; 28671 Mikkola, J., Laaksonen, M. S., Holmberg, H.-C. & Linnamo, V. (2010). Changes in double poling forces and cycle characteristics during cross-country skiing sprint competition . In E. Müller, S. Lindinger, T. Stöggl & J. Pfusterschmied (Hrsg.), 5th International Congress on Science and Skiing, Dec. 14-19, 2010, St. Christoph am Arlberg - Austria. Book of Abstracts (S. 45). Salzburg: University of Salzburg, Interfakultärer Fachbereich Sport- und Bewegungswissenschaft/USI. (Veränderungen der Kräfte beim Doppelstockschub und Zyklusmerkmale im Sprintwettkampf im Skilanglauf) Skilanglauf | Sprint | Wettkampf | Technik | Kraft | Vortrieb | Biomechanik Introduction: "Modern" double poling (DP), introduced by Holmberg et al. (2005), is the most used technique in the classical cross-country skiing sprint (XCSS) competitions. However, there is no published data about how pole forces change during XCSS using DP due to fatigue. The aim of this study was thus to investigate changes in pole forces and cycle characteristics during XCSS. Method: Twelve Finnish top-level male XC skiers performed a simulated sprint competition (4 x 1050 m heat / 20 min recovery between heats) using DP technique in an indoor ski tunnel on snow. Vertical (Fz) and horizontal (Fy) pole forces, as well as poling (PT), recovery (RT) and cycle times (CT = PT + RT) were measured using a custom made 18m-long force plate System (Vähäsöyrinki et al. 2008) during the start (maximal), race (optimal race speed) and finish (maximal) phases of each heat. Furthermore, vertical (Iz) and horizontal (ly) pole impulses, DP speed (V18m) and cycle length (CL) were calculated. Velocity (VH), heart rate (HR) and peak lactate (LA) were also measured during the heats. Results: VH decreased by 2.5% (p<.01) from heat1 (6.1 ±0.3 m/s) to heat4 (5.9±0.3 m/s) but there were no changes in HR (from 180±4 to 179±5 bpm) or L+A (from 11.2+1.1 to 11.6±1.8 mmol/l) between the heats. V18m and cycle characteristics did not differ when comparing the same phases between the heats but when averaging all four heats significant changes were observed within phases (table 1). The poling forces and impulses decreased within the heats (table 1) but not between the heats. The mean VH of four heats correlated significantly to the mean V18m of the race (r=.91***) and finish (r=.79**) phases as well as to the mean Fy of the finish phase (r=.70*) and to the mean Fz of the race phase (r=.59*). Discussion/conclusion: Decreased maximal DP velocity (V18m) within heats (start vs. finish phase) indicated fatigue among the skiers. Fatigue was manifested by decreased pole force production and changes in cycle characteristics. However, the accumulation of fatigue between the heats was minor because of the 20-min recovery between the heats. Also, the skiers' different pacing strategies might affect the accumulation of fatigue. The fastest sprint skiers seemed to be able to keep propulsive force levels higher during the finishing sprint. 59 92. MFNR 307420 L319; I.L.10.; 28671 Fujita, Z., Ishige, Y., Yoshioka, S., Tauchi, K. & Tsuchiya, J. (2010). Time course changes of the kinematics and kinetics during double-poling technique in cross-country sprint skiing. In E. Müller, S. Lindinger, T. Stöggl & J. Pfusterschmied (Hrsg.), 5th International Congress on Science and Skiing, Dec. 14-19, 2010, St. Christoph am Arlberg - Austria. Book of Abstracts (S. 112). Salzburg: University of Salzburg, Interfakultärer Fachbereich Sport- und Bewegungswissenschaft/USI. (Zeitverlaufsveränderungen der Kinematik und Kinetik beim Doppelstockschub im Skilanglauf-Sprint) Skilanglauf | Biomechanik | Technik | Kraft | Sprint Introduction: Ten years ago, sprint skiing events were introduced into the World Ski Championships, and subsequently, some skiers have tried to adapt their cross-country skiing technique to the higher racing speeds attained during sprint skiing. The racing speed using the double-poling technique is high, and many athletes use double-poling technique when they want to accelerate or when they are close to the finish line (Stöggl, et al., 2006). Thus, it is important that athletes keep the high level of the racing speed. However, no study could be found elucidating a relationship between the racing speed and the time course changes of kinematics and kinetics during double-poling technique. The purpose of this study was to examine time course changes of the kinematics and the kinetics during double poling techniques in cross-country sprint skiing. Method: Five subjects performed 3 min maximal double poling on an oval track (320 m). Measured kinematic parameters were the mean velocity, cycle length, cycle rate, duration over one cycle, which consists of poling (0% - 30% of one cycle) and gliding (30% -100% of one cycle) phases. The segment angles were measured for the upper and forward arms, trunk, thigh, shank, foot, pole from the horizontal plane. Distance from the most proximal edge of the foot to the pole contact point, which is defined here as pole contact length, was also calculated. For the kinetic parameters, the peak and mean forces and Impulse of poles were analyzed. Results: The velocity, cycle rate and peak and mean pole forces decreased significantly at 3rd lap compared with 1st lap of the round. In contrast, duration of the poling and gliding phases and impulse of pole and poling angle increased significantly at 3rd lap compared with 1st lap (p<.05). There was no significant difference in the cycle length and pole contact length among laps (p<.05). Thigh angle was greater, and shank and foot angles were less at 3rd lap than at 1st lap in poling phase (p<.05). During gliding phase, foot and thigh angles were greater and shank angle was less at 3rd lap than at 1st lap (p<.05). Discussion: In poling phase, thigh angle was greater and lower limb and foot angles were less, indicating position while one cycle. In glide phase, foot and thigh angles were greater and shank angle was less indicating decreased flexing and extending action. Conclusion: The aim of this study was to examine time course changes of the kinematics during double poling technique. Double poling technique during sprint skiing was changed to erect standing position of the body and decreased flexing and extending action of legs with time course. 60 93. MFNR 307421 L319; I.L.10.; 28671 Yarim, I. & Cetin, E. (2010). Relationship between anaerobic power and roller ski sprint performance in cross-country skiers. In E. Müller, S. Lindinger, T. Stöggl & J. Pfusterschmied (Hrsg.), 5th International Congress on Science and Skiing, Dec. 14-19, 2010, St. Christoph am Arlberg - Austria. Book of Abstracts (S. 159). Salzburg: University of Salzburg, Interfakultärer Fachbereich Sport- und Bewegungswissenschaft/USI. (Zusammenhang zwischen anaerober Leistung und Rollski-Sprintleistung bei Skilangläufern) Skilanglauf | Sprint | Leistung | anaerob Inroduction: Sprint races, which have become more widespread since the 1990s, lead skiers to specialize in different branches [1]. Studies conducted in recent years state that in this type of race, during which anaerobic performance and strength are important, athletes should have different features anthropometrically, physically and physiologically [2].The aim of this study is to examine the relationship between sprint exercises performed at different distances using the roller ski training model and anaerobic performance. Method: Ten volunteer male skiers ages 19.3±2.5, with heights of 173.3±6.2 and weights of 67±8.4 participated in the study. The measurements in the study were performed in a laboratory and on a tartan track using the V2 skating technique. The roller ski used was Pro-Ski C2 (Sterners, Nyhammar, Sweden). The applied anaerobic strength test of the leg muscles was a Wingate 30-second cycle ergometer test. Spearman rank correlation test was performed for statistical analysis. The value of p<0.05 was accepted for statistical significance. Discussion: A difference between the distance of the exercise and the parameters applied in the study was determined. While a significant positive correlation was observed between 200 m roller ski exercise and peak power, a significant positive correlation was found between 800 m exercise and average power. Many studies began to be performed with regard to the increase in the speed factor since the day sprint races began. These studies focus on topics such as equipment technology, wax, technique, strategy and predominantly training physiology [1, 3, 4].In light of the literature and our results, it may be advised that improving the training of the anaerobic average power should be applied for cross-country ski sprinters. Conclusion: As a consequence, while the positive correlation value between the exercise performed in short distance (200 m) and the peak power is high, this study demonstrated that as the distance increased (800 m), average power value became more important. 94. SPONET-NR 021331 Mattsson, M. (2010). Het och plagasam träningstrend: Tabata-intervaller. Idrott & Kunskap, 5, 28-29. (Heißer und sehr anstrengender Trainingstrend: Tabata-Intervalle; Internetzugriff unter http://urn.kb.se/resolve?urn=urn:nbn:se:gih:diva-1499) Ausdauer | Ausdauerdisziplinen | Training | Trainingsmethode | Belastungsumfang | Belastungsintensität | Intervallmethode Die sog. Tabata-Intervalle stammen ursprünglich aus dem Eisschnelllaufen und haben folgende Struktur: 20 Sekunden Belastung, danach 10 Sekunden Erholung, das wird bis zur Erschöpfung gemacht. Die Belastungen können auf dem Rad, dem Fahrradergometer, auf Schlittschuhen oder auf dem Laufband absolviert werden. Eine Trainingseinheit besteht im Normalfall aus acht Intervallen, d. h. einer Gesamtzeit von 4 Minuten. Davor liegt eine zehnminütige Erwärmung, d. h. die Gesamteinheit umfasst 15 Minuten. Die Belastungs61 intensität muss sehr hoch sein – 170 % der maximalen Sauerstoffaufnahme (VO2 max). Die Tabata-Intervalle können nicht auf der Grundlage des Pulses absolviert werden, weil dieser nur Relationen bis zu 100 % der maximalen Sauerstoffaufnahme herstellt. Damit die Intervalle wirken, müssen große Muskelmassen/-gruppen belastet/aktiviert werden. 95. SPONET-NR 021332 Sandbakk, Ø, Holmberg, H.-C., Leirdal, S. & Ettema, G. (2010). Metabolic rate and gross efficiency at high work rates in world class and national level sprint skiers. Eur. J. Appl. Physiol., 109 (3), 473-481. (Stoffwechselrate und Gesamteffektivität bei hoher Belastungsintensität unter Skisprintern des Weltspitzen- und nationalen Spitzenbereichs; Internetzugriff unter http://dx.doi.org/10.1007/s00421-010-1372-3) Skilanglauf | Sprint | Hochleistungssport | Leistungssport | Leistungsfähigkeit | O2Aufnahme | maximal | Ermüdung | Geschwindigkeit | Video | Analyse | Laktat | Blut | Belastungsintensität | Stoffwechsel Energiestoffwechsel The present study investigated metabolic rate (MR) and gross efficiency (GE) at moderate and high work rates, and the relationships to gross kinematics and physical characteristics in elite cross-country skiers. Eight world class (WC) and eight national level (NL) male sprint crosscountry skiers performed three 5-min stages using the skating G3 technique, whilst roller skiing on a treadmill. GE was calculated by dividing work rate by MR. Work rate was calculated as the sum of power against gravity and frictional rolling forces. MR was calculated using gas exchange and blood lactate values. Gross kinematics, i.e. cycle length (CL) and cycle rate (CR) were measured by video analysis. Furthermore, the skiers were tested for time to exhaustion (TTE), peak oxygen uptake (VO2peak), and maximal speed (Vmax) on the treadmill, and maximal strength in the laboratory. Individual performance level in sprint skating was determined by FIS points. WC skiers did not diVer in aerobic MR, but showed lower anaerobic MR and higher GE than NL skiers at a given speed (all P < 0.05). Moreover, WC skiers skated with longer CL and had higher Vmax and TTE (all P < 0.05). In conclusion, the present study shows that WC skiers are more eYcient than NL skiers, and it is proposed that this might be due to a better technique and to technique-speciWc power. 62 Index Adaptation 12, 41, 82 aerob 18, 47, 75, 76, 77, 82, 83, 85, 86 aerob-anaerobe Schwelle 77, 88 allg. athlet. Ausbildung 29, 32 anaerob 47, 75, 76, 79, 93 Analyse 2, 21, 60, 66, 84, 95 Anthropometrie 3, 6, 15, 18, 20, 23, 69 Arm 19 Aufwärmung 81 Ausbildung 27 Ausdauer 34, 80, 83, 90, 94 Ausdauerdisziplinen 13, 94 Australien 9, 35 Auswahl 9, 11 Bahnradsport 2, 5, 9, 42, 64, 80 Bein 16 Belastung 74, 90 Belastungsgestaltung 12, 28, 33, 39, 41, 45, 50, 52, 70 Belastungsintensität 36, 40, 70, 77, 84, 88, 94 Belastungsumfang 27, 36, 39, 40, 94 Beschleunigung 14, 85 Beweglichkeit 10, 29 Bewegung 11, 65 Bewegungsfertigkeit 21, 46, 60, 66 Bewegungskoordination 21, 60, 66 Bewegungsmerkmal 60 Bewegungsschnelligkeit 21, 60, 66 Biathlon 1 Biomechanik 2, 15, 21, 25, 58, 59, 60, 61, 62, 63, 65, 71 , 72, 78. 91, 92 Blut 84, 95 BRD 11 Brustschwimmen 57 Bundesrepublik Deutschland 11 63 Eignung 11 Eisschnelllauf 14, 16, 25, 54, 58, 59 Eiweiß 90 EMG 88 Energie 15 Energiestoffwechsel 15, 75, 76, 84, 88, 95 ergogenes Mittel 89 Ergometrie 24, 75, 86 Ermüdung 45, 53, 73, 79, 80, 84, 87, 88, 95 Ernährung 90 Explosivkraft 19, 22 Faser 74 Fett 90 Geschwindigkeit 20, 21, 31, 57, 69, 71, 84, 85, 95 Herzfrequenz 88 Hilfsgerät 63 Hochleistungssport 3, 4, 5, 11, 12, 13, 21, 38, 40, 41, 60, 66, 77, 84, 95 Hydrodynamik 61 international 13 Intervallmethode 26, 33, 60, 94 Jahr 50, 52 Jugend 15 Kajak 18, 23, 43, 67, 76, 86 Kanurennsport 23, 28, 43, 61, 62, 67, 68, 76, 86 Kanusport 18, 43, 61, 62 Körperbau 6, 10, 18, 20, 68, 69 Körpermaß 3, 4, 20, 77 Kohlenhydrat 90 koordinative Fähigkeit 10 Kraft 4, 10, 14, 16, 18, 19, 22, 28, 30, 31, 38, 43 , 63, 78, 80, 91, 92 Kraulschwimmen 8, 10, 11, 15, 26, 37, 69, 78 Kurzzeitausdauer 44, 90 Laktat 12, 15, 21, 41, 84, 85, 87, 88, 95 Langstrecke 17, 39 64 Leistung 2, 3, 5, 6, 7, 12, 15, 16, 20, 21, 23, 30, 32, 33, 34, 41, 47, 53, 58, 64, 70, 71, 75, 77, 79, 80, 83, 86, 93 Leistungsdiagnostik 16, 19, 58 Leistungsentwicklung 13 Leistungsfähigkeit 4, 13, 18, 83, 84, 85, 89, 95 Leistungsfaktor 1, 7, 10, 23 Leistungssport 3, 4, 5, 11, 12, 13, 21, 38, 41, 60, 66, 75, 77, 84, 95 Leistungsstruktur 2, 5, 10, 13 Leistungsvoraussetzung 1 Litauen 52 männlich 4, 40, 69, 79 maximal 4, 12, 41, 77, 83, 84, 85, 95 Maximalkraft 8, 19, 22 Mechanik 63 Mesozyklus 82 Messverfahren 24 Modellierung 2, 64 motorisches Lernen 46 Muskel 16, 74, 78 Muskelphysiologie 78, 87 Nachwuchsleistungssport 6, 9, 11, 15, 83 Neurophysiologie 73 Norwegen 40 O2-Aufnahme 4, 12, 21, 41, 77, 83, 84, 85, 87, 88, 95 Olympische Sommerspiele 2000 68 Organisierung 27 pH-Wert 81 Physiologie 13, 21, 77, 85, 86 Prognose 3, 6 Programm 49 Radsport 2, 7, 9, 22, 24, 33, 34, 38, 42, 44, 47, 63, 64, 71, 74, 79, 80, 89 Reaktion 29 Relation 6, 20, 30, 33, 53, 69, 70, 77 Schnelligkeit 10, 11, 31, 43, 44, 66 65 Schnellkraft 14 Schuh 63 Schwimmen 6, 8, 10, 11, 15, 17, 26, 29, 30, 31, 32, 35, 36, 37, 39, 45, 48, 49, 50, 51, 53, 55, 57, 60, 65, 69, 70, 78, 81, 82 Shorttrack 25, 27, 54 Simulation 87, 88 Skilanglauf 3, 4, 12, 13, 19, 20, 21, 40, 41, 46, 52, 56, 66, 72, 73, 75, 77, 83, 84, 85, 87, 88, 91, 92, 93, 94 Spezialisierung 39 Sportgerät 61, 67, 68 Sportphysiologie 12, 13, 21, 23, 41, 77, 80, 81, 85, 86, 87, 88 Sportverein 27 Sprung 58 Start 14, 59, 65 Statistik 57 Stoffwechsel 15, 75, 84, 88, 90, 95 Straßenradsport 64 Supplementierung 89 Taktik 25, 64 Talent 9, 11 Tapering 51 Technik 4, 5, 10, 11, 15, 21, 25, 30, 54, 57, 59, 60, 66, 72, 77, 87, 91, 92 Test 11, 15, 19, 24, 58, 75, 80, 86 Theorie 2, 64, 86 Thorax 19 Trainer 27 Training 12, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 46, 48, 49, 50, 51, 52, 54, 55, 60, 82, 83, 85, 94 Trainingskonzeption 39 Trainingsmethode 27, 29, 30, 31, 32, 35, 43, 47, 94 Trainingsmittel 30, 32, 54 Trainingsplanung 12, 28, 29, 38, 40, 41, 48, 50, 52 Trainingswirkung 32 66 Übung 54 Übungszusammenstellung 38, 54 Untersuchungsmethode 15, 24, 62, 65 USA 49, 55 UWV 51 Video 84, 95 Vorbereitungsperiode 29 Vortrieb 91 weiblich 69, 79 Wettkampf 27, 64, 77, 87, 88, 91 Wettkampfperiode 28, 29 Widerstand 31, 64 Wiederherstellung 33, 45, 53, 70, 79, 88 Wiederholungsmethode 53 67 68 Institut für Angewandte Trainingswissenschaft Ein Institut im Verein IAT/FES des DOSB e. V. Marschnerstr. 29 04109 Leipzig Telefon +49 (0)341 4945 131 Fax +49 (0)341 4945 400 E-Mail bfranz@iat.uni-leipzig.de Web http://www.sport-iat.de 69