Thermoforming Cones
Transcription
Thermoforming Cones
Nicht zur Verwendung in Intranet- und Internet-Angeboten sowie elektronischen Verteilern. www.kunststofftech.com © 2007 Carl Hanser Verlag, München Wissenschaftlicher Arbeitskreis der UniversitätsProfessoren der Kunststofftechnik Zeitschrift Kunststofftechnik Journal of Plastics Technology archivierte, rezensierte Internetzeitschrift des Wissenschaftlichen Arbeitskreises Kunststofftechnik (WAK) archival, reviewed online Journal of the Scientific Alliance of Polymer Technology www.kunststofftech.com; www.plasticseng.com eingereicht/handed in: 22.10.2006 angenommen/accepted: 26.01.2007 Melissa A. Kershner, Prof. A. Jeffrey Giacomin, Mechanical Engineering Department, Polymer Engineering Center and Rheology Research Center, University of Wisconsin, Madison, Wisconsin Thermoforming Cones This new analysis for thermoforming cones focuses on the manufacturing process speed. Specifically, we’ve distinguished between what happens before and after (free versus constrained forming) the melt touches the conical mold. We derive analytical solutions for the time required for both cases, and sum them to get the total forming time. We restrict our analysis to the fabrication of cones, the simplest relevant problem in commercial thermoforming. We further confine our analysis to the Newtonian case, adimensionalizing our results at every step. For free forming, one dimensionless group arises, the geometric shape factor (α0), and for constrained, two such factors arise (α and sec β). We also calculate the stresses in the deforming melt, since these govern the residual stresses in the thermoformed part. We then derive an expression for wall uniformity; we find that it just depends on the mold geometry. Finally, we attack the problem of plug assist, deriving an expression for the improvement in wall uniformity achieved through plug assist. Our analytical solutions provide benchmarks for numerical analysts to test their code accuracy. Four worked examples illustrate how to reduce the results to engineering practice. Autor/author Melissa A. Kershner, Prof. A. Jeffrey Giacomin, Mechanical Engineering Department, Polymer Engineering Center and Rheology Research Center, University of Wisconsin, Madison, WI 53706-1608 USA © Carl Hanser Verlag E-Mail-Adresse: giacomin@wisc.edu Webseite: rrc.engr.wisc.edu Tel.: +1 / 608 / 262-7473 Fax: +1 / 608 / 262-7473 Zeitschrift Kunststofftechnik/Journal of Plastics Technology 3 (2007) 1 © 2007 Carl Hanser Verlag, München www.kunststofftech.com Nicht zur Verwendung in Intranet- und Internet-Angeboten sowie elektronischen Verteilern. M.A. Kershner, A. J. Giacomin Thermoforming Cones Thermoforming Cones M.A. Kershner, A.J. Giacomin, Mechanical Engineering Department, Polymer Engineering Center and Rheology Research Center, University of Wisconsin, Madison, Wisconsin This new analysis for thermoforming cones focuses on the manufacturing process speed. Specifically, we’ve distinguished between what happens before and after (free versus constrained forming) the melt touches the conical mold. We derive analytical solutions for the time required for both cases, and sum them to get the total forming time. We restrict our analysis to the Newtonian fabrication of cones, the simplest relevant problem in commercial thermoforming. 1 INTRODUCTION Thermoforming is the mass production of thin non-hollow products from uniformly thick flat sheets. We divide modern commercial thermoforming into four phases. Firstly, in free forming ( φ ), a thin untouched sheet deforms under an applied air pressure. In plug assisted forming ( π ), a carefully designed solid shape then touches and stretches some of the sheet to reshape it. The parts touching the plug do not stretch. Once released from this plug, the reshaped sheet again deforms freely till it contacts the mold. The material not yet touching the mold then continues to stretch till the mold is covered and we call this constrained forming ( κ ). Sometimes, thermoforming is done without the plug assist and this paper attacks this special case. Tadmor and Gogos [1] call this straight thermoforming. We solve for both the mold covering speed and the product thickness profile. Table 1 compares this paper with previous work. We begin by modeling free forming, where a uniformly thin polymeric film is formed from a thin flat disk inflated through a round hole into a growing thin sphere. Williams [4] confirmed this spherical shape experimentally. These thin spheres transition from lenticular, through hemispherical, to bulbous as illustrated in Figure 1. Figure 2 illustrates the initial condition, a flat disk of thickness h0 , and thus of infinite radius of curvature, R . We restrict this analysis to Newtonian liquids, so we expect this work will apply accurately to low molecular weight systems such as polyester which is commonly used to thermoform stiff clear packaging. Our analytical solutions also provide benchmarks for numerical analysts to test their code accuracy. We further restrict our analysis to the fabrication of cones, the simplest product shape in commercial thermoforming. * Corresponding author (giacomin@wisc.edu). Zeitschrift Kunststofftechnik 3 (2007) 3 1 © 2007 Carl Hanser Verlag, München www.kunststofftech.com Sheryshev et al. (1969) X Williams (1970) X Tadmor and Gogos (1979) X Rosenzweig et al. (1979) X Throne (1979) Allard et al. (1986) X X X Pearson (1985) X X X X X X φ ,π X X σ κ ,π X X σ X [3] X [4] [4] X X [1] κ X X [5] κ ,π X σ X [6] κ X X σ X [7] φ ,κ X X λ X [8] λ X [9] X [10] X κ X Osswald and Hernández – Ortiz (2006) X κ X This Paper X Table 1: [2] κ Baird and Collias (1998) X Reference σ Speed X Uniform Thickness Constitutive Behavior X κ X Williams (1970) X Geometry φ Tensile Stresses Hart-Smith and Crisp (1967) Phases Truncated Wedge Thermoforming Cones Wedge Truncated Cone Cone Cylinder Nicht zur Verwendung in Intranet- und Internet-Angeboten sowie elektronischen Verteilern. M.A. Kershner, A. J. Giacomin φ ,π ,κ X X λ X X Previous work [free forming ( φ ), plug assisted forming ( π ), constrained forming ( κ ); liquid ( λ ), solid ( σ )] Zeitschrift Kunststofftechnik 3 (2007) 3 2 © 2007 Carl Hanser Verlag, München www.kunststofftech.com Nicht zur Verwendung in Intranet- und Internet-Angeboten sowie elektronischen Verteilern. M.A. Kershner, A. J. Giacomin Zeitschrift Kunststofftechnik 3 (2007) 3 Thermoforming Cones Figure 1: Thin sphere transitioning 3 © 2007 Carl Hanser Verlag, München Thermoforming Cones Figure 2: Initial undeformed disk (just before thermoforming) Table 2 summarizes these and other dimensional variables. Furthermore, Table 3 defines the corresponding dimensionless variables, including thickness (T), radius of curvature ( ρ ) and height ( H ) of the free forming bubble. Name Initial disk thickness Bubble height Radius of curvature Slit radius Time Final thickness Contact angle of sheet’s edge Contact length Pressure drop Inner pressure Outer pressure Plug radius Plug displacement Cone apex sharpness www.kunststofftech.com Nicht zur Verwendung in Intranet- und Internet-Angeboten sowie elektronischen Verteilern. M.A. Kershner, A. J. Giacomin Table 2: Symbol h0 a R L r0 ≡ tan β t h φ zk Δ P ≡ Pi − Po Pi Po Rπ dπ Rf Finished part height Hp Free forming interval Constrained forming interval Thickness during constrained forming tφ tκ hκ Dimensional variables Zeitschrift Kunststofftechnik 3 (2007) 3 4 © 2007 Carl Hanser Verlag, München www.kunststofftech.com Nicht zur Verwendung in Intranet- und Internet-Angeboten sowie elektronischen Verteilern. M.A. Kershner, A. J. Giacomin Name Thickness Radius of curvature Bubble height Free forming time Constrained forming time Thermoforming Cones Symbol Definition h / h0 T ρ R / r0 a / r0 H ΔPt θ 12 μ ΔPt Θ 12 μ Free forming interval θφ ΔPt 12 μ ρ = ρκ Θκ ΔPt 12 μ Total forming time Π θφ + Θκ Draw ratio11 l Constrained forming interval Cone height Conical melt length Thickness during constrained forming Melt radius of curvature when constrained forming begins Sheet uniformity ρ = ρf L tan β = 2r0 2 2l zk / r0 Zκ Tκ h / hκ ρκ Rκ / r0 ϒ h( zκ f ) h( zκ = 0) 1 + cos β ⎛ sin 2 β ⎞ ⎜ ⎟ 2α 0 ⎝ 2l cos β ⎠ Cone shape factor α Stress Σ ij Disk shape α0 h0 / r0 Plug shape factor απ Rπ / r0 ρf R f / r0 Centerline proximity ω r / r0 Stroke σ dπ / L Cone apex sharpness Table 3: 1− sec β τ ij ΔP Dimensionless variables and groups Zeitschrift Kunststofftechnik 3 (2007) 3 5 © 2007 Carl Hanser Verlag, München www.kunststofftech.com Nicht zur Verwendung in Intranet- und Internet-Angeboten sowie elektronischen Verteilern. M.A. Kershner, A. J. Giacomin Thermoforming Cones 2 THERMOFORMING MECHANICS For the mechanics of the stretching sheet, we follow the thin membrane approach for bubble inflation of Baird and Collias [9]. We employ moving spherical coordinates centered in the bubble. Figure 1 defines r. Assuming constant density, the continuity equation becomes ∂ 2 ( r vr ) = 0 ∂r (1) Integrating gives: vr = A(t ) r2 (2) where A(t ) is a function of time. On the inside surface (at r = R ) the fluid velocity is vr ( R) = − R& (3) for a lenticular film, and for a bulbous one: vr ( R) = R& (4) hence A(t ) = R& R2 (5) and from continuity vr = R& R2 r2 (6) Neglecting fluid inertia, the r-component of the equation of motion reduces to 0= τ +τ −∂p 1 ∂ 2 − 2 r τ rr ) + θθ φφ ( ∂r r ∂r r (7) where τ ij is the component of the extra stress tensor corresponding to the flux of x j momentum in the positive xi direction. Hence, τ φφ and τ θθ are negative in tension. Rewriting (7): Zeitschrift Kunststofftechnik 3 (2007) 3 6 Thermoforming Cones ∂π rr τ θθ + τ φφ − 2τ rr = ∂r r where the rr component of the total and extra stress tensors are related by (8) π rr = τ rr + p (9) where at the inside surface π rr (R) = − P(R) (10) and outside, π rr (R + h) = − P(R + h) (11) Integrating, the equation of motion [(7)] gives ΔP = ∫ R+ h R ⎡τ θθ + τ φφ − 2τ rr ⎤ ⎢⎣ ⎥⎦ dr r (12) For thin films, that is, when: h 1 h0 (13) Bird et al. [12] proposed that the argument for the integral in (12), (τ θθ + τ φφ − 2τ rr ) / r will be nearly constant. This is because, for a thin film, nei- www.kunststofftech.com ther the stresses (τ θθ + τ φφ − 2τ rr ) , nor the radial position r , will vary much through the film thickness. Thus, (12) becomes: © 2007 Carl Hanser Verlag, München Nicht zur Verwendung in Intranet- und Internet-Angeboten sowie elektronischen Verteilern. M.A. Kershner, A. J. Giacomin ΔP = (τ θθ + τ φφ − 2τ rr ) ΔP = (τ θθ + τ φφ − 2τ rr ) h R (14) We call this the thin film approximation, and Appendix A further explores its importance. We can thus further simplify (14), by specifically evaluating the stresses at r = R : R h R (15) For a Newtonian fluid: τ θθ = τ φφ 2 & vr −2 μ R R = −2 μ = r r3 (16) and Zeitschrift Kunststofftechnik 3 (2007) 3 7 © 2007 Carl Hanser Verlag, München www.kunststofftech.com Nicht zur Verwendung in Intranet- und Internet-Angeboten sowie elektronischen Verteilern. M.A. Kershner, A. J. Giacomin Thermoforming Cones 2 & ∂vr 4 μ R R τ rr = −2 μ = ∂r r3 Thus the tensile stress inside the stretching film: τ θθ i i − 2 μR 2 R& − τ rr = = 2 R3 (17) (18) exceeds the stress outside: τ θθ o o − 2 μR 2 R& − τ rr = = 2 (R + h )3 (19) by the factor: τ θθ o τ rr o ⎛ h ⎞ = = ⎜1 + ⎟ τ θθ i τ rr i ⎝ R ⎠ 3 (20) Eliminating the stresses in (15) gives ΔP = 12 μ R& h R2 (21) which reduces to ΔP ρ 2 dρ = 12 μTα 0 dt (22) which has been adimensionalized using Table 3. Hence, dρ ρ2 = dθ Tα 0 (23) which describes how a thin disk’s shape evolves during thermoforming (by definition, the dimensionless radius of curvature, ρ , never falls below unity). 3 FREE FORMING GEOMETRY The lenticular spherical cap thickness depends on its radius of curvature as Zeitschrift Kunststofftechnik 3 (2007) 3 8 © 2007 Carl Hanser Verlag, München www.kunststofftech.com Nicht zur Verwendung in Intranet- und Internet-Angeboten sowie elektronischen Verteilern. M.A. Kershner, A. J. Giacomin ρ+ T= ρ 2 −1 ;T ≥ 2ρ Thermoforming Cones 1 2 (24) so that dT = dρ 2 ρ 1 ρ2 −1 ;T > 1 2 (25) and for the bulbous spherical cap ρ − ρ 2 −1 T= 2ρ ;T ≤ 1 2 (26) so that dT −1 1 = ;T < dρ 2 ρ ρ 2 − 1 2 (27) The following discontinuity thus occurs dT dρ =± T → 12 ± 1 4 (28) We obtain the contact angle of the sheet’s edge (defined in Figure 1) from the bubble’s slope evaluated at r0 : φ x =r = 0 π 2 + a tan −1 ρ −1 2 (29) With difficulty, practitioners can sometimes observe the free forming bubble and measure its height (defined as a in Figure 1). The dimensionless bubble height depends on its radius of curvature for the lenticular shape as H =ρ− ρ 2 −1 ; H ≥ 1 (30) and for the bulbous shape Zeitschrift Kunststofftechnik 3 (2007) 3 9 © 2007 Carl Hanser Verlag, München www.kunststofftech.com Nicht zur Verwendung in Intranet- und Internet-Angeboten sowie elektronischen Verteilern. M.A. Kershner, A. J. Giacomin H=ρ+ Thermoforming Cones ρ2 −1 ;H ≤ 1 (31) 4 FREE FORMING RESULTS Substituting (22) into (21) for T , for a lenticular cap we get dρ 2ρ 3 = dθ α ρ + ρ 2 − 1 0 ( ) (32) Integrating gives α0 ⎡ ⎛1⎞ ρ2 −1 2 ⎤ + ⎥ θ = ⎢ − arcsin ⎜ ⎟ − ρ4 ρ ⎦⎥ 4 ⎣⎢ ⎝ρ⎠ (33) for bulbous cap growth, and for lenticular cap growth, we substitute (24) into (21)for T , and integrate dρ 2ρ 3 = dθ α ρ − ρ 2 − 1 0 ( ) (34) to get α0 ⎡ ⎤ ⎛1⎞ ρ2 −1 2 − − + 4 θ = ⎢ arcsin ⎜ ⎟ + π ⎥ ρ4 ρ 4 ⎣⎢ ⎝ρ⎠ ⎥⎦ (35) Eqs. (33) and (35) are universal, and central to this paper. From these we see that the shape switch from lenticular to bulbous always occurs at the same dimensionless time when, θ ρ =1 > α0 8 (4 −π ) (36) where. dρ dθ =0 (37) ρ =1 Figure 3 illustrates this shape switch. Zeitschrift Kunststofftechnik 3 (2007) 3 10 © 2007 Carl Hanser Verlag, München www.kunststofftech.com Nicht zur Verwendung in Intranet- und Internet-Angeboten sowie elektronischen Verteilern. M.A. Kershner, A. J. Giacomin Thermoforming Cones Figure 3: Dimensionless radius of curvature as a function of dimensionless time. Adimensionalizing (18) gives the dimensionless hoop stress inside the stretching film: Σφφ = −1 d ρ 6 ρ dθ (38) For the lenticular melt, α 0 Σφφ = ( −ρ 2 3 ρ+ ρ 2 −1 ) (39) which is negative and peaks at ρ= 2 (40) 3 where α 0 Σφφ = −4 3 ≅ −0.257 27 (41) and for the bulbous melt Zeitschrift Kunststofftechnik 3 (2007) 3 11 © 2007 Carl Hanser Verlag, München www.kunststofftech.com Nicht zur Verwendung in Intranet- und Internet-Angeboten sowie elektronischen Verteilern. M.A. Kershner, A. J. Giacomin α 0 Σφφ = ( −ρ 2 3 ρ− ρ −1 2 Thermoforming Cones ) (42) Figure 4 illustrates this. So both the radius of curvature and the magnitude of the tensile stress, Σφφ , are initially infinite. In practice, there is always a little sag [13, 14], so the initial radius of curvature is always finite. Furthermore, unlike a rubber, Σφφ is initially increasing. Figure 4: Dimensionless stress versus dimensionless radius of curvature 5 CONSTRAINED FORMING GEOMETRY The constrained melt takes on the shape of the conical mold, as shown in Figure 5. A lenticular melt forms into a lenticular cone, and a bulbous melt forms into a bulbous cone. Zeitschrift Kunststofftechnik 3 (2007) 3 12 © 2007 Carl Hanser Verlag, München www.kunststofftech.com Nicht zur Verwendung in Intranet- und Internet-Angeboten sowie elektronischen Verteilern. M.A. Kershner, A. J. Giacomin Figure 5: Thermoforming Cones Dimensional schematic of transitioning cone π⎞ ⎛ ( A ≡ zk sin β and B ≡ zk sin ⎜ β − ⎟ ) 2⎠ ⎝ From geometry and the mass balance we can relate the dimensionless radius of curvature to the conical melt length [9] ρ= 2l − Zκ sin β sin β tan β (43) Now free-forming ends when melt first touches the cone, that is, when Z k = 0 . Hence, ρκ = 2l sin β tan β (44) Substituting into (33) and (35) give the free-forming intervals, θφ , for the bulbous melt: Zeitschrift Kunststofftechnik 3 (2007) 3 13 © 2007 Carl Hanser Verlag, München www.kunststofftech.com Nicht zur Verwendung in Intranet- und Internet-Angeboten sowie elektronischen Verteilern. M.A. Kershner, A. J. Giacomin α0 ⎡ ρκ 2 − 1 2 ⎤ ⎛ 1 ⎞ + ⎥ θφ = ⎢ − arcsin ⎜ ⎟ − 4 ⎢ ρκ 4 ρκ ⎥⎦ ⎝ ρκ ⎠ ⎣ Thermoforming Cones (45) and for the lenticular melt: θφ = α0 ⎡ ⎛ 1 ⎢ arcsin ⎜ 4 ⎢ ⎝ ρκ ⎣ ⎤ ρκ 2 − 1 2 ⎞ + − − π + 4⎥ ⎟ 4 ρκ ρκ ⎥⎦ ⎠ (46) respectively. We can also relate the constrained melt thickness t , to the contact length [1] Z T = Tκ ⎛⎜ 1 − κ sin β ⎞⎟ 2l ⎝ ⎠ sec β −1 (47) From geometry, we can relate the thickness during constrained forming, hκ to the initial disk thickness π L2 h0 4 = π L2 (1 − cos β )hκ 2 sin2 β (48) which adimensionalizes to Tκ = T0 ( 1 + cos β ) 2 (49) 1 ( 1 + cos β ) 2 (50) or Tκ = since T0 ≡ 1 . To get the thickness profile, we substitute (50) into (47): 1 ⎛ Z ⎞ T = (1 + cos β ) ⎜ 1 − κ sin β ⎟ 2 2l ⎝ ⎠ sec β −1 (51) combining (43) and (51) ⎛ sin 2 β ⎞ 1 T = (1 + cos β ) ⎜ ⎟ 2 ⎝ 2l cos β ⎠ sec β −1 Zeitschrift Kunststofftechnik 3 (2007) 3 (52) 14 © 2007 Carl Hanser Verlag, München www.kunststofftech.com Nicht zur Verwendung in Intranet- und Internet-Angeboten sowie elektronischen Verteilern. M.A. Kershner, A. J. Giacomin When β exceeds π 2 Thermoforming Cones , the constrained melt’s shape changes from lenticular to bulbous [1, 4,5,9]. 6 CONSTRAINED FORMING RESULTS Substituting (52) into (23) dρ = αρ 3−sec β dθ (53) where the cone shape factor is 1 + cos β α≡ 2α 0 ⎛ sin 2 β ⎞ ⎜ ⎟ ⎝ 2l cos β ⎠ 1− sec β (54) where Table 3 defines the dimensionless cone height, 2l (Figure 5 defines the cone height, L ). When β < π 2 , a lenticular cap progresses down the cone. Hence, dρ π = αρ 3− sec β ; β < 2 dΘ (55) Integrating gives Θ= ρ sec β − 2 π π ; >β ≠ α ( sec β − 2 ) 2 3 (56) and Θ= log(ρ ) α ;β = π (57) 3 For thermoforming with β > π 2 , a bulbous cap progresses down the cone. Hen- ce, dρ π = −αρ 3− sec β ; β > 2 dΘ (58) and integrating gives Zeitschrift Kunststofftechnik 3 (2007) 3 15 © 2007 Carl Hanser Verlag, München www.kunststofftech.com Nicht zur Verwendung in Intranet- und Internet-Angeboten sowie elektronischen Verteilern. M.A. Kershner, A. J. Giacomin Θ= Thermoforming Cones − ρ secβ − 2 π 4π ;β > ≠ α ( sec β − 2 ) 2 3 (59) and Θ= −log(ρ ) α ;β = 4π 3 (60) Linearizing (56) gives ln (α ( sec β − 2 ) ) ⎛ ⎞ 1 π ln ρ = ⎜ ;β ≠ ⎟ ln Θ + 3 ( sec β − 2 ) ⎝ sec β − 2 ⎠ (61) and linearizing (59): ln (α ( 2 − sec β ) ) ⎛ ⎞ 1 4π ln ρ = ⎜ ;β ≠ ⎟ ln Θ + 3 ( secβ − 2 ) ⎝ secβ − 2 ⎠ (62) Hence, zero radius of curvature takes an infinite period of constrained forming. In other words, the melt will never reach the cone apex, and Zκ never reaches 1. Thus, Eqn. (61) and (62) explain why sharp corners are difficult to thermoform. The thermoforming of sharp edges or corners is called detailing. Letting ρ f be the desired dimensionless apex sharpness, we then get: Θ f = Θ ( ρ f ) − Θ ( ρκ ) (63) for the required constrained forming interval. Thus, the total manufacturing time is θT = θφ + Θ f = θφ + Θ ( ρ f ) − Θ ( ρκ ) (64) For the melt, the stress is −αρ 1−sec β π ;β < Σφφ = 6 2 (65) which linearizes to ⎛Σ ln ⎜ φφ ⎝ α ⎞ ⎛ −1 ⎞ ⎟ = (1 − sec β ) ln ρ + ln ⎜ ⎟ ⎠ ⎝ 6 ⎠ (66) Zeitschrift Kunststofftechnik 3 (2007) 3 16 © 2007 Carl Hanser Verlag, München www.kunststofftech.com Nicht zur Verwendung in Intranet- und Internet-Angeboten sowie elektronischen Verteilern. M.A. Kershner, A. J. Giacomin Thermoforming Cones and Σφφ = αρ 1−sec β 6 ;β > π 2 (67) which linearizes to ⎛Σ ⎞ ⎛1⎞ ln ⎜ φφ ⎟ = (1 − sec β ) ln ρ + ln ⎜ ⎟ ⎝ α ⎠ ⎝6⎠ (68) 7 PLUG ASSIST In thermoforming, plug assist is often used to even out wall thickness profiles. Figure 6 illustrates the variables for plug-assisted thermoforming. Figure 6: Plug assist Our work focused on unassisted thermoforming, and thus derives the worst case for wall thickness variation. We define the final wall thickness uniformity as: ϒ≡ h( zκ f ) h( zκ = 0) = T ( Zκ f ) T ( Zκ = 0) (69) where zκ f is the final contact length, corresponding to the final desired radius at the cone tip: Z κf = 2l − ρ f tan β sin β (70) Combining (51) with (69) gives: Zeitschrift Kunststofftechnik 3 (2007) 3 17 © 2007 Carl Hanser Verlag, München www.kunststofftech.com Nicht zur Verwendung in Intranet- und Internet-Angeboten sowie elektronischen Verteilern. M.A. Kershner, A. J. Giacomin ⎛ Zκ f sin β ⎞ ϒ ≡ ⎜1− ⎟ 2l ⎝ ⎠ Thermoforming Cones sec β −1 (71) and substituting (70) into this yields: ⎛ ρ f sin β tan β ⎞ ϒ≡⎜ ⎟ 2l ⎝ ⎠ sec β −1 (72) and in the limit, for an infinitely sharp cone tip, we get: 1 ϒ ≡ ⎛⎜ 1 − sin β ⎞⎟ ⎝ 2l ⎠ sec β −1 (73) which is the worst case for the cone thickness uniformity. Equations (71) and (72) dictate just how much plug assist is required to even out the cone wall thickness distribution. Equation (73) gives the upper bound for this plug assist requirement. From the geometry of the deformation, and in cylindrical coordinates, Williams derived the following for the thickness profile caused by plug assist T≡ 1 ⎛ dπ 1 + ⎜ r ln r0 ⎜ Rπ ⎝ ⎞ ⎟ ⎟ ⎠ (74) 2 and verified this experimentally. This adimensionalizes to T≡ 1 2 1 + ⎛⎜ ω 1 ln ⎜ ⎝ σ l απ ⎞ ⎟ ⎟ ⎠ (75) 2 where σ is the dimensionless plug displacement (normally called stroke), α π is the plug shape factor and ω is the center line proximity. So during plug assist, the deforming melt’s thinnest part is near the plug’s edge where: Tmin = 1 1 + ⎛⎜ απ 1 ln ⎜ ⎝ σ l απ 2 ⎞ ⎟ ⎟ ⎠ 2 Zeitschrift Kunststofftechnik 3 (2007) 3 (76) 18 © 2007 Carl Hanser Verlag, München www.kunststofftech.com Nicht zur Verwendung in Intranet- und Internet-Angeboten sowie elektronischen Verteilern. M.A. Kershner, A. J. Giacomin Thermoforming Cones and its thickest, near the mold rim, where: Tmax = 1 2 1 + ⎛⎜ 1 1 ln ⎜ ⎝ σ l απ ⎞ ⎟ ⎟ ⎠ (77) 2 In principle, we would like to match the severity of the cone thickness problem, ϒ , with the amount of plug assistance near the rim, Tmax . In practice, however, the plug normally runs into the cone before this amount of plug assistance can be realized. To prevent this, the stroke must satisfy this geometric inequality: σ< α 0 ⎡ ( 1 − απ ) tan β ⎤ − 1⎥ α0 2l ⎢⎣ ⎦ (78) For a right cylinder, where β = π , the plug can never run into the mold; Throne 2 has outlined an approach for this special case [6]. 8 WORKED EXAMPLES 8.1 Process speed and melt stress A plastics engineer wants to manufacture a safety cone with β = 75.5° and L = 31cm from a disk of uniform thickness h0 = 1.51 mm and from a nearly Newtonian melt with μ = 3.11 × 106 Pa ⋅ s . She desires a blunt cone of apex radius, R f = 25.4 mm . She employs an external gage pressure of 91.3 psi and a vacuum of 14.1 psi . Calculate the total forming time, and estimate the stress frozen into the safety cone, both near its rim and into its blunt tip. Using Table 3, we calculate l ≡ ( tan β ) / 2 = 1.93 . Substituting into (44) gives a dimensionless radius of curvature of ρκ = 1.03 when constrained forming begins. Substituting this and α 0 ≡ h0 / r0 = 0.0188 (from Table 3) into (45) then gives a dimensionless free forming time of θφ = 1.85 × 10 −3 . Combining ρ ≡ R / r0 from Table 3 with r0 ≡ L / tan β from Table 3 gives the dimensionless radius of curvature of the blunt cone tip ρ f ≡ R f / r0 = 0.312 . Substituting θφ , ρκ , ρ f ≡ R f / r0 = 0.312 and α ≡ (sin 2 β / 2α 0 (1 − cos β )) ( sin 2 β / 2l cos β ) 1− sec β = 36.4 into (64) gives a total dimensionless forming time of θT = 0.015 . Zeitschrift Kunststofftechnik 3 (2007) 3 19 © 2007 Carl Hanser Verlag, München www.kunststofftech.com Nicht zur Verwendung in Intranet- und Internet-Angeboten sowie elektronischen Verteilern. M.A. Kershner, A. J. Giacomin Thermoforming Cones Summing the vacuum and the applied air pressures gives ΔP = 105.4 psi . Using this and Table 3, we find the total-forming time of tT = 12 μ ΘT / ΔP = 0.770 s . We then substitute ρκ , and α = 36.4 , into (65) to obtain the dimensionless stress near the rim of Σφφ rim = −6.65 , which is tensile. We expect most of this to freeze into the rim. Using Table 3, we find that this corresponds to a tensile stress at the rim of Σφφ ΔP = τ φφ = −5.53 MPa , which is also tensile. rim rim Substituting ρ f , and α into (65) gives the dimensionless stress near the blunt tip of Σφφ tip = −253.7 , which is tensile. We expect most of this to freeze into the tip. Using Table 3, we find that this corresponds to a tensile stress at the rim of Σφφ ΔP = τ φφ = −211 MPa . tip tip 8.2 Pressure difference and part height A plastics engineer wants to process the same safety cone as in Example a., but his process economics require a forming time to fall below 1.2 seconds. Find the required ΔP , finished part height, and estimate the stress frozen into the safety cone, both near its rim and into its blunt tip. Using θT = 0.015 from Example a., for the required applied pressure difference we find ΔP = 12ΘT μ / t = 67.7 psi . From the cone geometry, for the finished part height we get: Rf ⎛ L H p = sin β ⎜ − R f tan β − tan β ⎝ sin β ⎞ ⎟ + Rf ⎠ (79) which give 0.24 m. 8.3 Cone sharpness A plastics engineer wants to manufacture a pointy cone ( ρ f 1) with β = 75.5° and L = 0.31m from a disk of nearly Newtonian melt with μ = 3.11 × 106 Pa ⋅ s and uniform thickness h0 = 1.51 mm . She employs an external gage pressure of 91.3 psi and a vacuum of 14.1psi . Her mold has an infinitely sharp cone tip, and she employs a long forming time, tT = 10 s . Calculate the resulting apex radius. Summing the vacuum and the applied air pressures gives ΔP = 105.4 psi . Using this and Table 3, we find the total-dimensionless forming time of ΘT = ΔPtT / 12 μ = 0.194 . Using Table 3, we calculate l ≡ ( tan β ) / 2 = 1.93 , and Zeitschrift Kunststofftechnik 3 (2007) 3 20 © 2007 Carl Hanser Verlag, München www.kunststofftech.com Nicht zur Verwendung in Intranet- und Internet-Angeboten sowie elektronischen Verteilern. M.A. Kershner, A. J. Giacomin Thermoforming Cones substituting into (44) gives a dimensionless radius of curvature when constrained forming begins of ρκ = 1.03 . Substituting this and α 0 ≡ h0 / r0 = 0.0188 (from Table 3) into (45) then gives a dimensionless free forming time of θφ = 1.85 × 10 −3 . Combining ρκ , ΘT and θφ into (64), and solving for the dimensionless apex radius gives: ρ f = (α ( sec β − 2 ) (θT − θφ ) + ρκ 1 sec β − 2 sec β − 2 ) (80) Using this and Table 3 we get ρ f = 3.89 and thus find the cone tip sharpness to be R f = ρ f r0 = 31.2 cm . 8.4 Plug assist A plastics engineer wants to process the same safety cone as in Example a., but in this case, she wants a more uniform wall thickness distribution. For this she employs plug assist, specifically using a right cylindrical plug with Rπ = r0 / 2 = 4.01 cm with a plug displacement of 13.8 cm. Estimate the improvement in wall thickness uniformity? Combining ρ ≡ R / r0 from Table 3 with r0 ≡ L / tan β from Table 3 gives the di- mensionless radius of curvature of the blunt cone tip ρ f ≡ ( R f tan β ) / L = 0.312 . Since Rπ = r0 / 2 , the dimensionless cone shape factor is απ ≡ Rπ / r0 = 1 / 2 . Using Table 3, we calculate l ≡ ( tan β ) / 2 = 1.93 , and substituting this and ρ f into (72) gives the sheet uniformity, ϒ = 0.0279 . This is the uniformity that would be obtained without plug assist. Using Table 3 , we calculate a stroke of σ ≡ dπ / L = 0.446 . Substituting into (77) gives Tmax = 0.373 . This means that the melt cone’s rim will begin free forming at a thickness that is 62.7% of the disk’s initial thickness. We thus expect the plug assist to improve the uniformity to: ϒπ ≅ ϒ = 0.0748 Tmax (81) which corresponds to roughly a three-fold improvement in cone wall thickness uniformity. Zeitschrift Kunststofftechnik 3 (2007) 3 21 © 2007 Carl Hanser Verlag, München www.kunststofftech.com Nicht zur Verwendung in Intranet- und Internet-Angeboten sowie elektronischen Verteilern. M.A. Kershner, A. J. Giacomin Thermoforming Cones 9 CONCLUSION This new analysis for thermoforming cones focuses on the manufacturing process speed. Specifically, we’ve distinguished between what happens before (free forming) and after (constrained forming) the melt touches the conical mold. We derive the time required for both cases, and sum them to get the total forming time. We’ve restricted our analysis to the Newtonian case and adimensionalized our results at every step. For free forming, one dimensionless geometric shape factor arises (α 0 ) , and for constrained, two arise ( α and sec β ). We also calculate the stresses in the deforming melt, since these govern the residual stresses in the thermoformed part. We then derive an expression for wall uniformity; we find that it just depends on the mold geometry. Finally, we attack the problem of plug assist, deriving an expression for the improvement in wall uniformity achieved through plug assist. 10 ACKNOWLEDGEMENT The authors are indebted to Dr. Zhongbao Chen of the University of Wisconsin and to Dr. Martin J. Stephenson of the Placon Corporation for their invaluable advice. We further acknowledge Professor R. Byron Bird for his help with the thin film approximation. We thank the Placon Corporation of Madison, Wisconsin and Plastic Ingenuity, Inc. of Cross Plains, Wisconsin for their financial support through their memberships in the Industrial Consortium of the Center for Advanced Polymer and Composite Engineering at the University of Wisconsin. The Placon Corporation is also recognized for its sustaining sponsorship of the Rheology Research Center. 11 APPENDIX A: THIN FILM APPROXIMATION Here we explore the virtue of the thin film approximation. Eliminating the stresses in equation (15) gives ΔP = ∫ 2 μ R2 R& + 2 μ R2 R& − 8 μ R2 R& r4 dr = ∫ −4 μ R2 R& r4 dr (82) Thus, ⎡ dr 1 1 ⎤ = 12 μ R2 R& ⎢ − 3⎥ 3 4 R r ⎣⎢ ( R + h ) R ⎥⎦ Zeitschrift Kunststofftechnik 3 (2007) 3 ΔP = −4 μ R2 R& ∫ R+ h (83) 22 © 2007 Carl Hanser Verlag, München www.kunststofftech.com Nicht zur Verwendung in Intranet- und Internet-Angeboten sowie elektronischen Verteilern. M.A. Kershner, A. J. Giacomin Thermoforming Cones Using Table 3, this adimensionalizes to: 3 dρ ⎡ ρ ( ρ + Tα 0 ) ⎤ =⎢ ⎥ dθ ⎢⎣ − ( ρ + Tα 0 )3 + ρ 3 ⎥⎦ (84) Though this is more accurate than (23), neither substituting (24) or (26) into (84) for free forming, nor (52) into (84) for constrained forming, leads to differential equations having analytical solutions. This is why thermoforming analysis relies so heavily on the thin film approximation. 12 REFERENCES [1] Tadmor, Z., Gogos, G.G. Principles of Polymer Processing John Wiley & Sons, Inc., New York (1979) [2] Hart-Smith, L.J., Crisp, J.D.C. Int. J. Eng. Sci., 5, 1(1967) [3] Sheryshev, M.A., Zhogolev, I.V., Salazkin, K.A. Soviet Plast. , 11, 30 (1969) [4] Williams, J.G. J. Strain Analysis, 5, 49 (1970) [5] Rosenzweig, N., Narkis, M., Tadmor, Z. Polymer Engineering and Science, 19, 946 (1979) [6] Throne, J.L. Plastics Process Engineering Marcel Dekker, New York (1979) [7] Pearson, J.R.A. Mechanics of Polymer Processing Elsevier Applied Science Publishers Ltd., London (1985) [8] Allard, R., Charrier, J.-M., Ghosh ,A., Marangou, M., Ryan, M.E., Shrivastava, S., Wu, R. J. Polym. Eng., 6, 363 (1986) [9] Baird, D.G., Collias, D.I. Polymer Processing Principles and Design Butterworth-Heinemann, Boston (1995); Wiley & Sons, New York (1998) Zeitschrift Kunststofftechnik 3 (2007) 3 23 © 2007 Carl Hanser Verlag, München www.kunststofftech.com Nicht zur Verwendung in Intranet- und Internet-Angeboten sowie elektronischen Verteilern. M.A. Kershner, A. J. Giacomin Thermoforming Cones [10] Osswald, T.A., Hernández-Ortiz, J.P. Polymer Processing - Modeling and Simulation Hanser Publishers, Munich (2006) [11] Strong, A.B. Plastics Materials and Processing 3rd ed., Prentice Hall, Upper Saddle River, New Jersey (2006) [12] Bird, R.B., Armstrong, R.C., Hassager, O. Dynamics of Polymeric Liquids Vol. 1: Fluid Mechanics, 2nd ed., Wiley & Sons, New York (1987); see Eq. (8.4-15) [13] Stephenson, M.J., Dargush, G.F., Ryan, M.E. Polymer Engineering and Science, 39, 2199 (1999) [14] Stephenson, M.J. An Experimental and Theoretical Study of Sheet Sag in the Thermoforming Process PhD Thesis, State University of New York, Buffalo, NY (August 1997). Keywords: englisch: thermoforming cones, thermoforming mechanics Contact: Autoren: Prof. A. Jeffrey Giacomin Herausgeber: Prof. em. Dr.-Ing. Dr. h.c. Gottfried W. Ehrenstein, Prof. Dr. Tim Osswald Erscheinungsdatum: Mai/Juni 2007 Zeitschrift Kunststofftechnik 3 (2007) 3 24 © 2007 Carl Hanser Verlag, München www.kunststofftech.com Nicht zur Verwendung in Intranet- und Internet-Angeboten sowie elektronischen Verteilern. M.A. Kershner, A. J. Giacomin Herausgeber/Editor: Europa/Europe Prof. Dr.-Ing. Dr. h.c. G. W. Ehrenstein, verantwortlich Lehrstuhl für Kunststofftechnik Universität Erlangen-Nürnberg Am Weichselgarten 9 91058 Erlangen Deutschland Phone: +49/(0)9131/85 - 29703 Fax.: +49/(0)9131/85 - 29709 E-Mail-Adresse: ehrenstein@lkt.uni-erlangen.de Thermoforming Cones Amerika/The Americas Prof. Dr. Tim A. Osswald, responsible Polymer Engineering Center, Director University of Wisconsin-Madison 1513 University Avenue Madison, WI 53706 USA Phone: +1/608 263 9538 Fax.: +1/608 265 2316 E-Mail-Adresse: osswald@engr.wisc.edu Verlag/Publisher: Carl-Hanser-Verlag Jürgen Harth Ltg. Online-Services & E-Commerce, Fachbuchanzeigen und Elektronische Lizenzen Kolbergerstrasse 22 81679 Muenchen Tel.: 089/99 830 - 300 Fax: 089/99 830 - 156 E-mail: harth@hanser.de Beirat/Editorial Board: Professoren des Wissenschaftlichen Arbeitskreises Kunststofftechnik/ Professors of the Scientific Alliance of Polymer Technology Zeitschrift Kunststofftechnik 3 (2007) 3 25