Process Simulation for Braiding - Fachkongress Composite Simulation
Transcription
Process Simulation for Braiding - Fachkongress Composite Simulation
www. .uni-stuttgart.de Institut für Flugzeugbau ENTWICKLUNGSTRENDS IN DER FASERVERBUND-SIMULATION Prof. Dr.-Ing. Peter Middendorf Dipl.-Ing. Karin Birkefeld Institute of Aircraft Design University of Stuttgart www. .uni-stuttgart.de Institut für Flugzeugbau R&D Focus for (Composite) CAE: Key Topics 1. Early concept phase Fast modeling and analysis tools on time reliable information 2. Pre-design phase Multi-disciplinary design and optimization ensure design freeze 3. Final design phase Detailed (non-linear) analysis for sizing & justification save weight 4. New technology developments Process simulation, modeling and sizing methods & implementations enabling factor 5. A/C certification support Virtual structural testing reduction of experimental testing and development time 2012-02-23 Fachkongress Composite Simulation, Ludwigsburg 2 www. .uni-stuttgart.de Institut für Flugzeugbau Outline of Presentation 1. Process Simulation for Braiding 2. Multi-level Modelling and Analysis of Textile Composites 3. Virtual Testing of Sandwich Core Materials 4. Conclusions 2012-02-23 Fachkongress Composite Simulation, Ludwigsburg 3 Braiding @ IFB www. .uni-stuttgart.de Institut für Flugzeugbau Braiding machine (IFB) 2012-02-23 Fachkongress Composite Simulation, Ludwigsburg 4 Introduction to Braiding The braiding process and the material is variable for a high number of parameters… www. .uni-stuttgart.de Institut für Flugzeugbau Braiding angle Circumference of the mandrel Type and number of rovings Weave construction Tension on the fibers during braiding Compaction of braided layers Fiber volume fraction after infusion and curing (RTM, vacuum assisted processes) Generic Demonstrator 2012-02-23 Fachkongress Composite Simulation, Ludwigsburg 5 www. .uni-stuttgart.de Institut für Flugzeugbau Process Chain Braiding Braiding process parameters Geometry of the component Optimisation Identification of fiber architecture Structural analysis 2012-02-23 Micro- and meso-mechanical analysis Fachkongress Composite Simulation, Ludwigsburg 6 www. .uni-stuttgart.de Institut für Flugzeugbau Process Simulation for Braiding Why braiding simulation? Failure analysis of the material based on detailed meso-models Optimization of the production process Determination of fiber orientation for structures with complex geometry Direct determination of component stiffness and its behavior under loading 2012-02-23 Fachkongress Composite Simulation, Ludwigsburg 7 Process Simulation for Braiding Bias and zero degree yarns Braiding mandrel www. .uni-stuttgart.de Institut für Flugzeugbau Braiding ring Springs 2012-02-23 Representation of rovings with bar and beam elements Fachkongress Composite Simulation, Ludwigsburg 8 Process Simulation for Braiding www. .uni-stuttgart.de Institut für Flugzeugbau 2012-02-23 Fachkongress Composite Simulation, Ludwigsburg 9 Process Simulation for Braiding Triaxial braid with 30° braiding angle www. .uni-stuttgart.de Institut für Flugzeugbau 2012-02-23 Fachkongress Composite Simulation, Ludwigsburg 11 Process Simulation for Braiding www. .uni-stuttgart.de Institut für Flugzeugbau Results from braiding simulation compared to experiments 2012-02-23 Fachkongress Composite Simulation, Ludwigsburg 12 www. .uni-stuttgart.de Institut für Flugzeugbau Process Simulation for Braiding Advantage: Realistic behaviour of fibers in yarn Disadvantage: Friction behavior not implemented Enormous increase in CPU time Multi-bar approach Advantages: Deformation of cross-section Friction between shells Shell-bar approach 2012-02-23 Disadvantage: Enormous increase in CPU time Fachkongress Composite Simulation, Ludwigsburg 13 Process Simulation for Braiding www. .uni-stuttgart.de Institut für Flugzeugbau 2012-02-23 Fachkongress Composite Simulation, Ludwigsburg 14 Process Simulation for Braiding Realistic behavior of the rovings due to modeling of friction in the system with shell-bar approach www. .uni-stuttgart.de Institut für Flugzeugbau Rovings are not aligned directly to the mandrel 2012-02-23 Fachkongress Composite Simulation, Ludwigsburg 15 www. .uni-stuttgart.de Institut für Flugzeugbau Future – Design for the process (CAM) Optimized machine parameters from braiding simulation Information about preform compaction for tool development Braiding Simulation Braiding of the preform 2012-02-23 RTM-Tool (FHNW) Fachkongress Composite Simulation, Ludwigsburg 16 • Influenced material parameters like stiffness, strength, permeability, drapability, … How to predict the average properties of a complex textile reinforced composite? • 2012-02-23 Proposed solution: multi-level modelling – Micro: level of yarn / roving – Meso: level of a representative volume element – Macro: part size Fachkongress Composite Simulation, Ludwigsburg MESO Textile reinforced composites are more complex – textile architecture, base materials, – local variations, defects – damage behaviour, ... MACRO • MICRO Modelling and Analysis of Textile Composites www. .uni-stuttgart.de Institut für Flugzeugbau 17 Meso-mechanical Modelling Approach Braiding angle Geometric model (WiseTex [*]) www. .uni-stuttgart.de Institut für Flugzeugbau Geometric characterisation RVE RVE Yarn width Spacing Yarn crimp FE model Cross section shape Yarn height [* ] 2012-02-23 http://www.mtm.kuleuven.ac.be/Research/C2/poly/software.html Fachkongress Composite Simulation, Ludwigsburg 18 Geometry Validation • Micro Computer Tomography of infiltrated CFRP – Specimen is scanned under different angles – Image processing software transfers the result to a 3D voxel model – Widely used for medical applications – Fast data processing – Model validation / creation 2012-02-23 Fachkongress Composite Simulation, Ludwigsburg www. .uni-stuttgart.de Institut für Flugzeugbau 19 FE Modelling of Textile Composites (FETex) Translation of WiseTex description into FE model • Mesh principle for yarns: – Mimic geometric entities in FE pre-processor • Create cross sections • Make linear interpolation – Use mesher in FE pre-processor www. .uni-stuttgart.de Institut für Flugzeugbau • Create volume entities Mesh principle for resin material – Duplicate outer element faces of existing yarn elements – Create surface mesh on RVE boundaries – Combine and mesh volume 2012-02-23 Model cross sections Fachkongress Composite Simulation, Ludwigsburg Mesh 20 FE Modelling of Textile Composites • www. .uni-stuttgart.de Institut für Flugzeugbau Material property definition – Resin: Isotropic – Fibre reinforced materials • Based on WiseTex description – Fibre volume fraction Vf – Fibre orientation fx, fy, fz • Elastic properties using Chamis mixing formulas • Fibre orientations using reference coordinate systems – Loop over all elements 2012-02-23 Fachkongress Composite Simulation, Ludwigsburg 21 MESO-LEVEL Homogenization: Meso-Macro Approach Geometric model Meso FE Analysis Translation FE + Homogenisation MACRO-LEVEL www. .uni-stuttgart.de Institut für Flugzeugbau 2012-02-23 Part simulation Part behaviour Element average Fachkongress Composite Simulation, Ludwigsburg 22 .uni-stuttgart.de Damage Prediction and Failure www. Institut für Flugzeugbau • How does a complex textile reinforced composite behaves beyond initial damage? Find out using multi-level modelling: – Apply damage model on small scale – Look at average response of meso-mechanical RVE • 2012-02-23 Local fibre orientation in yarn elements enables application of UD composite damage model (here: Ladevèze) + damage model for pure matrix material (here: Weibull based) Fachkongress Composite Simulation, Ludwigsburg 23 23 Virtual Testing www. .uni-stuttgart.de Institut für Flugzeugbau 2012-02-23 Fachkongress Composite Simulation, Ludwigsburg 24 Dynamic VST of Cellular Sandwich Core Structures • Objective: Obtain effective mechanical properties of (existing/innovative) core structures in various load cases, reducing experimental (prototype) tests • Explicit dynamic simulations of compression/tensile/shear tests • Model development: Parametric model generation www. .uni-stuttgart.de Institut für Flugzeugbau 2012-02-23 Fachkongress Composite Simulation, Ludwigsburg 25 Dynamic VST of Cellular Sandwich Core Structures • Modeling issues: – Cell wall material modeling (e.g. resin-impregnated Nomex® paper) – Imperfection modeling e.g. • Global geometry distortion of individual cells • Local distortion of node coordinates (node shaking) • Superposition of first buckling modes www. .uni-stuttgart.de Institut für Flugzeugbau • Stochastically distributed property variation of individual elements – Model size • Single unit cell with periodic boundary conditions = unlimited honeycomb size • Larger model with free edges = test specimen behavior 2012-02-23 Fachkongress Composite Simulation, Ludwigsburg 26 Dynamic VST of Cellular Sandwich Core Structures Nomex® honeycomb unit cell deformation under compression: • hexagonal cells: over-expanded cells: www. .uni-stuttgart.de Institut für Flugzeugbau 3 Experiment Simulation 2,5 2 1,5 1 0,5 0 Experiment Simulation 2,5 2 1,5 1 0,5 0 0 20 40 compressive strain [%] 2012-02-23 compressive stress [MPa] compressive stress [MPa] 3 60 0 20 40 60 compressive strain [%] Fachkongress Composite Simulation, Ludwigsburg 27 Dynamic VST of Cellular Sandwich Core Structures Flatwise compression: www. .uni-stuttgart.de Institut für Flugzeugbau Transverse shear: In-plane compression: • 2012-02-23 Application: Development of new cellular core geometries, geometry optimization for special applications Fachkongress Composite Simulation, Ludwigsburg 28 .uni-stuttgart.de Institut für Flugzeugbau Dynamic VST of Cellular Sandwich Core Structures • Extension to folded core materials (collaboration with DLR-BK) – Aramid paper Stress-strain diagram buckling compressive stress [MPa] www. Aramid folded core 4 Experiment 3 2 1 Simulation 0 0 20 40 60 compressive strain [%] folding/kinking 2012-02-23 Fachkongress Composite Simulation, Ludwigsburg 29 Dynamic VST of Cellular Sandwich Core Structures • Extension to folded core materials (collaboration with DLR-BK) – CFRP folded core CFRP folded core Stress-strain diagram compressive stress [MPa] www. .uni-stuttgart.de Institut für Flugzeugbau 8 6 Experiment 4 Simulation 2 0 0 5 10 15 20 compressive strain [%] 2012-02-23 Fachkongress Composite Simulation, Ludwigsburg 30 25 www. .uni-stuttgart.de Institut für Flugzeugbau Conclusions Future trends for composite simulation Horizontal extension: capture full process chain Vertical (in-depth) extension: multi-scale approaches Multi-disciplinary: optimization of composite system Increased reliability: towards virtual testing / certification 2012-02-23 Fachkongress Composite Simulation, Ludwigsburg 31 www. .uni-stuttgart.de Institut für Flugzeugbau Institute of Aircraft Design middendorf@ifb.uni-stuttgart.de www.ifb.uni-stuttgart.de/en/forschung/simulation 2012-02-23 Fachkongress Composite Simulation, Ludwigsburg 32 www. .uni-stuttgart.de Institut für Flugzeugbau References [1] Middendorf, P.: Virtual Design & Analysis of innovative Aeronautic Structures: From Research to Application. MSC Aerospace Summit, Toulouse, 2008 [2] Middendorf, P.; van den Broucke, B.: Multi-level Modelling and Analysis of Textile Composites. Leichtbau-Seminar, Universität der Bundeswehr, München, 2009 [3] Birkefeld, K.; von Reden, T.; Böhler, P.: Analysis and Process Simulation of Braided Structures. EUCOMAS Conference, Hamburg, 2012 [4] Pickett, A et. al.: Braiding Simulation and Prediction of Mechanical Properties. App. Comp. Mat. 2009; 16 (6): 345-364 [5] Middendorf, P.; Heimbs, S., Kilchert, S.; Johnson, A.: Numerical Analysis of Aircraft Sandwich Structures with Composite Folded Core in Compression. EuroPAM, Prague, 2008 2012-02-23 Fachkongress Composite Simulation, Ludwigsburg 33