Physics in Canada La Physique au Canada
Transcription
Physics in Canada La Physique au Canada
Physics in Canada La Physique au Canada Vol. 52, No. 2 March/April 1996 mars/avril 1996 FEATURING: The Physics of Dilute 2D Electron and Hole Systems in Si-Based Heterostructures by M. D'lorio Nouvelle source de plasma pour le traitement des matériaux: Magnétoplasma à onde de surface by J. Margot Evaluation of the Acid Deposition and Oxidant Model with Ozone and Sulphur Dioxide Data from High Elevation Sites by C. Banic et al Contrôle des modes latéraux de lasers à semi-conducteurs: Expériences et simulations by N. McCarthy et al WOMEN PHYSICISTS IN CANADA LES PHYSICIENNES AU CANADA Symmetry-Violating NN Potentials in the Nucleus by A. C. Hayes (nn) 2108.8 2212.5 Outflows from Spiral Galaxies by J. A. Irwin lll-V Semiconductor Characterization for Optoelectronics by C. Miner and. in the PHYSICS AND EDUCATION SECTION: The Early History of Women in Univ. Physics: A Toronto Case Study by A. Prentice 2325.8 Using Nonsexist Language/Rendering the CAP By-laws Gender Neutral by R. King and D. Poirier Women Physics Faculty in Canada by J. Lagowski and J. McKenna 2437.5 2550.0 Women Students in Physics in Canada: A Decade of Progress by A. McMillan and E. Svensson WES - Women in Eng. and Science: A Canadian Success Story at NRC by M. D'lorio The Committee on the Status of Women in Physics of the American Physical Society by L. Martinez-Miranda Individual and Family Profiles Canadian Publications Product Sales Agreement No. 0484202/ Envois de publications canadiennes numéro de convention 0484202 (Apidae). Common European honeybee. Managed in hives for at least 3,000 years, honeybees are the chief pollinating agent for 80% of the commercial cultivation of fruits, grains, and vegetables. Each hive consists of from 40,000 to 80,000 bees organized in a highly structured social order. Small, disciplined, adaptable, and highly productive, honeybees are one of the many wonders of nature. Apix mellifera Glassman Series MJ and MK regulated DC high voltage modules are little wonders in their own rights. Extremely small, lightweight, and compact, these efficient power supplies are widely used in low power CRT applications, electrophoresis measurements, ion beam experiments, particle precipitation, X-ray, imaging, and other electrostatic applications. Available in a large number of models, the 15 watt Series MJ output ranges are 0 to 3 kV through 0 to 30 kV. The 75 watt Series MK has ranges from 0 to 1 kV through 0 to 60 kV. Both the Series MJ and MK feature air insulation of critical high voltage components. This results, not only in low weight, but in easy serviceability.. .avoiding the problems associated with encapsulated "throw-away" modules. Though small in size these modules are big in performance. Voltage regulation is better than 0.005% for line and load variations. Ripple is less than 0.05% (0.03%, Series MK). Automatic crossover from constant voltage to constant current regulation protects both the supply and load from overload conditions, including arcs and short circuits. A safety interlock circuit is standard. So is remote programming and monitoring of both voltage and current, in addition to local control. Call or write for more information on these versatile high voltage power supplies. You'll "wonder" why you ever considered anything else! Innovations in high voltage power supply technology. GLASSMAN HIGH VOLTAGE INC. ft GLASSMAN U.S.A. GLASSMAN EUROPE GLASSMAN JAPAN Glassman High Voltage, Inc. P.O. Box 551 Whitehouse Station, N| 08889 USA. Telephone: (908) 534-9007 FAX: (908) 534-5672 Glassman Europe Limited 21 Campbell Court Campbell Road Tadley Bramley Hampshire RG26 5EG England Telephone: (1256) 883007 FAX: (1256) 883017 Glassman lapan High Voltage Limited Taira Building 1-17, Taira 1-chome Miyamae-ku, Kawasaki 216 lapan Telephone: (044) 877-4546 FAX: (044) 877-3395 In Canada: (514) 455-7408 FAX: (514) 455-7387 CANADIAN ASSOCIATION OF P H Y S I C I S T S ASSOCIATION CANADIENNE DES P H Y S I C I E N S ET P H Y S I C I E N N E S 151 RUE SLATER STREET. SUITE 903. OTTAWA. ONTARIO CANADA K1P 5H3 TELEPHONE (613) 237-3392 FAX: (613) 238-1677 E-MAIL: CAP@physics.carleton.ca WE ARE MOVING!! Effective 1 9 9 6 May 14, the Canadian Association of Physicists can be reached as follows BY MAIL Suite 1 1 2 (or in person) McDonald Building 1 50 Louis Pasteur Ave. O T T A W A ON K1N6N5 BY TELEPHONE (613) 5 6 2 - 5 6 1 4 BY FAX (613) 5 6 2 - 5 6 1 5 BY EMAIL CAP@physics.uottawa.ca BY IUTS (Ontario Univ.) Station 6B OFFICE HOURS 8 : 0 0 a.m. to 4 : 3 0 p.m. We look forward to our continuing interactions w i t h you. CANADIAN ASSOCIATION OF P H Y S I C I S T S ASSOCIATION CANADIENNE DES P H Y S I C I E N S ET P H Y S I C I E N N E S 151 RUE SLATER STREET. SUITE 903. OTTAWA. ONTARIO CANADA K1P 5H3 TELEPHONE: (613) 237-3392 FAX: (613) 238-1677 E-MAIL CAP@physics.carleton.ca NOUS DEMENAGEONS ! Le 14 mai 1996, l'Association canadienne des physiciens et physiciennes occupera ses nouveaux locaux dont les coordonées sont les suivantes: ADRESSE POSTALE Bureau 112 (ou en personne) Immeuble McDonald 1 50, rue Louis Pasteur OTTAWA ON K1N6N5 TELEPHONE (613) 562-5614 TÉLÉCOPIEUR (613) 562-5615 ADRESSE ELECTRONIQUE CAP@physics.uottawa.ca IUTS (Univ. d'Ontario) Station 6B HEURES D'OUVERTURE 0 8 0 0 h à 1630 h Au plaisir et à bientôt. Vol. 52, No. 2 Physics in Canada La Physique au Canada March/April 1996 mars/avril 1996 INDEX FEATURE NON-TECHNICAL ARTICLES: Pages 50-52 Pages 94-96 (cont'd on pg. lOO) The Early History of Women in University Physics: A Toronto Case Study by A. Prentice Editorial and Calendar /Ca/e/idrier Pages 53-57 Science Policy Update / Mise à jour sur la politique scientifique Pages 97-100 Using Nonsexist Language/Rendering the CAP By-Laws Gender Neutral / L'utilisation Pages 58-60 News / Nouvelles University News / Échos des Universités International News / Nouvelles Internationales d'un Electron l'ACP modification pour le rendre la Pages 108-110 (cont'd on pg. 113) Women Students in Physics in Canada: A Decade of Progress by A.C. McMillan and E. Svensson and Hole Systems in Si-Based Pages 111-112 WES - Women in Engineering and Science: A Canadian Success Story at NRC I PIC - Pages 69-71 Nouvelle Source de Plasma pour le traitement des matériaux: Magnétoplasma à onde de surface by J. Margot Pages 72-76 (cont'd on pg. 80) Evaluation of the Acid Deposition and Oxidant Model with Ozone and Sulphur Dioxide Data from High Elevation Sites by C.M. Banic et al Pages 77-80 Contrôle des modes latéraux de lasers à semi-conducteurs: Expériences et simulations by N. McCarthy et al Programme programme d'ingènieures canadien et couronné chercheuses: de succès CNRC Page 113 The Committee on the Status of Women in Physics of the APS by L. Martinez-Miranda Pages 114-126 Individual and Family Profiles by i. condrea; N.R. Evan»; D. Pinsonneault; D. Poirier; M. Hilts, C. Lucas, S. Ghosh and C. Klatt; M.A. White; A. Hayes and S. Sterbenz; J. Berlinsky and C. Kallin; J. and M. Thewalt; end Y. Qi Page 102 Institutional Members I Membres Sustaining Members / Membres Pages 86-89 Outflows from Spiral Galaxies by J.A. Irwin Pages 103-105 The CAP 1 9 9 4 Income Survey institutionels de soutien Pages 127-129 Books Received / Livres reçus Book Reviews / Revues des livres Pages 90-93 lll-V Semiconductor Characterization for Optoelectronics by C.J. Miner Page 130 Ads Inside Back Cover Corporate Membres / Printing: Love Printing Service Ltd. Single Issue Jan., March, July, Congress Issue Sept., Nov. (May) t 660.00 Full Page « 610.00 420.00 Half Page 460.00 Quarter Page 246.00 270.00 776.00 Fourth Cover 706.00 706.00 610.00 Second & Third Cover Colour, $ 2 2 6 . 0 0 each additional colour; Bleed $ 1 4 0 . 0 0 Typesetting and art time extra Deadline for Copy - 1 6 t h of previous month Published - Jan/Feb., March/Apr., May/June, July/Aug., Sept/Oct.. Nov/Dec. Un au by M. D'lorio Pages 81-85 (cont'd on pg. 89) Symmetry-Violating NN Potentials in the Nucleus by A.C. Hayes Advertising Rates Effective January 1996 de non-sexiste Pages 106-107 (cont'd on pg. 112) Women Physics Faculty in Canada by J.B. Lagowski and J. McKenna Canadien(ne)s FEATURE TECHNICAL ARTICLES: 2D non-sexiste/La de by R. King and D. Poirier Page 61 Canadian Physicists / Physiciens et Physiciennes News from Corporate Members Pages 62-68 (cont'd on pg. 71) The Physics of Dilute Heterostructures by M. D'lorio langage constitution One-Year Contract (6 issues! $ 460.00 360.00 210.00 600.00 610.00 Membres corporatifs FRONT COVER: Fig. 2. "lll-V Semiconductor Characterization for Optoelectronics" by C.J. Miner (pg. 90). (Top) The reflectance at a wavelength of 1000 nm is displayed for an InP layer grown on an In MGa 47As marker layer. (Bottom) With the additional information inferred from at least one reflectance spectrum for each fringe, the sRS map can be translated to this thickness map. EDITORIAL The Bulletin of The Canadian Association of Physicists Bulletin de l'Association canadienne des physiciens et physiciennes EDITORIAL BOARD / COMITÉ DE RÉDACTION Editor / Rédacteur en chef J.S.C. McKee Accelerator Centre Physics Department University of Manitoba Winnipeg, Manitoba R3T 2N2 (204) 474-9874; fax: (204) 269-8489 e-mail: mckee@physics.umanitoba.ca Associate Editor / Rédactrice associée F .M. Ford Managing / Administration Book Review Editor / Rédacteur à la critique des livres A. Roberge Dept. of Physics and Astronomy Laurentian University Sudbury, ON P3E 2C1 (704) 675-1151x2234 e-mail: andre@gollum.pbys.laurentian.ca Advertising Manager M. Steinit/ Dept. of Physics St. Francis Xavier University P.O. Box 5000 Antigonish, Nova Scotia B2G 2W5 (902) 867-3909 Fax: (902) 867-5153 e-mail: msteinit@juliet.stfx.ca J.G. Cook Institute for Microstructural Sciences National Research Council (M-50), Montreal Rd., Ottawa, Ontario Kl A 0R6 (613) 993-9407 Fax: (613) 957-8735 Béla Joos University of Ottawa Ottawa, Onl. K1N6N5 (613) 564-3460 Fax:(613) 564-6712 e-mail: bjosj@acadvm 1 uottawa.ca Terry J. McKee Lumonics inc. 105 Schneider Road Kanata. Ont. K2H 8C3 (613) 592-1460 Fax: (613) 592-5706 R.H. Packwood Metals technology laboratories E-M-R 568 Booth St., Ottawa, Ont. (613) 992-2288 lax: (613) 992-8735 A N N U A L SUBSCRIPTION RATE/ABONNEMENT A N N U E l , J Î 7 . 4 S (domestic)/ S40.00 (foreign) ADVERTISING. SUBSCRIPTIONS. CHANGE OF ADDRESS, PUBLICITÉ. ABONNEMENT, CHANGEMENT D'ADRESSE: Canadian Publications Product Sales Agreement No. 0484202/Envois de publications canadiennes numéro de convention 0484202 Canadian Association of Physicists/Association canadienne des physiciens et physiciennes Bur ./Suite 112, Imm. McDonald Btdg. t S0 Louis Pasteur Ottawa, O N K I N 6 N 5 Tel: (613) 562 5614 e-mail: CAP@physics.uottawa.ca Fax/Téléc: (613) 562-5615 50 Physics in Canada M arch/Aprill 9 9 6 It is an honour to be the first w o m a n invited to be the special editor of Physics in Canada, in particular for a special issue on W o m e n Physicists. I made a presentalion at the CAP Congress on the subject of " W o m e n in Physics - a M a t t e r of Education" in E d m o n t o n in 1 9 8 6 . Thus, it is especially interesting for me t o revisit the subject of w o m a n p h y s i c i s t s after a decade and a particular delight t o present this special issue of Physics in Canada celebrating their c o n t r i b u t i o n and presenting their v i e w of physics in Canada H o w e v e r , it is w i t h s o m e trepidation that I w r i t e an editorial on this subject. Special editors t h a t have not " s t u c k t o their k n i t t i n g " have not received particularly gentle t r e a t m e n t in Canadian physics journals in the past. " W o m a n p h y s i c i s t " . . . . s o m e feel that this expression is an o x y m o r o n . On the other hand, many people, indeed many w o m e n , feel that barriers for w o m e n w h o w a n t a career as a physicist have been e f f e c t i v e l y dealt w i t h t h r o u g h policies on m a t e r n i t y leave, w i d e r access t o day care, universal medical benefits and the like. " S u f f r a g e t t e s " of yesteryear w h o chained t h e m s e l v e s t o fences t o w i n the v o t e for w o m e n w o u l d undoubtedly be amazed t o see the changes in t o d a y ' s w o r l d in w h i c h it is possible for w o m e n to integrate career and f a m i l y life in a seamless w a y . Yet, the survey of university physics d e p a r t m e n t s reported on in this issue indicates that only 1 3 % of Canadian PhD students in physics are w o m e n and there remain major university physics d e p a r t m e n t s w h i c h have no female f a c u l t y m e m b e r s . Indeed, there has been substantial cultural change in Canada w i t h respect t o the role and position of w o m e n . " W o m e n in Canada, A Statistical Report" released by Statistics Canada in A u g u s t , 1 9 9 5 , summarizes the status of w o m e n in Canada in the early ninetys. There is good n e w s and not so good n e w s . There has been an increase in the participation of w o m e n as university s t u d e n t s in general. In the 1 9 9 2 - 9 3 academic year, w o m e n a c c o u n t e d for 5 2 % of all full t i m e university students. In some scientific disciplines representation of w o m e n has increased dramatically. In 1 9 9 4 , w o m e n made up 3 2 % of all d o c t o r s and d e n t i s t s , up f r o m 1 8 % in 1 9 8 2 . A n education pays. W h i l e at all levels of educational a t t a i n m e n t w o m e n ' s earnings remain l o w e r t h a n those of men, female u n i v e r s i t y graduates e m p l o y e d f u l l - t i m e , earned 7 5 % as m u c h as their male colleagues in 1 9 9 3 , w h i l e the average pre-tax income of all w o m e n aged 15 and over w a s only 5 8 % of the average i n c o m e of men. The e m p l o y m e n t rate of w o m e n increases dramatically w i t h educational a t t a i n m e n t . In 1 9 9 4 , 7 7 % of female university graduates as c o m p a r e d w i t h 8 2 % of male graduates w e r e employed. There is also some not so good n e w s for w o m e n . This same report says that in 1 9 8 2 , 1 5 % of professionals e m p l o y e d in the natural sciences, engineering and m a t h e m a t i c s w e r e w o m e n and in 1 9 9 4 this has risen t o only 1 9 % . T h o u g h w o m e n do make up more than half of full t i m e u n i v e r s i t y students, in 1 9 9 2 - 9 3 w o m e n made up just 3 5 % of those w o r k i n g full t i m e t o w a r d their d o c t o r a t e s . In 1 9 9 4 , 7 0 % of all e m p l o y e d w o m e n w o r k e d in teaching, nursing and related health occupations, clerical positions, or sales and service o c c u p a t i o n s c o m p a r e d to 3 1 % of men. Thus, many w o m e n continue t o pursue career paths that are traditional t o t h e m , and physics is not one of these. It is interesting to reflect on these s t a t i s t i c s in the c o n t e x t of A l i s o n Prentice's article on w o m e n in physics decades ago in Canada. These d r y statistics s h o w that w h i l e advances have been made over recent decades, for w h a t e v e r reason, there are career differences b e t w e e n w o m e n and men w h i c h persist in our culture. Reasons are t o o many t o explore here and the discussion could b e c o m e long, and riddled w i t h non scientific opinion and debate. The f a c t s speak for t h e m s e l v e s . The objective of this issue is t o present an o v e r v i e w of w o m a n physicists in Canada as w e approach the end of the millenium. A s you w i l l see, w e have m u c h to celebrate in the c o n t r i b u t i o n s of w o m e n t o physics in Canada. A s you w i l l also see, these c o n t r i b u t i o n s go far beyond the intellectual...the presence of these w o m e n is beginning t o s t r e n g t h e n the fabric of our profession and to s t r e t c h it, as some of the profiles of s t u d e n t , married couples and n e w c o m e r s t o Canada illustrate. The Canadian A s s o c i a t i o n of Physicists has supported a C o m m i t t e e t o Encourage W o m e n in Physics (CEWIP) since 1 9 8 3 . Interestingly enough, the c o m m i t t e e w a s initiated by m e n and has been supported by t h e m throughout its history. The " t w o J i m ' s " as they have c o m e t o be a f f e c t i o n a t e l y k n o w n are J i m Prentice and J i m M e g a w . Both n o w retired, these t w o acted as mentors and examples for many w o m e n w h o participated in the c o m m i t t e e over the past decade. Remarkably, it has been men w h o like w o m e n and respect their c o n t r i b u t i o n t o the c o m m u n i t y w h o have made the c o m m i t t e e w o r k a b l e . In the early years, M o n a J e n t o , then Secretary of the CAP and herself a science graduate and pioneer, w a s an a c t i v e supporter and participant. A major problem has been g e t t i n g w o m e n t o become involved w i t h the c o m m i t t e e and t o take on w o r k associated w i t h it. The c o m m o n thread is that w o m e n have too m u c h t o do. The current chair of the c o m m i t t e e is Debbie Poirier, w h o s e profile is featured in this issue. Please provide c o m m e n t s and advice on the d i r e c t i o n of the c o m m i t t e e t o her. Her e-mail address is The CEWIP has been a truly national c o m m i t t e e w i t h corresponding m e m b e r s h i p of about 2 0 people f r o m coast t o coast. Each individual member of CEWIP undertakes their o w n slate of activities w h i c h t y p i c a l l y include career talks, collection of information on some aspects of the issue, or liaison w i t h other organizations interested in w o m e n in science. For, example J i m M e g a w undertook a survey of all the universities in the w o r l d t o obtain data about the p a r t i c i p a t i o n rates of w o m e n in physics and reported on "Gender D i s c r i m i n a t i o n in the W o r l d ' s Physics D e p a r t m e n t s " at the Gender and Science and Technology m e e t i n g in Australia in 1 9 9 1 . The c o m m i t t e e has u n d e r t a k e n some additional specific a c t i o n s : - Until 1 9 8 7 there had rarely been a w o m a n on the CAP Lecture Tour. In order to change this s i t u a t i o n , names of o u t s t a n d i n g w o m a n speakers were included ( w i t h the Education D i v i s i o n ' s permission) on the C A P list for several years. Inevitably the w o m e n received more speaking i n v i t a t i o n s on average than the men. M a r y A n n e W h i t e , w h o s e profile appears herein, w a s one of the first and m o s t popular. Lately, the departments have been nominating w o m a n speakers d i r e c t l y . A D i r e c t o r y of W o m e n in Physics in Canada has been developed. This d i r e c t o r y is n o w w i t h the CAP o f f i c e for use by potential e m p l o y e r s , seekers of graduate s t u d e n t s . The c o m m i t t e e is looking for s o m e o n e to take on the continued responsibility of updating the list and ensuring its availability. M e e t i n g s are held several t i m e s a year, a l w a y s at the CAP Congress in whichever city it occurs and, additionally, in Quebec or Ontario. There w a s a w o m e n ' s session at C A M 95 in Quebec C i t y w h i c h included M e x i c a n and A m e r i c a n p h y s i c i s t s . The Canadian c o m m i t t e e has c h o s e n a l o w keyed approach to the e q u i t y issue and tries to w e a v e a thread of consciousness about the issue into the business of the CAP. The APS has t a k e n a more high profiled approach and some of their excellent p r o g r a m s are described in this issue. This issue takes the Canadian approach. W e have no strident d e m a n d s t o present. We do have an o v e r v i e w of the t r e m e n d o u s present and potential f u t u r e c o n t r i b u t i o n of w o m e n to physics in Canada. W e have a collage of technical w r i t i n g s over a broad selection of fields, s o m e nontechnical papers on a v a r i e t y of t o p i c s related t o w o m e n , and some profiles of w o m a n physicists and physics couples w h o say in their o w n w a y w h a t p h y s i c s is all about in Canada t o d a y . These profiles capture the e n t h u s i a s m and c r e a t i v i t y of w o m a n p h y s i c i s t s and a l t h o u g h none of t h e m highlight major issues w i t h i n the community, some common themes emerge. The one t h a t emerges m o s t clearly has little t o do w i t h overt barriers or discrimination. It is the d i f f i c u l t y of m a n a g i n g dual careers in p h y s i c s . In t o d a y ' s t o u g h e c o n o m i c c l i m a t e it is d i f f i c u l t to manage one science career. It is not surprising that it is v a s t l y more d i f f i c u l t to manage t w o . N u m b e r s are part of the issue here. M o s t w o m e n in p h y s i c s , according t o the APS, if they m a r r y , marry m e n in science (see A n n a H a y e s ' and Steve Sterbenz' profile for numbers). The w o m e n are t y p i c a l l y s o m e w h a t younger than the m e n and hence not as far along in their careers w h e n t h e y enter the marriage. T h u s , w h e n a f a m i l y is desired, it is likely to make excellent sense for the w o m a n to give up or postpone her career. U n f o r t u n a t e l y , m a n y of these highly c o m p e t e n t and enthusiastic w o m e n never r e t u r n to the field. On t o p of all the d o m e s t i c issues t h e y m u s t deal w i t h , there are a host of rules against n e p o t i s m , etc, that can limit a w o m a n ' s o p p o r t u n i t y t o find suitable e m p l o y m e n t in the same geographical area as her husband. This issue arises again and again in the s t a t e m e n t s provided by w o m e n in this issue. Solutions range f r o m long range c o m m u t i n g t o challenging the s y s t e m . U n f o r t u n a t e l y , w h a t e v e r the solution it is likely to have ongoing i m p a c t s on the w o m a n ' s happiness and her career, not t o m e n t i o n her f a m i l y . It is clear that one piece of advice that should be passed on to w o m e n s t u d e n t s is to ensure that the m a n she marries is s u p p o r t i v e of her m a i n t a i n i n g a career. That support can be crucial to ensuring increasing participation of w o m e n in the physics c o m m u n i t y . Understanding the issue can help the physics c o m m u n i t y deal w i t h such couples in a more humane w a y . ERRATUM In the "Ph.D. Degrees A w a r d e d at Canadian Universities s e c t i o n of in 1995" the 1 9 9 6 January/February issue of Physics Canada A b d u l Elezzabi in was inadvertently listed as currently at a Post Doctorate Fellowship University of Edmonton. at the This entry should have read the University of Alberta. Our apologies to all current and former graduates/employees of the University of Alberta for this error. Please read on and enjoy. W e are interested in y o u r response to this issue. Dr. A n n C. McMillan Guest Editor Additional Reading Suggested by our Readers: A Passion for Physics - The S t o r y of a W o m a n Physicist J o a n Freeman IOP Publishing, Bristol, England 1 9 9 1 scientists? Other than M a d a m e Curie, I c a n ' t think of a n y , " w h i c h expressed an attitude that was even more prevalent before this book w a s published. Carol Herzenberg A n o t h e r source of i n f o r m a t i o n is an international reference listing and biographical d i r e c t o r y of some notable w o m e n scientists f r o m ancient t o m o d e r n t i m e s . " W o m e n Scientist f r o m A n t i q u i t y to the Present: A n I n d e x " w a s published by Locust Hill Press, W e s t C o r n w a l l CT in 1 9 8 6 , and is available f r o m the publisher and is in most major u n i v e r s i t y libraries. It includes w o m e n in m a t h e m a t i c s , medicine, and engineering; there are over 2 5 0 0 individual entries that w i l l help y o u locate further biographical i n f o r m a t i o n on all of these w o m e n . You m a y find this book useful - it w a s developed in part to respond t o such s t a t e m e n t s as " W o m e n W o m e n Scientists in America: Before Affirmative Action 1940-1972. By Margaret W. Rossiter, John Hopkins University Press: 1995. D. Poirier INRS La Physique au Canada mars à avril 1 9 9 6 51 CALENDAR / CALENDRIER information, please contact: A. Donszelmann at Tel: + 3 1 (20I 5256334, Fax: + 3 1 (20) 525 5102, e-mail: zicap@phys.uva.ni. 11-23 1996 JUNE TO 1997 JUNE Combinations and Group Theory The Centre de recherches mathématiques is hosting a year long program in combinatorics and group theory in 1996-97. The year will be organized around a certain number of workshops spread throughout the year. For a schedule of events, please contact: Louis Pelletier,CRM, Université de Montréal, CP 6128, Succ. CentreVille, Montréal, QC, H3C 3J7 or e-mail to: ACTIVITES@CRM.UMontreal.CA; WWW http://www.CRM.UMontreal.CA 1996 JUNE 7-11 9-12 European Research Conference on Fundamental Aspects of Surface Science: Semiconductor Surfaces, C. Sebenne (Paris) Blankenberge, Belgium. More information can be obtained on the World Wide Web server at: http:Wwww.esf.org CNA/CNS Annual Conference, New Brunswick. For more information, please contact: Ms. Tatiana Wigley, CNA/CNS Office, Toronto Ontario. Tel: (416)977-6152; Fax: (416)979-8356. 16-19 CAP Annual Congress, University of Ottawa, Ottawa, Ontario. For Congress Information see 1996 January /February Physics in Canada or Congress section of Univ. of Ottawa home page at http://www.physics.uottawa.ca/ 1996 SUMMER Physics in Industry International Conference, Nyzhny Novgorod, Russia. For more information, please contact: Professor S.P. Kapitza, Euro-Asian Physical Society President, 17 Kursovoy, Moscow 119034, Russia. Fax: (095) 943-76-77; E-mail: marina@ eaps.msk.ru. 1996 JULY 8-10 Third International Workshop on Laser Beam and Optics Characterization / 3" Atelier international sur la caractérisation des faisceaux et de l'optique laser, Québec, QC. Pour plus d'information, veuillez contacter Michel Morin, Institut national d'optique, 369, rue Franquet, Sainte-Foy, QC, Canada, G1 P 4N8, Tel: (4181 657-7006, Fax: (418) 657-7009; cour.élec: morin@ino.qc.ca. 1996 AUGUST 5-9 Zeeman-Effect Centenary/ International Conference on Atomic Physics XV (ZICAP), Van der Waals Zeeman Laboratory, University of Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam, The Netherlands. For more 11-23 CRM Summer School/Combinatories and Group Theory, Banff, Alberta. For more information contact: CRM Summer School, CRM, Université de Montréal, CP 6128, Succ. Centre-ville, Montréal, QC, H3C 3J7, e-mail: ACTIVITES@CRM.UMontreal.CA, Fax. (514) 343-2254, Tel: (514) 343-2197 17-24 8th International Organization of Science and Technology Education (I0STE) Symposium, Edmonton, Alberta. For more information, please contact: Continuing Professional Education: Faculty of Education, University of Alberta, 4-116 Education North, Edmonton, Alberta, T6G 2G5, Tel: (403) 492-0394, Fax: (403) 492 0390. 19-23 17th General Congress of the International Commission for Optics, Taejon, Korea. Theme: "Optics for Science and New Technology". For more information, please contact: ICO17C96) Secretariat, Prof. B.Y. Kim, Department of Physics, KAIST, 373-1 Kusong-dong,Yusong-gu,Taejon 305-701, Korea. Tel: + 82-42-8692527; Fax: +82-42-869-5527. 27-30 2nd International Conference on hyperons, charm and beauty baryons, Concordia University, Montreal, Quebec. For more information, please contact: Lynn Chapman-Baker, Physics Dept., Concordia University, Montreal, QCH3G1 M8;Beauty@vax2.Concordia, ca 1996 SEPTEMBER Aug.31- European Research Conference on Sept. 5 Advanced Quantum Field Theory: Integrability, Conformai Invariance, Topological Field theory and Applications, V. Rittenberg (Bonn) - La Londe-les-Maures, France. More information can be obtained on the World Wide Web server at: http:Wwww.esf.org 9-13 EPS 10 Trends in Physics, 10th General Conference of the European Physical Society, Sevilla, Spain. For more information, please contact: Organizing Secretariat, Proconsur, Avda. San Francisco Javier n° 15, 4", E-41018 Sevilla (Spain) Tel: (34-5) 492 27 55 16-19 Deep Geologic Disposal of Radioactive Waste, Winnipeg, Manitoba. For more information, please contact: Mr. C. Vandergraaf, AECL Research - WL, Pinawa, Manitoba, ROE 1L0. Tel: (204) 753-2311 ext 2592.22-26 21-26 European Research Conference on Quantum Optics, K. Burnett (Oxford) Castelvecchio Pascoli, Italy. More information can be obtained on the World Wide Web server at: http:Wwww esf org 22-26 Physics and Industry (PHYSIN-96), Nyzhny Novgorod (Russia). For more information please contact: Euro-Asian Physical Society, 17, Kursovoj bystr., Moscow, 119034, Russia. Tel: (095) 943-7677; Fax: (095) 943-7686, e-mail: marina@eaps.msk.ru. 24-26 BEM 18: 18th International Conference on Boundary Element Methods, Braga, Portugal. Abstract deadline December 18, 1995. Final paper due April 2 9 , 1 9 9 5 . Sponsors: International Society for Boundary Elements, for more information contact Liz Kerr, Wessex Institute of Technology, Ashurst Lodge, Ashurst, Southampton S040 7AA, UK. Tel: (44)(1703) 293223, Fax: (44)11703) 292853, E-mail: cmi@ib.rl.ac.uk. 1996 SEPTEMBER Sept. 28 Oct. 3 European Research Conference on Chaotic Phenomena in Nuclear Physics S. Aberg (Lund) - Aghia Pelagia, Crete, Greece. More information can be obtained on the World Wide Web server at: http:Wwww.esf.org 1997 JULY 1-7 Joint Scientific Assemblies: International Association of Meteorology and Atmospheric Sciences / International Association for the Physical Sciences of the Oceans, Melbourne, Australia. For more information, please contact: IAMAS/IAPSO Secretariat, Convention Network, 224 Rouse Street, Port Melbourne Victoria 3207 Australia. Tel: + 61 3 9646 4122; Fax: + 6 1 3 9646 7737; e-mail: mscarlett@peg.apc.org. 25th International Cosmic Ray Conference, Durban, South Africa. For more information contact: National Organizing Committee 25th ICRC, Space Research Unit, Department of Physics, Potchefstroom University for Che, Potchefstroom 2520, South Africa. Tel: + 2 7 - 1 4 8 - 2 9 9 2 4 2 3 , Fax: + 2 7 - 1 4 8 - 2 9 9 2 4 2 1 , E-mail: ICRC97@PHYSICS.PUK AC.ZA MARK YOUR CALENDARS - FUTURE CAP CONFERENCES -CAP 1997 Annual Congress, 1997 June 8-11, University of Calgary. CAP 1998 Annual Congress, 1998 June 14-17, University of Waterloo. A n y universities interested in hosting a CAP Annual Congress can send a letter of interest t o the CAP Office, Bur./Suite 112, Imm. McDonald Bldg., 150 Louis Pasteur, Ottawa, ON K I N 6N5. The letter should include an indication of what year you are interested in, keeping in mind that the Congress travels Central-East-Central-West. 52 Physics in Canada M arch/Aprill 9 9 6 SCIENCE POLICY UPDA TE / MISE À JOUR SUR LA POLITIQUE SCIENTIFIQUE A t t h e s t a r t of his t e r m as C A P P r e s i d e n t , P.S. V i n c e t t s t a t e d t h a t t h e m o s t i m p o r t a n t t a s k f o r his P r e s i d e n c y w o u l d be ( w i t h t h e help of m a n y o t h e r s ) t o e s t a b l i s h C A P as a t r u l y e f f e c t i v e voice for science, one w h i c h w o u l d speak t o g o v e r n m e n t s clearly and e f f e c t i v e l y o n behalf of p h y s i c s a n d of s c i e n c e as a w h o l e . A f t e r a n e n o r m o u s a m o u n t of e f f o r t , it a p p e a r s t h a t t h i s is b e c o m i n g a f a c t ; t h e r e are m a n y in O t t a w a w h o w o u l d n o w tell y o u t h a t t h e C A P is o n e of a h a n d f u l of l e a d i n g v o i c e s f o r s c i e n c e b o t h n a t i o n a l l y a n d in m a n y p r o v i n c e s . N o w t h a t t h e C A P has t h e r e s o u r c e s a n d e x p e r t i s e in p l a c e , P.S. V i n c e t t b e l i e v e s t h a t t h e C A P c a n play a c r i t i c a l l y i m p o r t a n t role in t h e challenges w h i c h continue t o face physicists, whether they be in a u n i v e r s i t y s e t t i n g or e l s e w h e r e . The C A P m u s t s p e a k f o r p h y s i c s as a whole. T h e s e are: 1. T h a t a n y s c i e n c e p o l i c y h a v e as a g o a l t h e c r e a t i o n of a s u s t a i n a b l e d i s t r i b u t i o n of e f f o r t b e t w e e n basic science, applied science, development and commercialization of t h e d e v e l o p m e n t s . 2. A major impediment to the commercialization of Canadian r e s e a r c h a n d d e v e l o p m e n t is t h e reluctance of our financial institutions to provide financing for l a t e - s t a g e d e v e l o p m e n t a n d initial p r o d u c a t i o n of n e w p r o d u c t s of small and m e d i u m sized enterprises. W h i l e t h e g o v e r n m e n t has r e c e n t l y announced several programs to a d d r e s s t h i s p r o b l e m , it s h o u l d be r e c o g n i z e d as a n o n - g o i n g c h a l l e n g e requiring additional responses. Productive Meetings w i t h Government A report o n s c i e n c e p o l i c y a c t i v i t i e s undertaken recently follows. C o m m e n t s a n d s u g g e s t i o n s are i n v i t e d f r o m C A P m e m b e r s . Please d i r e c t t h e m t o F . M . Ford, S c i e n c e Policy O f f i c e r , C a n a d i a n A s s o c i a t i o n of Physicists, Suite 112, McDonald Building, 1 5 0 Louis Pasteur Ave., Ottawa, Ontario, K1 N 6N5; email CAP@physics.uottawa.ca. LOBBYING National Consortium T h e C A P w r o t e m o s t of t h e b r i e f i n g paper o n t h e I m p o r t a n c e of R e s e a r c h which the National Consortium of Scientific and Educational Societies u s e d in t h e i r m e e t i n g s w i t h a large n u m b e r of M i n i s t e r s a n d s e n i o r c i v i l s e r v a n t s in N o v e m b e r / D e c e m b e r 1 9 9 5 . T h i s paper f o c u s e d o n t h e i m p o r t a n c e of t h e w h o l e s p e c t r u m of r e s e a r c h , a n d particularly emphasized the importance of l o n g - t e r m w o r k . The Consortium recently asked its members for input regarding a Consortium science policy. D. M c D i a r m i d , D i r e c t o r of P r o f e s s i o n a l Affairs, felt, in consultation with P.S. V i n c e t t , t h a t f r o m t h e C A P ' s p o i n t of v i e w t h e r e are t w o issues w h i c h w e f e e l m u s t , a m o n g o t h e r s , be part of any C o n s o r t i u m science policy d o c u m e n t . This year t h e C A P joined w i t h the C h e m i c a l S o c i e t y of C a n a d a (CSC) t o c o n d u c t the first joint lobby e f f o r t . The mid-February meetings with J o n Gerrard, Minister of State for Science, Research and D e v e l o p m e n t , and other government officials were a t t e n d e d o n behalf of t h e C A P by Paul V i n c e t t , P r e s i d e n t ; Bev R o b e r t s o n , Vice President; Don McDiarmid, D i r e c t o r of P r o f e s s i o n a l A f f a i r s ; a n d F r a n c i n e Ford, E x e c u t i v e D i r e c t o r . C S C r e p r e s e n t a t i v e s i n c l u d e d President Ron Steer; Vice-President Vedene Smith, and Executive Secretary Anne Alper. Discussions w i t h Gerrard f o c u s e d on t h e l o n g o v e r d u e report o n t h e f e d e r a l Science and Technology Review, h o w a d v i c e o n s c i e n c e a n d t e c h n o l o g y is p r o v i d e d t o g o v e r n m e n t , t h e e f f e c t of the cuts to the transfer payments on university research and the need for resources t o bring proven t e c h n o l o g y t o the marketplace. Gerrard emphasized the need for independent advice on science and t e c h n o l o g y issues. He s a i d t h a t t h e s c i e n c e l o b b y is d i v e r s e a n d not w e l l versed in what is possible in government. He u r g e d t h e s c i e n t i f i c c o m m u n i t y t o t a k e the initiative and create a structure for providing c o h e r e n t , clear a d v i c e t o g o v e r n m e n t . W i t h respect t o the need for resources t o bring proven t e c h n o l o g y t o the marketplace, Gerrard referred to p r o g r a m s s u c h as t h e n e w NRC-NSERC Industry partnerships and the Western Diversification Fund initiatives. We stressed the fact that it is still extremely difficult for small knowledgebased companies t o obtain funds for new ventures. The effect cuts to the transfer payments will have on research i n f r a s t r u c t u r e at u n i v e r s i t i e s w a s also raised. G e r r a r d p o i n t e d out t h a t t h e f e d e r a l g o v e r n m e n t does not get c r e d i t f o r t h e f u n d s it i n v e s t s here. G e r r a r d a d v i s e d us t h a t t h e report o n t h e f e d e r a l S & T R e v i e w w a s t o be released with the budget. His Department will hold briefings on the report for CAP, CSC and other organizations. T h e e f f e c t s of t h e c u t s t o t h e t r a n s f e r p a y m e n t s o n t h e r e s e a r c h c a p a b i l i t y of u n i v e r s i t i e s w e r e also d i s c u s s e d w i t h Peter A d a m s , M . P . , Chair of t h e C a u c u s C o m m i t t e e on Higher Education. A d a m s s a i d his C o m m i t t e e w a s f o r m e d t o a d d r e s s higher e d u c a t i o n issues a n d realizes t h e i m p a c t of t h e s e cuts. A d a m s s a i d t h a t t e a c h i n g is t h e m o r e o b v i o u s p r o d u c t of u n i v e r s i t i e s a n d r e s e a r c h is less v i s i b l e . A l t h o u g h he p o i n t e d o u t t h a t it w a s t h e n p r o b a b l y t o o late t o i n f l u e n c e t h e u p c o m i n g b u d g e t , he did feel t h a t immediate action may influence future strategy. O n his a d v i c e , t h e C A P a n d t h e C S C P r e s i d e n t s w r o t e t o t h e Prime M i n i s t e r u r g i n g t h a t he g i v e s o m e i n d i c a t i o n in the Speech f r o m the Throne on h o w t h i s w i l l be a d d r e s s e d in t h e longer term. The CAP's letter w a s distributed t o C A P m e m b e r s by e m a i l o n 1 9 9 6 February 2 0 . Subsequently a signific a n t n u m b e r of C A P m e m b e r s w r o t e similar l e t t e r s t o t h e Prime M i n i s t e r expressing their concern over the current s i t u a t i o n and urging a national s o l u t i o n in t h e longer t e r m . A d a m s also u r g e d our o r g a n i z a t i o n s t o b r i n g t h e message about the importance/exist e n c e of u n i v e r s i t y r e s e a r c h t o t h e M P s in t h e i r local ridings. In a later m e e t i n g , Adams stated that the follow-up to t h e s e m e e t i n g s by t h e p h y s i c i s t s a n d t h e c h e m i s t s has b e e n v e r y i m p r e s s i v e . The need for science and t e c h n o l o g y t o h a v e a higher p r i o r i t y o n t h e g o v e r n m e n t ' s a g e n d a w a s raised in all our m e e t i n g s . A r t h u r C a r t y , FCIC, President La Physique au Canada mars à avril 1 9 9 6 53 of t h e N a t i o n a l R e s e a r c h C o u n c i l , s a i d t h a t t h i s w i l l not h a p p e n u n t i l p e o p l e are c o n v i n c e d of t h e v a l u e of S & T . He sees a n i m p o r t a n t role f o r s c i e n t i f i c s o c i e t i e s in b u i l d i n g s c i e n c e a w a r e n e s s w i t h t h e public. W i t h o u t this, f u t u r e cuts t o S & T b u d g e t s are i n e v i t a b l e . Carty said that the government p r i o r i t i e s are j o b s a n d g r o w t h . W e m u s t work with industry to convince g o v e r n m e n t of t h e role of s c i e n c e in this process. He s a i d t h a t a r e c e n t s t u d y has s h o w n t h a t t h e I R A P P r o g r a m created 9 , 0 0 0 n e w jobs and saved 6 , 0 0 0 e x i s t i n g j o b s . F u n d i n g f o r IRAP s u n s e t s in 1 9 9 8 - 9 9 a n d he w o u l d like o u r a s s i s t a n c e in p u b l i c i z i n g t h e v a l u e of t h e p r o g r a m . T h e E c o n o m i c Policy S e c r e t a r i a t in t h e D e p a r t m e n t of F i n a n c e p r o v i d e s a d v i c e to the Minister of Finance on macroeconomic policy and program design and development including a d v i c e o n p r o p o s a l s b r o u g h t f o r w a r d by o t h e r M i n i s t e r s . Peter C a m e r o n , G r o u p Chief, Industry, Regional and Corporate P o l i c y in t h i s D e p a r t m e n t , s a i d t h e r e is a large s c i e n c e a n d t e c h n o l o g y e f f o r t c u r r e n t l y in g o v e r n m e n t d e p a r t m e n t s w h i c h , w i t h t h e t h r u s t of t h e p r e s e n t g o v e r n m e n t , he s e e s as m o v i n g t o t h e p r i v a t e s e c t o r . T h e c u r r e n t l o w level of R & D d o n e by i n d u s t r y , d e s p i t e t h e relatively low cost of conducting research in Canada, was raised. Government procurement and w o r l d p r o d u c t m a n d a t e s w e r e e x p l o r e d as possible mechanisms for improving t h e situation. T h e p o s i t i v e b e n e f i t s of b r i n g i n g n e w technology t o the marketplace and t h e n e e d f o r s t a r t up f u n d s f o r new k n o w l e d g e b a s e d c o m p a n i e s w e r e also discussed. T h e g o v e r n m e n t is d o i n g things t o make v e n t u r e capital available b u t d o e s n ' t i d e n t i f y w h e r e it s h o u l d be applied. Cameron said that t h e quality of g r a d u a t e s a n d t h e r e s e a r c h c o m i n g out of Canadian universities is r e c o g n i z e d i n t e r n a t i o n a l l y as e x t r e m e l y h i g h . T h e n e e d f o r p r o g r a m s t o build on this research w a s identified. The Science Promotion and Academic A f f a i r s B r a n c h of I n d u s t r y C a n a d a is responsible for policy on university r e s e a r c h , s c i e n c e e d u c a t i o n a n d public a w a r e n e s s . D o u g Hull, D i r e c t o r G e n e r a l of t h i s Department, said strategic t h i n k i n g in t h e s c i e n c e p o l i c y area has d e c l i n e d in g o v e r n m e n t in r e c e n t y e a r s . He s a i d t h a t he is w o r k i n g t o b r i n g m o r e people w i t h scientific backgrounds into his D e p a r t m e n t . H e also s t r e s s e d t h e 54 Physics in Canada M arch/Aprill 9 9 6 need for t h e science c o m m u n i t y t o develop a mechanism for giving advice to government. M a r t h a Piper, U n i v e r s i t y of A l b e r t a , Vice-President (Research and External Affairs) Hull e x p r e s s e d c o n c e r n a b o u t t h e f u t u r e v i a b i l i t y of t h e C a n a d i a n u n i v e r s i t y s y s t e m a n d t h e a b i l i t y of u n i v e r s i t i e s t o cope w i t h current cutbacks and address n e w c h a l l e n g e s , s u c h as e d u c a t i o n supplied t o Canadians f r o m abroad using computer n e t w o r k s . Elizabeth Cannon, University of C a l g a r y , D e p a r t m e n t of G e o m a t i c s Engineering Ron S t e e r , U n i v e r s i t y of S a s k a t c h e w a n , D e p a r t m e n t of C h e m i s t r y Bev L o b b y i n g Can H a v e Results - U n i v e r s i t y Advisory Committee U s u a l l y o n e e x p e c t s l o b b y i n g t o be a long-term process with little of i m m e d i a t e i n t e r e s t t o r e p o r t . T h i s does not a p p e a r t o be t h e c a s e f o r t h e C A P / C S C l o b b y e f f o r t in m i d - F e b r u a r y . F o l l o w i n g t h e m e e t i n g w i t h D o u g Hull a n d s o m e of his s t a f f at I n d u s t r y Canada, Bev R o b e r t s o n , CAP VicePresident, received a call from Sue M i l n e of t h e U n i v e r s i t y Liaison S e c t i o n of I n d u s t r y C a n a d a in early March. The discussions w i t h CAP/CSC t r i g g e r e d t h e e s t a b l i s h m e n t by I n d u s t r y C a n a d a of a c o n s u l t a t i v e g r o u p of u n i v e r s i t y people. T h e U n i v e r s i t y A d v i s o r y Board w i l l be p r o v i d i n g a d v i c e t o D o u g Hull, D i r e c t o r General, Science Promotion and Academic Affairs and through him t o Industry Canada. The recently-released strategy document. Science and Technology for the New Century (http://canada.gc.ca/depts/science/mai n_e.html), emphasizes the importance of a n a t i o n a l i n n o v a t i o n s y s t e m w i t h s t r o n g linkages b e t w e e n j o b c r e a t i o n , e c o n o m i c g r o w t h , q u a l i t y of life a n d a d v a n c e m e n t of k n o w l e d g e - a n d n o t e s t h e need f o r e f f e c t i v e p a r t n e r s h i p s t o provide t h e federal government w i t h expert advice. This University A d v i s o r y Board s h o u l d be in a n e x c e l l e n t p o s i t i o n t o respond t o this interesting challenge and opportunity. Initial t o p i c s f o r d i s c u s s i o n by t h e U n i v e r s i t y A d v i s o r y Board i n c l u d e t h e commercialization of university research; distance education; international marketing of postsecondary institutions; S&T indicators; and research infrastructure. M e m b e r s of t h e U n i v e r s i t y A d v i s o r y Board ( f r o m W e s t e r n C a n a d a t o E a s t e r n Canada) i n c l u d e : Brett Finlay, University of British Columbia, Department of Microbiology and I m m u n o l o g y Robertson, University D e p a r t m e n t of P h y s i c s of Regina, Katherine Schultz, University of Winnipeg, Associate Vice-President (Research a n d G r a d u a t e S t u d i e s ) H e a t h e r M u n r o e - B l u m , U n i v e r s i t y of Toronto, Vice-President (Research a n d I n t e r n a t i o n a l Relations) Bruce H u t c h i n s o n , Q u e e n ' s U n i v e r s i t y , D i r e c t o r of R e s e a r c h S e r v i c e s Roger Lecomte, University of S h e r b r o o k e , D e p a r t m e n t of N u c l e a r Medicine and Radiobiology Gilles Delisle, INRS cations, Directeur recherche Kelvin Ogilvie, President Telecommunide c e n t r e de Acadia University, J a a p T u i m a n , M e m o r i a l U n i v e r s i t y of Newfoundland, Vice-President (Academic) PARTNERSHIP A C T I O N GROUP O N SCIENCE A N D ENGINEERING (PAGSE) A s part of t h e CAP'S t h r u s t t o i m p r o v e interactions among science-based organizations, P.S. Vincett (CAP P r e s i d e n t ) , B.E. R o b e r t s o n ( C A P V i c e P r e s i d e n t ) , D. M c D i a r m i d ( D i r e c t o r of P r o f e s s i o n a l A f f a i r s ) , a n d F . M . Ford (Executive Director) met w i t h Michael D e n s e of t h e R o y a l S o c i e t y of C a n a d a . T h e m e e t i n g f o c u s s e d o n t h e s t a t e of support for science w i t h i n government (and t h e public in general). A l l parties agreed t h a t a b r o a d b a s e d s c i e n c e lobbying activity w a s becoming critical if t h e c o m m u n i t y w a s t o h a v e any i n f l u e n c e o n s c i e n c e p o l i c y in t h e f u t u r e . Dr. D e n s e raised t h e p o s s i b i l i t y of t h e Royal S o c i e t y t a k i n g a l e a d e r s h i p role in t h i s a c t i v i t y , w h i c h w a s s t r o n g l y s u p p o r t e d by t h e C A P r e p r e s e n t a t i v e s p r o v i d e d a clear m a n d a t e a n d t e r m s of reference were presented to the p o t e n t i a l p a r t i c i p a n t s at t h e o u t s e t . Several meeting have n o w t a k e n place. at w h i c h t h e C A P has b e e n r e p r e s e n t e d by D. M c D i a r m i d a n d B. C y c a ( C A P Councillor-at-large). A l t h o u g h t h e r e is still a q u e s t i o n as t o w h e t h e r t h i s g r o u p w i l l , in f a c t , f o r m t h e n a t i o n a l s c i e n c e lobby organization, one activity that was recently undertaken was the d e v e l o p m e n t of a j o i n t r e s p o n s e o n t h e S&T Review report "Science and Technology for the N e w Century, A Federal S t r a t e g y " . The CAP provided considerable input t o this response, a c o p y of w h i c h f o l l o w s t h i s r e p o r t . This r e s p o n s e w a s c a r e f u l l y d r a f t e d w i t h t h e p u r p o s e t h a t it o p e n s o m e doors for further PAGSE input t o the g o v e r n m e n t a n d its b u r e a u c r a c y . P R O V I N C I A L ENGINEERING A C T S T h e e f f o r t s s u m m a r i z e d in t h e O c t o b e r D e c e m b e r 1 9 9 5 i s s u e of P h y s i c s in Canada continue and have experienced s u c c e s s in N o v a S c o t i a . T h e f o l l o w i n g is a r e s u m e of t h e m o r e s i g n i f i c a n t current activity. N O V A SCOTIA: The n e w Nova Scotia E n g i n e e r i n g A c t is p r o c e e d i n g t h r o u g h t h e l e g i s l a t u r e . A P E N S has d o n e w h a t t h e y s a i d t h e y w o u l d d o , s o w e are c l o s e t o our h a v i n g f i r s t f u l l p r o v i n c e using the e x e m p t i o n clause. M A N I T O B A : The proposed revisions t o t h e M a n i t o b a A c t d o not c o n t a i n a n exemption clause and the proposed d e f i n i t i o n of e n g i n e e r i n g p r a c t i c e leaves m u c h t o be d e s i r e d . In a d d i t i o n t o t h e proposed revisions, the Manitoba A s s o c i a t i o n has also d i s t r i b u t e d t o its m e m b e r s h i p t h e CCPE d e f i n i t i o n of engineering practice, including the CCPE/NSSC exemption clause, for feedback. Several CAP officials, i n c l u d i n g P.S. V i n c e t t , h a v e w r i t t e n t h e Manitoba A s s o c i a t i o n urging t h e m t o adopt the exemption clause. Discussions with the Association c o n t i n u e w i t h t h e v e r y s i g n i f i c a n t help of R.C. Barber. S A S K A T C H E W A N : T h e G o v e r n m e n t of S a s k a t c h e w a n has p r o p o s e d a t w o stage revision process, making some changes n o w and conducting further study before making others. The N S S C / C C P E e x e m p t i o n c l a u s e w i l l be c o n s i d e r e d d u r i n g t h e s e c o n d p h a s e of this exercise. In t h e m e a n t i m e , a different e x e m p t i o n clause will pertain, d i s c u s s i o n s c o n t i n u e w i t h B. R o b e r t s o n t a k i n g t h e lead. ALBERTA: We recently discovered that the Association of Professional Engineers, G e o l o g i s t s a n d G e o p h y s i c i s t s of A l b e r t a is e x p l o r i n g t h e p o s s i b i l i t y of a s p e c i f i e d s c o p e of p r a c t i c e under its A c t . This w o u l d allow s o m e w h o do e n g i n e e r i n g - r e l a t e d w o r k b u t d o not h a v e t h e required c r e d e n t i a l s f o r P.Eng. s t a t u s t o o p e r a t e under t h e A c t . T h o s e r e c e i v i n g s u c h s t a t u s w o u l d not be full m e m b e r s of t h e A s s o c i t i o n a n d w o u l d n o t h a v e final s a y o n t h e c o n d i t i o n s of their registration. The CAP w r o t e to urge t h e A s s o c i a t i o n t o first reduce the n e e d f o r s u c h s t a t u s by i n c l u d i n g t h e N S S C / C C P E e x c e m p t i o n c l a u s e in t h e i r Act. NSERC RELATED ACTIVITIES T h e u p c o m i n g R e v i e w of P h y s i c s is a n extremely important CAP response t o the problems caused to university p h y s i c s by t h e last NSERC R e a l l o c a t i o n exercise. T h e C A P has s u b m i t t e d t w o m a j o r p o s i t i o n p a p e r s t o NSERC: o n e o n t h e R e l o c a t i o n process and one on the Strategy Implementation Report. R e c e n t i n f o r m a l i n d i c a t i o n s are t h a t m a n y of t h e s u g g e s t i o n s in t h e C A P ' s R e a l l o c a t i o n paper w i l l be f o l l o w e d n e x t t i m e ; indeed, t h e future process may h a v e m u c h in c o m m o n w i t h our R e v i e w of P h y s i c s . A C A P - N S E R C Liaison C o m m i t t e e has been established and has been o p e r a t i o n a l f o r a p p r o x i m a t e l y o n e year. a f f e c t e d p a r t i e s , led by t h e CAP President, P.S. Vincett, met with Dr. G e r r a r d t o d i s c u s s t h i s m a t t e r . A l s o p r e s e n t w a s Paul S t o t t a r t w h o is o n t h e political staff of NRCan Minister McLellan. W e w e r e told that Minister M a n l e y h a d w a n t e d t o a t t e n d but w a s not able t o clear his c a l e n d a r . G e r r a r d i n d i c a t e d t h a t he h a d b e e n a s k e d by M a n l e y t o f i n d o u t m o r e on the issues a n d t h a t he w o u l d g i v e h i m a f u l l briefing. W e continue to pursue meetings w i t h Ministers McLellan and Manley. (We have been told informally t h a t t h e r e is a g o o d c h a n c e M i n i s t e r M c L e l l a n w i l l agree t o our r e q u e s t f o r a meeting.) D u r i n g t h e m e e t i n g w i t h Dr. Gerrard, Dr. Vincett again explained the community's alarm about (i) t h e u n i v e r s i t y r e s e a r c h i n f r a s t r u c t u r e issue, a n d (ii) t h e N a t i o n a l F a c i l i t y p r o b l e m a n d t h e lack of an i n t e g r a t e d p o l i c y f o r NFs. He e x p l a i n e d h o w t h e o v e r a l l s i t u a t i o n as a major n a t i o n a l crisis f o r l o n g - t e r m research. Dr. G e r r a r d i n d i c a t e d t h a t t h e y are n o w l o o k i n g at a p r o g r a m t o s u p p o r t t h e r e s e a r c h i n f r a s t r u c t u r e , a l t h o u g h (even if t h e y are s u c c e s s f u l ) t h i s c o u l d not see t h e light of day u n t i l t h e n e x t b u d g e t . It is b e l i e v e d t h a t t h e l e t t e r s t h e p h y s i c s c o m m u n i t y has already s e n t t o t h e Prime M i n i s t e r are s t a r t i n g t o be of c o n s e q u e n c e ; f u r t h e r p r e s s u r e f r o m t h e c o m m u n i t y c o u l d play a crucial role, e s p e c i a l l y if t h e r e is o p p o s i t i o n t o t h e program f r o m other Ministers. N A T I O N A L F A C I L I T I E S (NFs) A s y o u k n o w , t h e C A P is p a r t i c u l a r l y urging action on the looming university r e s e a r c h i n f r a s t r u c t u r e issue (arising f r o m t h e r e d u c t i o n a n d r e d i r e c t i o n of the federal transfer payments t o the Provinces) and on the threatened N a t i o n a l Facilities. T h e r e are s o m e significantly encouraging signs that the g o v e r n m e n t s e e m s t o be s t a r t i n g t o notice the concern of the CAP. H o w e v e r , further pressure f r o m the c o m m u n i t y is still e s s e n t i a l t o build o n this. W i t h i n t h e last m o n t h l e t t e r s h a v e b e e n written to Ministers Manley and McLellan and to Dr. J o n G e r r a r d r e g a r d i n g t h e i m p a c t of r e c e n t d e c i s i o n s regarding funding t o Canada's national s c i e n c e f a c i l i t i e s ( A t o m i c Energy of Canada/Sudbury Neutrino Observatory, the Centre Canadien de Fusion M a g n e t i q u e , and the Saskatchewan Accelerator Laboratory). On 1996 May 2, representatives of e a c h of the O n t h e NF i s s u e , Dr. G e r r a r d m a d e some encouraging comments on the N e u t r o n S c a t t e r i n g p o r t i o n of A E C L . In t h e c a s e s of A E C L - T A S C C a n d C C F M , h o w e v e r , he w a s m u c h less s a n g u i n e ; t h e g r o u p s e n s e d real c o n c e r n but also f e l t t h a t t h e dollars m a y be t o o large f o r I n d u s t r y C a n a d a t o pick up t h e s l a c k . W h e n a s k e d if he w o u l d be w i l l i n g ( w i t h M i n i s t e r M a n l e y ) t o help t h e C A P set up a m e e t i n g b e t w e e n t h e M i n i s t e r of F i n a n c e , s o m e of t h e f i v e C a n a d i a n N o b e l L a u r e a t e s w h o are h e l p i n g t h e C A P in t h i s c a m p a i g n , a n d P.S. V i n c e t t , Dr. G e r r a r d a g r e e d t o t r y t o help. This g r o u p of r e p r e s e n t a t i v e s also m e t w i t h t h e e d i t o r i a l page e d i t o r of T h e O t t a w a Citizen. T h e C i t i z e n has c a r r i e d a n u m b e r of s u p p o r t i v e articles a n d m a y be w i l l i n g t o do m o r e . T h e C A P w a s asked to provide more information on t h i s issue a n d t o k e e p t h e m i n f o r m e d o n future actions. Interestingly, the editor felt that w i t h enough grass roots pressure this could become a major La Physique au Canada mars à avril 1 9 9 6 55 public i s s u e , a n d t h a t if it d i d it c o u l d radically improve the government's approach t o research generally. In o t h e r d e v e l o p m e n t s , t h e Bloc has a s k e d a series of q u e s t i o n s in t h e H o u s e o n C C F M (the T o k o m a k de V a r e n n e s ) , a n d t h e d e p u t y Premier of Q u e b e c ( M . L a n d r y ) has w r i t t e n t o t h e f e d e r a l g o v e r n m e n t . T h e M o n t r e a l G a z e t t e has c a r r i e d s u p p o r t i v e a r t i c l e s , a n d t h e NF issue w a s on Quirks and Quarks on M a y 4 t h . P.S. V i n c e t t w i l l , in t h e near f u t u r e , be s e n d i n g a f u l l r e v i e w of t h e w h o l e long-term research issue t o t h e Globe and Mail. W e hope that this will further raise t h e visibility of the situation. GENERAL OBSERVATIONS COMMENTS AND W h i l e t h e N a t i o n a l F a c i l i t y i s s u e is v e r y s e r i o u s a n d u r g e n t , it r e p r e s e n t s o n l y o n e a s p e c t of a m u c h m o r e s e r i o u s problem: that t h e federal government as a w h o l e (and t h e r e are h o n o u r a b l e e x c e p t i o n s ) d o e s not really u n d e r s t a n d t h e i m p o r t a n c e of l o n g - t e r m r e s e a r c h , a n d is p u r s u i n g policies w h i c h (perhaps u n i n t e n t i o n a l l y ) are likely t o s e r i o u s l y d a m a g e it. T h e i n f r a s t r u c t u r e issue is perhaps t h e m o s t obvious example. W e m u s t d r a w a 'line in t h e s a n d ' n o w a n d s a y ' e n o u g h is e n o u g h ' . If w e d o not d o t h i s , a n d if w e d o not d e f e n d p h y s i c s w i t h o n e clear v o i c e , w e h a v e b e e n t o l d m a n y t i m e s by p o l i t i c i a n s a n d civil s e r v a n t s t h a t t h i n g s w i l l o n l y get worse. The whole community must c o m e t o t h e d e f e n c e of w h i c h e v e r part of us is under a t t a c k at a n y g i v e n moment. If w e w a i t u n t i l our o w n i n s t i t u t i o n or our o w n t y p e of r e s e a r c h is t h r e a t e n e d , t h e n t h e g o v e r n m e n t w i l l s i m p l y play t h e g a m e of d i v i d e a n d conquer. One senior civil servant said t o t h e CAP some t i m e ago that ' w e can pick s c i e n t i s t s o f f o n e at a t i m e ' . To p r e v e n t t h i s , w e m u s t s p e a k as o n e c o m m u n i t y w h e n e v e r a k e y part of t h e o v e r a l l f a b r i c of r e s e a r c h is t h r e a t e n e d . In d e f e n d i n g s e v e r a l s p e c i f i c p a r t s of the community, we must always a d d r e s s b r o a d e r issues a n d a p p e a l t o broader p r i n c i p l e s w h i c h all p h y s i c i s t s c a n s u p p o r t . W e m u s t be v e r y c a r e f u l not t o s u g g e s t t h a t s o m e o t h e r part of research be sacrificed to support a n o t h e r . T h e r e is no e v i d e n c e t h a t t h e s i t u a t i o n is really a zero s u m g a m e . A f t e r all, t h e f u n d s lost t o s c i e n c e as a result of t h e a c t i o n s o n t h e n a t i o n a l f a c i l i t i e s h a v e not b e e n t r a n s f e r r e d t o NSERC! N o r , as far as w e are a w a r e , w a s there any significant impact on the 56 Physics in Canada M arch/Aprill 9 9 6 rest of s c i e n c e w h e n T R I U M F r e c e i v e d its r e n e w a l of f u n d i n g last y e a r . The f a c t is t h a t m o n e y c a n be f o u n d if t h e government is c o n v i n c e d t h a t the a r g u m e n t s re g o o d a n d t h a t e n o u g h p e o p l e care. It is up t o C A P t o e n s u r e t h a t t h e a r g u m e n t s are s t a t e d c l e a r l y . H o w e v e r , it is up t o t h e c o m m u n i t y t o m a k e s u r e t h a t e n o u g h p e o p l e speak o u t in s u p p o r t t h a t t h e g o v e r n m e n t is f o r c e d t o listen. The CAP will continue t o do everything in its p o w e r t o d e f e n d h i g h q u a l i t y r e s e a r c h in all s e c t o r s f r o m t h e e f f e c t s of f u t u r e b u d g e t c u t s . T h e t a s k of forming the next generation of researchers, and t h e scientific and technical leadership of tomorrow's C a n a d a s h o u l d be a p r i m a r y o b j e c t i v e of our society. CAP'S t a s k is t o help create an environment where our u n i v e r s i t i e s a n d our o t h e r o u s t a n d i n g research institutions have t h e resources necessary t o carry out these tasks. CAP will continue t o w o r k tirelessly t o these ends. W e t h a n k all t h e C A P m e m b e r s (and o t h e r s ) w h o h a v e w r i t t e n in s u p p o r t of t h e CAP'S A p r i l l e t t e r t o t h e Prime Minister. W e are n o w s e e i n g t h a t s u s t a i n e d a n d r e a s o n e d p r e s s u r e c a n be heard. T h o s e w h o h a v e not w r i t t e n t o Dr. G e r r a r d , M i n i s t e r M a n l e y , a n d t h e other Ministers involved should give serious consideration t o doing so n o w (the f a x n u m b e r s are g i v e n b e l o w ) . Equally i m p o r t a n t - as s t r e s s e d by almost every government representative w e h a v e m e t - call or w r i t e y o u r local M P and M P P / M L A / M N A . Emphasize w h i c h e v e r issue is of m o s t c o n c e r n t o y o u , or d i s c u s s t h e m b o t h , but l e t ' s k e e p up t h e p r e s s u r e ! SCIENCE A N D T E C H N O L O G Y FOR T H E N E W C E N T U R Y : A Federal S t r a t e g y Response by the Partnership Group on Science and Engineering The government of C a n a d a ' s long awaited document on science and technology focuses on evaluation and management issues, w i t h considerable emphasis on performance assessment, in government departments and agencies. The socio-economic benefits of c o m m e r c i a l i z a t i o n , a n d t h e j o b a n d w e a l t h c r e a t i o n p o t e n t i a l of r e s e a r c h a n d d e v e l o p m e n t are t h e c e n t e r p i e c e s of t h e s t r a t e g y . C o n s i d e r i n g t h e i m p r e s s i v e a m o u n t of consultation undertaken by the Government with the different stakeholders across Canada, the Partnership A c t i o n Group for Science a n d Engineering (PAGSE) h a d high expectations for a strategy document w i t h a timetable for deliverables. It a n t i c i p a t e d a f o r m of " w h i t e p a p e r " w i t h an a c t i o n plan f o r i m p l e m e n t a t i o n of n e w t o o l s a n d n e w d i r e c t i o n s . We also e x p e c t e d t h e d o c u m e n t t o s p e c i f y , in a f i s c a l l y d e f i n e d s e n s e , t h e v a l u e a n d s i g n i f i c a n c e of t h e f u l l s p e c t r u m of r e s e a r c h (i.e., t h e c o n t i n u u m f r o m basic to applied) and development for e n h a n c i n g t h e q u a l i t y of life of o u r c i t i z e n s . W h i l e t h e d o c u m e n t does not a t t a i n t h e s e goals in a s u b s t a n t i v e w a y , P A G S E does e n t h u s i a s t i c a l l y e n d o r s e s o m e of t h e p o i n t s m a d e in t h e r e p o r t . These include the: (613) (a) R e c o g n i t i o n of t h e need for c o n s t r u c t i n g a b r o a d b a s e of s c i e n t i f i c e n q u i r y in all m a j o r f i e l d s of e n d e a v o u r . Dr. Peter A d a m s , M P. (Chair, Liberal Caucus Committee on Higher Education): (613) 9 9 6 - 9 8 0 0 (b) Statement that "research, both basic a n d a p p l i e d , p r o v i d e a c o n t i n u o u s , renewable source of skills, ideas, t e c h n o l o g i e s , a n d policies . . . " T h e Rt H o n . 941-6900 Jean Chretien: H o n . J o h n M a n l e y ( M i n i s t e r of I n d u s t r y ) : ( 6 1 3 ) 9 9 2 - 0 3 0 2 or 9 9 5 - 1 5 3 4 H o n . J o n G e r r a r d ( S e c r e t a r y of S t a t e f o r S c i e n c e , R & D ) : ( 6 1 3 ) 9 9 0 - 4 0 5 6 or 947-4250 H o n . A n n e M c L e l l a n ( M i n i s t e r of N a t u r a l R e s o u r c e s , w h i c h has r e s p o n s i b i l i t y f o r AECL and CCFM): (613) 9 9 6 - 4 5 1 6 H o n . Paul M a r t i n : 995-5176 (613) 9 9 2 - 4 2 9 1 or (c) S u p p o r t of f u n d i n g a n d p e r f o r m i n g scientific research w i t h i n government d e p a r t m e n t s a n d a g e n c i e s ; r e s e a r c h in post-secondary institutions; corporate r e s e a r c h a n d d e v e l o p m e n t ; c e n t e r s of excellence. (d) V i e w t h a t q u a l i t y s c i e n c e is c e n t r a l t o sound policy development. (e) F o r m a t i o n of a n e w A d v i s o r y Council on Science and Technology/ Innovation w h i c h w o u l d provide direct input t o cabinet on research and development and other priority issues. P A G SE a n t i c i p a t e s t h a t t h e C o u n c i l w i l l a d d r e s s s o m e of t h e c o n c e r n s of t h e science community. r e s e a r c h e r s w h o n e e d t o m a k e u s e of t h e f a c i l i t i e s c a n n o t a f f o r d t o pay t h e t e c h n i c a l s u p p o r t c o s t s r e q u i r e d t o get the w o r k done! (f) Requirement that government departments and agencies establish mechanisms to secure external assessment of the extent of a c h i e v e m e n t of m i l e s t o n e s , a n d a d v i c e on future programs and priorities. C l e a r l y , in a c c o r d w i t h II, should g o v e r n m e n t d e c i d e t h a t t h e r e is no p r o s p e c t f o r a m a r k e d i n c r e a s e in t h e f u n d i n g of r e s e a r c h in C a n a d a , in t h e next 3 - 4 years, priority decisions must be m a d e in a l l o c a t i n g r e s o u r c e s f o r research across government d e p a r t m e n t s , and amongst the three principal granting councils. The planned A d v i s o r y C o u n c i l ( s u b j e c t t o its d e t a i l e d t e r m s of r e f e r e n c e ) or o t h e r bodies (i.e. cross government departments, cross granting councils) could make r e c o m m e n d a t i o n s in t h i s regard. The successful British example of a T e c h n i c a l Foresight C o m m i t t e e m a y be i n s t r u c t i v e in t h i s regard. (g) C r e a t i o n of partnerships and networks between combinations of individuals f r o m t h e private sector, government, and universities. S o m e of t h e c o n c e r n s has i n c l u d e : which PAGSE I. S o m e of the positive points, e s p e c i a l l y a-d a b o v e , w h i l e l a u d a t o r y , are " m o t h e r h o o d s t a t e m e n t s " a n d are not " f r o n t a n d c e n t e r " in t h e d o c u m e n t . T h e s e s t a t e m e n t s w i l l not h a v e a n y l a s t i n g v a l u e u n l e s s t h e r e is a s p e c i f i c a l l o c a t i o n of r e s o u r c e s , c o n c u r r e n t w i t h a draft plan for policy i m p l e m e n t a t i o n , d e v e l o p e d in c o n c e r t w i t h t h e S & T community. II. P A G S E is w e l l a w a r e of t h e e x i s t i n g and anticipated budgetary constraints. C o n s e q u e n t l y , a l t h o u g h all m a j o r f i e l d s of e n d e a v o u r m e r i t s o m e s u p p o r t o n t h e basis of e x c e l l e n c e , a l l o c a t i o n p r i o r i t i e s m u s t be m a d e (by a p p r o p r i a t e b o d i e s w h i c h serve the different communities universities, government, corporate s e c t o r ) t o a m u c h g r e a t e r e x t e n t a n d at a m o r e d e t a i l e d level, t h a n those d e s c r i b e d in t h e s t r a t e g y d o c u m e n t . III. C a n a d a lags far b e h i n d our m a j o r c o m p e t i t o r s in t e r m s of p e r c e n t of G D P i n v e s t e d in R & D. A s p o i n t e d out in t h e Red B o o k , t h i s is largely t h e result of u n d e r f u n d i n g f o r i n d u s t r i a l s c i e n c e a n d t e c h n o l o g y by t h e p r i v a t e s e c t o r . U n t i l r e s e a r c h a n d d e v e l o p m e n t is g i v e n a h i g h e r p r i o r i t y by g o v e r n m e n t , C a n a d a w i l l c o n t i n u e t o lose in t h e race f o r technological competitiveness. W h i l e t h e paper is c o m m e n d a b l e in promoting partnership agreements, collaborative programs, and an open-door policy for laboratories, n o w h e r e does it a d d r e s s t h e issue of t h e u n d e r f u n d i n g of r e s e a r c h in C a n a d a . A partnership between two u n d e r f u n d e d g r o u p s (eg., u n i v e r s i t i e s and government research laboratories) is not n e c e s s a r i l y a p r e s c r i p t i o n f o r s u c c e s s . F u r t h e r m o r e , t h e r e is l i t t l e p o i n t in g o v e r n m e n t l a b o r a t o r i e s h a v i n g an o p e n - d o o r p o l i c y w h e n t h e u n i v e r s i t y IV. W h i l e P A G S E is c o g n i z a n t of t h e n e e d by g o v e r n m e n t t o e m p h a s i z e t h e commercialization of science and t e c h n o l o g y , t h e g r o u p w a s s t r u c k by the inattention (except s t a t e m e n t s a a n d b a b o v e ) t o s p e c i f i c s o n basic research as the foundation and galvanizer for technology development and commercialization of new processes, as well as for the m a n u f a c t u r e of n e w p r o d u c t s (and more economical routes t o existing commercial items). V. A major impediment to the c o m m e r c i a l i z a t i o n of C a n a d i a n r e s e a r c h a n d d e v e l o p m e n t is t h e r e l u c t a n c e of financial institutions to provide financing for late-stage development a n d initial p r o d u c t i o n of n e w p r o d u c t s of s m a l l a n d m e d i u m s i z e d e n t e r p r i s e s . W h i l e p a r t i a l l y a d d r e s s e d by t h e S & T S t r a t e g y , t h i s needs t o be r e c o g n i z e d as a continuing problem requiring additional responses. international S & T collaboration for t h e b e n e f i t of C a n a d i a n f i r m s , l i t t l e is s a i d concerning the collaboration of university and government researchers o n a n i n t e r n a t i o n a l basis. The cost b e n e f i t a n a l y s i s t o our r e s e a r c h e r s , t h e enhanced opportunities to perform c u t t i n g edge research, and the g o o d w i l l s u c h c o l l a b o r a t i o n brings t o C a n a d a , are s u b s t a n t i a l indeed. T h e r e is no c e n t r a l f u n d t o e n c o u r a g e a n d f o s t e r C a n a d i a n p a r t i c i p a t i o n in i n t e r n a t i o n a l S & T. G i v e n t h e f a c t t h a t NSERC has e l i m i n a t e d international programs, that other government a g e n c i e s a n d d e p a r t m e n t s (e.g. F o r e i g n A f f a i r s ) h a v e also s i g n i f i c a n t l y r e d u c e d t h e i r b u d g e t s in t h e s e c a t e g o r i e s , s o m e a c k n o w l e d g e m e n t of t h e v i t a l i t y of i n t e r n a t i o n a l c o l l a b o r a t i o n w a s in o r d e r , as one mechanism for Canadian r e s e a r c h e r s t o c o m p e t e o n a global basis. VIII. T h e o v e r r i d i n g c o n c e r n of t h e d o c u m e n t is r e s e a r c h p e r f o r m a n c e a n d a c c o u n t a b i l i t y in g o v e r n m e n t a g e n p i e s and departments, with only a " b r o a d - b r u s h " t r e a t m e n t of u n i v e r s i t y research and, for that m a t t e r , research a n d d e v e l o p m e n t in t h e p r i v a t e s e c t o r . T h e l a t t e r t w o are c e n t r a l t o any s u c c e s s f u l S & T s t r a t e g y leading t o j o b creation and e c o n o m i c success. IX. T h e r e is a m a j o r c o n c e r n a b o u t mechanisms of governance and p r o v i s i o n of S & T a d v i c e . The effectiveness of a new Advisory Council on S & T / l n n o v a t i o n will heavily depend on the quality of its m e m b e r s h i p . It w o u l d be i n a p p r o p r i a t e to have such a Council selected entirely f r o m t h e p r i v a t e s e c t o r (as has b e e n s u g g e s t e d ) . In C a n a d a , p r i v a t e s e c t o r r e s e a r c h a n d d e v e l o p m e n t is w e a k a n d it w o u l d be u n f o r t u n a t e if strong representation from practicing scientists or e n g i n e e r s in t h e a c a d e m i c and government communities were not involved. Also an international p r e s e n c e w o u l d be v e r y u s e f u l . V I . P A G S E agrees t h a t t h e I n f o r m a t i o n Highway is a valuable tool for facilitating communication and n e t w o r k i n g amongst researchers and o t h e r s i.e. it c o n t r i b u t e s t o t h e r e s e a r c h infrastructure. The strategy d o c u m e n t g i v e s readers t h e i m p r e s s i o n t h a t t h e IH is m o r e t h a n a t o o l . Redundancies r e s u l t i n g f r o m t h e e x p a n s i o n of t h e IH w i l l in our v i e w be s u b s t a n t i a l l y , if not c o m p l e t e l y , o f f s e t by t h e need t o c r e a t e n e w positions for information analysis and dissemination. In c o n c l u s i o n t h e r e are, as in any d o c u m e n t of t h i s t y p e , p o s i t i v e a n d negative components. Some elements VII. W h i l e t h e r e c o m m e n d a t i o n is m a d e t h a t federal departments and agencies develop explicit plans t o promote technology. are sensible, realistic, and merit follow-up. This d o c u m e n t is o n e of "process" and PAGSE urges the d e v e l o p m e n t a n d i m p l e m e n t a t i o n of a n "action plan." W e are r e a d y t o w o r k w i t h g o v e r n m e n t on this and other issues of r e l e v a n c e t o s c i e n c e a n d La Physique au Canada mars à avril 1 9 9 6 57 NEWS / NOUVELLES MANLEY ANNOUNCES TWO A P P O I N T M E N T S TO NSERC On J a n u a r y 18, 1 9 9 6 , Industry Minister J o h n M a n l e y announced the a p p o i n t m e n t of A n g u s Bruneau and Julie Payette t o the Natural Sciences and Engineering Research Council (NSERC). A n g u s A n d r e w Bruneau is the Chairman, President and CEO of Fortis Inc. The holder of a d o c t o r a t e in Physical M e t a l l u r g y f r o m the U n i v e r s i t y of London, his experience in business and academia is v a s t . It includes 1 0 years w i t h M e m o r i a l U n i v e r s i t y of N e w f o u n d l a n d and 7 years at the U n i v e r s i t y of W a t e r l o o , and acting as director of a w i d e v a r i e t y of companies over the last t h i r t y years. Dr. Bruneau has also served on c o m m i t t e e s and the boards of several national and international research and e c o n o m i c development organizations, including the National Research Council, NSERC, and the OECD. Julie Payette w a s selected as a m e m b e r of the Canadian A s t r o n a u t Program in 1 9 9 2 . Building on a Bachelor's degree in Engineering f r o m McGill and a Master of Applied Science f r o m the U n i v e r s i t y of T o r o n t o , she is currently w o r k i n g t o w a r d s a d o c t o r a t e in Electrical Engineering at McGill. M s P a y e t t e ' s design and research experience includes areas such as h u m a n c o m p u t e r interfaces, speech processing in adverse e n v i r o n m e n t s , and the application of v o i c e t e c h n o l o g y t o space. She has w o r k e d w i t h IBM Canada and t h e Speech Research Group at Bell-Northern Research. M s Payette is one of t w o nominated Canadian specialists on the NATO International Research S t u d y Group on speech processing. NSERC 1 9 9 6 N A T I O N A L COMPETITION RESULTS A N N O U N C E D (Gov't of Canada Press Release dated Apr. 4/96) Dr. T o m B r z u s t o w s k i , President of the Natural Sciences and Engineering Research Council of Canada (NSERC) in announcing the results of the C o u n c i l ' s 1 9 9 6 national c o m p e t i t i o n for research grants and scholarships ( 4 , 1 2 5 n e w a w a r d s totalling $ 1 2 2 million) stated that "Our researchers and u n i v e r s i t y training in research rank a m o n g t h e best in the w o r l d , in t e r m s of b o t h quality and p r o d u c t i v i t y . W e have in this c o u n t r y developed excellent s y s t e m s for assessing the quality of our research a c t i v i t y , and w e k n o w that in all the i m p o r t a n t areas of research Canadian universities are achieving a great deal w i t h resources t h a t are modest by international standards." Dr. B r z u s t o w s k i said the Council w a s resuming the annual announcement of its a w a r d s because of g r o w i n g public interest in science and t e c h n o l o g y . " T o d a y , w e are all v e r y conscious of the economic implications of activities on w h i c h w e spend public funds. Basic research is an e x t r e m e l y important a c t i v i t y . It builds the stock of k n o w l e d g e in our society. But p r o m o t i n g awareness of it and using the results productively are equally necessary activities." A full list of the results of the 1 9 9 6 grants c o m p e t i t i o n can be obtained f r o m NSERC's W e b site on the Internet at h t t p : / / w w w . nserc.ca/newsl .htm. The Impact of the Research I n v e s t m e n t • REQUEST FOR PROPOSALS (RFP) Technology Development Program in Intelligent S y s t e m s and Robotics On January 26, 1996, PRECARN A s s o c i a t e s Inc. issued a Request for Proposal (RFP) for their next w a v e of f u n d e d research programs. PRECARN in association with CATA, seeks the participation of industry m e m b e r s in its industry-led, collaborative research p r o g r a m . PRECARN w i l l c o n t r i b u t e up t o 4 0 % of eligible project costs (in intelligent s y s t e m s and robotics) up t o $1 million, inclusive of early stage c o m m e r c i a l i z a t i o n . T o t a l i n v e s t m e n t s w i l l exceed $ 6 5 million b e t w e e n 1 9 9 6 and 2 0 0 0 . • This RFP is open t o all PRECARN M e m b e r s and t o n e w partners w h i c h c o m m i t t o become PRECARN M e m b e r s , if their projects are approved. Research areas are classified in these categories: robotics, machine sensing, h u m a n machine interface and intelligent c o m p u t a t i o n . C A T A is publicizing RFP i n f o r m a t i o n on its T e c h n o g a t e W o r l d W i d e W e b databases ( h t t p : / / w w w . t e c h n o g a t e . c o m ) . Interested parties should click on the T e c h n o g a t e "Partners and A l l i e s " icon and search under " R & D " or "PRECARN" or click on " H o t Links" and then "Research and Development." 58 Physics in Canada M arch/Aprill 9 9 6 • 4 0 % of the annual t o t a l Canadian industrial investment in university research is d i r e c t l y linked t o NSERC f u n d i n g for basic and project research. More t h a n 1 , 0 0 0 companies have d i r e c t l y c o n t r i b u t e d over $ 3 0 0 million t o date to u n i v e r s i t y projects, t h e m a j o r i t y of w h i c h build on the o u t c o m e s of earlier NSERC i n v e s t m e n t in basic u n i v e r s i t y research. Companies along the section of road in Kanata that runs f r o m Digital t o N e w b r i d g e N e t w o r k s Corp. produce t o t a l annual sales in excess of $3 billion - of w h i c h more than 8 0 % is f r o m exports. These f i r m s are highly dependent o n the quality of y o u n g recently trained engineers and scientists. The companies employ 9,000 people directly, with the companies that service t h e m e m p l o y i n g a further 2 7 , 0 0 0 . Canada's largest R & D p e r f o r m e r , Nortel, a t t r i b u t e s its significant global success and f u t u r e prospects t o its high i n v e s t m e n t in R&D and t o the q u a n t i t y and quality of talent recruited f r o m Canadian universities. Surveys of the career status of previous holders of NSERC's national scholarships c o n s i s t e n t l y indicate a very l o w rate of u n e m p l o y m e n t (less t h a n 3 % , c o m p a r e d w i t h the current national average of 9 . 6 % ) . T w o - t h i r d s of these graduates are active in R & D . A significant proportion of the others are involved full t i m e in such professional activities as teaching, product development, consulting, and management. More i n f o r m a t i o n about the impact of NSERC-assisted research and training can be f o u n d on their W e b Site in the publication Research Means Business. PUBLIC HEARINGS FOR NUCLEAR FUEL W A S T E M A N A G E M E N T A N D DISPOSAL CONCEPT A N N O U N C E D Public hearings t o r e v i e w A t o m i c Energy of Canada L i m i t e d ' s proposed nuclear fuel w a s t e management and disposal concept w e r e held in T o r o n t o , Pickering, Thunder Bay, Sudbury and Chalk River f r o m M a r c h through May, 1996. On February 1, 1 9 9 6 , a detailed schedule for the hearings w e r e released by the federal e n v i r o n m e n t a l assessment panel r e v i e w i n g the w a s t e management and disposal c o n c e p t . Phase I hearings t o o k place in T o r o n t o and Pickering, M a r c h 11-15 and 2 5 - 2 9 , 1 9 9 6 and Thunder Bay, Sudbury and Chalk River f r o m April 2 9 t o M a y 2, 1 9 9 6 . This phase focused on the presentation and roundtable discussion of broad societal issues related t o the long-term m a n a g e m e n t of nuclear fuel w a s t e . Discussion papers are available on request f r o m the panel secretariat. Phase II hearings, t o take place in T o r o n t o f r o m J u n e 1 0 - 1 4 and 1 7 - 2 1 , 1 9 9 6 w i l l consist of technical sessions f o c u s i n g on the long-term safety of the A t o m i c Energy of Canada L i m i t e d concept of geologic disposal f r o m scientific and engineering v i e w p o i n t s . More i n f o r m a t i o n concerning these w i l l be available at a later date. Phase III hearings will consist of c o m m u n i t y visits in N e w Brunswick, Quebec, Ontario, Manitoba and S a s k a t c h e w a n w h e r e participants w i l l have an o p p o r t u n i t y t o provide their final opinions and v i e w s on the s a f e t y and acceptability of the concept for disposal of nuclear fuel w a s t e including any other issues relevant t o the panel's mandate. The schedule w i l l be announced later. For more i n f o r m a t i o n , please c o n t a c t Ghislaine Kerry by telephone at (819)953-0179 (collect), by fax at (819) 9 9 4 - 1 4 6 9 or by internet at Kerryg@fox.nstn.ca. D O C U M E N T ORDERING O N THE W O R L D WIDE WEB The W o r l d W i d e W e b o f f e r s CISTI clients an additional electronic d o c u m e n t ordering m e t h o d . Because orders s u b m i t t e d by this method flow directly into CISTI's automated document delivery s y s t e m , p r o c e s s i n g c o s t s are reduced. CISTI passes these c o s t savings on t o clients in the f o r m of l o w e r service fees. A n y registered CISTI client w i t h access to the W o r l d W i d e W e b can order d o c u m e n t s this w a y . You need a CISTI account number beginning w i t h the prefix FGH, W K or DD, plus a p a s s w o r d . All clients w i t h the FGH and W K a c c o u n t s already have a p a s s w o r d ; m o s t clients w i t h a DD account do not. To obtain a p a s s w o r d for a DD a c c o u n t , or t o register as a n e w client, please c o n t a c t CISTI's Client Registration at: Phone: ( 6 1 3) 9 9 8 - 8 5 4 4 or 1 - 8 0 0 - 6 6 8 - 1 2 2 2 Fax: (613) 9 5 4 - 2 2 1 7 E-mail: c c r s @ c i s t i . l a n . n r c . c a To register electronically, fill out the Client Registration Form f o u n d on the W e b at www. cisti. nrc. ca/ cisti/register. html FREE ACCESS TO CISTI'S ONLINE CATALOGUE A c c e s s t o t h e online catalogue of the Canada Insitute for Scientific and Technical I n f o r m a t i o n (CISTI) is n o w available free using the Internet. The catalogue is a listing of titles for all major publications (serials, books, conference proceedings, reports) in the fields of science, technology, engineering and medicine w o r l d w i d e . It is updated every w e e k . Those w h o do not use the Internet t o access the online catalogue w i l l pay a t e l e c o m m u n i c a t i o n s charge. CISTI's online catalogue can also be used t o order copies of the full t e x t s of these publications, but y o u m u s t be registered w i t h CISTI t o place an order. M o s t orders are filled w i t h i n 2 - 3 d a y s , or there is a 4-hour urgent service available. Both registered and non-registered clients can also access the catalogue on the W o r l d W i d e W e b at w w w . c i s t i . n r c . c a / cisti/. To ensure a s u c c e s s f u l c o n n e c t i o n to the CISTI Online Catalogue, W e b users m u s t c o n f i g u r e their Telnet s o f t w a r e t o w o r k w i t h their b r o w s e r (eg. Netscape, M o s a i c , etc.) NSERC C A N C E L S CPG PROGRAM (Contact Vol.20(3), Written 1995) At its m e e t i n g in O c t o b e r , NSERC approved the phase-out of the Collaborative Project Grants (CPG) p r o g r a m , as r e c o m m e n d e d by the Strategy I m p l e m e n t a t i o n Task Force. Although there w i l l be no more c o m p e t i t i o n s , c o m m i t m e n t s made in the 1 9 9 4 and 1 9 9 5 c o m p e t i t i o n s w i l l be respected. Given the financial e n v i r o n m e n t projected for the c o m i n g years, it w a s clear t h a t resources w o u l d not be s u f f i c i e n t t o allow the CPG program t o achieve its objectives, and that C o u n c i l ' s e f f o r t s w o u l d be better spent in encouraging collaboration across all programs. Reiterating its c o m m i t m e n t to collaborative research, Council m a n d a t e d staff t o w o r k closely w i t h the research c o m m u n i t y t o ensure t h a t practices b o t h in the peer r e v i e w process and in the universities p r o m o t e the e m e r g e n c e of excellent collaborative proposals. A s a first step, the d i s t i n c t i o n b e t w e e n NSERC individual and t e a m Research Grants w i l l be r e m o v e d . Staff w a s also encouraged t o develop closer ties w i t h universities to t r y t o break d o w n barriers t o collaboration arising f r o m the u n i v e r s i t y p r o m o t i o n and tenure process. Council t o o k another significant step t o w a r d s i m p l e m e n t i n g the recommendations of the Strategy I m p l e m e n t a t i o n Task Force by approving the regrouping of activities in the Targeted Programs area. The n e w Research Partnerships Program has three main c o m p o n e n t s : Strategic Projects, UniversityIndustry Projects and Research N e t w o r k s . Council and staff are c o n t i n u i n g to w o r k on suggestions for i m p l e m e n t i n g the Task Force's recommendations regarding NSERC's Scholarships programs, and A c c o u n t a b i l i t y and C o m m u n i c a t i o n s . I n f o r m a t i o n on the i m p l e m e n t a t i o n of the Task Force's r e c o m m e n d a t i o n s w i l l be available t h r o u g h Contact and NSERC's W e b Site ( h t t p : / / w w w . n s e r c . c a ) . TELLING THE RESEARCH STORY ( f r o m U n i v e r s i t y A f f a i r s , M a r c h 1996) T o m B r z u s t o w s k i is not afraid of straight talk. A n d he t h i n k s i t ' s crucial t h a t Canadian u n i v e r s i t y researchers get just as fired up about c o m m u n i c a t i o n s as he is. " C o m m u n i c a t i o n s is a short t e r m and a long term priority for me," says Dr. B r z u s t o w s k i , w h o took over the helm at the Natural Sciences and Engineering Research Council last September after a career as a university researcher, administrator and senior provincial civil servant. " A t every o p p o r t u n i t y that arises, we w i l l explain w h a t the research c o m m u n i t y does in a w a y w h i c h is interesting and memorable, giving e x a m p l e s , giving illustrations of o u t c o m e s , and all in plain language, not j a r g o n . " In t i m e s of shrinking resources, u n i v e r s i t y professors can no longer a f f o r d t o stay cloistered in their research labs or isolated in their c l a s s r o o m s . Instead, t h e y have t o be prepared continually t o explain w h a t t h e y do, j u s t i f y it, and t h e n c o n v i n c e a jaded and t a x - w e a r y public of the i m p o r t a n c e of f u n d i n g it. "Take nothing for granted," Dr. B r z u s t o w s k i tells researchers. "Just because w h a t y o u are doing is v e r y , v e r y g o o d , i t ' s elegant and i t ' s i m p o r t a n t in your discipline, and just because i t ' s already being f u n d e d , d o e s n ' t mean t h a t a n y b o d y is interested in it outside of your discipline." The d a y s w h e n researchers c o u l d v i e w any media questions or politicians' inquiries about their research as an u n w e l c o m e intrusion or interference are gone, Dr. B r z u s t o w s k i adds. "The a t t i t u d e t h a t s o m e h o w the q u a l i t y of your w o r k is s u f f i c i e n t to j u s t i f y w h a t e v e r a m o u n t of support you get - that w a s a very nice a t t i t u d e t o have. But resources c a n ' t keep up w i t h t h a t . " Dr. B r z u s t o w s k i ' s career path has left him equipped t o understand the point of v i e w of both u n i v e r s i t y professors and political leaders. A professor of mechanical engineering at the U n i v e r s i t y of W a t e r l o o for 25 years, he also served as vicepresident, academic, and provost of the university. A f t e r leaving the academic w o r l d , he w a s appointed d e p u t y minister of colleges and universities in Ontario, then d e p u t y minister of the Premier's Council of Ontario, a body charged w i t h developing strategic policy advice t o the g o v e r n m e n t . But he says it w a s his stint in the u n i v e r s i t y classroom that n o w serves him best. " I t ' s amazing h o w 25 years of c l a s s r o o m t e a c h i n g , particularly teaching in the lower years of undergraduate education, can alert y o u t o c o m m u n i c a t i n g in simple t e r m s . I t ' s nice t o t e a c h a graduate course in your o w n jargon. But w h e n y o u ' r e facing intelligent questions in simple t e r m s , f r o m people w h o h a v e n ' t learned the jargon y e t , t h e n y o u have t o scramble." Eventually he hopes the result of his crusade t o f o c u s public a t t e n t i o n on science and engineering w i l l be increased public understanding - and financial support - for u n i v e r s i t y research. "I w o u l d like t o see w i d e s p r e a d recognition in this c o u n t r y , and great c o n v i c t i o n , that it is essential t o invest in research, science and technology and graduate training of researchers, just for the good of the c o u n t r y , " he declares. "I really w o u l d like t o see research considered as s o m e t h i n g essential to Canada, and not as just a sop to the egos of academics, not as just another kind of social c o n s u m p t i o n , but s o m e t h i n g that is the m e c h a n i s m by w h i c h w e build the f u t u r e . " The communications challenge is particulary i m p o r t a n t these days, w i t h u n i v e r s i t y researchers squeezed by multiple pressures. Science and engineering disciplines are breaking n e w ground; ideas and n e w directions for investigation are emerging daily. At the same t i m e , granting council budgets are decreasing, and operating grants f r o m the provinces t o universities, w h i c h help pay the costs of u n i v e r s i t y research i n f r a s t r u c t u r e such as libraries or laboratories, are also on the decline. In order t o cope, many researchers are t u r n i n g t o NSERC w i t h requests t o fill the gap, t o provide funding out of operating grants to equip laboratories or pay for other infrastructurerelated c o s t s . "It seems t h a t , increasingly, grantees are facing universities that are asking t o be paid for the (research i n f r a s t r u c t u r e ) , because universities can no longer a f f o r d t o provide these things for free. So w e ' r e g e t t i n g a trickle, turning into a f l o w , and probably a flood of r e q u e s t s " t o spend NSERC m o n e y on research i n f r a s t r u c t u r e . But such requests have a direct impact on the b o t t o m line. "Every t i m e w e do t h a t , there is less m o n e y available for other things." Dr. B r z u s t o w s k i says he is b e c o m i n g increasingly concerned that NSERC f u n d i n g is being seen on c a m p u s e s as the sole source of f u n d i n g for science and engineering research. A n d he's w o r r i e d La Physique au Canada mars à avril 1 9 9 6 59 that, sooner or later, university a d m i n i s t r a t o r s m a y refuse t o sign NSERC grant applications, including those for major e q u i p m e n t , on behalf of their researchers, because the institutions simply can't afford to supply the i n f r a s t r u c t u r e needed. But a l t h o u g h NSERC officials are w o r r i e d , i t ' s d i f f i c u l t t o t r a c k h o w m u c h impact any c r u m b l i n g in u n i v e r s i t y i n f r a s t r u c t u r e is having. Dr. B r z u s t o w s k i fears the e f f e c t s may show up first in decreased applications for NSERC g r a n t s . " W e w o n ' t begin t o see this until the grant selection c o m m i t t e e s begin t o point t o it, m a y b e not in t h i s y e a r ' s c o m p e t i t i o n , m a y b e only in next y e a r ' s . But if, in key areas in the basic disciplines, holes d e v e l o p , not just in t h e capabilities of individual i n s t i t u t i o n s , but across t h e c o u n t r y , t h e n no a m o u n t of n e t w o r k i n g w i l l be able t o p a t c h t h a t up. A n d as a national agency w e ' r e going t o become v e r y concerned about i t . " Dr. B r z u s t o w s k i says he is interested in proposals - s u c h as one made recently by the Association of Universities and Colleges of Canada - t h a t w o u l d see the federal g o v e r n m e n t pay d i r e c t l y for the i n f r a s t r u c t u r e c o s t s of t h e research it sponsors, rather t h a n relying on transfer p a y m e n t s t o the provinces. But s u c h a proposal, t o o , raises a communications challenge, Dr. B r z u s t o w s k i notes. How will universities c o n v i n c e t h e public t h a t s u c h a m o v e does not represent increased budgets f o r the g r a n t i n g c o u n c i l s , but rather s i m p l y s h i f t s the m e t h o d of allocating the funding? "The issue isn't doubling the c o u n c i l s ' budgets, i t ' s finding the other half of research c o s t s . T h a t has t o be c o m m u n i c a t e d w i t h p r e c i s i o n , " Dr. B r z u s t o w s k i says, " O t h e r w i s e t h e public w o u l d be right t o reject the m o v e . " A l t h o u g h c o m m u n i c a t i o n s w i t h the general public is evidently his priority. Dr. B r z u s t o w s k i is clear he also intends t o build bridges t o the u n i v e r s i t y research c o m m u n i t y . In f a c t , he makes it a point not t o d i s t i n g u i s h b e t w e e n the g r a n t i n g c o u n c i l and the c o m m u n i t y . "I see NSERC as almost an organ of the c o m m u n i t y , " he says. "I d o n ' t see it as having goals d i s t i n c t f r o m t h e research c o m m u n i t y . It really is a v o i c e of t h e c o m m u n i t y . " But, he a d m i t s , in the past there may w e l l have been some communication b r e a k d o w n s b e t w e e n the g r a n t i n g council and a number of u n i v e r s i t y researchers. A n d , after several m o n t h s on the j o b and v i s i t s t o several u n i v e r s i t y c a m p u s e s , he is surprised h o w little some professors k n o w about h o w NSERC is f u n d e d and h o w it c o n d u c t s its business. Some professors, for e x a m p l e , c o n t i n u e t o believe t h a t NSERC council m e m b e r s g i v e up their academic careers and m o v e t o O t t a w a o n c e t h e y are appointed. Surprisingly, s o m e f a c u l t y are also u n a w a r e of the volunteer commitment needed from a c a d e m i c s across Canada t o m a i n t a i n t h e granting c o u n c i l ' s peer r e v i e w process. 60 Physics in Canada M arch/Aprill 9 9 6 In building up t r u s t b e t w e e n NSERC and the academic c o m m u n i t y , Dr. B r z u s t o w s k i believes it is important t o allay researchers' c o n c e r n s that NSERC m a y be t u r n i n g its back on basic research. "I think one of the things that the c o m m u n i t y w i l l need t o be i n f o r m e d about, and t o become less anxious about, is the notion that s o m e h o w there is room w i t h i n NSERC for b o t h kinds of research, b o t h the basic research and project research." One problem may be t h a t researchers fear t h a t NSERC w i l l take a "one size f i t s all" approach to science, a fear Dr. B r z u s t o w s k i says is groundless. Too o f t e n , he notes, applied or project-based researchers fear t h a t the values of basic research - c o u n t i n g the number of publications, for example - w i l l be applied t o t h e m , w h i l e basic researchers w o r r y t h e y w i l l be asked t o d e m o n s t r a t e the i m m e d i a t e e c o n o m i c relevance of their work. In f a c t , says Dr. B r z u s t o w s k i , NSERC w i l l apply "appropriate measures" t o each a c t i v i t y . In the m e a n t i m e , he calls for a kind of t r u c e b e t w e e n f a c u l t y involved in basic research and those w o r k i n g on applied projects. " L e t ' s not create anxieties w h e r e t h e y d o n ' t have t o be c r e a t e d . " he urges researchers. " L e t ' s not have any sneering across the interface ... y o u k n o w , w e l l , w h a t y o u do is irrelevant, and w h a t you do is not intellectual enough." Dr. B r z u s t o w s k i says he is o p t i m i s t i c such d i f f e r e n c e s b e t w e e n researchers can be w o r k e d out - just as he is o p t i m i s t i c that decision-makers w i l l eventually heed his message about the importance of university research in science and engineering. " L e t ' s put it this w a y , " he explains. " I ' v e had nobody c o m e around and tell me t h e r e ' s good n e w s for NSERC in the next (federal) budget. But on the other hand, I ' v e met an increasing number of elected officials here in O t t a w a w h o a c k n o w l e d g e t h e i m p o r t a n c e of u n i v e r s i t y research f u n d i n g . N o w at s o m e stage of the g a m e , s o m e t h i n g ' s got t o g i v e . " UNIVERSITY NEWS / ÉCHOS DES UNIVERSITÉS COOPERATIVE EFFORTS FUND RESEARCH {University of Toronto Medal Release January 25/96) Cooperative e f f o r t s b e t w e e n the N a t i o n a l Sciences and Engineering Research Council (NSERC), international technology c o m p a n y Lumonics, Inc. and the U n i v e r s i t y of T o r o n t o are helping ensure t h a t one of Canada's most important "natural" resources remains in Canada. D w a y n e Miller, a t o p researcher in laser t e c h n o l o g y , has returned t o his native Canada after several years in the United States t o join the U n i v e r s i t y of T o r o n t o as t h e holder of t h e NSERC-Lumonics Chair in Quantum Optics. His return f o l l o w s more t h a n 1 1 years at the U n i v e r s i t y of Rochester w h e r e he c o n d u c t e d pioneering research in solidstate laser t e c h n o l o g y and s p e c t r o s c o p y . A l t h o u g h he w a s born in Canada and received his BSc (honours) degree f r o m the U n i v e r s i t y of Manitoba, he says t h e United States provided greater research opportunities, especially for n e w f a c u l t y . "Canada has not been willing to s u f f i c i e n t l y invest in their y o u n g s c i e n t i s t s and consequently has lost some o u t s t a n d i n g t a l e n t , " says Miller. "I w a s really impressed by the level of support and enthousiasm generated by L u m o n i c s , NSERC and the U n i v e r s i t y of T o r o n t o t o reverse the trend. This w a s an o p p o r t u n i t y t o make a d i f f e r e n c e t o Canadian science I could not r e f u s e . " In the U.S., Miller w a s a recipient of an NSF Presidential Y o u n g Investigator A w a r d , D r e y f u s TeacherScholar Fellowship, A l f r e d P. S l o a n F e l l o w s h i p and his research w a s f u r t h e r supported by the National Science Foundation, National Institute of Health, and the D e p a r t m e n t of Energy. INTERNATIONAL NEWS/ NOUVELLES INTERNATIONALES A LIGHT NIGHT READING? (IOP Press Release, undated) Researchers w o r l d w i d e can n o w gain online access t o d e v e l o p m e n t s at the f r o n t i e r s of physics f r o m the c o m f o r t of their o w n desks, 2 4 hours a d a y , seven days a week. In a major international initiative, t h e UKbased Institute of Physics Publishing is making all its research journals available on the Internet to scientists whose institutions subscribe to the well established paper versions of the journals. Not only will articles be available electronically up t o three w e e k s before t h e y appear in print, researchers w i l l also be able t o access t h e m via the W o r l d W i d e W e b at no extra c o s t . The journals produced by Institute of Physics Publishing c o v e r the full g a m u t of physics research, w i t h t o p i c s as diverse as nanotechnology, plasma physics, physiological m e a s u r e m e n t , nonlinearity and the public understanding of science. The Institute of Physics Publishing journals n o w available on the W e b are: Journal of Physics A: Mathematical and General; Journal of Physics B: Atomic, Molecular and Optical Physics; Journal of Physics D: Applied Physics; Journal of Physics G: Nuclear and Particle Physics; Journal of Physics Condensed Matter; Measurement Science and Technology; Classical and Quantum Gravity; European Journal of Physics; Nonlinearity; Physics in Medicine and Biology; Plasma Physics and Controlled Fusion; Pure and Applied Optics; Semiconductor Science and Technology; and Superconductor Science and Technology. Further i n f o r m a t i o n and d e m o n s t r a t i o n material is available at h t t p : / / w w w . i o p . o r g CANADIAN PHYSICISTS / PHYSICIENS ET PHYSICIENNES Excellence in T e a c h i n g A w a r d s (Extract from Simon Fraser News, Feb. 8/96) H o w a r d T r o t t i e r , p h y s i c s , w a s selected as one of the three w i n n e r s of SFU's excellence in t e a c h i n g a w a r d s this year. In an i n t e r v i e w w i t h S i m o n Fraser N e w s reporters, Dr. T r o t t i e r had the f o l l o w i n g t o say about his teaching ... A r e there any special techniques y o u use to motivate your students? D e m o n s t r a t i o n s . T h e y ' r e a big part of teaching physics, at least in our department. A c t u a l l y measuring the acceleration of a ball as i t ' s dropping w i l l a l w a y s be more c o n v i n c i n g t h a n w o r k i n g it out t h r o u g h equations. Things like that resonate w i t h s t u d e n t s . O f t e n w h e n I ' m w h e e l i n g equipment d o w n a h a l l w a y I can see t h a t s t u d e n t s are genuinely e x c i t e d that t h e r e ' s going t o be a d e m o n s t r a t i o n in m y lecture that day. In y o u r opinion, w h a t are t h e t o p three qualities t h a t make a g o o d teacher? Teachers need t o project themselves - to make eye c o n t a c t w i t h s t u d e n t s in the back r o w . I like t o get right in the middle of a class and j u m p up and d o w n . A n d I make no apology for p u t t i n g e n t e r t a i n m e n t value in m y lectures. Second, teachers have t o be accessible. I have open o f f i c e hours. If I ' m on c a m p u s , s t u d e n t s can ask me q u e s t i o n s a n y t i m e . A n d like other f a c u l t y in t h e physics d e p a r t m e n t , I d r o p by our open labs t o make myself available t o s t u d e n t s in an i n f o r m a l w a y as o f t e n as possible. Finally, e v e r y o n e appreciates a good joke in class: 'Physics h u m o u r ' , as m y w i f e calls it, because o f t e n t h e joke isn't f u n n y outside the lecture. For e x a m p l e , I f o u n d a clip f r o m Star Trek in w h i c h Captain Kirk and Spock are t a l k i n g about a n t i - m a t t e r . I t ' s b e c o m e part of m y teaching arsenal. I play the video in class after t e a c h i n g the subject. Students can spot w h a t ' s w r o n g i m m e d i a t e l y as the characters w o r r y that if Lazarus meets his a n t i - m a t t e r t w i n , it w i l l be the end of life as w e k n o w it. The o v e r a c t i n g and o v e r d r a w n music add to the hilarity of the c o n v e r s a t i o n , so it w o r k s very w e l l in class. W h a t challenges do y o u e x p e c t t o c o n f r o n t as a teacher in t h e i m m e d i a t e future? It m a y be inevitable t h a t class size w i l l increase because of c u t b a c k s and d e m a n d . I think big classes are a serious problem. They make students feel totally anonymous. In m y experience, smaller classes (even in the 1 0 0 - 2 0 0 student range) provide for more teacher-student c o n t a c t . For t h e physics d e p a r t m e n t , l o w e n r o l m e n t , particularly in the upper levels, has t o be addressed, if w e expect t o a t t r a c t more s t u d e n t s , t h e y have t o be able t o get jobs. This is a problem w h i c h m y d e p a r t m e n t is t a k i n g seriously. W h a t advice w o u l d y o u g i v e t o s o m e o n e just s t a r t i n g their career as a u n i v e r s i t y teacher? Be e n t h u s i a s t i c . Search for s o m e t h i n g great in the smallest detail and CANADIEN(NE)S d o n ' t be shy about pointing it out. S t u d e n t s should k n o w t h a t y o u really w a n t t o be there. starting t o address the q u e s t i o n of w h a t this means for the electrical and magnetic properties of these m a t e r i a l s . " M c M a s t e r U n i v e r s i t y Researcher Captures National Science and Engineering Prize It w a s only by chance t h a t Dr. Kallin, n o w recognized as one of the t o p condensed m a t t e r theorists in the w o r l d , got into physics. In high school she dropped physics after Grade 10. It w a s a c o m m u n i t y college course in " p h y s i c s for p o e t s " that piqued her interest in the subject and led her t o the honours physics program at the U n i v e r s i t y of British Columbia. On 1 9 9 6 J a n u a r y 17 Dr. T o m B r z u s t o w s k i , President of the Natural Sciences and Engineering Research Council of Canada (NSERC) announced the w i n n e r s of some of the c o u n t r y ' s m o s t prestigious a w a r d s . Recipients w e r e selected f r o m nominations f r o m universities across Canada. Four o u t s t a n d i n g professors w i l l receive the 1996 E.W.R. Steacie Memorial Fellowships. "These individuals are creating international recognition for Canada in some of the most e x c i t i n g fields of science and engineering," said Dr. B r z u s t o w s k i . " T h e y underline the e x t r a o r d i n a r y high calibre of research and training in Canadian u n i v e r s i t i e s . " Dr. Catherine Kallin is an o u t s t a n d i n g scientist in the D e p a r t m e n t of Physics, McMaster University. She has d e m o n s t r a t e d exceptional leadership and a c c o m p l i s h m e n t in theoretical solid state p h y s i c s , particularly in the t h e o r y of high temperature superconductors. Other recipients include Dr. Ming Li, mathematician at the University of Waterloo, Dr. J e d H a r r i s o n of the D e p a r t m e n t of C h e m i s t r y , U n i v e r s i t y of Alberta, and Dr. Demetri Terzopoulos, Department of Computer Science, U n i v e r s i t y of T o r o n t o . The NSERC a w a r d s provide the recipients w i t h an o p p o r t u n i t y t o expand their research p r o g r a m s and o b t a i n additional research assistance. The prizes w i l l be o f f i c i a l l y presented in J u n e along w i t h the Canada Gold Medal for Science and Engineering. Short A r t i c l e on Dr. Kallin M c M a s t e r U n i v e r s i t y physics professor Catherine Kallin and her collaborators have been s t u d y i n g m i c r o w a v e m e a s u r e m e n t s on high-temperature s u p e r c o n d u c t o r s , and using the data t o d e t e r m i n e the electrical and magnetic properties of these s u p e r c o n d u c t o r s and t o understand w h y the materials are s u p e r c o n d u c t o r s at all. "Our traditional understanding of s u p e r c o n d u c t o r s , w h i c h w e r e d i s c o v e r e d in 1 9 1 1 , strongly suggests that superconduct i v i t y s h o u l d n ' t exist above 3 0 degrees A b s o l u t e ( - 2 4 3 degrees Celsius)," explains Dr. Kallin. But high-temperature superconductivity (above 3 0 degrees Absolute) w a s d i s c o v e r e d in 1 9 8 6 , and in subsequent years the temperature escalated t o the present record of 1 6 0 degrees A b s o l u t e ( - 1 1 3 degrees Celsius). " T h e r e ' s a large body of evidence that points to electron-electron interactions as the cause of high-temperature superconductivity. But w e ' r e just n o w (For more i n f o r m a t i o n on Dr. Kallin, see the family profile on Dr. Kallin and Dr. Berlinsky w h i c h appears later in this issue.) NEWS FROM MEMBERS CORPORATE L'INO FAIT UN DON D'ÉQUIPEMENT A U CÉGEP DE LA POCATIÈRE Le président-directeur général de l ' I n s t i t u t national d'optique (INO), monsieur Jean-Guy Paquet, a été très heureux d'annoncer le 20 février 1996 à La Pocatière, le d o n par l'INO au Cégep de la Pocatière, du s y s t è m e d ' é c r i t u r e FAB pour des fins d ' e n s e i g n e m e n t et de f o r m a t i o n des étudiants en technologie physique. Ce don a été possible suite au r e m p l a c e m e n t du s y s t è m e d ' é c r i t u r e FAB par un équipement plus performant rencontrant les nouveaux besoins des a c t i v i t é s de l'INO. «Nous sommes convaincus que le système offert permettra au Cégep de réaliser plusieurs nouvelles a c t i v i t é s pertinentes pour la f o r m a t i o n des é t u d i a n t s » , a affirmé monsieur Paquet. L'INO c o m p t e présentement à son emploi v i n g t - c i n q t e c h n o l o g u e s , dont v i n g t sont des diplômés en technologie physique du Cégep de La Pocatière. «Nous s o m m e s parmi ceux qui connaissons, et reconnaissons, l'excellence des diplômés en technologie physique du Cégep de La Pocatière, et nous s o m m e s heureux de pouvoir offrir un appareil qui contribuera de manière tangible à la f o r m a t i o n des f u t u r s t e c h n o l o g u e s » , a ajouté monsieur Paquet. D'ailleurs l'INO prévoit procéder d ' i c i le mois de mai prochain au r e c r u t e m e n t d ' a u moins trois nouveaux t e c h n o l o g u e s en physique parmi les finissants de c e t t e année. Rappelons que l ' I n s t i t u t national d ' o p t i q u e , qui emploie à son siège social de SainteFoy plus de cent t r e n t e personnes dont quatre-vingt scientifiques, est une c o r p o r a t i o n privée sans but lucratif qui a v u le jour en 1 9 8 5 . L'INO est l ' u n des chefs de file international de la recherche et du d é v e l o p p e m e n t en optique, et vise à favoriser l'essor é c o n o m i q u e du pays en assistant les entreprises dans leurs e f f o r t s pour améliorer leur c o m p é t i t i v i t é . La Physique au Canada mars à avril 1 9 9 6 61 THE PHYSICS OF DILUTE 2D ELECTRON AND HOLE SYSTEMS IN SI-BASED HETEROSTRUCTURES by Marie D ' l o r i o I n s t i t u t e for M i c r o s t r u c t u r a l Sciences, National INTRODUCTION Starting w i t h the d i s c o v e r y of the Q u a n t u m Hall Effect at the beginning of the 1980's, the field of low dimensionality electron systems has known an incredible expansion. In semiconductors, the c o n f i n e m e n t of charge carriers in two or fewer d i m e n s i o n s provides added richness f r o m b o t h the f u n d a m e n t a l and the applied physics v i e w p o i n t . Solid s t a t e vocabulary has expanded t o include the integer and the f r a c t i o n a l Quantum Hall Effects (IQHE, FQHE), s k y r m i o n s , composite fermions, high electron mobility t r a n s i s t o r s (HEMT), m o d u l a t i o n doped field effect transistors (MODFETs), resonant tunneling diodes (RTD) etc. In the q u a n t u m limit of l o w t e m p e r a t u r e and finite m a g n e t i c field w h e r e the m o b i l i t y f j and t h e m a g n e t i c field B are s u c h that /vB> > 1, charge carriers c o n f i n e d at the i n t e r f a c e b e t w e e n t w o s e m i c o n d u c t o r s or between a semiconductor and an insulator behave as a gas of noninteracting particles (electron gas), w h i l e , in the e x t r e m e q u a n t u m limit w h e r e the c y c l o t r o n energy h(oc is m u c h larger than t h e t h e r m a l energy k^T, the f l u c t u a t i o n s p r o m o t e the f o r m a t i o n of a liquid state. It w a s natural t h e n t o look for the third s t a t e of m a t t e r , the solid in t w o dimensions. This idea w a s not n e w , as it had been addressed by Eugene W i g n e r in 1 9 3 4 [1] for three dimensional metallic s y s t e m s . W i g n e r predicted t h a t , at zero magnetic field, t h e d e n s i t y of the carriers could be reduced such t h a t the C o u l o m b exchange w o u l d be larger t h a n the t h e r m a l disordering energy, t h u s f a v o r i n g the c r y s t a l l i z a t i o n of electrons onto lattice sites. This w a s later applied t o t h e two-dimensional case where the c o n d i t i o n s for observing the e l e c t r o n solid are less stringent t h a n in three dimensions |2,3|. BACKGROUND There are t w o regimes for the f o r m a t i o n of a solid phase depending on w h e t h e r the c o m p e t i n g f l u c t u a t i o n s are t h e r m a l or q u a n t u m in nature. = tf / ( m * a 2 ) < < W h e n r is large, the f o r m a t i o n of a solid is f a v o r e d over that of the liquid. Electrons on a helium f i l m provided the first o b s e r v a t i o n of a classical W i g n e r solid at zero magnetic field and the m e l t i n g t e m p e r a t u r e w a s f o u n d t o occur at T m = l/ c /(TM w i t h rm = 127±3 [4-8!. (b) The q u a n t u m regime occurs at l o w t e m p e r a t u r e s w h e n T < < TF and the parameter of interest is the ratio of the Wigner-Seitz radius, a t o the Bohr radius a8: r, = a/a B= 62 Vc/(kaT) Physics in Canada Vc/(kBTh) and aB= tfe /(o*m *) The electrons order into a W i g n e r c r y s t a l when r 3 is large and the Coulomb correlations d o m i n a t e ; as the carrier d e n s i t y increases and r, decreases the q u a n t u m f l u c t u a t i o n s g r o w until the long range order disappears and the solid m e l t s . This occurs at a critical value r," = 37± 5 or critical d e n s i t y rT = n /(r,w ag)2 as d e t e r m i n e d by a finite size, zero t e m p e r a t u r e calculation | 9 ] . (c) It is also possible t o induce the crystallization of electrons by applying a magnetic field perpendicular t o the layer and localizing the electrons w i t h i n a magnetic length lc = (hc/eB)h, smaller t h a n the Wigner-Seitz radius a . The q u a n t u m f l u c t u a t i o n s are quenched and there is little overlap b e t w e e n the e l e c t r o n w a v e f u n c t i o n s . The ratio of the zero point energy t o the magnetic or c y c l o t r o n energy ha>c w h e r e coc = eB/m'c is provided by the filling f a c t o r v = i 2(lc/a)' . The magnetically induced W i g n e r solid is expected to form at finite t e m p e r a t u r e at a filling f a c t o r smaller t h a n some critical value vc w h i c h has been e s t i m a t e d t o be b e t w e e n 1/3 and 1 / 1 1 . The phase diagram is illustrated in Fig. 1. n. kBT w h e r e a = Inn,) * is t h e radius of the Wigner-Seitz cell, n, is the carrier d e n s i t y , Tf is the Fermi t e m p e r a t u r e and m* is t h e e f f e c t i v e mass. The parameter of interest is the ratio between the Coulomb correlation energy and the thermal disordering energy. This is expressed as: T = O t t a w a , Ontario w h e r e Vc ~ e?/z a and e is the dielectric constant. (a) In the classical regime, the zero point energy is m u c h smaller t h a n the t h e r m a l energy k B T: kBTF Research Council of Canada, M arch/Aprill 9 9 6 Fig. 1 The phase diagram for the classical and quantum Wigner solid indicating the classical melting temperature, the critical melting density and critical magnetic field. K1A OR6 Experimentally, the problem lies in the f a c t t h a t the carrier d e n s i t y required for observing the q u a n t u m solid phase is very l o w in lll-V s e m i c o n d u c t o r s w h i c h t y p i c a l l y have l o w e f f e c t i v e masses and large dielectric c o n s t a n t s : r „ ~ 2 - 4 < < r, w . Electrons on helium have the opposite problem w h e r e the d e n s i t y is kept l o w t o avoid a d e s t r u c t i v e instability of t h e helium surface: r, à 10 3 > > r, w . The search should thus f o c u s on material s y s t e m s w i t h a large e f f e c t i v e mass, a l o w dielectric c o n s t a n t , and in situ d e n s i t y t u n a b i l i t y . W e should also search for other material features w h i c h f a v o r the onset of crystallization. This is the approach that w e w i l l be discussing. W h a t are the signatures for the f o r m a t i o n of the W i g n e r solid phase? J u s t like its liquid c o u n t e r p a r t , the electron solid is a collective phase; this is in c o n t r a s t t o t h e gas phase w h e r e the picture of a noninteracting gas usually s u f f i c e s . The solid, h o w e v e r , should have rigidity w h i c h w i l l d i s t i n g u i s h it f r o m a collective liquid state. From magneto-transport e x p e r i m e n t s , one w o u l d expect s o m e e x t r e m e l y large resistance associated w i t h the localization of the charge carriers o n t o lattice sites and their inability t o participate in the t r a n s p o r t . But that in itself is not s u f f i c i e n t since single-particle localization w i l l also lead t o insulating behavior. The current-voltage characteristics could h o w e v e r provide unambiguous evidence for a solid phase. The presence of an electric field threshold c o n d u c t i o n is indicative of rigidity: b e l o w threshold, the electrons are pinned w h i c h is not possible in a liquid phase, w h i l e , above threshold, a collective sliding m o t i o n of the depinned electron solid occurs. The resistance b e l o w threshold is usually activated due t o electrons e x c i t e d across a "singlee l e c t r o n " disorder induced gap. The c o n d u c t i o n here can involve t h e transport of electrons along the grain boundaries of the W i g n e r solid or the transport of dislocation pairs. A low value of threshold field implies a long correlation length w i t h respect t o the Wigner-Seitz radius. A n o t h e r signature of the W i g n e r solid is the increase of broadband noise as the threshold field is approached; t h i s corresponds t o the onset of sliding and the noise generated by t h e e l e c t r o n lattice sliding by the pinning centers. There also should be a t e m p e r a t u r e above w h i c h the thermal disordering energy takes over and the solid " m e l t s " as w e l l as a critical carrier d e n s i t y above w h i c h the zero point oscillation energy overtakes the C o u l o m b interaction | 1 0 ) . The w o r k on the f o r m a t i o n of the classical W i g n e r c r y s t a l using electrons on a t h i n helium f i l m set the stage for e f f o r t s in s e m i c o n d u c t o r s . The substrate under the helium f i l m can provide s u f f i c i e n t surface roughness t o pin the W i g n e r c r y s t a l f o r m e d by the electrons. A s s o c i a t e d w i t h this pinning are nonlinear c u r r e n t - v o l t a g e (/-I/) c h a r a c t e r i s t i c s w h i c h w e r e first observed by Kajita 111). A b o v e a threshold electric field, the depinned c r y s t a l slides like a sliding charge d e n s i t y w a v e . Experiments o n a two-dimensional sheet of electrons injected on a helium f i l m (thickness 2 0 0 4 0 0 A), supported by a glass s u b s t r a t e , have s h o w n t h a t the t r a n s p o r t properties of the pinned e l e c t r o n lattice are v e r y similar t o that of one-dimensional sliding charge d e n s i t y w a v e s : c h a r a c t e r i s t i c nonlinear l-V c u r v e s , m e l t i n g t e m p e r a t u r e , and broadband noise g e n e r a t i o n | 1 2 | . The initial e f f o r t in i d e n t i f y i n g a W i g n e r c r y s t a l phase in s e m i c o n d u c t o r s was carried out in GaAs/AIGaAs heterostructures [13-151. There, it w a s not possible t o decrease the d e n s i t y s u f f i c i e n t l y t o observe the W i g n e r c r y s t a l at zero magnetic field. Thus the e x p e r i m e n t a l e f f o r t s w e r e f o c u s e d on the magnetic field induced W i g n e r c r y s t a l in the f r a c t i o n a l q u a n t u m Hall regime. At l o w fields, the q u a n t u m fluctuations d o m i n a t e the C o u l o m b correlations and the Integer Q u a n t u m Hall Effect ( w h e r e P*y = h/ve 2 and p x x —>0, v is an integer) is o b s e r v e d w h e n w e a k disorder pins the Fermi level in the gap b e t w e e n Landau levels. A s the field is increased f u r t h e r , the electrons behave as a correlated quantum liquid which exhibits the Fractional Q u a n t u m Hall Effect ( w h e r e p x v 2 = h/ve and v = p/q and p and q are integers and q is odd). A t e x t b o o k e x a m p l e of these phenomena is s h o w n in Fig. 2. Transitions t o an e l e c t r o n solid phase are possible depending on w h i c h phase has the l o w e s t g r o u n d state energy. Compelling evidence for the m a g n e t i c field induced W i g n e r solid have been provided by electrical, radiof r e q u e n c y and optical m a g n e t o - t r a n s p o r t e x p e r i m e n t s near filling f a c t o r 1/5, 2 / 7 in n-type GaAs/AIGaAs heterostructures and 1/3 in similar p - t y p e samples [16J. In order t o observe a q u a n t u m W i g n e r c r y s t a l , in the zero field limit predicted by W i g n e r , one must look for a material s y s t e m w i t h large e f f e c t i v e mass to minimize the zero point oscillation energy and a small dielectric constant to maximize the Coulomb correlation energy. M o r e o v e r , it is i m p o r t a n t to be able t o vary the d e n s i t y in a reliable and reproducible fashion. Almost optimal conditions can be created in several Sibased materials as s h o w n in Table 1. 5 x 1 0 ' ° t o 10 12 c m 2 . The longitudinal resistance is measured using a four probe technique w i t h a d i f f e r e n t i a l e l e c t r o m e t e r and DC currents as l o w as 0 . 1 pA. The Oxford Instrument low temperature s y s t e m consists of a t o p loading 4 0 0 /vW dilution refrigerator (25 mK < T < 4 . 2 K) and a s u p e r c o n d u c t i n g magnet (H 0 - 1 5 Tesla @ 4 . 2 K). One of the main d i f f e r e n c e s b e t w e e n Si-MOSFETs and GaAs/AIGaAs modulation doped h e t e r o j u n c t i o n s is the location of the d o p a n t s w h i c h control the scattering Parameter Si/SiGe Si/Si02 events and hence limit Electron effective mass : 0.44 0.19 the m o b i l i t y . m' I n S i Dielectric constant : MOSFETs 12 7.7 the d o p a n t s <K> are located Bohr radius : in the Si close t o the _ (4 ne.X» 2 *) 14 A 20 A B . , inversion m e layer. The Interelectron spacing : scattering is short range 1 126 A 182 A in this case. V^nT In c o n t r a s t , @ n s = 2 x 1 0 1 1 cm" 2 @ n s = 9.6 x 1 0 1 0 cm" 2 the lll-V heterostruct Wigner-Seitz radius : ures have a d o p a n t s 9 9 "B separated from the Critical concentration for t w o quantum cold melting : dimensional 1 ( 0 . 9 2 - 1.59) x 10 1 0 (0.43 - 0.70) x 10 1 0 layer by a spacer layer cm" 2 cm" 2 and the where rc = 37 ± 5 scattering is long range. Other t h a n the physical parameters of the Table 2 s h o w s a c o m p a r i s o n of these material, it is possible t o choose a samples w i t h those used in the s t u d y of s y s t e m w h i c h , by its epitaxial layered magnetic field induced W i g n e r c r y s t a l g r o w t h , can enhance the f o r m a t i o n of f r o m the point of v i e w of "inherent the W i g n e r c r y s t a l . It is k n o w n that the disorder". coupling b e t w e e n t w o electron s y s t e m s separated by less t h a n the interelectron Table 2 distance f a v o r s W i g n e r crystallization Relative Disorder in V e r y H i g h M o b i l i t y 117-181. Here, w e w i l l look at t w o Si MOSFETs and G a A s - A I G a A s s y s t e m s : Si-Si0 2 field e f f e c t transistors Heterostructures or Si M O S F E T s (metal oxide Si-MOSFETs GaAs-AIGaAs s e m i c o n d u c t o r field e f f e c t transistor) and 2 p - t y p e Si-SiGe-Si heterostructures. 10' 2 n; (cm' (cm ) l-3x[0'° 1-3x10'° Table 1. Comparison of parameters of interest for Wigner crystallisation SAMPLES B ïhGJ Fig. 2 Textbook example of the Integer and Fractional Quantum Hall Effects. From A. Chang, The Quantum Hall Effect, ed. R. E. Prange and S. M. nd Girvin, Springer-Verlag, New York, 2 Ed. (1990). A number of Si-MOSFETs g r o w n in Russia w e r e studied in detail. The e l e c t r o n m o b i l i t y in these samples is an order of magnitude larger than t h a t of c o m m e r c i a l Si-MOSFETs and 2 - 4 t i m e s larger t h a n t h a t of the best Si-MOSFETs grown for research purposes. This mobility was achieved by careful processing to avoid highly diffusive c o n t a m i n a n t s such as Na and K ions, and repeated g r o w t h and stripping of the thermal oxide t o ensure a smooth interface. The samples have the f o l l o w i n g l o w t e m p e r a t u r e peak mobilities: Si-15: y = 7.1 x 10" c m 2 / V s , Si-5: /y = 4 . 3 x 1 0 4 c m ' / V s , Si-1 1 : /J = 3 . 6 3 x 1 0 " c m 2 / V s , and Si 2: /v = 2 . 4 2 x 10 4 c m 2 / V s . By applying a bias to the AI t o p gate, the carrier d e n s i t y can be varied from 0.1-0.3 10-15 setback distance d 50-100 A -500 A setback/Bohr radius: d/a B 2.5-5 5 ni / n , In the dilute limit, where impurity scattering d o m i n a t e s , the Si-MOSFETs and the G a A s / A I G a A s are equivalent systems. RESULTS In probing the dilute d e n s i t y regime below 1x10" cm2, a number of anomalous features w e r e discovered in the m a g n e t o - t r a n s p o r t m e a s u r e m e n t s at half-filled Landau levels (v = 5 / 2 , 3 / 2 ) . La Physique au Canada mars à avril 1 9 9 6 63 Some of these are shown in Fig. 3: 6 2.5 2 1 2 3 4 Magnetic f i e l d (T) Fig. 3 • • • • The longitudinal and Hall resistances as a function of magnetic field for sample Si-5 at 2 carrier density n. = 9.33 x 1 0 ' ° c m . Instead of regular Shubnikov-de Haas oscillations obtained from measuring the resistance along the sample as a function of magnetic field, the maxima in the Shubnikov-de Haas oscillation at half-filled Landau levels become enormous w i t h resistances ~ 1O'2 ohms depending on the carrier density. The resistance goes back d o w n to the level of a f e w ohms as the magnetic field is swept into the quantum Hall minima at filling factors v = 2 and 1. If the magnetic field is kept at one of the SdH oscillation maxima, and the current-voltage (l-V) characteristics are measured at constant density, the result is a sharp non-linear l-V curve w i t h a low threshold field value which increases as the carrier density is decreased: The resistance at the SdH maxima is thermally activated below threshold w i t h p xx <* The activation energy increases linearly w i t h decreasing density. Because the Fermi energy is comparable to these splittings, polarization effects will be important. While the ground state energetics of the liquid phase is sensitive to the polarization state, the solid phase is relatively unaffected by polarization due to the weaker exchange energy. Whereas the Monte Carlo simulation for a pure system suggests that the transition to the Wigner crystal should occur at r, = 37 |9[, a fixed node and variational Monte Carlo simulation incorporating the valley degeneracy and impurity effects in Si-MOSFETs yield a partially polarized fluid to a fully polarized solid transition at r, = 7.5 (211! It should be possible then to observe the quantum Wigner crystal at zero magnetic field in very high mobility Si-MOSFETs! Theoretically, there is little doubt that, for zero disorder and zero temperature, the 2D electron gas will crystallize into a Wigner lattice upon lowering the density. It is also accepted that, in the limit of strong disorder, single-particle localization will set in. Our samples w i t h minimal disorder provide an intermediate regime where a collective insulating state like the pinned Wigner solid |22| or the pinned charge density wave [23] might exist. The study of the zero field longitudinal resistance as a function of carrier density and temperature led to the following experimental observations: • Below a critical carrier density n,,. ~ 1 0 " cm2, the longitudinal resistivity exhibits insulating behavior characterized by an exponential rise shown in Fig. 4(a) and a negative slope in the temperature dependence dR„/3T. 1.0 < 0.5 0.0 Fig. 4(b) The carrier density dependence of the activation energy and the threshold electric field for sample Si-2. The 10 critical density is = 10.05 x 10 cm 2 . 15 ? I £ f (a) f 5 J -5 -15 -1.0 -0.5 T=35mK n.=8.32 0.0 0.5 C u r r e n t (nA) 1.0 Fig. 5(a) The current-voltage characteristics at carrier density n, = 8 . 3 2 x 1 0 ' ° cm 2 and zero magnetic field for sample Si-2. -0.5 0.0 0.5 C u r r e n t (nA) 1.0 Fig. 5(b) The broadband noise voltage measured between potential contacts as a function of the source-drain current. While the large resistance is developing along the sample, the Hall resistance across the sample remains metallic as it does in the high density regime. These surprising observations (191 led us to believe that the two-dimensional electron gas was undergoing a series of re-entrant transitions from an insulating state characteristic of some new phase to the non-interacting gas of the integer quantum Hall regime. In view of the results attributed to a magnetic field induced Wigner crystal near filling factor 1/5 in GaAs/AIGaAs heterostructures, we looked into the conditions required for Wigner crystallization in Si-MOSFETs and found them to be quite favorable in theory. The large effective mass m * = 0 . 1 9 m 0 and the low dielectric constant E = 7.7 set Si-MOSFETs apart from GaAs-AIGaAs heterostructures; in addition, Si-MOSFETs feature a two-fold 64 valley degeneracy which is lifted by intervalley interaction and the asymmetric confinement potential (Av = 2 . 4 K), and a large spin splitting w h i c h persists d o w n to zero field (As = 4 K) due to the large spin-orbit coupling [201. Physics in Canada M arch/Aprill 996 7.5 10.0 n , (1010cm~2) 12.5 Fig. 4(a) The longitudinal resistivity as a function of carrier density for sample Si-2 at zero magnetic field. In the temperature range 100-650 mK, the temperature dependence of R„K can be described by R„x e " 7 where the activation energy A drops linearly to zero at n8C as shown in Fig. 4(b). 5 6 7 8 Frequency (kHz) 9 Fig. 5(c) T w o i n d e p e n d e n t spectral measurements of the narrowband noise driven by the DC current. The current-voltage characteristics exhibit a sharp d r o p in 3V/9I above a threshold electric field E, as s h o w n in Fig. 5(a). The threshold field goes t o zero s m o o t h l y at n sc as s h o w n in Fig. 4(b). The data can be f i t t e d w e l l by a p o w e r l a w E, Ônsr w h e r e y = 1.7-1.8 and ôn s = (n sc -n„) (see Fig. 6). More accurate m e a s u r e m e n t s have actually revealed a small d i s c o n t i n u i t y at n sc pointing to a first order t r a n s i t i o n [ 2 4 | . The dependencies of the a c t i v a t i o n energy and the t h r e s h o l d field on carrier d e n s i t y is sample independent. H o w e v e r , t h e critical carrier d e n s i t y is lower for higher mobility (less disordered) samples. The sharp rise in c o n d u c t i o n is a c c o m p a n i e d by a steep increase of the broadband rms-noise voltage (V N ) as a f u n c t i o n of current (see Fig. 5(b)). The broadband noise w a s measured at t w o nearest potential c o n t a c t s in the 1 - 3 0 0 kHz f r e q u e n c y band. The n a r r o w b a n d noise s h o w n in Fig. 5(c) has a reproducible frequency spectrum which shifts to higher f r e q u e n c y as the d r i v i n g current is increased. The m a x i m a in the signal a m p l i t u d e occur at frequencies w h i c h can be r e l a t e d t o the 2D electron lattice c o n s t a n t s . 100 dn 3 (10 c m " ) Fig. 6 The dependence of the threshold electric field on the carrier density variation n„-n, for sample Si-2. The solid line is a fit to Et = 8n„1 8 while the dashed line is the theoretical dependence E, = 8n,' These zero m a g n e t i c field transport signatures are similar t o those observed in the classical W i g n e r solid of electrons on helium and the m a g n e t i c - f i e l d induced W i g n e r solid near fractional filling f a c t o r 1/5. In the very high m o b i l i t y samples, these features are also seen at filling f a c t o r s 3 / 2 and 5 / 2 at m a g n e t i c fields b e l o w 5 Tesla. But let us f o r g e t this for a m o m e n t and play d e v i l ' s a d v o c a t e . Could this be s i m p l y a m a n i f e s t a t i o n of singleparticle localization (SPL)? In disordered semiconductors at low temperature, transport takes place by means of phonon-assisted tunneling to states w h i c h are close in energy. The tunneling d i s t a n c e t o a state w i t h i n k„T of the Fermi energy increases with decreasing t e m p e r a t u r e . This variable range hopping process has a characteristic p o w e r law dependence of the r e s i s t i v i t y on the t e m p e r a t u r e : p(T) = p 0 exp(T 0 /T)" w h e r e x = 1/3 for single particle localization in 2D without Coulomb interaction [25]. Experimentally, w e cannot fit our data t o variable range hopping but observe an a c t i v a t e d t e m p e r a t u r e dependence w i t h x = 1; more recent results, in similar samples, have provided evidence for a C o u l o m b gap ( x = 1 / 2 ) in the d e n s i t y of states at the Fermi energy, in an intermediate t e m p e r a t u r e range ( 2 6 | . In SPL, the threshold conduction is associated w i t h the breakdown of localized states w h e n eE,^ 0 ( w h e r e E, is the threshold and );0 is the localization length) is comparable t o the Fermi energy E ( . For the l o w threshold field at ôn s = 0 . 1 x 1 0 ' ° c m 2 and EF = 6 K, the localization length w o u l d have t o be longer than the sample itself i.e. = 6 m m . The threshold field typical of SPL is of order 2 . 9 x 1 0 3 V / c m [271 for our e x p e r i m e n t a l conditions. Our threshold fields are f i v e orders of magnitude smaller. A series of capacitance m e a s u r e m e n t s on these samples also show that the effective area for c o n d u c t i o n does not change as the carrier density is d e c r e a s e d [28[. Our e x p e r i m e n t a l results are therefore not consistent with s i ng I e - pa r t i c I e localization. However, single-particle localization is expected to become d o m i n a n t in t h e regime w h e r e the number of carriers has been decreased so m u c h that it is equal t o the number of pinning impurities in the oxide layer. The more rapid increase of the threshold field below 7 . 5 x 1 0 ' ° c m 2 is a precursor of this phase. Let us consider the data in the f r a m e w o r k of a pinned W i g n e r c r y s t a l . By d r a w i n g an analogy t o a charge d e n s i t y w a v e ( C D W ) , it m a y be easier t o understand the experimental results. Charge d e n s i t y w a v e s are predominantly a one-dimensional p h e n o m e n o n although t h e y also occur in materials w i t h t w o or three-dimensional band s t r u c t u r e s [ 2 9 | . Chain and layer s t r u c t u r e s in w h i c h C D W t r a n s i t i o n s have been studied include organic c o n d u c t o r s such as TTF-TCNQ (tetracyanoquinodimethane) and linear chain inorganic materials such as TaS 3 , NbSe 3 and blue bronze K 0 3 M o O 3 . In these materials, the electron d e n s i t y is spatially dependent consisting of the unperturbed electron d e n s i t y in the absence of e l e c t r o n - p h o n o n interaction g i v e n by p0 = K/kf in one-dimension, and a collective mode formed by electron-hole pairs i n v o l v i n g t h e w a v e v e c t o r q = 2kr : p(/) = p0+ p,cos(2klr+ <P) w h e r e kF is the Fermi w a v e v e c t o r and <Z> is the phase. The collective mode results f r o m the pairing of electron and holes on either side of the Fermi suface t o f o r m a condensate called a charge d e n s i t y w a v e and an a c c o m p a n y i n g lattice d i s t o r t i o n . A s in s u p e r c o n d u c t i v i t y , there is a gap in the single-particle e x c i t a t i o n s p e c t r u m , a collective mode described by a c o m p l e x order parameter, and a phase w h o s e t i m e and spatial d e r i v a t i v e s are linked t o electric current and condensate d e n s i t y . Both amplitude and phase f l u c t u a t i o n s can occur but w h e r e a s the amplitude m o d e has a gap, the phase e x c i t a t i o n s are gapless. Pinning is a central concept in C D W physics as the translational symmetry is broken by electrostatic potentials caused by impurities and grain boundaries w h i c h serve t o pin the collective mode. The C D W s y s t e m s are c o m p o s e d of normal electrons c o e x i s t i n g w i t h a condensate and scattering w i t h the normal electrons reduce the coherence length. A m o n g the transport properties associated w i t h the d y n a m i c s of the collective mode are (1) non-linear electrical c o n d u c t i o n w i t h a threshold electric field, (2) a metal-insulator or a m e t a l - s e m i c o n d u c t o r t r a n s i t i o n below a distinct melting temperature accompanied by a periodic lattice distortion incommensurate with the underlying lattice, (3) anomalous m i c r o w a v e c o n d u c t i v i t y , (4) dc and ac e x c i t a t i o n s d o m i n a t e d by the collective mode d y n a m i c s , and (5) s t r o n g f r e q u e n c y dependent response in a broad f r e q u e n c y range. In s t u d y i n g s u c h s y s t e m s it is essential t o examine intrinsic d e f e c t s due to thermal fluctuations as w e l l as defects, vacancies and dislocations induced by q u a n t u m f l u c t u a t i o n s as t h e y are believed t o play an i m p o r t a n t role in the melting transition. W h a t drives the c o n d u c t i o n in the C D W ? Let us imagine t h a t a C D W is pinned by the electrostatic potential w e l l of an i m p u r i t y . If an external electric field is applied, the C D W d e f o r m s around the pinning center but electrons remain constrained by the phase coherent C D W . The electrons w h i c h have not condensed in a C D W can still c o n t r i b u t e to c o n d u c t i o n by thermal a c t i v a t i o n across the gap but because of their l o w d e n s i t y the r e s i s t i v i t y of the pinned C D W is high. At l o w t e m p e r a t u r e s w h e n all electrons have frozen out, the a c t i v a t i o n energy is related t o the energy required t o change the phase of the local C D W in a coherent d o m a i n by 2jc. A b o v e a critical threshold field, the entire C D W can become depinned and slide c o h e r e n t l y in the d i r e c t i o n opposite t o that of the applied electric field. The d i f f e r e n t i a l resistivity drops sharply giving rise t o sharp nonlinear l-V characteristics. The larger the number of pinning impurities, the greater the loss of phase coherence and the s m o o t h e r the l-V c h a r a c t e r i s t i c s . A s the C D W slides past s t a t i o n a r y impurity potentials, the voltage noise generated by the perturbation of the impurity potential w i l l depend on the current, the carrier d e n s i t y and the period of the C D W . The size of the phase coherent d o m a i n s is defined by the correlation length w h i c h can be measured f r o m the transverse shear modulus, the threshold field, the interelectron spacing, and the carrier density. La Physique au Canada mars à avril 1 9 9 6 65 In analogy t o C D W s y s t e m s , the electron solid f o r m s in the presence of a neutralizing b a c k g r o u n d charge w h i c h f i x e s the d e n s i t y w h e n the potential energy b e t w e e n t h e localized electrons d o m i n a t e s all other energies in the problem. In m o s t samples, the solid phase coexists with uncrystallized electrons. H o w e v e r , the phase coherence length remains large c o m p a r e d t o the interelectron spacing in the e l e c t r o n solid ( i n G a A s : 4 . 8 / v m > > 1 0 0 r , ~ 3 0 0  ) . Thus q u a n t u m depinning and d e f e c t w a v e s or d i s l o c a t i o n pairs are possible in electron s y s t e m s but unlikely in C D W . The t y p e of pinning, w e a k or strong, w i l l depend on t h e location, nature (acceptor or donor), and number of pinning impurities. A s u c c e s s f u l m o d e l for t h e conduction m e c h a n i s m in the W i g n e r solid has been developed by Chui. The model assumes t h a t the charge c a r r y i n g e x c i t a t i o n s are bound dislocation pairs. A single d i s l o c a t i o n can be visualized as a shift of the electrons f r o m equilibrium position which can be described by a d i s p l a c e m e n t field. A d i s l o c a t i o n pair consists of two dislocations with d i s p l a c e m e n t fields in opposite d i r e c t i o n s ; there is a net d i s p l a c e m e n t of charge b e t w e e n the dislocations and the m o t i o n of this locally altered d e n s i t y is possible with resulting conduction. This is equivalent t o the phase slip model in CDW. If w e r e v i e w the e x p e r i m e n t a l results, the similarities b e t w e e n the pinned charge d e n s i t y w a v e and the pinned e l e c t r o n solid are striking. There is a critical d e n s i t y and a critical t e m p e r a t u r e b e l o w w h i c h the insulating phase appears. The t r a n s i t i o n at the critical carrier d e n s i t y is w e a k l y first order in character. The nonlinear l-V characteristics can be interpreted as s h o w i n g that at small c u r r e n t s the W i g n e r c r y s t a l is pinned by the neighboring impurities until the threshold field is exceeded and the W i g n e r c r y s t a l slides. Over the range of densities 7 . 2 x 1 0 ' ° - 1 . O x 1 0 " c m 2 the threshold field decreases as E,oc(nc-ns)p w h e r e P = 1 . 7 - 1 . 8 . This is in agreement w i t h a depinning m e c h a n i s m involving the c r e a t i o n and separation of d i s l o c a t i o n pairs 130|. The theoretical model agrees w e l l w i t h the e x p e r i m e n t a l results as s h o w n in Fig. 6. The f a c t t h a t the subt h r e s h o l d a c t i v a t i o n energy b e l o w 1 0 0 mK is m u c h smaller t h a n that above is consistent with extended defect c o n d u c t i o n 131). If one ignores q u a n t u m coherence effects, the motion of extended d e f e c t s and in particular that of d i s l o c a t i o n pairs is equivalent t o phase slippage in a charge d e n s i t y w a v e 132|. The o%% versus electric field curves can be f i t t e d t o a phase slippage equation of the type: o„= {l 0 /4E)e' A / k T ) sinh [neE/A / k T | w h e r e /„ is t h e intercontact distance, l 0 is related t o the current created by a single phase slip and /, is a characteristic phase slip length. T h e value of /, obtained f r o m the fit in Fig. 7 is 0 . 2 3 /ym, or t e n t i m e s the interelectron spacing. 66 Physics in Canada M arch/Aprill 9 9 6 frequency s h i f t s w i t h current, there is no simple relation that can be applied t o link the results t o a hexagonal or triangular lattice s y m m e t r y . It is likely that part of the current is provided by " u n c o n d e n s e d " electrons hopping beyond the lattice. 10 Si-5 n,=6.69 3 •U r ' = 6.7K" C o o TT 10 0.0 2.0 4.0 Electric Fig. 7 6.0 Field 8.0 10.0 (V/cm) Conductivity versus applied electric field for sample Si-5 at n. = 6.69 x 10'° cm 2 . The solid lines are a single fit to the data at both temperatures using phase slip model. W h a t i n f o r m a t i o n can w e get about the collective transport of depinned domains above the threshold field? By using the approach of elastic theory 133) as applied t o charge d e n s i t y w a v e s in the w e a k pinning limit, w e can e s t i m a t e the correlation length or d o m a i n size, L 0 as {Kra/(2ne n,E,))* where KT is the transverse shear modulus, and a is the interelectron spacing. The experimental dependence of the threshold field on the carrier d e n s i t y s h o w s that the correlation length diverges as ( ô n , ) 0 9 and thus L D becomes smaller as the d e n s i t y is decreased, driving the s y s t e m t o w a r d s single-particle localization. Single-particle localization does have " i t s place in the s u n " in the phase d i a g r a m . The a c t i v a t i o n energy and the threshold field can be used t o e x t r a c t some characteristic length scale for the electron solid, e.g. the elementary crystallite size of the pinned Wigner solid. For a carrier d e n s i t y n, = 8 . 4 x 1 0 ' ° c m 2 , the sample t y p i c a l l y consists of pinned crystallites a p p r o x i m a t e l y 0 . 7 ^ m x 0 . 7 fjm in size each containing about 3 0 0 electrons w i t h an interelectron distance ~ 4 0 0 Â! The generated broadband noise s h o w n in Fig. 5(b) is also consistent w i t h depinning of the Wigner c r y s t a l or coherent defect m o t i o n above threshold. T h e n a r r o w b a n d noise should yield f r e q u e n c y peaks related t o the principal lattice spacings. If w e assume that the electron lattice e x t e n d s across the entire 2D layer of w i d t h w and that t h e t o t a l current I is only provided by the sliding lattice, the spectral m a x i m a w i l l be related t o the principal lattice spacing ri, as t^ = l / f e n , ! ^ ) . For a hexagonal lattice sliding in a r a n d o m field of point d e f e c t s , r|, = b, i) 2 = -v3 b, and r| 3 = 2 b w h e r e b is the distance b e t w e e n nearest neighbor electrons. Experimentalists have been urged t o t r y this e x t r e m e l y difficult m e a s u r e m e n t as it could provide the definitive signature for lattice ordering of electrons- the " s m o k i n g g u n " for W i g n e r crystallization. A l t h o u g h there are peaks in the n a r r o w b a n d s p e c t r u m and the Peak m o b i l i t y ( c m / V s ) Fig. 8 Phase diagram for the twodimensional electron system showing the critical density versus the sample peak mobility. By s t u d y i n g samples in a w i d e range of mobilities and carrier densities, w e have been able t o probe the e f f e c t of " d i s o r d e r " on the d e v e l o p m e n t of the insulating phase. Fig. 8 s h o w s the phase diagram for the formation of the collective insulator phase or q u a n t u m Wigner solid confined between the metallic state above the cold m e l t i n g boundary n c m (full line) and the A n d e r s o n insulator or the regime of single-particle localization b e l o w the n sill boundary. By using a calculation by Gold 1341 for t h e m o b i l i t y of Si(100) inversion layers, w e obtain a s a t i s f a c t o r y model for the peak mobility versus carrier d e n s i t y in our samples. The number of impurities n: is a better indicator of disorder as the impurities are the main source of scattering at low densities (below 2 2 x 1 0 " c m ) . The boundary for SPL is estimated f r o m n, and depicted by a short dashed line. This is the highest e s t i m a t e for SPL in our samples w h e r e the surface roughness is m u c h l o w e r t h a n that used t o calculate n, and nSPL. The full triangles indicate nsn estimates if the d o m a i n length Ln is t w i c e the interelectron distance L0 = 2a. The solid line is the calculated dependence of the cold melting d e n s i t y on using the mean square displacement as a f u n c t i o n of ni and an estimate of the cold m e l t i n g density as nt goes to zero. The calculation of the t r a n s i t i o n f r o m a polarized W S t o a partially polarized liquid at r s - 10 (n„ ~ 7 . 6 5 x 1 0 ' ° c m 2 ) is represented by a bar 1211 and is in agreement w i t h the data for Si-5 and Si11. This phase diagram also explains w h y such a collective phase w a s not observed by other g r o u p s using l o w e r m o b i l i t y samples and suggests that w e should be looking for a material s y s t e m w i t h as g o o d if not better material parameters t h a n the high m o b i l i t y SiMOSFETs studied here. Thus there is m o u n t i n g e x p e r i m e n t a l evidence for a l o w t e m p e r a t u r e t r a n s i t i o n t o a collective insulator at zero m a g n e t i c field in high mobility Si-MOSFETs. This collective insulating phase has the transport characteristics of a W i g n e r solid. The t e m p e r a t u r e dependence of the zero field resistance as a f u n c t i o n of carrier density is also host t o s o m e more f u n d a m e n t a l p h y s i c s : t h a t of scaling and universality. For more t h a n t w o decades, it has been generally a c c e p t e d t h a t , at zero magnetic field, all states are localized in a t w o - d i m e n s i o n a l s y s t e m for an infinite sample as T—>0 | 3 5 | . In c o n t r a s t , a three-dimensional s y s t e m can sustain a metal-insulator transition because the electrons are localized only w h e n the Fermi energy lies below a mobility edge E c . The conventional w i s d o m in 2D s y s t e m s has recently been questioned as a result of a number of experimental results in s u p e r c o n d u c t i n g thin f i l m s , and in h i g h - m o b i l i t y SiMOSFETs 136-371. In addition, a theoretical s t u d y of n o n i n t e r a c t i n g 2D electrons in a model disorder potential w i t h a random set of special scatterers s h o w e d t h a t , at zero magnetic field, the s y s t e m is localized only w h e n Er < Ec | 3 8 | . In material s y s t e m s w h e r e the range of the s c a t t e r i n g centers is short (as in MOSFETs), similar t o A z b e l ' s model potential, a " t r u e " zero m a g n e t i c field metal-insulator t r a n s i t i o n m a y be a l l o w e d in the limit of zero t e m p e r a t u r e . The r e s i s t i v i t y as a f u n c t i o n of t e m p e r a t u r e over a w i d e range of densities ( 7 . 1 2 - > 1 3 . 7 x 1 0 ' ° c m 2 ) in a h i g h - m o b i l i t y SiMOSFET sample (Si-12b; fj m a x = 3 . 0 x 10 4 c m 2 / V s ) can be made t o overlap by scaling along the t e m p e r a t u r e axis. The r e s i s t i v i t y can be represented in t e r m s of a ratio T/T 0 w h e r e T 0 depends only on the d e n s i t y . The data collapses on t w o separate curves one for the insulating side of the t r a n s i t i o n and the other for the metallic side as s h o w n in Fig. 9. One of the signatures of a phase t r a n s i t i o n is the scaling of an appropriate physical parameter. It w o u l d seem t h e n that the results are in agreement w i t h A z b e l ' s model but in c o n t r a d i c t i o n w i t h that of A b r a h a m s and c o - w o r k e r s ; this suggests that there is a " t r u e " metal insulator t r a n s i t i o n in the t w o - d i m e n s i o n a l e l e c t r o n s y s t e m in Si at zero magnetic field. Si-SiGe Si Q U A N T U M WELL STRUCTURES The e x p e r i m e n t a l results on high m o b i l i t y Si-MOSFETS have been reproduced in at least four d i f f e r e n t laboratories around the w o r l d . H o w e v e r , there is only one b a t c h of such samples and it is v e r y d i f f i c u l t , w i t h o u t a large i n v e s t m e n t in t i m e and m a n p o w e r , t o fabricate more of these. We have thus turned to pseudomorphic Si-SiGe-Si heteros t r u c t u r e s w h i c h are g r o w n , either by molecular beam e p i t a x y or ultra-high vacuum chemical vapor deposition techniques, in a large number of laboratories and may be better suited for s t u d y i n g W i g n e r crystallization. The important features of the p - t y p e Si-SiGeSi q u a n t u m w e l l s are that the 2D holes have a large e f f e c t i v e hole mass, 0 . 4 2 m e w h i c h is t w i c e that of electrons in the SiMOSFETs. This has been checked in our samples by analysis of the l o w - f i e l d Shubnikov-de Haas oscillations and by c y c l o t r o n resonance 139-411. A l t h o u g h the dielectric c o n s t a n t e ~ 12.6 is similar to that of G a A s - A I G a A s h e t e r o s t r u c t u r e s , the s y m m e t r i c c o n f i n e m e n t of holes in the SiGe w e l l can lead t o coupled 2D hole gases. A s pointed out in Table 1, at a carrier d e n s i t y of 2 x 1 0 " c m 2 in SiSiGe h e t e r o s t r u c t u r e s , the Wigner-Seitz radius is identical t o that in Si-Si0 2 and the q u a n t u m cold melting critical d e n s i t y is t w i c e as large because of the larger e f f e c t i v e mass! observed in larger w e l l s but rather the population of the heavy hole and the light hole ground subbands. This interpretation is borne out by k * p Luttinger Hamiltonian calculations 1411. Table 3 The M B E - g r o w n S i - S i 0 8 / G e 0 Heterostructures 13 -Si Surface 8 doped Si - 1 x 1 0 " cm j 900 A i - Si spacer 300 A s 10 r - , Sio.B7GOo.13 (a) 10* % «,-6.46x10'° cm'1 «. 12.4xI0"cm! Sample # d SiGe 1456 115 A SiGe 1457 90 A SiGe 1458 65 A SiGe 1459 45 A i - Si spacer » \ 300 A \ 10' B doped Si • 1 x 1 0 " c m J 500 A X -c i - Si buffer "-V4. 500 A Q. Si (100) 10° n • 10 1 to" Fig. 9 10 ., 10 II 10 TIT, , 10 10 , Resistivity versus T/T 0 where T 0 is the scaling parameter. The open symbols correspond to the insulating side of the transition while the closed ones correspond to the metallic phase. The Si-Si087Ge0,3-Si heterostructures w e r e g r o w n on an n Si (100) substrate by molecular beam epitaxy. The symmetrically-doped o samples were g r o w n on a 5 0 0 ^ A i-Si buffer and c o n s i s t e d of a 5 0 0 A Si layer modulationdoped w i t h boron acceptors at 10' 8 c m 3 and a 3 0 0 A i-Si setback on each side of a Si 0 8 7 G e 0 , 3 q u a n t u m w e l l of thickness d . A set of samples w a s g r o w n w i t h d = 4 5 , 6 5 , 9 0 and o 11 5 Â. The cap layer consisted of 4 0 0 A of B-doped Si. This is s h o w n in Table 3. There is a large peak in the longitudinal resistance at filling factor 3 / 2 f o l l o w e d by a deep m i n i m u m at filling f a c t o r v = 1 . The Hall resistance is not anomalous at the half-filled Landau level and displays a w e l l developed plateau h/e 2 w h e n the longitudinal resistance is at its minimum. • For the narrower 9 0 and 65  w e l l s , there are large longitudinal resistance peaks at both v = 3 / 2 and 5 / 2 , reentrant w i t h deep m i n i m a at v = 1 and 2. • The t e m p e r a t u r e dependence of the c u r r e n t - v o l t a g e characteristics taken at v = 3 / 2 for the 65  w e l l reveal that the onset of the large resistance m a x i m a ( > > h/e 2 ) o c c u r s around 5 0 0 mK (see Fig. 11 ). The samples w e r e patterned as Hall bar s t r u c t u r e s 1 0 m m long and 2 m m w i d e . O h m i c c o n t a c t s w e r e made using AI e v a p o r a t i o n and annealing below the eutectic point. A number of u n e x p e c t e d results w e r e obtained in these samples: • The SdH oscillations in the 1 15 A w e l l are t y p i c a l of t w o subband population as s h o w n in Fig. 10. These are not oscillations f r o m t w o independent hole gases at each interface as was 0 2 4 6 8 10 12 14 Magnetic Field (Tesla) Fig. 10 Longitudinal resistance as a function of magnetic field for different SiGe quantum well widths at T - 25 mK. La Physique au Canada mars à avril 1 9 9 6 67 . . . . . . . . . 200 150 • ; ! ; : 50 • ;""" S • 520 mK i : 460mK ^ ^ : 240 mK -150 -180 mK ^ 130 mK ^ 110 mK I -100 \ 88. 70, 48 mK ^ -50 ; 0 50 100 The curves also appear t o c o n v e r g e near a critical resistivity of h/2e 2 . These features are similar t o those observed in s u p e r c o n d u c t i n g t h i n f i l m s of Bi as a f u n c t i o n of thickness, and Si MOSFETs and GaAs-AIGaAs heterostructures as a f u n c t i o n of carrier d e n s i t y . Further s t u d y of scaling parameters w i l l require the variation of the d e n s i t y in the Si-SiGe-Si heterostructures. From other w o r k [421, w e k n o w t h a t the critical d e n s i t y in these s y s t e m s is slightly above our f i x e d d e n s i t y . W e m u s t also investigate the role of disorder in the onset of these transitions by s t u d y i n g higher m o b i l i t y and hence higher Ge c o n t e n t samples. 150 Current (nA) Fig. 11 • , , ,, Similar results are s h o w n in Fig. 12 for t h e 9 0  w e l l w i t h the sub-threshold resistance at v = 3 / 2 increasing by t w o orders of m a g n i t u d e below 5 0 0 m K . the inset s h o w s the t h e r m a l a c t i v a t i o n of t h e d i f f e r e n t i a l resistance where dV/dl « e ^ 1 w i t h A = 0.47 K in t h e t e m p e r a t u r e range above 1 0 0 mK. A l t h o u g h these results have been t a k e n at a f i x e d d e n s i t y ~ 2 x 1 0 " c m 2 , the basic features of large longitudinal resistances at half-filled Landau levels, non-linear l - V characteristics w i t h l o w threshold fields, and t h e r m a l a c t i v a t i o n of the resistance are v e r y similar in nature t o those in t h e Si-MOSFETS. In the light of the scaling behavior of the zero m a g n e t i c field resistance in Si-MOSFETs, w e have also looked at the t e m p e r a t u r e dependence of the longitudinal resistance at zero field for d i f f e r e n t w e l l w i d t h s . . . . . 30 • • - • ' ' • ' J » 100 • i • : : • '..... - * ... I - i • 0 J"" ' 1 /. Temperature 1 / K ) • 1 00 01 0.2 0.3 0.4 0.5 06 Temperature (K) Fig. 12 Temperature dependence of the differential resistance for the 90 A well at v = 3/2 and B = 7.95 T. The inset shows activated behavior in the higher temperature scale. A s s h o w n in Fig. 13, there is a t r a n s i t i o n f r o m an insulating phase w h e r e p decreases w i t h t e m p e r a t u r e for the 65 A w e l l t o a metallic phase w h e r e p„ decreases. w i t h t e m p e r a t u r e for the 9 0 A and 1 1 5 A w e l l s . This is consistent w i t h the f a c t t h a t the carrier d e n s i t y is decreasing w i t h decreasing w e l l w i d t h . 68 «-A Current voltage (l-V) characteristics as a function of temperature fçr v = 3/2 at B = 7.75 T for the 65 A well. Physics in Canada M arch/Aprill 9 9 6 . -I 90* - - — ' ______ f 115 A . . . . ACKNOWLEDGMENTS I wish to acknowledge fruitful collaboration with a number of colleagues: f r o m NRC- Don B r o w n , J o h n Campbell, Simon Deblois, Pawel H a w r y l a k , Jennifer Lam, J.-P. Noël, and Duncan S t e w a r t , f r o m the U n i v e r s i t y of Oklahoma- J o h n Furneaux and Sergey Kravchenko, f r o m SUNY in Buffalo- Bruce M c C o m b e and his g r o u p and, finally, f r o m the Institute f o r High T e m p e r a t u r e Physics in M o s c o w - V l a d i m i r Pudalov w h o provided the Si-MOSFETs and w a s the driving f o r c e behind that w o r k . REFERENCES f i . . . . . 1.0 W e have only begun t o explore the phase diagram for the f o r m a t i o n of a W i g n e r solid in t w o - d i m e n s i o n a l e l e c t r o n and hole s y s t e m s . The mapping of t h e phase boundaries as a f u n c t i o n of t e m p e r a t u r e , d e n s i t y , magnetic field and disorder is a challenging t a s k . A s better samples become available, a fuller s t o r y on the richness of the dilute d e n s i t y regime c a n be w r i t t e n . i . . . . I . . . 1. E. Wigner, (1934). Rev. 46, 1002 2. R.S. Crandall and R.W. Williams, Phys. Lett. A 34, 4 0 4 (1971). 3. A.V. Chaplik, 395 (1972). 4. A.S. Rybalko, B.N. Esselson, and Y.Z. Kovdrya, Sov. J. Low Temp. Phys. 5, 4 5 0 (1979). 5. C.C. Grimes and G. Adams, Rev. Lett. 42, 795 (1979). 6. R. Mehrottra, B.M. Guenin, and A.J. Dahm, Phys. Rev. Lett. 48, 641 (1982). 7. F. Gallet, G. Deville, A. Valdes, and F.I.B. Williams, Phys. Rev. Lett. 53, 588 (1984). 8. G. Deville, J. Low Temp. Phys. 72, 135 (1988). 9. D. Ceperley, Phys. Rev. B 18, 3 1 2 6 (1978); B. Tanatar and D. Ceperley, Phys. Rev. B 39, 5 0 0 5 (1989). 10. For a review see Physics of the Electron Solid, edited by S.T. Chui, International Press Inc. Boston (1994). 11. K. Kajita, Jpn. J. Appl. Phys. 25, 1943 (1987); Surf Sci. 196, 29 (1988). 12. H.-W. Jiang and A.J. Dahm, Phys. Rev. Lett. 62, 1396 (1989); Surf. Sci. 229, 3 5 2 (19901. 13. E.Y. Andrei, G. Deville, D.C. Glattli, F.I.B. Williams, E. Paris, and B. Etienne, Phys. Rev. Lett. 60, 2 7 6 5 (1988). . 1.5 Temperature (K) Fig. 13 Phys. Temperature dependence of the longitudinal resistivity in a vanishing magnetic field for different SiGe quantum well widths. Sov.Phys. JETP 35, CONCLUSION The w o r k on Si-MOSFETs has provided a phase diagram for the f o r m a t i o n of a q u a n t u m W i g n e r c r y s t a l at zero magnetic field as a f u n c t i o n of disorder. It w a s also established that a fully spin-polarized W i g n e r c r y s t a l could exist re-entrantly w i t h a partially polarized q u a n t u m liquid or gas in the q u a n t u m Hall e f f e c t regime in very high m o b i l i t y samples o n l y . The s t u d y of the re-entrant insulating phase in s e m i c o n d u c t o r heterostructures has also led t o the d e f i n i t i o n of a n e w t y p e of insulator, " t h e Hall i n s u l a t o r " | 4 3 | , for w h i c h the Hall resistivity remains metallic w h i l e the longitudinal resistivity becomes infinite. The s y s t e m par excellence t o s t u d y t h e W i g n e r c r y s t a l state is one w h e r e the e f f e c t i v e mass is large, the dielectric c o n s t a n t and the a m o u n t of disorder are small, the carrier d e n s i t y is tunable and the material s y s t e m imposes some sort of inherent coupling either w i t h non-degenerate valleys as in SiMOSFETs, or by lifting the degeneracy between the symmetric and antis y m m e t r i c states t h r o u g h t h e valence band anisotropy as in the Si-SiGe s y s t e m . Finally, there is now mounting experimental evidence that the Abrahams-Anderson-LicciardelloRamakrishnan theory for w h i c h a metalinsulator t r a n s i t i o n in an infinite 2D s y s t e m , at zero magnetic field as T - » 0 is forbidden, is inappropriate in 2 D s y s t e m s w i t h short range scatterers. (continued o n page 7 1 ) Phys. NOUVELLE SOURCE DE PLASMA POUR LE TRAITEMENT DES MATÉRIAUX: MAGNÉTOPLASMA À ONDE DE SURFACE par Joëlle M a r g o t , Groupe de Physique des Plasmas, Département de Physique, Université de M o n t r é a l , C.P. 6 1 2 8 , Succ. Centre-ville, M o n t r é a l , Québec H3C 3 J 7 , adresse électronique: m a r g o t j @ e r e . u m o n t r e a l . c a INTRODUCTION A u cours des vingt dernières années, on a v u croître de f a ç o n considérable l ' e m p l o i des plasmas pour le t r a i t e m e n t des matériaux aussi bien dans les secteurs de haute technologie, c o m m e par exemple en microélectronique et en photonique, que dans les industries plus traditionnelles (e.g., métallurgie et textile). Il f a u t se rappeler que dans le passé, les applications des plasmas au t r a i t e m e n t des matériaux se sont développées sous l'égide de la c o m m u n a u t é des utilisateurs, ceux-ci ayant fait appel aux plasmas pour pallier les limitations des m é t h o d e s c o n v e n t i o n n e l l e s . Les percées dans le d o m a i n e se sont d o n c appuyées sur des m o y e n s plus ou moins empiriques de sorte que le f o n d e m e n t scientifique de ces applications d e m e u r e encore peu substantiel. Le progrès que l ' o n peut attendre d ' u n e telle d é m a r c h e est par conséquent limité et il est devenu nécessaire de mieux comprendre le f o n c t i o n n e m e n t des sources de plasma utilisées, d ' e n concevoir de nouvelles et de modéliser de f a ç o n adéquate à la fois le plasma et l ' i n t e r a c t i o n plasma-surface si l ' o n veut relever les défis posés en m i c r o é l e c t r o n i q u e et en photonique. Bien sûr, c e t t e recherche est de nature t o u t à fait f o n d a m e n t a l e et elle requiert une expertise en physique des plasmas, aussi bien en m o d é l i s a t i o n q u ' e n caractérisation, et une i n t e r a c t i o n étroite avec les spécialistes des procédés et de la caractérisation des surfaces. T o u t ceci a s t i m u l é au cours des dernières années des a c t i v i t é s de recherche portant sur la physique des plasmas dits froids et des plasmas réactifs dans de nombreux laboratoires à t r a v e r s le monde. Pour notre part, dans le c o n t e x t e général présenté ci-dessus, nous avons mis au point une source de plasma originale, basée sur la p r o p a g a t i o n des ondes de surface et à laquelle on adjoint un c o n f i n e m e n t m a g n é t i q u e . Les propriétés de c e t t e source sont mises à profit pour graver des couches minces à des dimensions sous-micrométriques. La conception de cette source, sa caractérisation et sa modélisation constituent un volet important des a c t i v i t é s du Groupe de Physique des Plasmas de l ' U n i v e r s i t é de M o n t r é a l . Dans cet article, nous d é c r i v o n s b r i è v e m e n t les propriétés du plasma ainsi produit ainsi que l ' i n f l u e n c e sur les paramètres du plasma de la présence d'un substrat. Nous e x a m i n o n s également les p e r f o r m a n c e s de ce plasma pour la r e p r o d u c t i o n de m o t i f s s o u s - m i c r o m é t r i q u e s ( 0 , 2 p m ) dans du tungstène. NOUVELLES SOURCES DE P L A S M A POUR LA GRAVURE EN MICROÉLECTRONIQUE La source de plasma majoritairement e m p l o y é e en g r a v u r e des m a t é r i a u x , pour prendre cet e x e m p l e , est la décharge capacitive. Bien que ce t y p e de plasma soit e m p l o y é de f a ç o n routinière dans la f a b r i c a t i o n des m i c r o c i r c u i t s , entre autres parce q u ' i l permet le t r a i t e m e n t simultané de plusieurs s u b s t r a t s , il s o u f f r e de sévères limitations. D ' u n e part, la densité de particules chargées est faible ( t y p i q u e m e n t 9 1 0 - 1 0 ' ° ions par cm 3 ) et d ' a u t r e part, ce t y p e de source ne permet pas un bon contrôle du flux d ' i o n s vers la surface. Or, il s ' a v è r e q u ' u n tel contrôle est devenu nécessaire pour atteindre l'anisotropie de g r a v u r e recherchée ainsi que l ' o p t i m i s a t i o n des autres paramètres de gravure. De nouvelles sources de plasma ont vu le jour pour mieux répondre aux o b j e c t i f s de plus en plus exigeants dans ce domaine. En bref, il s'agit de produire une source de plasma relativement dense tout en p e r m e t t a n t de contrôler adéquatement le flux d ' i o n s frappant la surface, et ceci indépendamment du mécanisme de création du plasma. Une source telle que la f a m e u s e décharge dite de résonance c y c l o t r o n i q u e électronique (RCE) en est un exemple. Il s'agit d ' u n e source micro-onde ( 2 , 4 5 GHz) f o n c t i o n n a n t à très basse pression ( 1 0 m t o r r et moins) et dont la densité d ' i o n s peut atteindre selon les conditions plusieurs 1 0 " c m 3 avec un degré d ' i o n i s a t i o n souvent supérieur à 1 % . Le f o n c t i o n n e m e n t à très basse pression est rendu possible grâce à la présence d ' u n c h a m p magnétique statique (environ 8 7 5 gauss) qui permet de confiner les particules chargées et assure également le m é c a n i s m e de transfert d'énergie ondeplasma. Les avantages de ce t y p e de plasma sont notoires. A i n s i , la grande densité de particules chargées permet d'assurer un taux élevé de gravure assistée par les ions. A u c u n e électrode interne n ' é t a n t présente dans la décharge, les risques de c o n t a m i n a t i o n sont minimisés. La d i f f é r e n c e de potentiel entre la surface gravée et le plasma est en général inférieure à 2 0 v o l t s , une valeur très endessous de celle rencontrée dans les décharges capacitives. Enfin, la pression très faible permet de limiter le n o m b r e de collisions subies par les ions dans la gaine de plasma. Ainsi, on préserve mieux la directionnalité du m o u v e m e n t des ions dans la gaine ce qui favorise l'anisotropie de gravure. D ' a u t r e s t y p e s de décharges similaires à la source RCE ont également été proposées c o m m e , par e x e m p l e , le plasma hélicon dont le principe de fonctionnement demeure t o u t à fait comparable. Ce plasma est produit à des fréquences radio (e.g., 1 3 , 5 6 MHz) et nécessite également un champ magnétique; on note cependant que ce c h a m p peut être beaucoup plus faible que celui e m p l o y é pour les décharges RCE. Pour des conditions comparables de pression, de d i a m è t r e de tube à décharge et d ' i n t e n s i t é de c h a m p m a g n é t i q u e , la densité de particules chargées est c o m p a r a b l e dans les deux t y p e s de plasma. Pour notre part, nous avons souhaité capitaliser sur l'expérience que nous avons des plasmas produits par des ondes de surface, pour produire une nouvelle source avec des caractéristiques comparables à celles des plasmas p r é c é d e m m e n t décrits. Dès 1 9 9 2 , nous avons mis sur pied un p r o t o t y p e de réacteur destiné à la gravure de matériaux (RCE4). Son schéma est présenté sur la figure 1. Figure 1. S c h é m a du r é a c t e u r RCE4 (magnétoplasma à onde de surface) Le réacteur est alimenté par un plasma à onde de surface à 2 , 4 5 GHz produit dans un tube de silice f o n d u e (quartz) de 15 c m de diamètre. Ce tube pénètre dans une enceinte métallique de 28 c m de d i a m è t r e le long de laquelle sont disposées plusieurs fenêtres destinées à visualiser le plasma et à insérer des diagnostics. Un ensemble de 1 2 solénoïdes est disposé le long du tube et du réacteur. L ' e s p a c e m e n t entre les bobines a été choisi de sorte que le c h a m p magnétique demeure homogène sur environ 7 0 c m , incluant la source. Cet aspect de la c o n c e p t i o n du dispositif e x p é r i m e n t a l est basé sur le fait que les études de d i s t r i b u t i o n en vitesse des ions dans des réacteurs de t y p e RCE ou hélicon m o n t r e n t que le m o u v e m e n t des ions est très influencé par l ' o r i e n t a t i o n des lignes de c h a m p magnétique: les ions ont tendance à suivre ces lignes. Or, pour atteindre un bon c o n t r ô l e du m o u v e m e n t des ions vers la surface à traiter, il est n e t t e m e n t préférable que ceux-ci frappent la surface à la normale. L'utilisation fréquente de lignes de c h a m p divergentes dans les m a g n é t o p l a s m a s est un obstacle à la recherche de l'anisotropie en gravure de c o u c h e s m i n c e s . Bien que les études que nous avons menées jusqu'à présent se soient essentiellement limitées à une fréquence micro-onde ( 2 , 4 5 GHz), le plasma produit par onde de surface présente l ' a v a n t a g e notoire de pouvoir f o n c t i o n n e r à n ' i m p o r t e quelle fréquence. C ' e s t d'ailleurs c e t t e extraordinaire flexibilité, bien adaptée à des études paramétriques, qui a permis à ce t y p e de plasma d ' a c q u é r i r ses lettres de noblesse, particulièrement en ce qui concerne la m o d é l i s a t i o n des décharges de haute fréquence (HF). La Physique au Canada mars à avril 1 9 9 6 69 CARACTÉRISTIQUES DU MAGNÉTOPLASMA À ONDE DE SURFACE La figure 2 m o n t r e u n e x e m p l e de d i s t r i b u t i o n en vitesse des ions métastables d ' a r g o n dans la d i r e c t i o n parallèle à l ' a x e de la colonne de plasma dans un dispositif similaire à celui présenté ci-dessus (RCE5). Ces mesures ont été réalisées au m o y e n d ' u n e m é t h o d e de fluorescence induite par laser. Figure 2. Fonction de distribution en énergie des ions métastables d'argon obtenues dans le réacteur FICE5 au moyen d'une méthode de fluorescence induite par laser. Noter que les profils ne sont pas déconvolués pour tenir compte de l'effet Zeeman et de la largeur de la raie du laser. O n y remarque que les ions suivent une d i s t r i b u t i o n gaussienne centrée autour de zéro. A i n s i , pour un c h a m p magnétique axialement u n i f o r m e , les ions ont une très faible vitesse de dérive axiale. À t i t r e de c o m p a r a i s o n , nous avons représenté sur la m ê m e f i g u r e les d i s t r i b u t i o n s de vitesse obtenues dans des régions de c h a m p m a g n é t i q u e décroissant et croissant. Dans le premier cas, les ions sont accélérés loin de la source alors q u e dans le second, les ions ont t e n d a n c e à revenir vers la source. Ces résultats illustrent bien le rôle extrêmement important que joue la configuration du champ magnétique statique sur le m o u v e m e n t des ions. La c o n c l u s i o n évidente de ces résultats est que pour tirer t o u s les bénéfices de l ' u t i l i s a t i o n d ' u n c h a m p magnétique de c o n f i n e m e n t , il est préférable d ' a v o i r des lignes de champ magnétique aussi u n i f o r m e que possible. Ceci permet de limiter la dérive axiale des ions au m i n i m u m et donne à l ' u t i l i s a t e u r plus de latitude pour contrôler i n d é p e n d a m m e n t du plasma le m o u v e m e n t des ions vers la surface à traiter, par exemple au m o y e n d ' u n e polarisation auxiliaire (et maîtrisée) du substrat. Le m a g n é t o p l a s m a a été diagnostiqué au m o y e n de plusieurs m é t h o d e s incluant des sondes électrostatiques, des ondes acoustiques ioniques et diverses m é t h o d e s spectroscopiques. Nous avons ainsi pu m o n t r e r que la densité des ions positifs pouvait atteindre localement 1 0 , J c m 3 dans l ' a r g o n et la t e m p é r a t u r e des électrons quelques eV. Dans un gaz c o m m e le SF„ utilisé pour la g r a v u r e du t u n g s t è n e , on a o b t e n u des valeurs comparables pour la densité et la température; o n a également mis en 70 Physics in Canada M arch/Aprill 9 9 6 évidence par photo-détachement induit par laser une f o r t e c o n c e n t r a t i o n d'ions négatifs, leur densité étant supérieure à celle des électrons à des pressions de seulement quelques mtorr. Nous avons utilisé une source similaire, mais de plus petites d i m e n s i o n s pour e f f e c t u e r une étude du bilan énergétique de la décharge 11). Nous avons ainsi pu m o n t r e r que le bilan énergétique s'améliore l o r s q u ' u n c o n f i n e m e n t magnétique est appliqué à la décharge, c o m m e on pouvait s ' y attendre, la présence d ' u n c h a m p magnétique réduisant les pertes de particules chargées. Un modèle de m a g n é t o p l a s m a r é c e m m e n t élaboré [2] permet d'ailleurs de c o n f i r m e r un certain n o m b r e de nos observations. Cependant, c o n t r a i r e m e n t à ce qui est largement a f f i r m é dans la littérature, le fait de f o n c t i o n n e r à la résonance c y c l o t r o n i q u e électronique ne constitue pas un avantage en t e r m e s de bilan d'énergie. En f a i t , plus le c h a m p magnétique est intense, meilleur est le rendement énergétique. Les valeurs mesurées de la puissance absorbée par é l e c t r o n dans notre plasma ont été utilisées pour d é m o n t r e r que l'ensemble des m a g n é t o p l a s m a s HF obéissent aux m ê m e s règles physiques; ainsi, pour des conditions identiques de f o n c t i o n n e m e n t , le bilan énergétique demeure le m ê m e pour n ' i m p o r t e quel magnétoplasma HF. INTERACTION P L A S M A - S U R F A C E Nous avons étudié l'influence de la présence d'un substrat sur les caractéristiques en v o l u m e du plasma [3]. — Sans substrat • Acier « Al 10 ?J; . •ï Tin ^mm ... — Position r a d i a i t ( a n ) l'aluminium et de pression (7 mtorr). l'acier à plus haute Outre son influence sur la concentration en fluor atomique dans la décharge, la présence d'un substrat modifie de façon importante celle du soufre moléculaire tel qu'illustré sur la figure 3. Sur ce graphique est reportée la c o n c e n t r a t i o n de S 2 en f o n c t i o n de la position à partir du substrat pour d i f f é r e n t s matériaux. On y remarque un accroissement de la c o n c e n t r a t i o n de S 2 non seulement au voisinage i m m é d i a t du s u b s t r a t , mais également à grande d i s t a n c e de celui-ci. À partir de ces résultats ainsi que de mesures complémentaires e f f e c t u é e s en post-décharge temporelle, on a pu montrer que la présence d ' u n substrat, et particulièrement d ' u n substrat de t u n g s t è n e , influence l'ensemble de la chimie du réacteur, incluant le c o e f f i c i e n t de collage de ses parois d ' a c i e r . En o u t r e , nous avons pu m e t t r e en évidence que le soufre moléculaire est principalement détruit par impact électronique contrairement à ce qui a été observé dans une décharge capacitive de t y p e RIE (Reactive Ion Etching) [ 4 | , ceci résultant bien sûr du fait que le m a g n é t o p l a s m a est considérablement plus dense que la décharge de t y p e capacitif. GRAVURE SOUS-MICROMÉTRIQUE TUNGSTÈNE DU La source que nous avons conçue nous a permis d ' e f f e c t u e r , en utilisant un plasma de SF 6 , la g r a v u r e de m o t i f s sousmicrométriques de t u n g s t è n e à des t e m p é r a t u r e s de substrat variant de - 4 5 ° à + 1 5° I 5 | . A i n s i , nous avons pu reproduire des m o t i f s de très petites d i m e n s i o n s ( 0 , 2 //m) sans faire appel à une polarisation externe du s u b s t r a t . Dans une telle situation, les ions interagissant avec la surface ont une énergie relativement faible, ce qui réduit les d o m m a g e s causés à la surface. Une photographie de m o t i f s de 0 , 2 / / m est présentée sur la figure 4. La gravure demeure anisotrope tant que la pression est inférieure à une valeur seuil, f o n c t i o n de la t e m p é r a t u r e de la surface. Ainsi, pour une t e m p é r a t u r e de -20°, le seuil se situe autour de 0 , 7 5 m t o r r alors q u ' i l est plutôt de 1,5 m t o r r lorsque la t e m p é r a t u r e est abaissée à -45°. Figure 3. Densité de soufre moléculaire S, dans le plasma en présence de différents substrats. Le substrat est situé à -1 cm sur l'abscisse de ce graphique. Cette étude a été menée sur un plasma de SF 6 au moyen d'une méthode de fluorescence induite par laser et d'une méthoded'actinométrierésoluespatialement avec double procédure de normalisation; les e s p è c e s e x a m i n é e s sont, d'une part, le fluor atomique et, d'autre part, le soufre moléculaire S2, formé en grande concentration dans ce type de plasma. Les résultats de cette étude ont montré que le fluor atomique est fortement c o n s o m m é par le silicium, c o m m e on s'y attendait, contrairementaux matériaux plus inertes visà-vis d e s gaz fluorés, c o m m e l'aluminium ou l'acier inoxydable. Le tungstène, q u a n t a lui, n'a pas une influence systématique sur cette consommation qui peut être aussi importante que celle du silicium à basse pression (1 mtorr) ou comparable à celle de Figure 4. Photographie de motifs de tungstène ayant 0,2 /vm de largeur, obtenus à partir d'une image par microscope électronique. Les résultats o b t e n u s m o n t r e n t que notre réacteur possède d'excellentes caractéristiques. En particulier, le fait de ne pas devoir recourir à une polarisation auxiliaire du substrat pour atteindre une anisotropie parfaite c o n s t i t u e un atout majeur par rapport à d ' a u t r e s t y p e s de sources. Nous pensons que le fait que le c h a m p m a g n é t i q u e soit u n i f o r m e dans la région où se situe le s u b s t r a t , est à l'origine des excellentes p e r f o r m a n c e s de notre réacteur en t e r m e s de gravure. 14) I5| CONCLUSION Nous avons mis au point une nouvelle source de plasma dont les caractéristiques sont bien adaptées à la r e p r o d u c t i o n de m o t i f s s o u s - m i c r o m é t r i q u e s . Le travail que nous avons e f f e c t u é s ' e s t situé non seulement du point de vue des applications, mais également sur le plan de la physique plus f o n d a m e n t a l e , grâce à des études approfondies des propriétés de la décharge. Clairement, beaucoup reste à faire, particulièrement en t e r m e s de modélisation du plasma et de l ' i n t e r a c t i o n plasma-surface que nous n ' a v o n s pour l'instant q u ' é b a u c h é e s . A u cours des prochaines années, il nous restera à mieux maîtriser ces deux aspects en m e n a n t des études e x p é r i m e n t a l e s et théoriques de f r o n t . Bien sûr, ce défi est de taille, mais nous s o m m e s c o n v a i n c u s que cette approche est la seule qui soit valable pour améliorer notablement les procédés assistés par plasma. REMERCIEMENTS L'auteur tient à exprimer sa reconnaissance à t o u t e s les personnes, collaborateurs, stagiaires, étudiants et techniciens, ayant été impliquées à divers t i t r e s dans les t r a v a u x résumés ci-dessus. En particulier, les c o n t r i b u t i o n s de M M . M. Chaker (INRS-Énergie et Matériaux) et M . M o i s a n (Université de Montréal) sont v i v e m e n t remerciées ainsi que celles de M m e s C. Barbeau et I. Pérès et de M . E. Gat (stagiaires p o s t d o c t o r a u x ) . L'auteur tient également à exprimer sa g r a t i t u d e à M m e A . Dallaire et M . M . Fortin (étudiants de 2° cycle) et M M . F. Bounasri et L. StOnge (étudiants de 3° cycle). Enfin, une reconnaissance particulière est accordée à R. Grenier, R. L e m a y , R. M a r t e l et F. Roy pour leur e x c e p t i o n n e l soutien technique. |2| |3| J. Margot, M. Moisan et M. Fortin, "Power required to maintain an electron in a discharge: its use as a reference parameter in magnetized high frequency plasmas", J. Vac. Sci. Technol. A, 13, 2 8 9 0 (1995). I. Pérès, M. Fortin et J. Margot, "The radial structure of a magnetically confined surface wave plasma column", Phys. Plasmas, à paraître (mai 1 996) C. Barbeau, L. St-Onge, J . Margot, M. Chaker, N. Sadeghi et J.P. Booth, "On the mechanisms of S2 formation and loss in high-density SF6 plasmas", manuscrit en préparation. 27. Y.C. Lee, C.S. Chu, and E. Castano, Phys. Rev. B 27, 6 1 3 6 (1983). 28. S.V. Kravchenko, J.A.A.J. Perenboom, and V.M. Pudalov, Phys. Rev. B 44, 13513(1991). F. Bounasri, E. Gat, M . Chaker , M. Moisan, J. Margot et M.F. Ravet, "Highly anisotropie etching of submicrometer features on tungsten", J. Appl. Phys. 78, 6 7 8 0 (1995). 29. For a review see: G. Griiner, Rev. of Modern Physics, 60, 1129 (1988). 30. S.T. Chui and K. Esfarjani, Phys. Rev. Lett. 66, 6 5 2 (1991); S.T. Chui, Phys. Lett. A 180, 149 (1993). 31. K. Esfarjani, S.T. Chui, and Xiu Qiu, Phys. Rev. B 46, 4 6 3 8 (1992). 32. F. Ya. Nad and P. Monceau, Rev. B 46, 7 4 1 3 (1992). 33. B.G.A. Normand, P.B. Littlewood, and A.J. Millis, Phys. Rev. B 46, 3 9 2 0 (1992). 34. A. Gold, Phys. Rev. Lett. 54, 1079 (1985); A. Gold and W. Gotze, Phys. Rev. B 33, 2 4 9 5 (1986). 35. E. Abrahams, P.W. Anderson, D.C. L i c c i a r d e l l o , and T.V. Ramakrishnan, Phys. Rev. Lett. 42, 6 7 3 (1979). 36. Y. Liu, K.A. McGreer, B. Nease, D.B. Haviland, G. Martinez, J.W. Halley, and A.M. Goldman, Phys. Rev. Lett. 67, 2068 (1991). 37. S.V. Kravchenko, Whitney E. Mason, G.E. Bowker, J.E. Furneaux, V.M. Pudalov, and M. D'lorio, Phys. Rev. B 51, 7 0 3 8 (1995); S.V. Kravchenko, G.V. Kravchenko, J.E. Furneaux, V.M. Pudalov, and M. D'lorio, Phys. Rev. B 50, 8 0 3 9 (1994). 38. M. Ya. Azbel, Phys. Rev. B 45, 4 2 0 8 (1992). 39. M. D'lorio, D. Stewart, D. Brown, J.-P. Noël, and J. Scott-Thomas, Proceedings of ICPS-22, ed. D.J. Lockwood, World Scientific, Singapore, 1544 (1995). 40. M. D'lorio, D. Stewart, S. Deblois, D. Brown and J.-P. Noël, Proceedings of EP2DS-1 1, Nottingham, 4 5 3 (1995). 41. Unpublished data, B.D. McCombe (1995); preliminary calculations, P. Hawrylak (1995). 42. R.B. Dunford, R. Newbury, V.A. Stadnik, F.F. Fang, R.G.Clark, R.H. McKenzie, R.P. Starrett, E.E. Mitchell, P.J. Wang, J.O. Chu, K.E. Ismail and B.S. Meyerson, Proceedings of the Eleventh International Conference on the Electronic Properties of Two-Dimensional Systems (EP2DS-1 1), 449, Nottingham, August 1995. 43. S. Kivelson, D.H. Lee, and S.C. Zhang, Phys. Rev. B 46, 2 2 2 3 (1992). The Physics of Dilute . . . by M. D'lorio (continued from pg. 68) 1 4. H.W. Jiang, R.L. Willett, H.L. Stormer, D.C. Tsui, L.N. Pfeiffer and K.W. West, Phys. Rev. Lett. 65, 6 3 3 (1990). 15. V.J. Goldman, M. Santos, M. Shayegan, and J.E. Cunningham, Phys. Rev. Lett. 65, 2 1 8 9 (1990). 16. M.B. Santos, Y.W. Suen, M. Shayegan, Y.P. Li, L.W. Engel and D.C. Tsui, Phys. Rev. Lett. 68, 1188 (1992); M.B. Santos, J. Jo, Y.W. Suen, L.W. Engel and M. Shayegan, Phys. Rev. B 46, 13639 (1992). 17. K. Moulopoulos and N.W. Ashcroft, Phys. Rev. Lett. 69, 2 5 5 5 (1992). 18. L. Swierkowski, D. Neilson, and J. Szymanski, Phys. Rev. Lett. 67, 2 4 0 (1991). 19. M. D'lorio, V.M. Pudalov, and S.G. Semenchinsky, Phys. Lett. A 150, 422 (1990); M. D'lorio, V.M. Pudalov and S.G. Semenchinsky, Phys. Rev. B 46, 1 5 9 9 2 (1992); S.V. Kravchenko, V . M . Pudalov, J. Campbell, and M. D'lorio, JETP Lett. 54, 5 3 2 (1991). 20. V.M. Pudalov, S.G. Semenchinsky, and V.S. Edel'man, Sov. Phys. JETP 62, 1079 (1985); V.M. Pudalov, S.G. Semenchinsky, and V.S. Edel'man, JETP Lett. 41, 325 (1985). 21. S.T. Chui and B. Tanatar, Reports of the Bartol Research Institute, BA-930 2 (1993); T. Kawaguchi and M. Saitoh, Solid State Commun. 88, 765 (1993). RÉFÉRENCES |1| L. St-Onge, N. Sadeghi, J.P . Booth, J. Margot et C. Barbeau, "On the formation and loss of S? molecules in a reactive ion etching reactor operating with SF 6 ", J. Appl. Phys., 78, 6 9 5 7 (1995). 22. A.C. Eguiluz, A . A . Maradudin, and R.J. Elliott, Phys. Rev. B 27, 4 9 3 3 (1983). 23. H. Fukuyama and P.A. Lee, Phys. Rev. B 17, 5 3 5 (1978). 24. V.M. Pudalov and S.T. Chui, Phys. Rev. B 49, 1 4 0 6 2 (1994). 25. N.F. Mott, J. Non-Cryst. Solids 1, 1 (1968). 26. A.L. Efros and B.I. Shklovskii, J. Phys. C 8, L49 (1 975); Whitney Mason, S.V. Kravchenko, G.E. Bowker, and J.E. Furneaux, Phys. Rev. B 52, 7 8 5 7 (1995). La Physique au Canada Phys. mars à avril 1 9 9 6 71 EVALUATION OF THE ACID DEPOSITION AND OXIDANT MODEL W I T H OZONE AND SULPHUR DIOXIDE DATA FROM HIGH ELEVATION SITES by C . M . Bariic, R.S. Schemenauer, K. G. Anlauf and K.I.A. M a c Q u a r r i e A t m o s p h e r i c Environment Service, 4 9 0 5 D u f f e r i n Street, D o w n s v i e w , Ontario, C anada, M 3 H 5 T 4 ABSTRACT M i x i n g ratios of 0 3 , measured c o n t i n u o u s l y at t w o high elevation ( 8 5 0 m - m s l ) sites and one valley ( 2 5 0 m-msl) site in s o u t h e r n Quebec, Canada, during the s u m m e r of 1 9 8 8 and spring of 1 9 9 0 , and m i x i n g ratios of S 0 2 measured during the spring of 1 9 9 0 at one high elevation site are c o m p a r e d w i t h the predictions of the A c i d D e p o s i t i o n and Oxidant M o d e l ( A D O M ) . These sites are representative of rural areas d o w n w i n d of major anthropogenic source regions. This is the first evaluation of a regional-scale Eulerian transport and c h e m i s t r y model using data f r o m Canadian high elevation sites. The observations s h o w higher average 0 3 m i x i n g ratios in the spring t h a n the s u m m e r at b o t h the more northerly high elevation site and at the valley site. The model results for c o m p a r a b l e elevations s h o w a d i f f e r e n t seasonal t e n d e n c y , w i t h higher average 0 3 s e e n in the s u m m e r . In the s u m m e r the average modelled ozone m i x i n g ratio is about 14 ppbv higher t h a n the average measured ozone m i x i n g ratio for the m o r e northerly high elevation site, and 8 ppbv higher for the more s o u t h e r l y . In c o n t r a s t , the average modelled ozone m i x i n g ratio for t h e spring is 4 t o 6 ppbv l o w e r t h a n the average measured ozone m i x i n g ratio for all three sites. In b o t h seasons the range of the hourly ozone m i x i n g ratios observed at the high elevation sites is greater t h a n that predicted by the model. The measured and modelled sulphur dioxide hourly m i x i n g ratios, averaged over a f i v e w e e k period, are b o t h near 1 . 2 9 ppbv. In the spring, the diurnal variations in 0 3 and S 0 2 are w e l l represented by the model. The ability of the model t o predict days w i t h t h e upper or l o w e r quartile of 0 3 m i x i n g ratios is assessed using the True Skill Statistic (TSS), w i t h the highest skill (TSS = .77) s h o w n for l o w 0 3 events in the s u m m e r at the high elevation sites and the l o w e s t skill (TSS = .27) s h o w n for the valley site for b o t h high and l o w 0 3 episodes in the spring. The upper quartile 0 3 events at b o t h high elevation sites are predicted w i t h a TSS of 0 . 5 6 or greater for b o t h seasons. The model s h o w s poor skill at predicting the daily trends in S 0 2 . It is r e c o m m e n d e d that the s e n s i t i v i t y of the model o u t p u t t o the choice of boundary conditions for 0 3 , the m i x i n g processes in t h e l o w e r 1 k m of the atmosphere during the s u m m e r season, and t h e loss of 0 3 in the nocturnal inversion in s u m m e r be further investigated since these processes appear to significantly influence the ADOM predictions of ozone m i x i n g ratio. INTRODUCTION One current problem in a t m o s p h e r i c science is understanding the c o m p l e x 72 Physics in Canada M arch/Aprill 9 9 6 linkage b e t w e e n emissions of specific pollutant species and the resultant impact of the reaction products of these species on v e g e t a t i o n , animals, humans and c l i m a t e . To a large extent m a n ' s influence on the e n v i r o n m e n t is under the control of policy makers, and changes are possible w i t h the appropriate trade-off in e c o n o m i c s and lifestyle. T w o gas-phase species of current c o n c e r n in the l o w e r troposhere are ozone ( 0 3 - an oxidant and greenhouse gas) and sulphur dioxide ( S 0 2 - the precursor t o sulphate w h i c h is one of the primary causes of the acidity in precipitation and fog). M a t h e m a t i c a l air-quality models w h i c h incorporate complex chemistry and m e t e o r o l o g y have been developed t o provide guidance in f o r m u l a t i n g the m o s t appropriate control strategies for air pollutants w i t h regional i m p a c t s . The A c i d Deposition and Oxidant Model ( A D O M ) , a regional-scale Eulerian atmospheric transport and c h e m i s t r y model, was developed in a cooperative e f f o r t f u n d e d by the Canadian federal g o v e r n m e n t , the Province of Ontario, the Electric Power Research Institute, and the Federal Republic of Germany t o aid in the understanding of the impact of emission controls on acid deposition and ground-level oxidant concentrations ( V e n k a t r a m et al., 1 9 8 8 ; Karamchandani and V e n k a t r a m , 1 9 9 2 ) . Models such as A D O M m u s t be carefully evaluated w i t h field data so that their performance can be assessed before the predictions can be used w i t h confidence. The Eulerian Model Evalation Field Study (EMEFS) w a s carried out f r o m June 1 9 8 8 t o M a y 1 9 9 0 at surface sites in eastern N o r t h A m e r i c a to gather data for the evaluation of A D O M and the Regional A c i d Deposition Model, w h i c h w a s developed for use in the U . S . A . (e.g., Byun and Dennis, 1 9 9 5 ) . From July 15 t h r o u g h A u g u s t 3 1 , 1 9 8 8 and M a r c h 15 t h r o u g h April 3 0 , 1 9 9 0 , enhanced observations, including aircraft m e a s u r e m e n t s of 0 3 and S 0 2 m i x i n g ratios at altitudes f r o m 0 . 5 t o 5 k m , w e r e made in central Ontario t o support the model evaluation. Evaluations of the performance of A D O M during the s u m m e r period have been made w i t h aircraft data (Macdonald et al., 1993) and w i t h 0 3 profiles to 1 5 km obtained w i t h ozonesondes and differential absorption lidar (Hoff et al., 1 9 9 5 ) . Observations of meteorological parameters and ozone mixing ratios have been made at high elevation rural sites in forested areas of Quebec since 1 9 8 6 as part of the C h e m i s t r y of High Elevation Fog (CHEF) program (Schemenauer, 1986), with sulphur dioxide monitored at one site f r o m Sept. 1 9 8 9 t h r o u g h J u l y 1 9 9 0 . In this paper, data f r o m these sites, located 3 0 0 to 5 0 0 k m east of the aircraft s t u d y , are c o m p a r e d w i t h the results of A D O M for the t w o EMEFS enhanced o b s e r v a t i o n periods. W h e r e a s the aircraft observations consist of a c o m b i n a t i o n of horizontal transects up t o 2 5 0 k m for t i m e s of about 1 hour and vertical profiles over specific surface sites taken once or t w i c e per d a y , the CHEF data provide continuous hourly m e a s u r e m e n t s w h i c h permit sensitive t e s t i n g of the model at an altitude equivalent t o an elevated layer of t h e model throughout the long t i m e periods for w h i c h the model is e x p e c t e d t o have g o o d predictive skill (e.g. seasonal means, etc.). The CHEF high elevation surface sites are exposed t o higher w i n d speeds (Bridgman et al., 1994) and have generally higher m i x i n g ratios and smaller diurnal variations in 0 3 t h a n l o w elevation surface sites. The CHEF m o u n t a i n sites have long records of ozone and meteorological parameters, as w e l l as f o g and precipitation data (Schemenauer et al., 1 9 9 5 ) , w h i c h can be v e r y c o m p l e m e n t a r y t o data f r o m standard surface n e t w o r k s , aircraft and remote sensing in further model evaluation. METHOD The M e a s u r e m e n t s The 0 3 m i x i n g ratios w e r e measured at Roundtop M o u n t a i n (RTR, 4 5 ° 0 5 ' 1 7 " N , 7 2 ° 3 3 ' 0 9 " W , 8 4 5 m - m s l ) , a nearby valley site (RTV, 4 5 ° 0 4 ' 3 2 " N , 7 2 ° 4 0 ' 3 3 " W , 2 5 0 m-msl) and Mont Tremblant (MT, 4 6 ° 1 2 ' 5 0 " N, 7 4 ° 3 3 ' 2 0 " W , 8 6 0 m - M S L ) . The S 0 2 m e a s u r e m e n t s w e r e made at RTR. These sites are northeast of w i d e s p r e a d sources of anthropogenic pollution in N o r t h A m e r i c a (Benkovitz et al., 1 9 9 4 ) . M i n i m a l anthropogenic a c t i v i t y is seen t o the north of M T , and this site is considered to be representative of background conditions w h e n under the influence of northerly air. Ozone w a s d e t e c t e d w i t h TECO 4 9 u . v . photometric analyzers equipped with automatic pressure and temperature c o m p e n s a t i o n , and calibrated w i t h sources traceable t o NIST transfer standards. Sulphur dioxide w a s m o n i t o r e d w i t h a TECO 4 3 A pulsed fluorescence analyzer w h i c h w a s calibrated w i t h a p e r m e a t i o n tube dilution s y s t e m . The sample inlets w e r e located 3 m above g r o u n d level. The signals f r o m the 0 3 and S 0 2 analyzers w e r e sampled every 5 seconds and recorded on a data logger as 15-minute averages. For this analysis, hourly averages w e r e derived for b o t h species. Due t o routine zeroing of the S 0 2 analyzer for 3 0 minutes w i t h i n each even hour (UTC) hourly averages are available for odd hours only. The d e t e c t i o n limit for S 0 2 is estimated at 0 . 1 parts per billion by v o l u m e (ppbv) and the hourly 0 3 m i x i n g ratio is k n o w n t o 1 ppbv. For the t i m e periods considered, the CHEF data recovery is 1 0 0 % for 0 3 and S 0 2 , except for the s u m m e r of 1988 when 03 m e a s u r e m e n t s are available only 9 0 % of the t i m e at RTR and 9 8 % of the t i m e at RTV. In this evaluation, model results are not included for periods of missing observations. The e f f e c t of the e x c l u s i o n of one-half the modelled results for S 0 2 w a s investigated. The daily averages of S 0 2 mixing ratio w e r e calculated w i t h results for all hours and t h e n again w i t h the odd hours o n l y . The t w o sets of values were correlated with an r2 exceeding 0 . 9 9 9 and w i t h mean, median and m a x i m u m d i f f e r e n c e s of 0 . 0 2 , 0 . 0 1 and 0 . 1 p p b v , r e s p e c t i v e l y . The locations of the high elevation sites w e r e c h o s e n t o provide exposure t o the prevailing w i n d d i r e c t i o n s , and t o be relatively elevated and isolated c o m p a r e d w i t h the surrounding terrain. These sites are regularly i m p a c t e d by l o w level s t r a t u s and c u m u l u s , and it is clear f r o m the m o t i o n of these cloud fields t h a t the sites are under the influence of air d r i v e n by s y n o p t i c w i n d s c h a r a c t e r i s t i c of elevated altitudes. Upslope and d o w n s l o p e w i n d s are i m p o r t a n t only under the c o n d i t i o n of v e r y l o w s y n o p t i c w i n d s . The a m o u n t of orographic lift is small c o m p a r e d w i t h the m i x i n g in the boundary layer, and the high elevation sites w i l l be located w i t h i n the mixed boundary layer during most a f t e r n o o n periods. The M o d e l and Data A n a l y s i s The model d o m a i n c o n s i s t s of 3 3 x 3 3 grid squares, each a p p r o x i m a t e l y 127x127 k m 2 , c o v e r i n g eastern Canada and the United States, w i t h 12 layers in the vertical spanning 1 t o 1 0 , 0 0 0 m-agl. A grid cell refers t o the v o l u m e occupied by one layer in one grid square. The o u t p u t consists of hourly averages of a w i d e variety of c h e m i c a l species, including 0 3 and S 0 2 , w h i c h represent the v o l u m e average for the grid cell. The version of the model under e v a l u a t i o n is A D O M 2Bi (Macdonald et al., 1 9 9 3 ) , w h i c h w a s run for b o t h EMEFS intensive t i m e periods using the observed m e t e o r o l o g y . Model results for J u l y 15 to A u g u s t 3 1 , 1 9 8 8 and M a r c h 25 t o April 3 0 , 1 9 9 0 are used for the c o m p a r i s o n . The m o d e l uses a single g r o u n d height representative of the average t o p o g r a p h y in the grid square. For the grid squares considered here the g r o u n d height used for the model is 4 1 6 m msl near M T and a p p r o x i m a t e l y 4 7 0 m - m s l near RTR and RTV. In s o u t h e r n Quebec the actual topography w i t h i n a grid square is c o m p l e x , (e.g. the sites RTR and RTV are separated by about 10 km in the horizontal, and 6 0 0 m in the vertical) and the correct application of the o b s e r v a t i o n s t o model e v a l u a t i o n is open t o s o m e interpretation. Two scenarios are considered here. A c o m p a r i s o n is made considering RTV t o be representative of the l o w e s t layer of the model and RTR and M T t o be representative of c o n d i t i o n s near 6 0 0 m-agl. This approach is f a v o u r e d by the authors. The CHEF data f r o m the m o u n t a i n t o p sites w e r e c o m p a r e d w i t h layers f i v e and six of the model (hereafter M 5 and M 6 ) , w h i c h span 4 1 6 to 6 4 6 and 6 4 6 to 1 0 0 0 m-agl respectively. Data f r o m the valley site w e r e c o m p a r e d w i t h layer one of the model ( M 1 ) , w h i c h represents 1 t o 5 6 . 2 m-agl. M T is located near the centre of grid square 1 9 , 2 0 . A p p r o x i m a t e l y 2 0 0 km t o the s o u t h e a s t , the RTR and RTV sites are centrally located on the n o r t h - s o u t h border of grid squares 2 0 , 1 9 and 2 1 , 1 9 . Data f r o m M T w e r e c o m p a r e d w i t h model predictions for grid square 1 9 , 2 0 ( M T - M 5 , M T - M 6 ) and model results for grid squares 2 0 , 1 9 and 2 1 , 1 9 w e r e averaged (RT-M1, R T - M 5 , RT-M6) to be c o m p a r e d w i t h the data f r o m the Roundtop sites. It w i l l be s h o w n t h a t the model predictions for layers 5 and 6 are similar, and in general w i l l not be distinguished f r o m each other in the figures. A second approach t o the evaluation of the m o d e l , w h i c h considers b o t h RTV and RTR t o be surface sites in the layer M 1 , w i l l be discussed. In this case these t w o sites represent the topographic e x t r e m e s for sites located w i t h i n the grid square, and the observations are bounds for conditions in this layer. The hourly-averaged observations w e r e c o m p a r e d w i t h the model predictions b o t h as f r e q u e n c y d i s t r i b u t i o n s and as scatterplots. Diurnal variability w a s established by averaging the observations or model results for each of the 2 4 hours in the day over the entire s u m m e r or spring s t u d y period. The ability of the model t o predict days w i t h high or l o w 0 3 m i x i n g ratios w a s assessed w i t h the True Skill Statistic (TSS) (Flueck, 1987) as f o l l o w s . To allow the t i m e trends t o be evaluated independently of the absolute m i x i n g ratios seen, daily-averaged predictions for each of M T - M 5 , R T - M 5 and R T - M 1 , and data f r o m M T , RTR and RTV w e r e ranked and tagged as in the upper or l o w e r quartile for each set (i.e. the t w o ranking schemes: top 2 5 % or remaining 7 5 % ; b o t t o m 2 5 % or remaining 7 5 % ) . Since, as w i l l be seen, model layers 5 and 6 see the same t i m e series of events, the observations and model predictions w e r e related as M T w i t h M T - M 5 , RTR w i t h RT-M5 and RTV w i t h R T - M 1 . In addition, t o d i r e c t l y compare the skill of the model w i t h the regionality of the ozone events, observations of 0 3 m i x i n g ratio f r o m RTR w e r e used to " p r e d i c t " c o n d i t i o n s at MTR and RTV. The linkage b e t w e e n the model predictions for the grid squares of interest was investigated by applying the TSS t o results f r o m M T - M 5 and RT-M5. The TSS is based both on correct predictions (hits -e.g. both the model predicts and the o b s e r v a t i o n s s h o w a day in the t o p 2 5 % ) and false predictions (misses - e.g. the model predicts an upper quartile day but the observations do not s h o w this t o be true). Values of the TSS of 1, 0 , and -1 indicate perfect predictive capability, no predictive skill, and the w r o n g forecast every t i m e , respectively. Incorrectly predicting 1 0 % , 4 0 % and 5 0 % of the t i m e can g i v e TSS values near 0 . 8 , 0 . 2 and 0, respectively. RESULTS A N D DISCUSSION Ozone There is a marked d i f f e r e n c e in the f r e q u e n c y d i s t r i b u t i o n s of the measured 0 3 hourly m i x i n g ratios seen in the s u m m e r (Figure 1) and spring (Figure 2) intensive periods. W h e r e a s in the spring period the measured 0 3 m i x i n g ratios approach a normal d i s t r i b u t i o n at all sites, w i t h a w e l l - d e f i n e d peak at 4 5 to 5 0 ppbv for the high elevation sites and at 35 t o 4 0 ppbv for RTV, the distributions for the s u m m e r period are substantially broadened and s k e w e d t o l o w e r 0 3 m i x i n g ratios, peaking at 2 0 t o 25 ppbv at M T , 3 0 t o 35 ppbv at RTR, and 10 to 25 ppbv at RTV. The number of hours in w h i c h the m i x i n g ratio of ozone exceeded the 1 hour Canadian A m b i e n t Air Quality O b j e c t i v e of 8 2 ppbv is small for all sites. The highest 0 3 m i x i n g ratios are seen at M T in the s u m m e r w i t h 4 hours of data reaching 9 0 t o 128 ppbv. C o n t r a r y t o the observations, the model results, also s h o w n in Figures 1 and 2, are s k e w e d t o w a r d higher 0 3 m i x i n g ratios in the s u m m e r period, and do not reproduce the l o w e r 0 3 m i x i n g ratios seen at t h a t time. For both periods, the modelled d i s t r i b u t i o n s for the high elevation sites appear to be composites of two d i s t r i b u t i o n s , one tending t o f o l l o w the observations, and the second providing a peak at l o w 0 3 m i x i n g ratios in the spring and at high 0 3 m i x i n g ratios in the s u m m e r . The closest agreement for the d i s t r i b u t i o n s is seen b e t w e e n RTV and RT M 1 for the spring season, w i t h the model results close to normal, but slightly s k e w e d to l o w e r m i x i n g ratios. The model predictions are more narrowly distributed than the observations in the s u m m e r for all sites, and do not reproduce the tail at higher 0 3 m i x i n g ratios seen at the high elevation sites in the spring. O z o n e Mixing Ratio (pptr Fig. 1 Frequency distributions for the hourly ozone mixing ratios which were measured (solid bars! and modelled (hatched bars) for July 15 to August 31, 1 988. Values for M5 and M6 are shown for MT and RTR. Since A D O M gives an average over a grid cell it can be e x p e c t e d to be less variable than m e a s u r e m e n t s made at a particular site. This may explain the inability of the model t o capture tails of the d i s t r i b u t i o n s adequately. However it is clear that the model has consistent difficulty, o v e r d i s t a n c e La Physique au Canada mars à avril 1 9 9 6 73 scales of 200 k m a n d a range of altitudes, in predicting 0 3 mixing ratios greater than 70 ppbv for both seasons. species. If the M T m e a s u r e m e n t s in t h e spring ( s h o w n in Figure 2a) are assumed t o be normally distributed, t h e n the e s t i m a t e d error in that average is 0 . 3 p p b v . TABLE 1 A v e r a g e O . mixing ratios (ppbv) for the s u m m e r 1 9 8 8 a n d spring 1 9 9 0 periods. The standard d e v i a t i o n is s h o w n in brockets. number of hours Ozone Mixing Ratio (ppbv) Fig. 2 Frequency distributions for the hourly ozone mixing ratios which were measured (solid bars) and modelled (hatched bars) for March 25 to April 30, 1990. Values for M5 and M6 are shown for MT and RTR. Scatter plots relating the hourly observations at RTR with model predictions for R T - M 5 are s h o w n in Figure 3. Similar trends (not s h o w n ) are seen for M 6 predictions for RTR and for M 5 and M 6 at M T . In t h e s u m m e r the points are generally clustered above the 1:1 line, s h o w i n g model o v e r p r e d i c t i o n . In the spring the points fall generally below the 1:1 line, s h o w i n g model underprediction. The relationships are not linear, but curve at higher 0 3 m i x i n g ratios, w i t h the model predicting l o w e r hourly m i x i n g ratios than observed for b o t h t i m e periods. Summer 50 100 M e a s u r e d Ozone (ppbv) Fig. 3 S P™9 50 100 Measured Ozone (ppbv) Measured and modelled hourly 0 3 mixing ratios for RTR and RT-M5 for the summer and spring intensive periods. The 1:1 line is shown for each plot. The measured and modelled average hourly 0 3 m i x i n g ratios for the s u m m e r and spring intensive periods for the three sites are g i v e n in Table 1. Values calculated in the same manner as standard deviations are s h o w n for each average, even t h o u g h s o m e of t h e d i s t r i b u t i o n s are far f r o m normal (Figures 1 and 2). The large range seen in the data does not indicate an inability t o d e t e r m i n e the average precisely due t o s o m e r a n d o m error, but rather s h o w s the w i d e range of m i x i n g ratios actually seen due t o the e f f e c t s of d i f f e r e n t m e t e o r o l o g y on the c h e m i c a l processing and transport of the pollutant 74 Physics in Canada M arch/Aprill 9 9 6 observed zone — m o d e l l e d zone Mb M6 summer MT 1147 RTR 1 0 3 2 RTV 1124 35 43 28 (16) (16) (17) 48 50 spring MT 888 RTR 8 8 8 RTV 8 8 8 43 44 36 (9) (10) (9) 37 39 (11) 5 0 (10) 5 2 M1 (10) (10) 3 2 (12) (9) (8) 39 41 (9) (9) 32 (9) The data in Table 1 s h o w that the largest measured seasonal difference in average 0 3 m i x i n g ratio w a s seen at RTV and M T , w i t h 8 ppbv more 0 3 seen in t h e spring period; a small d i f f e r e n c e of 1 ppbv w a s seen at RTR. Consistent w i t h earlier observations (Schemenauer and A n l a u f , 1987) a positive gradient is seen w i t h elevation, and the more northerly M T site tends t o have l o w e r s u m m e r t i m e 0 3 m i x i n g ratios on average t h a n the RTR site. The model o v e r p r e d i c t s the average ozone m i x i n g ratio seen in the s u m m e r in M 5 and M 6 by about 1 4 ppbv at M T , 8 ppbv at RTR and 4 ppbv at RTV. For the spring season the model underpredicts the average ozone m i x i n g ratio by about 5 ppbv at M T and 4 ppbv at RTR and RTV. No seasonal difference is predicted for the average 0 3 m i x i n g ratio for RTV. The model does s h o w a positive gradient w i t h elevation, and lower m i x i n g ratios at M T . The mean diurnal variation in 0 3 m i x i n g ratio for the m e a s u r e m e n t s and model results is s h o w n in Figure 4. The model o v e r p r e d i c t i o n in the s u m m e r period and underprediction in the spring period can be seen t o be quite u n i f o r m t h r o u g h o u t the day at the high elevation sites. The summer data at RTV show good agreement w i t h the model predictions in the late afternoon. The observed ozone m i x i n g ratios for the high altitude sites s h o w the m a x i m a for the diurnal cycle o c c u r r i n g near 2 UTC and 21 t o 2 3 UTC for the s u m m e r and spring periods, respectively, and the minima occurring near 14 UTC and 15 t o 19 UTC in the s u m m e r and spring periods, respectively. The amplitude of the diurnal variation at M T is 9 . 7 and 4 . 8 ppbv in the s u m m e r and spring periods, respectively. The amplitudes seen at RTR are about half a ppbv smaller. The predicted M 5 and M 6 ozone m i x i n g ratios for the high altitude sites s h o w the diurnal cycle occurring w i t h a p p r o x i m a t e l y the same t i m i n g , but w i t h smaller amplitude in the summer ( a p p r o x i m a t e l y 2 ppbv) and at M T in the spring ( 2 . 4 ppbv). The t i m i n g of the observed and predicted diurnal variation at RTV agrees w e l l , w i t h the m a x i m a near 18 UTC and 21 UTC in the s u m m e r and spring periods, respectively, and the minima near 10 UTC. The amplitude of the signal at RTV is measured t o be 2 1 . 6 ppbv in the s u m m e r period, c o m p a r e d w i t h a predicted value of 1 6 . 4 ppbv. The agreement is better in the spring period, w i t h a measured amplitude of 11.8 ppbv c o m p a r e d w i t h a predicted 1 0 . 6 p p b v . Since the m i n i m a at the high elevation sites do not occur at night it is clear that these sites are not under the influence of the nocturnal inversion in the same w a y as RTV, but instead are under the influence of tropospheric air continually t r a n s p o r t e d t o the site. It is possible that the diurnal m i n i m u m observed at M T and RTR is due t o 0 3 - d e p l e t e d air f r o m below the nocturnal inversion m i x i n g up f r o m the surface in response t o surface heating. This mechanism would lead t o a larger amplitude in the s u m m e r , as observed at all sites, because d e p o s i t i o n t o the v e g e t a t i o n at the surface is stronger during the nocturnal inversion in the s u m m e r t h a n t o the s n o w covered surface in t h e spring. This is consistent w i t h RTV, w h i c h s h o w s the strongest a f t e r n o o n peak and the sharpest decline at night, being b e l o w the nocturnal inversion w h i l e RTR and M T are above. This diurnal behavior of the high elevation sites supports the use of data f r o m these sites t o evaluate the model in elevated layers. Hour (UTC) Fig. 4 Diurnally averaged 0 3 mixing ratio for MT (top panel), RTR (middle panel) and RTV (lower panel). Local Eastern Standard time is given by UTC - 5 hours. The lateral boundary conditions for the model (Michael Moran, personal c o m m u n i c a t i o n ) for the s u m m e r period for 0 3 w e r e m i x i n g ratios of 4 1 . 9 , 6 0 . 2 and 6 1 . 9 ppbv for layers 1, 5 and 6, respectively, along the w e s t e r n grid boundary and 3 1 . 2 , 3 2 . 8 and 3 3 . 7 ppbv for layers 1, 5 and 6, respectively, for the northern and eastern boundaries, and m o s t of the s o u t h e r n boundary. Three grid squares in the s o u t h e r n boundary, those over Florida, w e r e g i v e n the same conditions as the w e s t e r n boundary. The lateral boundary conditions for the spring period w e r e 0 3 m i x i n g ratios of 4 4 . 9 , 4 4 . 1 and 4 5 . 3 ppbv for layers 1, 5 and 6, respectively, along the boundaries in the s o u t h w e s t e r n corner and 3 0 . 1 , 3 1 . 6 and 3 2 . 5 ppbv for layers 1, 5 and 6, respectively, for the northwestern, northern, eastern and southeastern boundaries. Figures 1 and 2 s h o w that the predicted model m i x i n g ratios in layers 5 and 6 have a peak w i t h i n the range defined by the boundary c o n d i t i o n s for each season. This c o m p a r i s o n suggests that for m u c h of the t i m e the ozone modelled for M 5 and M 6 at these locations s i m p l y reflects transport and m i x i n g of the ozone w h i c h w a s input as a boundary c o n d i t i o n at that layer. If this is indeed the case t h e n the o b s e r v a t i o n s indicate that l o w e r input c o n c e n t r a t i o n s should be specified in the s u m m e r season, and higher in the spring t h a n c u r r e n t l y in use, and the sensitivity of the model results t o the choice of boundary c o n d i t i o n s should be investigated. predicted values lie at l o w e r m i x i n g ratios t h a n the observations. Higher variability, on a daily averaged basis, is seen for 0 3 in the s u m m e r period t h a n in the spring period. The TSS test of t i m e trends of measured values and model predictions for all sites is s h o w n in Table 2. The model shows its highest success (TSS a p p r o x i m a t e l y 0 . 7 7 ) in predicting periods w i t h l o w ozone m i x i n g ratio at both RTR and M T in the s u m m e r , w i t h the next highest success (TSS of 0 . 6 7 ) for l o w ozone periods at RTV in the s u m m e r . The upper quartile d a y s are predicted w i t h a TSS of at least 0 . 5 6 for MT and RTR over both periods. The poorest p e r f o r m a n c e is seen for RTV in the spring. A n o t h e r f a c t o r w h i c h could c o n t r i b u t e t o the o v e r p r e d i c t i o n of 0 3 m i x i n g ratios in the summer period is model u n d e r e s t i m a t i o n of the 0 3 d e s t r u c t i o n at night at l o w elevations. U n f o r t u n a t e l y it is not clear if the d i f f e r e n c e seen at night b e t w e e n the average measured and modelled m i x i n g ratios in the s u m m e r in layer 1 is due to the model u n d e r e s t i m a t i n g the losses in the n o c t u r n a l boundary layer or to the limited vertical resolution of the model (Byun and Dennis, 1 9 9 5 ) . In addition, the w e a k m i x i n g in the l o w e r layers of the m o d e l as suggested by c o m p a r i s o n of the diurnal v a r i a t i o n at higher layers, w o u l d c o n t r i b u t e to the transport of 0 3 m i x i n g ratios characteristic of the initial boundary c o n d i t i o n s . The TSS indicates thaï the model d e m o n s t r a t e s a strong regionality in ozone episodes in layer 5, w i t h a TSS > 0 . 8 for b o t h seasons for l o w ozone and a TSS near 0 . 7 for high ozone w i t h results for RT-M5 used t o predict M T - M 5 . The TSS supports the use of data f r o m M T and RTR as representative of regional scale ozone episodes since RTR can " p r e d i c t " the conditions at M T on a large f r a c t i o n of days (TSS range b e t w e e n 0 . 5 6 and 0 . 7 6 ) . These applications of the TSS give a standard by which to judge the p e r f o r m a n c e of the model for the high elevation sites. In general the model can predict the t i m i n g of periods w i t h high and l o w ozone as observed at the high elevation sites over distances of 2 0 0 k m . The interpretation of the TSS for daily averages at RTR and RTV is c o m p l i c a t e d by the fact t h a t the valley site is subject to the stronger diurnal variation. predicted d i s t r i b u t i o n for the first layer. The s u m m e r average m i x i n g ratio in the l o w e s t layer could be reproduced by a suitable averaging of the RTV and RTR data, but any such averaging for the spring season would still lead to an underprediction. (a) §f 100 m S 0 2 Mixing Ratio (ppbv) (b) Measured S 0 2 Mixing Ratio (ppbv) TABLE 2 T r u e Skill Statistic c a l c u l a t e d o n 4 8 d a y s of d a t a for M T a n d R T V , a n d 4 4 d a y s of d a t a for RTR in the s u m m e r a n d 3 7 d a y s of d a t a for all sites in the spring for the l o w e r (L) a n d upper (H) quartiles of d a t a . Summer L Fig. 5 19 Aug 26-Aug Spring H 0.76 0.64 0.56 0.56 MT-M5 to^wedict 0.78 0.56 0.41 0.56 RT-M1 to predict RTV 0.67 0.44 0.27 0.27 0.76 0.64 0.56 0.71 0.52 0.76 0.56 0.27 RTR to predict RTV 12-Aug Spring L RT-M5 to p r e d i c t RTR RTR to p r e d i c t S-Aug Summer H 2-Sep Ozone data for the summer intensive period showing measured (solid symbol, solid line) and modelled (open symbol, dashed line) daily averages. Both M5 and M6 are shown for for MT and RTR. Time series of the measured and modelled daily averages of 0 3 m i x i n g ratio are s h o w n in Figure 5 for the s u m m e r intensive period. The regional nature of the ozone e v e n t s can be seen by c o m p a r i n g the measured c u r v e s f r o m the d i f f e r e n t sites. The trends w i t h t i m e for the measured and predicted daily-averaged ozone m i x i n g ratios for the spring period (not s h o w n ) are similar t o those s h o w n in Figure 5 w i t h the e x c e p t i o n that the RT-M5 to predict MT-M5 If RTR and RTV are b o t h considered as sites in M 1 the f o l l o w i n g conclusions reached above w i l l still be valid. Any c o m b i n a t i o n of the d i s t r i b u t i o n s observed during the s u m m e r period at RTR and RTV w i l l lead t o a d i s t r i b u t i o n that indicates more hours w i t h 0 3 m i x i n g ratio above 6 0 ppbv t h a n does the predicted d i s t r i b u t i o n RT-M1. Any combination of the d i s t r i b u t i o n s observed at these sites in the spring w i l l lead t o a d i s t r i b u t i o n w h i c h peaks at higher 0 3 m i x i n g ratios than the Fig. 6 Observations and model results for SO? mixing ratios at RTR during the spring period: a) frequency distribution of measured (solid) and modelled (hatched) hourly data, bl scatter plot of hourly data with RT-M5 results, c) time series of measured hourly averages (dashed line), measured daily averages (solid symbol/line), and modelled daily averages (open symbol/line) and d) diurnally averaged measurements (solid symbols) and model results (open symbols). The results for both RT-M5 and RT-M6 are shown for all plots except b) which shows RT-M5 only. Sulphur Dioxide The d i s t r i b u t i o n of measured S 0 2 m i x i n g La Physique au Canada mars à avril 1 9 9 6 75 ratios in the spring period is s k e w e d , w i t h the m o d e in the range 0 t o 0 . 5 ppbv, over half t h e data w i t h i n 1 ppbv of zero, and m a x i m u m values reaching 8 ppbv (Figure 6a). The small negative values are due t o variability in t h e zero c o r r e c t i o n . The d i s t r i b u t i o n for the A D O M predictions, also shown in Figure 6a, is a good representation of the measurements. H o w e v e r , an hour by hour c o m p a r i s o n of the o b s e r v a t i o n s and M 5 results (Figure 6b) s h o w s considerable scatter. Results for M 6 are similar. The t i m e series of daily averages of measured and modelled S 0 2 m i x i n g ratio (Figure 6c) s h o w s periods w i t h v e r y g o o d a g r e e m e n t , as w e l l as p e r i o d s w i t h o v e r p r e d i c t i o n and underprediction. The TSS indicates poor predictive capability for the model w i t h values of 0 . 2 7 for the upper quartile d a y s and 0 . 1 2 for t h e l o w e r quartile days. The average S 0 2 m i x i n g ratios over the f i v e w e e k period w e r e 1 . 2 9 , 1 . 2 9 and 1 . 2 5 ppbv for t h e measured, M 5 and M 6 values r e s p e c t i v e l y , s h o w i n g excellent a g r e e m e n t . The diurnal v a r i a t i o n in S 0 2 m i x i n g ratio (Figure 6d) has an amplitude of 0 . 5 p p b v , and a m a x i m u m near 1 4 UTC in both the model results and m e a s u r m e n t s , indicating t h a t on average in the spring season S 0 2 , as 0 3 , is appropriately m i x e d t h r o u g h t h e l o w e r troposphere. The above observations indicate that the e m i s s i o n of t h e p r i m a r y pollutant S 0 2 and its subsequent transport t o s o u t h e r n Quebec are w e l l represented by A D O M over the full spring period. H o w e v e r , the predicted t i m i n g of episodes of high S 0 2 is poor b o t h on an hourly and daily basis. This is not surprising since, unlike 0 3 w h i c h is gradually produced f r o m a c o m p l e x mix of pollutants in t h e l o w e r troposphere, S 0 2 is introduced into t h e a t m o s p h e r e at elevated levels f r o m a v a r i e t y of point sources t o the s o u t h and w e s t of t h e sites. Small s h i f t s in w i n d d i r e c t i o n or changes in vertical stability of t h e a t m o s p h e r e relative t o the model resolution can cause the plumes t o hit or miss t h e g r i d cells being evaluated. There is no observational evidence presented here t o indicate that t h e S 0 2 episodes seen at RTR on an hourly or daily basis are routinely representative, o n these t i m e scales, of c o n d i t i o n s over the entire g r i d cell. Additional High Measurements Elevation Ozone The results f r o m the CHEF sites can be compared with results of ozone m e a s u r e m e n t s at high elevation sites in the eastern U.S. Aneja and Li ( 1 9 9 2 ) s h o w diurnal variations at W h i t e f a c e M o u n t a i n , N . Y . ( 1 4 8 3 m - m s l ) and M t . Moosilauke, N.H. ( 1 0 0 0 m-msl). In the s u m m e r of 1 9 8 8 ( M a y t o October) b o t h sites s h o w m i n i m a f r o m about 0 9 0 0 t o 1 2 0 0 local t i m e and broad m a x i m a e x t e n d i n g f r o m about 1 8 0 0 t o 2 4 0 0 . This is v e r y similar t o t h e diurnal patterns s h o w n in Figure 4 for the t w o CHEF m o u n t a i n sites during t h e A D O M period. These diurnal patterns are c o n s i s t e n t w i t h w h a t other authors 76 Physics in Canada M arch/Aprill 9 9 6 have reported for high elevation sites, e.g., Lefohn et al. ( 1 9 9 0 ) for Whiteface M o u n t a i n and Aneja et al. ( 1 9 9 4 ) for t w o elevations ( 2 0 0 6 and 1 7 6 0 m-msl) in N o r t h Carolina. Aneja and Li ( 1 9 9 2 ) report the A u g u s t 1 9 8 8 W h i t e f a c e M o u n t a i n mean ozone c o n c e n t r a t i o n t o be 5 0 . 3 ppbv. This is similar t o , but higher t h a n , the value g i v e n for the A D O M period for the CHEF RTR site in Table 1 (43 ppbv). W h i t e f a c e M o u n t a i n is 1 4 0 k m s o u t h w e s t of RTR and at an elevation 6 3 0 m higher. In general, w h e r e c o m p a r i s o n s can be made, and considering the general s o u t h t o north decrease in ozone c o n c e n t r a t i o n s in eastern N o r t h A m e r i c a , the measured ozone c o n c e n t r a t i o n s at the t w o CHEF m o u n t a i n sites seem representative of values t o be e x p e c t e d at 8 5 0 m - m s l and should provide a good basis for c o m p a r i s o n w i t h the A D O M model. C o m p a r i s o n of M o d e l Evaluations The results for the s u m m e r period g i v e n above agree w e l l w i t h conclusions d r a w n for model intercomparisons for the same time period for southern Ontario. M a c d o n a l d et al. ( 1 9 9 3 ) concluded that the model can predict the t i m i n g of episodes in the l o w e r troposphere ( 2 5 0 t o 2 2 0 0 m-agl), that the full range of observed 0 3 m i x i n g ratios w a s not seen by t h e model, and that the observed vertical m i x i n g of pollutants w a s underpredicted by the model. Hoff et al. ( 1 9 9 5 ) concluded t h a t A D O M treats the t e m p o r a l behaviour of 0 3 fairly w e l l in the l o w e r troposphere but not near the surface, t h a t the model p e r f o r m s best during simple s y n o p t i c conditions with a relatively clean a t m o s p h e r e , and t h a t local c h e m i s t r y appears t o be secondary t o larger-scale dynamic motions through the free troposphere in controlling the average ozone c o n c e n t r a t i o n . The data and m e t h o d used for t h e evaluation g i v e n in this paper permit more sensitive and q u a n t i t a t i v e testing of the model in layers 5 and 6, and w i l l be appropriate for evaluating the e f f e c t of proposed changes t o the model. CONCLUSIONS The application of the True Skill Statistic t o the ozone m e a s u r e m e n t s at the high elevation sites c o n f i r m s that periods of high and l o w ozone m i x i n g ratio occur over d i s t a n c e scales of 2 0 0 k m in s o u t h e r n Quebec. C o m p a r i s o n of the ozone data f r o m the Canadian sites w i t h results f r o m other m o u n t a i n observations in eastern N o r t h A m e r i c a s h o w decreasing ozone c o n c e n t r a t i o n s w i t h increasing latitude. These long t e r m measurement programs can supply valuable continuous m e a s u r e m e n t s for the evaluation of air c h e m i s t r y models. observed values in b o t h seasons, and w h i c h give higher m i x i n g ratios on average in the s u m m e r t h a n in the spring. Thus the seasonal dependence of the 0 3 m i x i n g ratio is d i f f e r e n t for t h e model and the observations. This d i f f e r e n c e m a y be related t o the choice of boundary conditions, and t o u n d e r e s t i m a t i o n of the depletion of 0 3 near the surface at night in the s u m m e r . The A D O M m i x i n g ratios for b o t h t h e s u m m e r and spring t i m e periods v e r y rarely exceed 6 0 ppbv and are never greater t h a n 7 0 ppbv w h e r e a s the m e a s u r e m e n t s reach and exceed 9 0 ppbv at t i m e s . Thus t h e model cannot reproduce the m a g n i t u d e of events w i t h high 0 3 m i x i n g ratio. The prediction of the t i m i n g of e v e n t s is often evaluated simply by visual inspection, w h i c h tends t o fix the eye on the major peaks in the t i m e series, especially if agreement is f o u n d b e t w e e n the observations and predictions for these peaks. The application of an o b j e c t i v e numerical measure of agreement, s u c h as the True Skill Statistic, is r e c o m m e n d e d . For the t i m e s investigated here, it is s h o w n that the model has the greatest skill in predicting the t i m i n g of l o w ozone periods at the high elevation sites. The measured and modelled diurnal variations in 0 3 are similar in the t i m i n g of the m a x i m a and m i n i m a , indicating that t h e m i x i n g in the boundary layer is occurring at the right t i m e of d a y , and depletion of ozone is occurring in the nocturnal inversion. However the difference b e t w e e n the m a x i m a and m i n i m a in the predicted values are l o w e r t h a n in the observed values for the s u m m e r period for b o t h high elevation sites and in t h e spring at M T , indicating that the model t r e a t m e n t of boundary layer m i x i n g m a y not be strong enough. This w o u l d be especially evident in s u m m e r w h e n increased surface losses are seen in the nocturnal boundary layer. M i x i n g t o higher layers is i m p o r t a n t since it a f f e c t s not only t h e c o n c e n t r a t i o n s at that layer, but the long range transport of species due t o the higher w i n d speeds aloft. The m i x i n g ratios of S 0 2 at RTR during the spring period range f r o m near zero t o a p p r o x i m a t e l y 10 ppbv in w e l l - d e f i n e d events. The d i s t r i b u t i o n of hourly S 0 2 m i x i n g ratios for the model results and m e a s u r e m e n t s agree w e l l , but the model s h o w s poor skill in predicting the t i m i n g of episodes. The diurnal variation in S 0 2 is w e l l represented by the model, c o n s i s t e n t w i t h the g o o d agreement seen for 0 3 at RTR for this t i m e period. ACKNOWLEDGEMENTS The distributions of 0 3 m i x i n g ratios observed for the s u m m e r 1 9 8 8 and spring 1990 EMEFS intensive periods are d i f f e r e n t , w i t h a smaller range of values seen in the spring t h a n in the s u m m e r and w i t h higher average 0 3 m i x i n g ratio seen in t h e spring t h a n in the s u m m e r . The A D O M predicts distributions of 0 3 m i x i n g ratios w h i c h span a smaller range t h a n the W e thank Francine Juillet, Louis V e i l l e u x , Alaine Dufresne, S y l v a i n Savoie and Nicolas Durand for operating t h e CHEF sites, and Sheldon Opps for assistance in data processing. (continued on page 8 0 ) C O N T R Ô L E DES M O D E S L A T É R A U X DE L A S E R S À S E M I C O N D U C T E U R S : E X P É R I E N C E S ET S I M U L A T I O N S par Nathalie M c C a r t h y , S y l v a i n M a i l h o t , Damien S t r y c k m a n , Yves C h a m p a g n e * et Guy Rousseau Équipe Laser et Optique Guidée, Centre d ' O p t i q u e , Photonique et Laser (COPL), Département de physique, Université Laval, Québec, G1 K 7P4, Canada, Tél.: (418) 6 5 6 - 3 1 2 0 , Fax: (418) 6 5 6 - 2 6 2 3 , e-mail: n m c c a r @ p h y . u l a v a l . c a * Gentec Inc. 2 6 2 5 Dalton, Sainte-Foy, Québec, G1P 3S9, Canada Résumé Les lasers à semi-conducteurs de puissance élevée, à large fenêtre d ' é m i s s i o n , sont d e v e n u s des sources cohérentes très compétitives pour plusieurs applications. Cependant, ces lasers émettent simultanément sur plusieurs modes latéraux, ce qui a u g m e n t e la d i v e r g e n c e du faisceau et en d i m i n u e la cohérence spatiale. Notre but consiste à réduire le n o m b r e de modes latéraux c o n t e n u s dans le faisceau émis par ce t y p e de lasers disponibles c o m m e r c i a l e m e n t . Quelques techniques de c o n t r ô l e de modes latéraux ont été proposées et testées avec des lasers de 1 0 0 m W : c a v i t é s externes terminées par d i f f é r e n t s composants optiques et c o u c h e s à r é f l e c t i v i t é profilée déposées d i r e c t e m e n t sur la face de sortie des lasers. Nous présentons aussi les résultats de simulations numériques reliées aux expériences réalisées. Abstract High p o w e r broad-area (BA) s e m i c o n d u c t o r lasers are n o w considered as interesting sources of coherent radiation for various applications. H o w e v e r these lasers emit s i m u l t a n e o u s l y on several lateral m o d e s , w h i c h c o n t r i b u t e t o increase the beam divergence and t o decrease the spatial coherence of the e m i t t e d laser beam. Our goal c o n s i s t s in reducing the number of lateral modes contained in the beam e m i t t e d by c o m m e r c i a l l y available BA lasers. Some techniques of lateral mode c o n t r o l have been proposed and t e s t e d w i t h a 1 0 0 m W BA laser: external cavities t e r m i n a t e d by various optical c o m p o n e n t s and profiled r e f l e c t i v i t y c o a t i n g s deposited d i r e c t l y on the o u t p u t f a c e t of the lasers. Numerical s i m u l a t i o n s of the lateral m o d e d i s c r i m i n a t i o n of these c o n f i g u r a t i o n s are also reported. INTRODUCTION Les lasers à s e m i - c o n d u c t e u r s (ou diodes laser) de puissance élevée ont atteint des niveaux de p e r f o r m a n c e qui en f o n t des sources cohérentes c o m p é t i t i v e s pour une v a s t e g a m m e d ' a p p l i c a t i o n s : mémoires optiques, génération d'harmoniques, s y s t è m e s de c o m m u n i c a t i o n optique et pompage optique de lasers à l'état solide. O n divise habituellement les diodes laser de puissance en deux grandes catégories, soient les réseaux m o n o l i t h i q u e s de diodes laser et les lasers à large ruban d ' i n j e c t i o n ("broad-area" ou BA). De f a ç o n générale, les réseaux de diodes laser présentent une bonne d i s c r i m i n a t i o n envers les modes latéraux (suivant l ' a x e x , dans le plan de la jonction) d ' o r d r e supérieur, mais leur m o d e fondamental se caractérise par un déphasage de 180° entre les é m e t t e u r s adjacents, ce qui produit une d i s t r i b u t i o n angulaire d ' i n t e n s i t é à deux lobes dans le c h a m p lointain. D ' a u t r e part, les lasers BA ont une faible d i s c r i m i n a t i o n entre les modes latéraux et tendent à é m e t t r e s i m u l t a n é m e n t sur plusieurs modes. La présence de ces modes d ' o r d r e supérieur est à l'origine d ' u n e f o r t e dégradation de la cohérence spatiale du faisceau et d ' u n e d i s t r i b u t i o n d ' i n t e n s i t é en c h a m p lointain qui s'élargit rapidement lorsque le courant d ' i n j e c t i o n a u g m e n t e . Ces c o m p o r t e m e n t s sont très néfastes l o r s q u ' o n v e u t , par e x e m p l e , utiliser le faisceau pour pomper o p t i q u e m e n t un autre laser: le faisceau doit plutôt être focalisable sur une petite tache t o u t en restant étroit sur une grande distance le long de l ' a x e de propagation z, c e t t e d i s t a n c e étant optimale lorsque le faisceau ne contient que le m o d e latéral gaussien. Dans cet article, nous présentons d i f f é r e n t e s m é t h o d e s que nous avons utilisées pour réduire le n o m b r e de modes latéraux dans les diodes laser BA t o u t en c o n s e r v a n t une puissance relativement élevée: les cavités externes anamorphiques, les cavités à s y m é t r i e cylindrique terminées par différents c o m p o s a n t s optiques (miroir u n i f o r m e , miroir à réflectivité profilée...) et les c o u c h e s à réflectivité profilée déposées d i r e c t e m e n t sur la face de sortie (face d'émission) des diodes laser. Les techniques de d é p o s i t i o n sont brièvement décrites. Les résultats de simulations numériques reliées aux travaux e x p é r i m e n t a u x sont aussi présentés. C A V I T É S EXTERNES Les cavités externes (ou cavités étendues) ont déjà fait leurs preuves pour le contrôle des modes l a t é r a u x . " 3 1 Les cavités externes o f f r e n t plusieurs degrés de liberté p u i s q u ' o n peut varier le nombre et le t y p e de c o m p o s a n t s i n t r a c a v i t é s , de m ê m e que le t y p e de coupleur externe. La figure 1 m o n t r e le schéma du m o n t a g e que nous avons utilisé pour mesurer les principales caractéristiques d ' é m i s s i o n de la diode laser en c a v i t é externe. t e r m i n e la cavité. La f a b r i c a t i o n de ces c o u c h e s anti-réfléchissantes est décrite plus loin dans c e t t e section. La lentille f, collimate le faisceau qui est ensuite focalisé par la lentille F sur la fente d ' e n t r é e d ' u n s p e c t r o m è t r e à réseau (Jarrell A s h , résolution = 0 . 0 1 nm) à la sortie duquel une caméra CCD m o n o c h r o m e (Spiricon) enregistre l'image du c h a m p proche du faisceau résolu en longueur d ' o n d e . Le laser a été positionné de f a ç o n à ce que la j o n c t i o n (et par conséquent l'axe latéral) soit perpendiculaire au plan de la figure 1. Pour travailler dans des conditions de cavité externe anamorphique, nous ajoutons une lentille cylindrique f 2 (de 25 m m de focale) entre f, et M , ; c e t t e nouvelle lentille n ' a y a n t un effet que le long de l'axe latéral x. A f i n d'alléger l ' é c r i t u r e , nous désignerons par la lettre A la c o n f i g u r a t i o n pour laquelle la lentille f 2 et le miroir M , sont absents du m o n t a g e . Dans ce cas, nous avons fait les mesures avant de déposer une couche AR sur la face de sortie du laser. La c o n f i g u r a t i o n B sera celle qui c o m p o r t e une cavité externe anamorphique 1 4 1 . Dans ce cas, M , est un miroir plan à réflectivité u n i f o r m e (R = 3 0 % ) , la distance L, entre le laser et la lentille f, est de 8 m m et f, possède une focale de 8 m m . La distance L 2 entre M , et la lentille cylindrique f 2 peut être variée alors que la distance d entre f, et f 2 est gardée fixe à 3 0 m m . Le grand intérêt de c e t t e c o n f i g u r a t i o n réside dans le fait que la taille de la d i s t r i b u t i o n transverse d ' i n t e n s i t é (dans la d i r e c t i o n y) du faisceau à la face de sortie du laser est la m ê m e après son trajet dans la cavité externe. Ceci permet d ' o p t i m i s e r le couplage transverse entre le faisceau et le guide d ' o n d e du laser. Dans la d i r e c t i o n latérale (direction x), on recherche e x a c t e m e n t le c o m p o r t e m e n t inverse: le faisceau qui revient dans le laser s ' e s t élargi pendant son trajet dans la cavité externe et c ' e s t le milieu de gain lui-même qui agit c o m m e filtre spatial profilé, f a v o r i s a n t ainsi la présence des modes latéraux les plus étroits. Finalement, la c o n f i g u r a t i o n C ne c o m p r e n d que la lentille de c o l l i m a t i o n f, et un miroir M , dont la r é f l e c t i v i t é varie de f a ç o n gaussienne avec le rayon 161 La f o r m e e x a c t e du profil de réflectivité est donnée par R(p) = 0 . 6 2 exp[-(p / w j ? | , Figure 1. Schéma du montage expérimental de la diode laser en cavité externe et de l'arrangement utilisé pour l'analysede son faisceau. La face arrière du laser a une réflectivité élevée (R ~ 1 0 0 % ) . L'autre face (face avant) a été recouverte d ' u n e c o u c h e anti-réfléchissante (AR) afin que l'oscillation laser puisse s'établir entre la face arrière et le miroir externe M 1 qui où p est la position radiale et w m (la demi-largeur à 1/e) est égale à 7 0 0 L e profil de r é f l e c t i v i t é est obtenu en déposant des couches profilées de diélectriques sur un substrat de verre. Il a été réalisé par l ' I n s t i t u t national d ' o p t i q u e (Québec). Dans t o u t e s les c o n f i g u r a t i o n s , les lasers à s e m i - c o n d u c t e u r s utilisés sont des lasers La Physique au Canada mars à avril 1 9 9 6 77 EG&G de GaAs/GaAIAs (modèle C 8 6 0 9 0 E ) , à double h é t é r o s t r u c t u r e , avec une largeur de ruban de 75 f j m et une longueur de 3 7 0 / / m . Ils é m e t t e n t un faisceau de puissance m a x i m a l e de l'ordre de 1 0 0 m W , à une longueur d ' o n d e de 8 4 0 n m et leur c o u r a n t de seuil se situe entre 2 2 0 et 2 5 0 m A avant le t r a i t e m e n t anti-réfléchissant. Le faible c o n f i n e m e n t latéral du faisceau lumineux se propageant dans le m a t é r i a u s e m i - c o n d u c t e u r est assuré u n i q u e m e n t par un m é c a n i s m e de "guidage par le g a i n " . L ' é m i s s i o n de telles diodes laser contient habituellement plusieurs modes latéraux, m ê m e à des puissances très faibles (de l'ordre du milliwatt). Par e x e m p l e , nous avons d é t e c t é , avec u n de nos lasers, la présence de 3 modes latéraux à 2 . 5 m W et de 1 1 modes latéraux à 8 0 m W de puissance émise. Sur les lasers destinés à être utilisés en c a v i t é e x t e r n e , nous d é p o s o n s une couche anti-réfléchissante sur la face de sortie par évaporation thermique. Dans le s y s t è m e à vide, le faisceau émis par la diode laser est d é t e c t é pendant que le d é p ô t de SiO s ' e f f e c t u e ; l ' é v a p o r a t i o n est arrêtée lorsque le signal d é t e c t é atteint un m i n i m u m . Nous pouvons estimer que la réflectivité résiduelle de la face est inférieure à 1 0 4 après le t r a i t e m e n t anti-réfléchissant. Les figures 2a, 2b et 2c m o n t r e n t les images du faisceau en c h a m p proche résolu en longueur d ' o n d e obtenues avec la diode laser dans les c o n f i g u r a t i o n s A , B et C respectivement. m identifiés par leur longueur d ' o n d e plus courte et leur distribution spatiale d ' i n t e n s i t é à plusieurs lobes. On peut constater aussi que le m o d e latéral f o n d a m e n t a l (à un seul lobe) est beaucoup plus étroit sur la face de sortie que les modes latéraux supérieurs. La figure 2a a été enregistrée à une puissance de 3 2 m W . Pour ce laser, on constate que sept modes latéraux étaient présents à c e t t e puissance. La figure 2b a été obtenue avec la cavité externe anamorphique pour laquelle L 2 était de 1 0 0 m m . On c o n s t a t e que l ' é m i s s i o n est à la fois m o n o m o d e latérale et monomode longitudinale (résultat c o n f i r m é par d ' a u t r e s mesures: a u c u n b a t t e m e n t de mode n'a été observé) à une puissance de 4 0 m W . Ceci représente notre meilleur résultat j u s q u ' à présent. La figure 2c m o n t r e le spectre o b t e n u avec un miroir gaussien externe pour une puissance de 4 7 m W . L'écart entre les groupes de modes longitudinaux est encore de 0 . 2 nm. Dans ce cas, on observe un phénomène particulier: le c o n t e n u en modes latéraux à l'intérieur des groupes associés à des modes longitudinaux d i f f é r e n t s n ' e s t pas le m ê m e d ' u n groupe à l'autre. D ' u n e part, il aurait été préférable que le profil de réflectivité ait été plus étroit afin d ' a u g m e n t e r encore plus les pertes des modes latéraux supérieurs. D ' a u t r e part, la r é f l e c t i v i t é résiduelle du revêtement AR pourrait être à l'origine d ' u n e f f e t de c a v i t é s couplées. La c o n f i g u r a t i o n qui nous a donné les meilleurs résultats est la c a v i t é externe anamorphique; dans ce cas, le paramètre que nous avons fait varier est la distance L 2 entre la lentille f 2 et le miroir externe M , . Les cercles de la figure 3 m o n t r e n t le courant de seuil mesuré e x p é r i m e n t a l e m e n t de l ' é m i s s i o n laser (ceci correspond au seuil d'oscillation du mode latéral f o n d a m e n t a l , d ' o r d r e 0), alors que les carrés m o n t r e n t le seuil mesuré du m o d e d ' o r d r e 1 (ceci correspond donc à la f i n du régime m o n o m o d e latéral). •—i ' 1 uil | S* 400 b 360 0) v) <D -o 320 ^ | t \> 1 1 Figure 2. Images du faisceau en champ proche résolu en longueur d'onde pour les configurations A, B et C, pour des puissances lumineuses semblables. L'axe horizontal représente la longueur d'onde et l'axe vertical est la direction latérale x. Ces spectres d ' é m i s s i o n présentent une i n f o r m a t i o n très c o m p l è t e . L ' a x e horizontal représente la longueur d ' o n d e , a u g m e n t a n t de gauche à d r o i t e . L ' a x e vertical représente la position latérale (direction x) sur la face de sortie de la diode laser. Trois groupes de modes (chaque groupe correspondant à un m o d e longitudinal) sont m o n t r é s dans la figure 2a; ces groupes sont d i s t a n t s en longueur d ' o n d e de 0 . 2 n m . Dans chaque groupe, les modes latéraux d ' o r d r e supérieur peuvent être 78 Physics in Canada M arch/Aprill 9 9 6 ran } DÉPÔTS PROFILÉS Les configurations B et C augmentent la d i s c r i m i n a t i o n envers les modes latéraux d ' o r d r e supérieur parce qu'elles limitent latéralement le faisceau l u m i n e u x . Le m ê m e phénomène peut se produire si on élimine la cavité externe et si le profil de réflectivité est réalisé d i r e c t e m e n t sur la face de sortie de la diode laser 16 '. C e t t e approche a déjà été testée avec succès avec d ' a u t r e s t y p e s de l a s e r s " 6 '. Nous avons proposé et testé dans notre laboratoire une technique simple pour réaliser une couche diélectrique m i n c e profilée sur nos diodes laser. La c o u c h e a une épaisseur qui varie dans la d i r e c t i o n latérale (parallèle à la jonction) et une épaisseur c o n s t a n t e dans la d i r e c t i o n transverse (perpendiculaire à la jonction); elle produit donc une réflectivité profilée dans la d i r e c t i o n latérale. Le diélectrique utilisé est du SiO dont l'indice de réfraction s'élève à 1.9. Les couches minces profilées peuvent être obtenues par deux m é t h o d e s similaires. La première m é t h o d e consiste à placer u n filament très mince à quelques dizaines de microns du substrat (voir la fig. 4a). Cloche de verre ri 0 accord avec les simulations n u m é r i q u e s ; les croix sur la figure 3 correspondent aux courants de seuil calculés pour le m o d e 1. PAO 8 240 0 20 40 60 L2 (mm) 80 100 Figure 3. Courants de seuil mesurés des modes latéraux d'ordres 0 (cercles) et 1 (carrés) en fonction de L2 pour la configuration B. Les croix correspondent aux courants de seuil calculés pour le mode 1. Les résultats suggèrent que des puissances possibles, en régime m o n o m o d e latéral, puissent être de plus en plus élevées à mesure que la valeur de L 2 s'éloigne d ' u n e plage d ' e n v i r o n 10 m m centrée à 2 3 m m . Par exemple, pour L 2 = 1 4 m m , 2 0 m m et 60 mm, nous avons mesuré des puissances m o n o m o d e s m a x i m a l e s de 2 1 m W , 10 m W et 4 0 m W , respectivement. Ces résultats sont en excellent Figure 4. Schéma du système à vide contenant le substrat (ou la face d'émission du laser) qui est masqué a) par un filament de diamètre 4 ou b) par une fente étroite de largeur w. Le filament crée un " e f f e t d ' o m b r e " sur le substrat, produisant ainsi un dépôt d'épaisseur variable. Le t e m p s de déposition est ajusté de f a ç o n à obtenir une épaisseur égale à X / 4 sur les bords du substrat (X étant la longueur d ' o n d e d u faisceau dans le SiO) et une épaisseur nulle au centre. La pente du profil d'épaisseur est variée en changeant la distance d entre le filament et le s u b s t r a t . Les profils de réflectivité les plus étroits que nous avons obtenus (largeur totale à mi-hauteur) ont été réalisés avec un filament de t u n g s t è n e de 25 /Jm de d i a m è t r e placé à environ 1 2 0 / / m du s u b s t r a t . Cependant, les simulations numériques ont m o n t r é q u ' u n profil aussi large n'aurait que peu d ' e f f e t sur la d i s c r i m i n a t i o n des modes latéraux de nos lasers. Nous avons plutôt opté pour la seconde m é t h o d e , qui exploite le m ê m e " e f f e t d ' o m b r e " , mais où le filament est remplacé par une f e n t e étroite (faite de deux lames de rasoir). Dans ce cas, nous n ' a v o n s plus de limite inférieure sur la largeur du profil de réflectivité. C e p e n d a n t , le dépôt doit être réalisé en deux étapes: d ' a b o r d une couche profilée d'épaisseur X / 4 au centre et zéro sur le bord, suivie d ' u n e seconde couche d'épaisseur c o n s t a n t e (X/4) du m ê m e matériau diélectrique. Ceci résulte en une c o u c h e d'épaisseur X/2 au centre et A./4 sur les bords. La figure 5 m o n t r e un exemple de profil d'épaisseur (5a), mesuré avec un p r o f i l o m è t r e mécanique, et le profil de r é f l e c t i v i t é calculé correspondant (5b). Figure 6. Image du faisceau en champ proche résolu en longueur d'onde émis par la diode laser avec le dépôt profilé sur la face de sortie. Axe horizontal: X et axe vertical: x. Le spectre a été enregistré à une puissance d'environ 30 mW. On c o n s t a t e que le laser avec le dépôt profilé émet seulement dans le mode latéral f o n d a m e n t a l à c e t t e puissance. La puissance m a x i m a l e qui p o u v a i t être a t t e i n t e en régime d ' é m i s s i o n m o n o m o d e latérale était inférieure à 1 m W sans le dépôt profilé. S I M U L A T I O N S NUMÉRIQUES -5 0 5 position ((am) -5 0 5 position (|im) Figure 5. a) Profil de l'épaisseur du dépôt obtenu avec une fente de 20 fjm placée à 90 f j m du substrat de verre et b) profil de réflectivité correspondant calculé en considérant un substrat de GaAs. Ce profil quasi-gaussien a été o b t e n u en plaçant une f e n t e de 2 0 / / m de largeur à 9 0 /vm du s u b s t r a t . O n c o n s t a t e que la largeur totale à mi-hauteur du profil de r é f l e c t i v i t é est d ' e n v i r o n 15 / j m , ce qui devrait être s u f f i s a m m e n t étroit pour réduire le c o n t e n u en modes latéraux de nos lasers. Le principal défi consistait à centrer latéralement la f e n t e sur la fenêtre é m e t t r i c e qui n ' e s t pas nécessairement centrée sur la diode laser. Ce problème a été résolu en maximisant la puissance lumineuse t r a n s m i s e par la f e n t e lorsque le laser f o n c t i o n n e sous le seuil. Le c o u r a n t de seuil est passé de 2 2 0 m A (sans dépôt) à 2 8 0 m A avec le dépôt profilé. Ce c o m p o r t e m e n t était t o u t à fait prévisible puisque la c o u c h e profilée d i m i n u e la r é f l e c t i v i t é globale de la face de sortie. T o u t e f o i s , l ' e f f i c a c i t é quantique différentielle a été légèrement améliorée, passant de 0 . 5 4 W / A à 0 . 6 4 W / A . La figure 6 m o n t r e l ' i m a g e du faisceau en c h a m p proche résolu en longueur d ' o n d e obtenue avec la diode laser ayant un dépôt profilé sur la face de sortie. Les logiciels de s i m u l a t i o n que nous avons développés ont été utilisés pour le calcul des caractéristiques d ' é m i s s i o n des diodes laser opérées dans les diverses configurations présentées dans les paragraphes précédents. Ces p r o g r a m m e s utilisent la m é t h o d e de propagation de faisceaux' 1 0 ' pour simuler la propagation du c h a m p optique dans le laser, un algorithme de t r a n s f o r m a t i o n d ' é c h e l l e " " pour la p r o p a g a t i o n dans la cavité externe (s'il y a lieu) et l ' a l g o r i t h m e de Prony" 2 1 pour extraire les d i f f é r e n t s modes latéraux (et leur valeur propre associée) pour t o u t e s les c o n f i g u r a t i o n s . Les logiciels tiennent c o m p t e des variations latérales du gain, de l ' a b s o r p t i o n , des e f f e t s t h e r m i q u e s , des variations latérales de l'indice de réfraction induites par la d i s t r i b u t i o n des porteurs de charge et de la déplétion de la c o n c e n t r a t i o n des porteurs par le c h a m p optique due à l ' é m i s s i o n stimulée. Nous nous s o m m e s intéressés aux e f f e t s de l ' u t i l i s a t i o n de c a v i t é s externes et de dépôts profilés sur la discrimination modale, les caractéristiques du mode latéral f o n d a m e n t a l intracavité et celles du faisceau t r a n s m i s dans l'air en c h a m p proche et en c h a m p lointain. Nous avons aussi calculé les caractéristiques telles le courant de seuil requis pour atteindre le régime d ' é m i s s i o n stimulée et l ' e f f i c a c i t é q u a n t i q u e différentielle. Les valeurs des paramètres optiques, électriques et t h e r m i q u e s utilisées dans les simulations numériques ont été ajustées à celles des lasers EG&G de modèle C 8 6 0 9 0 E ; celles-ci peuvent être retrouvées dans les tableaux I et II de la référence 1 3. Nous avons calculé une très faible d i s c r i m i n a t i o n envers les modes latéraux d ' o r d r e supérieur pour la diode laser sans dépôt sur la face de sortie et sans miroir externe. En e f f e t , le rapport |yo j /1Y1 [ entre les valeurs propres des deux modes qui ont les plus faibles pertes vaut 1 . 0 1 6 , dans ce cas. Ceci est cohérent avec nos résultats e x p é r i m e n t a u x qui m o n t r e n t que la puissance m a x i m a l e pour laquelle le laser sans dépôt émet sur un seul mode latéral est inférieure au m i l l i w a t t . Pour la c o n f i g u r a t i o n B, la d i s c r i m i n a t i o n jyo | /1Y1 I a été calculée pour d i f f é r e n t e s valeurs de L 2 . Cette étude a révélé que la discrimination reste inférieure à 1.1 seulement pour les valeurs de L 2 c o m p r i s e s entre 15 et 2 9 m m . Dans cet intervalle, le faisceau qui revient dans la diode laser après son trajet dans la c a v i t é externe est tellement étroit q u ' i l ne subit pas de filtrage spatial dû à la largeur finie du milieu de gain. À mesure q u ' o n s'éloigne de cet intervalle, le faisceau de retour s'élargit et la d i s c r i m i n a t i o n a u g m e n t e . La figure 2b a été obtenue avec une valeur de L2 égale à 1 0 0 m m et une bonne discrimination a effectivement été observée. D ' a u t r e part, les croix de la figure 3 m o n t r e le courant de seuil calculé pour le m o d e latéral d ' o r d r e 1 en f o n c t i o n de la longueur L 2 pour la diode laser opérée dans la c o n f i g u r a t i o n B. Ces points m o n t r e n t un bon accord avec les résultats e x p é r i m e n t a u x obtenus. Pour la diode laser avec un dépôt profilé (sans cavité externe), nous avons supposé que la réflectivité de la face de sortie était décrite par la f o n c t i o n 0 . 3 e x p ( - x 2 / w m 2 ) , où x est la d i r e c t i o n latérale et w m la demi-largeur à 1/e du m a x i m u m . La figure 7 m o n t r e la d i s c r i m i n a t i o n | Y o | / | y 1 | en f o n c t i o n de la largeur du profil de réflectivité, telle que calculée au seuil de l ' é m i s s i o n laser. Figure 7. Discrimination |yo|/|y11 en fonction de la largeur w m du profil de réflectivité. L'amélioration de la discrimination s ' a c c o m p a g n e d ' u n e légère hausse du courant de seuil. L ' é v o l u t i o n du courant de seuil en f o n c t i o n de w m est m o n t r é e à la figure 8. Par e x e m p l e , avec 2 w m = 1 5 / / m (largeur du dépôt profilé sur la diode laser de la section précédente), le courant de seuil est 1.25 fois plus élevé que sans dépôt (passant de 2 2 6 à 2 8 0 m A ) , ce qui correspond très bien aux résultats e x p é r i m e n t a u x o b t e n u s (le seuil passant alors de 2 2 0 à 2 8 0 m A ) . 400 Figure 8. Courant de seuil de l'émission laser en fonction de la largeur du profil de réflectivité pour une réflectivité centrale de O.3. PERSPECTIVES Les techniques décrites dans cet article o f f r e n t plusieurs degrés de liberté pour le La Physique au Canada mars à avril 1 9 9 6 79 c o n t r ô l e des m o d e s latéraux dans les lasers à s e m i - c o n d u c t e u r s à guidage par le gain et elles requièrent un équipement généralement accessible dans t o u s les laboratoires d ' o p t i q u e . Les m é t h o d e s d é c r i t e s pour réduire l ' o s c i l l a t i o n des modes latéraux d ' o r d r e supérieur peuvent être appliquées à des lasers à large ruban encore plus puissants que ceux dont nous disposions. Les simulations numériques e f f e c t u é e s se sont avérées en bon accord avec les résultats e x p é r i m e n t a u x . À m o y e n t e r m e , nous p r é v o y o n s utiliser un réseau à r é f l e c t i v i t é profilée en c a v i t é e x t e r n e p o u r r e s t r e i n d r e le s p e c t r e d ' é m i s s i o n à un seul m o d e longitudinal et latéral et à en accorder la fréquence. Nous avons mis au point u n procédé de f a b r i c a t i o n de tels réseaux par interférence de faisceaux gaussiens sur une photorésine. Une telle source serait une alternative c o m p a c t e et peu c o û t e u s e aux lasers présentement utilisés en spectroscopie. 11. A . E. Siegman, Lasers , Mill V a l l e y : University Science Books, pp. 805-811 (1986). 1 2. A . E. Siegman and H. Y. Miller, A p p l . O p t . 9, 2 7 2 9 ( 1 9 7 0 ) . 13. C. Chang-Hasnain, J . Berger, D. R. Scifres, W . Streifer, J . R. W h i n n e r y , and A . Dienes, A p p l . Phys. Lett. 5 0 , 1465 (1987). 2. J . A . R u f f , A . E. Siegman, and S. C. W a n g , C L E 0 ' 8 9 , paper T H K 1 8 , 296 (1989). 3. W . F. Sharfin, J. Seppala, A . Mooradian, B. A. Soltz, R. G. Waters, B. J. Vollmer, and K. J. Bystrom, Appl. Phys. Lett. 54, 1731 (1989). 4. S. Mailhot, N. McCarthy and Y. C h a m p a g n e , CLEO-Europe'94, paper C T u P 2 , ( 1 9 9 4 ) . 5. S. Mailhot and CLEO'94, paper (1994). 6. D. S t r y c k m a n , N. M c C a r t h y , (1994). 1. 2. 3. and 327 7. N. M c C a r t h y and P. Lavigne, O p t . Lett. 10, 5 5 3 ( 1 9 8 5 ) . 8. K. J . Snell, N. M c C a r t h y , M . Piché and P. Lavigne, O p t . C o m m u n . 6 5 , 377 (1988). 9. S. De Silvestri, V . M a g n i , O. Svelto and G. Valentini, IEEE J . Q u a n t u m Electron. 2 6 , 1 5 0 0 ( 1 9 9 0 ) . 10. G. P. A g r a w a l , J . A p p l . Phys. 5 6 , 3 1 0 0 (1984). 80 Physics in Canada M arch/Aprill 9 9 6 Aneja V.P. and Z. Li, Characterization of ozone at high elevation in the Eastern United States: Trends, seasonal variations, and exposure, J . Geophys. Res. 9 7 , 9 8 7 3 - 9 8 8 8 , 1 9 9 2 . Aneja V . P., C. S. Claiborn, Z. Li and A. Murthy, Trends, seasonal variations, and analysis of high-elevation surface nitric acid, ozone, and hydrogen peroxide, A t m o s . Env. 2 8 , 1 7 8 1 - 1 7 9 0 , 1 9 9 4 . Benkovitz, C . M . , C.M. Berkowitz, R.C. Easter, S. Nemesure, R. Wagener, S.E. Schwartz, Sulfate over the North Atlanticand adjacent continental regions: Evaluation for October and November 1986 using a three-dimensional model d r i v e n by observation-based meteorology. J . Geophys. Res. 9 9 , 2 0 7 2 5 - 2 0 7 5 6 , 1994. 4. Bridgeman H . A . , J . L . W a l m s l e y and R.S. Schemenauer, Modelling the spatial variations of w i n d speed and d i r e c t i o n o n Roundtop Mountain, Quebec. Atmosphere-Ocean 32, 605-619, 1994. 5. Byun D . W . and R. Dennis, Design a r t i f a c t s in Eulerian air quality models: e v a l u a t i o n of the e f f e c t s of layer thickness and vertical profile correction on surface ozone concentrations, Atmos. Env. 29, 105-126, 1995. 6. Flueck J . A . , measures of T e n t h Conf. Statistics in M e t e o r . Soc., 1987. 7. H o f f R . M . , R.E. M i c k l e and C. Fung, V e r t i c a l profiles of ozone during the EMEFS I Experiment in S o u t h e r n Ontario, A t m o s . Env. 2 9 , 1 7 3 5 - 1 7 4 7 , 1995. 8. Karamchandani P. and A . V e n k a t r a m , The role of non-precipitating clouds in producing ambient sulfate during summer: results f r o m simulations w i t h the acid d e p o s i t i o n and oxidant model ( A D O M ) . A t m o s . Env. 2 6 A , 1041-1052, 1992. 9. L e f o h n A . S . , D . S . S h a d w i c k and V . A . M o h n e n , The characterization of N. McCarthy, CWH30, 225 M. D'Auteuil LASERS'94, 11. REFERENCES REFERENCES 1. 10. Y . Champagne, S. Mailhot and N. M c C a r t h y , IEEE J . Q u a n t u m Electron. 3 1 , 7 9 5 ( 1 9 9 5 ) . Evaluation of the Acid . . . by C. M. Banic et al. (continued from pg. 76) REMERCIEMENTS Nous r e m e r c i o n s M . Marc D ' A u t e u i l pour son support technique et ses judicieux conseils et M . David Gay pour l'aide apportée à la préparation des figures. Ces travaux n'auraien t pu être réalisés sans le s o u t i e n financier d u CRSNG et du FCAR. Si v o u s désirez plus d ' i n f o r m a t i o n s , nous v o u s i n v i t o n s à c o m m u n i q u e r avec nous à l'adresse électronique nmccar@phy.ulaval.ca. ozone c o n c e n t r a t i o n s at a select set of high-elevation sites in the Eastern United States, Environ. Pollut. 6 7 , 147-178, 1990. Macdonald A.M., C.M. Banic, W.R. Leaitch, K.J. Puckett, Evaluation of the Eulerian Acid Deposition and Oxidant Model ( A D O M ) w i t h s u m m e r 1 9 8 8 aircraft data. A t m o s . Env. 2 7 A , 1 0 1 9 - 1 0 3 4 , 1993. Schemenauer R.S. and K.G. A n l a u f , Geographic variation of ozone concentrations at high and low elevation rural sites in Quebec. N o r t h American Oxidant Symposium, Quebec C i t y , Canada, 2 5 - 2 7 Feb., 412-429, 1987. 12. Schemenauer R.S., C . M . Banic and N. Urquizo, High elevation fog and precipitation c h e m i s t r y in S o u t h e r n Quebec, Canada. A t m o s . Env. 2 9 , 2235-2252, 1995. 13. V e n k a t r a m A . , P.K. Karamchandani and P.K. Misra, Testing a c o m p r e h e n s i v e acid d e p o s i t i o n model. A t m o s . Env. 2 2 , 7 3 7 - 7 4 7 , 1 9 8 8 . The Editorial Board welcomes articles from readers suitable for, and understandable to, any practising or student physicist. Review papers and contributions of general interest are particularly welcome. A s t u d y of some forecast v e r i f i c a t i o n . on Probability and A t m o s . Sci., A m e r . Boston M A . , 6 9 - 7 3 , Le mouvement pour la santé active S Y M M E T R Y - V I O L A T I N G NN POTENTIALS IN T H E N U C L E U S by A . C . Hayes, A E C L , Chalk River Laboratories, Chalk River, Ontario, Canada KOJ 1J0 ABSTRACT The parity-violating and time reversal noninvariant nucleon-nucleon interactions are reviewed, and their manifestation in the nucleus discussed. INTRODUCTION Major advances in our understanding of the weak interaction have come from low energy nuclear studies. The best examples come from nuclear (idecay measurements which established the existence of the neutrino and the fact that the interaction does not conserve parity. The very high precision jS-decay measurements that are possible today provide stringent tests of the weak currents in the Standard Model. Test of the weak interaction from semi-leptonic processes have been reviewed recently by Towner and Hardy [ 1 ] . In this article I will concentrate on another aspect of the weak interaction, namely, the non-leptonic paît. In particular, I will discuss the weak parity-violating and time-reversal-violating nucleon-nucleon interactions, and studies of these in low-energy nuclear experiments. The weak interaction is responsible for pure leptonic processes such as ^-decay <jr — tr + vt + v/i), semi-leptonic processes such as j3-decay (e.g., n — p + e~ + vr), and non-leptonic processes such as A 0 — p + t~ decay. The three classes of the weak interactions can be split further into two parts depending on whether strangeness is conserved or not. In the case of the non-leptonic weak interaction information on the strangeness changing (AS = ± 1) part of the Hamiltonian is obtained by studying the weak decays of elementary particles, for example, the decays A — M r , K — 2 x , 3 t , £ — M r . However, for the strangeness conserving part of the Hamiltonian, the allowed strong interaction processes will generally render unobservable any expected manifestation of the weak interaction. Thus, it is not feasible to study the AS = 0 non-leptonic part of the weak interactions using elementary particle processes. However, the weak Hamiltonian gives rise to a weak nucleon-nucleon potential and part of this potential does not conserve parity. Manifestations of the parity nonconserving (PNC) weak N N potential are seen in the low energy nuclear physics processes. These processes, though difficult to measure and to calculate, provide the only source of information on the AS = 0 non-leptonic weak interaction. The goal of studies of parity non-conservation in the nucleus is to determine the strength of the coupling consttants for the weak N N interaction, and to determine the interplay between the strong and weak interactions in the nuclear many-body system. Extracting information on the coupling constants for the parity violating N N potential from such measurements requires knowledge of both the weak interaction and of the effects of nuclear structure on its manifestation in these rare nuclear processes. The nonleptonic weak irteraction is an interaction between the quarks and is mediated by the W and Z bosons. However, in the low-energy regime of the nucleous it is more efficient to describe the weak interaction in terms of an effective potential between nucléons mediated by mesons. The physics of the weak nucleon-meson amplitudes (N M | 3C. | N) then appears as an effective weak N — NM coupling constant. These effective coupling constants are calculated within quark models for the nucléons and mesons starting with the fundamental weak interaction between quarks. Reliable values of the effective The full expressions for the weak and strong verte\ Lagrangians and for the resulting six PNC potertials for r(AT = 1). p(AT = 0, 1, 2), and u>(AT = 0, 11 exchange are given in refs. [4,6]. Both quark model analyses [ 4 ] for the weak matrix elements ( N M 3C„ j N) and theoretical nuclear structure analyses [ 6 ] of experimental data indicate that of the corresponding six coupling constants, FT, F0, F\, F:. and G0 and G,, only the isoscalar F0, coefficient 01 the p-potential and the isovector FR, coefficient of the x-meson potential contribute importantly. The expressions for these two PNC potentials are: N N n, p, to & - - - - - - - 0 2 F _ M' _ | T «vc = ,_ï (r|Xr2)!(Ol+02) N F M2 M 2i r y.co Kit*,) N Fig. 1. The ooe-meson-exchange contribution to the weak parity-violating NN interaction. Here one nucléon emits a meson via the weak irteraction (depicted by the crossedcircle vertex and a second nucléon absorbs the meson via the strong interaction (depected by the open-circle vertex). coupling constants for the weak NN potential would provide very useful tools for verifying the quark model caclulations. THE PARITY V I O L A T I N G N N P O T E N T I A L The strong N N potential is well described in terms of the exchange of mesons ( r , p , u , ...) between the nucleous. A natural extension of these models for the weak N N potential is a meson exchange model in which one nucléon emits a mesons through the weak interaction and a second nucléon absorbs the meson via the strong irteraction (Fig. 1). The studies of parity violaiton in the nucleus are carried out in the low-energy regime. This, taken with the fact that the NN potential is strongly repulsive at short distances, means that only the lightest mesons are important for the PNC potential. Thus, we might expect the onepion exchange diagrams to dominate. However, it turns out that CP invariance severely restricts the onepion exchange cortri>utions to the PNC potential. The limitation arising from CP invariance, which applies equally to any neutral pseudoscalar (e.g., T", 770, etc.) meson, is called Barton's Theorem. Barton [2] and later Henley [ 3 ] showed that for these mesons the P-violating meson-nucléon vertex function is not invariant under CP and must vanish for CP-invariant weak interactions. For the charged pions ( x * ) a CP invariant coupling can be constructed, but k is restricted to an isovector (AT = 1) interaction. For this reason contributions to the weak PNC potential arising from the exchange of vector mesons, particularly isoscalar (AT = 0) p-exchange, are important. Significant contributions to the PNC potential are then expected from r,p, and <i>-exdiange. where mr (mp ) is the pion (rho) mass, A/the nucléon mass, and ii v is the nucléon vector magnetic moment. I i v = 3.7. Here the z-symbol on the isospin vector r, x t 2 indicates the third component of the vector. Also, r = r1 —r2, xT = mTr and y,(jr) = (1 + Vx)Y0(x) with Y0(x) = e ~"/x. The coupling constants FT and F0 involve the product of one weak and one strong vertex coupling constant and their strengths remains a central issue in PNC studies. Hie different isospin structure of the two potentials means that differert linear combinations of F0 and FT are involved in PNC effects in different nuclei. For example, a parity mixing between two states thai differ by one unit of isospin is determined solely H> FR, while a mixing between two stales that differ h\ a proton (neutron) excitation involve a constructive (destructive) linear combination of F0 and F r . Thus in principle, measurements of PNC effects in three or so rnclei could determine reliable values for the weak coupling constants. Evaluating matrix elements of the PNC potentials between two-nucleon states requires a transformation of the wave functions from a single particle coordinate system to a relative and centre of mass coordinate system. The required coefficients (Moshinsky brackets [ 5 ] ) for this transformation are known for harmonic oscillator wavefunctions. However, the eigenfunctions of the harmonic oscillator potential are not the eigenfunctions of the nucleon-nucleon irteraction. The most serious shortcoming of the harmonic oscillator wave functions is their inabilk) to describe the short-range repulsion of the NN irteraction. This strong repulsion means that as r — 0 the relative wave functions go more rapidly to zero than given by uncorrelated oscillator functions However, the physics of the short-range repulsion can be incorporated phenomenologically by mu k iply in^ the two-body potentials by a short-range correlation function. Thus we write ïpNdr) The expressions for the weak PNC potentials are obtained by combining one strong and one weak NMvertex Lagrangian with the meson progator, and taking the non-relativistic limit of the vertex functions. (D = VmdrWr). (2) where §(r) is some function that tends to zero as r — 0 and tends to unky for large r. The standard choice is that made by Adelberger and Haxton [6] La Physique au Canada mars à avril 1 9 9 6 81 who used g(r) = [ 1 - expi-ar2)^ 1 - br2)]2 with a = l.lfin'2 and b = 0.6SJm'2 obtained from the work of Miller and Spencer [ 7 ] . Typically, the short range correlations reduce the r-exchange matrix elements by a factor of - 1 . 4 and the p-exchange by - 3.6 [ 6 ] , DETECTION OF PARITY VIOLATION IN THE NUCLEUS mukipolarity (and necessarily of opposite parity) are emitted. A parity-violating asymmetty can be detected by searching for circularly polarized photons resulting from the interference between the two types of radiation. Alternatively, if the ruclear level has been polarized, a search can be made for an asymmetry of the emitted photon relative to the direction of polarization. Several such experiments have been performed [ 8 ] . These are three very favourable cases were both sources of amplification of the PNC signal play a role. These occur in 18F, 1SF and 21Ne where parity doublets are found in the low-lying bound states of the nucleus. Most of the theoretical work has concentrated on these three doublets and detailed analyses have been carried out within the shell model E + -£_ framework. [ 6 ] . Inthecase of "Fthere is a0~, 0 + = <t>J+ + S < t > j ( 3 ) doublet lying at 1081 keV and 1042 keV, respectively. All searches for circular polarization in the 7-decay The matrix elements (<t>j_ \ Vmc \ <j>J+ > are - 1 eV. of the 0 " 1081 MeV state yield a zero result, and In a light spherical nucleus a typical nuclear splitting theoretical analyses of this result indicate an upper between states of the same J but opposite parity is bound on the value of F t that is consistent with zero. E+ —E_ ~ 1 MeV, so that the odd parity amplitude While this bound is allowed by quark model is î — 10 . However, in complex nuclei one finds calculations of the effective weak coupling constants, situations where the energy splitting between states itrequiresconsiderable cancellation amongst different + ] and J~ are considerably smaller that 1 MeV, and model contributions. Tlie unexpectedly small value in these cases there is an amplification of the PNC of FT has in part motivated the morerecentsearches signal. Indeed, many of the PNC searches focus on for parity-violating effects in different nuclear mass + parity-doublets, i.e., closely spaced J , J~ pairs. regions. Exploiting this enhancement can have its disadvailages when it comes to interpreting the The largest parity-violating effects have been seen in measurements. This is because very precise measurements of the (helicity dependent) longitudinal knowledge of the nuclear wave functions is needed analyzing powers for polarized neutron scattering. In to extract information on the weak interaction — neutron transmission experimerts on heavy nuclei, considerably more precise than is needed in most the parity-violating asymmetries, which are defined analyses of parity-conserving observables. Hie largest as the fractional difference of the resonance cross PNC signals are seen in heavy nuclei where nuclear section for neutrons polarized parallel and antiparallel levels are very closed spaced, but the nuclear structure to their momentum, problems become enormously harder as the complexity of the nucleus increases. For this reason, a+ -a~ P = (4) the approach to analyses in light versus heavy nuclei a +0 have followed very different paths. can be as large as 10% [ 10]. These measurements are made on p-waveresonancesin compound ruclear Parity inversion refers to the spatial transformation systems such as 2 M U and 232Th [11]. In these r — —r, which implies a momentum transformation systems the energy separation between opposite parity k — -k. The angular momertum vector (L = r x j-wave and p-waveresonancesrange from 0.1-100 k) and the spin vector (a) are unchanged under parity. eV. The mixing of one s- wave state in a p-wave state Thus, measuremerts usually involve searches for leads to a longitudinal asymmetry parity-odd observables such as (a.k), which can arise The parity-violating potential is a very small part (10 — 10 - 6 ) of the total Hamikonian for a nuclear system, H = Hq + V ^ Thus, it can be treated in perturbation theory, and the eigenfo net ions of H can be written from an interference between a parity-conserving and a parity-violating amplitude. These parity-odd correlations are first order in 3\ Alternatively, one can search for violation of parity-forbidden selection rules, such as a parity-forbidden a-decay, and these are proportional to & 2 . In the case of parity-odd observables arising from an irterference between a parity-conserving and paritynonconserving amplitude a second enhancement of the signal is possible. The PNC effect is proportional to (CHPNC)> 25 — - , where <CHPNC)> is the matrix (i0{PQ> element of an observable which is now non-zero because oftheP-violation and <0(PQ> is the matrix element of the parity-conserving observable. Thus, by choosing cases where nuclear structure effects render <0{PQ> to be very hindered, the PNC signal can be amplified significantly. Most of our knowledge on the PNC potentials have come from measurements of parity-violating asymmetries seen in y-decay, or in the scattering of polarized nucléons from nuclei. In the case of the photon decay of an excited parity-mixed state of the mcleus (eq. (3)) to a final state of definite parity, both magnetic and electric radiation of the same 82 Physics in Canada M arch/Aprill 9 9 6 p = 2 * 4 (5) yp Here 7" and 7J are the neutron reduced-widths evaluated at the p-wave resonance energy. The actual asymmetries involve a summation over many i-wave resonances since it is unlikely that P is dominated by the nearest-neighbour opposite-parityresonance.The large size of the PNC asymmetries in compound systems arises because of (1) the small energy denominators in 7 and (2) the favourable ratio of j-wave to p-wave neutron widths. The close spacing between theresonancesreflects their complexity and they correspond to highly excited compound states of the nucleus. The wave fonctions of theseresonancesinvolve 105-106 single particle componerts, and their structure can only be described statistically. In the statistical model the neutron reduced widths 7" and and the PNC mixing matrix elements < VFNC) are treated as independent Gaussian-distributed random variables with zero mean. Using the known values of the resonance energies and reduced widths, the root-mean-squared PNC mixing matrix element M can be determined directly from a set of experimental values of P. A maximum likelihood analysis [11] yields a value ^>2] M=lAv<ipIK^I w = 0 . 5 8 ^ « t K (6) where <ps and \pp are the s- and p-wave resonance wave functions. The observed magnitude of M is about as expected since the density of stales in compound systems is about a thousand times larger than in light nuclei and the average PNC matrix element there is - 1 eV. French et al. [12] have developed a microscopic framework for a statistical treatment of ruclear properties. The formalism has been applied successfully to studies of strength functions of positive parity operators, such as the quadrupole operator, in compound nuclei. Tomsovic [ 13] has proposed an extension of the theory for studies of PNC matrix element s. The first step in this direction has been taken by Johnson et al. [14] who examined the PNC strength function in large shell model spaces and compared this to the measured value of A/to extras a range of values for Fx and F0. An example of a violation of a parity-fortiidden selection rule is the a-decay of the excited 2 "(8.87 MeV) state of 16 0 to the 0 + ground state of U C; 16 0(2 — aC + a . The a-particle has spin/parity J = 0 + , and it can carty away L units of angular momertum. Thus, in the absence of parity violation, only states in 12C with J = 2 +L and parity II = ( - ) 1 + i can be populated by the decay of a2~" state A parity-violating o-width of r a = (1.03±0.28) X 10" 10 eV has been measured [ 15] for this stale. This width arises from a 2 + amplitude 7 admixed into the 2 ~ state, and the magnitude of the PNC width is proportional to Or2. Unfortunately, the uncertainties in the calculation [ 16 ] of this admixture have proved too large to extract information on the weak potential from this mea su renier». THE ONE-BODY PNC POTENTIAL The PNC potentials are two-body potentials, and the largest uncertainties in evaluating their matrix elements between many-body ruclear states arise from the uncertainties in nuclear wave functions themselves. Diserlanglingthe nuclear structure from the underlying weak PNC matrix elements is the moa challenging aspect of any theoretical analysis ol nuclear parity violation. Insight into the complexities involved and into any pertinent shortcomings with the model wavefonctionscan be obtained by starting with an analysis of the problem within a one-bod) approximation. Michel [17] derived an effective onebody PNC potential, which allowed him to evaluate PNC asymmetries using Nilsson model wave functions for a variety of spherical and deformed nuclei. Typical many-body nuclear calculations assume an inert core set of nucléons (interacting only via the average nuclear potential) and a valence set ol interacting nucléons. The one-body PNC interaction Ume between two nucléons in valence states | a) and I b) can be derived from matrix elements of the two-body interaction V w c by summing over all configurations in the core, (b I UpncI a> =L<b,c I » W 0 . 2 ) I a, c> (7) c Here the two-body matrix element is antisymmetric, i.e., it includes both the direct and exchange terms. The matrix elements of the one-body inet eract ion can be expressed in terms of an analytic one-body operator. The chosen operator acts as a meaningful, well-defined approximation to the two-body PNC potential if the associated effective coupling constants are not dependent on the core states involved in the sum (7). The simplest and most appealing one-body operators that violate parity, but not time-reversal invariance, are the isoscalar and isovector axial operators 7- p and 7-pr. The appropriate effective coupling constants are defined as a) <b I T A B L E I. C o n t r i b u t i o n f r o m each c o m p o n e n t ( F » , F o , . . . G i ) of the two-body VPNC to e for closed-shell-plus-one configurations for five choices of t h e closed-shell core. 7-pr (> Most striking is the lack of any strong shell or mass dependence in the coupling constants t° or e 1 . The total isoscalar and isovector PNC strengths remain almost constant with A (the mass of the nucleus). Furthermore, the large neutron excess in heavy nuclei has little effect on the values of the effective coupling constants. There are two competing factors determining the mass dependence of e. First there is the dependence on the size of the nucleus, which increases linearly with the harmonic oscillator length parameter, bocA 1/6 . Matrix elements of 7-p scale with 1/b, while matrix elements of VPNC scale roughly with 1/b 2 . Thus, if the number of core orbitals which are summed remained fixed, t would scale like 1/b approximately, and thus decrease roughly as A - . However, this scaling with the oscillator parameter is strongly offset by the increase in the number orbitals being summed as A increases. In general, the two effects compensate, resulting in an approximately mass independent effective coupling constant. f° Fo Fi F2 Go G, Total t{9 r) eV -.205 -.126 - 136 -.157 -.150 2.7 2.5 r u« itijiklli CT.P 1 IL 1 i u 1 1] ml l H 10 26 E'(MeV) To examine the expected distribution of the PNC strength in the nucleus we can examine the strength functions of the effective one-body operators. "Hie axial operators 7- ?and 7- pr are exactly analogous to the electric spin dipole operators 7• 7and 7• ir. They differ in their helicity properties, but if we confine ourselves to a 0l)o) — 11)0) calculation, (i.e., a calculation where the positive and negative parity stales differ only by the excitation of a nucléon through one oscillator shell), the distribution of the matrix elements of 7-"and 7- p are identical. The operators a,r, and a • r generate the group SU(4), and the irreducible representations of this group form the Wigner Supermultiplets. If the nuclear force were independent of spin and isospin, i.e. invariant under the Wigner SU(4) symmetry, the distribution of matrix elements of any set of operators 0(r), 0{r)a, 0(r)R, and CHDOT would be the same. The nuclear Hamikonian does contain SU(4) noninvariant terms, such as the Heisenberg ( j y r 2 ) interaction and the spin-orbit interaction. Nonetheless, the distribution of operators differing only by an SU(4) rotation remains similar, particularly in light nuclei. The operator TV is the electric dipole operator and ks strength distribution in the nucleus is determined by the giant dipole resonance which lies at about 1.5I)o), (t)oj = MeV) of excitation, and is a few MeV wide. Thus, from SU(4) symmetry arguments, we expect that the strength distributions for 7-p and 7• pr also exhibk resonance-like structure. To demonstrate this in a realistic calculation we consider the nucleus 19 F which has a 1/2 + ground state. The parity mixing between the ground state and the first excited 1/2 ~ state has been deduced from Fig. 2 The distribution or one-body PNC strength built on the J = 1/2 * ground state or F. In this Figure the height of each line represents the magnitude or the PNC matrix element (in arbitrary units) and the energy position or the line is the excitatioa energy or the corresponding T = l/2 or T - 3 / 2 7 = 1 / 2 " excited state. The PNC matrix elements were obtained from a lffui shell model calculation. The upper panel oT the figure shows the one-body strength derived from the two-body PNC interaction using eq (7). The lower panel shows the strength obtained using the operators e° 7 • p and e ' 7 • pr, where the coupling constants e* and e ' are taken to be orbital independent. We note the very snail fraction oT the total strength to the fin* 1/2 "(100 keV) state. This is the state that is relevant to the parity-violating 7-decay in "F. the y decay of the 1/2" state. The total (isoscalar and isovector) one-body PNC strength built on the ground slate of 19 F is shown in detail in Fig. 2. The states of 19 F were calculated in a full (0+ l)f)o) shell model calculation, in which spurious centre-of-mass exckations were removed exactly. There are then over three hundred 1/2 ~ states in the nonspurious model space. From Fig. 2 k can be seen that most of the strength of the parity-violating interaction is concentrated at higfi energies, and that the first excited state involves only a very small fraction of the total strength. This points to the need for a very detailed calculation of the structure of this state before a meaningful analysis of the PNC matrix element can be extracted from the 7-decay measurements. The upper panel of the figure shows the PNC strength obtained using the full form of the PNC potential via eq. (7), the bottom panel shows the results obtained - 135 2.3 132 - 144 - 001 .005 -.008 -.166 2.5 3 0 -.119 - 015 -.014 -.008 -.213 r1] 3p-3s -.140 -.001 000 -.014 -.007 1 I, 3p-3s - 157 -.001 .000 -.014 000 2p-2s 337-Th N=142 Z=90 e1 - 143 -001 .000 2 4 ™Pb N=126 Z=82 lp-ls - 156 -170 I Zr N=50 Z=40 <> Op-Os II a) The contribution of each of the six terms in VFNC to the one-body coupling constants and e 1 has been calculated by Hayes and Towner [18] assuming a single nucléon outside a closed-shell configuration. The results are summarized in Table 1. I Ca N=20 Z=20 e° (8) F. OH I 160 N=8 Z=8 001 .005 -.016 009 -.009 -.155 2.6 -129 2.2 - 160 2.7 128 2.1 using the operators 7-p and «• Jr. The two distributions are very similar over the entire excialion spectrum. However, for some individual states large differences occur. This suggests that whilst the operator 7 • ? provides an excellent approximation to the overall PNC strength function in the nucleus, it should not be used for the extraction of PNC coupling constants from measurements on isolated parity doublets. T-VIOLATTON IN THE NN INTERACTION Since the discovery of CP-violation in kaon decay over thirty years ago, the origin of the effect has still not been identified. There have been many searches for other CP-and T-violating effects, but nothing has been seen in systems other than the neutral kaons. A number of models have been proposed for the interaction responsible for the observed CP-violation. The observed effect can be accounted for wflhin the minima] standard model through a CP-violating phase in the Cabibbo-Kobayashi-Maskawa quark mixing matrix. Akernatively, new interactions requiring an extension of the standard elect roweak model may be responsible, and the predictions of some of the proposed models are quke different in systems other than the neutral kaons. T-violation in the NN interaction can occur simukaneously with P-v»lation, or as a P-conserving T-violating, interaction. However, in contrast to the PT-violating interactions, interactions that violate T but conserve P do not arise in the standard model. In this section we discuss attempts via low-energy measuremerts to put limits on the strengths of either form of T-violation in the NN interaction. The time-reversal noninvariart low-energy NN potentials can be described in terms of a single meson exchange in which one of the N — NM vertices involves a P,T-violating or T-violating P-conserving non-leptonic Hamikonian. Measurements of Tviolation in the nucleus require polarized nuclear targets, and are generally more difficuk than searches for P-violating T-conserving asymmetries. The magnitude of a T-violaling amplitude in the nuclear wave functions is expected to be vety small, especially in the case of a T-violating P-conserving amplkude. The issues involved in the PT-violating and the Tviolating P-conserving interactions are differert and we consider them separately. The most stringeit tests on the limits of time-reversal noninvariant interactions come from searches for electric dipole moments in the neutron or in neutral atoms. However, investigations of the role of T-violation in the NN interaction have concentrated on searches in the nucleus. We first consider the simukaneous violation La Physique au C a n a d a m a r s à avril 1 9 9 6 83 of time reversal invariance and parity conservation. P,T-violalion in the NN interaction may be studied in 7-decay and in neutron transmission on polarized nuclei. PT-violalion is always accompanied by Pviolation alone, and the ratio of the two asymmetries is the relevant observable. A symmetry-violating potential VF + VF,T has the effect of changing a nuclear stale | a ) to a state |/4>, given by a M > - |fl>+E. l ' > ((o' \VF\a) + (a'\VF,T\a)) (9) situation seen in P-violation, where p-exchange plays a dominant role. As noted above, the ratio of the P,T-violaling to Pviolaling asymmetries is the significant observable and this is proportional to the ralio of the malrix elements of VF and VFJ. Herczeg [ 19] has poitled out that if a reliable calculation of (a'|VF,T | a) is not available, an estimate of the ratio ArT!AF combined with a measured value of the P-violaling effect may give a more reliable estimate of (a 1 Vr,T\a ) than would an unreliable calculation of it. To this end, Herczeg defines the ratio k. where the state | a ' ) is of the same angular momentum as \a) but of opposite parity. We recall that for P-violation alone, CP-invariance excluded T = 0 and T - 2 t-exchange. For Ihe P.Tviolating potentials this restriction no longer holds, and T = 0 , 1 and 2 x-exchange are allowed. The isotensor potential is not generally expected to play a dominant role. The expressions for the T = 0 and 1 x-exchange P,T-violaling potentials are [19,20] 2 (10) where a + = a t + a 2 , for r + and r_. — <rl — o^ and similarly In the case of P-violalion alone, p-exchange is known to be as important as x-exchange. The T = 0 and 1 p-exchange P,T-violaling potentials are [21] • W - PSutim -o.-ÏTDY&J ^ « - f ' l l W (ID The coupling constants g $ w characterize the P,Tviolating// — NM vertices and the coupling constarts Smnn ( l >e ^rong vertices. (We are following the standard notation in which a 'bar' over the coupling constant indicates T-violation and a 'prime' Pviolation. A "bar' and a 'prime' together indicates PTviolation). The overall form of the p-exchange P,Tviolating potentials is the same as for x-exchange except for one key difference in the isovector potential. There the relative sign between the two terms is negative for p-exchange and positive for x-exchange. To obtain insight into the properties of the P,Tpotentials and to estimate the relative importance of the different components we turn to the effective onebody potentials. These are derived in exactly same way as the one-body PNC potentials using eq. (7). For charge-symmetric cores, i.e., cores with an equal number of neutrons and protons, the matrix elements of <r_Tj-r2 are zero, and matrix elements of o_r+ and v + r i are equal aAer summation. Thus, when N - Z there is no T = 0 contribution to P.T-violation. Futhermore, p-exchange interaction gives no contribution for any isospin channel. For chargenonsymmetric cores (N * Z) these terms give a finite contribution, but generally small. The vector meson exchange cortrfcutions to P,T-vioIation are about two orders of magnitude smaller that the T= 1 x-exchange matrix elements. This is in sharp contrast to the 84 Physics in Canada M arch/Aprill 9 9 6 -(!)' g M NN (12) Here it is assumed that P-violalion occurs primarily through isoscalar (/ = 0) p-exchange characterized by the coupling constant which is related to the counting constant F0, used in eq (1) by, F o> =-g'$lNgpNNf2- The ratio * has been evaluated [21] as a function of nuclear mass assuming a single nucléon in a closedshell-plus-one configuration. The magnitude of * is found to be about 5, and to display very little mass dependence. Griffiths and Vogel [22] have also calculated * for specific rare-earth nuclei, using the quasipaiticle random phase approximation. They find a very similar range of values. These results are significant because they suggest thai the ratio of the P,T-violating to P-violating amplitudes is approximately independent of nuclear structure. Thus, knowledge of the magnitude of * allows an estimate of <K'*-J> from a measurement of (VP). There has been only one experimental result on P,Tv iolation in 7-decay. This is from a study of the decay of the (polarized) 8 "(1.142 MeV) metastable state of "°Hf to Ihe 6 + (0.641 MeV) stale. The transition exhibits an unusually large P-violating effect through a forward-backward asymmetry (1.7%) and circular polarization ( 0 2 %) of the emitted 7-rays. The effect is an E2-E3 interference. If | A) is a P-mixed and P,T-mixed stale (eq. (9)), the 7-ray transition I A) — I B), exhibits a P.T-violating effect proportional to V . r 'bn <fl||xL||/J> ' (13) where x ' L' is the irregular mukipole available due to P,T-violalion while tL is the mukipole present in the absence of VF + VF T. The P-violaling effect in Ihe same transkion is proportional to The measuremerk in bn{f\E2\i) Fe<f\E2\i> ' ,80 Hf yielded -0.7±0.6 (15) TTiis implies a limk on the PT-coupling constant Ig^AW I <3.8 x 10" 6 /«. However, Ihe senskivky of the experiment would have to be improved by four orders of magnitude in order to improve the limk on g r N N set by the dipole moment of 199Hg. P.T-violalion can also be probed by study of the transmission of polarized neutrons through polarized nuclear targets [23]. These experiments are an extension of the neutron transmission measurements on unpolarized targets. In (he case of polarized targets, the fractional difference of the resonance cross sections for neutrons polarized parallel and aikipaiellel to their momentum, P p r = a l - t f l / a l + a l , implies simukaneous P- and T-violalion. The P.T-violating asymmetry arises through a term in the scattering amplkude proportional to a- (A x j ) . Hereof and a I are the total scattering cross-sections for neutrons polarized parallel and antiparellel to (k xj), a and A are the neutron spin and momentum and J is the target spin. In a two-stale mixing approximation, the ratio of the P.T-violating to P-violaling asymmetries in the neutron measuremetls is given by X= P f T » 7T w v ' w " «ANN - ^ - 06) where ^ and \fip are compound nuclear s- and p-wave resonance wave functions. The neutron transmission experiments are most senskive to the isovector coupling P.T-violating interaction, since k is probed by all the nucléons. Combining the present limk on g ^ N with the calculated value of k implies that the required accuracy is about PriJ Pp - 10" 3 . Finally, we consider the T-violating P-conserving (TVPC) NN potential. In the case of the TVPC interaction, the form of the meson-exchange potential has been shown by Simonious [24] to be severely constrained. No x-exchange or p°-exchange is allowed; Only p± and A, (or heavier) mesons can contribute. The At meson is considerably heavier than the p, and so ks contributions are strongly damped by the short-range NN correlations. The pexchangeT-violaling potential, which generates only an isovector potential, is given by [24] vivre _ [nx^]3 (17) Here / - r 12 x g p is the normal strong pMV coupling, and g„ is a dimensionless ratio of the TVPC coupling to gp. The form of TVPC potertial implies that neutrons only interact wkh protons. Futhermore, in the case of charge symmetric cores ( N - Z ) , there is no cortribution to the one-bod) potential form the core nucléons. Thus, only a few valence nucléons can contrtoute to a TVPC observable. The most stringent limks on g„ come from an analysis [ 25 ] of the experimental limks on Ihe electric dçole moment of l99 Hg and of the neutron. These implies | g ^ | s 9 . 4 X 10~ 2 . French elal. [ 12] studied the sensitivky of spectral fluctuations and strength functions in the compound mclear regime to a time-reversal non invariant term in the nuclear Hamiltonian. The senskivky to spectral fluctuations arises because a TVPC Hamikonian leads to stronger level repulsion than a symmetryconserving Hamiltonian. In the case of strength functions, one can search for deviations from the Porter-Thomas distribution generated by a timereversal invariant Hamikonian. The d*a set studied included 1702 levels in 32 nuclei. Since the analysis of compound nuclear resonances require enormous model spaces, French tt al. used their spectral averaging formalism for this analysis. The resuks were expressed in terms of a coefficient a T , which is the ratio of typical TVPC NN matrix elements In those of the symmetry-conserving shell model involves mixing between several states, have yet to achieve the required accuracy to extract reliable coupling constants. T A B L E II. Isovector ir-exchange, Vp,r, and isoscalar p-exchange, Vp, m a t r i x e l e m e n t s evaluated for a r losed-shell-plus-one configuration for six choices of t h e closed-shell core. T h e weak interaction coupling c o n s t a n t s are ff^jyv = * 1 0 _ U and = —11.4 X 1 0 - 7 . 160 N=8 Z=8 Op - < v, 1 > in e V x 1 0 " 4 Vp > in e V 0j 1 084 1513 , 0 Ca N=20 Z = 20 90 Zr N = 50 Z=40 138 Ba N=82 Z=56 1. 2p - 2 3 2p - 2s 0 875 1 550 0.708 1.535 0.779 1 576 1p - 208pb 232Th N=126 Z=82 N=142 Z=90 3s 3p - 3> 0.608 1 581 0.633 1 600 3p - In heavy nuclei, where the parity violation between compound resonances is analyzed within the statistical shell model, the present indications are that the models need to be extended. To date statistical calculations have been confined mainly to studies of positive parity operators. For most of these, the strength function of the operator is determined by the same model space that determines the level density. In the case of negative parity states, the level density is determined by the so-called intruder state. The ittruder stale is the state of maximum J from the next highet shell which is pulled down one shell by the very strong spin-orbit interaction in heavy nuclei. The angular momentum difference between the opposite-parits irtruder orbital and all other orbitals in the shell means that the intruder cannot contribute to the one-bod> PNC matrix elements. Thus, if the calculations arc carried out in the model space that determines the spectral level density, the PNC matrix elements will arise solely from the valence t wo-body part of PNC interaction and matrix elements of the one-bod) potential (eq. 7) will be identically zero. This suggets the need for extensions of the standard model space and it remains to be seen whether the statistical model will be able to reproduce the giant resonance structure of the one-body operators. T A U L E III. Weak P N C coupling c o n s t a n t s . T h e theoretical values and range are from t h e q u a r k model calculations of D e p l a n q u e s et al. [4] and t h e e x p e r i m e n t a l values are from t h e analyses of Adelberger a n d H a x t o n [6] Coefficient F. Fo Best value( 1 0 ~ 6 1 Theory Reasonable range ( 10"6 ) Theory Best v a l u e d 0 - 6 ) Fit t o Expt 1.08 1 59 0:2.71 -1 59:4 29 <0-1 0 8 interaction. The limit at the 99% confidence level is | a r | <2 x 1 0 - 3 . Haxton « al. [25] have related aT to the coupling constant gpNN in 199 Hg by comparing matrix elements of Fj v ' > c with matrix elements of the residual strong interaction in a shell model calculation. They find that the limit on a T implies | | £2.5. There has been one published measurement of a Tviolating P-conserving correlation in the scattering of polarized neutrons on aligned l65 Ho targets. These measurements searched for a dependence of the forward elastic-scattering amplitude on the Tviolating P-conserving correlation term (a-J x k) (J k). Here, J and a are unit vectors along the axes of the target alignment and neutron polarization, and k is the direction of the incident neutron beam. The neutron scattering experiment was analyzed in terms of the T-violating potential by Engel etal. [26] who derived a TVPC optica) potential for the neutronnucleus potential, starting from the p-exchange twobody potential. In this way they obtained limits on !>PNN- This result indicates the need for an order of magnitude better accuracy in the measurements in order to improve on the limits set by the electric dipole searches. It is anticipated that an improvement of ~ 150 can be achieved. FUTURE DIRECTIONS While much progress has been made in our attempts to understand nuclear parity violation, a number of open questions remain. The original motivation of the program was to extract information on the fundamental weak interaction between the quarks from the PNC meson-nucleon coupling constants. However, this hope has been blighted by theoretical difficulties at the particle physics level. In principle, the weak meson-nucleon amplitudes, and hence the corresponding coupling constants, can be calculated starting with the standard electroweak interaction between quarks. However, the elementary If and Z exchange occuring inside the weak meson-nucleon vertex are dressed by hadronic effects in a sufficiently complicated way that the estimated [4] values for the coupling constants are assigned large uncertainties. The "best values" and "reasonable range" for the two PNC coupling constants FR and F0, resulting from the quark model calculations, along with the values obtained [6] from thebest fit to experiment, are tiven in Table III. The allowed range on the theoretical values for the coupling constants means that even very precise experimental determinations of FR and F0 will not provide constraints on the fundamental weak interaction between quarks. The calculations require the evaluation of threehadron matrix element of a four quark-operator, <M?V1| N). An improvement in the calculations to the level that would allow a direct connection between the meson-nucleon potentials and the quarkquark weak interaction is unlikely to be achieved in the near future. On the nuclear physics side, the outlooks is much more optimistic. Studies of parity violation have pushed models of the nucleus to new limits and, indeed, have become the primary motivation for extensions of statistical treatments of chaotic spectra in nuclei. In the lighter nuclei, around mass 18, stateof-the-art shell model calculations have been carried out to analyze the PNC effects. As shown in Fig. 2, the PNC matrix element between a state | 7 + > and a closely lying state | J~) is only a very small fraction of the total PNC strength to all states | J ~ 1 >. Thus, very detailed knowledge of the nuclear wave functions is needed to obtain a reliable prediction of the matrix elements. In particular, at least 2iui of excitation must be included in the model space and spurious certer of mass excitations must be eliminated exactly. Structure theorists have taken advantage of the rapid advances in computer technology and modern shell model codes can now handle very large model spaces. Recently, these advances provided the first muki-Koj calculation of 2 , Ne, which in turn provided the first set of consistent values for FR and F0 for the PNC measurements in the three paritydoublet cases. Calculations in light nuclei, where the parity mixing is not confined to a doublet but instead New experiments are planned to measure parityviolating asymmetries in polarized-neutron scattering over a wider range of nuclear masses. In contrast to heavy nuclei, analyses of the PNC matrix elements in light nuclei show that the one-body part of the interaction dominates there. A current topic of interest is the issue of how the role of the one-body versus two-body parts of the PNC irteraction vaty as the intruder orbital is lowered in energy. Ideally, one would like to measure the effects in a common nucleus that can be calculated both within the regular shell model and the statistical shell model. Studies of P-odd T-odd correlaions in the nucleus have proved less sensitive than searches for electric dipole moments. To data gamma ray correlations are simply too insensitive to provide meaningful limits on the PT-voilating coupling constants. However, there may exist transkions where enhancements arising from special nuclear structure effects resuh in a large asymmetry. The most likely candidates would be expected in deformed nuclei and further theoretical work is needed here. Estimates for the required sensitivity in the neutron transmission experiments suggest a need for an accuracy of 10 - 1 0 - 6 for the PpjJPp ratio. It remains to be seen whether this accuracy can be achieved. Significant improvements on the T-odd P-even correlations in neutron scattering experiments are anticipated in the near future. These are expected to provide improved limits on the corresponding coupling constant. REFERENCES [ IJ l.S. Towner and J.C. Flardy, in The Nucleus as a Laboratory for Studying Symmetries and Fundamental Interactions, eds., E M. Henley and W.C. Haxton (World Scientific, Singapore. 1955) to be published. [2] G. Barton, Nuovo Cimento 1» 512 (1961). (3) E M. Henley. Ann. Rev. Nucl. Sci. 19. 367 (1969). [4J Bertrand Deplanques, John F. Donoghue, and Barry R. Hal stein. Anns. Phys. 124. 449 (1980). La Physique au C a n a d a m a r s à avril 1 9 9 6 85 OUTFLOWS FROM SPIRAL GALAXIES J u d i t h A . I r w i n , Dept. of Physics, Q u e e n ' s U n i v e r s i t y , Kingston, K7L 3 N 6 , Canada, i r w i n @ a s t r o . q u e e n s u . c a by SPIRAL G A L A X I E S — A V I E W T H R O U G H THE TELESCOPE EYEPIECE W h e n m o s t of us envision a " g a l a x y " , w e tend t o think of g i a n t spirals, b o t h s t r u c t u r e d and beautiful, o f t e n displayed with prominence on t h e c o v e r s of a s t r o n o m y t e x t s (Fig. 1). The image is at optical w a v e l e n g t h s , as if peering t h r o u g h a v e r y p o w e r f u l telescope on a clear, m o o n l e s s night. W e see a bright f l a t t e n e d disk c o n s i s t i n g of = 1 0 " stars t o o c r o w d e d over t h e field of v i e w t o be resolved individually. Prominent spiral arms w i n d t h r o u g h t h e disk emerging f r o m a g l o w i n g central bulge, and around the disk is a roughly spherical halo region sparsely populated w i t h globular star clusters, each one c o n t a i n i n g perhaps half a million stars. W i t h careful o b s e r v a t i o n , w e can discern n u m e r o u s details, b i f u r c a t e d spiral a r m s , subtle colour d i f f e r e n c e s , dark dust lanes threading along the a r m s or reddish ionized h y d r o g e n (HID regions associated w i t h the b r i g h t e s t , h o t t e s t stars. The v i e w is b r e a t h t a k i n g , and not at all incorrect. Indeed, s o m e might argue that this picture is q u i t e adequate, given that most of the observable mass of the g a l a x y is locked up in stars w h i c h emit black body radiation at p r e d o m i n a n t l y o p t i c a l w a v e l e n g t h s . But t h e r e ' s more g o i n g on here t h a n meets the eye. Fig. 1 The nearby galaxy, M 3 1 (The Andromeda Galaxy) and its t w o small companions. The image is at optical wavelengths in w h i c h the emission is predominantly from stars. Image available through the home page of "Students for the Exploration and Development of Space" (http://seds.lpl.arizona.edu/). Decades of s t u d y of our h o m e Galaxy, the M i l k y W a y , have provided us w i t h a v i e w w h i c h is v e r y similar t o the d e s c r i p t i o n above, the sun and its planets near an outer spiral a r m orbiting the center of the Galaxy w i t h a period (a f e w x 10 e yr) d i c t a t e d by the Galactic mass d i s t r i b u t i o n . A n o p t i c a l 3-D m a p of t h e M i l k y W a y , however, becomes sketchier with increasing d i s t a n c e f r o m t h e sun, due t o o b s c u r a t i o n by interstellar d u s t . Indeed, if w e look along the plane of the M i l k y W a y (seen as the faint band of light s t r e t c h i n g across the sky), the stars that are visible are only the relatively nearby ones, out t o distances of a f e w kpc (1 kpc = 3.1 x 1 0 ' 9 m) c o m p a r e d to the 8 kpc distance t o t h e Galactic C e n t e r ' . Starlight is scattered and reddened by dust by the same processes w h i c h d i m and redden light f r o m the setting sun. Since interstellar but o c c u p y large filling f a c t o r s and cover most of the observable s k y , t h o u g h w i t h decreasing intensity as a f u n c t i o n of distance f r o m the M i l k y W a y plane. They are also tracers of energetic phenomena and the c o s m i c ray c o m p o n e n t a l l o w s us to map out the s t r u c t u r e and d i r e c t i o n of the Galactic magnetic field f r o m observations of s y n c h r o t r o n polarization. grain radii tend t o be in the range, i a f e w hundredths to a f e w t e n t h s of a / / m , h o w e v e r , w a v e l e n g t h s s u f f i c i e n t l y longer t h a n this particle size w i l l propagate over scales of Galactic proportion, essentially without interaction. Consequently, observations at m m , c m , and some infrared w a v e l e n g t h s provide us w i t h useful probes of the large scale s t r u c t u r e of the Galaxy. The total ISM mass constitutes a p p r o x i m a t e l y 1 0 % of the g a l a x y ' s t o t a l observable mass. M o s t of this mass is split roughly equally b e t w e e n t w o neutral components. One is neutral atomic hydrogen (HI), which is ubiquitous t h r o u g h o u t the Galaxy and detectable t h r o u g h observations of the g r o u n d s t a t e hyperfine t r a n s i t i o n at l) = 1420.406 M H z . HI (T = 1 0 0 K) is seen in cloud s t r u c t u r e s , in w i s p y f i l a m e n t s , arcs and plumes, and as s m o o t h w a r m e r intercloud gas. It is e x t r e m e l y useful for mapping out the large-scale r o t a t i o n of the Galaxy f r o m Doppler s h i f t s of this spectral line. The second c o m p o n e n t is molecular h y d r o g e n (H 2 ) w h i c h congregates in denser clouds and is more c o n c e n t r a t e d t o w a r d s the g a l a x y ' s plane t h a n the HI. There does not appear t o be any intercloud H 2 , since the radiation field in l o w d e n s i t y regions b e t w e e n clouds is capable of dissociating the h y d r o g e n molecule. Interstellar dust is correlated spatially w i t h dense molecular clouds and it is believed that molecules f o r m m o s t e f f i c i e n t l y on the surfaces of these grains. U n f o r t u n a t e l y , H ? has no dipole moment and is therefore undetectable under normal interstellar 2 conditions . Therefore, the q u a n t i t y of molecular h y d r o g e n is normally inferred (with some controversy as t o the c o n v e r s i o n factor) f r o m observations of the next m o s t abundant molecule, c a r b o n m o n o x i d e , w h i c h is collisionally excited by the H 2 . CO has several accessible rotational transitions in the m m and s u b - m m regimes (e.g. J = 1 —» 0 corresponds t o v = 1 1 5 . 2 7 1 GHz). THE INTERSTELLAR " V A C U U M " — A BROADENING PERSPECTIVE W h e n a radio telescope is pointed at the M i l k y W a y , the resulting v i e w is quite d i f f e r e n t f r o m the optical picture described above. Stars, being w e a k e m i t t e r s at radio w a v e l e n g t h s , disappear f r o m v i e w and instead, depending on the tuned f r e q u e n c y , the sky is filled w i t h emission f r o m the " v a c u u m " b e t w e e n the stars. Interstellar space is filled w i t h numerous c o m p o n e n t s (including d u s t ) , collectively k n o w n as t h e interstellar m e d i u m (ISM). The ISM is not u n i f o r m , rather its c o n s t i t u e n t s o c c u p y v o l u m e s of space of various size and cover m a n y orders of m a g n i t u d e in d e n s i t y and t e m p e r a t u r e — f r o m hot " c o r o n a l " gas w i t h densities as low as 0.001 particles cm3 and t e m p e r a t u r e s as high as = 1 0 6 K t o molecular cloud cores w i t h densities as high as 1078 particles cm3 and t e m p e r a t u r e s as l o w as =>10 K. A l t h o u g h the densest of clouds is still orders of m a g n i t u d e rarer t h a n the best v a c u u m attainable in earth-based laboratories, w h e n integrated over the e x t r e m e l y large distances of interstellar space, c o l u m n densities can be considerable (e.g. 10 22 particles c m 2 for neutral a t o m i c hydrogen) and the emission is often easily detectable. M u c h of the volume of the ISM is taken up by hot, l o w d e n s i t y ionized hydrogen (called coronal gas) and by l o w density c o s m i c rays w h i c h w e r e accelerated in high energy regions like supernova shock waves. The ionized hydrogen is detectable from its Bremsstrahlung e m i s s i o n in the s o f t X-ray regime, w h i c h requires satellite observations. Ultra-relativistic (e.g. y = 1000) c o s m i c ray electrons spiral around Galactic magnetic field lines and can be d e t e c t e d by the subsequent s y n c h r o t r o n emission w h i c h is radiated as a continuous s p e c t r u m in the c m - w a v e l e n g t h radio regime. These t w o c o m p o n e n t s c o n t r i b u t e a negligible a m o u n t of mass t o the ISM, 'interstellar absorption varies strongly w i t h position in the Galactic plane. Under some conditions, e.g. in regions close t o stars, molecular hydrogen can attain temperatures of several thousand K in w h i c h case some vibrational transitions are observable in the infra-red. 2 86 Physics in Canada M arch/Aprill 9 9 6 So far as w e k n o w , this d e s c r i p t i o n of the ISM in our o w n Galaxy is applicable t o m o s t other spirals, t h o u g h it is d i f f i c u l t t o d i s c e r n the detailed s t r u c t u r e of the various c o m p o n e n t s in other galaxies due t o lack of s u f f i c i e n t spatial resolution at the greater distances. There are also d i f f e r e n c e s b e t w e e n galaxies, h o w e v e r , especially in the relative quantities of the various c o m p o n e n t s , and in the agitation they are experiencing from internal energetic events. THE VIOLENT INTERSTELLAR M E D I U M Recently, our understanding of the interstellar m e d i u m (ISM) in our o w n and other spiral galaxies has undergone a d r a m a t i c change. T w e n t y - f i v e years ago, the ISM w a s t h o u g h t t o consist o n l y of quiescent neutral h y d r o g e n in t w o phases (cool cloud and w a r m intercloud gas) w h i c h w e r e in pressure equilibrium (Field, Goldsmith and Habing 1969). As satellite-based telescopes w e r e launched, this v i e w had t o be m o d i f i e d t o include the hot X - r a y e m i t t i n g c o m p o n e n t , p r e s u m a b l y supplied t h r o u g h supernova explosions (Cox and S m i t h 1 9 7 4 , M c K e e and Ostriker 1977). With continually improving Fig. 2 GALAXY OUTFLOWS It has been k n o w n since the early d a y s of radio a s t r o n o m y that some galaxies experience o u t f l o w s , but these o u t f l o w s are in the f o r m of n a r r o w jets originating f r o m " a c t i v e galactic nuclei" or A G N s , m o s t likely associated w i t h a s u p e r m a s s i v e black hole at the g a l a x y ' s center. A l t h o u g h spectacular, s u c h o u t f l o w s w e r e only seen in distant elliptical galaxies and w e r e not observed in relatively nearby The edge-on nuclear starburst galaxy, NGC 3 6 2 8 , w i t h optical emission s h o w n in grey scale and overlaid contours depicting X-ray emission due t o hot ionized gas. Adapted from Fabbiano et al. ( 1 9 9 0 ) , copyright American Astronomical Society, reproduced w i t h permission. o b s e r v a t i o n s , especially at non-optical w a v e l e n g t h s , w e n o w see the ISM as c o m p l e x and m u l t i phased as described above. H o w e v e r , far f r o m q u i e s c e n t , it is n o w u n d e r s t o o d t o be f r o t h y and seething, undergoing violent a c t i v i t y , and possibly experiencing o u t f l o w s as gas is d r i v e n a w a y f r o m the disk into the halo region around it (e.g. N o r m a n and Ikeuchi 1 9 8 9 , or papers in Bloemen 1 9 9 1 ) . The realization that there is a d y n a m i c disk-halo relationship in our o w n Galaxy crystallized with the discovery of expanding HI shells and supershells of kpc scale e x t e n d i n g over the d i s k - h a l o b o u n d a r y ("Heiles Shells"; Heiles 1 9 7 9 , 1984). Since this early w o r k , other evidence for disk-to-halo o u t f l o w s has a c c u m u l a t e d , including expanding molecular (i.e. CO) shells in the Galactic Center region (Oka et al. 1 9 9 5 ) , and features over the disk in various wavebands which spatially correlate w i t h the Heiles Shells (e.g. Koo et al. 1 9 9 1 ; Waller and Boulanger 1 9 9 3 ; Reach et al. 1 9 9 3 ) . The input energies implied by the HI shell masses (obtained f r o m the l u m i n o s i t y of the spectral line) and e x p a n s i o n velocities (obtained by the Doppler shift of the spectral line) c a n be considerable — energies up t o = 10 6 b erg are not out of the ordinary. spirals. Since t h e 1 9 8 0 s , h o w e v e r , there have also been discoveries of (wider opening angle) bipolar o u t f l o w s f r o m the nuclei of spiral galaxies. Some of these nuclear o u t f l o w s fall into the l o w e r l u m i n o s i t y end of the A G N c a t e g o r y , but not all. It appears t h a t galaxies w i t h o u t A G N but w h i c h are experiencing strong nuclear " s t a r b u r s t s " can also produce a bipolar o u t f l o w . A starburst occurs w h e r e v e r there is an unusually high massive (e.g. i 5 - » 8 M e ) star f o r m a t i o n rate. M a s s i v e stars live for a relatively short (e.g. s 1 0 ' years) t i m e and end their lives in supernova explosions. Since the star f o r m a t i o n process itself can occur over t i m e s c a l e s longer t h a n this, star births and star deaths can proceed at the same t i m e . Star formation activity (and therefore supernova a c t i v i t y ) can be enhanced in the nucleus if, for example, a passing companion galaxy perturbs the gas d i s t r i b u t i o n , resulting in gas transfer t o w a r d s the center. The build up of gas invokes accelerated star f o r m a t i o n and a resulting " b u r s t " of a c t i v i t y f r o m the c o l l e c t i v e c o n t r i b u t i o n s of m a n y individual supernova explosions. Given t h a t initial o u t f l o w velocities f r o m supernovae are of order 1 0 , 0 0 0 k m s the consequences can be significant. In some cases, the result is bipolar nuclear o u t f l o w along the r o t a t i o n axis of the g a l a x y as the hot ejecta takes the path of steepest decreasing pressure gradient a w a y f r o m the nucleus. A good example of bipolar o u t f l o w f r o m a nuclear starburst is the g a l a x y , NGC 3 6 2 8 (Fig. 2) in w h i c h the o u t f l o w i n g hot gas is visible as soft X - r a y e m i s s i o n far f r o m the plane. Starburst galaxies are more n u m e r o u s t h a n A G N in the nearby universe and potentially present us w i t h a clearer v i e w of the physical processes w h i c h are involved in driving such outflows. The first clear evidence for o u t f l o w s f r o m the disks of spirals other t h a n the M i l k y Way came from observations of NGC 3 0 7 9 in w h i c h HI shells and supershells similar t o the "Heiles Shells" of our o w n Galaxy w e r e d e t e c t e d ( I r w i n and Seaquist 1 9 9 0 ) . There are n o w a number of other galaxies for w h i c h there is g o o d evidence for disk-to-halo o u t f l o w . Of those displaying HI shells, the c o m p l e t e (but g r o w i n g ) list is still probably less t h a n a dozen (see examples in I r w i n 1 9 9 5 ) . This number increases if w e also include galaxies w h i c h display radio c o n t i n u u m (from s y n c h r o t r o n emission) t h i c k disks or halos (e.g. H u m m e l , Beck, and D e t t m a r 1991). A g o o d example of a galaxy w h i c h displays b o t h HI disk halo arcs as w e l l as a d r a m a t i c radio c o n t i n u u m halo is NGC 5 7 7 5 (Fig. 3). The halo around this galaxy is so large (= 16 kpc radius in projection) that the g a l a x y resembles an elliptical in this w a v e b a n d . At the same t i m e , considerable s t r u c t u r e is observed in the o u t f l o w features, potentially providing clues as t o the mechanism(s) t h a t f o r m e d t h e m . These o b s e r v a t i o n s suggest that gas (both non-relativistic and relativistic) can be expelled f r o m spiral g a l a x y disks w h e r e the star f o r m a t i o n rates are considerably more m o d e s t t h a n in the nuclei. The q u e s t i o n arises, then, are the disk o u t f l o w s also a result of processes related t o m a s s i v e star f o r m a t i o n ? There is good evidence t o suggest that the disk o u t f l o w s are indeed related to s t a r b u r s t i n g , but starbursting alone does not appear to be s u f f i c i e n t to account for the observed features. In the M i l k y W a y , some of the Heiles Shells do appear t o be correlated w i t h active sites of star f o r m a t i o n and m o s t of the theoretical w o r k pursued t o date has f o c u s e d on modelling the s t r u c t u r e s e x p e c t e d f r o m a rapid input of supernova kinetic energy (e.g. Tomisaka 1 9 9 1 ) . H o w e v e r , a d i f f i c u l t y arises w h e n the largest HI shells are considered. O b v i o u s l y , the input energy m u s t be at least as high as the expansion energy of the shell (up t o 1 0 6 6 e r g ) . W h e n c o n v e r t e d to the required number of input supernovae, the result can be more t h a n 4 10 . This s t r e t c h e s the starbursting scenario severely, since most associations of hot, s u p e r n o v a - p r o d u c i n g stars in our o w n Galaxy are t h o u g h t t o c o n t a i n < 10 2 stars, t h o u g h s o m e m a y be more populous. M o r e o v e r , even if the energy is available, large scale HI features can only be f o r m e d if the scale height of the disk is also unrealistically large (e.g. Heiles 1 9 9 0 ) . This "energy p r o b l e m " has led some La Physique au Canada mars à avril 1 9 9 6 87 researchers t o seek other explanations for the HI supershells. In the M i l k y W a y , there appear t o be connections between a f e w outflow f e a t u r e s and " h i g h v e l o c i t y c l o u d s " . These Recent observations of HI supershells in t w o undisturbed, isolated spiral galaxies (Lee and I r w i n , in preparation; Giguere and I r w i n , in preparation) n o w indicate t h a t the cloud impact model is an unlikely one for these galaxies. The star f o r m a t i o n rates in 03 49 48 - 47 ~ © 1» CD m 46 z o F 45 < z Zj O Ul a 44 43 42 - 14 51 35 Fig. 3 30 25 20 15 RIGHT ASCENSION (B1950) 05 The edge-on galaxy, NGC 5 7 7 5 , and its interacting face-on companion, NGC 5 7 7 4 , t o the north-west (i.e. upper right). The centers of both galaxies are marked w i t h crosses. Grayscale denotes the neutral hydrogen emission w h i c h is strongest in NGC 5 7 7 5 along a narrow south-east t o north-west path and corresponds roughly t o the stellar disk of this edge-on galaxy. Fainter neutral hydrogen emission can be seen extending away f r o m this disk in the f o r m of arcs, plumes and extensions. Contours represent radio continuum emission f r o m the synchrotron process, forming an extended flattened halo w i t h considerable substructure. clouds f o r m part of a cloud s t r e a m w h i c h s t r e t c h e s b e t w e e n the M i l k y W a y and its nearby c o m p a n i o n galaxies, the Magellanic Clouds, as a result of a tidal interaction. These c o n n e c t i o n s , as w e l l as the energy problem described above have led t o the Cloud Impact model for the f o r m a t i o n of HI shells in the M i l k y W a y (see r e v i e w by Tenorio-Tagle and Bodemheimer 1 9 8 8 ) , and n o w in other galaxies as w e l l (e.g. NGC 4 6 3 1 , Rand and Stone 1 9 9 5 ) . A s the name suggests, the HI supershells are f o r m e d f r o m the i m p a c t of clouds o n t o the Galactic disk, in w h i c h case the shell energy is d i c t a t e d by the infalling cloud mass and the infall v e l o c i t y . This a l l o w s for m u c h larger input energies since the infalling cloud c a n be a tidal shred f r o m the interacting galaxy w i t h an (almost) arbitrarily large mass. Of course, appealing t o c l o u d i m p a c t s as the source of disk-halo supershells requires t h a t the g a l a x y either be undergoing an i n t e r a c t i o n or at least have c o m p a n i o n s nearby as a potential source of external clouds. 88 10 Physics in Canada M arch/Aprill 9 9 6 these galaxies exceed that in our o w n , and it is therefore possible t h o u g h not observationally proven that very large numbers of supernovae may also congregate in individual clusters. H o w e v e r , the d i f f i c u l t y in producing HI supershell structures remains. For example, in one case, the size of the HI shell is fully half the radius of the g a l a x y , far in excess of any reasonable scale height. It is therefore w o r t h w h i l e t o search for s o m e additional source of energy, besides supernovae, t o explain the observations. Perhaps the disk and halo are coupled in s u c h a w a y that rotational shear can be c o n v e r t e d into vertical m o t i o n . Further theoretical w o r k , possibly in the realm of non-linear magnetoh y d r o d y n a m i c s (e.g. Parker instabilities), appears t o be required. THE SIGNIFICANCE A N D CONSEQUENCES OF O U T F L O W S W h i l e only a " h a n d f u l " of galaxies s h o w i n g evidence for o u t f l o w s have so far been identified, I w o u l d c o n t e n d that t h i s is largely because of selection e f f e c t s . It is important t o observe galaxies w h i c h are highly enough inclined that the disk can in fact be separated spatially f r o m the halo region around it. So far, f e w studies have s y s t e m a t i c a l l y c o n c e n t r a t e d on galaxies w i t h this orientation. Because the features tend to be faint, it is also necessary t o integrate long enough t o o b t a i n g o o d signal-to-noise. The radio c o n t i n u u m halo observed around NGC 5 7 7 5 (Fig. 3), for example, w a s only d e t e c t e d by c o m b i n i n g data from three separate observing sessions, for a t o t a l of 6 hours of on-source t i m e using the V e r y Large A r r a y ( V L A ) radio telescope near Socorro, N e w M e x i c o . Neutral h y d r o g e n observations also tend t o be t i m e c o n s u m i n g , b o t h in the c o l l e c t i o n and analysis of the data. A single g a l a x y requires an i n t e g r a t i o n time of a p p r o x i m a t e l y 12 hours using t h e V L A and processing and analysis m u s t proceed on " c u b e s " of data since a m a p is generated for every spectral channel. The r e w a r d s , however, are w e l l w o r t h the time i n v e s t m e n t . In a survey of 17 edge-on galaxies in the radio c o n t i n u u m , it w a s f o u n d that virtually every galaxy s h o w e d radio c o n t i n u u m extensions beyond the optical boundaries of the disk (Sorathia and I r w i n 1 9 9 5 , in preparation; Sorathia 1 9 9 4 ) . It is entirely possible then, that at some level, o u t f l o w s are a c o m m o n characteristic of all spiral galaxies w h i c h are a c t i v e l y undergoing star f o r m a t i o n . W h a t is the u l t i m a t e f a t e of the expelled gas? Does the gas cool and fall back to the disk again like a "Galactic Fountain" as first suggested some 2 0 years ago (Shapiro and Field 1976) or does it leave the galaxy altogether, f l o w i n g i n t o i n t e r g a l a c t i c space? For galaxies like NGC 5 7 7 5 (Fig. 3) the radio c o n t i n u u m e m i s s i o n extends so far f r o m the plane (i.e. = 16 kpc) t h a t the halo resembles an oblate spheroid in projection. The existence of halo s u b s t r u c t u r e far f r o m the plane implies that d y n a m i c a l processes are still at w o r k at v e r y large scale heights, suggesting that at least s o m e mass loss is likely occurring. On the other hand, observations of X - r a y emission f r o m the hot halo of the g a l a x y , NGC 8 9 1 , suggest t h a t this t h e r m a l gas is bound t o the galaxy (Bregman and Pildis 1 9 9 4 ) . Some galactic circulation models suggest that either scenario is possible, depending on the density of the ISM and the level of energy input (e.g. N o r m a n and Ikeuchi 1 9 8 9 ) . A s y e t , w e have no direct observational measure either of mass loss or mass circulation rates f r o m a galaxy disk. Some theoretical e s t i m a t e s place a mass loss rate for our o w n Galaxy of order = 1 M o yr ' (Vôlk 1 9 9 1 ) . Other galaxies are clearly experiencing higher star f o r m a t i o n rates t h a n the M i l k y W a y , suggesting an u p w a r d s increase in the mass loss rate for t h e m . If these e s t i m a t e s are c o r r e c t , t h e n over the course of a single g a l a x y r o t a t i o n (a f e w x 10 8 years) the ISM, w h i c h c o n t a i n s a f e w t i m e s 10 s M o could be s i g n i f i c a n t l y (i.e. at levels i 1 0 % ) depleted. A f t e r a dozen rotations, a naive extrapolation w o u l d have the ISM t o t a l l y depleted. W i t h less gas available t o f o r m stars, this alters our v i e w of the star f o r m a t i o n h i s t o r y of the g a l a x y and the global p r o g r e s s i o n of star f o r m a t i o n in various m o d e l s . Indeed, our telescopic v i e w of the g a l a x y , being d i c t a t e d by the available s t a r l i g h t , is a p r o d u c t of these processes. A p a r t f r o m mass loss due t o o u t f l o w s , there is already a gas c o n s u m p t i o n " p r o b l e m " in galaxies s i m p l y f r o m the c o n v e r s i o n of gas into stars (Larson, T i n s l e y , and C a l d w e l l 1 9 8 0 ) . That is, if current star f o r m a t i o n rates (as e s t i m a t e d f r o m o b s e r v a t i o n s of star f o r m i n g a c t i v i t y in galaxies) are a s s u m e d t o be c o n s t a n t w i t h t i m e , t h e n the same c o n c l u s i o n --- that the ISM w i l l be depleted over t i m e s c a l e s shorter than the age of the g a l a x y — is reached. A d d i t i o n a l m a s s loss f r o m o u t f l o w s o n l y exacerbates this problem. W h i l e it is n o w m o r e w i d e l y believed that star f o r m a t i o n rates are not c o n s t a n t and m a y even undergo c y c l e s of bursts, s o m e researchers have s u g g e s t e d t h a t the ISM m u s t be c o n t i n u a l l y supplied by s o m e (as yet hypothetical) source of external a c c r e t i o n , for e x a m p l e primordial material left over f r o m the e p o c h of g a l a x y f o r m a t i o n (Pfenniger and C o m b e s 1 9 9 4 ; Pfenniger, C o m b e s and M a r t i n e t 1 9 9 4 ) . Thus, a better u n d e r s t a n d i n g of the l o n g - t e r m e f f e c t s of gas c o n s u m p t i o n and m a s s loss are required in order t o address c o n c e r n s of a c o s m o l o g i c a l nature. If gas is being d r i v e n into intergalactic space, it is also of interest t o consider w h a t e f f e c t s s u c h o u t f l o w s w i l l have on the galaxian environment. Will these outflows d y n a m i c a l l y a f f e c t their nearby neighbours, as s u g g e s t e d b y o b s e r v a t i o n s of a c o m p a n i o n to the g a l a x y , NGC 3 0 7 9 ( I r w i n et al. 1987)? To w h a t e x t e n t d o these o u t f l o w s enrich the intergalactic m e d i u m w i t h heavy e l e m e n t s f r o m supernova ejecta? Is t h i s a s o u r c e of hot intergalactic gas w h i c h is o b s e r v e d in some c l u s t e r s of galaxies? Does this gas c o n t r i b u t e t o the intergalactic a b s o r p t i o n lines ( m o s t l y Ly«) seen against b a c k g r o u n d quasars (and closer objects)? The i m p l i c a t i o n s of s u c h a c t i v i t y are o n l y n o w being explored. It seems likely, h o w e v e r , that our v i e w of spiralgalaxies as the isolated stellar s y s t e m s w h i c h grace the c o v e r s of t e x t b o o k s m a y require s u b s t a n t i a l m o d i f i c a t i o n . ACKNOWLEDGEMENTS 5. Field, G.B., Goldsmith D . W . , and Habing, H.J. 1969, Ap. J. (Letters), 155, L149 6. Heiles, C. 1979, Ap. J., 229, 5 3 3 7. Heiles, C. 1 9 8 4 , Ap. J. Suppl., 55, 5 8 5 8. Heiles, C. 1 9 9 0 , Ap. J., 354, 4 8 3 9. Hummel, E., Beck. Ft., and Dettmar, R.-J. 1 9 9 1 , Astr.Ap. Suppl., 87, 3 0 9 Irwin, J . A . 1995, Pub. A. S. P., 107, 715 (6) E.C. A del berger and W.C. Haxton. Ann. Rev. Nucl. Part. Sci. 35, 501 (1985). 11. Irwin, J.A., and Seaquist, E. R. 1990, Ap. J., 3 5 3 , 4 6 9 12. Irwin, J.A., Seaquist, E.R., Taylor, A.R., and Duric, N. 1987, Ap. J. (Letters), 3 1 3 , L91 13. Koo, B.-C., Heiles, C., and Reach, W.T. 1991, in The Interstellar Disk-Halo Connection in Galaxies, IA U Symp. 144, ed. H. B l o e m e n (Dordrecht, Kluwer), 165 14. Larson, R.B., Tinsley B. M., and Caldwell, C.N. 1980, Ap. J., 2 3 7 , 692 (8) K.S. Krane it et d., Ptiyi. Rev. Lett. 26 1579 (1971), Phyj. Rev. C 4 1906 (1971)., C.A. Barnes et al., Phys. Rev. Lett. 40, 840(1978).. K.A. Snover etal., Phys. Rev. Lett. 41 145 (1978)., P.O. Bizzeti etal., Lett, Nouvo Cim. 29 167 (1980).. E.G. Adelberger in PolariTAtion Phenomena in Nuclear Physics, AIP Conf. Proc. No 69 AIP, New York (1981)., G. Ahrcns et al.. Nucl. Phys. A390. 486 (1982).. K. Elsener et al.. Phys. Lett 117B 167 (1982)., E.G. Add berger era/., Phys. Rev. C27 2833 (1983)., E.D. Earte etal. Nucl. Phys. A396. 221 (1983).. K. Elsener et al., Hiys. Rev. Lett. 52 1476 (1984)., H.C. Evans etal., Phys. Rev. Lett 55 791 (1985)., M. Bini et al. Phys. Rev. Lett. 55 795 (1985)., R. WDson etal. in The Instigation of Fundamental Interactions with Cold Neutrons, éd., G.L. Greene, NBS Special Pub. No. 711, NBS, Washington (1986). 15. McKee, C.F., and Ostriker, J.P. 1 9 7 7 , Ap. J.. 2 1 8 , 148 16. Norman, C., and Ikeuchi, S. Ap. J.. 345, 372 17. Oka, T., Hasegawa, T., Handa, T., Sato, F „ and Tsuboi, M. 1 9 9 5 , in CO: Twenty-five Years of Millimeter-wave Spectroscopy, IA USymp. 170, in press 10. 1989, 18. Pfenniger, D., and Combes, F. 1994, Astr. Ap., 2 8 5 , 9 4 19. Pfenniger, D., Combes, F., and Martinet, L. 1 994, Astr. Ap., 2 8 5 , 7 9 20. Rand, R.J., and Stone, J . M . 1995, A.J. in press 21. Reach, W.T., Heiles, C., and Koo, B. C. 1993, in Back to the Galaxy, AlPConf. Proc. 2 7 8 , ed. S.S. Holt and F. Verter (New York, AIP), 548 REFERENCES 25. 26. Bregman, J.N., and Pildis, R.A. 1994, Ap. J., 4 2 0 , 5 7 0 4. Fabbiano, G., Heckman, T., and Keel, W. C. 1 990, Ap. J., 3 5 5 , 4 4 2 1[11) J.D. Bowman etal.. Phys. Rev. Lett. 65, 1192(1990); C.M. F rankle etal., Phys. Rev. Lett. 67 564(1991). [ 12] J.B. French etal.. Ann. Phys (N.Y.) 181 260(1988); ' S. Tomsovic, IVD. Thesis, University of Rochester (1987). ( [13] S. Tomsovic, Unpublished. [[ 14] M B. Johnson etal.. Phys. Rev. Lett. 67, 310(1991). [15] K. Ncubcck etal, Phys. Rev. CIO, 320 (1974). I [[ 16] B. A. Brown. W. A. Richter, and N.S. Godin, Phys. Rev. Lett. 45 1681 (980). [19] P. Hcrczeg, llyperfine Interact. 75, 127 (1992). Tenorio-Tagle, G., and Bodenheimer, P. 1988, Ann. Rev. Astr., Ap. 26, 145 Cox, D.T., and Smith,B. W. 1 974, Ap. J. (Letters). 189, L I 0 5 (I 10] V.P. Alfimenkov etal., Nud. Phys. A398 93 (1983); V.P. Afimenkov, Usp. Fiz. Nauk 144 361 (1984) [Sov. Phys. Usp. 27 797 (1984);] ; Y. Musuda it et al et al.. Nucl. Phys. A504, 269 (1989).; C.D. Bowman, J.D. Bowman, and V.W. Yuan, Phys. Rev. C39 1721 (1989). 1[18] 24. 3. (9) A.B. McDonald etal., in. Rep. on Res. In Nucl. Phys. at Queen's Univ (1985). Shapiro, P.R., and Field, G.B. 1976, Ap. J., 205, 7 6 2 Sorathia, B., 1994, Queen's University 2. (7) O.A. Miller and J.E. Spencer, Ann.. Phyt. 100, 562 (9176). 22. 23. Bloemen, H., ed. 1 9 9 1 , The Interstellar Disk-Halo Connection in Galaxies, I A U Symp. 144 , ed. H. Bloemen (Dordrecht, Kluwer) (5) T.A. Brody and M. Moshinsky, Tables of transformation brackets.. Institute dc facia, Mexico (1960). [17] F.C. Michd, Phys. Rev. 133, B329 (1964). ( I w o u l d like t o thank Dr. N a n c y Evans for suggesting this article. The a u t h o r ' s research is s u p p o r t e d t h r o u g h a Natural Sciences and Engineering Research Council of Canada Grant No. W F A 0 1 5 6 3 7 3 . 1. Symmetry-Violating NN ... by A. C. Hayes (continued from pg. 85) 27. M.Sc. Thesis, Tomisaka, K. 1991, in The Interstellar Disk-Halo Connection in Galaxies, IAU Symp. 144, ed. H. Bloemen (Dordrecht, Kluwer), 407 Vôlk, H. J. 1991, in The Interstellar Disk-Halo Connection in Galaxies, IA U Symp. 144, ed. H. Bloemen (Dordrecht, Kluwer), 3 4 5 Waller. W.H., and Boulanger, F. 1993, in Back to the Galaxy, AIP Conf. Proc. 278, ed. S.S. Holt and F. Verter (New York, AIP), 5 4 4 A.C. Hayes and I.S. Towner, Phys. Lett. B 302, 57 (1993). [20] W.C. Haxton and E.M. Henley, Phys. Rev. Lett. 51. ' 1973 (1983). ([21] I.S. Towner and A.C. Hayes, Physa. Rev. C 49,2391 (1994). [[22] A. Griffiths and P. Vogd. Phys. Rev. C 43. 2844 (1991). [23] J.D. Bowman etal., in Fundamental Symmetries in I Nuclei and Particles, ed. by H. Henrikson and P. Vogd (World Scientific. Singapore 1990), p.l. f[24] M. Siinonious. Phys. Lett, B58, 147 (1975). ([25] W. C. Haxton, A. Horing, and M. Musolf, Phys. Rev. D 50, 3422 (1994). 1[26] J. Engd. C.R.. Gould and V. Hnizdo, Phys. Rev. Lett 73 , 3508 (1994). La Physique au Canada mars à avril 1 9 9 6 89 lll-V S E M I C O N D U C T O R C H A R A C T E R I Z A T I O N FOR O P T O E L E C T R O N I C S by Carla J . M i n e r , A d v a n c e d T e c h n o l o g y Laboratory, Bell N o r t h e r n Research, O t t a w a , Ontario K1Y 4 H 7 , (e-mail: miner@bnr.ca) ABSTRACT Three of t h e specialized n o n - d e s t r u c t i v e c h a r a c t e r i z a t i o n t o o l s developed t o m o n i t o r t h e advanced materials used in the f a b r i c a t i o n of high speed o p t o e l e c t r o n i c s are described, namely, scanning reflectance s p e c t r o s c o p y (sRS), scanning photoluminescence (sPL) and double c r y s t a l x-ray d i f f r a c t i o n mapping ( D C D M ) . A p p l i c a t i o n s of these tools t o the nondestructive assessment of lll-V semiconductor composition, layer thickness and defect density are illustrated. INTRODUCTION W h i l e silicon, an elemental s e m i c o n d u c t o r f r o m the f o u r t h c o l u m n of t h e periodic table, is t h e building block of t o d a y ' s electronics i n d u s t r y , s e m i c o n d u c t o r alloys w i t h equal n u m b e r s of a t o m s f r o m t h e third and f i f t h c o l u m n s are playing a small but increasing role. Unlike silicon, these socalled l l l - V c o m p o u n d s e m i c o n d u c t o r s readily emit light under electrical s t i m u l a t i o n and so find use in a range of optoelectronic applications f r o m high e f f i c i e n c y solar cells t o the LED panel lights f o u n d on m o s t pieces of high t e c h gear t o the laser t h a t reads y o u r c o m p a c t discs. T h e y also t y p i c a l l y have a higher intrinsic resistance and a higher e l e c t r o n v e l o c i t y t h a n silicon and so are f a v o u r e d for t h e high f r e q u e n c y analog and high speed digital electronics in s u c h i t e m s as satellite broadcast receivers, cellular phones and supercomputers. Device designers tailor the properties of the semiconductor compound for each application by using more t h a n one g r o u p III or g r o u p V element in carefully c o n t r o l l e d ratios, w h i l e maintaining the overall s t o i c h i o m e t r y . T o take advantage of the a l l o y ' s unique properties, it is f r e q u e n t l y necessary t o use a series of t h i n layers of d i f f e r e n t c o m p o s i t i o n g r o w n on t o p of a single c r y s t a l substrate. The thinnest of these layers can be o n l y a small number of a t o m i c layers t h i c k . This article describes s o m e of t h e challenges inherent in using lll-V c o m p o u n d s e m i c o n d u c t o r s in d e v i c e f a b r i c a t i o n and s o m e of the m e t h o d s t h a t have been developed t o m o n i t o r and help c o n t r o l their properties. Consider the set of q u a t e r n a r y lll-V alloys: ln x Ga, „As v P, v . These alloys are essential t o t o d a y ' s fiber optic t e l e c o m m u n i c a t i o n s systems, being used t o make the necessary lasers, d e t e c t o r s and high speed signal processing circuits. By changing the ratio of indium t o gallium and arsenic t o phosphorous, an alloy can be selected w i t h a specific c o m b i n a t i o n of properties. The first challenge is t o get t h e right ratios. If t h e s y s t e m s design calls for a laser t h a t e m i t s at 1 5 5 7 ± 5 n m , one of the preferred w a v e l e n g t h s for silica based fiber optics, the c o m p o s i t i o n of t h e light e m i t t i n g a c t i v e layer, as described by t h e indium and arsenic mole f r a c t i o n s , x and y , m u s t controlled t o w i t h i n ± 0.003. U n f o r t u n a t e l y , m o s t of the traditional 90 Physics in Canada M arch/Aprill 9 9 6 assay t o o l s , s u c h as energy dispersive xray analysis, have a c c u r a c y q u o t e d t o the nearest 0 . 0 0 5 . Even the m o s t accurate m e t h o d s have d i f f i c u l t y w i t h the small sampling v o l u m e s (spot size a f e w millimeter in d i a m e t e r , layers less t h a n 5 m i c r o m e t e r s thick). Therefore, k n o w l e d g e of the absolute c o m p o s i t i o n is g i v e n up in f a v o u r of more precise relative c o m p o s i t i o n indicators. For t h i s quaternary alloy, a c o n v e n i e n t c o m p r o m i s e is t o measure the bandgap energy and the lattice c o n s t a n t of the material, which both vary in predictable w a y s w i t h x and y . Only one composition will have a specific c o m b i n a t i o n of b o t h bandgap energy and lattice c o n s t a n t . The bandgap energy is the separation b e t w e e n the highest ground state and the l o w e s t excited state of the valence electrons in the s e m i c o n d u c t o r . S t i m u l a t e d d e - e x c i t a t i o n of electrons across the bandgap creates the lasing photons the d e v i c e designer is aiming f o r . Since the bandgap energy defines the laser w a v e l e n g t h and similar properties critical t o other devices, k n o w l e d g e of the bandgap is more important to o p t o e l e c t r o n i c s design t h a n k n o w l e d g e of the c o m p o s i t i o n w h i c h controls it. Luckily, bandgap energy is m u c h easier t o measure precisely using the optical methods described in the f o l l o w i n g sections. In an analogous fashion, the lattice c o n s t a n t is also a more critical property for optoelectronic applications than the c o m p o s i t i o n it depends upon. The lattice constant is the fundamental repeat d i s t a n c e of the c r y s t a l lattice, t y p i c a l l y 0 . 5 t o 0 . 6 n m . In the first s t e p in the fabrication of a working device, s e m i c o n d u c t o r s layers are g r o w n on a single c r y s t a l substrate epitaxially, i.e. in such a w a y t h a t the a t o m s in the layers line up w i t h those in the substrate. If the lattice constant of the alloy is intrinsically larger or smaller t h a n that of the substrate, t h e n the c r y s t a l m u s t d i s t o r t tetragonally in order t o m a t c h up in the plane of the g r o w t h interface. The d i s t o r t i o n builds in strain. If the strain becomes t o o high, d i s l o c a t i o n s and other c r y s t a l d e f e c t s are f o r m e d w h i c h u l t i m a t e l y degrade device p e r f o r m a n c e . Some of the more advanced designs deliberately build in small a m o u n t s of strain t o m o d i f y the electronic band s t r u c t u r e of the material in advantageous w a y s . The thickness of the strained material m u s t be kept l o w so that the t o t a l strain energy is insufficient t o induce d e f e c t f o r m a t i o n . For high performance devices w i t h g o o d reliability it is necessary t o c o n t r o l the relaxed lattice c o n s t a n t of the layer relative t o t h a t of the substrate to better t h a n one part in 10 3 . The x-ray d i f f r a c t i o n m e t h o d s that are described in this article are used t o detect m i n u t e d i f f e r e n c e s b e t w e e n the lattice c o n s t a n t of the epitaxial layer and the s u b s t r a t e . The second challenge inherent in using lll-V c o m p o u n d s e m i c o n d u c t o r s in device f a b r i c a t i o n is t o get the layer thicknesses right. For example, t h e m u l t i p l i c a t i o n layer of an avalanche photodiode is several microns t h i c k . T o c o n t r o l the b r e a k d o w n voltage of such a d e v i c e the thickness of this layer m u s t be k n o w n t o better t h a n 2 % . The w a v e g u i d e layers of a laser are more d i f f i c u l t still, in t h a t t h e y are only a couple of hundred nanometers t h i c k . The relative thickness tolerances are the same, plus the index of refraction m u s t also be t i g h t l y controlled. The e x t r e m e case occurs in those devices w h e r e the active layer is a series of q u a n t u m w e l l s , each o n l y a handful of a t o m i c layers t h i c k . W h i l e thickness control is made s o m e w h a t easier since q u a n t u m w e l l s o n l y c o m e in integer number of a t o m i c layers (monolayers) t h i c k , measuring the t h i c k n e s s of these t h i n layers requires i n n o v a t i v e solutions. Optical m e t h o d s have been developed that fill m o s t of these needs. The third major property that needs t o be measured and controlled for s u c c e s s f u l device f a b r i c a t i o n is c o n c e n t r a t i o n of the impurities added deliberately t o change the conductivity of the layers. The concentrations of these d o p a n t s that make the d i f f e r e n c e b e t w e e n acceptable and unusable material can be on the order of 1 0 ' 6 c m 3 or a ppb. A t present, f e w nond e s t r u c t i v e m e t h o d s exist for measuring the dopant c o n c e n t r a t i o n q u a n t i t a t i v e l y , particularly in c o m p l e x d e v i c e s t r u c t u r e s . Those that partially fill the need are beyond the scope of this r e v i e w 1 . The final i t e m t o be f o u n d on the list of critical properties for o p t o e l e c t r o n i c device m a n u f a c t u r e is d e f e c t d e n s i t y . D e f e c t s , at the m o s t basic level, are misplaced a t o m s : departures f r o m the e x p e c t e d translation symmetry of the lattice or the incorporation of an unintended i m p u r i t y a t o m . The more serious c r y s t a l d e f e c t s m u s t be avoided because they make the w a f e r more likely t o break during handling. T h e y can be d e t e c t e d by x-ray d i f f r a c t i o n methods as described later. Both c r y s t a l d e f e c t s and impurities are important because t h e y are o f t e n associated w i t h electronic states which change the c o n c e n t r a t i o n of free carriers and t h e r e b y alter the operating characteristics of the device. Techniques that probe the r e c o m b i n a t i o n of injected carriers are very e f f e c t i v e m o n i t o r s of the electrically active d e f e c t d e n s i t y as w i l l be s h o w n . Over the past seven years, a number of scanning techniques have been developed in the A d v a n c e d T e c h n o l o g y Laboratory at Bell N o r t h e r n Research t o meet the demand for rapid, non-destructive assessment of the substrates and epitaxial layers used in the optoelectronic and high speed electronic d e v i c e m a n u f a c t u r i n g of its parent c o m p a n y , Nortel. Three of the techniques w i l l be discussed: scanning reflectance s p e c t r o s c o p y (sRS), scanning photo-luminescence (sPL) and double c r y s t a l x-ray d i f f r a c t i o n mapping ( D C D M ) . The m e a s u r e m e n t s are c u r r e n t l y being p e r f o r m e d by i n s t r u m e n t s designed and built for us by W a t e r l o o W a t e r l o o , Ontario. Scientific, of T H I C K N E S S B Y S C A N N I N G REFLECTANCE SPECTROSCOPY: Scanning reflectance s p e c t r o s c o p y 2 makes use of o p t i c a l interference t o infer the t h i c k n e s s of an epitaxial layer and m a p its d i s t r i b u t i o n across the w a f e r . In sRS, the relative i n t e n s i t y of infrared light reflected at normal incidence f r o m the sample is measured as a f u n c t i o n of w a v e l e n g t h and position. If the index of r e f r a c t i o n of the t o p layer is s u f f i c i e n t l y d i f f e r e n t f r o m that of the material beneath it, t h e n the t o t a l reflected light will be m o d i f i e d by c o n s t r u c t i v e and d e s t r u c t i v e interference b e t w e e n light reflected at the t o p and bottom surfaces of the layer. The reflectance s p e c t r u m for a 3 . 0 fjm thick layer of InP g r o w n on a marker layer of l n ; , 3 G a 4 , A s is s h o w n in Figure 1. The a m p l i t u d e of the m o d u l a t i o n is d e t e r m i n e d by the d i f f e r e n c e in the indices of r e f r a c t i o n of the layer and the material b e l o w it; in this e x a m p l e the d i f f e r e n c e is 0 . 3 6 ( ~ 10%). The spacing of the extrema is related t o the product of t h e t h i c k n e s s and index of r e f r a c t i o n of the t o p layer. Thinner layers have m o r e w i d e l y spaced e x t r e m a . Since the indices of r e f r a c t i o n of the ln,Ga, „As v P, y alloys are k n o w n t o better t h a n 1 part in 3 0 0 and the e x t r e m a positions can be d e t e r m i n e d f r o m s u c h a s p e c t r u m t o an a c c u r a c y of 1 part in 1 0 0 0 , the t h i c k n e s s of the layer can be readily d e t e r m i n e d w i t h an overall a c c u r a c y of better t h a n 0 . 3 % . 1300 Wavelength Fig. 1 1500 The spectra tell us the thickness of the layers at f i x e d points. To m a p the thickness variation by taking spectra at m a n y points on the w a f e r is t i m e c o n s u m i n g and, luckily, unnecessary. If the m o n i t o r i n g w a v e l e n g t h is f i x e d and the w a f e r scanned under the beam, t h e n any v a r i a t i o n in the product of index and t h i c k n e s s w i l l appear as a change in reflectance. A n e x a m p l e of such a reflectance m a p is s h o w n in Figure 2a. Since the change in index of refraction across t h e w a f e r due t o variation in c o m p o s i t i o n or other f a c t o r s is usually a hundred t i m e s or more smaller t h a n the variation in epitaxial layer t h i c k n e s s , c o n t o u r s of equal reflectance correspond very well to lines of equal layer thicknesses. To c o n v e r t the reflectance m a p into a t h i c k n e s s map, it is necessary t o i d e n t i f y the t h i c k n e s s associated w i t h each c o n t o u r . The problem is not quite as daunting as it m a y seem. If one calculates the t h i c k n e s s of the layer for one point on each adjacent e x t r e m a on the map, it is possible t o a c c u r a t e l y interpolate the t h i c k n e s s e s for the c o n t o u r s b e t w e e n t h e m . Figure 2 b s h o w s the resultant inferred thickness map. The pattern seen in Figure 2 is a result of gas f l o w patterns in the metal organic c h e m i c a l vapour d e p o s i t i o n ( M O C V D ) s y s t e m used t o deposit the layers. There are 4 1 , 0 0 0 valid data points on this map. Data acquisition and analysis t o o k only 4 5 minutes. V e r y f e w other analytical m e t h o d s provide this speed, resolution and accuracy nondestructive^. BANDGAP ENERGY A N D DEFECT MAPPING BY S C A N N I N G PHOTOLUMINESCENCE A convenient m e t h o d for measuring the bandgap energy of a s e m i c o n d u c t o r is photoluminescence spectroscopy6. In p h o t o l u m i n e s c e n c e , a l o w p o w e r laser is used to excite a ground state e l e c t r o n into the band of e x c i t e d states. The e l e c t r o n rapidly loses energy t o lattice v i b r a t i o n s until it reaches the l o w e s t u n o c c u p i e d excited state. It then drops back t o the u p p e r m o s t e m p t y level in the band of g r o u n d s t a t e s , g i v i n g up the excess energy in the f o r m of a p h o t o n w i t h energy roughly equal t o the bandgap energy. The d i f f e r e n c e b e t w e e n the energy of the e m i t t e d p h o t o n and the true bandgap is very nearly kT, being s i m p l y related to h o w m a n y of the states are already occupied by t h e r m a l l y excited carriers. The spectra at room t e m p e r a t u r e are broad in c o m p a r i s o n t o those familiar t o atomic fluorescence spectroscopists, but are more than adequate t o a l l o w detailed maps of bandgap v a r i a t i o n to be c o n s t r u c t e d . Figure 3 is a scanning p h o t o l u m i n e s c e n c e map of the bandgap energy d i s t r i b u t i o n for a ln x Ga, „As v P, y layer g r o w n on InP. The 7 , 0 0 0 point m a p t o o k 16 hours t o acquire. The t o t a l range of the data is 4 0 m e V , corresponding t o a standard d e v i a t i o n in peak w a v e l e n g t h of 9 n m for the central 9 0 % of the w a f e r . For a laser w i t h a w a v e l e n g t h tolerance only 10 n m w i d e , this implies that only a m a x i m u m of 4 5 % of the d e v i c e s made f r o m this w a f e r w i l l be w i t h i n specification. N o t i c e that the p a t t e r n in Figure 3 is reminiscent t o the t h i c k n e s s d i s t r i b u t i o n seen in Figure 2. The gas v o r t i c e s in the M O C V D c h a m b e r t h a t lead t o enhanced g r o w t h rate in t h e kidney shaped central region also lead to c o m p o s i t i o n variation and thus bandgap energy s h i f t s . This is c o n f i r m e d w h e n the sPL data is analyzed in c o n j u n c t i o n w i t h the x-ray d i f f r a c t i o n data discussed in a later section. 1700 (nm) Normalized reflectance plotted as a f u n c t i o n of wavelength for a 3 fjm thick layer of InP on a 3.5 fjm thick layer of In b3 Ga 4 7 As. The reflected light spectrum of a bare InP substrate is used t o normalize the data and thereby reduce system artifacts. The thinnest layer t h a t can be practically measured by reflectance s p e c t r o s c o p y has only one c o m p l e t e period in the spectral range c o v e r e d by a single light source d e t e c t o r pair. For the range s h o w n in Figure 1, w h i c h corresponds t o an InGaAs d e t e c t o r and a t u n g s t e n lamp, the thinnest measurable InP layer is ~ 3 0 0 nm t h i c k . For thinner layers, m e a s u r e m e n t s based on the polarization dependence of r e f l e c t i o n , s u c h as e l l i p s o m e t r y 3 , are more appropriate. Multi-layer s t r u c t u r e s have more c o m p l e x spectra, w h i c h may be t h o u g h t of as the superposition of the reflectance spectra of each individual layer. They can be analyzed by iterative f i t t i n g t o theoretical curves or by using a m o d i f i e d Fourier approach 4 . Fig. 2a The reflectance at a wavelength of 1 0 0 0 nm is displayed for an InP layer g r o w n on an l n 5 3 G a 4 / A s marker layer. The red and blue fringes correspond t o thicknesses of InP w i t h reflectance extrema at the map wavelength. The InP substrate diameter is 5 0 mm. Fig. 3: Fig. b: W i t h the additional information inferred f r o m at least one reflectance spectrum for each fringe, the sRS map can be translated t o this thickness map. The characteristic pattern is due t o the f l o w of reactants in the deposition chamber w h i c h enter at the top of this image. The peak energy of the photoluminescence emission is mapped for a In.Ga, ,As y P, , layer deposited by MOCVD. As in Figure 2, the gas f l o w direction is top t o b o t t o m . The InP wafer diameter is 5 0 m m . A novel application of bandgap energy mapping by sPL a l l o w s the m e a s u r e m e n t of the t h i c k n e s s of q u a n t u m w e l l s 6 . One of the m o s t d r a m a t i c e f f e c t of reducing the t h i c k n e s s of an epitaxial layer t o b e l o w the q u a n t u m limit ( 2 0 - 3 0 nm) is a rapid increase in bandgap energy. A s can be shown with simple particle-in-a-box models, w h i c h are surprisingly good La Physique au Canada mars à avril 1 9 9 6 91 a p p r o x i m a t i o n s t o the observed data, the increase is inversely proportional t o t h e w e l l t h i c k n e s s squared. Therefore if the c o m p o s i t i o n of t h e w e l l d o e s n ' t v a r y , maps of q u a n t u m w e l l sPL energy can be d i r e c t l y interpreted in t e r m s of variations in w e l l t h i c k n e s s . W h e n ternary or quaternary alloys are used as the w e l l material, sPL energy data can still be used t o m a p the w e l l t h i c k n e s s as long as the s t r u c t u r e includes a reference layer of t h e same nominal c o m p o s i t i o n and of a t h i c k n e s s in excess of the q u a n t u m limit. T h e n the energy s h i f t s due t o c o m p o s i t i o n v a r i a t i o n ( w h i c h s h o w up in b o t h maps) can be separated f r o m those due t o g r o w t h rate v a r i a t i o n ( w h i c h o n l y s h o w up in the q u a n t u m w e l l map). A n example of a nominally 1 4 m o n o l a y e r ( 8 . 2 nm) t h i c k ln63Gaa7As quantum well grown by M O C V D is s h o w n in Figure 4. Clearly defined regions appear w i t h d i s t i n c t energy s h i f t s . The assignment of the bands t o a specific number of m o n o l a y e r s is made on the basis of c o m p a r i s o n t o t h e o r y or a one t i m e c a l i b r a t i o n w i t h a d e s t r u c t i v e analysis m e t h o d s u c h as t r a n s m i s s i o n e l e c t r o n microscopy. The quantum well thickness p a t t e r n is similar t o t h a t f o u n d by sRS for t h i c k e r layers. had not been properly cleaned f r o m the w a f e r prior t o epitaxial layer g r o w t h . It is not u n c o m m o n t o find w i t h sPL that c o n t a m i n a t i o n spreads many millimeters a w a y f r o m its point of origin. Other sources of epitaxial layer d e f e c t s have been f o u n d by this sensitive m e t h o d , including: substrate d e f e c t s , residues of cleaning chemicals and impurities in the gases used for g r o w t h . In m a n y instances, t h e c o n c e n t r a t i o n of the impurities w h i c h have a d r a m a t i c e f f e c t on sPL intensity and aspects of device performance 7 w a s f o u n d t o be at or b e l o w the d e t e c t i o n limit of traditional i m p u r i t y analysis m e t h o d s (i.e. below 1 0 ' 6 c m 3 ) . Fig. 5 The photoluminescence intensity at a fixed wavelength is mapped for a M O C V D g r o w n ln x Ga, .As,?, y layer. The sPL intensity is strongly reduced in the vicinity of particulates w h i c h were inadvertently introduced prior to g r o w t h . The InP wafer diameter is 50 mm. DEFECT AND LATTICE CONSTANT MAPPING BY DOUBLE CRYSTAL X - R A Y DIFFRACTION Fig. 4 The q u a n t u m energy shift is mapped by subtracting the observed photoluminescence peak energy of a In s3 Ga 4,As q u a n t u m well f r o m that of a thick l n 6 3 G a 4 / A s reference layer g r o w n beneath it. Each band of distinct energy is assigned t o a specific number of monolayers based on a separate calibration. The layers were g r o w n by M O C V D on a 7 6 m m diameter InP wafer . The intensity of the emitted p h o t o l u m i n e s c e n c e is a f u n c t i o n of the e x c i t a t i o n rate and the rate at w h i c h the electron d e - e x c i t e t h r o u g h alternative paths t h a t do not involve the e m i s s i o n of a near bandgap p h o t o n . Surface states or mid-bandgap d e f e c t states f r e q u e n t l y act as non-radiative d e - e x c i t a t i o n paths. If the e x c i t a t i o n p o w e r is not so high t h a t the d e n s i t y of p h o t o - e x c i t e d electrons exceeds the d e n s i t y of non-radiative centers, t h a n any decrease in sPL intensity is d i r e c t l y related t o the d e n s i t y of d e f e c t s . Figure 5 s h o w s an i n t e r e s t i n g e x a m p l e of a sPL intensity map measured under low e x c i t a t i o n c o n d i t i o n s . The w a v e l e n g t h w a s f i x e d t o be near the peak of t h e sPL s p e c t r u m and t h e w a f e r w a s stepped 2 0 0 /Jm on center t o build u p a high spatial resolution map. The 4 8 , 0 0 0 point m a p t o o k 35 m i n u t e s t o acquire. A t t h e cores of the c o n s p i c u o u s l o w sPL intensity regions w e r e t i n y specks of d u s t w h i c h 92 Physics in Canada M a r c h / A p r i l l 9 9 6 The c r y s t a l p e r f e c t i o n of the sample is m o s t easily assessed by x - r a y d i f f r a c t i o n . If t h e i n t e r a t o m i c plane spacing, the w a v e l e n g t h of the x-rays and the angle of incidence w i t h respect t o the c r y s t a l planes s a t i s f y the w e l l k n o w n Bragg d i f f r a c t i o n condition, the x - r a y s d i f f r a c t s t r o n g l y f r o m a single c r y s t a l sample. If there is any local d e v i a t i o n in t h e sample c r y s t a l plane orientation or spacing, the d i f f r a c t i o n c o n d i t i o n w i l l not be satisfied and the detected x-ray intensity falls. Double c r y s t a l d i f f r a c t i o n 8 is a variant of the classical m e t h o d in w h i c h d i f f r a c t i o n f r o m a first c r y s t a l is used t o reduce the divergence of the x-ray beam before it is d i f f r a c t e d f r o m the t e s t w a f e r . The m e a s u r e m e n t consists of m o n i t o r i n g the d i f f r a c t e d x-ray intensity as the sample is rocked t h r o u g h the o p t i m a l angle. The peak angle, intensity and the full w i d t h half m a x i m u m of the rocking c u r v e are recorded. A l t h o u g h t h e actual angle corresponding t o the peak intensity has limited meaning due t o u n c e r t a i n t y in the i n s t r u m e n t ' s true zero position, relative angle changes can be mapped w i t h arc second precision and are used t o q u a n t i f y long range lattice c u r v a t u r e and the angular d e v i a t i o n across l o w angle grain boundaries9. This method is c o m p l e m e n t a r y t o the higher spatial resolution t o p o g r a p h y m e t h o d s w h e r e the w a f e r is imaged for a f i x e d rock angle 1 0 . In Figure 6 the peak full w i d t h at half m a x i m u m ( f w h m ) map of an average quality 7 6 m m diameter GaAs substrate is displayed. It w a s obtained by measuring rocking curves in a m a t r i x of x - y points on a 7 5 0 ^/m grid over a 8 hour period. There are many high fwhm features, p r e d o m i n a n t l y at the w a f e r periphery, but also running diagonally across the w a f e r . From the peak angle maps acquired at the same t i m e , one c a n i d e n t i f y these elongated features as l o w angle grain boundaries w h e r e the lattice planes tilt by 10 t o 3 0 " w i t h respect t o one another. A t those positions the rocking curves broaden or even split since the x-ray beam straddles the boundary. When the m i s o r i e n t a t i o n across these features is v e r y large ( > 5 0 " ) , the mechanical s t r e n g t h of the w a f e r is c o m p r o m i s e d . Batches of substrates can be screened this w a y t o eliminate those m o s t likely t o break. Fig. 6 The DCD f w h m is mapped for a commercial grade semi insulating GaAs wafer g r o w n by liquid encapsulated Czochralski. The regions of higher than normal f w h m correspond t o low angle grain boundaries or other crystal defects. The wafer diameter is 7 6 mm. D C D M is an i m p o r t a n t t o o l f o r t h e evaluation of epitaxial layers. W h e n there are t w o d i f f e r e n t c r y s t a l plane spacings w i t h i n t h e x-ray sampling v o l u m e (e.g. a not t o o t h i c k , slightly m i s m a t c h e d layer o n a substrate), the d i f f r a c t i o n c o n d i t i o n is satisfied at t w o d i f f e r e n t angles. The DCD rocking c u r v e t h e n s h o w s t w o d i s t i n c t peaks, w h o s e separation is linearly related t o lattice strain. Device engineers can examine D C D M peak separation maps and decide w h e t h e r the strain is w i t h i n acceptable tolerances. Alternatively, D C D M peak separation maps can be used t o d e t e r m i n e ternary alloy c o m p o s i t i o n . The peak separation observed for an AI„Ga, x A s layer g r o w n by molecular beam e p i t a x y (MBE) on GaAs is s h o w n in Figure 7. The u n i f o r m i t y is quite good: the inferred c o m p o s i t i o n is x = . 3 0 4 ± . 0 0 5 . H o w e v e r the DCD m a p s h o w s an edge-tocenter variation that goes counter t o e x p e c t a t i o n s based u p o n flux d i s t r i b u t i o n s observed in the g r o w t h c h a m b e r . The central portion of the w a f e r has a higher than expected peak separation, corresponding t o ~ 1 % more aluminum in the alloy. The root cause w a s traced d o w n t o interactions w i t h the substrate holder in t h e g r o w t h chamber. Due t o the placement of the substrate heater and the high t h e r m a l c o n d u c t i v i t y of the holder, the holder is generally cooler t h a n the w a f e r . Depending on t h e degree of t h e r m a l c o n t a c t b e t w e e n the w a f e r and the holder, t h e center of t h e w a f e r c a n be up t o 15°C h o t t e r t h a n t h e edge. U n f o r t u n a t e l y , at the t e m p e r a t u r e s p r e f e r r e d for the g r o w t h of high q u a l i t y AI„Ga, „ A s , a s i g n i f i c a n t p r o p o r t i o n of the g a l l i u m a t o m s s t r i k i n g t h e w a f e r s u r f a c e re-evaporate. In the hot central zone e v e n m o r e g a l l i u m e v a p o r a t e s , locally e n h a n c i n g the aluminum mole f r a c t i o n . By redesigning the holder, this e f f e c t can be m i n i m i z e d . w h i c h has led t o m a n y unexpected discoveries about sources of nonr e p r o d u c i b i l i t y and n o n - u n i f o r m i t y . W i t h o u t the i n s i g h t s that sRS, sPL and D C D M have p r o v i d e d , the j o b of d e v e l o p i n g a d v a n c e d o p t o e l e c t r o n i c s w o u l d have been m u c h more difficult. REFERENCES 1. For example: C.J. Miner, Semiconductor Characterization: Present Status and Future Challenges, ed. W . M . Bullis, D.G. Seiler and A.C. Diebold (AIP, Woodbury, N.Y., 1995) 6 0 5 , and other papers in the same volume. L.E. T a r o f , C . J . Miner and C. B l a a u w , J. A p p l . Phys., 6 8 ( 1 9 9 0 ) 2 9 2 7 . Fig. 7 The DCD peak separation is displayed for a AI 3 Ga , A s layer g r o w n by MBE o n GaAs. The central area o f larger absolute peak separation w a s caused by enhanced gallium desorption during g r o w t h at a local h o t spot. The wafer diameter is 7 6 m m . For q u a t e r n a r y alloys, sPL peak e n e r g y data and D C D M m u s t be c o m b i n e d t o infer b o t h the g r o u p III and g r o u p V m o l e f r a c t i o n s . W i t h t h i s d a t a , f o r i n s t a n c e , it is possible t o s h o w t h a t the d o w n w a r d e n e r g y s h i f t s h o w n in Figure 3 and the e n h a n c e d q u a n t u m w e l l g r o w t h rate s h o w n in Figure 4 are the c o n s e q u e n c e of enhanced arsenic incorporation (y increases by 0 . 0 1 5). The ratio of i n d i u m t o g a l l i u m in t h e ln x Ga, „As v P,. v layers is largely u n c h a n g e d across t h e wafer. M o d i f i c a t i o n s t o the g r o w t h c h a m b e r g e o m e t r y and t h e use of s u b s t r a t e r o t a t i o n reduce the n o n - u n i f o r m i t y by a f a c t o r of 2. In t h i s w a y , t h e t i g h t s p e c i f i c a t i o n s o n laser w a v e l e n g t h and l a t t i c e s t r a i n i m p o s e d by the a p p l i c a t i o n c a n be m e t . 3. 4. P.L. Swart and B.M. Lacquet, J. Phys., 7 0 (1991) 1 0 6 9 . 5. C.J. Miner, Semicond. (1992) A 1 0 . 6. N. Puetz, G. H illier, C.J. Miner and A . J . Spring Thorpe, Crystal Properties and Preparations, 3 2 - 3 4 (1991) 5 1 4 . Sci. Appt. Tech., I.C. Bassignana, N. Puetz, J. Appl. 4299. est disponible sur microfilm ou microfiche Les volumes antérieurs de cette publication sont également disponibles sur microfilm ou michrofiche. 7 C.J. Miner, D.G. Knight, B. Watt, C. Blaauw and N. Puetz, IEEE LEOS'90 Conference Proceedings (1990) 6 1 5 . SUMMARY The t e c h n i q u e s d e s c r i b e d here h a v e p r o v e n t o be essential t o the d e v e l o p m e n t of the l l l - V c o m p o u n d s e m i c o n d u c t o r s for a v a r i e t y of o p t o e l e c t r o n i c a p p l i c a t i o n s . T h e y h a v e d e m o n s t r a t e d the required a c c u r a c y and p r e c i s i o n t p m o n i t o r several of t h e key p r o p e r t i e s . T h e y provide rapid f e e d b a c k , so t h a t it is possible t o q u i c k l y adjust g r o w t h c o n d i t i o n s t o hit t i g h t s p e c i f i c a t i o n s . T h e y are a d e f i n i t e improvement on the traditional approaches of growing c a l i b r a t i o n w a f e r s for d e s t r u c t i v e analysis of a small n u m b e r of selected p o i n t s , or w a i t i n g u n t i l t h e d e v i c e s are f a b r i c a t e d and t e s t e d ( t y p i c a l l y 3 - 6 w e e k s ) . These n e w t e c h n i q u e s have been o p t i m i z e d f o r speed, t o m a k e high spatial r e s o l u t i o n m a p p i n g p r a c t i c a l . By s t u d y i n g the p a t t e r n of t h e properties m e a s u r e d o n t h e w a f e r , it is f r e q u e n t l y o b v i o u s w h y t h e v a r i a t i o n s have o c c u r r e d and w h a t m e a s u r e s s h o u l d be t a k e n t o c o r r e c t t h e m . Because these t e s t s are non-destructive, there is little reluctance o n t h e part of m a n u f a c t u r i n g engineers t o m o n i t o r f r e q u e n t l y , a practice H. Tompkins, A User's Guide to Ellipsometry, Academic Press, 1 9 9 3 . Cette Revue C.J. Miner and Phys., 65 (1989) C.J. Miner, Proc. Semi-Insulating lll-V Materials Conference, Warsaw, Poland, ed. M.Godlewski (World Scientific Press, Singapore, 1994) 8 7 . Pour de plus amples renseignements, i •euillez communiquer avec : ift Micromedia Limited Canada 's Information People 10. 11. I.C. Bassignana and D.A. Macquistan, Proc. Semi-Insulating lll-V Materials Conference, Ixtapa, Mexico, ed. C J . Miner, W. Ford and E.R. Weber (I0P Publishng, Bristol. 1993) 183. 20 l'ictoria Street. Toronto. Ontario M5C2X8 (416)362-5211 1-800-387-2689 C.J. Miner, B. W a t t , W . T . Moore, A . Majeed and A . J . Spring Thorpe, J. Vac. Sci. Tech., B11 (1993) 9 9 8 . La Physique au Canada mars à avril 1 9 9 6 93 T H E E A R L Y H I S T O R Y O F W O M E N IN U N I V E R S I T Y P H Y S I C S : A T O R O N T O C A S E S T U D Y by A l i s o n Prentice Professor of H i s t o r y , O n t a r i o Institute for Studies in Education One o f t e n f i n d s , in discussions of w o m e n in t h e sciences, references t o w o m e n ' s presence in " n o n - t r a d i t i o n a l " areas of s t u d y . The i m p l i c a t i o n is usually t h a t " t r a d i t i o n a l l y " w o m e n w e r e not t o be f o u n d in the sciences generally, or in particular sciences s u c h as p h y s i c s . There is little t r u t h in t h i s idea. That w o m e n have studied all of the sciences and have been i n v o l v e d in scientific work in all disciplines is increasingly d e m o n s t r a t e d by a g r o w i n g literature. 1 In A u s t r a l i a , as Marjorie Theobald has s h o w n , science w a s part of the " w o m e n ' s s t u d i e s " c u r r i c u l u m of women's schools and academies t h r o u g h o u t the colonial period. A c o l l e c t i o n of essays dealing c h i e f l y w i t h m o d e r n Europe reveals w o m e n at w o r k in the sciences, f r o m the e i g h t e e n t h c e n t u r y w h e n m u c h science w a s c o n d u c t e d in d o m e s t i c or s e m i - d o m e s t i c s e t t i n g s , t o more recent t i m e s . A recent collection, edited by Marianne G o s z t o n y i A i n l e y , carries t h e s t o r y t o Canada. W h i l e none of these studies suggests t h a t it w a s easy for w o m e n t o be s c i e n t i s t s , the overall message of i n v o l v e m e n t is clear. W o m e n have a l w a y s been interested in science and studied it w h e n e v e r and w h e r e v e r t h e y could manage t o do so; and some w o m e n , in e v e r y period since the e i g h t e e n t h c e n t u r y , have reached the highest levels of excellence in all areas of scientific endeavour. That science - even physics - is a " n o n - t r a d i t i o n a l " area for w o m e n is largely false. H o w , then, did the idea develop? The s t o r y of w o m e n in physics at t h e U n i v e r s i t y of T o r o n t o is suggestive. W o m e n appear t o have s t u d i e d p h y s i c s at T o r o n t o v e r y soon after their a d m i s s i o n t o the u n i v e r s i t y in 1 8 8 4 . By the early decades of the twentieth century, w o m e n were making their mark in g r a d u a t e physics and earning d o c t o r a t e s as w e l l as m a s t e r ' s degrees in t h e field. In t h e 1 9 4 0 s , t h e D e p a r t m e n t of Physics even a d m i t t e d several w o m e n into t h e professorial ranks and, s h o r t l y after the middle of t h e c e n t u r y , n a m e d its first w o m a n full professor. The promise of the first half of the c e n t u r y w a s not fulfilled, h o w e v e r , in t h e s e c o n d half. The s t o r y of Elizabeth Rebecca Laird illustrates t h e early presence of w o m e n in undergraduate physics at T o r o n t o . One of t w o sisters w h o g r a v i t a t e d t o the s t u d y of science (Annie Laird m o v e d f r o m c h e m i s t r y t o household science and w a s the head of T o r o n t o ' s household science d e p a r t m e n t for 3 4 years) Elizabeth chose physics after her m a t r i c u l a t i o n f r o m London Central Collegiate and graduated f r o m T o r o n t o w i t h honours in m a t h e m a t i c s and physics in 1 8 9 6 . But the fact t h a t she "had s t o o d first for three years running" in her class did not w i n her the c o v e t e d f e l l o w s h i p t h a t w o u l d have g i v e n her several years of graduate s t u d y abroad; this scholarship w a s designated, as t h e author of a 94 Physics in Canada M arch/Aprill 9 9 6 n e w s p a p e r obituary later described it, for a " h e " not a " s h e . " 2 Undaunted, Elizabeth Laird took a teaching post at the prestigious Ontario Ladies College at 3 Whitby. W i t h i n t w o years, a local n e w s p a p e r w a s able t o report that " M i s s Lizzie R. Laird" w a s s t u d y i n g physics at B r y n M a w r College in Pennsylvania and had been g r a n t e d a M a r y Garrett European f e l l o w s h i p . This distinguished a w a r d , one of only t w o handed out annually, entitled its recipient t o a year of s t u d y in Europe. Elizabeth's f e l l o w s h i p year must have been especially r e w a r d i n g , for she w o r k e d w i t h M a x Planck in Berlin, just prior t o his publication of " t h e papers that launched t h e q u a n t u m t h e o r y . " 4 A f t e r the granting of her d o c t o r a t e in 1 9 0 1 , Elizabeth Laird w o u l d teach physics at M o u n t Holyoke, a small N e w England college for w o m e n , heading the d e p a r t m e n t there f r o m 1 9 0 3 until 1 9 4 0 . In that year she " r e t i r e d " to more t h a n a decade of f u r t h e r w o r k , on a volunteer basis, at the U n i v e r s i t y of W e s t e r n Ontario, before her second retirement in 1953.^ That Elizabeth Laird w a s not alone as an early w o m a n undergraduate in physics at T o r o n t o w e k n o w f r o m the s t o r y of Caroline Macdonald, a physics graduate w h o u l t i m a t e l y made her career as a missionary in Japan. M a c d o n a l d , the second w o m a n t o graduate in honours m a t h e m a t i c s and physics at T o r o n t o , earned her degree in 1 9 0 1 . Unlike Laird, Macdonald was offered a graduate f e l l o w s h i p . The e f f o r t s of J . C . McLennan t o persuade her t o accept the a w a r d w e r e , h o w e v e r , unavailing. Perhaps, as Caroline M a c d o n a l d ' s biographer suggests, she f o r e s a w that the path of a w o m a n physicist in Canada w o u l d be d i f f i c u l t , but it is even more likely that "she w a s already c o m m i t t e d in quite another d i r e c t i o n . " A f t e r a period w o r k i n g for the V W C A , this talented and d y n a m i c w o m a n m o v e d t o J a p a n w h e r e she became involved in s e t t l e m e n t w o r k and eventually in the Japanese labour m o v e m e n t . 6 Nevertheless, w o m e n eventually d i d m o v e into graduate s t u d y in physics at Toronto. A n e x a m i n a t i o n of the u n i v e r s i t y calendars and directories reveals t h e m , 7 as does Elizabeth J . A l l i n ' s brief history of the d e p a r t m e n t . Physics at the U n i v e r s i t y of Toronto, 1843-1980." Vivian Ellsworth Pound w a s the first w o m a n to earn a d o c t o r a t e in physics at the u n i v e r s i t y , receiving her degree in 1 9 1 3 . Pound lectured at Queen's f r o m 1 9 1 2 t o 1 9 1 7 , w h e n she evidently m o v e d briefly into the w o r l d of business. But she returned t o u n i v e r s i t y science in 1 9 2 2 w h e n she f o u n d a position in m a t h e m a t i c s at Buffalo. Like Elizabeth Laird, V i v i a n Pound may have been f o r c e d t o leave Canada in order t o pursue a career in u n i v e r s i t y teaching and research. W e k n o w f r o m A m e r i c a n M e n of Science |sic| ( 1 9 6 1 ) that she remained at Buffalo and w a s p r o m o t e d t o full professor, retiring as Professor Emeritus in 1 9 5 5 . In short order, other w o m e n f o l l o w e d V i v i a n Pound into d o c t o r a l studies in physics at T o r o n t o . Their heyday c a m e in the 1 9 2 0 s and early 3 0 s . B e t w e e n 1 9 2 6 and 1 9 3 3 , six w o m e n w e r e a w a r d e d Ph.Ds in p h y s i c s : M a t t i e Levi Rotenberg, Elizabeth Cohen, Beatrice Reid Deacon, Elizabeth J . Allin, Florence M . Quinlan, and M a y A n n e t t s S m i t h . Indeed, b e t w e e n 1 9 0 0 , w h e n J . C . McLennan w a s granted U. of T . ' s first Ph.D in p h y s i c s , and 1 9 3 3 , w h e n f i v e physics d o c t o r a t e s w e r e a w a r d e d , w o m e n c o n s t i t u t e d nearly one quarter of the 31 w i n n e r s of this degree at T o r o n t o . This percentage m a y have been considerably higher t h a n the n o r m . A s published statistics are by decade, rather t h a n c u m u l a t i v e , c o m p a r i s o n s cannot be e x a c t . But w e do k n o w t h a t , in 1 9 3 0 - 3 1 , w h e n Canadian w o m e n ' s i n v o l v e m e n t i n g r a d u a t e s t u d y appears t o have t e m p o r a r i l y peaked, w o m e n earned slightly more t h a n o n e - f i f t h of all m a s t e r ' s degrees g r a n t e d in all fields in Canada, but only seven percent of the d o c t o r a t e s . 9 For w o m e n to have been the recipients of over 2 0 percent of T o r o n t o ' s first 31 Ph.Ds in physics m u s t therefore be c o u n t e d a singular a c h i e v e m e n t . The success w a s shortlived. A f t e r 1 9 3 3 w o m e n disappear f r o m the lists of T o r o n t o d o c t o r a t e s in physics, not t o reappear for some time. Their disappearance cannot be attributed entirely t o lack of m e n t o r s h i p , for the d e p a r t m e n t , under J . C M c L e n n a n and E.F. Burton, f o l l o w e d up its support of w o m e n s t u d e n t s in physics w i t h t h e granting of some teaching a p p o i n t m e n t s . Even prior t o 1 9 2 0 - 2 1 , a t o t a l of 25 w o m e n taught for the physics d e p a r t m e n t at T o r o n t o , although most w e r e probably m a s t e r ' s s t u d e n t s and f e w taught for more than t w o or three years. One of these early assistants in p h y s i c s , A n n i e Theresa Reed (B.A. 1897) w a s an e x c e p t i o n t o the rule. The calendars and directories list her as "Class A s s i s t a n t in P h y s i c s " f r o m as early as 1 9 1 1 and into the 1 9 3 0 s , but by 1 9 2 4 25 she also held the title " S e c r e t a r y t o the Physics D e p a r t m e n t , " a role that she had evidently played for some t i m e . Holding onto the latter position until 1 9 4 6 , Annie Reed became not just a f i x t u r e , but a force in the d e p a r t m e n t , r e m e m b e r e d f o n d l y for her humour as w e l l as her p o w e r . ' 0 T o w a r d s t h e end of W o r l d W a r I, several w o m e n w e r e p r o m o t e d f r o m assistantships t o positions as d e m o n s t r a t o r s . One of the w o m e n w h o began teaching f o r the d e p a r t m e n t at this t i m e (earning her d o c t o r a t e over a decade later) was Florence Quinlan. Quinlan w a s t o carve out a special niche for herself t e a c h i n g physics t o household science and music s t u d e n t s at the u n i v e r s i t y and, like Reed, had a long career at T o r o n t o . Nor w a s she alone, for she w a s soon joined in undergraduate teaching by another T o r o n t o g r a d u a t e , Kathleen Crossley (B.A. 1 9 1 8 ) . Crossley never obtained either a m a s t e r ' s degree or the d o c t o r a t e , but nevertheless taught at the u n i v e r s i t y for more t h a n three decades, t o be " r e m e m b e r e d by m a n y g e n e r a t i o n s of first year s t u d e n t s " as t h e i n s t r u c t o r w h o i n t r o d u c e d t h e m to p h y s i c s . " The third w o m a n w h o w o u l d spend her entire career teaching physics at the U n i v e r s i t y of T o r o n t o w a s Elizabeth Allin, w h o t a u g h t in various capacities f r o m the m i d - 1 9 2 0 s , joining the staff as " D e m o n s t r a t o r and Research A s s i s t a n t " in 1 9 3 1 , for a career t h a t did not end until she retired in 1 9 7 2 . Other w o m e n t a u g h t for the d e p a r t m e n t , but none so c o n t i n u o u s l y or for such long periods as Quinlan, Crossley and A l l i n , all of w h o m also received p r o m o t i o n s into the professoriate in the early 1 9 4 0 s . The four w o m e n w h o perhaps c a m e closest t o having careers in physics at T o r o n t o w e r e M a y A n n e t t s S m i t h , Beatrice Reid Deacon, M a t t i e Levi Rotenberg and Elizabeth Cohen, all w o m e n w i t h T o r o n t o Ph.Ds f r o m the i n t e r w a r years. Continuing with her research and demonstrating work after her 1933 d o c t o r a t e , M a y A n n e t t s g a v e up any chance for a position at T o r o n t o w h e n she left for England t o be married in 1 9 3 6 . 1 2 The stories of the other three w o m e n are more a m b i g u o u s . All three t a u g h t at T o r o n t o for m a n y years after their d o c t o r a t e s , but w e r e never p r o m o t e d 3 beyond the rank of i n s t r u c t o r . ' Beatrice Deacon and M a t t i e Rotenberg m a y have experienced d i s c r i m i n a t i o n because t h e y w e r e married. During the first half of the twentieth century, elementary and secondary w o m e n teachers t y p i c a l l y lost their positions on marriage; m o s t w o m e n on u n i v e r s i t y faculties w e r e also e x p e c t e d - or asked - t o leave w h e n t h e y tied t h e marital k n o t . Yet the U n i v e r s i t y of T o r o n t o w a s not c o n s i s t e n t on this point. The biologist N o r m a Ford and the a s t r o n o m e r Helen Hogg w e r e a m o n g several w o m e n scholars who managed to combine marriage and t e a c h i n g at T o r o n t o during this period, gaining both permanent positions and p r o m o t i o n s . 1 4 Deacon and Rotenberg, it w o u l d appear, w e r e not so f o r t u n a t e . I have been able t o d i s c o v e r next t o nothing about Beatrice Deacon, except that she w a s a c t i v e in teaching and research at T o r o n t o until at least 1 9 4 7 - 4 8 and w a s still a m e m b e r of the Canadian A s s o c i a t i o n of Physicists in 1 9 5 2 . M a t t i e Rotenberg w a s perhaps a special case, as she eventually had m a n y other irons in the fire. In addition t o her ongoing physics teaching and her marriage, she gradually m o v e d into broadcasting for the CBC and became deeply involved in Jewish e d u c a t i o n and p h i l a n t h r o p y . 1 6 It w o u l d be useful t o k n o w more about Elizabeth Cohen, the one single w o m a n in this g r o u p of four w o m e n p h y s i c i s t s w h o seems m o s t likely to have w a n t e d or needed a f u l l - t i m e career in science. Cohen's 1929 Toronto doctorate in physics w a s r e w a r d e d by a year of s t u d y in Britain (divided b e t w e e n the Universities of London and Bristol) and an i n s t r u c t o r s h i p , f o l l o w e d by an assistant professorship at M o u n t H o l y o k e during Elizabeth Laird's last decade as head of physics there. Financial problems f o r c e d a r e d u c t i o n in staff at t h e N e w England college, h o w e v e r , and Cohen returned t o T o r o n t o in 1 9 3 5 . There she w o r k e d for the d e p a r t m e n t in various capacities, but w i t h o u t p r o m o t i o n , until the m i d - 1 9 5 0 s . 1 ' W h i l e I have d i s c o v e r e d no evidence of a n t i - s e m i t i s m w o r k i n g against Elizabeth Cohen or M a t t i e Rotenberg, it is not inconceivable t h a t cultural and religious d i f f e r e n c e played s o m e role in blocking their a d v a n c e m e n t , especially in the case of the unmarried Elizabeth Cohen. 1 8 A s w e have seen, a m o n g the w o m e n w h o taught for the physics d e p a r t m e n t , only Florence Quinlan, Kathleen Crossley, and Elizabeth Allin made it into the professorial ranks. Their p r o m o t i o n occurred in 1 9 4 1 4 2 , w h e n the exigencies of w a r m a y finally have revealed the d e p a r t m e n t ' s reliance on these w o m e n ' s w o r k . 1 9 A s Elizabeth A l l i n later recalled, all three felt " v e r y l u c k y " t o receive appointments as assistant professors - despite their several decades of service in the cases of Quinlan and Crossley, and the t e n years or more that Allin herself had t a u g h t physics at T o r o n t o . 2 0 In f a c t , the late 1 9 3 0 s had been t r y i n g years, especially for the w o m e n p h y s i c i s t s . There w e r e eleven m e n in the T o r o n t o physics professoriate at T o r o n t o by 1 9 3 7 , but no w o m a n had yet joined t h e m ; indeed the Great Depression w a s used as an e x c u s e t o r e m o v e talented married w o m e n f r o m the teaching ranks altogether. 2 1 A n d d e p r e s s i o n w a s f o l l o w e d by w a r . During the Second W o r l d W a r , several of T o r o n t o ' s male p h y s i c i s t s w e r e seconded t o various g o v e r n m e n t and m i l i t a r y jobs, leaving huge teaching loads for those w h o w e r e left behind. Quinlan, Crossley, and Allin did receive their assistant professorships, but t h e y certainly w o r k e d v e r y hard for t h e m . Elizabeth Allin, for e x a m p l e , taught classes as large as f i v e hundred s t u d e n t s , chiefly a r m e d forces personnel w h o needed t o learn the r u d i m e n t s of radar. 2 2 During the i m m e d i a t e p o s t - w a r years, p h y s i c i s t s at T o r o n t o w e r e anxious to get back t o the research t h a t had been laid aside in 1 9 3 9 and very soon the graduate program doubled in size. But, of the w o m e n p h y s i c i s t s , only Elizabeth Allin appears t o have been involved in graduate teaching and research during this period. Part of a t e a m that w o r k e d in the area of s p e c t r o s c o p y , she delivered papers at physics s o c i e t y m e e t i n g s and w a s a m o n g t h o s e w h o w e r e i n s t r u m e n t a l in f o u n d i n g the Canadian A s s o c i a t i o n of Professional Physicists (later t h e Canadian A s s o c i a t i o n of Physicists) in the late 1 9 4 0 s . A s she recalled in i n t e r v i e w s in 1 9 9 1 and 1 9 9 3 , Elizabeth A l l i n w a n t e d t o talk t o Canadians about her w o r k . For all her interest in research that w a s done e l s e w h e r e - and she had studied at Cambridge w i t h Ernest Rutherford, a m o n g other luminaries - A l l i n t h o u g h t it w r o n g that Canadian p h y s i c i s t s should meet each other chiefly at A m e r i c a n conferences. A s the secretary of the CAP, she w o r k e d hard t o make the organization a success and w a s proud of the c o n t r i b u t i o n she made t o Canadian physics t h r o u g h this w o r k . 2 3 W h e n Elizabeth A l l i n retired f r o m teaching in 1 9 7 2 , she had earned the respect of her colleagues and been made a full professor. But, by then, she w a s the o n l y w o m a n remaining on f a c u l t y in an increasingly male d e p a r t m e n t . In the t w o years, 1 9 7 1 and ' 7 2 , the u n i v e r s i t y a w a r d e d 50 d o c t o r a t e s in physics. H o w m a n y of these w e r e w o m e n is u n k n o w n , but I suspect t h a t , in general, the number of w o m e n d o c t o r a l candidates during the p o s t - W o r l d W a r II years w a s not great. 2 4 M o r e significant, perhaps, w a s the f a c t t h a t no w o m e n w e r e recruited to the professoriate during the years w h i c h A l l i n labelled " t h e years of a f f l u e n c e " b e t w e e n 1 9 4 8 and 1 9 6 9 . A s she noted in her history of physics at Toronto, by 1970 the department had a professorial staff " n u m b e r i n g b e t w e e n s i x t y and s e v e n t y " and the a t m o s p h e r e had g r e a t l y changed. 2 6 The small d e p a r t m e n t of less than a dozen professors that had made Elizabeth A l l i n and her colleagues feel so at home in the 1 9 3 0 s t h a t " w e felt as if w e o w n e d i t , " 2 6 had expanded m i g h t i l y . But it w o u l d appear that few women physicists had participated in this g r o w t h . Recently, w o m e n have made a c o m e b a c k as graduate s t u d e n t s in physics at T o r o n t o . There have been, m o r e o v e r , struggles to hire and retain w o m e n f a c u l t y . The reasons that these struggles have proven so d i f f i c u l t and u n p r o d u c t i v e are c o m p l e x and beyond the scope of the present a c c o u n t . W h a t should be clear f r o m this historical s k e t c h of w o m e n in the physics d e p a r t m e n t at T o r o n t o , h o w e v e r , is that physics is far f r o m a "nont r a d i t i o n a l " subject for w o m e n in Canada. Indeed, during the early decades of T o r o n t o ' s d e v e l o p m e n t as a research university, women were very much present, d e m o n s t r a t i n g their talents as both undergraduates and graduate s t u d e n t s in the field. Some w e r e even a d m i t t e d t o the teaching ranks although, w i t h the possible e x c e p t i o n of Elizabeth Allin, they appear not t o have been g i v e n the same opportunities at T o r o n t o as men. If physics came to be seen as " t r a d i t i o n a l l y " not a w o m e n ' s s u b j e c t , this w a s a d e v e l o p m e n t belonging more t o the second, t h a n the first half of the t w e n t i e t h c e n t u r y . It appears t o have been a t t i t u d e s t h a t developed, and changes in the c u l t u r e and c o n d u c t of physics that o c c u r r e d during the expansionist period after W o r l d W a r II, that gave rise t o the false impression t h a t , w i t h rare e x c e p t i o n s , w o m e n w e r e not at h o m e in the s u b j e c t . W e need t o k n o w more about w o m e n like Elizabeth Laird, Elizabeth Allin, and their less w e l l - k n o w n f e m a l e colleagues. W h a t w e r e the forces that made it possible for some w o m e n t o succeed in p h y s i c s , w h e n others especially in subsequent generations - w o u l d find it so d i f f i c u l t ? W e need, especially, to look carefully at h o w physics, at T o r o n t o and elsewhere, changed during the decades f o l l o w i n g the Second W o r l d W a r , for it w a s in these decades that the cultures and s t r u c t u r e s t h a t g o v e r n c o n t e m p o r a r y physics w e r e largely created. Even this brief appraisal of the blocked careers of many of T o r o n t o ' s La Physique au Canada mars à avril 1 9 9 6 95 early w o m e n physicists suggests that w e should not f o c u s o n gender alone w h e n making these explorations. Considerations of g e n d e r m a y w e l l h a v e b e e n c o m p l i c a t e d by marital status, ethnicity, and religion not t o m e n t i o n race, class and sexual preference. The records rarely speak d i r e c t l y t o t h e s e i s s u e s ; n o r are we necessarily at ease w i t h t h e m . Thus a n s w e r s t o t h e q u e s t i o n of w h y Elizabeth Allin's female colleagues did not manage t o m o v e u p t h r o u g h t h e r a n k s , as s h e d i d , m a y a l w a y s l a r g e l y e l u d e u s . But it is •important to ask this question n e v e r t h e l e s s . For a n e x a m i n a t i o n of t h e l i v e s o f t h e s e w o m e n p h y s i c i s t s a l e r t s us t o t h e k i n d s of c o n s t r a i n t s t h a t may c o n t i n u e t o b l o c k t h e a d v a n c e m e n t of w o m e n in u n i v e r s i t y p h y s i c s i n o u r o w n t i m e , as w e l l as t o t h e c o m p l e x i t y of t h e prejudices and fears that prevent us f r o m overcoming them. W e cannot change the past, but w e can t r y t o l e a r n f r o m it a n d , i n t h e c a s e of t h e e a r l y h i s t o r y o f w o m e n in p h y s i c s at t h e U n i v e r s i t y o f T o r o n t o , t h e r e is s o m e r e a s o n t o be e n c o u r a g e d . T h a t w o m e n e a r n e d n e a r l y o n e q u a r t e r of t h e P h . D ' s in p h y s i c s t h a t w e r e a w a r d e d b y T o r o n t o in t h e f i r s t t h i r d o f t h e 2 0 t h c e n t u r y is a n i m p o r t a n t f a c t . E q u a l l y i m p o r t a n t is t h e f a c t t h a t s e v e r a l o f t h e m , i n c l u d i n g at l e a s t o n e w h o did not have a d o c t o r a t e , w e r e able to w o r k in p h y s i c s at T o r o n t o d u r i n g t h e m i d d l e y e a r s of t h e c e n t u r y , a l t h o u g h their jobs w e r e sometimes insecure and almost i n v a r i a b l y l o w - p a y i n g . F i n a l l y , t h e r e is t h e encouraging fact that o n e of them, Elizabeth Allin, had a well-recognized and successful career, despite the apparently less welcoming climate for women p h y s i c i s t s at T o r o n t o d u r i n g the years t h a t followed. Archives, Elizabeth Laird Papers, "London physicist acquainted w i t h the sting of prejudice" The London Free Press, 21 April 1 9 6 7 . According t o the latter, Laird had w o n the Mulock Scholarship in Mathematics and Physics in her second year and the American Association for the Advancement of Science Scholarship in her third year. The fellowship that she was denied was the 1851 Exhibition Scholarship. See also Mount Holyoke College Archives, Elizabeth Laird Papers, "Physicist Receives Honor," name of paper illegible, 29 May 1 9 1 3 . 3. A t the time, a number of Ontario women's colleges offered courses equivalent t o the first year of study at a university. OLC was one of several Methodist institutions for young women w h i c h had an affiliation w i t h Victoria College and could prepare its students for advanced standing at the University of Toronto. See Johanna Selles-Roney, " ' A Realm of Pure Delight': Methodists and W o m e n ' s Education in Ontario, 18361 9 2 5 , " (Ed.D Dissertation, University of Toronto, 1992). 4. University of Toronto Archives, Newspaper Clippings Collection, A730 0 2 6 / 2 1 4 ( 10). The first quotation is from " A Young Lady's Success: Toronto Graduate of 1 8 9 6 Achieves Honour at American College," unidentified newspaper, 16 March 1 9 9 8 ; the second is from the 1 9 6 9 O w e n Sound obituary cited in note 2. 5. Newspaper clippings cited above. See also University of Toronto Archives, Clippings Collection, A 7 3 - 0 0 2 6 / 2 1 4 ( 1 0 ) "Noted Physicist Plans Her Second Retirement," The Globe and Mail June 2 6 , 1 9 5 3 . Laird's research during the war was chiefly on radar; after the war she worked on " t h e effect of microwave radiation...on biological materials." Previously, she had worked in a variety of areas, publishing approximately 3 0 papers during the course of her career. One official listing, appearing t o date from the m i d - 1 9 3 0 s , reveals that the majority of those published before 1 9 3 5 were in the prestigious journal, Physical Review. The same account noted that Laird was a Fellow of both the American Physical Society and the American Association for the Advancement of Science. See clipping entitled "Physics" Mount Holyoke College Archives, Elizabeth R. Laird Papers. ACKNOWLEDGEMENT I w i s h t o a c k n o w l e d g e t h e s u p p o r t of t h e Social Science and Humanities Research Council of Canada for the research r e p o r t e d in t h i s s t u d y . I a l s o w i s h t o t h a n k C a t h y J a m e s , Penny Stephenson, and A l y s o n King for their expert research assistance in its preparation and the journal's a n o n y m o u s reviewers for their helpful c o m m e n t s on an earlier v e r s i o n . REFERENCES 1. 2. 96 Marjorie R. Theobald, " W o m e n ' s Studies in Colonial Victoria," Melbourne Studies in Education ( 1989-90); Pnina G. Abir-am and Dorinda Outram, eds. Uneasy Careers and Intimate Lives: W o m e n in Science, 1 7 8 9 - 1 9 7 9 (New Brunswick and London: Rutgers University Press, 1989); Marianne Gosztonyi Ainley, ed. Despite the Odds: Essays on Canadian W o m e n and Science (Montreal: Véhicule Press, 1 9 9 0 ) . For an important monograph dealing w i t h the United States, see Margaret W . Rossiter, W o m e n Scientists in America: Struggles and Strategies t o 1 9 4 0 (Baltimore and London: The Johns Hopkins University Press, 1982). University of Toronto Archives, Newspaper Clippings Collection, A730 0 2 6 / 2 1 4 ( 1 0 ) , "Dr. Elizabeth Laird born here, outstanding physicist," obituary in an unnamed Owen Sound newspaper, 8 April 1 9 6 9 , and Mount Holyoke College Physics in C a n a d a M arch/Aprill 9 9 6 6. Margaret Prang, A Heart at Leisure from Itself: Caroline Macdonald of Japan (Vancouver: University of Vancouver Press, 1 9 9 5 ) , especially chapter 1. Caroline Macdonald stayed in contact w i t h her physicist friends, however, and later years would see her appealing t o E.F. Burton, Toronto's head of physics from 1 9 3 2 t o 1 9 4 8 , for assistance in her efforts t o raise money in Toronto for her Japanese mission. 7. University of Toronto Archives, University of Toronto Calendars and Directories. Every year was examined up t o 1 9 4 0 - 4 1 . I am grateful for the research assistance of Penny Stephenson and Cathy James for this part of the study. 8. Published by the Physics Department in 1981. 9. Alison Prentice, et al, Canadian Women: A History (Toronto: Harcourt Brace Jovanovich, 1988) Table A . 2 0 , p. 4 2 8 . Although data available for 1 9 4 5 - 4 6 show the percentage of doctorates granted t o women increasing t o 11.5 in that year, the statistics by decade indicate a general dropping off after 1 9 3 0 - 3 1 , in both degrees, w i t h w o m e n not reaching these percentages again until the 1960s or exceeding them until 1970-71. 10. University administrative records show Reed earning money typing for the department as early as 1 9 0 6 , and in various years prior t o 1 9 2 4 - 2 5 there are items recording her pay for stenographic and secretarial work. Reed was part of a trend, for it appears t o have been during the second and third decades of the 2 0 t h century that University of Toronto faculties and departments began t o add secretaries t o their staff complements, often choosing top w o m e n graduates for these positions. Professor Dorothy Forward was one University of Toronto scientist w h o resisted such an offer, instead moving on t o graduate study and a research and teaching career. See Alison Prentice, "Bluestockings, Feminists, or W o m e n Workers? A Preliminary Look at Women's Employment at the University of Toronto," Journal of the Canadian Historical Association (1991) 2 4 3 , 2 5 0 and 2 5 6 . For a brief discussion of Annie Reed's importance t o the department, see Allin, Physics at the University of Toronto, 10. 11. Allin, Physics Toronto, 11. 12. University of Toronto Archives, Newspaper Clippings Collection, A 7 3 0026/009(68) Telegram, 6 October 1 9 3 6 . May Annetts' student card (UTA, A 7 3 - 0 0 2 6 1 / 0 0 9 ( 6 8 ) showsherdeparture from England, followed by many more moves t o various Canadian cities, moves w h i c h must have made the pursuit of her physics career difficult. Alyson King has nevertheless discovered one reference t o her in the calendars of McGill, where she is listed in 1 9 5 5 - 5 6 as a sessional lecturer in agricultural physics at Macdonald College. 13. Assistants and demonstrators appear t o have been the lowest ranked appointments, followed by instructor, lecturer, and the various professorial ranks. Presumably only the professorial appointments carried tenure. 14. Both Hogg and Ford were married t o Toronto professors, as was Mossie May Kirkwood (Professor of English and Dean of Women at University College and, later, Trinity). Yet Kirkwood felt some discrimination because of her marriage. See Prentice, "Bluestockings," 2 5 6 - 5 7 ; Alison Prentice, "Scholarly Passion: T w o W o m e n W h o Caught It," in Alison Prentice and Marjorie R. Theobald, eds., W o m e n W h o Taught : Perspectives on the History of Women and Teaching (Toronto: University of Toronto Press, 1991), especially 2 6 9 - 7 2 . 1 5. University of Toronto Directories; C.A.P. membership list, Physics in Canada, Supplement t o Volume 8, No. 2 (Winter 1952). I am indebted t o Alyson King, w h o searched the directories and other records t o document the careers of Toronto's women Ph.Ds in the 1 9 4 0 s and beyond. at (continued on page 100) the University of USING NONSEXIST LANGUAGE L'UTILISATION D'UN LANGAGE NON-SEXISTE by par Ruth King, York U n i v e r s i t y Ruth King, York U n i v e r s i t y Many changes are necessary for w o m e n to achieve equality and visibility in s o c i e t y . Considerable research has s h o w n t h a t language plays an i m p o r t a n t role in c o n s t r u c t i n g social reality and that sexist language has negative e f f e c t s for girls and w o m e n . For instance, Briere and Lanktree ( 1 9 8 3 ) f o u n d that w o m e n rated a career in p s y c h o l o g y as more or less a t t r a c t i v e in direct p r o p o r t i o n t o the use of nonsexist or sexist language in the career d e s c r i p t i o n . W h e n g e n d e r - e x c l u s i v e language w a s used, w o m e n w e r e less interested in the career. D a y h o f f ' s 1 9 8 3 s t u d y of evaluations of w o m e n running for political o f f i c e f o u n d that the use of sexist language in the c a m p a i g n literature resulted in f e m a l e candidates being m o r e negatively s t e r e o t y p e d . C r a w f o r d and English ( 1 9 8 4 ) f o u n d that w o m e n s t u d e n t s recall i n f o r m a t i o n more e f f i c i e n t l y w h e n gender-inclusive t e r m s s u c h as people, his/her and he/she are used. The scholarly literature, then, s h o w s that the idea that language use is a trivial m a t t e r is incorrect. Il reste plusieurs c h a n g e m e n t s à faire pour que les f e m m e s atteignent l'égalité et la visibilité qui leur revient. Plusieurs recherches ont d é m o n t r é que le langage joue un rôle i m p o r t a n t dans l ' é t a b l i s s e m e n t de la réalité sociale et q u ' u n langage sexiste a des e f f e t s néfastes pour les jeunes filles et les f e m m e s . Par exemple, Brière et Lanktree ( 1 983) ont t r o u v é que les f e m m e s ont considéré une carrière en psychologie c o m m e étant plus ou moins intéressante selon q u ' u n langage non-sexiste ou sexiste a été utilisé dans la d e s c r i p t i o n de l ' e m p l o i . Les f e m m e s étaient moins intéressées par la carrière lorsque le t e x t e n ' e m p l o y a i t que le genre masculin. En 1 9 8 3 , l'étude de D a y h o f f c o n c e r n a n t l ' é v a l u a t i o n de candidates à des élections en politique, a d é m o n t r é que l ' u t i l i s a t i o n d ' u n langage sexiste dans la d o c u m e n t a t i o n de leurs campagnes faisait en sorte que les candidates étaient s t é r é o t y p é e s plus n é g a t i v e m e n t . C r a w f o r d et English ( 1 9 8 4 ) ont t r o u v é que les étudiantes se rappellent plus e f f i c a c e m e n t de l ' i n f o r m a t i o n quand une t e r m i n o l o g i e inclusive, c o m m e personnes, leur, et il/elle, est utilisée. Donc, la littérature nous d é m o n t r e que l ' u t i l i s a t i o n d ' u n langage est i m p o r t a n t e . Forms of linguistic s e x i s m include the t r e a t m e n t of male-as-norm (e.g. Each candidate should include three copies of his résumé with the application), irrelevant reference t o gender (e.g. That woman physicist is really smart), irrelevant reference t o physical appearance or t o d o m e s t i c relationship (e.g. Jane Smith, wife of the well-known lawyer, Stephen Smith...), and inappropriate f o r m s of address (e.g. Could you get me a copy of that report, dear?). Linguistic s e x i s m goes beyond w o r d choice and w h a t i n f o r m a t i o n is included: for instance, research by N a n c y Henley et al ( 1 9 9 5 ) s h o w s that the use of the passive voice in n e w s media reports of violence against w o m e n leads readers t o take the violence less seriously. Des f o r m e s de s e x i s m e linguistique incluent l ' u t i l i s a t i o n du genre m a s c u l i n c o m m e norme (e.g. Chaque candidat doit s o u m e t t r e trois copies de son c u r r i c u l u m vitae avec son application), une référence superflue au sexe (e.g. Cette femme médecin est très intelligente), une référence superflue à l'apparence physique ou à la relation d o m e s t i q u e (e.g. Aline Robert, femme du célèbre avocat, Stéphane Robert...), et des f o r m e s d'adresse qui ne sont pas appropriées (e.g. Pourrais-tu me chercher une copie de ce rapport, chérieP). Le s e x i s m e linguistique n ' e x i s t e pas seulement dans le choix des m o t s et dans l ' i n f o r m a t i o n incluse: par exemple, la recherche de Nancy Henley et al (1 995) indique que l ' u t i l i s a t i o n de la voix passive dans les rapports médiatiques sur la violence contre les f e m m e s amène les lecteurs à considérer c e t t e violence c o m m e étant moins sérieuse. Here are s o m e suggestions for using nonsexist language, in w r i t i n g and speaking. W h i l e I i d e n t i f y s o m e problematic practices and suggest some solutions, I suggest that the reader consult a c o m p r e h e n s i v e set of guidelines that o f f e r s a fuller d i s c u s s i o n of the issues. Voici quelques suggestions pour l ' u t i l i s a t i o n d ' u n langage nonsexiste, en écriture et dans la langue parlée. Quoique j ' i d e n t i f i e ici quelques habitudes problématiques et quelques suggestions, je vous suggère de consulter un guide c o m p l e t qui examine plus en profondeur ce sujet. (1) Use parallel f o r m s of reference for w o m e n and men. For e x a m p l e , do not cite a male scholar by s u r n a m e only and a w o m a n scholar by first name plus surname; do not use a title to refer to or address a male colleague but refer to or address a f e m a l e c o w o r k e r by first name. In English, use Mr as a title for males and Ms as a title for f e m a l e s , unless y o u are certain that a w o m a n prefers a title w h i c h indicates marital status {Miss or Mrs). (1) Utiliser des t e r m e s de référence parallèle pour les h o m m e s et les f e m m e s . Par exemple, ne pas citer un scientifique seulement par son nom de famille et une scientifique par son prénom avec son nom de famille. Ne pas v o u s adressez à un collègue par son t i t r e en m ê m e t e m p s que vous vous adressez à une consoeur par son prénom. En anglais, utiliser Mr. c o m m e t i t r e pour les h o m m e s et /Ws.pour les f e m m e s , à moins que v o u s soyez certain qu'elle préfère un t i t r e qui indique son statut marital ( M i s s ou Mrs.). (2) In English, avoid so-called masculine generics such as the pronoun he [his, etc.) w i t h s e x - i n d e f i n i t e a n t e c e d e n t s or m a n and its c o m p o u n d s (except in u n a m b i g u o u s reference t o males). In French, avoid l'homme and les hommes (except in u n a m b i g u o u s reference t o males). (2) En anglais, éviter les titres masculins, soi-disant générique, c o m m e le p r o n o m he (his, etc.) avec des antécédents de genre indéfini ou man (sauf quand c ' e s t une référence nonambigue à un h o m m e ) . En français, éviter l'homme et les hommes (toujours sauf si la référence est à un h o m m e ) . (3) In French, avoid so-called generic o c c u p a t i o n a l titles (avocat, etc.). Use masculine ones w h e n referring t o a m a n and their f e m i n i n e equivalent w h e n referring t o a w o m e n (avocate). W h e n sex is indefinite, use b o t h (les étudiants et les étudiantes de la première année, les étudiant(e)s, etc.) Feminine equivalents for masculine titles f o l l o w the regular g r a m m a t i c a l rules of the language. A v o i d c o m p o u n d s w i t h femme (femme médecin, etc.) w h i c h have the same c o n n o t a t i o n s as English c o m p o u n d s w i t h lady or woman. (3) En français, éviter les titres d ' o c c u p a t i o n , soi-disant générique, (physicien, avocat, etc.). Utiliser les titres masculins en référant à un h o m m e , et l'équivalent f é m i n i n en référant à une f e m m e (physicienne, avocate, etc.). Quand le sexe est indéfini, utiliser les deux (les étudiants et les étudiantes de la première année, les étudiant(e)s, etc.) Les titres f é m i n i n s suivent les m ê m e s règles g r a m m a t i c a l e s de la langue que les titres masculins. Éviter les c o m p o s é s avec le m o t femme (femme médecin etc.), qui ont les m ê m e s c o n n o t a t i o n s que les c o m p o s é s en anglais avec lady ou woman. (4) In b o t h French and English, avoid using genuine generics as if t h e y refer only to males (e.g. Many immigrants come to Canada each year. Their wives have little access to language training.; On peut utiliser le langage pour beaucoup de raisons discuter avec sa femme). (4) Dans les deux langues, éviter l ' u t i l i s a t i o n de vraies expressions génériques c o m m e si elles ne référaient q u ' a u x h o m m e s (On peut utiliser le langage pour beaucoup de raisons discuter avec sa f e m m e , par exemple; M a n y i m m i g r a n t s c o m e to Canada each year. Their w i v e s have little access t o language training). La Physique au Canada mars à avril 1 9 9 6 97 (5) In English, a v o i d adding m o d i f i e r s or s u f f i x e s t o nouns t h a t m a r k sex u n n e c e s s a r i l y (e.g. woman professor, stewardess). (In French, t h e t e n d e n c y is t h e o p p o s i t e ; f e m i n i n e e q u i v a l e n t s are preferred.) (5) En anglais, éviter l'ajout de m o d i f i c a t i f s ou de s u f f i x e s aux n o m s qui indiquent le sexe de f a ç o n superflue (e.g. woman professor, stewardess). En f r a n ç a i s , la t e n d a n c e est le c o n t r a i r e ; en général l ' é q u i v a l e n t f é m i n i n est préféré. Finally, it is i m p o r t a n t t o bear in m i n d t h a t s e x i s t ideas dressed u p in n o n s e x i s t language r e m a i n s e x i s t . For e x a m p l e , using "the worker...he or she..." and "the researcher...he or she..." m a y , in s o m e cases, be an adequate linguistic s o l u t i o n , but unless w o m e n ' s w o r k and w o m e n ' s needs are d i s c u s s e d in the d o c u m e n t s c o n c e r n e d , those d o c u m e n t s r e m a i n s e x i s t . Enfin, il est i m p o r t a n t de rappeler que les idées s e x i s t e s enrobées de paroles n o n - s e x i s t e s d e m e u r e n t s e x i s t e s . Par e x e m p l e , en utilisant " le physicien ou ta physicienne... il ou elle... et "le/la présidentfe)... Helle..." on t r o u v e une s o l u t i o n adéquate au problème linguistique, mais à m o i n s q u e le travail et les besoins des f e m m e s soit d i s c u t é dans ces d o c u m e n t s , ces derniers d e m e u r e n t s e x i s t e s . REFERENCES RÉFÉRENCES 1. Briere, J o h n and Cheryl Lanktree. 1 9 8 3 . "Sex Role Related Effects of Sex Bias in Language" Sex Roles 9 : 6 2 5 - 3 2 1. Briere, J o h n et Cheryl Lanktree, 1 9 8 3 . "Sex Role Related Effects of Sex Bias in Language" Sex Roles 9 , 6 2 5 - 3 2 . 2. C r a w f o r d , Mary and Linda English. 1 9 8 4 . "Generic Versus Specific Inclusions of W o m e n in Language: Effects on Recall." Journal of Psycholinquistic Research 1 3 : 3 7 3 - 8 1 2. Crawford, Mary et Linda English, 1 9 8 4 . "Generic Versus Specific Inclusions of W o m e n in Language: Effects on Recall." Journal of Psycholinquistic Research 1 3 , 3 7 3 - 8 1 . 3. D a y h o f f , Signe. 1 9 8 3 . "Sexist Language and Person Perception: Evaluation of Candidates f r o m Newspaper Articles." Sex Roles 9 : 5 2 7 38 3. D a y h o f f , Signe, 1 9 8 3 . "Sexist Language and Person Perception: Evaluation of Candidates from Newspaper Articles." Sex Roles 9 , 527-38. 4. Henley, Nancy, Michelle Miller and J o Anne Beazley. 1 9 9 5 . " S y n t a x , Semantics and Sexual Violence: Agency and the Passive Voice." Journal of Language and Social Psychology 1 4 : 6 0 - 8 4 4. Henley, Nancy, Michelle Miller et J o Anne Beazley, 1 9 9 5 . " S y n t a x , Semantics and Sexual Violence: Agency and the Passive Voice" Journal of Language and Social Psychology 14, 6 0 - 8 4 . A d d i t i o n a l references regarding g e n d e r - n e u t r a l language D e s références additionelle c o n c e r n a n t le langage non-sexiste. T a l k i n g Gender - A Guide t o N o n s e x i s t C o m m u n i c a t i o n , Ruth King, C o p p Clark P i t t m a n Ltd, T o r o n t o , 1 9 9 1 . T a l k i n g Gender - A Guide t o N o n s e x i s t C o m m u n i c a t i o n , Ruth King, C o p p Clark P i t t m a n Ltd, T o r o n t o , 1 9 9 1 . Pour u n genre à part entière: Guide pour la r é d a c t i o n de t e x t e s n o n - s e x i s t e s . M i n i s t è r e de l ' é d u c a t i o n d u Q u é b e c , Q u é b e c , 1 9 8 8 . Pour u n genre à part entière: Guide pour la r é d a c t i o n d e t e x t e s n o n - s e x i s t o s . M i n i s t è r e de l ' é d u c a t i o n du Q u é b e c , Q u é b e c , 1 9 8 8 . RENDERING T H E CAP BY-LAWS GENDER-NEUTRAL by D. Poirier, INRS-Énergie et M a t é r i a u x Original T e x t Possible m o d i f i c a t i o n Final V e r s i o n " A n applicant for m e m b e r s h i p m a y be a d m i t t e d as an a f f i l i a t e if either " A n applicant for m e m b e r s h i p m a y be a d m i t t e d as an affiliate if either " A n applicant for m e m b e r s h i p m a y be a d m i t t e d as an a f f i l i a t e if the applicant either (a) he does not fulfil the r e q u i r e m e n t s for m e m b e r s h i p as g i v e n in S e c t i o n 2 but does possess a degree of Bachelor of A r t s , Bachelor of Science, or an e q u i v a l e n t degree or d i p l o m a f r o m a recognized i n s t i t u t i o n ; (a) he or she does not f u l f i l the r e q u i r e m e n t s for m e m b e r s h i p as g i v e n in S e c t i o n 2 but does possess a degree of Bachelor of A r t s , Bachelor of Science, or an equivalent degree or d i p l o m a f r o m a recognized i n s t i t u t i o n ; (a) does not f u l f i l the r e q u i r e m e n t s for m e m b e r s h i p as g i v e n in S e c t i o n 2 but does possess a degree of Bachelor of Arts, Bachelor of Science, or an equivalent degree or d i p l o m a f r o m a recognized i n s t i t u t i o n ; or (b) he holds professional m e m b e r s h i p in an a s s o c i a t i o n a c c e p t a b l e for these purposes t o the membership committee; (b) he or she holds professional m e m b e r s h i p in an a s s o c i a t i o n acceptable for these purposes t o the m e m b e r s h i p c o m m i t t e e ; or (b) holds professional m e m b e r s h i p in an a s s o c i a t i o n acceptable for these purposes to the m e m b e r s h i p committee; or (c) he has such other q u a l i f i c a t i o n s as C o u n c i l m a y f r o m time to time decide." or (c) he or she has s u c h other q u a l i f i c a t i o n s as Council m a y f r o m time to time decide." (c) has s u c h o t h e r q u a l i f i c a t i o n s as C o u n c i l m a y f r o m t i m e t o t i m e decide." " T h e e l e c t e d o f f i c e r s of the A s s o c i a t i o n and t h e I m m e d i a t e Past President shall c o n s t i t u t e the Executive Committee of the C o u n c i l , hereinafter called " T h e E x e c u t i v e " . In t h e event t h a t t h e I m m e d i a t e Past President c a n n o t serve he shall be replaced by t h e most recent Past President available." " T h e elected o f f i c e r s of the A s s o c i a t i o n and t h e I m m e d i a t e Past President shall c o n s t i t u t e the Executive Committee of the C o u n c i l , hereinafter called " T h e E x e c u t i v e " . In t h e event t h a t t h e I m m e d i a t e Past President c a n n o t serve he or she shall be replaced by t h e m o s t recent Past President available." 54 Physics in Canada M arch/Aprill 9 9 6 " T h e elected o f f i c e r s of the A s s o c i a t i o n and t h e I m m e d i a t e Past President shall c o n s t i t u t e the Executive Committee of the C o u n c i l , hereinafter called " T h e Executive". A n I m m e d i a t e Past President w h o is unable t o serve shall be replaced by the m o s t recent Past President a v a i l a b l e . " "The Executive Secretary or his nominee shall be e m p o w e r e d t o sign the b a n k ' s f o r m of s e t t l e m e n t and release." "The Executive Secretary or his or her nominee shall be e m p o w e r e d to sign the b a n k ' s f o r m of s e t t l e m e n t and release." "The Executive Secretary shall be e m p o w e r e d t o sign the b a n k ' s f o r m of s e t t l e m e n t and release, and to delegate this a u t h o r i t y . " "If a M e m b e r desires t o v o t e proxies, he shall receive a ballot on w h i c h the Executive Secretary shall initial the n u m b e r of proxies authorized." "If a M e m b e r desires t o v o t e proxies, he or she shall receive a ballot on w h i c h the Executive Secretary shall initial the number of proxies a u t h o r i z e d . " " A M e m b e r desiring t o v o t e proxies shall receive a ballot on w h i c h the Executive Secretary shall initial the number of proxies authorized." " A l l n o m i n a t i o n s w h e t h e r made by the N o m i n a t i n g C o m m i t t e e or by individual members must be signed by two members sponsoring the nominee, w h o by his signature agrees t o accept the nomination." " A l l n o m i n a t i o n s w h e t h e r made by the N o m i n a t i n g C o m m i t t e e or by individual members must be signed by two members sponsoring the nominee, w h o by his or her signature agrees t o accept the n o m i n a t i o n . " " A l l n o m i n a t i o n s w h e t h e r made by the N o m i n a t i n g C o m m i t t e e or by individual members must be signed by two members sponsoring the n o m i n a t i o n , and also by the nominee, w h o t h u s accepts the n o m i n a t i o n . " " M a r k e d ballots m u s t be enclosed in a plain u n m a r k e d envelope w h i c h m u s t be sealed by the v o t i n g m e m b e r and returned by mail t o the Executive Secretary t o reach him on or before M a y 30th." " M a r k e d ballots m u s t be enclosed in a plain u n m a r k e d envelope w h i c h m u s t be sealed by the v o t i n g m e m b e r and returned by mail t o the Executive Secretary t o reach him or her on or before M a y 30th." " M a r k e d ballots m u s t be enclosed in a plain u n m a r k e d envelope w h i c h m u s t be sealed by the v o t i n g m e m b e r and returned by mail t o reach the Executive Secretary on or before May 30th." LA MODIFICATION DE LA CONSTITUTION DE L'ACP POUR LA RENDRE NON-SEXISTE par D. Poirier, INRS Énergie-Matériaux T e x t e original M o d i f i c a t i o n possible V e r s i o n finale "Un candidat peut devenir m e m b r e affilié s'il remplit l'une des c o n d i t i o n s s u i v a n t e s : " "Un(e) candidate(e) peut devenir m e m b r e affilié si il/elle remplit l'une des conditions s u i v a n t e s " " T o u t e personne peut devenir m e m b r e affilié si elle remplit l'une des conditions s u i v a n t e s : " " T o u t e d e m a n d e d ' a d m i s s i o n doit être faite au secrétaire exécutif à l'aide de la f o r m u l e prescrite, ainsi q u ' i l est prévu ci-après, et indiquer la catégorie de m e m b r e s à laquelle le candidat veut appartenir." " T o u t e demande d ' a d m i s s i o n doit être faite au/à la secrétaire exécutif(ive) à l'aide de la f o r m u l e prescrite, ainsi q u ' i l est prévu ciaprès, et indiquer la catégorie de membres à laquelle le/la candidat(e) veut appartenir." " T o u t e demande d ' a d m i s s i o n doit être faite au secrétariat à l'aide de la f o r m u l e prescrite, ainsi q u ' i l est prévu ci-après, et indiquer la catégorie de m e m b r e s à laquelle la personne veut a p p a r t e n i r . " " A p r è s avoir étudié les titres et qualités des c a n d i d a t s , le C o m i t é d'admission doit: " A p r è s avoir étudié les titres et qualités des candidats et candidates, le C o m i t é d ' a d m i s s i o n doit: " A p r è s avoir étudié les titres et qualités de chaque candidat(e), le C o m i t é d ' a d m i s s i o n doit: (a) a d m e t t r e le candidat dans la catégorie indiquée dans la demande; (a) a d m e t t r e le/la candidat(e) dans la catégorie indiquée dans la demande; (a) lui a d m e t t r e dans la catégorie indiquée dans la d e m a n d e ; ou (b) d e m a n d e r au candidat de faire partie d ' u n e autre catégorie; ou (b) demander au candidat ou candidate de faire partie d ' u n e autre catégorie; (c) i n f o r m e r le candidat des autres conditions qu'il doit remplir, c o n f o r m é m e n t aux d i s p o s i t i o n s et normes énoncées à l ' A r t i c l e III." (c) i n f o r m e r le/la candidat(e) des autres conditions q u ' i l ou elle doit remplir, c o n f o r m é m e n t aux dispositions et normes énoncées à l ' A r t i c l e III." Quatre d i r e c t e u r s représentent les diverses catégories de m e m b r e s , à savoir: Quatre d i r e c t e u r s (t r ic e s) représentent les diverses catégories de m e m b r e s , à savoir: La d i r e c t i o n représentant les diverses catégories de m e m b r e s c o m p r e n d q u a t r e postes, à savoir: un Directeur des m e m b r e s élu par les membres titulaires de l'Association; un(e) D i r e c t e u r ( t r i c e ) d e s m e m b r e s élu(e) par les m e m b r e s titulaires de l ' A s s o c i a t i o n ; le poste de Directeur des m e m b r e s élu par les m e m b r e s t i t u l a i r e s d e l'Association; (b) lui demander e faire d ' u n e autre catégorie; partie ou (c) lui informer des autres conditions à remplir, c o n f o r m é m e n t aux d i s p o s i t i o n s et normes énoncées à l ' A r t i c l e III. La Physique au Canada mars à avril 1 9 9 6 99 un Directeur des m e m b r e s affiliés é l u par les m e m b r e s a f f i l i é s d e l'Association; un(e) D i r e c t e u r ( t r i c e ) d e s m e m b r e s a f f i l i é s élu(e) par les m e m b r e s affiliés de l'Association; le p o s t e d e D i r e c t e u r d e s m e m b r e s a f f i l i é s élu par les m e m b r e s a f f i l i é s de l'Association; u n D i r e c t e u r - é t u d i a n t é l u par les m e m b r e s étudiants de l'Association; un(e) Directeur(trice)-étudiantle) élu(e) par les m e m b r e s é t u d i a n t s de l'Association; le p o s t e d e D i r e c t e u r - é t u d i a n t é l u par les m e m b r e s é t u d i a n t s d e l'Association; et un Directeur des membres c o r p o r a t i f s élu par les m e m b r e s corporatifs de l'Association." et un(e) D i r e c t e u r ( t r i c e ) d e s m e m b r e s c o r p o r a t i f s élu(e) par les m e m b r e s corporatifs de l'Association." et le p o s t e d e D i r e c t e u r d e s m e m b r e s c o r p o r a t i f s élu par les m e m b r e s corporatifs de l ' A s s o c i a t i o n . " "Les mandats du président, du secrétaire-trésorier honoraire et des quatre directeurs sont d'une année. Le v i c e - p r é s i d e n t élu succède automatiquement au vice-président." " L e s m a n d a t s d u p r é s i d e n t o u d e la présidente, du secrétaire-trésorier h o n o r a i r e o u d e la s e c r é t a i r e t r é s o r i ô r e et d e s q u a t r e d i r e c t e u r s ou directrices sont d ' u n e année. Le v i c e - p r é s i d e n t é l u o u la v i c e présidente élue succède automatiquement au vicep r é s i d e n t o u à la v i c e p r é s i d e n t e . "Les mandats des postes de président, de s.-t.h. et de direction sont d'une année. Le v i c e - p r é s i d e n t é l u o u la v i c e présidente élue succède automatiquement au vicep r é s i d e n t o u à la v i c e - p r é s i d e n t e . " The Early History of W o m e n . . . by A . Prentice (continued f r o m pg. 96) 16. 1 7. 18. 19. 20. Rachel Schlesinger, "Volunteers for a Dream," Canadian J e w i s h Historical Society Journal 1, 1 (Fall 1988) especially p. 3 1 . M a t t i e Rotenberg was active in Hadassah-Wizo, w h i c h is the subject of Schlesinger's article. Cohen's career at Mount H o l y o k e l e f t f e w traces in the Mount Holyoke College Archives, apart from notices of her appointment and eventual release from employment. There are occasional references to her, however, in the papers of Mildred Allen, her colleague in the physics department at the college. See also University of Toronto Archives, Newspaper Clippings Collection, A73-0026/064(17), "National Research Report 1 9 3 0 " for a brief account of her early research. Stephen Speisman documents " t h e gradual intensification of antisemitism in Ontario" from 1 9 3 3 into the early years of World War II - just the period w h e n Elizabeth Cohen and Mattie Rotenberg w o u l d have been trying t o gain a foothold in physics at Toronto. See Speisman, "Antisemitism in Ontario: The T w e n t i e t h Century," in Alan Davies, ed. Antisemitism in Canada: History and Interpretation (Waterloo: Wilfrid Laurier Press, 1992) 1 2 5 - 2 9 . See also Irving Abella, "Anti-Semitism in Canada in the Interwar Years," in The J e w s of North America, ed. Moses Rischin (Detroit: W a y n e State University Press, 1 9 8 7 ) . University of T o r o n t o Archives, Newspaper Clippings Collection, A 7 3 - 0 0 2 6 / 3 7 1 (08) Telegram, 13 September 1 9 4 1 , " M a d e Professors at the University of Toronto." " M i s s K.M. Crossley's work is in mechanics, hydrostatics and heat; Miss E. J . Allin is an authority on modern developments in physics, especially spectroscopy and problems having t o do w i t h the structure of the atom; Miss F. M. Quinlan is in charge of the teaching of physics t o household science and music students." See also Allin, Physics, 3 4 . University of Toronto Archives, Oral History Collection, B 9 3 - 0 0 3 5 , Karen Fejer's interviews w i t h Elizabeth Allin, Toronto, May-June, 1993. 21. 22. Elizabeth Allin refers t o the pressure on married w o m e n t o resign in Physics at the University of Toronto, 25. In a 1 9 9 1 interview, Professor Allin was more forceful in expressing her view that bias against married w o m e n during the Depression was used as an excuse t o " c u t the s t a f f " and "get rid of the w o m e n " at Toronto. Author's interview w i t h Elizabeth Allin, Toronto, May 1 9 9 1 . 2 5 . Allin, Physics, chapter 4 and p. 6 2 . Not only had no w o m e n been hired, it would also appear that all of Allin's female colleagues had either retired or left the department by the end of the 1 9 5 0 s . 2 6 . Author's interview w i t h Allin, May 1 9 9 1 . Allin, Physics at the University of Toronto, 3034, and author's interview with Elizabeth Allin, May 1991. 23. A u t h o r ' s interview w i t h ElizabethAllin, May 1991; Karen Fejer's interview, M ay -J u n e 1993. 24. Allin, Physics a t t h e University of T o r o n t o , Appendix 3 , p. 7 7 . Allin lists the recipients of doctorates by year, but only initials are given. To discover the exactnumbers of women, one would need t o go the university directories, as I have been able t o do only for the years prior t o 1 9 4 0 41. MTF! Infra-Red MTF system at Hughe» Leitz, Canada. MTF measurement time 2 secondsl MTF systems for IR and Visible testing High-speed low-noise measurement User-programmable using Image BASIC We can upgrade your existing bench! HARVARD A P P A R A T U S C A N A D A TEL: (514) 335-0792,1-800-361-1905 Physics in C a n a d a M arch/Aprill 9 9 6 I m a g e S c i e n c e FAX: (514) 335-3482, 1-800-335-0792 E-MAIL 102263.2131@compuserve. com 100 Elizabeth Physics in Canada / La Physique au Canada Vol. 52, No. 2 1996 March/April mars/avril 1996 Physics and Education La Physique et Veducation SOME W O M E N PHYSICISTS IN CANADA SHMÉdlflKSL Individual and Family Profiles Featuring: "The CAP 1994 Income Survey" by R.E. Green "Women Physics Faculty in Canada" by J.B. Lagowski and J. McKenna "Women Students in Physics in Canada: A Decade of Progress" by A.C. McMillan and E. Svensson "WES-Women in Engineering and Science: A Canadian Success Story at NRC" by M. D'lorio "The Committee on the Status of Women in Physics of the American L. Martinez-Miranda Individual and Family Profiles of Women Physicists in Canada Physical Society" by Canadian Association of Physicists Association canadienne des physiciens et physiciennes Institutional Members II Membres institutionels (Physics Departments // Départements de physique) Acadia University Bishop's University Brandon University Brock University Camosun College Carleton University CEGEP Beauce-Appalaches CEGEP de Chicoutimi CEGEP Francois-Xavier-Garneau Collège Jean-de-Brébeuf Collège Montmorency Concordia University Dalhousie University École Polytechnique Lakehead University Laurentian University Le Petit Séminaire de Québec McGill University McMaster University Memorial University of Newfoundland Mount Allison University Okanagan University College Queen's University Royal Military College, Kingston Saint Mary's University St. Francis Xavier University Simon Fraser University Trent University University of Alberta University of British Columbia University of Calgary University of Guelph Université Laval University of Lethbridge University of Manitoba Université de Moncton Université de Montréal University of New Brunswick University of Northern B.C. University of Ottawa University of Prince Edward Island Université du Québec à Chicoutimi Université du Québec à Montréal Université du Québec à Trois-Rivières University of Regina University of Saskatchewan Université de Sherbrooke University of Toronto University of Victoria University of Waterloo University of Western Ontario University of Windsor University of Winnipeg Wilfrid Laurier University York University 1 9 9 6 Sustaining Members // Membres de Soutien 1 9 9 6 (as at 1996 March 31) A. John Alcock H.R. Andrews J. Brian Atkinson C. Bruce Bigham Bertram N. Brockhouse Laurent G. Caron Allan I. Carswell Robert L. Clarke Walter G. Davies Gerald Dolling Gordon W.F. Drake Earl J. Fjarlie Brian C. Gregory Geoffrey C. Hanna Elmer H. Hara Akira Hirose Roger Howard David D. Isaak Thomas E. Jackman Allan E. Jacobs J. Larkin Kerwin James D. King Ron M. Lees Roger A. Lessard A. David May Jasper S.C. McKee Ann C. McMillan Jean-Louis Meunier Elizabeth J. Nicol Allan A. Offenberger Roger Philips Satti Paddi Reddy Beverly E. Robertson Lyle P. Robertson John M. Robson Donald W.L. Sprung Alec T. Stewart Boris P. Stoicheff Eric C. Svensson John G.V. Taylor Henry M. Van Driel Paul S. Vincett Erich Vogt THE CAP 1 9 9 4 INCOME SURVEY by TABLE la: SALARY INCOME Ralph E. Green Retired M e m b e r The CAP received 4 1 7 responses t o the 1 9 9 4 Income Survey. There w e r e 3 2 4 responses w i t h a salary i n c o m e , 51 w i t h a pension i n c o m e , 3 4 w i t h a c o n s u l t i n g i n c o m e , and 5 2 w i t h a scholarship i n c o m e . A n o v e r v i e w of the salary i n c o m e is provided by the h i s t o g r a m , w h i c h c o v e r s the 3 2 4 responses w i t h a salary i n c o m e . All the respondents did not provide a year of g r a d u a t i o n . For those w h o d i d , the responses are analyzed in the f o l l o w i n g 2 0 tables. Tables l a t o 1d s h o w the results for the four sources of i n c o m e . There w e r e 3 1 6 responses w i t h salary i n c o m e , 4 7 w i t h pension i n c o m e , 3 3 w i t h c o n s u l t i n g i n c o m e , and 5 0 w i t h s c h o l a r s h i p income. The salary data are analyzed in more detail in the f o l l o w i n g 16 tables. Tables 2a t o 2c s h o w the results according t o the q u a l i f i c a t i o n s of the respondents. There w e r e 13 responses w i t h a b a c h e l o r ' s degree, 2 5 w i t h a m a s t e r ' s degree, and 2 7 7 w i t h a d o c t o r a t e degree. Tables 3a t o 3e c o v e r the areas of current e m p l o y m e n t . There w e r e 1 8 6 responses f r o m the academic s e c t o r , 6 6 f r o m g o v e r n m e n t agencies, 38 f r o m i n d u s t r y , 9 f r o m graduate s t u d e n t s , and 13 f r o m other areas. Tables 4a t o 4f c o v e r the geographic region of e m p l o y m e n t . There w e r e 2 9 responses f r o m the A t l a n t i c Provinces. 7 0 f r o m Quebec, 1 2 2 f r o m Ontario, 3 2 f r o m the Prairie Provinces, 35 f r o m British C o l u m b i a and the Territories, and 21 f r o m outside Canada. Lower Quartile <k$) Upper Quartile <k$> Year of Graduation Number 40-44 45-49 50-54 55-59 60-64 65-69 70-74 75-79 80-84 85-89 90-94 1 3 11 43 52 49 39 33 39 21 25 85.3 78.4 77.5 73.8 57.3 54.8 43.5 42.2 23.0 75 . 0 93.0 92.0 82.0 81.0 70.0 65.0 50.0 46 . 9 34.5 99 . 1 100.0 93.0 89.2 77 . 6 75.0 60.0 51.2 44 . 3 40-94 316 52.0 72 . 0 85.0 Median <k$) TABLE lb: PENSION INCOME Year of Graduation Number Lower Quartile <k$> 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64 65-69 1 3 1 7 12 13 6 2 2 52.2 40.5 40.0 25-69 47 Median <k$> Upper Quartile <k$) 52.0 - 68 . 0 50.0 45.0 38.5 70.0 58.2 51.8 - 40.0 48.0 57 . 9 Tables 5a and 5b s h o w the results by gender. There w e r e 2 9 1 responses f r o m males and 18 f r o m females. In each table, the medians and quartiles are g i v e n f r o m five-year periods, based on the year of g r a d u a t i o n w i t h a Bachelor of Science degree. The final e n t r y in a table c o v e r s the entire period of that table. The medians are not reported if there are less t h a n three responses in period, to m a i n t a i n c o n f i d e n t i a l i t y of the i n c o m e s . The quartiles are reported only if there are seven, or m o r e , responses in a period. The C A P w i s h e s t o thank all those w h o responded to the s u r v e y request, and w e l c o m e s s u g g e s t i o n s for i m p r o v i n g f u t u r e surveys. 40 30 - TABLE lc: CONSULTING INCOME Year of Graduation Number 40-44 45-49 50-54 55-59 60-64 65-69 70-74 75-79 80-84 85-89 2 3 6 5 4 4 4 1 3 1 40-89 33 Lower Quartile <k$) Median <k$> Upper Quartile <k$) 3.0 7.5 4.5 4.5 8.5 35.0 - 2.8 2.6 6.0 14.4 rfl in TABLE Id: SCHOLARSHIP INCOME « 20 Year of Graduation œ -Q E o Z T l rr. 0 10 20 30 40 50 60 70 80 90 100 110 Lower Quartile (kS) Median Upper Quartile <k$> <k$) 75-79 80-84 85-89 90-94 1 1 7 41 13.8 13.0 15.0 16.0 17 . 6 20.0 75-94 50 13.0 15.6 19.2 - 120>125 Salaries (K$) Histogram of 3 2 4 salary responses t o the CAP 1 9 9 4 Income Survey La Physique au Canada mars à avril 1 9 9 6 103 TABLE 2a: QUALIFICATIONS: BACHELOR'S DEGREE Year of Graduation Number 65-69 70-74 75-79 80-84 85-89 90-94 1 1 1 1 2 7 65-94 13 Upper Quartile <k$> Median <kS> Number 50-54 55-59 65-69 70-74 75-79 80-84 85-89 90-94 1 1 3 3 7 2 3 5 50-94 25 Year of Graduation Number Lower Quartile <k$> Median <k$) Upper Quartile (k$) 45-49 55-59 60-64 65-69 70-74 75-79 80-84 85-89 90-94 1 6 14 12 11 9 7 1 5 74.0 70.8 67.5 64.2 52.5 94.9 77.6 77.5 69.0 67.0 60.0 80.4 84.0 71.0 71.2 62.0 45-94 66 62.0 - 3.5 20.0 33.2 17.0 40.5 58.8 Lower Quartil (k$) Median (k$) - 46.3 70.0 79.0 Upper Quartile <k$) TABLE 3c: CURRENT EMPLOYMENT: INDUSTRY - 61.5 71.7 52.0 67.0 76.5 - 46.0 24.0 40.0 52.0 71.8 TABLE 2c: QUALIFICATIONS: DOCTORATE DEGREE Year of Graduation TABLE 3b: CURRENT EMPLOYMENT: GOVERNMENT QUALIFICATIONS: MASTER'S DEGREE TABLE 2b Year of Graduation Lower Quartile <k$> Number Lower Quartile <k$> Median <kS> Upper Quartile <M) 40-44 45-49 50-54 55-59 60-64 65-69 70-74 75-79 80-84 85-89 90-94 1 3 10 41 52 45 35 25 36 16 13 85.0 78.8 77.5 75.0 66.2 54.0 43.0 42.5 38.6 75.0 92.9 91.0 82.0 82.0 70.0 62.5 50.0 48.3 44.0 96.6 99.2 93.0 89.2 79.5 74.2 60.0 52.0 47.6 40-94 277 54.0 75.0 86.7 Year of Graduation Number 40-44 50-54 55-59 60-64 65-69 70-74 75-79 80-84 85-89 90-94 1 2 1 1 9 3 5 6 5 5 40-94 38 Lower Quartile <k»> Median <k$) Upper Quartile (k$> - 73.8 85.0 82.0 80.0 56.5 46.0 40.0 122.5 45.0 60.3 85.0 TABLE 3d: CURRENT EMPLOYMENT: GRADUATE Year of Graduation Lower Quartile <kS) 65-69 75-79 90-94 Median <k$) Upper Quartile (k$) 54.8 2.5 TABLE 3a: CURRENT EMPLOYMENT: ACADEMIC Year of Graduation Number 45-49 50-54 55-59 60-64 65-69 70-74 75-79 80-84 85-89 90-94 45-94 104 Lower Quartile (kS) Median ( k$ ) Upper Quartile ( k$ ) 2 9 36 37 23 18 14 25 11 11 85.8 81.5 80.0 75.0 60.0 54.0 41.8 41.0 24.8 93.0 92.0 85.0 82.4 70.0 61.8 50.0 46.0 31.0 97.4 98.0 95.2 93.8 76.5 74.0 53.5 50.8 41.5 186 53.0 76.0 92.0 Physics in Canada M arch/Aprill 9 9 6 TABLE 3e: CURRENT EMPLOYMENT: OTHER Year of Graduation Number 65-69 70-74 75-79 80-64 85-89 2 6 1 1 3 65-89 13 Lower Quartile <k$) Median ( k$ ) Upper Quartile (k$) 66.1 _ _ 50.0 50.0 55.0 84.2 TABLE 4a: EMPLOYMENT REGION: ATLANTIC PROVINCES Year of Graduation Number 50-54 55-59 60-64 65-69 70-74 75-79 80-84 2 5 8 5 3 3 3 50-84 29 Lower Quartile (k$) 70.9 61.5 Median <k$> Upper Quartile (k$) 83.0 75.8 75.0 70.0 49.5 42 . 0 79.2 75.0 82 . 6 TABLE 4e: EMPLOYMENT REGION: BRITISH COLUMBIA AND TERRITORIES Year of Graduation Number 50-54 55-59 60-64 65-69 70-74 75-79 80-84 85-89 90-94 2 8 6 6 2 3 5 1 2 50-94 35 Lower Quartile <k$> Median (kS) 67.6 Upper Quartile (kS) 100.0 92.7 87 . 8 76.9 67.0 50.0 - 55.3 89.2 74.0 TABLE 4b: EMPLOYMENT REGION: QUEBEC TABLE 4f: EMPLOYMENT REGION: OUTSIDE CANADA Year of Graduation Number 40-44 50-54 55-59 60-64 65-69 70-74 75-79 80-84 85-89 90-94 1 1 5 8 11 13 9 9 8 5 40-94 70 Lower Quartile <k$) Median (kS) Upper Quartile ( k$ ) Year of Graduation Number Lower Quartile <k$) Median <k$) Upper Quartile ( k$ ) - 81.5 71.1 65.9 53.5 48.0 48.0 90.0 82.0 80.0 75.0 60.0 53.0 51.0 40.0 83.0 84.0 80.5 72.8 61.6 56.5 52.0 67.5 81.0 50-54 60-64 65-69 70-74 75-79 80-84 85-89 90-94 2 4 2 2 1 3 4 3 50-94 21 119.0 - - 51.7 48 . 3 34.5 80.0 128.6 Median <k$) Upper Quartile (kS) 85.3 79 . 5 77 . 5 74 . 5 56.4 55.2 43.5 44.8 27.0 75.0 93.0 91.5 82.0 81.0 70.0 65.0 51.8 49 .5 40.0 99. 1 100.0 93.0 89.0 78.5 74 . 8 60.0 52.2 46.3 54.0 75.0 86.0 46.7 TABLE 4c: EMPLOYMENT REGION: ONTARIO TABLE 5a: GENDER: MALE Year of Graduation Number Lower Quartile <kS> Median ( k$ ) 45-49 50-54 55-59 60-64 65-69 70-74 75-79 80-84 85-89 90-94 2 1 19 20 20 17 12 13 6 12 80.6 75.9 76.5 64.5 62.4 47.2 35.0 22.0 95.0 81.2 84.0 69 . 0 68.8 55.0 45.0 37.0 45-94 122 54.0 75.0 Upper Quartile (kS) - 101.5 93.5 87.0 76.5 75.0 60.5 49.5 45.2 85.0 Year of Graduation Number 40-44 45-49 50-54 55-59 60-64 65-69 70-74 75-79 80-84 85-89 90-94 1 3 11 40 52 46 37 31 35 17 18 40-94 291 Lower Quartile (k$> TABLE 4d: EMPLOYMENT REGION: PRAIRIE PROVINCES Year of Graduation Number 45-49 50-54 55-59 60-64 65-69 70-74 75-79 80-84 85-89 90-94 1 3 4 6 4 2 4 4 1 3 45-94 32 Lower Quartile (k$) Median <k$) Year of Graduation _ 94.0 94.0 93.0 116.0 - 67.5 49.5 - 27.0 48.5 76.1 TABLE 5b: GENDER: FEMALE Upper Quartile (kS) 95.0 Number 65-69 70-74 75-79 80-84 85-89 90-94 3 1 1 3 4 6 65-94 18 Lower Quartile (kS) Median (kS) Upper Quartile (kS) 85.0 - 45.0 42.5 20.5 34.5 La Physique au Canada 45.0 60.0 mars à avril 1 9 9 6 105 WOMEN PHYSICS FACULTY IN CANADA S u m m a r y of R e s u l t s of a S u r v e y S p o n s o r e d b y t h e C a n a d i a n A s s o c i a t i o n of P h y s i c i s t s by J o l a n t a B. L a g o w s k i , D e p t of P h y s i c s , M e m o r i a l U n i v e r s i t y of N e w f o u n d l a n d , St. J o h n ' s , N F L D , A 1 B 3 X 7 a n d J a n i s M c K e n n a , D e p a r t m e n t of P h y s i c s , U n i v e r s i t y of B r i t i s h C o l u m b i a , V a n c o u v e r , BC, V 6 T 1 Z 1 INTRODUCTION A recent international s t u d y d ) of w o m e n in p h y s i c s s h o w e d t h a t t h e r e p r e s e n t a t i o n of w o m e n in p h y s i c s d e p a r t m e n t s at t h e f a c u l t y level r a n g e s w i d e l y - f r o m a h i g h of 4 7 % in H u n g a r y , 2 3 % in F r a n c e , Italy a n d T u r k e y , 6 % in t h e N e t h e r l a n d s a n d N e w Z e a l a n d , t o s u r p r i s i n g l y l o w v a l u e s of 3 % in Korea a n d t h e U . S . A . A l s o , in g e n e r a l , as t h e e d u c a t i o n a l d e g r e e level i n c r e a s e s , t h e p r o p o r t i o n of w o m e n in physics decreases.(2) This p h e n o m e n o n is o f t e n r e f e r r e d t o in t h e A m e r i c a n l i t e r a t u r e as t h e " l e a k y p i p e l i n e " . ( 2 ) A t t h e 1 9 9 5 C a n a d i a n A s s o c i a t i o n of P h y s i c i s t s (CAP) C o n g r e s s h o s t e d by L a v a l U n i v e r s i t y in Q u e b e c , a n e v e n i n g s e s s i o n o n W o m e n in P h y s i c s w a s arranged, and a m o n g the presentations w e r e r e s u l t s of s e v e r a l s u r v e y s of w o m e n in p h y s i c s . Several congress participants asked how Canada compares w o r l d w i d e w i t h respect t o t h e s e s t a t i s t i c s , as C a n a d a w a s not l i s t e d in t h e i n t e r n a t i o n a l c o m p a r i s o n studyd). Apparently, statistics have not p r e v i o u s l y b e e n c o l l e c t e d r e g a r d i n g the number of women in faculty p o s i t i o n s in p h y s i c s d e p a r t m e n t s in Canadian academic institutions. S p o n s o r e d by C A P , a s i m p l e s u r v e y w a s d i s t r i b u t e d in order t o e s t i m a t e t h e n u m b e r of f e m a l e f a c u l t y in C a n a d i a n physics d e p a r t m e n t s . This survey w a s n e v e r i n t e n d e d t o be as e x h a u s t i v e as t h a t p e r f o r m e d by t h e C o m m i t t e e o n the Status of W o m e n in Physics (CSWP) of The American Physical S o c i e t y , but it is a f i r s t a t t e m p t t o present quantitative data on w o m e n p h y s i c i s t s in C a n a d a . A brief s u m m a r y of t h e r e c e n t f e m a l e p h y s i c s g r a d u a t e s (at t h e B . S c . a n d P h . D . levels) is also given. TABLE 1 : THE SURVEY MAILED TO CAP PHYSICS INSTITUTIONS. 1. Does y o u r i n s t i t u t e grant P h D ' s in p h y s i c s ? 2.a. H o w m a n y s t u d e n t s h a v e r e c e i v e d a BSc in p h y s i c s f r o m your department from 1993-95? 2.b. Of t h e s e BSc g r a d u a t e s , h o w m a n y w e r e f e m a l e ? 3.a. H o w m a n y s t u d e n t s h a v e r e c e i v e d a PhD in p h y s i c s f r o m your department f r o m 1993-95? 3.b. Of t h e s e PhD g r a d u a t e s , h o w m a n y w e r e f e m a l e ? 4.a. H o w m a n y f a c u l t y m e m b e r s are p r e s e n t l y in your department? 4.b. Of t h e s e f a c u l t y m e m b e r s , h o w m a n y are f e m a l e ? 4.C. H o w m a n y t e n u r e d f a c u l t y m e m b e r s are p r e s e n t l y in y o u r d e p a r t m e n t ? 4.d. H o w m a n y f e m a l e t e n u r e d f a c u l t y m e m b e r s are p r e s e n t l y in y o u r d e p a r t m e n t ? 4.e. H o w m a n y t e n u r e - t r a c k f a c u l t y m e m b e r s are p r e s e n t l y in y o u r d e p a r t m e n t ? 4.f. H o w m a n y f e m a l e t e n u r e - t r a c k f a c u l t y m e m b e r s are p r e s e n t l y in y o u r d e p a r t m e n t ? 4.g. If 4f + 4 d does not e q u a l 4 b , or if 4 c + 4 e d o e s not equal 4 a , please s t a t e discrepancy. 5. If y o u h a v e any c o m m e n t s o n w o m e n in p h y s i c s issues t h a t y o u ' d like t o s h a r e w i t h us, please f e e l f r e e t o i n c l u d e a n y c o m m e n t s . Information supplied by: Position: D e p a r t m e n t of P h y s i c s , University: Phone: Email: Fax: THE SURVEY RESULTS A N D DISCUSSION Early in t h e Fall of 1 9 9 5 , t h e C A P survey was sent to 63 physics d e p a r t m e n t s in c o l l e g e s , CEGEPs a n d u n i v e r s i t i e s in C a n a d a , i n c l u d i n g all 5 4 CAP member physics departments. The CAP survey that was mailed to Canadian academic institutions is s h o w n in T a b l e 1. A t o t a l of 4 0 r e s p o n s e s t o t h e s u r v e y w e r e r e c e i v e d in t h e late Fall of 1 9 9 5 ; 2 5 w e r e f r o m PhD g r a n t i n g i n s t i t u t i o n s , and 15 from non-PhD granting institutions. T h e s u r v e y d a t a 1 are s u m m a r i z e d in T a b l e 2. No attempt w a s made to verify numbers that were p r o v i d e d t o C A P . T h a t is, p e r c e n t a g e s w e r e tabulated based on the data given w i t h o u t c h a n g e s or i n t e r p r e t a t i o n (e.g. n u m b e r s r e p o r t e d by t h e r e s p o n d e n t s as " a p p r o x i m a t e " w e r e t r e a t e d t h e s a m e w a y as t h e m o r e " a c c u r a t e " numbers). S o m e u n i v e r s i t i e s (2) d i d n o t s u p p l y d a t a f o r B.Sc. g r a d u a t e s . T h e f a c u l t y t o t a l is not equal t o t h e s u m of t e n u r e d f a c u l t y plus t e n u r e - t r a c k f a c u l t y d u e t o t h e i n c l u s i o n of v i s i t i n g f a c u l t y p o s i t i o n s , f a c u l t y w i t h e m e r i t u s s t a t u s , a n d p a r t - t i m e f a c u l t y p o s i t i o n s w h i c h r e s p o n d e n t s l i s t e d as f a c u l t y , but n e i t h e r t e n u r e d nor t e n u r e - t r a c k f a c u l t y . 106 Physics in Canada M arch/Aprill 9 9 6 TABLE 2: S U M M A R Y OF S U R V E Y R E S U L T S O N W O M E N IN P H Y S I C S IN C A N A D A . (Received From 40 Canadian Academic institutions and Collected in the Fail of 1995.) All Canadian Physics Departments Total Number N u m b e r of Percentage Women Women (Men & Women) B.Sc. G r a d u a t e s t 1613 Faculty 707 284 34 Tenured Faculty Tenure-Track Faculty 621 12 5 2 76 21 28 N u m b e r of Percentage Women Women 18 18 t total number of d e g r e e s granted in t h e period 1 9 9 3 - 1 9 9 5 . C a n a d i a n PhD G r a n t i n g P h y s i c s D e p a r t m e n t s O n l y Total Number (Men & Women) B.Sc. G r a d u a t e s t 1453 Ph.D. G r a d u a t e s t 336 261 44 Faculty Tenured Faculty 612 27 4 539 8 1.5 65 18 28 Tenure-Track Faculty 13 t total number of d e g r e e s granted in the period 1 9 9 3 - 9 5 The survey results show that in C a n a d a , 1 8 % of all r e c i p i e n t s of a B . S c . D e g r e e in P h y s i c s , a n d 1 3 % of all r e c i p i e n t s of a Ph.D. D e g r e e in P h y s i c s are f e m a l e . 5 % of all p h y s i c s f a c u l t y m e m b e r s a n d 2 % of t e n u r e d p h y s i c s f a c u l t y m e m b e r s are w o m e n : t h e " l e a k y p i p e l i n e " t r e n d is p r e s e n t in C a n a d a , in fact very similar t o t h e situation o b s e r v e d by our A m e r i c a n c o l l e a g u e s in their c o u n t r y . T h e p e r c e n t a g e of w o m e n f a c u l t y at non-Ph.D. granting institutions is s o m e w h a t h i g h e r ( 7 % ) t h a n in t h e Ph.D. granting institutions (4%). H o w e v e r , it is e n c o u r a g i n g t o see t h a t a p p r o x i m a t e l y a q u a r t e r of all t e n u r e t r a c k f a c u l t y p o s i t i o n s in t h e p h y s i c s d e p a r t m e n t s in C a n a d a are c u r r e n t l y held by w o m e n . It s h o u l d be n o t e d t h a t t e n u r e - t r a c k f a c u l t y m e m b e r s (of b o t h g e n d e r ) c o n s t i t u t e o n l y 1 1 % of all physics faculty members. In T a b l e 3, r e s u l t s f r o m a s i m i l a r American survey [ 2 ] in 1 9 9 4 are summarized for c o m p a r i s o n w i t h the C a n a d i a n s u r v e y r e s u l t s p r e s e n t e d in T a b l e 2. TABLE 3: The American approximately study. S U M M A R Y OF R E S U L T S F R O M A N A M E R I C A N S U R V E Y S I M I L A R T O T H E ONE PRESENTED HERE. Study provided information on faculty rank (full, associate, assistant professor), which is equivalent to the tenured and non tenured categories presented in Table 2 in this CAP A m e r i c a n PhD G r a n t i n g P h y s i c s D e p a r t m e n t s O n l y Total Number (Men & Women) 4746 3584 592 Faculty A s s o c . & Full Prof. A s s t . Prof. Number of W o m e n Percentage Women 229 132 60 5 4 10 Data are b a s e d on information in R e f e r e n c e 3. TABLE 4: P E R C E N T A G E OF P H Y S I C S D E P A R T M E N T S W I T H O N L Y O N E OR N O W O M A N F A C U L T Y M E M B E R N u m b e r of All Canadian C a n a d i a n PhD Canadian non-PhD American Women Faculty Physics Departments Granting Physics Granting Physics Departments PhD G r a n t i n g Departments* 45% 36% 72% 60% 36% 69% none n o n e or o n e Departments 80% 93% * Statistics for American P h y s i c s D e p a r t m e n t s are from R e f e r e n c e 3. T h e s u r v e y r e s u l t s also s h o w e d t h a t of the forty institutions Canadian that academic responded, 80% of w o m a n f a c u l t y m e m b e r in t h e i r p h y s i c s f a c u l t y m e m b e r s , a v e r y large f r a c t i o n departments. of t h e m h a v e o n e or no w o m a n faculty smaller member, of tend and almost a half the r e s p o n d i n g i n s t i t u t i o n s ( 4 5 % ) h a v e no W h i l e it is t r u e t h a t t h e non-PhD to members, have and granting fewer hence institutions physics faculty fewer women them members have no at all ( 6 0 % ) women and faculty hence (continued on page 112) La Physique au Canada mars à avril 1 9 9 6 107 W O M E N S T U D E N T S IN P H Y S I C S IN C A N A D A : A D E C A D E OF P R O G R E S S by A n n M c M i l l a n , A t m o s p h e r i c Environment Service, 4 9 0 5 D u f f e r i n St., D o w n s v i e w , Ontario, M 3 H 5 T 4 Eric S v e n s s o n , AECL, Chalk River Laboratories, Chalk River, Ontario, KOJ 1 J 0 INTRODUCTION The C A P collected s o m e data on graduate s t u d e n t s in u n i v e r s i t y physics as far back as 1 9 8 3 / 8 4 , f r o m w h i c h it is possible t o deduce the representation of w o m e n . Then, a decade ago, the C A P carried out a s u r v e y of Canadian u n i v e r s i t y physics d e p a r t m e n t s t o e s t i m a t e the p r o p o r t i o n of physics s t u d e n t s in Canada w h o w e r e w o m e n . There w a s little Canadian data available at that t i m e on p h y s i c s , a l t h o u g h S t a t i s t i c s Canada had data on engineering and physical sciences w h i c h could have included a rather d i f f e r e n t population. The results of t h a t 1 9 8 5 / 8 6 s u r v e y w e r e presented at the C A P Congress in 1 9 8 6 and put in c o n t e x t w i t h representation of w o m e n in h i g h school physics classes and in the ranks of practicing p h y s i c i s t s . T w o other C A P s u r v e y s w e r e carried out, one in 1 9 8 6 / 8 7 and one in 1 9 8 8 / 8 9 . Now, a decade after the 1 9 8 5 / 8 6 s u r v e y , a n e w s u r v e y has been carried out in order t o u p d a t e the n u m b e r s and t o get an indication of h o w the representation of w o m e n in physics has changed over the past decade. In t h e fall of 1 9 9 5 , a s u r v e y of s t u d e n t s w a s sent t o Canadian physics d e p a r t m e n t s in parallel w i t h the s u r v e y of w o m e n f a c u l t y reported on e l s e w h e r e in this issue of Physics in Canada by Lagowski and McKenna. The survey sheet t h a t w a s d i s t r i b u t e d is s h o w n in Figure 1. It repeats the 1 9 8 8 / 8 9 s u r v e y and is rather similar t o the 1 9 8 5 / 8 6 and 1 9 8 6 / 8 7 s u r v e y s in content and layout, except t h a t it n o w does not ask for data before t h i r d year and it does ask for data at the Post D o c t o r a l level. TABLE 1 Results of CAP surveys i»»5/»« of responses ?r<* RESULTS The earliest CAP data concerning the representation of w o m e n in Canadian physics d e p a r t m e n t s is s u m m a r i z e d in Table 1 under the c o l u m n for 1 9 8 3 / 8 4 . These numbers are the result of Mona J e n t o , w h o w a s the Executive Secretary of the C A P for m a n y years, extracting the number of women from the lists of graduate s t u d e n t s s u b m i t t e d t o the CAP [1]. While 31 universities s u b m i t t e d lists, a number only s h o w e d the initials of the s t u d e n t s and some did not break out responses by degree level. The data s h o w n w e r e assembled f r o m 2 4 universities. i?6»/#? irnet 24 IS 33 37 38 * * * 60 477 537 105 788 893 120 661 781 103 557 660 * 11 12 15 16 * * * 45 406 451 93 654 747 107 655 762 130 554 684 * 10 12 14 19 23 357 380 30 310 340 ••9 474 533 73 474 547 91 409 500 6 9 11 13 18 11 233 244 24 299 323 25 411 4:16 43 404 447 102 684 786 5 7 6 10 13 * * * * * * * * * 9 114 123 24 151 175 * * 7 14 y*»r number number total women 4th n « « / » 7 u n i v y l t y of of women men as % of total year number number total women of of as women men % of total MSc number number total women of of as women men % of total PhD number number total women Post of of as women men % of total DOC number number total of of women men women as * available not % of total from survey n U F S T I O N - N A l D F O N W O M F V S T ! " " I F V T S IK PHYSICS P l r n e return h> N o v I, 1595 To: F Ford. Executive Director Cmedian Association o f Physicists 151 Slater Street. #903 Ottawa, Ontario K1P5H3 University: Contact Person Are y o u willing to distribute a questionnaire to your women students? Undergraduates 3rd yr. M. Sc. Ph.D. Post D o c 4th yr. NUMBER OF: MALE FEMALE The results of the four CAP s u r v e y s are also s u m m a r i z e d in Table 1. For these, a request w a s sent t o the u n i v e r s i t y physics d e p a r t m e n t s t o c o m p l e t e a f o r m similar t o that s h o w n in Figure 1. Response rates increased d r a m a t i c a l l y after the first survey. There were only 18 responses t o the 1 9 8 5 / 8 6 s u r v e y , w h i l e there w e r e 3 3 , 37 and 38 responses, respectively, to the 1986/87, 1988/89 and 1995/96 s u r v e y s , out of 6 3 d e p a r t m e n t s . M a n y of the later responses included only the numerical s u m m a r y , but m o s t u n i v e r s i t y respondents expressed a willingness t o circulate a questionnaire t o w o m e n students. A s y e t , w e have not a t t e m p t e d t o do this. 108 number of women number of men total women as % of total 4th CAP Survey Form Physics in Canada M arch/Aprill 9 9 6 Table 1 includes the t o t a l responses received from all the surveys. U n f o r t u n a t e l y , a d i f f e r e n t subset of universities responded to each s u r v e y , limiting the c o m p a r a b i l i t y of the results. It is nonetheless clear that the representation of w o m e n students in Canadian university physics d e p a r t m e n t s has increased over the t i m e period. It is interesting that in general the number of physics s t u d e n t s declines w i t h increasing academic level, w i t h the latest survey being a marked exception. 58 472 530 74 313 387 11 19 44 403 447 95 362 457 10 21 30 310 340 48 232 280 9 17 24 299 323 5. )61 419 y—r number of women number of men total women as 1 of total sec number of women number of men total women as % of total PhD number of women number of men total women as % of total N a m e s of female students: Fig.1 TABLE 2 Results of surveys at 17 universities w h i c h responded t o b o t h total number of women total number of men grand total 7 14 156 1484 1640 275 1268 154 3 women as % of total In order t o make more meaningful comparisons, d i f f e r e n t subsets of t h e data are displayed in Tables 2 - 4 . In Table 2, the results for the 17 universities that responded t o b o t h the first and last s u r v e y are s h o w n . Note that w h i l e these 17 universities represent only 4 5 % of the universities that responded in 1 9 9 5 / 9 6 , t h e y represent 5 9 % of the t o t a l number of physics s t u d e n t s . W h i l e the detailed university responses are not s h o w n here, it is interesting t o note t h a t , except at the M S c level, t h e percentages of w o m e n are slightly higher in 1 9 9 5 / 9 6 at these 17 universities t h a n at the " n e w responders", as indicated by the 1 9 9 5 / 9 6 numbers in Table 1. W h i l e the representation of w o m e n has m a r k e d l y i m p r o v e d , the number of male s t u d e n t s in physics at these 1 7 universities has decreased over the last decade, except at the PhD level. It is not clear w h y the t h i r d year class in the 1 9 9 5 / 9 6 s u r v e y is so m u c h smaller than the corresponding class in 1 9 8 5 / 8 6 . M S c n u m b e r s are also d o w n at these 17 universities, but PhD n u m b e r s are up 3 0 % . Is this just the "tail e n d " of a larger g r o u p t h a t has passed t h r o u g h or are s t u d e n t s staying at u n i v e r s i t y longer t o finish their PhDs because of the shortage of jobs and the e c o n o m i c s i t u a t i o n generally? last s u r v e y s at these universities, a l t h o u g h not so substantially at these 25 universities as at the 17 covered by Table 2. The n u m b e r of w o m e n at each level also increased over the period, a l t h o u g h the number of m e n decreased at every level e x c e p t PhD, and fell 1 0 % overall. The t o t a l number of physics s t u d e n t s has remained relatively c o n s t a n t for these universities, but their d i s t r i b u t i o n a m o n g the academic levels has changed m a r k e d l y , w i t h the number of PhD s t u d e n t s up 5 6 % in this sample of universities. Tables 1,2 and 3 all indicate that the number of w o m e n in third year at the present time ( 1 9 9 5 / 9 6 ) , and their representation, is slightly less t h a n in f o u r t h year. This could be the beginning of a reversal in the trend t o increased representation. Future s u r v e y s should help t o c l a r i f y this point. TABLE 3 Results of surveys at 25 universities lM«/»7 3rd women a s % of 4th 1988/89 1995/96 Y«r number of w o m e n number of men total total 75 581 656 68 474 542 85 477 562 11 13 15 77 521 598 61 403 464 89 362 451 13 13 20 54 396 450 62 388 450 72 319 391 22 350 372 33 390 423 76 504 580 y«»r number of women number of men total w o m e n a s % of total MSC number of women number of m e n total women as % of total number of w o m e n number of m e n total women a s % of total total n u m b e r of women total number of m e n grand t o t a l w o m e n a s * of total 6 8 13 228 1848 2076 224 1655 1879 322 1662 1984 11 12 16 TABLE 4 Results f r o m 2 0 universities submitting data for both 1 9 8 3 / 8 4 and 1 9 9 5 / 9 6 1983/84 number of women number of men total women as a % of total msai 20 297 317 64 276 340 6 PhD number of women number of men total women as a % of total 11 218 229 5 Table 3 s h o w s the results for the universities t h a t responded t o the later s u r v e y s . There w e r e 1 7 universities w h i c h responded t o each of the 1986/87, 1988/89 and 1995/96 surveys and another 8 t h a t responded t o b o t h the 1 9 8 6 / 8 7 and 1 9 9 5 / 9 6 s u r v e y s . For these 8 universities, linear interpolation w a s arbitrarily used to estimate n u m b e r s for 1988/89. Table 3 s h o w s that the representation of w o m e n in physics has definitely increased b e t w e e n the first and 66 458 524 Table 4 s h o w s results for the 20 universities s u b m i t t i n g data for b o t h 1 9 8 3 / 8 4 and 1 9 9 5 / 9 6 . The percentages of women in graduate schools have nearly tripled over this period at these universities. The t o t a l number of PhD s t u d e n t s has more t h a n doubled, while the number of Masters s t u d e n t s has increased less than 1 0 % . Note that the actual number of w o m e n at the PhD level as s h o w n in this sample has gone up a f a c t o r of 6. DISCUSSION A N D CONCLUSIONS The CAP survey data indicates several t h i n g s : t h a t the representation of w o m e n s t u d e n t s in Canadian university physics d e p a r t m e n t s has increased substantially over the period surveyed, that the number of women physics students in Canada has increased substantially and that the representation of women university physics students still decreases with increasing academic level. Tables 1, 2, 3 and 4 all indicate that the representation of w o m e n s t u d e n t s has increased. The size of the increase varies s o m e w h a t w i t h the data sets used. It is m o s t striking t h a t , at the PhD level, representation has essentially doubled over the last decade. These results can be put into c o n t e x t w i t h those g i v e n by Statistics Canada in " W o m e n in Canada: A Statistical Report" [ 2 | . Table 5, f r o m t h i s report, gives data for full t i m e enrolment by field of s t u d y for <H—i—i—i—i—i—i—i—i—i—i—i—i—i—i—i—r75 77 79 B1 83 85 67 B9 91 Academic Year Sourc«: U.S. D«partm«nt of Education Fig. 2 Percent of Bachelors Degrees in Selected Fields Earned by W o m e n , 1975 to 1992. 50 0^—i n 1 1 1 1 1 1 1 1 1—i 1 1 1—r 80 82 84 88 88 80 32 Year Degree G - a i l e d (Source: NfiC Summary Report, verloue yeare. The data dted tor phyalce PhDe earned ere trom the AiP Enrollment» end Degree» Reporte " * ) Fig. 3 Percent of PhD's Earned by W o m e n in Selected Fields, 1 9 7 8 1993. 1 9 7 2 - 7 3 , 1 9 8 1 - 8 2 and 1 9 9 2 - 9 3 . The numbers g i v e n for engineering/applied sciences in 1 9 8 1 / 8 2 and 1 9 9 2 / 9 3 are similar t o those s h o w n in our Tables and, in f a c t , agree w i t h the overall percentages s h o w n in the last line of Table 2 for 1 9 8 5 / 8 6 ( 1 0 % ) and 1 9 9 5 / 9 6 ( 1 8 % ) . Figure 2 131 s h o w s the representation of w o m e n in the U . S . A . obtaining bachelors degrees in selected fields. In p h y s i c s , the percentage of bachelors degrees a w a r d e d in the U . S . A . has risen f r o m about 1 0 % in 1 9 7 5 t o about 1 6 % in 1 9 9 2 . If w e c o m p a r e these figures w i t h those f r o m our survey for the f o u r t h year and M S c levels, w e see t h a t the increase in representation La Physique au Canada mars à avril 1 9 9 6 109 Table 6 also s h o w s t h a t the r e p r e s e n t a t i o n of 1992-93 1981-82 1972-73 women in all Women Women Women as a % of as a % ot as a % of fields d r o p s f r o m total in total In total in 53.4% at the % field field OOQs % field - 000s 000s % bachelors degree Field i l study level t o 3 5 . 2 % at 66.5 13.8 Education 33.4 21.2 56.2 45.0 18.4 67.0 40.4 t h e PhD level. These S t a t i s t i c s 61.8 3.8 Fine/applied arts 5.9 3.8 59.9 10.8 4.4 63.6 11.2 Canada figures 12.6 59.8 48.1 23.5 9.6 58.8 36.7 Humanities 19.4 12.3 indicate t h a t , in 32,4 53.5 28.9 66.4 27,2 44.8 94.5 Social sciences 24,4 15.4 1992/93, women Agricultural/biological made u p m o r e 7.3 56.8 sciences 8.9 5.6 40.4 12.5 5.1 52.2 21.2 than half the Engineering/applied 3.4 18.0 sciences 0.7 0.4 2.7 4.7 1.9 10.4 9.8 u n i v e r s i t y 656 e n r o l m e n t at the Health professions 10.3 6.5 7.3 51.2 17.0 7.0 63.1 21.2 underg raduate Mathematics/physical 28.4 sciences 4.1 2.6 19.1 8.2 3.3 26.3 9.8 3.3 level in every 40.4 244.1 100.0 48.6 292.0 52.2 Total' 157.7 100.0 100 0 field except enginoering/appli ed sciences and mathematics/ph y s i c a l sciences. Even at the Table 6 PhD l e v e l , Women as a percentage ol full-time university enrolment, by level and tield ot study. 1992-93 r e p r e s e n t a t i o n of Bachelor's w o m e n is at least and first professional 33% in every degree Master's Doctorate Total field e x c e p t these two. Figures 2 Field of study and 3 for t h e Education 66 8 65.8 60.0 66.5 U.S.A. indicate Fine/applied arts 62 2 61 8 58.8 45.5 Humanities 61,2 45.7 59,8 55,8 t h a t t h e Social sciences 54 4 44.7 46.6 53.5 r e p r e s e n t a t i o n of 59.0 Agriculture/biological sciences 49.6 33.2 56.8 Engineering/applied sciences 18.5 18.2 10.6 18,0 women at the Health professions 67.7 43.4 62.0 65.6 Mathematics/physical sciences 27.1 18.6 28.4 29.9 bachelors degree Total' 53.4 46.2 52.2 35.2 level overall w a s about 54% in 1 9 9 2 w h i l e at the PhD level it w a s about 3 7 % . Engineering and p h y s i c s are the t w o areas in w h i c h Figure 4 |4J, based o n A m e r i c a n I n s t i t u t e representation is the l o w e s t . of Physics (AIP) data for the U . S . A . o f f e r s a possible e x p l a n a t i o n . In the U . S . A . , the n u m b e r of physics PhD's is e x p e c t e d t o peak b e t w e e n 1 9 9 4 and 1 9 9 8 and t h e n t o decline rather d r a m a t i c a l l y t o levels about t h e s a m e as those a decade earlier. If the These results indicate t h a t , in the u n i v e r s i t y s i t u a t i o n in Canada is similar, it w o u l d c o m m u n i t y as a w h o l e , r e p r e s e n t a t i o n of e x p l a i n the large number of p h y s i c s PhD w o m e n at the undergraduate level is no s t u d e n t s reported in our 1 9 9 5 / 9 6 s u r v e y . longer a serious c o n c e r n . H o w e v e r , t h e This e x p l a n a t i o n is also r e i n f o r c e d by the science-based professions, particularly n u m b e r s in third year in our 1 9 9 5 / 9 6 p h y s i c s and engineering, c o n t i n u e to have s u r v e y . For s o m e universities (Tables 1 a problem a t t r a c t i n g w o m e n s t u d e n t s and and 2), t h e third year class is smaller t h a n the loss of partially trained w o m e n s t u d e n t s the f o u r t h year class. The number of is a p r o b l e m in the u n i v e r s i t y c o m m u n i t y for w o m e n s t u d e n t s is also l o w e r , as is their all disciplines. representation. Further s u r v e y s w i l l be required t o e s t a b l i s h w h e t h e r or not this apparent change in trend is real. Tabla 5 Full-time university enrolment ot women by Held ol study, 1972-73, 1981-82 and 1992-93 1500 1400 I 1300 1200 IIl l 1100 1 1000 1 900 iN 800 700 III 600 1963 1905 1987 1969 1991 1993 1995 1997 1999 2301 Year Projected Number of Degrees, 1 9 9 5 - 2 0 0 1 Source: A I P Education and Employment Statistics Division Fig. 4 . Thedarkbarsindicateactual physics PhD p r o d u c t i o n b e t w e e n l 9 8 3 and 1 9 9 4 . T h e t w o - t o n e bars indicate high and l o w estimates for projected PhD production. appears m o r e rapid in Canada. Our results f r o m 1 9 8 5 / 8 6 in Table 2 i m p l y t h a t about 1 0 % of t h e bachelors degrees in p h y s i c s w e r e a w a r d e d t o w o m e n and t h a t , by 1995/96, t h e n u m b e r had essentially doubled. Figure 3 131 s h o w s t h e r e p r e s e n t a t i o n of w o m e n in t h e U . S . A . obtaining P h D ' s in selected fields. The r e p r e s e n t a t i o n in p h y s i c s has risen f r o m about 5 % in 1 9 7 8 t o about 1 2 % in 1 9 9 3 . These figures are v e r y c o n s i s t e n t w i t h , for e x a m p l e , the 5 % in 1 9 8 3 / 8 4 and the 1 3 % in 1 9 9 5 / 9 6 s h o w n in our Tables 1 and 4 . Hence, although representationappearstobeincreasingmore rapidly in Canada t h a n in t h e U . S . A . at t h e b a c h e l o r s l e v e l , the i n c r e a s e in r e p r e s e n t a t i o n at the PhD level s e e m s about the s a m e in t h e t w o c o u n t r i e s . Tables 1, 2, 3 and 4 s h o w that not only t h e r e p r e s e n t a t i o n , but also the n u m b e r of w o m e n u n i v e r s i t y p h y s i c s s t u d e n t s has increased in Canada. T h i s increase is m o s t d r a m a t i c at t h e PhD level. It is still sobering t o reflect on the v e r y small actual n u m b e r of w o m e n p h y s i c i s t s at that level. It is clear t h a t t o change t h e overall representation in the Canadian professional p h y s i c s c o m m u n i t y w i l l t a k e a v e r y long t i m e . In general, f o r m o s t of our s u r v e y s , the n u m b e r of w o m e n s t u d e n t s d r o p s off w i t h increasing a c a d e m i c level, as does t h e t o t a l n u m b e r of s t u d e n t s . This is not universally true, however, and the 1 9 9 5 / 9 6 s u r v e y results are d i f f e r e n t in this regard. In the 1995/96 survey, summarized for different groups of u n i v e r s i t i e s in Tables 1, 2, 3 and 4 , t h e n u m b e r of w o m e n PhD s t u d e n t s is greater t h a n the n u m b e r of w o m e n M S c s t u d e n t s . F u r t h e r m o r e , t h e n u m b e r of male PhD s t u d e n t s and hence the t o t a l n u m b e r of PhD s t u d e n t s are also greater t h a n t h e c o r r e s p o n d i n g n u m b e r s at t h e M S c level. 110 Physics in Canada M arch/Aprill 9 9 6 The data s h o w n in Tables 1, 2, 3 and 4 indicates that in all years except 1 9 9 5 / 9 6 the r e p r e s e n t a t i o n of w o m e n falls off w i t h increasing academic level, t y p i c a l l y by about 4 - 5 % (out of 1 1 - 1 9 % ) f r o m third year to PhD level. Table 6 | 2 | s h o w s that the representation of women in engineering/applied sciences in 1 9 9 2 / 9 3 fell f r o m 1 8 . 5 % (bachelors) to 1 0 . 6 % (PhD) a c c o r d i n g t o S t a t i s t i c s Canada. Figures 2 and 3 indicate t h a t the representation of women physics g r a d u a t e s in the U . S . A . in 1 9 9 2 w a s about 1 6 % at the bachelors degree level and about 1 1 % at the PhD level. This decrease in t h e r e p r e s e n t a t i o n of w o m e n w i t h m o r e a d v a n c e d academic level is a p h e n o m e n o n not l i m i t e d t o p h y s i c s . A l t h o u g h w o m e n are n o w equitably represented in u n i v e r s i t y e d u c a t i o n in Canada, and their representation in p h y s i c s has a l m o s t d o u b l e d over t h e past d e c a d e , p h y s i c s still remains one of the areas w h e r e representation of w o m e n is poorest. In addition, w o m e n still d r o p out of p h y s i c s e d u c a t i o n relatively more f r e q u e n t l y t h a n m e n do. Current physics student d e m o g r a p h i c s leads one t o e x p e c t t h a t , over at least t h e next several y e a r s , t h e r e p r e s e n t a t i o n of w o m e n a m o n g the n e w hires in Canadian p h y s i c s positions, and hence among the total Canadian professional p h y s i c i s t population, will exhibit a s l o w increase. It w i l l , h o w e v e r , be several decades, if ever, before there is an ( c o n t i n u e d on page 113) W E S - W O M E N IN E N G I N E E R I N G A N D S C I E N C E : A C A N A D I A N S U C C E S S S T O R Y A T N R C by Marie D ' l o r i o , Institute for M i c r o s t r u c t u r a l Sciences, National Research Council of Canada, O t t a w a , Ontario K 1 A 0 R 6 In N o v e m b e r 1 9 9 0 , the National Research Council (NRC) launched a W o m e n in Engineering and Science program in its laboratories t o encourage the participation of Canadian w o m e n in the science and engineering professions. Each year since 1 9 9 1 , t w e n t y - f i v e o u t s t a n d i n g first year female s t u d e n t s enrolled in a Canadian U n i v e r s i t y or in a final year of CEGEP have been selected f r o m across Canada t o w o r k for three s u m m e r s or co-op t e r m s in NRC laboratories while studying in scientific or engineering disciplines in w h i c h w o m e n are t r a d i t i o n a l l y underrepresented. The student is paired w i t h a NRC scientist w h o acts as a m e n t o r t o link the academic training, w o r k a s s i g n m e n t s and career aspirations of the s t u d e n t . In particular, the m e n t o r helps identify a project suited t o the s t u d e n t ' s interest and provides guidance w h e n needed. The s t u d e n t s are encouraged to experience different research environments and supervisors, although s o m e prefer t o " g r o w " w i t h i n a research g r o u p for the three w o r k t e r m s . The s t u d e n t s a c c e p t e d into the Program are e x p e c t e d t o serve as role models for other w o m e n c o n t e m p l a t i n g careers in science and engineering and must represent the National Research Council w h e n the o p p o r t u n i t y presents itself. T w o g r o u p s of W E S s t u d e n t s have now c o m p l e t e d the Program and more t h a n 85% of these have registered into graduate school or are pursuing careers in science and engineering. Criteria for selection of W E S participants include: academic interests and performance, extracurricular pursuits, employment h i s t o r y , initiative, c o m m u n i t y i n v o l v e m e n t and c o m m u n i c a t i o n skills. Each u n i v e r s i t y can r e c o m m e n d up to three s t u d e n t s . Elke A i p p e r s b a c h f r o m the U n i v e r s i t y of Alberta spent three s u m m e r s in J e n n y Phipps' laboratory in the Institute for Biological Sciences (IBS), Tissue Regeneration and Transgenics Group. During her second w o r k t e r m at NRC, Elke c o m m e n t e d : " I n a lab like this t h e r e ' s so m u c h t o get i n v o l v e d w i t h . This year, I w o r k e d on the e f f e c t of a peptide of hormonal origin on the cellular cycle. Last year, I w a s i n v o l v e d in a collaborative SIMS (Steacie Institute for Molecular Sciences) and IBS project s t u d y i n g a possible t r e a t m e n t of c a n c e r " * . A s she headed t o w a r d s pursuing graduate degrees in B i o c h e m i s t r y at the U n i v e r s i t y of T o r o n t o , Elke had a g o o d idea of w h a t a professional researcher's career entailed. She added: " I n school, y o u get an idyllic v i e w of research. If y o u r e x p e r i m e n t d o e s n ' t w o r k , y o u still k n o w the results y o u w e r e supposed t o get. At NRC, y o u d o n ' t a l w a y s get the results y o u ' r e looking f o r , but y o u have t o learn t o be open t o w h a t y o u r failures can t e a c h y o u . " Her m e n t o r ' s perspective on interacting w i t h s t u d e n t s w a s : " T h e y ask questions that w e have f o r g o t t e n t o ask s o m e w h e r e along the w a y " . J e n n y Phipps w a s busy a n s w e r i n g questions and guiding the research of four s t u d e n t s w o r k i n g w i t h her t h a t s u m m e r . Since 1 9 9 1 , preference has been extended t o candidates in fields in which women are underrepresented: m a t h e m a t i c s , p h y s i c s , and engineering. The s t u d e n t s w h o w e r e c h o s e n for this year's program w e r e invited t o an orientation session at NRC in A u g u s t . There, t h e y met prospective m e n t o r s , learned about the research projects in various Institutes, and talked t o other WES s t u d e n t s in their first, second and third year in the Program. The W E S participants have established an e f f e c t i v e n e t w o r k of i n f o r m a t i o n and activities providing the m u t u a l support w h i c h o f t e n drives first class s t u d e n t s t o surpass excellence. Sheri Lynn Lewis w i t h Dr. S. Elgazzar, Institute for Information T e c h n o l o g y / I n s t i t u t de technologic de l'information, O t t a w a . projet et de directeur de recherche bien Those of us w h o have served as m e n t o r s hope that the W E S Program w i l l continue t o enrich our personal and professional lives for years to c o m e ! I n f o r m a t i o n about this program is available t h r o u g h the u n i v e r s i t y a w a r d s o f f i c e and t h r o u g h NRC at the f o l l o w i n g address: Carole Greffe National Research Council of Canada H u m a n Resources Branch Recruitment O f f i c e O t t a w a , Ontario K 1 A 0 R 6 Tel: (613) 9 9 3 - 3 5 4 3 F A X : (613) 9 9 0 - 7 6 6 9 * Sphere, M a y 1 9 9 4 Karla Randell w i t h Dr. J. Balsevich, Plant Biotechnology Institute/lnstitut de technologie des plantes. Saskatoon. P I C - P R O G R A M M E D ' I N G E N I E U R E S ET C H E R C H E U S E S : U N P R O G R A M M E C A N A D I E N C O U R O N N É DE S U C C È S AU CNRC par Marie D ' l o r i o , Institut des sciences des m i c r o s t r u c t u r e s , Conseil national de recherches du Canada, O t t a w a , Ontario K l A 0 R 6 En n o v e m b r e 1 9 9 0 , le Conseil national de recherches du Canada (C NRC) a mis sur pied un p r o g r a m m e d ' i n g é n i e u r e s et chercheuses (PIC) visant à encourager les Canadiennes à poursuivre des études en sciences et en génie. Chaque année depuis 1 9 9 1 , le CNRC a invité v i n g t - c i n q étudiantes très douées, venant des quatre c o i n s d u pays, à travailler dans ses laboratoires pendant trois étés ou s e m e s t r e s c o - o p t o u t en poursuivant des études dans des disciplines où les f e m m e s sont traditionnellement sous-représentées. Les étudiantes d o i v e n t avoir t e r m i n é une première année d ' u n p r o g r a m m e de premier cycle dans une université canadienne ou un n i v e a u é q u i v a l e n t au Québec. L'apprentissage de ces étudiantes est f a c i l i t é par le j u m e l a g e de c h a q u e participante à un scientifique du CNRC dont le rôle de conseiller consiste à aider l ' é t u d i a n t e t o u t au long des trois années du p r o g r a m m e , de la guider dans le choix de projets de recherche, de la conseiller quant à l ' o r i e n t a t i o n de sa carrière et d ' ê t r e disponible pour discuter de ce qui a trait aux o b j e c t i f s du p r o g r a m m e de f o r m a t i o n et aux affectations. Les é t u d i a n t e s sont encouragées à diversifier leurs choix de que certaines préfèrent un apprentissage au sein d ' u n m ê m e groupe de recherche pendant trois ans. Les étudiantes admises au p r o g r a m m e d o i v e n t servir de modèles à d ' a u t r e s f e m m e s qui envisagent de faire carrière en sciences ou en génie et d o i v e n t représenter, si nécessaire, le Conseil national de recherches dans le cadre de salons de l ' e m p l o i et journées d ' o r i e n t a t i o n sur les c a m p u s universitaires. Deux groupes d ' é t u d i a n t e s ont c o m p l é t é leur apprentissage au sein du p r o g r a m m e et plus de 8 5 % de ces diplômées poursuivent des études de d e u x i è m e et t r o i s i è m e cycle ou se sont engagées dans des carrières en sciences et en génie. Parmi les critères de sélection pour les participantes du PIC, on c o m p t e les intérêts sur le plan académique et parascolaire, l'esprit d ' i n i t i a t i v e , les a c t i v i t é s c o m m u n a u t a i r e s , la c o m m u n i cation orale et les expériences de travail. Chaque université peut poser la candidature de trois étudiantes. Elke A i p p e r s b a c h de l'université de l ' A l b e r t a a oeuvré pendant trois étés dans le laboratoire de J e n n y Phipps de l ' I n s t i t u t des sciences biologiques (ISB), La Physique au Canada mars à avril 1 9 9 6 111 groupe de regénération tissulaire et de recherche transgénique. A u cours de s o n t r o i s i è m e été au CNRC, Elke a parlé de sa recherche en ces t e r m e s * : " D a n s un labo c o m m e celui-ci, il y a de nombreux projets auxquels vous avez la chance de participer. C e t t e année, j ' a i étudié l ' e f f e t d ' o r i g i n e hormonale sur le c y c l e de la cellule. L ' a n dernier, j ' a i participé à un d ' u n peptide projet en collaboration avec l ' I n s t i t u t Steacie des sciences moléculaires sur un t r a i t e m e n t possible du c a n c e r . " A l o r s q u ' e l l e s ' a p p r ê t a i t à c o m m e n c e r une Maîtrise en biochimie à l ' u n i v e r s i t é de T o r o n t o , Elke avait déjà une idée assez précise de ce que serait sa carrière de chercheuse. Elle ajouta: " À l ' u n i v e r s i t é , on v o u s présente une v i s i o n idéalisée de la recherche. Si v o t r e expérience ne marche pas, v o u s savez au moins quels auraient dû être les résultats. A u CNRC, il arrive que vous n'obteniez pas les résultats recherchés, mais on s ' a t t e n d à ce que v o u s appreniez aussi de v o s é c h e c s . " Selon sa conseillère, J e n n y Phipps, "le fait de travailler avec des é t u d i a n t s nous f o r c e à être plus vigilants. Ils nous posent des questions que, parfois, nous avons oublié de nous poser en cours de r o u t e . " J e n n y Phipps était bien placée pour parler puisqu'elle supervisait les t r a v a u x de quatre adjoints d ' é t é dont Elke. Depuis 1 9 9 1 , la préférence est accordée aux étudiantes inscrites dans des domaines où les f e m m e s sont sous-représentées soit les m a t h é m a t i q u e s , la physique et le génie. Les étudiantes qui ont été choisies pour le c o n c o u r s de 1 9 9 5 ont été invitées à une journée d ' o r i e n t a t i o n au CNRC au mois d ' a o û t . Elles ont rencontré des conseillers et conseillères, ont eu un bref aperçu des projets de recherche de divers I n s t i t u t s et ont pu rencontrer des étudiantes participant au p r o g r a m m e des ingénieures et chercheuses depuis un, deux et trois ans. Les participantes du PIC ont mis sur pied un réseau d ' i n f o r m a t i o n et organisé des a c t i v i t é s qui les épaulent durant leur séjour au CNRC leur p e r m e t t a n t d'aller audelà de l'excellence. Pour ceux et celles parmi nous qui ont eu le plaisir d ' ê t r e conseiller et conseillère, il ne reste plus q u ' à espérer que le p r o g r a m m e d ' i n g é n i e u r e s et chercheuses continuera d ' e n r i c h i r notre vie personnelle et professionnelle pendant les années à venir! Pour de plus amples i n f o r m a t i o n s sur ce programme du CNRC, veuillez c o m m u n i q u e r avec le service des bourses de v o t r e u n i v e r s i t é ou avec le CNRC à l'adresse suivante: Carole G r e f f e C o n s e i l n a t i o n a l de r e c h e r c h e s d u C a n a d a Direction des ressources humaines G r o u p e de r e c r u t e m e n t Ottawa, Ontario K1A 0R6 Tél: (613) 9 9 3 - 3 5 4 3 FAX: (613) 9 9 0 - 7 6 6 9 * Sphère, mai 1 9 9 4 Women Physics Faculty J. Lagowski and J. (continued from pg. 107) ... by McKenna have no role m o d e l s f o r undergraduate w o m e n students. their In T a b l e 4 t h e s e C a n a d i a n s t a t i s t i c s are compared w i t h the analogous statistics in t h e U n i t e d S t a t e s of A m e r i c a f o r 1994.(3) T h e s i t u a t i o n in Canada is indeed v e r y s i m i l a r t o t h a t in A m e r i c a n universities. CONCLUSIONS T h i s a r t i c l e s h o u l d not be t a k e n as a definitive study (see for example f o o t n o t e 1, also no a t t e m p t w a s m a d e t o e s t i m a t e t h e a c c u r a c y of f i n a l n u m b e r s ) o n w o m e n in p h y s i c s in C a n a d a . The r e s u l t s of t h i s s u r v e y s u g g e s t t h a t f u r t h e r s t u d i e s c o u l d be u n d e r t a k e n in o r d e r t o a d d r e s s q u e s t i o n s s u c h as: (1) W h a t w a s t h e e f f e c t of W o m e n ' s F a c u l t y A w a r d s ( W F A ) (a p r o g r a m s p o n s o r e d by the Natural Sciences and Engineering Research Council) on the above p e r c e n t a g e s ? (2) Do w o m e n p r o g r e s s t o t e n u r e m o r e s l o w l y t h a n m e n ? (3) H o w w o u l d t h e i n c l u s i o n of i n s t i t u t i o n s t h a t chose not to reply to the survey affect t h e a b o v e r e s u l t s ? and p o s s i b l y o t h e r q u e s t i o n s t h a t w o u l d i n d i c a t e w a y s of a s s e s s i n g and i m p r o v i n g t h e s i t u a t i o n f o r female physicists in t h e Canadian institutions. W e c o n c l u d e by s t a t i n g t h a t w i t h 5 % r e p r e s e n t a t i o n of w o m e n in p h y s i c s d e p a r t m e n t s at t h e f a c u l t y l e v e l , t h e s i t u a t i o n f o r w o m e n in p h y s i c s in C a n a d a is c o m p a r a b l e t o t h a t in t h e U n i t e d S t a t e s of A m e r i c a , and n o t a b l y w o r s e t h a n t h a t of m a n y E u r o p e a n countries. REFERENCES ( 1 ) W . J . M e g a w , " G e n d e r D i s t r i b u t i o n in the W o r l d ' s Physics D e p a r t m e n t s " , paper p r e p a r e d f o r t h e m e e t i n g , G e n d e r and S c i e n c e and T e c h n o l o g y 6, Melbourne, Australia, July 14-18, 1991. (2) M i l d r e d S. D r e s s e l h a u s , " U p d a t e o n t h e C h i l l y C l i m a t e f o r W o m e n in P h y s i c s , " C o m m i t t e e o n S t a t u s of W o m e n in P h y s i c s G a z e t t e , V o l . 1 4 , N o . 1, S p r i n g 1 9 9 4 . M i l d r e d S. D r e s s e l h a u s , J u d y Franz, B u n n y C. C l a r k , " I m p r o v i n g t h e Climate for W o m e n in Physics Departments", p u b l i s h e d by t h e A m e r i c a n P h y s i c a l S o c i e t y and t h e A m e r i c a n A s s o c i a t i o n of P h y s i c s Teachers. (3) A m e r i c a n Institute of Physics; Education, Employment and S t a t i s t i c s D i v i s i o n , d a t a f o r t h e year 1994. The movement for active, healthy living 112 Physics in Canada M arch/Aprill 9 9 6 T H E C O M M I T T E E O N T H E S T A T U S O F W O M E N IN P H Y S I C S O F T H E A M E R I C A N P H Y S I C A L SOCIETY by Luz M a r t i n e z - M i r a n d a The C o m m i t t e e on the Status of W o m e n in Physics of t h e A m e r i c a n Physical Society (CSWP) w a s chartered in 1 9 7 2 . Over the years, the C o m m i t t e e has sponsored activities aimed b o t h at increasing the participation and representation of w o m e n in Physics and related fields. The C S W P has nine m e m b e r s appointed t o three year t e r m s by the APS. C u r r e n t l y , the CSWP is organizing three s u b c o m m i t t e e s : Education, Industry and International, to better enable the c o m m i t t e e t o take advantage of the m a n y eager v o l u n t e e r s w h o w i s h t o c o n t r i b u t e t o the c o m m i t t e e ' s projects. For more i n f o r m a t i o n on C S W P p r o g r a m s , please c o n t a c t Tara M c L o u g h l i n at APS headquarters (301) 2 0 9 - 3 2 3 1 or e-mail tara@aps.org. Some of the activities the C S W P sponsors are: 1. a Roster of W o m e n in Physics; 2. W o m e n in Physics (WIPHYS), a m o d e r a t e d internet f o r u m ; 3. a c o l l o q u i m / s e m i n a r s p e a k e r ' s list; 4. travel g r a n t s for w o m e n speakers; 5. Physics D e p a r t m e n t Site Visit Program. In addition, C S W P publishes The Gazette, a q u a r t e r l y n e w s p a p e r , and sponsors s y m p o s i a , receptions and presentations at the general and divisional meetings of the A m e r i c a n Physical S o c i e t y . M o s t recently, C S W P has sponsored a breakfast m e e t i n g of w o m e n in i n d u s t r y , j o i n t l y w i t h the C o m m i t t e e on the A p p l i c a t i o n s of Physics. These p r o g r a m s are described in the following. ROSTER OF W O M E N IN PHYSICS The Roster of W o m e n in Physics is a database c o n t a i n i n g the names, addresses and fields of expertise of w o m e n in physics at all levels f r o m student t o professional. Academic institutions, g o v e r n m e n t and industrial laboratories interested in reaching a pool of potential j o b applicants in a specific field can c o n t a c t APS and request a search of the database. APS will mail job a n n o u n c e m e n t s and pertinent i n f o r m a t i o n t o candidates w h o s e q u a l i f i c a t i o n s m a t c h the i n s t i t u t i o n s ' specified requirements. The i n f o r m a t i o n contained in the Roster is confidential and therefore the list is not available for d i s t r i b u t i o n . A Roster application f o r m appears in every issue of The Gazette. W O M E N IN PHYSICS (WIPHYS) W I P H Y S is a m o d e r a t e d Internet f o r u m for the discussion of issues related t o w o m e n in p h y s i c s . This electronic f o r u m o f f e r s unique possibilities t o assist in creating an a t m o s p h e r e of cooperation, m e n t o r i n g and support in a field w h e r e w o m e n are a m i n o r i t y , and t h u s o f t e n feel isolated. WIPHYS was "officially" started in J a n u a r y , 1 9 9 3 , and n o w has over subscribers. 600 Examples of discussions on W I P H Y S : - a n n o u n c e m e n t of g o v e r n m e n t or privately sponsored programs designed to aid in establishing the careers of women scientists; - postings of j o b listings; - n e w s about w o m e n in physics; - on-line mentorship (issues recently discussed include sexual h a r a s s m e n t , the impact of changing o n e ' s name on publications and research, advice on the tenure process); - i n f o r m a t i o n on w o m e n ' s e v e n t s at APS m e e t i n g s (postings on informal and planned dinners, receptions, sessions, help for those seeking r o o m m a t e s ) ; - advice on teaching (suggestions for textbooks, discussion of different learning styles). In order t o subscribe to W I P H Y S , send an e-mail message to: l i s t s e r v @ a p s . o r g The subject line should be blank, and the text of the message should read: subscribe w i p h y s C O L L O Q U I M A N D SEMINAR SPEAKER'S LIST OF W O M E N IN PHYSICS The Colloquim and Seminar Speaker's list of W o m e n in Physics is published every year and d i s t r i b u t e d t o all Physics D e p a r t m e n t Heads in the U . S . A . and others by request. This booklet contains the names of w o m e n speakers and seminar titles arranged by field, geographical area and presentation level (general audiences, high school audiences, technical seminar). The list serves as a resource for d e p a r t m e n t s interested in inviting w o m e n speakers to their seminar series. and the A m e r i c a n A s s o c i a t i o n of Physics Teachers (AAPT). Funded by the National Science Foundation and the APS, this program w a s aimed at d e t e r m i n i n g w h i c h f a c t o r s a f f e c t the retention and success of w o m e n in Physics D e p a r t m e n t s at all levels (undergraduate, graduate and f a c u l t y ) at research universities in the U . S . A . The final report on this p r o g r a m , w r i t t e n by Profs. Mildred Dresselhaus, (MIT); J u d y Franz, Executive O f f i c e r of the APS, U n i v e r s i t y of A l a b a m a ; and Bunny Clark, Ohio State U n i v e r s i t y , is available f r o m APS by c o n t a c t i n g Erika R i d g e w a y at (301) 2 0 9 3269. This report details specific r e c o m m e n d a t i o n s t o i m p r o v e the c l i m a t e for w o m e n in Physics D e p a r t m e n t s . As the report points o u t , many of these r e c o m m e n d a t i o n s , including the availability of safe undergraduate s t u d y rooms, recruitment of women faculty, and guidance for those c o m b i n i n g w o r k studies w i t h f a m i l y responsibilities benefit w o m e n as w e l l as men, and can lead t o a better w o r k i n g a t m o s p h e r e for all d e p a r t m e n t m e m b e r s and s t u d e n t s . The program has received m a n y more requests for visits t h a n funding or t i m e a l l o w s . The C S W P plans t o continue this program, visiting approximately three institutions per academic year. Funding w i l l be provided b o t h by the C S W P and the d e p a r t m e n t visited. Women Students in Physics . . . by Ann McMillan and E. Svensson (continued from pg. 110) equality of numbers of w o m e n and men in the physics profession in Canada. REFERENCES 1. Mona Jento: Letter, October, 1 9 8 4 . 2. " W o m e n in Canada: A Statistical Report". Third Edition, August, 1 9 9 5 , ISBN 0 - 6 6 0 - 1 5 5 6 6 - 4 . 3. Mildred Dresselhaus, Judy Franz and Bunny Clark: "Improving the Climate for Women in Physics Departments", The American Physical Society and the American Association of Physics Teachers, 1995. 4. Roman Czujko: "Realities of the Physics Job Market" in Physics Graduate Education for Diverse Career Options, ed. Judy Franz, The American Association of Physics Teachers and the American Physical Society, 1 9 9 5 . TRAVEL G R A N T S F O R W O M E N SPEAKERS The Travel Grants for W o m e n Speakers Program is aimed at increasing the visibility of w o m e n in the field as w e l l as providing s t u d e n t s , b o t h f e m a l e and male, w i t h active f e m a l e role models, especially in those physics d e p a r t m e n t s that do not have any w o m e n in their f a c u l t y . In the U . S . A . more t h a n one third of the research universities have no w o m e n f a c u l t y . APS reimburses i n s t i t u t i o n s up t o $ 5 0 0 (US) for the travel expenses of one or t w o w o m e n speakers. This program has been v e r y successful since its establishment and in 1 9 9 3 , the APS Council v o t e d t o increase its f u n d i n g by one third. All Physics and/or Science D e p a r t m e n t s in the US are encouraged t o apply. Canadian and M e x i c a n Institutions are eligible also, provided that one of the invited speakers is c u r r e n t l y e m p l o y e d by a US Institution. THE PHYSICS DEPARTMENT SITE VISITS PROGRAM The Physics Department Site Visits Program is sponsored j o i n t l y by the APS La Physique au Canada mars à avril 1 9 9 6 113 P H Y S I C S I N D I V I D U A L PROFILE - IRINA C O N D R E A A f t e r I graduated f r o m the U n i v e r s i t y of (asi in 1 9 8 9 w i t h a degree in p h y s i c s , I decided t o c o n t i n u e m y studies at the Bucharest U n i v e r s i t y for a M a s t e r ' s degree in plasma p h y s i c s . In Romania at that t i m e there w a s only one M a s t e r ' s degree program and only 15 w e r e a d m i t t e d each year. These 15 people w e r e the best s t u d e n t s f r o m all the Romanian Faculties of Physics (there w e r e 5 in the c o u n t r y ) . Since I had a v,ery g o o d a'erage for the A .. hole 4 years of undergraduate studies, I w a s accepted into the Master's program. The t i m e period for taking the Master's degree w a s one y e a r w h i c h included 3 obligatory courses during the year, and research w i t h a thesis at the end. A s I w a s already interested in a certain subject w h i c h I presented in m y graduate thesis, I decided t o c o n t i n u e it. I kept in t o u c h w i t h m y professor in lasi w h o w a s the head of t h e plasma physics g r o u p at lasi U n i v e r s i t y , but for the m o s t part I had t o deal w i t h m y p r o b l e m s alone. It w a s a v e r y interesting experience - I could play w i t h all kinds of calculations, a s s u m p t i o n s and c o m p a r i s o n s w i t h other fields of p h y s i c s . Of course, one year is a v e r y short t i m e for a M a s t e r ' s , but in the end I managed t o d e v e l o p an original v i e w on double layers and on t h e potential relaxation instabilities in a c o n f i n e d plasma c o l u m n . I s u c c e s s f u l l y finished m y studies in 1 9 9 0 and, after three m o n t h s , w a s o f f e r e d an 8m o n t h post-graduate f e l l o w s h i p at the Fusion D e p a r t m e n t of the Energy Research Centre in Frascati, Italy. M y task w a s to make s p e c t r o s c o p i c m e a s u r e m e n t s on the plasma of a m e d i u m - sized t o k a m a k (FTUFrascati T o k a m a k Upgraded). W h e n I arrived in Italy I had no k n o w l e d g e of the Italian language. Even though my colleagues spoke English, I soon u n d e r s t o o d t h a t I needed t o learn t o speak Italian. A l s o , u p o n m y arrival I had no k n o w l e d g e about f u s i o n programs. W h i l e I had learned s o m e t h i n g about the principles of f u s i o n and t h e use of a t o k a m a k for nuclear f u s i o n purposes, Romania is t o o poor t o be able t o finance s u c h an i m p o r t a n t p r o g r a m , so f e w there k n o w a n y t h i n g about it, w i t h the e x c e p t i o n of a s o m e people at the A t o m i c Institute in Bucharest w h o collaborate w i t h other European Institutions. This w i l l g i v e y o u an idea of the feeling I had w h e n I started t o w o r k in the Energy Research Centre. In Romania I had been v e r y appreciated for m y w o r k , but here I f e l t like a " n o b o d y " . I s t a r t e d t o feel better after a f e w m o n t h s as m y Italian i m p r o v e d considerably and I s t a r t e d t o understand the s y s t e m . C o m i n g f r o m a place w h e r e y o u d o n ' t have many o p p o r t u n i t i e s t o one w h e r e e v e r y t h i n g is possible takes a lot of g e t t i n g used t o . I 114 Physics in Canada M arch/Aprill 9 9 6 w a s certainly handicapped at the beginning by m y origins, by the f a c t that I w a s Romanian and t h a t I had other w a y s of looking at things. A d j u s t m e n t depends on the person also, and I can assure y o u t h a t f r o m the m o m e n t I understood that this w a s the case, I made a lot of progress. I was speaking Italian c o m f o r t a b l y after one year ( w i t h o u t taking any lessons) and I w a s progressing m u c h more easily in m y field after a f e w m o n t h s . Because of this, m y director prolonged m y f e l l o w s h i p for another 8 m o n t h s and also gave me a lot of responsibilities. I probably forgot a very i m p o r t a n t aspect of m y life in those years, m y marriage. A t that t i m e , m y husband had t o remain in Romania for bureaucratic reasons. He is Romanian, too, and y o u m a y not k n o w it, but in W e s t e r n Europe there are very s t r o n g l a w s w h i c h impede people f r o m Eastern Europe f r o m w o r k i n g or staying for extended periods in other c o u n t r i e s . I could say plenty about the reasons for those l a w s , but I d o n ' t think it w o u l d resolve a n y t h i n g . The point is that nobody f r o m the Italian authorities w a n t e d t o k n o w about the presence of m y husband in m y life. S o m e t i m e s I even got the suggestion t o " f i n d yourself an Italian and marry him and y o u r problems w i l l be r e s o l v e d " . No c o m m e n t . A f t e r almost 1 0 m o n t h s , I managed to get a w o r k permit and a j o b for m y husband. He is a metallurgical engineer w i t h excellent skills so it w a s n ' t really very d i f f i c u l t t o find an appropriate j o b for him even if he had t o t o t a l l y change fields (to m i c r o - m e c h a n i c s ) . W e started t o have a happy life, w e w e r e 9 0 % adjusted t o Italian society and w e had a f e w very g o o d friends. The problems appeared w h e n the 8 m o n t h f e l l o w s h i p w a s c o m i n g to an end and I had no place t o go. A c c o r d i n g t o their l a w s I had t o leave Italy. M y director proposed a 2-year long research c o n t r a c t , very well paid and including some expenses for conferences, w o r k visits etc. There w a s a lot of w o r k but I accepted i m m e d i a t e l y because I loved m y w o r k and I loved Italy. The years in Italy w e r e very happy for me and m y husband. There w e r e still some clouds in our s k y and once again it w a s our w o r s t enemy- the authorities. M y husband because of his w o r k permit could s t a y in Italy as long as he w o r k e d but I had entered Italy w i t h a student visa and even t h o u g h I w a s w o r k i n g , I c o u l d n ' t get a w o r k visa. So, after the 2 year c o n t r a c t I w a s supposed t o leave Italy. This s i t u a t i o n caused us a lot of despair. Only someone w h o has lived w i t h this s i t u a t i o n can k n o w w h a t I mean. Fortunately, w e are positive thinkers and so, 6 m o n t h s before the end of m y c o n t r a c t w e discussed our f u t u r e plans v e r y seriously. Should I remain in physics? It seemed very d i f f i c u l t for 2 reasons apart f r o m m y visa: first- only an Italian citizen can be hired in a research Institute because it is state-run; second - industry is not v e r y interested in hiring physicists and if they do it is for s o f t w a r e d e v e l o p m e n t . Should w e stay in Italy? W h e r e w o u l d w e go? There w a s no w a y that w e could go back t o Romania. A f t e r serious t h i n k i n g , I decided that I'd like t o continue m y studies t o a PhD degree and m y husband agreed. Tired of the problems w e had because of our citizenship, w e decided t o emigrate t o Canada. Here w e are n o w , in M o n t r e a l , Canada. I am doing m y PhD studies in fusion at the Centre Canadien de Fusion M a g n é t i q u e , Varennes. I intend t o measure the ion t e m p e r a t u r e and the i m p u r i t y d e n s i t y in the central plasma of T o k a m a k de Varennes by injecting a neutral beam in the plasma. I t ' s an interesting and c o m p l e x subject. I have already finished all the courses and I have started to w o r k on m y research s u b j e c t . M y husband f o u n d a j o b in a metallurgical c o m p a n y , w h e r e he is p r o d u c t i o n manager. W h e n w e arrived here, w e again felt like w e w e r e " n o b o d i e s " because w e d i d n ' t speak French (even t h o u g h w e had studied it in school) and also because this s o c i e t y is d i f f e r e n t f r o m the European one. I think that I can say at this point that w e have once again managed to adjust t o this s o c i e t y . W e n o w b o t h speak English and French and w e feel w e l l integrated in our w o r k groups. W e have Romanian and Canadian friends and w e love all the occasions in w h i c h w e can make n e w c o n t a c t s w i t h people f r o m all around the world. M a y b e y o u ' l l say that I w r o t e t o o m u c h about our problems w i t h visas instead of speaking about physics. W e l l , in m y life, both things w e r e correlated. It is sad t o see h o w m a n y i m p e d i m e n t s a Romanian scientist has t o face if she/he w a n t s t o continue their c h o s e n career. Still, I d o n ' t regret being a w o m a n in physics. M y male colleagues continue t o tell me that w e , the w o m e n , have a lot of advantages in our w o r k field. I d o n ' t think so. Even if there are l a w s w h i c h are supposed t o help w o m e n , I find it v e r y d i f f i c u l t t o o b t a i n a position. Males continue t o say that t h e y w a n t t o have w o m e n in their labs but w h e n they have t o sign for a position t h e y prefer a man. There are special cases such as my director in Frascati, Dr. R. Bartiromo, w h o never made me feel like I w a s a w o m a n ; he considered me first and f o r e m o s t as a physicist. I am v e r y grateful t o him because he never abused his p o w e r and he o f f e r e d me the o p p o r t u n i t y t o change m y career and m y life. Our male colleagues are not used t o having w o m e n in their labs and I think t h a t is up t o us, the w o m e n , t o s h o w t h e m that w e can speak about physics w i t h t h e m and that w e are capable of doing g o o d research. W e have t o cooperate, t o give the best of ourselves and also t o accept differences in each other. I d o n ' t k n o w if the fact t h a t I ' m a married w o m a n changes a n y t h i n g in m y career. Certainly it w a s not easy for b o t h of us t o change countries and jobs, but w i t h a bit of reciprocal understanding w e have managed t o have a happy life. Even n o w that I k n o w h o w d i f f i c u l t it is t o get a job in physics I w o u l d still choose t o do this. I ' m sure that all the w o m e n p h y s i c i s t s can make important c o n t r i b u t i o n s t o p h y s i c s . PHYSICS INDIVIDUAL PROFILE - NANCY REMAGE EVANS Where did I start? I went to university with an interest in science but not an exclusive interest. It wasn't until s e c o n d year that almost by accident I selected a course in astronomy, a n d after that I was hooked. I have thought about whether the fact that I was at a w o m e n ' s college (Wellesley) had an effect. As with many areas, there are probably pros a n d cons. Certainly the a t m o s p h e r e in the 1960's (graduated 1966) which e m p h a s i z e d serious career choices for w o m e n and classes where there was no pretending they were really a i m e d at s o m e o n e else were highly beneficial. A m o n g things that particularly excited m e as an undergraduate were the way in which clusters of stars provided information about the physics of the ev<?lution of stars fundamental data such as the m a s s e s of stars. Altough I would not have g u e s s e d it at the time, I have continued to work in s o m e of the s a m e areas, largely because of the exciting new observations which have b e c o m e possible both because of technical a d v a n c e s in g r o u n d - b a s e d observations and a l s o n e w w a v e l e n g t h regions m a d e a v a i l a b l e throughofsatelliteobservations. E n c o u r a g e d by graduation with honours a n d m e m b e r s h i p in Sigma Xi, I continued to graduate school, supported by a variety of fellowships. For graduate school, I c a m e to the Astronomy Department at the University of Toronto, where I did a thesis on observations of variable stars, supervised by Dr. J.D. Fernie. It is possible to determine the radii of pulsating stars by c o m b i n i n g m e a s u r e m e n t s their light, color, a n d velocity variations. This was m y first work on Cepheid variable stars, which are particularly important in the determination of distances to galaxies b e y o n d our o w n Milky W a y galaxy. (As a Hubble Space Telescope key project, C e p h e i d s were featured in a TIME magazine cover story last year). This period was the beginning of the juggling of career demands with family demands, culminating with the arrival of a second child and a thesis at nearly the same time. This combined with a husband with tenure (Marting G. Evans, Professorof Organization Behavior in the Faculty of Management Studies at the University of Toronto) limited possibilities to travel for a post-doc. It was quite fortunate that Dr. J.R. Percy offered me a parttime post-doctoral fellowship at the University of Toronto. Though I continued to observe at David Dunlap Observatory (DDO) in Richmond Hill, Ontario, I concentrated on different aspects of spectroscopy than before. In this case, the masses of Cepheids were badly needed to confirm our understanding of the physics of the history of the stars, particularly since they are so important in extragalactic distances. In order to determine masses, pairs of stars in binary systems are needed. Although it was thought at the time that no suitable Cepheid binaries existed, velocity observations at D D O (and elsewhere) began to turn up candidates for orbit determinations. This s a m e approach also led to information about h o w frequently binary systems occur. This is important information about star formation (are stars likely to form single or in pairs or groups?) which is a very active research area currently. Ultimately it has bearing on h o w frequently conditions n e e d e d to form planetary systems exist. In the family/career area during this period as I began to search for a permanent job, I sometimes w o n d e r e d whether cover letter statements that the work had been done part-time w e r e really taken into consideration w h e n evaluating productivity. Likewise, one can only hope that cover letter statements about a variety of experience are considered as strong a proof of broad experience as physical mobility. There is a lively debate at the m o m e n t in the weekly email newsletter on w o m e n ' s issues from the A m e r i c a n Astronomical Society about the best age is to have children during a scientific career. Perhaps the most healthy aspect of the discussion of a complex problem is the diversity of opinions ranging from early (the energy factor is important) to waiting until you are established. I can certainly attest that while it was not easy to do both graduate work and post-doctoral work on a part time basis, that is option which I found to be workable as well as very rewarding. After a year of teaching at Erindale College at the University of Toronto, I took a position as Resident Astronomer at the International Ultraviolet Explorer satellite (IUE) run from NASA's Goddard S p a c e Flight Center just outside of Washington, D C., USA. This is a small astronomical statellite for which half a d o z e n astronomers supervised all aspects of the project: taking the data, data processing, and assisting with the scientific analysis with visiting astronomers. Working with a small team on such a breadth of projects was an exciting and d e m a n d i n g experience, a n d left m e at times busier than I have ever been. In my own research, adding the ultraviolet observations to the long-term velocity observations I had been making in Ontario provided the ability to attack many scientific questions. A mass determination of the Cepheid SU Cyg b e c a m e possible by measuring the velocity of its hot c o m p a n i o n using the IUE satellite (with Dr. C.T. Bolton, University of Toronto). This has lead directly into a more extended program of additional stars (Bohm-Vitense, Evans, Carpenter, a n d Robinson) using the more powerful Hubble S p a c e Telescope. In addition, further work on Cepheid c o m p a n i o n s using both the IUE and Voyager satellites has given m u c h clearer information about binary frequency a n d about the importance of rotation of mixing in stellar evolution. So far the 39 successful statellite proposals have contributed to 45 refereed publications (and n u m e r o u s conference proceedings). The family situation was more complicated. After 3 years of looking (involving a combination of commuting and sabbatical leave), my husband was not able to find a position in the area. We moved back to Toronto, where I continued research on soft money. When the Institute for Space and Terrestrial Science (ISTS) was set up as one of the Ontario Centres of Excellence, I took a scientific position in the Space Astrophysics Laboratory (SAL, 1988) and eventually became Associate Director of the Laboratory. In addition to research, we worked on a n u m b e r of astronomical statellite projects sponsored by the Canadian Space Agency. The scientific background in S A L allowed us to have interaction with small Ontario high tech c o m p a n i e s with interests in space related technology. During this period, I also b e c a m e and Adjunct Profesor at York University, a n d was pleased to find that my applications for operating grants to the Natural Science and Engineering Council, C a n a d a (NSERC) were well received a n d my grants continued to increase. This meant that I was able to support several graduate students, as well as undergraduate s u m m e r a n d work study students. They worked mainly on projects usually using satellite data, though this was often c o m b i n e d with data obtained at DDO. Unfortunately in 1994 a decision was taken at the Institute to reduce science and concentrate only on industrial work and the laboratory was closed. I looked for work extensively in C a n a d a for a year. In 1995, I was offered a position at the Harvard Smithsonian Center for Astrophysics to work on the Advanced X-Ray Astrophysics Facility (AXAF) a n d I relocated to Boston. The work on this project which is NASA's next major satellite project is very exciting, as is readjusting my research to another wavelength region. High energy studies with this satellite are promising ways to provide a better understanding of magnetic activity in stars (including Cepheids). Such activity (the sunspot cycle) has important effects on many p h e n o m o n a on earth, such as communications a n d growth cycles. I also hope s o m e work on star clusters will lead to a better understanding of processes producing Xrays in hot stars. C o m m u t i n g between Boston a n d Toronton (where my husband is) is also requiring some readjustment, although it is possible now that the children are in university and graduate school. I can only thank my husband for his support in this crazy existence! Can I predict what is next? I wouldn't dare either in science or in job title. La Physique au Canada mars à avril 1 9 9 6 115 P H Y S I C S I N D I V I D U A L PROFILE - D I A N E P I N S O N N E A U L T A 31 ans, physicienne, je travaille depuis 4 ans pour l ' I n s t i t u t National de la Recherche matière sont peu familiers sur terre mais réaliser des appareils pour mesurer très répandus dans l ' u n i v e r s . Une matière paramètres du plasma eit de les des rendre m y s t é r i e u s e pour laquelle j ' a i développée disponibles. Dans le but de favoriser les un grand intérêt. collaborations internationales et l'échange v i n g t a i n e a f f e c t é s au laboratoire du Centre Partagée entre le désir d ' ê t r e c o n f r o n t é e à des articles scientifiques et assister à des Canadien de Fusion pour la f u s i o n dans Scientifique INRS-Énergie, un centre de recherche universitaire dans le groupe de de connaissances, on est appelé à rédiger physique des plasmas. Nous s o m m e s une étudier transformer la un milieu industriel et celui d ' a c q u é r i r une congrès, de bonne connaissance théorique des plasmas s o u v e n t . Ceci me permet de diversifier énergie. ainsi que de découvrir leurs applications, je m o n expérience et d ' é t e n d r e mes connaissances. Magnétique matière CCFM le but en Pourtant, bien que c o m m e pour la plupart me t r o u v a i s très heureuse quand j ' a i eu de mes collègues, la carrière dans laquelle l'occasion je me t r o u v e recherches au C C F M . n'était pas m o n premier maîtrise choix. de en combiner études des qui m'amène à voyager davantage et J ' a i entrepris une physique ce plasmas à Une carrière en science est exigeante, je suis souvent amenée à faire un choix entre l ' U n i v e r s i t é de M o n t r é a l sous la d i r e c t i o n ma carrière et ma vie personnelle. Du plus loin de d'un début, mes souvenirs, C C F M . Ce centre participe à un p r o g r a m m e d'acquérir je m'émerveillais mondial d'une faire mes preuves. Il faut s'intégrer à son devant source d'énergie viable à long t e r m e à milieu de travail. A u C C F M , le milieu est ressources de la partir moins nature et intéressant qui me plaisait. À Varennes, comment elles près de M o n t r é a l , le centre exploite une sont majoritaires, j ' é t a i s intimidée par la pouvaient être machine de t y p e t o k a m a k , T d e V ( T o k a m a k c o m p l i c i t é dont ils f o n t preuve entre eux. de Cependant, j ' a i su développer des a f f i n i t é s les transformées en professeur pour de qui le la était développement fusion, Varennes), membre qui un du aspect permet de fort confiner j'ai du m'engager à les c o m p é t e n c e s compétitif institutions. que Dès le fond afin requises dans et d'autre En sciences, où les h o m m e s nouvelles e f f i c a c e m e n t le plasma afin d ' é t u d i e r la avec applications. Je f u s i o n . La c o m p l e x i t é d ' u n projet de cet atmosphère de travail agréable. m'interessais à ampleur d'équipe que j ' a i toujours soigné mes relations. Bien la mécanique et c o m p o s é e de chercheurs, d ' i n g é n i e u r s , de encadré, je suis encouragée et souvent à l'outillage de techniciens et d ' i n f o r m a t i c i e n s . Ce milieu épaulée par mes camarades de travail. ^^^^^^^^^^^^^^^ I exige l'atelier de m o n père. Le s o u t i e n de ma multidisciplinaire famille a joué un rôle d é t e r m i n a n t un qui travail fait appel à certains confrères créant une J'avoue la technologie de pointe et à l'expertise des A u C C F M , c ' e s t l'état qui s u b v e n t i o n n e la ont entreprises industrielles de recherche à long t e r m e . C o m p t e tenu du suscité chez moi le désir d ' i n d é p e n d a n c e et développer des une c o n t e x t e é c o n o m i q u e actuel, l'avenir du de réussite. expérience en recherche scientifique. J ' a i centre est incertain et les perspectives de dû carrière en physique sont peu nombreuses. mon cheminement. 'était Mes Pour ma mère, prioritaire. dans parents l'éducation Fascinée par la acquérir la m'a permis connaissances formation et voulue pour t r a n s f o r m a t i o n de la matière et curieuse de travailler au sein de c e t t e équipe dont la D'après une c o n v e n t i o n , une carrière de nature, le génie c h i m i q u e répondait à mes qualité des t r a v a u x est reconnue. Ce fut scientifique requiert un d i p l ô m e PH.D et de les une expérience parfois d i f f i c i l e mais qui plus en plus un sciences se sont imposées d'elles m ê m e . s ' e s t révélée très enrichissante. C o m m e de mener J e n'ai d o n c pas hésité à m ' e n g a g e r dans f a i t , avant la f i n de ma maîtrise, le CCFM contre, je ne regrette pas m o n c h o i x . A v e c une m'a q u ' u n d i p l ô m e de maîtrise, je suis aspirations. A u m o m e n t du c h o i x , carrière en sciences appliquées. proposé un poste, alors que les leurs post d o c t o r a t propres afin expériences. de Par très Cependant, durant mes études au cégep, emplois en science se faisaient rares. M o n heureuse d ' a v o i r un emploi qui me permet u n excellent professeur de physique, un c h e m i n e m e n t académique a pris f i n et je de faire de la recherche et de me m e t t r e en bon vulgarisateur me suis jointe à l'équipe du centre. Ma valeur. Pour le m o m e n t , mes récompenses c a p t i v e r et susciter m o n intérêt pour la m o t i v a t i o n à devenir professionnelle m ' a résident plus dans la s a t i s f a c t i o n du travail physique. permis de rédiger m o n m é m o i r e de maîtrise bien fait que dans le salaire ou la stabilité t o u t en o c c u p a n t un poste de chercheur. d'emploi. lors, c ' é t a i t décidé, j'allais poursuivre des Je suis très satisfaite de m o n emploi qui Jusqu'ici, études en physique. A p r è s l ' o b t e n t i o n de est qu'exigeant. remplie, je vois évoluer mes intérêts et multiplier mes a c t i v i t é s qui s ' é t e n d e n t de la Il scientifique m'a fait a su découvrir me la s a t i s f a c t i o n de c o m p r e n d r e le f o n d des choses et le défi que ça représente. Dès mon diplôme Montréal, j'ai B.Sc. de décidé supérieurs. représentent 116 le avec une carrière aussi bien de Responsable d ' u n projet d ' é q u i p e , je dois continuer ma entre autre, gérer un budget, faire des musique études la discipline, l'organisation et la persévérance qui p r o g r a m m a t i o n , m e t t r e en application mes me p e r m e t t e n t de concilier ma carrière et la connaissances acquises pour concevoir et mes multiples intérêts. Les quatrième Physics in Canada enrichissant l'Université de f o r m a t i o n en physique des plasmas aux études aussi plasmas état de M arch/Aprill 9 9 6 scientifiques, faire de à la plongée sous-marine. La P H Y S I C S I N D I V I D U A L PROFILE - D E B O R A H POIRIER I have loved science since I w a s a little girl, d r a w i n g m o u l d spores in grade t w o and sitting on the balcony in a t h u n d e r s t o r m w i t h m y father t o w a t c h the lightning. Neither of m y parents is a scientist, but b o t h have a l w a y s s h o w n a great deal of respect for the sciences and b o t h gave me a s t r o n g sense t h a t it w a s a v e r y honourable career t o pursue. In high school, I t o o k extra p h y s i c s and biology classes and decided t h a t I w a n t e d t o become a d o c t o r , since I e x p e c t e d that it involved diagnosing and puzzle-solving. I began CEGEP in a health sciences p r o g r a m w h i c h included m a n d a t o r y humanities and literature c o u r s e s , w h i c h I v i e w e d as a dilution of m y studies. H o w e v e r , m y m i n d q u i c k l y changed on that point - w i t h i n one semester I had changed into a social sciences p r o g r a m and declared c o n f i d e n t l y t o m y s h o c k e d m o t h e r t h a t I w o u l d NEVER t a k e calculus again. ^•ffljj^^ ^ H r ^ ^ ^ k ^ H ^ ^ J^fc • ' | ' During m y t w o years in CEGEP I b e c a m e involved in the school newspaper, The Champlain Bugle, w o r k i n g as c o p y editor and later as news editor. W h e n one of m y stories w a s picked up by the Canadian U n i v e r s i t y Press I seriouslyentertained the idea of b e c o m i n g a journalist, and even w o r k e d a f e w evenings at the McGill Daily. I began dating the e n t e r t a i n m e n t s editor, a y o u n g blues m u s i c i a n , w h o i n t r o d u c e d me t o jazz. (That w a s 1 4 years ago. Now HE's a d o c t o r and w e ' r e still t o g e t h e r . . . ) I took courses in Middle East politics, philosophy, and T V p r o d u c t i o n , and made friends w h o spent their a f t e r n o o n s painting and sculpting. But s l o w l y I began to long once again for the s t r u c t u r e and discipline of science, and added a b i o l o g y class as an elective. I decided t h e n and there that I w a s far more c o m f o r t a b l e and happy w h e n t h i n k i n g about science, and began applying t o u n i v e r s i t y science p r o g r a m s . I suppose w e d o n ' t ever really k n o w w h a t ' s g o o d for us, but in r e t r o s p e c t , I a m g r a t e f u l that I had the o p p o r t u n i t y for m y brief f o r a y into the arts, w h i c h opened before me a w h o l e new world. ^b I t h e n had t o pick a major t o w r i t e on m y application forms. I can credit (or blame) M r Fahmi, m y high school physics t e a c h e r , for m a k i n g m y decision for me, a l t h o u g h he probably d o e s n ' t k n o w it. He w a s the t y p e of teacher w h o s e e n t h u s i a s m for understanding physical s y s t e m s w a s infectious. He turned exploring physics into an e x c i t i n g journey w i t h lots of handson laboratory work and problemsolving. M r . Fahmi only gave oral e x a m s , because he w a s m o s t interested in seeing us think a problem t h r o u g h , rather t h a n m e m o r i z e a proof and d u t i f u l l y scribble it down. I have since read t h a t some girls learn science better when it is taught i n t e r a c t i v e l y and t h e y are g i v e n solid, hands-on e x a m p l e s of t h e c o n c e p t s that t h e y ' r e t r y i n g t o grasp. That certainly holds for me, so it w a s a natural choice for me t o t u r n t o e x p e r i m e n t a l physics as an undergraduate at Concordia U n i v e r s i t y . Up until m y arrival there, it h a d n ' t really o c c u r r e d t o me t h a t physics w a s an unusual choice for a girl. M y f a m i l y had a l w a y s s u p p o r t e d m y scientific leanings, taking me t o the library e v e r y w e e k e n d w h e n I w a s a girl, and telling me that absolutely a n y t h i n g w a s possible. Being the only child of a father w h o w a s (and is) a born tinkerer ended up being excellent preparation for e x p e r i m e n t a l w o r k . We w o u l d build things t o g e t h e r and f r e q u e n t l y go t o t h e lumber yard or the h a r d w a r e store for provisions. I e x p e c t t h a t had I had a brother these " u n f e m i n i n e " pursuits m a y have fallen t o him, but I guess I just got l u c k y l By the t i m e I m o v e d into m y first a p a r t m e n t , I could tune a car, and change m y brakes. Despite m y M r . f i x - i t upbringing, I still had the feeling t h a t m e n just magically k n e w about all things mechanical, and cars in particular. That n o t i o n w a s finally dispelled one day w h e n I w a s w o r k i n g on m y car in m y parents' d r i v e w a y . I had m o v e d out a year earlier, but still returned t o the house t o do car m a i n t e n a n c e in case I should get myself into a j a m . M y father came out t o look at w h a t I w a s doing and after a w h i l e I realized that I k n e w more a b o u t m y old car than he did, mainly because I had spent so m a n y hours banging a w a y at it w i t h the shop manual in m y hand. I learned that he d i d n ' t necessarily k n o w every detail about f i x i n g cars, but he had the c o n f i d e n c e t o tackle any problem that c a m e up. I did m y next big car j o b in m y o w n d r i v e w a y . M y graduating class at Concordia had all of six s t u d e n t s , w i t h t w o w o m e n . The previous year had one, so I a l w a y s had w o m e n in m y s t u d y g r o u p s , and t o g e t h e r w e w e r e v e r y i n v o l v e d in the society of p h y s i c s s t u d e n t s . W e also all w o r k e d as lab d e m o n s t r a t o r s and course markers. One single w o m a n did h o w e v e r lament t h a t her c h o s e n field w a s hardly an aphrodisiac t o suitors. W e f o u n d that most y o u n g men's reactions to our being in physics fell into t w o categories: the " Y o u m u s t be s m a r t " , and the "Hah! I failed that in high s c h o o l " . M y single friend w a s v e r y pleased w h e n one f e l l o w said, " O h , e = m c 2 ! " . I think that w e all felt c o m f o r t a b l e and a c c e p t e d in the d e p a r t m e n t and d i d n ' t necessarily feel an imbalance. The only problem t h a t came up w a s a v i s i t i n g lecturer s h o w i n g slides of s c a n t i l y clad w o m e n during the course of a serious talk. From Concordia I w e n t on t o INRS-Energie, a graduate a r m of Université du Q u é b e c , t o do a M a s t e r ' s degree in plasma p h y s i c s . I carried out m y e x p e r i m e n t a l w o r k on T o k a m a k de Varennes, C a n a d a ' s largest f u s i o n f a c i l i t y . I a m n o w nearing the end of m y d o c t o r a t e , and actually have the pleasure of sharing a lab setup w i t h another w o m a n . W h a t happens after I finish is a n y o n e ' s guess! At an A m e r i c a n Physical S o c i e t y m e e t i n g of the Division of Plasma Physics a f e w years ago, I a t t e n d e d a w i n e and cheese for w o m e n in p h y s i c s , along w i t h the 2 0 or so other w o m e n delegates (and at least as m a n y hungry men). Until t h e n I d o n ' t think I ever really felt the impact of the lack of w o m e n in physics. It w a s a real pleasure t o meet these w o m e n , especially the more established p h y s i c i s t s , as until then I had yet t o meet a senior e x p e r i m e n t a l i s t w h o w a s a w o m a n . One even c a m e along w i t h her physicist husband and their baby. Since t h e n I have c o m e t o the s t r o n g belief that role models are essential for y o u n g w o m e n considering science as a career. It helps e n o r m o u s l y t o see s o m e o n e like y o u s u c c e s s f u l l y doing the thing for w h i c h y o u are training. G y m n a s t s and divers have t o visualize d i f f i c u l t m o v e s before t h e y can be a t t e m p t e d . Perhaps the same is true for y o u n g w o m e n in p h y s i c s . It w a s after t h a t APS m e e t i n g t h a t I met A n n M c M i l l a n and Eric Svenssen, t w o tireless m e m b e r s of the C o m m i t t e e t o Encourage W o m e n in Physics of the CAP. W e and several others have w o r k e d t o g e t h e r over the past several years t o c o n s t r u c t i v e l y change the face of p h y s i c s , and this special issue on w o m e n is just one of the w a y s . W e hope y o u like it. La Physique au Canada mars à avril 1 9 9 6 117 P H Y S I C S I N D I V I D U A L PROFILES - R E N A I S S A N C E W O M E N It has long been a m y s t e r y t o sociologists and e d u c a t o r s w h y more w o m e n t e n d t o s t u d y the liberal arts t h a n the m a t h e m a t i c a l sciences. This could be caused by m a n y reasons, including t h e influence of society or biological d i f f e r e n c e s bet w e e n the sexes. M y purpose here is not t o e x a m i n e these reasons, but rather, t o present the s t o r y of four y o u n g Canadian w o m e n w h o are presently finishing their f i f t h and final years at M c M a s t e r U n i v e r s i t y having c o m p l e t e d the requirements for b o t h honoursPhysics and Arts degrees. During their undergraduate education they have explored b o t h sides of c a m p u s and have f o u n d t h a t p e r s p e c t i v e s f r o m the arts and sciences are o f t e n c o m p l e m e n t a r y . Michelle Hilts Michelle Hilts w a s born and raised in Deep River, O n t a r i o , but jokes t h a t her parents are the o n l y t w o non-physicists in t o w n . Her father teaches physical e d u c a t i o n and history and her m o t h e r art and english at the local high school. W i t h an arts and science b a c k g r o u n d , M i c h e l l e had a l w a y s planned t o s t u d y b o t h areas at u n i v e r s i t y . She w a s enticed into Physics in first year w h e n her professor urged her to apply for the Targeted NSERC S u m m e r A w a r d . A f t e r t w o years of intense Physics training, Michelle longed for s o m e v a r i e t y in her studies. She decided t o include a f e w more A n t h r o p o l o g y courses in her program and w a s later surprised t o learn t h a t t h e t w o fields w e r e c o n n e c t e d . Last s u m m e r Michelle had the o p p o r t u n i t y t o use Physics w i t h A r c h a e o l o g y in a s u m m e r NSERC a w a r d held at S i m o n Fraser U n i v e r s i t y . She w o r k e d w i t h Dr. Erie Nelson using M a g n e t o m e t e r y t o search for buried earth ovens. Michelle believes that Physics has helped her studies in A n t h r o p o l o g y by g i v i n g her the ability to approach problems analytically. She finds that she has profited f r o m a s t u d y of A n t h r o p o l g y by becoming a more c o m p l e t e person and by gaining a greater understanding of humanity. Michelle is planning t o explore the c o n n e c t i o n s b e t w e e n t h e t w o fields in more d e p t h d u r i n g graduate studies in the application of Physics t o A r c h a e o l o g y . 118 Physics in Canada M arch/Aprill 9 9 6 Catherine Lucas A s long as she can r e m e m b e r , Catherine Lucas has a l w a y s been interested in science. She enjoys the theoretical aspect of Physics and, like Michelle, w h a t started as an elective blossomed into a major interest. Catherine w a s interested in a w i d e v a r i e t y of areas and w a n t e d t o c u l t i v a t e n e w ideas and develop necessary skills. Catherine is f i r m l y opposed t o the segregation of the arts and sciences, and is encouraged by the recent trend in universities t o p r o m o t e interdisciplinary fields. Catherine f o u n d t h a t Physics enabled her t o bring a logical and s y s t e m a t i c v i e w p o i n t t o C o m p a r a t i v e Literature. A p a r t f r o m the obvious enhnacement of w r i t i n g skills, she believes t h a t C o m p a r a t i v e Literature has other c o n t r i b u t i o n s t o make t o Physics. She says: " C o m p a r a t i v e Literature is the s t u d y of literature in d i f f e r e n t languages. The central problem of Comparative Literature is: h o w m u c h of the meaning is lost in translation? A n interesting problem for the physicist t o think about is, w i t h Mathematics being the language of Physics, do w e lose meaning in the t r a n s l a t i o n t o verbal language?" Since it is with language that we teach and c o m m u n i c a t e physics t o other people, h o w can w e be sure that the presented picture is complete? Soumi Ghosh Soumi Ghosh is the kind of student w h o just w a n t s t o k n o w e v e r y t h i n g . She t h o u g h t Physics w o u l d be a good place t o s t a r t . Her interest in Psychology began her s e c o n d year of university and she has sampled a variety of courses covering e v e r y t h i n g f r o m abnormal Psychology t o Neuroscience. She v i e w s the psyche as a 'black b o x ' and n o w seeks t o k n o w w h a t it is t h a t makes us t h i n k and act in t h e w a y that w e do. For Soumi, it is t h r o u g h Physics that one tries to find t r u t h in the universe and it is t h r o u g h Psychology that one tries t o find t r u t h in h u m a n s . She plans t o bring these ideas together t h r o u g h graduate studies in the Philosophy of Science. Soumi c o n t e n d s that s t u d y i n g Physics has helped her appreciate the material side of h u m a n behaviour. A n d h o w does she see Psychology influencing Physics? "Theories in Physics are v e r y m u c h m o t i v a t e d by the personality t y p e of the kind of person that studies Physics. Think of h o w Mozart or M o n e t or even Karl Marx w o u l d have described Physics and h o w their theories might have g i v e n Physics n e w i n s i g h t s . " Soumi believes that by studying Psychology w e can eliminate the h u m a n bias in science and come to an understanding of the f u n d a m e n t a l s of the universe. Carrie Klatt A s for me, I am finishing o f f my undergraduate studies in theoretical Physics and Philosophy. A f t e r m y first f e w years of Physics I w a s disillusioned by the fact that I could n o w solve m a n y mathematical and artificial Physics problems but, I had not y e t had an o p p o r t u n i t y t o q u e s t i o n the f o u n d a t i o n s of w h a t I w a s being t a u g h t . I have f o u n d that the t w o subject areas have a great deal t o o f f e r one another. Physics o f f e r s Philosophy more problems t o w o r k on and provides an alternative understanding of the universe. For me, it w a s Philosophy t h a t gave Physics back its beauty. Its critical style opened n e w arenas t o consider and various interpretations t o t r y . I f o u n d t h a t it w a s only t h r o u g h a c o m b i n a t i o n of the t w o that I w a s able t o make sense of either. A f t e r asking m y three classmates about their interests and opinions, t w o points became o v e r w h e l m i n g l y obvious. First, w e all agreed t h a t t o d a y , especially in academia, w e are c o n f r o n t e d w i t h the problem of specialization. To know s o m e t h i n g so deeply at the expense of h o w it relates t o other areas is t o not k n o w it c o m p l e t e l y . A s a result, specialization, especially at an early point in o n e ' s education, proves limiting. As students and scientists it is important to appreciate the position of others and h o w their interests relate t o our o w n . Second, as expressed m o s t clearly by Michelle, " w o m e n aren't m e n and the shouldn't t r y t o b e " . Even t h o u g h w o m e n have the same potential and interest in Physics as do men, t h e y o f t e n bring a d i f f e r e n t v i e w p o i n t t o the s t u d y . Soumi c o m m e n t e d that I could have done this article on m e n and w o m e n w h o are s t u d y i n g A r t s and Physics but m o s t of m y examples w o u l d still have been w o m e n . It w o u l d seem, at least for this g r o u p of students, that there is s o m e t h i n g in the liberal A r t s that is not in Physics t h a t w e just c a n n o t , and perhaps, should not, do w i t h o u t . If w o m e n have a natural interest in more A r t s y endeavours then this w i l l add t o the diversity in Physics. W o m e n also develop d i f f e r e n t approaches t o problems and introduce a w a r m e r and more cooperative e n v i r o n m e n t . Basically, w e bring those things t o the Physics c o m m u n i t y that are part of w o m e n and not of men. The moral of the s t o r y is that as w o m e n in physics, w e do not need t o enter the profession as sheep in w o l v e s ' c l o t h i n g in order t o be successful and p r o d u c t i v e . There are special a t t r i b u t e s that a f e m a l e presence brings t o the c o n t e m p l a t i o n of the universe. Their specific interests can only add a n e w d i m e n s i o n t o the s t u d y of Physics. P H Y S I C S I N D I V I D U A L PROFILE - M A R Y A N N E W H I T E Dr. M a r y A n n e W h i t e has been a m e m b e r of the C A P since shortly after receiving her PhD, although all her degrees are in c h e m i s t r y . H o w e v e r , she has long been of the opinion that physics and c h e m i s t r y are v e r y , closely related subjects. Indeed, some of the m o s t interesting science occurs at the interface b e t w e e n physics and c h e m i s t r y . A native of London, Ontario, M a r y A n n e graduated f r o m the U n i v e r s i t y of W e s t e r n Ontario in 1 9 7 5 w i t h the A l u m n i Gold M e d a l in C h e m i s t r y . Her first research experience w a s in the Physics D e p a r t m e n t at U W O in 1 9 7 2 , w h e n the first-year p h y s i c s lab i n s t r u c t o r , Pat C h e f u r k a , hired M a r y A n n e as a s u m m e r research assistant t o w o r k on Langmuir-Blodgett f i l m s . It w a s this t a s t e of research, along w i t h a love for teaching, that d e t e r m i n e d M a r y A n n e ' s career path. Supported by an NSERC 1 9 6 7 Science and Engineering Scholarship, Mary Anne studied for her PhD w i t h the late J i m M o r r i s o n , w h o w a s t h e n Director of t h e Institute for Materials Research at M c M a s t e r U n i v e r s i t y . A l t h o u g h J i m taught c h e m i s t r y at M c M a s t e r , he supervised b o t h c h e m i s t r y and physics s t u d e n t s , and his lab w a s located in t h e p h y s i c s w i n g . In addition, w i t h o u t k n o w i n g their addresses, it w a s d i f f i c u l t t o guess w h e t h e r the (many) v i s i t o r s t o the lab w e r e p h y s i c i s t s or c h e m i s t s . This a t m o s p h e r e provided an excellent introduction to first-class research w i t h o u t labelling it " p h y s i c s " or " c h e m i s t r y " . M a r y A n n e ' s PhD thesis title was " O r i e n t a t i o n a l Ordering in Solid M e t h a n e at L o w T e m p e r a t u r e s " . In 1 9 7 9 , M a r y A n n e w a s a w a r d e d an NSERC Postdoctoral F e l l o w s h i p , and she used the o p p o r t u n i t y t o spend t w o years at O x f o r d U n i v e r s i t y , s p l i t t i n g her t i m e b e t w e e n c a l o r i m e t r i c studies w i t h Lionel Staveley in the Inorganic Chemistry Laboratory, and n e u t r o n s c a t t e r i n g studies w i t h J o h n W h i t e ( w h o w a s t h e n Director of l ' I n s t i t u t Laue-Langevin, Grenoble). In addition, Mary Anne held a Junior Research F e l l o w s h i p at St. Hilda's College, providing her first (and v e r y interesting) experience w i t h a w o m e n - o n l y educational institution. In 1 9 8 1 , NSERC smiled on M a r y A n n e again, and she w a s a w a r d e d an NSERC U n i v e r s i t y Research Fellowship, w h i c h she initially took up as an A s s i s t a n t Professor (Research) at U n i v e r s i t y of W a t e r l o o . In 1 9 8 3 , w i t h the o f f e r of a tenure-track position, M a r y A n n e m o v e d the NSERC URF t o Dalhousie U n i v e r s i t y in Halifax, w h e r e she has risen t h r o u g h the ranks t o the present position of Professor of C h e m i s t r y and Professor of Physics. A l t h o u g h M a r y A n n e teaches only in C h e m i s t r y , she has had research s t u d e n t s f r o m both C h e m i s t r y and Physics. Like m o s t professors, M a r y A n n e ' s w o r k involves a balance of teaching, research and a d m i n i s t r a t i o n . Not only does M a r y A n n e enjoy t e a c h i n g and research, but she has received several recent recognitions for these aspects for her w o r k , notably the Faculty of Science A w a r d for Excellence in Teaching ( 1 9 9 3 ) , the A l u m n i A s s o c i a t i o n A w a r d for Teaching Excellence ( 1 9 9 3 ) , the Stig Sunner M e m o r i a l A w a r d of the C a l o r i m e t r y Conference ( 1 9 9 4 ) and the Noranda A w a r d of the Canadian Society for c h e m i s t r y ( 1 9 9 6 ) . In 1 9 9 1 , M a r y Anne visited 11 Canadian Physics D e p a r t m e n t s as a CAP lecturer, presenting a lecture "Properties of M a t t e r : From Fudge to P h o t o c o p y i n g " . M a r y A n n e ' s area of research is t h e r m a l properties of materials, especially solids w i t h w e a k orientational f o r c e s w h e r e d y n a m i c a l disorder is possible. She leads an e x p e r i m e n t a l e f f o r t in w h i c h the approach is m e a s u r e m e n t of t h e r m a l (and related) properties of solids, usually w i t h c u s t o m - d e s i g n e d apparatus, in order to understand fundamental processes governing such matters as heat conduction, polymorphism, and thermodynamic stability. The s y s t e m s studied have been c h o s e n t o probe particular intermolecular interactions: inclusion c o m p o u n d s have been very useful in this regard, leading t o a general u n d e r s t a n d i n g of heat c o n d u c t i o n in molecular s y s t e m s w h i c h is quite d i f f e r e n t f r o m the " t e x t b o o k " cases of simple solids. (Optic modes play i m p o r t a n t roles in molecular materials). The w o r k is " c h e m i s t r y " in t h e sense that the s y s t e m s studied are m o s t l y molecular, but m o s t of the m e a s u r e m e n t s can be called " p h y s i c s " if y o u adhere t o the old adage t h a t v a c u u m lines d i s t i n g u i s h the fields (metal for p h y s i c i s t s , glass for c h e m i s t s ) . At present M a r y A n n e has f i v e s t u d e n t s in her research g r o u p - t w o PhD s t u d e n t s , t w o M S c s t u d e n t s and one honours project student. Four s t u d e n t s have c o m p l e t e PhD's in her group, and one student has c o m p l e t e d an M S c . Of those c o m p l e t e d , all are e m p l o y e d in the U S A . Of the c h e m i s t s , t w o hold positions at universities and t w o are in the pharmaceutical industry. The physics PhD has c h o s e n t o apply his excellent e x p e r i m e n t a l and theoretical skills in the field of medical physics. M o s t of the w o r k in M a r y A n n e ' s lab is supported by NSERC t h r o u g h research g r a n t s . She has also held c o n t r a c t s or g r a n t s f r o m N A T O ; Stelco; E.I. DuPont; Energy, M i n e s and R e s o u r c e s ; S . C . J o h n s o n ; Canadian Industrial Innovât ion Cent re. M a r y A n n e has been author or co-author of more t h a n 7 0 research papers and one book chapter. In addition, she is just c o m p l e t i n g a t e x t b o o k ( w o r k i n g t i t l e : " P r o p e r t i e s of M a t e r i a l s " ) for a materials science class w h i c h she has developed. On the personal side, M a r y A n n e is married t o Robert W h i t e . A l t h o u g h t h e y m e t w h e n t h e y w e r e b o t h graduate s t u d e n t s in c h e m i s t r y at M c M a s t e r , t h e y really got to k n o w each other on the baseball field (Rob w a s the c a p t a i n of the organic c h e m i s t r y t e a m , and M a r y A n n e - being a physical c h e m i s t - w a s the t e a m statistician). Rob is also a f a c u l t y m e m b e r at Dalhousie U n i v e r s i t y . Their research areas are q u i t e far apart (Rob is a biological chemist) and t h e y have never y e t managed a laboratory collaboration (those biological s y s t e m s require t o o high t e m p e r a t u r e s for M a r y A n n e ' s cryogenic interests!), but t h e y have collaborated on t w o children - David (b. 1 9 8 2 ) and A l i c e (b. 1 9 8 5 ) . Outside of teaching, research and f a m i l y , M a r y A n n e is interested in music and also in bringing science t o the general public. W i t h several o t h e r s she helped open D i s c o v e r y Centre, an i n t e r a c t i v e science centre in Halifax. She also has been involved w i t h D i s c o v e r y Channel (she had a spot called " H o w Things W o r k " in their inaugural season), c l a s s r o o m v i s i t s and radio (e.g. Quirks & Quarks). A l t o g e t h e r , she has a v e r y full and f u n life! La Physique au Canada mars à avril 1 9 9 6 119 MARRIED T O A FELLOW PHYSICIST, 2 0 0 0 MILES A W A Y by A n n a Hayes and Stephen Sterbenz The f a m i l y profile of a p h y s i c s couple m i g h t s e e m a mundane subject t o f e a t u r e in a journal. A s one friend put it, " y o u d o n ' t really w a n t t o tell about any of the interesting s t u f f and the rest nobody cares about". Nonetheless, w e decided t o accept the i n v i t a t i o n t o produce a profile, encouraged partially by the hope that it might help raise a w a r e n e s s of s o m e of the issues facing physics couples. The major d i f f e r e n c e b e t w e e n our f a m i l y and " n o r m a l " f a m i l i e s is t h a t Steve is a s t a f f m e m b e r at Los A l a m o s National Laboratory in N e w M e x i c o and I a m a staff m e m b e r at the Chalk River Laboratories of AECL in Ontario. These t w o labs are about 2 0 0 0 miles apart. Thus, w e find ourselves running t w o households and living apart m o s t of the year. W e have t w o children, M a e v e (7 years old) and Ciara (2 years old), w h o talk about 'our house in Candada' and 'our house in Mos-ahmos'. Living this odd life s t y l e has been d i f f i c u l t , but w e feel t h a t in s o m e sense it w a s almost inevitable. Dual physics couples are c o n f r o n t e d w i t h three possibilities: (1) one of t h e t w o q u i t s p h y s i c s , (2) b o t h stay in physics but live apart, or (3) t h e y o b t a i n positions t o g e t h e r (or at least in the same geographic region!). S i t u a t i o n (3) is o b v i o u s l y t h e ideal one. H o w e v e r , it is also the most difficult to achieve. S i t u a t i o n (2) is easier t o arrange t h a n (3), but of course m u c h harder t o arrange t h a n (1), since one of the t w o can a l w a y s quit. Unable so far t o achieve (3), w e have for n o w made the agonizing choice b e t w e e n (1) and (2) in f a v o u r of (2). W e have e n c o u n t e r e d a w i d e range of opinions on the w i s d o m of this choice. A brief h i s t o r y of our careers m a y help c l a r i f y h o w w e g o t ourselves into the second of these classes, w o r k i n g n o w at 120 Physics in Canada M arch/Aprill 9 9 6 opposite ends of the c o n t i n e n t . W e w e r e graduate students together at Yale at the n u c l e a r p h y s i c s l a b u n d e r D . Allan Bromley, and w e got married w h i l e at Yale. Steve is an experimentalist in nuclear physics and I a m a t h e o r i s t . A f t e r graduate school w e maintained s i t u a t i o n (3) for a w h i l e , obtaining postdoctoral positions together at the U n i v e r s i t y of M i n n e s o t a . From M i n n e s o t a w e m o v e d t o Los A l a m o s t o take up our second postdoc positions. T o w a r d the end of our postdocs at Los A l a m o s ( 1 9 9 1 ) I w a s o f f e r e d a permanent position at Chalk River. Everyone in nuclear t h e o r y w a s (and still is) finding it v e r y d i f f i c u l t t o get a permanent position, and so this seemed quite a stroke of g o o d f o r t u n e . H o w e v e r , there s i m p l y w a s n ' t a position at Chalk River for Steve at the t i m e . Nonetheless, Chalk River being a large i n s t i t u t i o n , w e had some hope t h a t things might open up in a year or t w o . J u s t after I t o o k up m y position at Chalk River, Steve w a s o f f e r e d a permanent position at Los A l a m o s . There w a s no position for me there, but again there m i g h t be possibilities in a year or t w o ! W e did not foresee w h a t the j o b c l i m a t e and research budgets w e r e t o become. W e w o u l d define ourselves as a v e r y ' 9 0 s f a m i l y ' - w h i c h means c o m p l i c a t e d . Ciara, our younger daughter, lives w i t h me in Canada m o s t of the year, and M a e v e has just begun t o do extended s t a y s w i t h Dad in Los A l a m o s . Changing schools h a l f w a y t h r o u g h the year seems t o be s o m e t h i n g y o u can get a w a y w i t h w h e n y o u ' r e seven years old, and M a e v e actually d o e s n ' t seem t o be u n c o m f o r t a b l e w i t h t h a t . For me, t h o u g h , t r y i n g t o raise t w o children alone w h i l e doing physics is no easy task. I learned q u i c k l y t o change some of m y parental standards. For example, being late for school and eating frozen dinners in the evening has become part of daily life. Dressing the children in m a t c h i n g socks is a thing of the past, but so far w e have no evidence that our situation has been harmful to them. H o w e v e r d i f f i c u l t the logistics of single parenting, I see that the one living a w a y f r o m the children has the harder role by far. Like all parents, w i t n e s s i n g and sharing the various milestones our children pass brings us great j o y . Hearing by phone, or even w o r s e , by e-mail or voice-mail, that your toddler has learned t o w a l k or t o talk, or that your second grader can read or is in the school play can really make you q u e s t i o n w h y y o u ' r e doing physics 2 0 0 0 miles a w a y . Of course, w e talk on the phone as a f a m i l y several t i m e s a w e e k (the phone c o m p a n y loves us), but w h e n it c o m e s t o t w o - y e a r - o l d children, the phone is not a particularly g o o d f o r m of c o m m u n i c a t i o n . In f a c t , half the t i m e w e ' r e not q u i t e sure if Ciara is even listening, and the rest of the t i m e w e ' r e not sure she k n o w s s h e ' s talking w i t h a person. That w e have not c h o s e n t o s w i t c h t o the first of the three o p t i o n s I presented above for dual career couples reflects the r e w a r d w e get f r o m physics. The greatest r e w a r d is probably just that w h i c h every physicist feels w h o has the l u x u r y of being paid t o do w h a t he/she loves t o do. W e b o t h agree that physics has been a g o o d career choice in t e r m s of on-the-job s a t i s f a c t i o n . Furthermore, being married t o a f e l l o w physicist has had some advantages. One of these is having someone t o w h o m y o u can ask that dumb question that y o u ' r e t o o embarrassed t o admit y o u r c o n f u s i o n on t o anyone else. W e probably engage in more shop-talk t h a n even the average physics couple, since w e share the same subfield. The e x p e r i m e n t a l v s . theoretical split in the f a m i l y helps t o keep egos under control. In f a c t , w e published a c o m m e n t in Phys. Rev. together recently. A n o t h e r advantage is t h a t w e tend t o k n o w about t w i c e as m a n y people in physics as w e o t h e r w i s e m i g h t , and s o m e of these c o n n e c t i o n s have lead t o fertile collaborations. A large f r a c t i o n of our conversations c o n c e r n physics. The f r a c t i o n probably crosses the 5 0 % m a r g i n if y o u include physics gossip! Daughter M a e v e recently provided an interesting c o m m e n t about this. Steve f o u n d himself lacking a babysitter one Saturday and ended up taking M a e v e t o sit at t h e back of the m e e t i n g r o o m at a physics conference. W h e n I asked her later w h a t she t h o u g h t , she said that it w a s no d i f f e r e n t t h a n the usual c o n v e r s a t i o n s M o m and Dad get into, especially w h e n w e have our friends over. I think i t ' s fair t o say that the details of our careers are not particularly significant w h e n it c o m e s t o explaining h o w it is t h a t w e find ourselves w o r k i n g at d i f f e r e n t institutions. This is because in the present j o b c l i m a t e it is unrealistic for m o s t couples t o expect t o find positions together. A t the same t i m e , the 1 9 9 0 AIP s u r v e y of m e m b e r s of the A m e r i c a n Physical Society s h o w s that about 70% of women members are married t o another s c i e n t i s t . It's w o r t h noting, h o w e v e r , that the same survey f o u n d t h a t " w o m e n do not appear t o be in f a v o u r of special c o n s i d e r a t i o n ; m o s t of t h e m s i m p l y w a n t the barriers to their success r e m o v e d " . I subscribe t o this point of v i e w m y s e l f . A barrier that some w o m e n have faced involves opinions held by some other p h y s i c i s t s on the issue of possible pregnancy or m a t e r n i t y leave and its bearing on a w o m a n ' s a p p l i c a t i o n for a j o b or a f e l l o w s h i p . The q u e s t i o n of h o w pregnancy might affect our job performance has never been raised explicitly w i t h us by any employer. H o w e v e r , b o t h of our d a u g h t e r s w e r e born during frantic and critical t i m e s in our careers and w e w e r e v e r y c o n c e r n e d about this issue. In f a c t , in c o n n e c t i o n w i t h M a e v e ' s b i r t h ( w h i l e w e w e r e at U. M i n n e s o t a ) , I spent not more t h a n about three w e e k s a w a y f r o m w o r k , t h a n k s largely t o m y s i s t e r ' s being able t o c o m e over f r o m Ireland and act as nanny for a while. Perhaps the trickiest obstacle w e have met at j o b i n t e r v i e w s is the grilling t o w h i c h w e are generally s u b j e c t e d o n the issue of t h e 'trailing s p o u s e ' . This arises because m o s t potential e m p l o y e r s d o not w a n t to make a j o b o f f e r to s o m e o n e w h o m a y t u r n the o f f e r d o w n because his or her spouse c a n ' t find a job at the same i n s t i t u t i o n . In all j o b i n t e r v i e w s , w e tried to make it clear that w e w e r e not asking for t w o j o b s , because w e felt that our probability of success in a close-coupling arrangement was d r a m a t i c a l l y d i m i n i s h e d . Nonetheless, at one u n i v e r s i t y , w e d i s c o v e r e d indirectly and long after m y i n t e r v i e w that a l t h o u g h I w a s the t o p candidate, I w a s not o f f e r e d the j o b because I w a s m a r r i e d t o a p h y s i c i s t . Eventually, the p r o b l e m s that this issue raised at j o b i n t e r v i e w s b e c a m e so serious and f r u s t r a t i n g that w e thought of circulating a r u m o u r that w e w e r e about t q get a d i v o r c e ! In s u r v e y i n g s o m e male p h y s i c i s t s w h o s e spouses are not p h y s i c i s t s , w e f o u n d t h a t in general t h e y w e r e not asked t o spend significant t i m e d i s c u s s i n g their spouses d u r i n g j o b i n t e r v i e w s . In our opinion, this m a l e / f e m a l e a s y m m e t r y is unfair. W e feel that the best candidate should be o f f e r e d the job and t h a t couples should be g i v e n the o p p o r t u n i t y t o decide for t h e m s e l v e s w h e t h e r or not t h e y w a n t to chose the second of the three o p t i o n s . W e recognize that this policy may have d i f f i c u l t practical i m p l i c a t i o n s for u n i v e r s i t y d e p a r t m e n t s and l a b o r a t o r y a d m i n i s t r a t o r s , but w o u l d ask t h e m to consider the far more p r o f o u n d i m p l i c a t i o n s for people like us. M a k i n g an o f f e r on merit alone makes the selection clearer and easier, and little real harm is done. If the candidate does chose to decline the o f f e r because of the s p o u s e ' s lack of an o f f e r , t h e n the i n s t i t u t i o n can still m a k e an o f f e r t o the runner-up if the decision is d e m a n d e d in a t i m e l y fashion. Since setting up our t w o separate homes in 1 9 9 1 , w e have managed t o live together as a f a m i l y for an e x t e n d e d period only w h e n Ciara w a s born. A b o u t a m o n t h before the birth, Steve took f a m i l y leave f r o m Los A l a m o s . During this m o n t h w e b o t h w o r k e d at Chalk River, Steve keeping up w i t h things back in Los A l a m o s but also helping o n a volunteer basis in an e x p e r i m e n t here. A f t e r Ciara w a s born I t o o k m a t e r n i t y leave f r o m Chalk River and m o v e d to Los A l a m o s . Being a physics f a n a t i c , I used m y leave as a " s a b b a t i c a l " at Los A l a m o s , and so w e lived as a ' n o r m a l ' f a m i l y in s i t u a t i o n (3). I w o r k e d essentially full-time in the theoretical d i v i s i o n at Los A l a m o s , w h o kindly provided me an o f f i c e and c o m p u t a t i o n a l facilities but no salary or expenses. From a physics point of v i e w this w a s a g o o d year, and I w a s able to use the o p p o r t u n i t y t o get i n v o l v e d in n e w collaborations. H o w e v e r , m y d r i v e t o do physics did cost us m a n y t h o u s a n d s of dollars in d a y c a r e expenses. The l u x u r y of living together as a f a m i l y and w o r k i n g full-time in physics seemed w o r t h the c o s t . Our careers have been very r e w a r d i n g and s u c c e s s f u l for us as individuals. Steve is n o w managing a very large program at Los A l a m o s , and I feel I have achieved reasonable recognition in m y field, but these successes have c o m e only w i t h great sacrifice. The overall s i t u a t i o n , i n v o l v i n g f a m i l y trips as f r e q u e n t l y as can be arranged (about every six w e e k s t o t w o m o n t h s ) , has been bearable, but only by a small m a r g i n . M a e v e enjoys a v e r y g o o d relationship w i t h Dad w h i c h m a y have been developed in part as a result of our unusual lifestyle. She appears t o accept our s i t u a t i o n w i t h only minor c o m p l a i n t and is p r e t t y m u c h a happy kid. Ciara is too y o u n g t o express her feelings in the f o r m of a c o m p l a i n t . She talks about Dad a lot, but b e t w e e n visits she s o m e t i m e s seems even to forget w h a t ho looks like. W e h a v e n ' t f o u n d the u l t i m a t e s o l u t i o n t o our problematic situation. In f a c t , I d o not k n o w w h e t h e r there is a perfect s o l u t i o n to the o b v i o u s problem that w e and m o s t other physics couples face. But w e still remain hopeful t h a t , in our case, it is s o m e h o w just around the c o r n e r . DIRECTORY OF WOMEN PHYSICISTS The CAP is currently updating its Directory of Women Physicists and invites all w o m e n physicists to register in this Directory. For information/registration form please contact the CAP office at Suite 112, McDonald Building, 1 5 0 Louis Pasteur, Ottawa, Ontario K1N 6N5 Tel.: 6 1 3 5 6 2 - 5 6 1 4 ; Fax: 6 1 3 5 6 2 - 5 6 1 5 ; Email CAP@ Physics.uottawa.ca. La Physique au Canada mars à avril 1 9 9 6 121 P H Y S I C S F A M I L Y PROFILE: J O H N BERLINSKY A N D C A T H E R I N E KALLIN W e are delighted t o have the o p p o r t u n i t y t o w r i t e for Physics in Canada about our experiences as a " p h y s i c s c o u p l e . " This t y p e of article is useful for a number of reasons. On the one hand, it d o c u m e n t s s o m e of the internal barriers w h i c h are built into the a c a d e m i c / r e s e a r c h s y s t e m and w h i c h are more or less invisible t o e v e r y o n e e x c e p t those w h o are d i r e c t l y affected. A t t h e same t i m e , it a l l o w s t h o s e of us w h o are in this s i t u a t i o n t o " c o m p a r e n o t e s " . In our experience, t h i s t y p e of c o m p a r i s o n f r e q u e n t l y reveals a surprising c o n s i s t e n c y and recurrence of similar experiences. For these reasons w e hope that our c o n t r i b u t i o n t o this c o l l e c t i o n of articles w i l l be useful and interesting to other present or p r o s p e c t i v e physics couples and also t o their colleagues, s u p e r v i s o r s and a d m i n i s t r a t o r s . H o w w e first got t o g e t h e r as a physics couple is a long and (for us) interesting s t o r y w h i c h w e have decided t o defer to our m e m o i r s . The m o s t n o t e w o r t h y event for the purpose of this article is that w e w e r e married in M a y 1 9 8 3 at a small, private c e r e m o n y in W e s t Point Grey, Vancouver. Catherine w a s t h e n a grad s t u d e n t in her third year at Harvard, and I w a s an established, i.e. tenured, Physics f a c u l t y m e m b e r at UBC. A t t h e t i m e of our marriage, Catherine w a s spending the semester at the Institute for Theoretical Physics (ITP) at UC Santa Barbara, w h e r e her Ph.D. thesis supervisor, Bert Halperin, w a s o n sabbatical. W h e n w e returned there and announced our n e w status at lunch on t h e Santa Barbara pier, Bert first chastised Catherine for m a k i n g s u c h an i m p o r t a n t m o v e w i t h o u t c o n s u l t i n g her supervisor and t h e n ordered a round of c h a m p a g n e t o celebrate. The f o l l o w i n g year Catherine c o m p l e t e d her thesis o n c y c l o t r o n resonance and e l e c t r o n - e l e c t r o n interactions in the t w o d i m e n s i o n a l e l e c t r o n gas. A t that t i m e the f r a c t i o n a l q u a n t u m Hall e f f e c t w a s a hot topic and her thesis w o r k w a s a useful contribution toward understanding 122 Physics in Canada M arch/Aprill 9 9 6 e x c i t a t i o n s f r o m the FQHE state. In the Fall before g r a d u a t i o n , like any other finishing graduate student, she sent out a number of letters applying for postd o c t o r a l positions and t h e n w a i t e d . Being Canadian she also applied t o NSERC w h i c h had generously supported her graduate w o r k . A s f r e q u e n t l y happens, she t h e n spent m o n t h s biting her nails, w a i t i n g for replies, t h e n had one day of pure e c s t a s y w h e n the first o f f e r letter arrived, and next w a s plunged into c o n f u s i o n w i t h the arrival of the second o f f e r . The t w o key o f f e r s happened to c o m e f r o m t w o Nobel prize w i n n e r s w h o w e r e k n o w n to be s o m e w h a t c o m p e t i t i v e . The m a t t e r of w h i c h o f f e r t o accept loomed as a decision w h i c h could just as easily end a career as start one. In the end, d i p l o m a c y paid off and Catherine emerged unscathed. Fortunately she still considers b o t h prospective e m p l o y e r s t o be friends. The decision w a s t o accept an o f f e r f r o m the ITP in Santa Barbara w h e r e the Director w a s the Condensed Matter theorist, Bob Schrieffer. Not long a f t e r w a r d , NSERC c a m e t h r o u g h w i t h a post-doctoral f e l l o w s h i p , w h i c h w e used to negotiate an agreement w i t h Santa Barbara and UBC so that Catherine could spend several m o n t h s each year w o r k i n g in V a n c o u v e r . This agreement turned out t o be particularly i m p o r t a n t the f o l l o w i n g year w h e n our daughter w a s born. The t r a n s i t i o n f r o m grad school t o post-doc changed a trans-continental c o m m u t e into a short N o r t h - S o u t h hop. A l s o the d i f f e r e n c e b e t w e e n graduate and post-doc salaries w a s enough t o cover our phone bills and t o a l l o w me t o pay off the line of credit which had been steadily a c c u m u l a t i n g at the bank. The ITP w a s a lively pace in 1 9 8 4 / 8 5 and q u i t e hospitable t o a y o u n g c o m m u t i n g couple. W e met a g e n e r a t i o n of post-docs w h o are n o w professors scattered across N o r t h A m e r i c a and grad s t u d e n t s w h o are w o r k i n g their w a y t h r o u g h the ranks. One physics couple, w h o w e did not even realise w e r e a couple, w e r e secretly married w i t h a child being raised by g r a n d p a r e n t s in England. It w a s a g o o d surprise t o everyone w h e n w e w e r e invited t o a party w h e r e this w a s announced. Steve Kivelson, n o w at U C L A , and Daniel A r o v a s , n o w at La Jolla, w o r k e d w i t h Catherine and Bob Schrieffer on the " c o r r e l a t e d ring e x c h a n g e " t h e o r y of the FQHE, an original and intuitive alternative w a y of looking at Laughlin's wave f u n c t i o n , and I garnered thousands of frequent flier miles w i t h W e s t e r n Airlines, w h i c h finally earned me a free t i c k e t that I w a s never able t o use because it arrived as w e w e r e leaving California. Most important of all, h o w e v e r , w a s the u n e x p e c t e d but w e l c o m e realization that w e w e r e f a t e d to b e c o m e parents. This w a s w h e r e the flexible arrangement w i t h ITP and UBC paid o f f . I rented a small house on a large lot in the Dunbar area of V a n c o u v e r , and Catherine m o v e d up at the beginning of A u g u s t 1 9 8 5 , w i t h the understanding that she w o u l d be back by late December for the last six m o n t h s of her post-doc at ITP. I had an agreement w i t h m y d e p a r t m e n t t h a t I w o u l d d o all of m y teaching in the Fall and t h e n spend the f o l l o w i n g semester at ITP, and Catherine w a s g i v e n the o f f i c e of M y e r Bloom w h o w a s a w a y on research leave. W e also started t o w o r r y about C a t h e r i n e ' s next j o b since, w i t h only six m o n t h s left at ITP and a n e w baby, w e needed t o c u t d o w n on the c o m m u t i n g . A l m o s t m i r a c u l o u s l y w e heard that UBC w o u l d be n o m i n a t i n g someone for an NSERC University Research Fellow position. However we soon learned t h a t this o p p o r t u n i t y w a s likely t o be a long shot. W h e n Catherine approached the Chair of the hiring committee, she w a s told that the d e p a r t m e n t w a s looking for applicants " . . . w i t h letters f r o m Nobel Laureates," but that it w a s OK for her t o apply as long as she w o u l d n ' t be disappointed if she d i d n ' t get the n o m i n a t i o n . Our schedule for early September revolved around c h i l d b i r t h classes, w h i c h we attended, graduate Stat Mech and undergraduate Q u a n t u m M e c h a n i c s , w h i c h I w a s teaching, the Physics Colloquium, w h i c h I w a s organizing, and arranging for letters f r o m Nobel Laureates. C a t h e r i n e ' s j o b talk w a s scheduled for September 11, w h i c h f o r t u i t o u s l y fell on t h e birthday of our daughter, A n n Berlinsky Kallin (no hyphen). Catherine's talk on the Correlated Ring Exchange Theory of the Fractional Q u a n t u m Hall Effect was postponed for two weeks. The d e p a r t m e n t had great d i f f i c u l t y dealing w i t h Catherine's application and, in t h e end, no one w a s nominated. I m m e d i a t e l y after this decision w a s made, our friend Steve Girvin arrived to g i v e a c o l l o q u i u m on the q u a n t u m Hall e f f e c t , and I had the pleasure of introducing his talk on the day after v o n Klitzing received the Nobel Prize for discovering the e f f e c t . W i t h no j o b prospects at UBC, w e began scouring the market in earnest. After years of c o m m u t i n g we made the conscious decision t o market ourselves as a package. Wherever w e went w e i n t e r v i e w e d as a couple w i t h babe in arms. This led t o m a n y hilarious s i t u a t i o n s , far more t h a n w e have space t o describe, but w e did end up rating places on h o w w e l l they handled the special c i r c u m s t a n c e s of our i n t e r v i e w s - w h e t h e r t h e y arranged full schedules of independent i n t e r v i e w s , w h a t care they provided for A n n , and w h e t h e r s u f f i c i e n t t i m e w a s a l l o w e d for nursing, rest, etc. In this regard, the t w o Canadian universities where we interviewed, W a t e r l o o and M c M a s t e r , did very w e i l . By c o n t r a s t , certain California universities p e r f o r m e d a b y s m a l l y . Not only w e r e they insensitive t o the logistics of i n t e r v i e w i n g a couple w i t h an infant, but w e w e r e also introduced t o reverse n e p o t i s m , and more t h a n one case of t o k e n i n t e r v i e w s . On the other hand, w e had one delightful i n t e r v i e w at a U.S. national w e a p o n s lab, w h i c h w e w e r e not so interested in, but w h i c h treated us g r a c i o u s l y , and w e w i l l a l w a y s cherish the image of A n n w i t h a s e c u r i t y badge pinned t o her bootie. U l t i m a t e l y w e w e r e v e r y f o r t u n a t e in finding positions at M c M a s t e r . I traded teaching for a d m i n i s t r a t i o n and t o o k over the D i r e c t o r s h i p of the Institute for Materials Research w h i c h J i m M o r r i s o n , a c h e m i s t , had just relinquished; and the Physics D e p a r t m e n t w a s happy t o appoint Catherine t o a tenure track A s s i s t a n t Professor position in Condensed M a t t e r Theory w h i c h t h e y had been t r y i n g t o fill for over a year. Catherine w a s the first w o m a n in the physical sciences at M c M a s t e r , and w e have learned a lot f r o m t h a t . M u c h of w h a t w e learned has n o w been i n c o r p o r a t e d into a mentoring program for junior f a c u l t y in Science and Engineering w h i c h w a s instigated, at C a t h e r i n e ' s initiative, t w o years ago. Having t w o real jobs in H a m i l t o n imposed an unfamiliar stability on our lives. We spent a year finding a large house in d o w n t o w n H a m i l t o n , w h i c h w e love but w h i c h w i l l never be w o r t h w h a t w e paid for it. Of central c o n c e r n w a s child care for A n n . Our child care in the U.S., w h i c h had w o r k e d w e l l , c o n s i s t e d , f o r t u i t o u s l y , of a s u c c e s s i o n of three w i v e s of male, Korean physics graduate s t u d e n t s , each of w h o m had t w o small boys of her o w n . Our first child care in H a m i l t o n w a s w i t h a couple w h o t o o k in several children in their home. Although they came highly r e c o m m e n d e d and are still used by other physics parents, w e f o u n d after a f e w days that w e w e r e u n c o m f o r t a b l e w i t h t h e m and q u i c k l y made d i f f e r e n t arrangem e n t s . Having c o m p l e t e c o n f i d e n c e in your childcare providers is an absolute necessity for w o r k i n g parents, and even misplaced apprehension (as ours m a y have been) is unacceptable. A n e w s p a p e r ad led us t o Yolanda ( A n n a l w a y s called her " m y landa"), a y o u n g m o t h e r w i t h t w o small boys, w h o w a s happy t o care for one child in her h o m e . Yolanda loved having A n n , since she v e r y m u c h w a n t e d a daughter. By the t i m e t h a t A n n m o v e d on t o day care, Yolanda had four sons, but still no daughter. W e put A n n into day care because Yolanda and her f a m i l y had m o v e d t o a f a r m in an o u t l y i n g suburb of H a m i l t o n , and the d r i v e w a s just too long. M c M a s t e r has t w o day care centres, one located on the c a m p u s and one, run by the M c M a s t e r Students Union ( M S U ) , a f e w blocks off c a m p u s . W e never experienced the o n - c a m p u s day care because w e never made it to the t o p of the w a i t i n g list. However Ann was a c c e p t e d into the M S U day care after only a few weeks. A l t h o u g h the S t u d e n t s Union sponsors the day care, the staff and m a n a g e m e n t are full-time professionals. In f a c t , w e f o u n d the quality of the care in this centre to be o u t s t a n d i n g . A n n s t a y e d there t h r o u g h senior kindergarten. Preschool child care is designed for the c o n v e n i e n c e of w o r k i n g parents, but the school s y s t e m has not yet c o m e t o grips w i t h the concept of t w o - w o r k i n g - p a r e n t families. As a result they start i n c o n v e n i e n t l y late, end at a t i m e w h e n most parents have t o be at w o r k , and are closed on holidays and "professional d e v e l o p m e n t d a y s " w h e n e v e r y t h i n g else is open. In H a m i l t o n , the slack is t a k e n up by a service called First Base, w h i c h is run by the Y M C A and w h i c h provides before and after school child care and day care w h e n the schools are closed. This w o r k s w e l l for younger children, but eventually t h e y o u t g r o w it. W h e n w e realised that t h a t w a s happening for A n n ( t o w a r d the end of second grade), w e hired Kathleen w h o c o m e s to our home every day in t i m e to meet A n n w h e n she c o m e s home f r o m school. A f t e r a v e r y short t i m e , w e f o u n d that Kathleen w a s taking care of us t o o , and she has since b e c o m e an indispensable part of our f a m i l y . M a n y years ago, Mildred Dresselhaus of M I T , a m e m b e r of one of the more f a m o u s physics couples, advised us that the key t o success for w o r k i n g couples w a s t o get as m u c h help as y o u can. (Millie's other t i p for w o m e n p h y s i c i s t s w a s t o have a good husband.) M o n e y spent on child care, house care, or just about any other kind of care that y o u w o u l d o t h e r w i s e have t o do y o u r s e l f , is m o n e y w e l l spent. W e have certainly f o u n d this t o be the case and have benefitted greatly f r o m the people w h o have provided us w i t h these services. One issue w h c h is closely related to child care and to balancing f a m i l y and w o r k is that of travel, w h i c h can range f r o m day t r i p s , t h r o u g h conferences and c o m m i t t e e w o r k , t o leaves and sabbaticals. Over the past t e n years w e have a c c u m u l a t e d considerable experience w i t h all of these and more. A particularly c o m p l i c a t e d s i t u a t i o n is w h e n b o t h parents have to travel at the same t i m e independently. In those cases and in the absence of nearby g r a n d p a r e n t s , having the possibility of overnight child care, w h i c h for us w a s provided by Yolanda and later by Kathleen, is essential. Of course w h e n b o t h parents travel t o g e t h e r , it is f r e q u e n t l y possible t o bring the kid(s) along. W e have done this many t i m e s - s o m e t i m e s bringing our sitter, s o m e t i m e s arranging on-site child care, and s o m e t i m e s just " w i n g i n g it" and A n n actually considers it a perk. She has particularly enjoyed the w e e k s that w e have spent over several s u m m e r s at the A s p e n Center for Physics w h e r e she has met m a n y other physics kids. Research leaves and sabbaticals present d i f f e r e n t problems. One problem is coordinating them. Catherine had t w o leaves, one for 4 m o n t h s at A T & T Bell Labs in N e w J e r s e y (paid for in part by her Sloan Fellowship) and the other for 8 m o n t h s at Cornell w h i c h w a s part of her first real sabbatical, for w h i c h A n n and I remained in H a m i l t o n . Of course w e visited a lot, and, in the case of Cornell, I learned that by leaving Ithaca w i t h A n n at 3 : 0 0 a . m . , I could drive back t o H a m i l t o n in t i m e t o d r o p her off for school. Once, in 1 9 9 1 , w e w e r e able t o coordinate a six m o n t h leave together w h i c h w e spent at UBC and w h i c h a l l o w e d me t o resurrect a long-standing and extremely fruitful collaboration w i t h W a l t e r Hardy and, in f a c t , t o bring Catherine into it t o o . Next year, for the first t i m e , w e w i l l be able t o take a full year research leave together at Stanford. W e are n o w in our 1 0 t h year at M c M a s t e r , and w e have had ample t i m e t o reflect on the barriers and pitfalls w h i c h beset Physics couples, as w e l l as some of the benefits. W e k n o w w e have been l u c k y , and w e have a great appreciation for the progress that has been made in m i t i g a t i n g the s i t u a t i o n s of w o m e n f a c u l t y and couples. Programs such as parental leave, w h i c h w e r e not available t o us, are crucial for m a k i n g academic careers livable for n e w parents. No m o t h e r should have t o lecture t w o w e e k s after her c h i l d ' s birth, nor should one highly qualified m e m b e r of a couple have to languish in un- or underemployment because of traditional prejudices about w o m e n or working couples. A d e q u a t e child care facilities are essential for w o r k i n g couples and for single parents. A variety of t y p e s of child care are required for d i f f e r e n t stages of the c h i l d r e n ' s and the parents' d e v e l o p m e n t . A l t h o u g h there has been m u c h progress in these m a t t e r s over the past decade, the w a y has been s l o w and painful, and flexibility and i m a g i n a t i o n are still essential tools for survival. Equally w e l l , the experience of others can be a useful guide. The advice that w e received over a decade ago f r o m Millie Dresselhaus has proven invaluable for us, and w e hope t h a t some of the anecdotes in this article w i l l be of use t o f u t u r e physics couples. La Physique au Canada mars à avril 1 9 9 6 123 P H Y S I C S F A M I L Y PROFILE: JENIFER A N D M I C H A E L T H E W A L T W h e n w e w e r e invited t o s u b m i t an article t o this special issue of Physics in Canada it w a s impossible for us t o ignore the o p p o r t u n i t y . Besides being one of the f e w (two?) married couples in Canada t o hold faculty appointments in Physics D e p a r t m e n t s , the guest editor of the issue is none other t h a n J e n i f e r ' s sister A n n M c M i l l a n . A n y sense of professional responsibility p r o m p t i n g us t o w r i t e the article has t h u s been magnified e n o r m o u s l y by sisterly d u t y . A s this is primarily the s t o r y of J e n i f e r ' s a t t e m p t s t o seek permanent academic e m p l o y m e n t since the early 1 9 9 0 ' s , the article w i l l be w r i t t e n f r o m her p e r s p e c t i v e . The ' w o m e n ' s issue' t h i s article w i l l address is that of targeted appointments, in particular spousal a p p o i n t m e n t s . M a n y readers m a y have w e l l - f o r m e d opinions about this issue: perhaps this article w i l l p r o v o k e s o m e philosophical reassessments. a n e w e n v i r o n m e n t , w i t h n e w people, and e m b a r k i n g on n e w research projects. A d d e d t o this w a s the inevitable w o r r y about Eric's well-being: he w a s looked after by a lovely and caring y o u n g nanny during the d a y , but no m a t t e r h o w e x e m p l a r y the person, changes in childcare arrangements are always accompanied by some anxiety. Evenings w e r e fully occupied w i t h Eric, an active and c a p t i v a t i n g toddler w h o had the habit of being w a k e f u l b e t w e e n the hours of one and three a . m . This habit w a s broken out of necessity shortly after I started w o r k : M i k e ' s m e m b e r s h i p on the condensed m a t t e r NSERC grant selection c o m m i t t e e entailed a w e e k - l o n g sojourn in O t t a w a in February, during w h i c h I managed t o c o n v i n c e Eric of the value of u n i n t e r r u p t e d slumber. Mike continued to have tremendous committee work responsibilities during Eric's early years, an aspect of professorial life he relished somewhat less than his research. Travelling w o u l d take its toll, he o f t e n returned not only tired but viral, t o be greeted by a f a t i g u e d 'Physics w i d o w ' w h o had held the f o r t in his absence. This unbalanced life-style persisted until a chance remark by one of m y UBC colleagues raised m y consciousness. A s k e d w h e r e Mike w a s , I replied that he w a s in O t t a w a , serving on the ( n o w d e f u n c t ) NSERC W o m e n ' s Faculty A w a r d (WFA) selection committee. This p r o m p t e d the ironic realization that Mike w a s helping distribute jobs t o m y peers w h i l e I w a s 'at home w a t c h i n g the kid'! The i n v i t a t i o n t o w r i t e this f a m i l y profile came in t h e s u m m e r of 1 9 9 5 , a t i m e of considerable t u r m o i l in our careers - I w i l l elaborate on this later. First, t h o u g h , I w i l l s u m m a r i z e our personal and professional b a c k g r o u n d s . Married for 13 years, w e met in 1 9 8 1 w h e n I w a s a graduate student in C h e m i s t r y at S i m o n Fraser U n i v e r s i t y and M i k e w a s a y o u n g A s s i s t a n t Professor of Physics and NSERC U n i v e r s i t y Research Fellow. Following a 10-monthcourtship, w e married the f o l l o w i n g s u m m e r , having neglected t o d e v e l o p detailed plans for our f u t u r e careers. M i k e had no real need t o plan, having already achieved international recognition in his area of e x p e r i m e n t a l p h y s i c s : l o w - t e m p e r a t u r e luminescence of semiconductors. He w o r k e d single-mindedly and e n t h u s i a s t i c a l l y , developing ever better s p e c t r o s c o p i c m e t h o d s t o f u r t h e r the understanding of t h e optical properties of s e m i c o n d u c t i n g materials. On the other hand I w a s n o w geographically tethered: there are just t w o universities in t h e L o w e r M a i n l a n d of British Columbia. Fortunately, one of the w o r l d ' s leading research g r o u p s in m y area, NMR applied t o m e m b r a n e s , is located in the Physics D e p a r t m e n t at the U n i v e r s i t y of British C o l u m b i a under the intellectual umbrella of M y e r Bloom, c u r r e n t l y Emeritus Professor. I obtained an NSERC p o s t d o c t o r a l f e l l o w s h i p t o go across t o w n f o l l o w i n g m y Ph.D., arrived at UBC f i v e m o n t h s pregnant, and t o o k advantage of the m a t e r n i t y leave provisions of the NSERC a w a r d s t o spend one full year at h o m e w i t h our son Eric in 1 9 8 8 . The first years back in the lab w e r e , in r e t r o s p e c t , challenging ones. Initially there w a s s o m e i-.security involved w i t h being in 124 Physics in Canada M arch/Aprill 9 9 6 O v e r c o m i n g m y natural t e n d e n c y t o finish e x p e r i m e n t a l studies but leave until an undefined ' l a t e r ' the w r i t i n g up and publishing of results, I began t o heave m y C V out of the d o l d r u m s , w i t h the aim of eventually applying for a W F A . A gentle s u g g e s t i o n f r o m M y e r Bloom that I c o n c e n t r a t e on f o r m i n g links w i t h other d e p a r t m e n t s , g i v e n m y chequered Physics past, w a s d u l y noted. M y pedigree c o n s i s t s of an undergraduate degree in Biophysics and a d o c t o r a t e in C h e m i s t r y , f o l l o w e d by p o s t d o c t o r a l w o r k in a Physics lab. Physics d e p a r t m e n t traditionalists still o f t e n f r o w n on expertise outside 'pure' Physics, regarding such k n o w l e d g e as c o n t a m i n a t i n g rather t h a n enhancing a researcher. Other d e p a r t m e n t s have the c o m p l e m e n t a r y v i e w , by and large. Since career advice f r o m M y e r w a s rare (he prefers a non-directive supervisory approach), I took it seriously, especially since interdisciplinary w o r k d o v e t a i l e d w i t h m y preferences. A fledgling collaboration w i t h Neil Kitson in the Division of D e r m a t o l o g y at UBC, s t u d y i n g the physical properties of skin lipids, w a s nurtured and gradually began yielding papers. Neil's encouragement included vague references to faculty positions in D e r m a t o l o g y , and the f o l l o w i n g year 1 9 9 3 - I hatched the s c h e m e of creating a W F A position jointly b e t w e e n Physics and Medicine at UBC. Neither Mike, w h o s e lab w a s by n o w f u l l y established, and w h o held an NSERC Industrial Research Chair at SFU absolving him f r o m teaching for five years, nor I, w h o loved m y w o r k at UBC and w h o s e parents live nearby, w a n t e d t o move away from Vancouver. However, creating a position for oneself is never a s t r a i g h t f o r w a r d process and creating s u c h a position spanning faculties is even more d i f f i c u l t . In this case, t h o u g h , the process w a s facilitated by the Head of the Division of D e r m a t o l o g y , David McLean, w h o enthusiastically supports links b e t w e e n Medicine and 'hard science'. Similarly supportive w a s the Head of the Physics Department at UBC, Brian Turrell, w h o feels that a Physics approach can be invaluable for problems outside traditional Physics, and w h o also feels t h a t the discipline of Physics can benefit by being perceived as useful by researchers in other disciplines. In the s u m m e r of 1 9 9 3 the Division of D e r m a t o l o g y t o o k the initial step, in the f o r m of a five-year plan e n t r y for a m e m b r a n e biophysicist, t o w a r d creating a position for w h i c h m y skills w o u l d be ideal. Under Brian T u r r e l l ' s direction, the UBC Physics d e p a r t m e n t ' s Committee on Initial Appointments evaluated m y W F A research proposal, solicited letters of reference, asked me t o give a c o l l o q u i u m and i n t e r v i e w e d me. In other w o r d s I received fair t r e a t m e n t , despite the c o m p l i c a t i o n t h a t UBC had imposed a hiring freeze w h i c h extended even t o the subsidized W F A program. This point, h o w e v e r , became m o o t once the Physics d e p a r t m e n t discussed w h e t h e r or not t o s u p p o r t m y W F A n o m i n a t i o n . Objections w e r e raised because the position had not been advertised. How one w o u l d go about advertising a position under a u n i v e r s i t y hiring freeze w a s not clear, but, nevertheless, the d e p a r t m e n t decided not t o support the application. This w a s a disappointing t u r n of events, but m y n o m i n a t i o n w e n t to O t t a w a a n y w a y , w i t h the sole support of the UBC Dept. of Medicine. Thus ended six w e e k s of the m o s t grueling e f f o r t I can r e m e m b e r . M i k e had had t w o w e e k - l o n g trips t o J a p a n during t h a t t i m e , and I operated on 3 - 4 hours of sleep, hiring baby-sitting in shifts, and becoming more and more frazzled. The e x c i t e m e n t of w o r k i n g t o a deadline, and having the potential t o generate a permanent position, w a s enough t o sustain this fairly shortt e r m e f f o r t . Over the long t e r m it w o u l d have been painful t o see the e f f e c t s on Eric, w h o w a s , no d o u b t , being neglected by his m o m : small cracks began t o appear in his d e m e a n o r , his musical education stopped progressing w i t h the c u s t o m a r y rapidity, and he seemed generally less c o n t e n t . This intense w o r k paid off in one sense h o w e v e r : for Mike it w a s concrete evidence of m y a m b i t i o n , and he became more fully appreciative of m y desire for an academic career. In J a n u a r y , 1 9 9 4 , the W F A c o m m i t t e e met. Mike had tried u n s u c c e s s f u l l y t o resign f r o m the c o m m i t t e e once it became clear that m y n o m i n a t i o n w a s on its w a y t o O t t a w a . This sort of c o m m i t t e e w o r k is largely t h a n k l e s s : like the peer r e v i e w process it relies on the continuing generosity and c o m m u n i t y - m i n d e d n e s s of scientists in Canada. Mike w a s left in the a w k w a r d position of standing anxiously outside in the hall for 2 0 m i n u t e s w h i l e the c o m m i t t e e d i s c u s s e d m y application. A s a side remark: the ethics of the c o m m i t t e e w e r e f l a w l e s s and Mike w a s g i v e n no hint of the fate of m y application. This rather inhuman adherence t o the rules w a s m o s t u n s a t i s f a c t o r y for me - w h i l e Mike w a s in O t t a w a , I had had the usual single parent experience made orders of m a g n i t u d e more unpleasant by the odd situation. Psychologically it w a s d i f f i c u l t having m y spouse in a perceived position of p o w e r over m y career and there w a s an inevitable build-up of r e s e n t m e n t as a result. At the t i m e of m y n o m i n a t i o n I w a s one year beyond the r e c o m m e n d e d ' t i m e since Ph.D.' for the W F A a w a r d s , and w a s t h u s not o v e r l y o p t i m i s t i c about the o u t c o m e . Six u n c o m f o r t a b l e w e e k s passed before I heard that I had been u n s u c c e s s f u l , and even though the news was not u n e x p e c t e d , it w a s still a b l o w . Selfd o u b t , self-blame and feelings of rejection w e r e prevalent mental states for some t i m e f o l l o w i n g the a n n o u n c e m e n t : there w a s a sense of doors closing p e r m a n e n t l y a f r u s t r a t i n g scenario for me at the age of 3 6 . These feelings w e r e c o m p o u n d e d by our c o n t i n u i n g failure t o c o n c e i v e a second child. The u n a d v e r t i s e d c r e a t i o n of a position for another y o u n g physicist at U6C in the late spring w a s a further source of f r u s t r a t i o n , as w a s the decision by the UBC Physics d e p a r t m e n t t o advertise for a W F A position that year. M e a n w h i l e Mike w a s s u f f e r i n g in s y m p a t h y , and the death of his father in J u n e c o m p o u n d e d his grief. In c o n t r a s t , m y research e f f o r t w a s going w e l l , w i t h the first c o m p r e h e n s i v e papers f r o m the D e r m a t o l o g y c o l l a b o r a t i o n being a c c e p t e d for publication, and w i t h an i n v i t a t i o n t o speak at the annual m e e t i n g of the C . A . P . in Regina. Mike spoke at the same m e e t i n g , and for the first t i m e w e travelled t o g e t h e r on a joint business trip. I s t a y e d only t w o d a y s , t h e n left t o get back t o Eric and to s t o p the a c c u m u l a t i o n of non-deductible extra child-care c o s t s . It w a s a g o o d trip: I returned feeling a sense of r e n e w e d energy due t o the positive c o m m e n t s m y talk had received. In addition, I had had the chance t o c a t c h up w i t h m y sister A n n , a l w a y s an encouraging and u n d e r s t a n d i n g figure. Later that s u m m e r , Mike, never one to tolerate s u b - o p t i m a l situations unless g i v e n no c h o i c e , began considering career o p t i o n s for us. A casual c o m m e n t here and there at SFU regarding m y lack of a permanent position and the potential necessity for us t o m o v e a w a y f r o m V a n c o u v e r began a series of e v e n t s w h o s e v e l o c i t y and acceleration surprised even Mike. I w a s f o r t u n a t e in that m y interdisciplinary b a c k g r o u n d f i t t e d in w e l l w i t h Dean of Science Colin J o n e s ' plans to enhance cross-disciplinary research: an a t t r a c t i v e area for graduate s t u d e n t s . Over the fall m o n t h s of 1 9 9 4 i n f o r m a l discussions w e r e held a m o n g various d e p a r t m e n t a l chairs and t h e Dean of Science regarding the possibility of creating a p o s i t i o n for me at SFU. These discussions led t o a proposal by Colin t o establish a t a r g e t e d joint a p p o i n t m e n t b e t w e e n the D e p a r t m e n t of Physics and the I n s t i t u t e of M o l e c u l a r Biology and B i o c h e m i s t r y (IMBB). This w a s not a decision that w a s made casually: there w a s e x t e n s i v e d i s c u s s i o n in the Physics D e p a r t m e n t about the situation. Prof. Frindt, d e p a r t m e n t chair, sent a m e m o t o his f a c u l t y advising t h e m of the problem, emphasizing M i k e ' s central role in the d e p a r t m e n t ' s success in raising research f u n d s , and outlining m y background, appending m y W F A research proposal and the external r e v i e w s thereof. The Dean met w i t h the D e p a r t m e n t of Physics as a w h o l e t o discuss the establishment of the joint a p p o i n t m e n t and also held discussions w i t h the Director of the IMBB. By secret ballot in w h i c h M i k e did not participate, a decision w a s made in f a v o u r of pursuing the idea of creating a position for w h i c h I w o u l d be considered. The decision w a s not u n a n i m o u s : some m e m b e r s of the d e p a r t m e n t felt that the exercise w a s one in w h i c h p r a g m a t i s m w a s c o m p l e t e l y outweighing 'principle'. In the end, the d e p a r t m e n t made the courageous choice t o proceed w i t h their e v a l u a t i o n of me, clearly labelling the potential job a spousal appointment. An appointments committee w a s formed at this stage, letters of reference w e r e solicited in the usual manner, and I w a s i n t e r v i e w e d on M a y 1, 1 9 9 5 by b o t h the Physics D e p a r t m e n t and the IMBB. The i n t e r v i e w did not feel in any w a y w a t e r e d d o w n due t o the ' s p o u s a l ' nature of the position: I presented t w o one-hour talks, a teaching d e m o n s t r a t i o n and a research seminar, met w i t h m e m b e r s of both departments, and was thoroughly e x h a u s t e d at the end of the d a y . M o n d a y M a y 1st w a s also the deadline for NSERC Collaborative Project Grant proposals t o arrive in O t t a w a , and I had been busy up until the Friday before p u t t i n g the finishing t o u c h e s on a grant application. (This process w a s a little f r u s t r a t i n g since I had d i s c o v e r e d rather late that I w a s ineligible t o apply for s u c h a grant due to m y lack at t h a t t i m e of a f i r m o f f e r of a p p o i n t m e n t the application instead w a s s u b m i t t e d in the names of m y collaborators.) T i m e passed, as one m e m b e r of the appointments committee was away. W h e n the c o m m i t t e e m e m b e r s were reunited, they wrote a report r e c o m m e n d i n g me for the position. The members of the IMBB had voted unanimously in favour a muchappreciated v o t e of c o n f i d e n c e . Finally, the Physics D e p a r t m e n t r a t i f i c a t i o n v o t e w a s held, and achieved in excess of the required t w o - t h i r d s m a j o r i t y . SFU's Board of Governors approved m y a p p o i n t m e n t in late J u l y , and m y e m p l o y m e n t c o n t r a c t w a s signed soon a f t e r . This w o u l d normally signal the ' H a p p y Ending' of this article. Instead, e v e n t s took a t u r n into the arena of academic pulp f i c t i o n . One day in midAugust, while I w a s making measurements at UBC, one of m y colleagues c a m e in and t o o k me aside. He told me that he had heard that I had been the subject of a talk radio program that morning. Stunned, I inquired f u r t h e r , and w a s told t h a t a particular retired SFU Physics professor had taken his 'principled' objections t o m y a p p o i n t m e n t t o the a i r w a v e s . M y name had been mentioned, along w i t h M i k e ' s . A f e w phone calls t u r n e d up a c o p y of the tape, w h i c h I listened to that night. Factually c o r r e c t but highly selective in c o n t e n t , the i n t e r v i e w w a s insulting and biased. For e x a m p l e , t h r o u g h o u t I w a s referred t o as ' M r s . T h e w a l t ' - certainly not the appropriate title t o use in m a t t e r s relating to m y career. Resisting the urge t o respond t o this attack on S F U ' s character, I tried t o forget that the incident had happened. I w a s able t o do this easily, as I w a s preparing t o g i v e an invited talk at a Gordon Conference the f o l l o w i n g week. The day before I left for the conference, h o w e v e r , I happened to encounter an acquaintance w h o had heard the radio s h o w but w h o had not c o n n e c t e d me w i t h the c o n t e n t : e m b a r r a s s m e n t of b o t h parties w a s kept t o a m i n i m u m , but m y anger level increased as I realised that m y n e w l y - m i n t e d public r e p u t a t i o n w a s significantly less f l a t t e r i n g t h a n I w o u l d have preferred. Over the next f e w w e e k s there w a s a f l u r r y of media articles in the local papers concerning m y spousal a p p o i n t m e n t . The headline 'SFU Denies N e p o t i s m ' enhanced the v o c a b u l a r y of the local t a b l o i d ' s readership at the same t i m e as it gave u n w a r r a n t e d negative publicity to the u n i v e r s i t y . Finally, the u n i v e r s i t y papers w r o t e their pieces about the issue, and the dust settled. Emotional fall-out takes more t i m e , but w h e n I t o o k up m y a p p o i n t m e n t in September I felt generally warmly welcomed and c o m f o r t a b l e . Notice received in October t h a t the collaborative grant had been a w a r d e d w a s most w e l c o m e , and gave me a greater sense of a u t o n o m y , as did m y recent a p p o i n t m e n t as A d j u n c t Professor of Medicine at UBC. Myer Bloom has continued t o be an i m p o r t a n t source of s u p p o r t , and Mike has managed t o navigate the minefield of playing the dual roles of husband and colleague w i t h admirable d e x t e r i t y . A s far as being a t w o - c a r e e r f a m i l y goes, I feel exceptionally f o r t u n a t e in t w o respects: M i k e ' s preferred m e t h o d of relaxation after w o r k involves c o o k i n g , and Eric's live-in nanny, Petra Persch, is w i t h o u t peer. The current over-supply of highly qualified people searching for u n i v e r s i t y f a c u l t y positions at a t i m e w h e n university budgets are being reduced is regrettable and resentment of holders of targeted a p p o i n t m e n t s of one kind or another is inevitable. In an ideal w o r l d , no-one w o u l d be u n d e r - e m p l o y e d . Spousal a p p o i n t m e n t s are not a n e w phenomenon. Our s i t u a t i o n w a s unusual in t h a t Mike already had a position w h e n m y spousal a p p o i n t m e n t w a s created, but the end result is identical. Again, in an ideal w o r l d , jobs suiting b o t h partners in a marriage w o u l d exist automatically within a confined geographical area. This is o b v i o u s l y an impossible w i s h . Some might say t h a t one partner should sacrifice their career for the o t h e r ' s , and in fact w e feel that I have done this in the past t o some e x t e n t , although ' s a c r i f i c e ' is t o o strong a w o r d . Certainly, the c o m b i n a t i o n of academic career and child-rearing is challenging for both parents. In our case, w e feel t h a t the s l o w e r start t o m y career, w h i c h w i l l inevitably have a big impact on m y l i f e t i m e earnings, is a reasonable price t o pay for the lifetime privilege of having children. La Physique au Canada mars à avril 1 9 9 6 125 M O V E B E Y O N D T H E U N C E R T / J N T Y PRINCIPLE IN F A M I L Y A N t ) CAREER by Ying Qi, A t m o s p h e r i c Environment Service, 4 9 0 5 D u f f e r i n St., D o w n s v i e w , Onta io, M 3 H 5 T 4 tn p h y s i c s and m a t h e m a t i c s , there is a w e l l - k n o w n u n c e r t a i n t y principle, w h i c h says " t h e precise m e a s u r e m e n t s of t i m e and frequency are fundamentally i n c o m p a t i b l e , since f r e q u e n c y c a n n o t be measured i n s t a n t a n e o u s l y " . In our life, career and f a m i l y , particularly for a w o m a n , are o f t e n in c o n f l i c t w i t h each other. A career w o m a n m a y be successful at a c o s t t o her f a m i l y life. In this sense, f a m i l y and career seem also t o observe the u n c e r t a i n t y principle. It is hard for a w o m a n t o have b o t h of t h e m in perfect harmony! I a m an a t m o s p h e r i c scientist and n o w w o r k at A t m o s p h e r i c Environment Service (AES), Environment Canada as a c o n t r a c t research s c i e n t i s t . I have a simple f a m i l y , m y husband J i n g n a n Zhou and me. My husband is also an a t m o s p h e r i c scientist and n o w w o r k s as a research assistant at the D e p a r t m e n t of Earth and A t m o s p h e r i c Science, York U n i v e r s i t y . A c t u a l l y , a three person f a m i l y w o u l d be more exact as w e w i l l soon have a n e w m e m b e r t o c o m e in the w o r l d — our u n b o r n baby. I once believed in and w a s bound up by the u n c e r t a i n t y principle in considering career and f a m i l y , but finally I have m o v e d beyond the influence of the principle in m y life. TO BE A L O N E Before I met J i n g n a n 8 years ago, I had decided t o sacrifice m y f a m i l y life t o develop my career in atmospheric sciences. W h e n I w a s a child, I dreamed of being a great scientist in the w o r l d . Gradually, I realized t h a t a w o m a n w i t h a n o r m a l f a m i l y had a v e r y d i f f i c u l t t i m e t o be successful in her career in science. A s a m a t t e r of f a c t , m a n y f a m o u s scientists, not only w o m e n but also m e n are single. In China, at least half or even more of the female f e l l o w s of the Chinese A c a d e m y of Sciences w e r e single before 1 9 8 9 . These f a c t s reminded me a l w a y s of t h e e x i s t e n c e of the u n c e r t a i n t y principle for f a m i l y and career. I did not dare t o expect not t o be bound by the principle like M r s . Curie , because s o m e h o w , I a l w a y s believed in science m u c h more t h a n in luck. A n o t h e r reason for m y decision t o sacrifice m y o w n f a m i l y life t o make m y career s u c c e s s f u l w a s probably the love of m y parents, elder sister and brother. They a l w a y s supported me t o d e v e l o p m y career 126 Physics in Canada M arch/Aprill 9 9 6 f a m i l y life. Each t i m e I had a v a c a t i o n , t h e y invited me t o go home so sincerely that I could not t u r n d o w n invitations f r o m t h e m until I left China t o Canada, even after I w a s married. They a l w a y s let m e feel part of the happiest f a m i l y no m a t t e r w h a t happened. Their love and care made me feel that I already had a happy f a m i l y . I w o u l d not regret spending t h e rest of m y w h o l e life on m y career. MARRIED Eight years ago, because of c o m m o n interest in boundary-layer m e t e o r o l o g y , I m e t J i n g n a n by chance. He w a s a lecturer at Nanjing Institute and I w a s a graduate. J i n g n a n is a person w h o likes t o talk, particularly in the language of m e t e o r o l o g y . He loves his career, too. However, d i f f e r e n t f r o m me, he also w a n t e d t o d e v e l o p a f a m i l y not only his career. Moreover, he t h o u g h t that common interest w a s one of the bases of a happy f a m i l y in addition t o love, understanding and care. During each meeting, although atmospheric science w a s a l w a y s the topic of the meeting, w e came t o understand each other more and more Jingnan's personality influenced me and reminded me that I w o u l d lack s o m e t h i n g valuable in m y life if I kept f o c u s s i n g on m y career. Finally, I f o u n d our meetings w e r e not only for meteorological c o n v e r s a t i o n but also a part of m y life w h i c h could not be lost. W e g o t married one and half years later. A f t e r w e w e r e married, w e did not w a n t a baby as a normal f a m i l y w o u l d because I w a s still afraid of the u n c e r t a i n t y principle. H o w e v e r , I w a s not alone any more. W h e n I w a s a Ph.D graduate at Nanjing U n i v e r s i t y , Jingnan and I had a chance t o w o r k in t h e same c o m p u t e r t e r m i n a l room as he had a cooperative program w i t h Nanjing U n i v e r s i t y at that t i m e . W h e n I w a s a p o s t d o c t o r a l f e l l o w at Institute of M e c h a n i c s , Chinese A c a d e m y of Sciences, J i n g n a n w a s a visiting researcher at the same i n s t i t u t e so w e again, had a chance t o share the same o f f i c e . Frankly, Jingnan made m u c h more c o n t r i b u t i o n t h a n I did t o create our small but c o m f o r t a b l e f a m i l y . Perhaps, in a certain sense, I o w e d him a lot. W h i l e w e enjoyed our special f a m i l y , J i n g n a n got an excellent y o u n g professor f o u n d a t i o n a w a r d in Jiangsu province. I got m y Ph.D and published more than 15 papers and 1 book about m y o w n research achievements. Shortly after that I w a s awarded the highest category of C h a n g w a n g T u ' s Young Meteorologist Prize by the Chinese Meteorological Society. MOVE BEYOND PRINCIPLE THE UNCERTAINTY In December 1 9 9 3 , I came t o Canada as an NSERC visiting f e l l o w , accompanied by J i n g n a n . W e began t o create our n e w f a m i l y and career e n v i r o n m e n t . Living abroad provided us more experience. W e had more things t o face and t o deal w i t h in each of our careers w h i l e w e had t o get used t o the language, f o o d s , e t c . in Canada as soon as possible. W e examined again w h e t h e r w e w e r e under control of the u n c e r t a i n t y principle A f e w m o n t h s after w e c a m e t o Canada, Jingnan got a position as a research assistant at the D e p a r t m e n t of Earth and A t m o s p h e r i c Science, York U n i v e r s i t y . W e continued our common interest in boundary-layer m e t e o r o l o g y and mesoscale m e t e o r o l o g y . In the m e a n t i m e , I realized that it w o u l d be more helpful b o t h t o Canada and t o m y career if I w o u l d make a direct contribution to Canadian atmospheric research science since I lived in Canada. Therefore, I f u r t h e r expanded m y research d o m a i n and developed m y t w o n e w areas. One is joining the research c o m m u n i t y for a n e w Canadian state-of-the-art mesoscale numerical model MC2. The other is exploring the applications of a n e w m a t h e m a t i c a l tool, w a v e l e t analysis, t o meteorological and air quality research. The latter is quite a t h o u g h topic since w a v e l e t analysis is described by modern functional m a t h e m a t i c a l language. T o achieve the objectives, I have not t a k e n any v a c a t i o n s since I came t o Canada in D e c e m b e r , 1 9 9 3 . It w a s our happy and relaxed f a m i l y talk that o f t e n released me f r o m intense w o r k . W e b o t h enjoy the life style. In the mingling of intense w o r k and happy f a m i l y life, I have made some v e r y encouraging progress in m y n e w research areas. I have modified and i m p r o v e d one of the important schemes in the M C 2 model and have s u c c e s s f u l l y applied w a v e l e t analysis in m e t e o r o l o g y and air q u a l i t y research. I thank Air Quality Research Branch at AES for supporting m y w o r k after the NSERC visiting f e l l o w s h i p w a s finished. Over the past t w o years, w e have experienced a lot and i m p r o v e d ourselves a lot, t o o . W e surprisingly f i n d t h a t w e can really c o m f o r t a b l y balance our careers and f a m i l y life. Perhaps experience has g i v e n us the ability. W h a t e v e r , w e have enough confidence n o w t o start a normal f a m i l y life during our continued pursuit for careers in atmospheric sciences. W e are ready t o w e l c o m e our baby into our lives. Finally, I realize t h a t I have m o v e d beyond that u n c e r t a i n t y principle. M o r e o v e r , in a sense, I feel t h a t the relationship b e t w e e n a f a m i l y and career seems t o be more like the relationship b e t w e e n w a t e r and a boat: w a t e r can carry a boat but w a t e r can also capsize a boat. Family life may be in c o n f l i c t w i t h career, s o m e t i m e s apparently controlled by the u n c e r t a i n t y principle, but a happy f a m i l y life can also become a source of inspiration for o n e ' s career life. D e v e l o p m e n t of o n e ' s career can t h u s be greatly accelerated because of the existence of a happy f a m i l y . I should be t h a n k f u l to Jingnan. He makes me o w n a c o m p l e t e life! Books Received / Livres reçus The f o l l o w i n g books have been received for r e v i e w . Readers are invited t o w r i t e r e v i e w s , in English or French, of books of interest t o t h e m . Books m a y be requested f r o m the book r e v i e w editor A n d r é Roberge by email at a n d r e @ g o l l u m . p h y s . l a u r e n t i a n . c a or at D e p a r t m e n t of P h y s i c s , Laurentian U n i v e r s i t y , Sudbury, Ontario, P3E 2 C 6 . Tel: (705) 6 7 5 - 1 151, e x t . 2 2 3 4 . F A X : (705) 6 7 5 - 4 8 6 8 . Please check out our new W e b s i t e at h t t p : / / w w w . l a u r e n t i a n . c a / w w w / p h y s i c s / C A P / and give us your c o m m e n t s . Les livres suivants nous sont parvenus pour la critique qui peut être faite en anglais ou en français. Si vous êtes intéressés de nous c o m m u n i q u e r une revue critique sur un ouvrage en particulier, v o u s êtes invités à v o u s m e t t r e en rapport avec le responsable de la critique des livres, A n d r é Roberge par c o u r i e r é l e c t r o n i q u e via a n d r e @ g o l l u m . p h y s . l a u r e n t i a n . c a ou au: D é p a r t e m e n t de p h y s i q u e , U n i v e r s i t é Laurentienne, S u d b u r y , Ontario, P3C 2 C 6 . Tel: (705) 675-1 1 51, poste 2234. Télécopieur: (705) 6 7 5 - 4 8 6 8 S.V.P. allez v i s i t e r n o t r e p a g e W 3 à h 11 p : / / www.laurentian.ca/www/physics/CAP/et faites-nous part de vos c o m m e n t a i r e s . GENERAL INTEREST The D e m o n Haunted W o r l d , by C. Sagan, 1995,pp:xviii + 457,ISBN0-394-53512-X; Q 1 7 5 . S 2 1 5 , Price: $ 3 5 . 9 5 (Can) G l i m p s i n g Reality: Ideas in Physics and the Link t o Biology, edited by P. Buckley and F. D. Peat, U n i v e r s i t y of T o r o n t o Press, 1 9 9 6 , pp: x v + 1 9 9 , ISBN 0 - 8 0 2 0 - 0 5 7 5 - 6 (he) 0 8020 6994-0(pbk);QC15.B83Price:$55 (he), $ 1 9 . 9 5 (pbk) H o w Life Begins; the Science of Life in the W o m b , by C. V a u g h a n , T i m e s Books, 1 9 9 6 , p p : x i v + 2 9 0 , ISBN 0 - 8 1 2 9 - 2 1 0 3 - 8 ; R G 5 2 5 . V 3 8 , Price: $ 3 2 (Can, he) The Physics Quick Reference Guide by E. R. Cohen, AIP Press, 1 9 9 6 , pp: x + 2 0 9 , ISBN 1 - 5 6 3 9 6 - 1 4 3 - 1 , Q C 6 1 .C65 (spiral bound) A Tour of the Calculus, by D. Berlinski, Pantheon, 1 9 9 5 , pp: x v i i + 3 3 1 , ISBN 0-679 42645-0; QA303.B488, Price: $ 3 8 . 5 0 (Can, he) Universe D o w n t o Earth, by N. de Grasse Tyson, Columbia University Press, 1995, pp: xiv + 2 7 7 , ISBN 0-231-07561-8; Q B 9 8 2 . T 9 7 , Price: $ 1 4 . 0 5 (pbk) Wonders of the Anctent World, National Geographic Society, 1994, pp:304, ISBN 087044-982 6; CB311.W63, Price: $49 (Can, he) G R A D U A T E T E X T S A N D PROCEEDINGS Chemical K i n e t i c s a n d Catalysis, by R.A. v a n S a n t e n a n d J . W . N i e m a n t s v e r d r i e t , Plenum, 1 9 9 5 , pp:xi + 2 8 0 , ISBN 0 - 3 0 6 - 4 5 0 2 7 - 5 ; Price: $ 6 9 . 5 0 (he) The Collected W o r k s of P. A . M . Dirac 1 9 2 4 1 9 4 8 , edited by R.H. Dalitz, C a m b r i d g e U n i v e r s i t y Press, 1 9 9 5 , p p : x x i i i + 1 3 1 0 , ISBN 0 5 2 1 - 3 6 2 3 1 - 8 ; Q C 2 1 . 2 . D 5 7 , Price: $ 2 5 0 (he) (Editor's note: This is a truly e x c e p t i o n a l book. I expect to get many requests for this book and I ' v e d e c i d e d NOT to honour requests on a f i r s t - c o m e basis as is usually the case. Instead, I ask the potential r e v i e w e r s t o provide a rationale as t o w h y they should get t o r e v i e w this v o l u m e and w i l l use those rationales t o decide w h o w i l l have the honour of r e v i e w i n g this book.) Core Level Spectroscopies for M a g n e t i c Phenomena; Theory and Experiment, edited by P.S. Bagus, G. Pacchioni and F. Parmigiani, Plenum, 1 9 9 5 , pp:viii + 2 7 4 , ISBN 0 - 3 0 6 - 4 5 0 0 6 - 2 ; Price:$ 8 9 . 5 0 Lorentzian W o r m h o l e s - From Einstein t o H a w k i n g , by M . Visser, AIP Press, 1 9 9 5 , pp: x x v + 4 1 2 , ISBN 1-56396-394-9; QC 1 7 3 . 6 . V 5 7 Price: ? Nuclear Decay M o d e s , edited by D.N. Poenaru, I 0 P , 1 9 9 6 , pp: x v + 5 7 7 , ISBN 0 - 7 5 0 3 - 0 3 3 8 7; Price: $ 3 2 0 (he) Optical-Thermal Response of Laser-Irradiated Tissue, edited by A.J. Welch and M . J . C . v a n G e m e r t , Plenum, 1 9 9 5 , pp: x x v i + 9 2 5 , ISBN 0 - 3 0 6 - 4 4 9 2 6 9; Q H 6 4 2 . 0 6 5 Price: $ 1 3 9 . 5 0 ( h e ) S t r u c t u r a l Electron C r y s t a l l o g r a p h y , by D.L. Dorset, Plenum, 1 9 9 5 , pp:xiii + 4 5 2 , ISBN 0 - 3 0 6 - 4 5 0 4 9 - 6 ; Price: $ 6 9 . 5 0 (he) T h e o r y and A p p l i c a t i o n of Laser Chemical Vapor Deposition, by J . M a z u m d e r and A . Kar, Plenum, 1 9 9 5 , pp: xii + 3 9 5 , ISBN 0-306 44936-6; TS695.M39Price: $89.50 (he) EN F R A N Ç A I S L ' A v e n t u r e de la f u s i o n nucléaire, par M . Trépanier, Boréal, 1 9 9 5 , p p : 3 0 3 , ISBN 2 - 8 9 0 5 2 - 5 2 7 - 9 ; H D 9 6 9 8 . C 2 2 T 7 3 , Prix: 2 4 . 9 5 $ (pbk) Book Reviews/ Revues des livres Riddles in Your T e a c u p , 2nd edition, by P. Ghose and D. H o m e , I 0 P Publishing, 1 9 9 4 , pp: xiii + 1 7 3 , ISBN 0 - 7 5 0 3 - 0 2 7 5 - 5 ; Price $ 2 2 U.S. (pbk) In this revised and enlarged second edition of Riddles in Your Teacup, the authors, P. Ghose and D. H o m e , have collected and have g i v e n brief scientific explanations for numerous examples of natural phenomena and c o m m o n p l a c e activities. This book, based on the a u t h o r s ' regular c o l u m n s in Indian popular science magazines and n e w s p a p e r s , is intended for the y o u n g w i t h a high school background in science. The book is divided into seven chapters of questions and puzzles w i t h solutions, f o l l o w e d by a chapter of u n a n s w e r e d problems. The g r o u p i n g of questions is not based on a t r a d i t i o n a l curricular classification of t o p i c s in p h y s i c s , but is rather based on the locations w h e r e a puzzle can be faced, such as in the kitchen, on the playground, or in popular f i l m s and novels. Q u e s t i o n s are posed on c o m m o n occurrences and activities s u c h as the buzzing of bees, the spin on tennis balls, and the causes of lightning, as w e l l as on certain aspects of science f i c t i o n , s u c h as the theoretical f l a w in W e l l s ' Invisible Man. A s w e l l , the t h o r o u g h solutions provided are easy to c o m p r e h e n d and are not replete w i t h the technical jargon abundant in puzzle booksof a similarnature. However, themost intriguing questions are f o u n d in the final chapter of " u n s o l v e d " riddles, w h i c h involve questions that remain u n a n s w e r e d , or have c o m p l e x solutions. The m a j o r i t y of the p u z z l e s are a c c o m p a n i e d by c o m i c a l illustrations by Suparno Chaudhuri, w h i c h enhance the laid-back s t y l e of the book and reinforce its appeal t o lay persons. It is u n f o r t u n a t e that the m a j o r i t y of solutions are not enhanced w i t h figures and illustrations, w h i c h greatly help in understanding the underlying physical principles behind a specific problem. In all, Riddles in Your Teacup is a delightful f o r a y into the deciphering of puzzles and c o m m o n occurrences f o u n d in every day life, lacking, h o w e v e r , the j a r g o n and technical explanations that do not appeal t o the y o u n g and t o lay persons. The price of $ 2 2 U. S., or about $ 3 0 Canadian is t o o steep for a p a p e r b a c k book of o n l y 1 7 3 p a g e s ; nonetheless, the book is an ideal choice for high school libraries, and may be added as an interesting supplement to traditional high school physics t e x t s . It is r e c o m m e n d e d , h o w e v e r , t o anyone w i t h an interest in science, because, as Dr. Paul Davies aptly states in the f o r e w o r d , "all scientists are y o u n g at h e a r t " . Samir C. Grover 1 4 0 5 B o r t o l o t t i Crescent O t t a w a , Ontario K1 B 5C1 Of One M i n d : The C o l l e c t i v i z a t i o n of Science, par J . M . Z i m a n , AIP Press, p p : x v i i + 4 0 6 , ISBN 1-56396-065-6; QC 1 6 . Z 5 6 A 3 Prix: 2 9 , 9 5 $US (couverture cartonnée). J o h n Z i m a n n ' e s t plus qu'un e x - p h y s i c i e n ayant t r o u v é refuge, après une carrière scientifique f r u c t u e u s e , au d é p a r t e m e n t d ' é t u d e s s o c i a l e s et é c o n o m i q u e s de l'Impérial College à Londres. Du moins, est-ce ainsi q u ' i l se présente, un peu à la blague, dans le dernier d ' u n e trentaine d'essais non-techniques rassemblés par les Presses de l ' A m e r i c a n Institute of Physics dans le c a d r e d e la série " M a s t e r s of M o d e m P h y s i c s " . Rares sont ceux qui possèdent la lucidité de longues années de pratique conjuguée avec une c o m p r é h e n s i o n t h é o r i q u e a p p r o f o n d i e d e l a s o c i o l o g i e propre aux c o m m u n a u t é s scientifiques et des m é c a n i s m e s g é r a n t l ' é v o l u t i o n de la c o n n a i s s a n c e . T r o p s o u v e n t , les c o m m e n t a i r e s et discours s ' i n s c r i v e n t dans d e u x t r a d i t i o n s d é f i c i e n t e s : c e l l e s du scientifique improvisé sociologue qui livre une image m y o p e et navrante de son univers familier ou du philosophe qui n'a de la science q u ' u n e connaissance livresque bien souvent dépassée ou t o u t bonnement fausse. Ziman, h e u r e u s e m e n t , f a i t p a r t i e d e l ' é l i t e des c o m m e n t a t e u r s de la v i e scientifique et évite les écueils habituels. La Physique au Canada mars à avril 1 9 9 6 127 Of One Mind: The Collectivization of Science, le t o u t dernier recueil de J o h n Z i m a n apporte donc une profondeur rafraîchissante aux discussions entourant le pourquoi et le c o m m e n t du processus de la d é c o u v e r t e . L'auteur n ' h é s i t e pas un instant à replacer dans une d y n a m i q u e sociale les c o m p o r t e m e n t des chercheurs et l ' a v a n c é e d e s c o n n a i s s a n c e s parla recherche. Ceci est particulièrement vrai dans les portraits critiques q u ' i l trace de quelques grands physiciens tels Einstein, D y s o n et Landau, et plus encore dans son analyse des c h a n g e m e n t s f o n d a m e n t a u x qui ont t r a n s f o r m é la recherche mais aussi la c o m m u n a u t é de chercheurs depuis plus de 5 0 ans. O n ne p e u t q u e r e g r e t t e r q u e l e s bouleversementsdesdernièresannéesdans la c o m m u n a u t é s c i e n t i f i q u e m o n d i a l e échappent à l'analyse lucide de Z i m a n puisque la plupart des essais rassemblés ici f u r e n t écrits durant la première m o i t i é des années 1 9 8 0 . A v e c la r é d u c t i o n marquée des f o n d s pour les grands projets et la f e r m e t u r e de g r a n d s l a b o r a t o i r e s de recherche industrielle, il n'est pascertainque la c o l l e c t i v i s a t i o n d e la science, qui justifie le t i t r e du recueil, d e m e u r e la voie du f u t u r en science. Sa d i s c u s s i o n des autres aspects de la vie des scientifiques demeure valide, t o u t e f o i s , que ce soit le côté néfaste du j u g e m e n t par les pairs, les jeux de pouvoirs et d e r e c o n n a i s s a n c e , le r e f u s par les scientifiques d'assumer leurs responsabilités, e t c . Il n'est pas certain que t o u t physicien se reconnaîtra dans le portrait de la science et de la c o m m u n a u t é scientifique que trace J o h n Ziman. Une chose est sûre, t o u t e f o i s , l ' i m a g e nuancée et c o m p l e x e d é c r i t e d a n s c e livre ne peut que nous amener à réfléchir sur nous m ê m e s , nos interactions avec nos collègues et avec la société en générale, et à découvrirqueplusieursdesmythesquenous e n t r e t e n o n s sur notre c o m m u n a u t é ne t r o u v e n t guère c o n t a c t avec la réalité. Normand Mousseau Département de physique Université de M o n t r é a l INVENTORS A N D DISCOVERERS, Changing OurWorld.NationalGeographicSoc., 1 988, pp 3 2 0 . ISBN 0 - 8 7 0 4 4 - 7 5 1 - 3 ; 0 - 8 7 0 4 4 - 7 5 2 - 1 d e l u x e a l k . paper; T 1 8 . I 5 7 . Price: $ 2 1 . 9 5 he; 2 9 . 9 5 deluxe, he. The i n t r o d u c t i o n t o t h i s eleven chapter opus indicates that the scope of the book presumes t o begin at the beginning of the 1 8 t h c e n t u r y a n d ends w i t h s o m e indications of promises of the T e c h n o l o g y of T o m o r r o w . The Power of Steam uses an historical approach d a t i n g f r o m about 1 6 9 0 (Denis Papin of France). A one page insert outlines t h e w o r k of George and Robert Stephenson, and a t w o - p a g e spread is dedicated to the c o n t r i b u t i o n s of Robert Fulton, one of the e a r l y s u c c e s s f u l d e v e l o p e r s of t h e s t e a m b o a t . Chapter 3 takes us on an historical t r i p into The Age of Electricity beginning w i t h the early w o r k of the V o l t a . Special s u b - s e c t i o n s a r e d e v o t e d t o t h e w o r k of T h o m a s Edison, NikolaTesIa, and Graham Bell. On Wheels & Wingstakes on the s t o r y of the m o t o r c a r s and airplanes. The f a m e d G o t t l i e b Daimler and Carl Benz get a three-page spread of their w o r k in car and 128 Physics in Canada M arch/Aprill 9 9 6 motor development. Henry Ford's c o n t r i b u t i o n t o the car industry is outlined in a five-page section. The W r i g h t brothers (Orville and Wilbur) also get a special four-page s k e t c h of their c o n t r i b u t i o n to the d e v e l o p m e n t of airplanes. The historical d e v e l o p m e n t s of m o d e r n day materials is f o u n d in Chapter 5, A World of New Materials. It begins w i t h the early w o r k s of about 1 8 5 0 describing a t t e m p t s to make " r u b b e r " into a " u s e f u l " product. Included is an interesting look at the s t o r y of the n e w plastics and alloys. Charles Goodyear (rubber) and Leo Baekeland (Bakelite) have special sub-sections d e v o t e d to their w o r k . Capturing the Image, traces out the d e v e l o p m e n t of p h o t o g r a p h y . Special inserts look at the life and c o n t r i b u t i o n s of W i l l i a m Henry Fox Talbot, George Eastman, and E d w i n Land. Strangely, t h o u g h , there is no m e n t i o n of present-day digitization of pictorial elements - w h i c h w o u l d bring the reader t o the very latest a d v a n c e m e n t s in the field of p h o t o g r a p h y . The chapter entitled Messages by Wireless traces out the early days of telegraphy, radio, radar, television. A three-page biography of Guglielmo Marconi, a n d a f o u r - p a g e d e s c r i p t i o n of t h e c o n t r i b u t i o n s of Bell Laboratories scientists - w h i c h include such notables as W a l t e r Brattain, J o h n Bardeen, W i l l i a m Shockley, and C l i n t o n Davisson - are indeed v e r y interesting sub-sections of this chapter. Power Particles deals mainly w i t h atomic energy. A special section of t h e chapter is d e v o t e d to the w o r k s of Ernest 0 . Lawrence of c y c l o t r o n f a m e . A n o t h e r sub-section is d e v o t e d to the c o n t r i b u t i o n s of Enrico Fermi, the great nuclear physicist. M o d e r n day inventions are based in large part on c o m p u t e r chips, the subject of Chapter 9. The history takes us f r o m the early days of the abacus t o the m o d e r n age of c o m p u t e r s . A special section of the chapter is d e v o t e d t o John von Neumann, a name almost s y n o n y m o u s w i t h c o m p u t e r design. The penultimate chapter is entitled Engineering Life. Here w e find reference t o the w o r k of Jenner, Pasteur, Lister, and Paul Ehrlich. So t o o are discussed the w o r k s of Fleming, of Selman A. W a k s m a n , and of Banting and Best, and Jean- François Borel. A special section in this chapter is d e v o t e d t o the w o r k of W i l l i a m J . K o f f , a pioneer in the field of artificial organs. The t e x t proper ends w i t h Technology of Tomorrow. It begins w i t h a d i s c u s s i o n of t h e d e v e l o p m e n t of s u p e r c o n d u c t o r s , t h e n goes on t o describe some modern-day applications. There is also a d e s c r i p t i o n of the potential of D N A studies f r o m location of h u m a n genes t o the plans for the analysis of the bases' sequencing. The main body of the t e x t is f o l l o w e d by a section about the authors, an important part of the book, since INVENTORS A N D DISCOVERERS, Changing Our W o r l d , is a multi-author publication. A second s e c t i o n on A c k n o w l e d g m e n t s , and a third on Illustration Credits, precedes a six-page t h r e e - c o l u m n per page Index. The special inserts, w h i c h give u s a short biography of a number of inventors and developers, are easy t o spot as t o their beginning, but s o m e t i m e s the end of the inserts are a little harder t o locate. The t y p e s c r i p t is almost the same as that of the main body, thus if y o u are reading the main t e x t , it is s o m e t i m e s a little bothersome t o have t o hunt t o find its continuation! The text is very w e l l edited. I f o u n d only one slight error of vocabulary viz: on p. 4 5 , the expression electric battery is used w h e n electric cell is intended. Too, I w a s a m u s e d by a line in discussing some of Graham Bell's w o r k : " W h i l e vacationing at the Bell h o m e in Ontario, Canada . . . " , (p. 54). The illustrations are indeed excellent and the w r i t e - u p s are v e r y w e l l done! It w o u l d be excellent background material for use as c o m p l e m e n t a r y material especially for u n i v e r s i t y science lectures. On the other hand, since the w o r k contains very little m a t h e m a t i c s , anyone w i t h a m o d i c u m of learning can profit f r o m its reading. I do believe that it could be a source of inspiration, for s t u d e n t s of all ages. Thus I do b e l i e v e t h a t I N V E N T O R S A N D DISCOVERERS, Changing Our W o r l d should be f o u n d in all libraries. Gérard Hébert, Emeritus Dept of Phys. & A s t r o n . York U n i v e r s i t y LONG RANGE C A S I M I R FORCES, THEORY A N D RECENT EXPERIMENTS O N A T O M I C SYSTEMS, edited by Frank S. Levin, David A.Micha,Plenum,Press, 1 993,ppxv + 357. ISBN 0 - 3 0 6 - 4 4 3 8 5 - 6 ; Q C 6 8 0 . L 6 3 . Price: $ 7 5 . 0 0 (he). F o r t y - e i g h t y e a r s a g o , Casimir, m o t i v a t e d by e x p e r i m e n t a l puzzles on t h e stability of colloids s h o w e d that parallel uncharged metal plates w e r e a t t r a c t e d by a f o r c e per unit area equal t o w i t h i n a numerical constant t o the reciprocal of the distance b e t w e e n t h e m t o the f o r t h p o w e r t i m e s Planck's c o n s t a n t and the speed of light. For other s y m m e t r i c shapes the f o r c e can be repulsive. It is not obvious intuitively w h y the e f f e c t is proportional t o the speed of light and h o w t o predict the sign of the e f f e c t . Experimentally t h i s e f f e c t , and analogous e f f e c t s all due to retarded interactions, have been checked e x p e r i m e n t a l l y t o the order of t e n percent. It is the purpose of this book t o elucidate recent a t t e m p t s t o measure Casimir forces t o high a c c u r a c y in an a t o m i c physics experiment. This first chapter by Spruch is a d e l i g h t f u l t u t o r i a l , clear, discursive, amusing on the physical origin of the Casimir e f f e c t s and m u c h more. The m o s t sensitive m e t h o d to study the Casimir f o r c e s appears t o be in very high precision e x p e r i m e n t s on Rydberg States of Helium. Lundeendescribes beautiful e x p e r i m e n t s on the n = 10 fine s t r u c t u r e of Helium. The measurements, accurate t o better t h a n a kilohertz, measure the small Casimir energy c o n t r i b u t i o n s t o a p r e c i s i o n o f 10 percent. In order t o determine the Casimir energies it is n e c e s s a r y t o k n o w all o t h e r e n e r g y c o n t r i b u t i o n s i n c l u d i n g r e l a t i v i s t i c and q u a n t u m e l e c t r o m a g n e t i c t o a very high accuracy. Drake, w h o calculates the non-relativistic energies t o better t h a n f o u r t e e n figures and also the relativistic and Lamb shift c o n t r i b u t i o n s , presents clearly the p r o c e d u r e s a n d r e s u l t s o f this remarkable numerical w o r k . D r a c h m a n , in the spirit of Rydberg, calculates the energies of these states in perturbation t h e o r y . A l t h o u g h not as accurate as the numerical calculation, his results are perhaps easier t o interpret physically and are s u f f i c i e n t l y accurate for t h e e x i s t i n g e x p e r i m e n t . Finally Sucher and Feinberg present a m o r e " h i g h b r o w " account of the t h e o r e t i c a l f o u n d a t i o n s . M u c h of this book is a joy t o read - so put d o w n y o u r C h r i s t i e m y s t e r y and pick up your "Casimir Forces". Dr. F . W . Dalby UBC Q U A N T U M M E C H A N I C S , AN I N T R O D U C T I O N FOR DEVICE PHYSICISTS AND ELECTRICAL ENGINEERS, by D . K . Ferry, IOP, 1 9 9 5 , pp: ix + 2 8 8 . ISBN 0 - 7 5 0 3 - 0 3 2 7 - 1 <hc) 0 - 7 5 0 3 - 0 3 2 8 - X (pbk). This book uses a nont ri vial a p p r o a c h to t e a c h quantum mechanics, by e m p h a s i s i n g m o d e r n applied a s p e c t s . The m a t e r i a l is v e r y c o n c i s e and t o the p o i n t . N o t e t h a t t h i s could cause s o m e p r o b l e m s t o f r e s h m e n . H o w e ver if w e ever w a n t t o e x c i t e s t u d e n t s about q u a n t u m m e c h a n i c s , w e should s h o w t h e m h o w useful it really is: this book does that in an excellent w a y . Q u a n t u m M e c h a n i c s ... is d i v i d e d into 9 chapters. Following theintroductorychapter w h i c h i n t r o d u c e s the c o n c e p t of w a v e s and particles and discusses modern n a n o s t r u c t u r e e x p e r i m e n t s , the next s e v e n chapters guide the reader t h r o u g h S c h r o e d i n g e r e q u a t i o n , tunnelling, h a r m o n i c oscillator.operators.perturbationtheoryand m o t i o n in c e n t r a l l y s y m m e t r i c p o t e n t i a l s . The last and m o r e a d v a n c e d chapter deals w i t h e l e c t r o n s and a n t i - s y m m e t r y . Q u a n t u m M e c h a n i c s ... c a n be used as a t e x t b o o k for t e a c h i n g Q M since every c h a p t e r is s u p p l e m e n t e d w i t h several p r o b l e m s . I s t r o n g l y r e c o m m e n d this as supplementary reading to students s t u d y i n g Q M , but not as a first t e x t b o o k . S t u d e n t s s t u d y i n g it w i l l f i n d a v e r y useful m a t e r i a l that illustrates i m p o r t a n t a s p e c t s of m o d e r n s o l i d - s t a t e e l e c t r o n i c s and q u a n t u m m e c h a n i c s . These t o p i c s are b e c o m i n g m o r e and m o r e i m p o r t a n t in t o d a y ' s m i c r o e l e c t r o n i c and o p t o e l e c t r o n i c d e v i c e s , not t o m e n t i o n the n e w e m e r g i n g field of n a n o e l e c t r o n i c s . In conclusion, this book will be a valuable addition not only as a teaching source for quantum mechanics but also as a source of information on the principles of modern nanoelectronic devices for research physicists. Dr. M a r e k W a r t a k D e p a r t m e n t of Physics and C o m p u t i n g W i l f r i d Laurier U n i v e r s i t y PALE BLUE D O T : A V I S I O N OF THE H U M A N FUTURE IN SPACE, by Carl Sagan, R a n d o m H o u s e , N e w Y o r k , 1 9 9 4 , pp xviii + 4 2 9 ISBN 0-679-43841-6 (hardcover) Carl Sagan is a w e l l - k n o w n planetary a s t r o n o m e r and science popularizer, t h e latter m o s t n o t a b l y for his " C o s m o s " t e l e v i s i o n series. In t h i s book he d i s c u s s e s a w i d e range of t o p i c s related to the general t h e m e of p l a n e t a r y a s t r o n o m y and the e x p l o r a t i o n of the solar s y s t e m , at a level similar to " C o s m o s " , i.e. suitable for the " i n t e r e s t e d lay r e a d e r " . Like his other w o r k s , t h i s book blends s c i e n c e , h i s t o r y , s p e c u l a t i o n s o n the f u t u r e , and the a u t h o r ' s o w n philosophical and views. political The author begins by e x a m i n i n g " . . . the w i d e s p r e a d c l a i m s m a d e o v e r all of h u m a n h i s t o r y t h a t our w o r l d and our species are unique, and even central to the w o r k i n g s and purpose of the C o s m o s . " He describes h o w these claims have gradually yielded t o m o d e r n s c i e n t i f i c v i e w s of our u n p r i v i l e g e d place in a naturalistic c o s m o s and our essential s i m i l a r i t y to other species. Readers of d i f f e r i n g philosophical or religious persuasions might take issue w i t h the a u t h o r ' s s t r o n g l y a r t i c u l a t e d h u m a n i s t i c v i e w s here, but I f o u n d these i n t e r e s t i n g and q u i t e c o m p e l l i n g , t h o u g h somewhat disconnected from the remainder of the b o o k . T h e author t h e n m o v e s o n t o t h e c e n t r a l f o c u s of the b o o k : the u n m a n n e d r o b o t i c e x p l o r a t i o n of the planets. He first briefly d i s c u s s e s the e x t e n t to w h i c h life on Earth is d e t e c t a b l e f r o m space at v a r i o u s resolutions and w a v e l e n g t h s . He t h e n describes in more detail various m i s s i o n s by the U n i t e d States and the f o r m e r Soviet U n i o n to the V e n u s , M a r s , J u p i t e r , Saturn, Uranus, and N e p t u n e s y s t e m s . The author does an excellent j o b of c o n v e y i n g the e x c i t e m e n t of s c i e n t i f i c d i s c o v e r y here, d e s c r i b i n g several cases of c o n f l i c t i n g results and i n t e r p r e t a t i o n s of a m b i g u o u s data. I particularly enjoyed his d i s c u s s i o n of the c o n f l i c t i n g evidence for w h e t h e r Saturn's moon Titan may have h y d r o c a r b o n lakes or oceans. The author argues strongly that a s t r o n o m y , by its v e r y nature, tends t o foster international cooperation: researchers " . . . d i s c o v e r that splendid w o r k , w o r k that c o m p l e m e n t s their o w n , is being done by researchers in other nations; or that t o solve a p r o b l e m , y o u need data or a p e r s p e c t i v e (access to the s o u t h e r n s k y , for example) that is unavailable in your c o u n t r y . " . He describes several e x a m p l e s of i m p o r t a n t global e f f e c t s on Earth that w e r e first d i s c o v e r e d by planetary a s t r o n o m e r s , n o t a b l y the danger of nuclear winter and the d e p l e t i o n of the ozone layer by ® C.A.P. 1 9 9 6 . chlorofluorocarbons. Like most astronomers, the author is very s k e p t i c a l of m a n n e d space p r o g r a m s . He d i s c u s s e s the A p o l l o program's minimal e m p h a s i s on science, and ponders at some length whether future manned missions to Mars are a justifiable e x p e n d i t u r e in the late 2 0 t h and early 2 1 s t c e n t u r i e s . The author t h e n turns t o a c o n s i d e r a t i o n of the consequences and likelihood of catastrophic comet or asteroid i m p a c t s on t h e earth. He argues t h a t i n v e n t o r y i n g p o t e n t i a l l y - i m p a c t i n g bodies is " . . . p r u d e n t , i t ' s g o o d s c i e n c e , and it d o e s n ' t c o s t m u c h . " . But he argues s t r o n g l y against the i m m e d i a t e d e v e l o p m e n t of s y s t e m s t o d e f l e c t s u c h bodies, because of their immense potential for misuse, by d e f l e c t i n g o t h e r w i s e near-missing bodies to hit the Earth. He argues that i t ' s better t o w a i t - and take the roughly 1 in 1 0 0 0 risk of a c a t a s t r o p h i c i m p a c t - until h u m a n i t y is (hopefully) more unified in a c e n t u r y or t w o . The author f o r e c a s t s that h u m a n i t y m a y have a w e l l - d e v e l o p e d , unified, and environmentally benign Earth-wide c i v i l i z a t i o n by the 2 2 n d c e n t u r y . A s s u m i n g this, he argues that w e , and indeed all civilizations at c o m p a r a b l e stages of d e v e l o p m e n t , w i l l i n e v i t a b l y bo d r i v e n to v o y a g e out into our solar s y s t e m . He d i s c u s s e s the p r o s p e c t s for t e r r a f o r m i n g V e n u s , M a r s , and a f e w of the J o v i a n and Saturnian m o o n s . Finally, the author d i s c u s s e s SETI: the search for e x t r a t e r r e s t r i a l intelligence. In the past 35 years this has g r a d u a l l y b e c o m e a serious b r a n c h of a s t r o n o m y , and a g r o w i n g n u m b e r of increasingly s e n s i t i v e searches have been m a d e . The author describes s o m e of major radio SETI searches t o d a t e , and the p r o s p e c t s for much more sensitive and hopefully b e t t e r - f u n d e d ones in the f u t u r e . He outlines s o m e of the a r g u m e n t s regarding the Fermi paradox (if t h e y ' r e out there, w h y h a v e n ' t w e seen t h e m y e t ? ) , and closes w i t h s o m e s p e c u l a t i o n s on a d i s t a n t f u t u r e w h e n h u m a n s v o y a g e t o the s t a r s . Overall, I enjoyed t h i s b o o k . I f o u n d t h e author's wide-ranging discussions fascinating, inspiring, and thought-provoking. The m a n y color photographs and paintings nicely c o m p l e m e n t the t e x t , and are beautifully reproduced. The book d e s e r v e s a w i d e readership. Jonathan Thornburg thornbur@theory.physics.ubc.ca Physics D e p a r t m e n t , UBC All rights reserved. Authorization to p h o t o c o p y items for internal or personal use, or the internal or personal use of specific clients, is granted by the C.A.P. The above permission does not extend to other kinds of copying, such as copying for general distribution, for advertising, or promotional purposes, for creating new collective w o r k s , or for resale. For such copying, arrangements must be made w i t h the publisher. Reprint Price list (B&W) 8 1/2 x 11 Corner Stapled - (GST extra) Copies 50 100 200 300 2 $ $ $ $ pages 35.00 45.00 65.00 95.00 4 pages $ 45.00 $ 60.00 $ 90.00 $135.00 6 pages $ 55.00 $ 75.00 $1 1 5 . 0 0 $175.00 La Physique au Canada Add'l 2 pages $ 10.00 $ 17.50 $ 30.00 $ 47.50 mars à avril 1 9 9 6 129 POSTDOCTORAL INDUSTRIAL RESEARCH FELLOWSHIPS POSITION FABRICATION OF THIN FILMS OPTOELECTRONIC MPB Technologies Inc. is seeking candidates to nominate for Natural Science and Engineering Research Council of Canada Industrial Research Fellowships. FOR APPLICATIONS Applications are invited for a posl-docloral in t h e D e p a r t m e n t of E n g i n e e r i n g P h v s i c s at The Fellowships will normally be tenable in the Laboratories of MPB Technologies Inc. located at Dorval. Quebec or Ottawa. Ontario. University. T h e successful c a n d i d a t e will j o i n a research Projects in which successful candidates may be involved include: • Electromagnetics and Millimeter Waves • Lasers and Laser Applications • Electro-optics and Acousto-optics • Plasma, Fusion and Space Technology • Expert Systems and Artificial Intelligence • Robotics Physics in Canada film applications. Engineering optical Applicants Physics. Physics, coatings should or a hold a related and/or T h e p o s i t i o n is a v a i l a b l e i m m e d i a t e l y . Applications, i n c l u d i n g a c o v e r letter. C V . list publications, a n d the n a m e s a n d a d d r e s s e s of at Dr. Peter M a s c h e r D e p a r t m e n t of E n g i n e e r i n g Physics M c M a s t e r University. Hamilton, Ontario Canada L8S 4L7 Fax: (905) 527-8409 e-mail: mascher@mcmaster.ca GRADUATE RESEARCH ASSISTANTSHIPS ATMOSPHERIC AND OCEANIC SCIENCES McGILL UNIVERSITY , 1m of least t h r e e r e f e r e n c e s s h o u l d b e s e n t to: (514) 683-1490 (514) 683-1727 M arch/Aprill 9 9 6 in thin t h i n film c h a r a c t e r i z a t i o n t e c h n i q u e s w o u l d b e a n a s s e t . The University of British Columbia 130 for of discipline. E x p e r i e n c e in p l a s m a assisted C V D Dr. M.P. Bachynski MPB Technologies Inc. 1725 North Service Road Trans-Canada Hiohway Dorval, Quebec CANADA H9P 1J1 • MSc and PhD degree programs in analytical, biological, inorganic, organic, physical, nuclear and theoretical chemistry • interested students with backgrounds in other disciplines, physics or biology, are also encouraged to apply • modern laboratory space and equipment in new chemistry/physics and materials science research buildings • participation in Networks of Excellence programs in protein engineering and mechanical w o o d pulping • faculty members with joint appointments in biochemistry, pharmaceutical sciences, pathology, TRIUMF and oceanography • competitive graduate stipends and supplements to NSERC and other major scholarship holders • an opportunity to live in Vancouver, a vibrant international city with a beautiful ocean and mountain setting For further information please write: Dr. P. Kash, Professor Phone (604) 822-9206 Department of Chemistry, U.B.C.. Fax (604) 822-2847 Vancouver, B.C., Canada V6T 1Z1 kash@chem.ubc.ca Check out o u r site o n the World Wide Web: http://www.science.ubc.ca/departments/chem the fabrication Ph.D. Interested recent graduates, individuals currently completing posldoctorale fellowships, or candidates who will graduate in Ihe near future with a background in physics, electrical engineering or computer science and who are Canadian citizens or landed immigrants are invited to write or call: try Graduate Studies in Chemistr _ QUALITY SCIENCE IN A g r o u p w o r k i n g on a n N S E R C Strategic Project o n optoelectronic Salaries and other benefits are the same as for permanent staff of equivalent experience. Telephone: Fax: position McMaster Following the graduation last year of nine Ph.D. students in atmospheric and oceanic sciences, a number of research assistant positions are available for highly motivated Ph.D. and M Sc. students for the 1996-97 academic year. The current fields of research activity in the Department of Atmospheric and Oceanic Sciences include atmospheric physics and chemistry, synoptic and dynamic meteorology, air-sea and air-ice-sea interactions, coupled atmosphere-oceari modelling, paleoclimate modelling, climate variability, ocean circulation and coastal oceanography. In addition to the facilities within the Department of Atmospheric and Oceanic Sciences, students can work in radar meteorology at the J. Stewart Marshall Observatory, interact with members in the Centre for Climate and Global Change Research, and also conduct research with staff at the Numerical Weather Prediction Centre in Dorval. There are also opportunities to work with marine scientists at l'Université Laval and the Department of Fisheries and Oceans. Potential graduate students should have a strong undergraduate background in physics, applied mathematics, engineering, geophysics, computer science, or physical chemistry. Recent M.Sc. graduates in atmospheric science or physical oceanography are also welcome to apply for Ph.D. studies. For further information, please contact the Graduate Studies Coordinator, Department of Atmospheric and Oceanic Sciences, McGill University, 805 Sherbrooke Street West, Montreal Quebec, H3A 2K6, Canada, or send an e-mail to: gradinfo@zerphyr.meteo.mcgill.ca. Information regarding the department can be seen on our web site: http://zephyr.meteo.mcgill.ca Corporate Members // Membres corporatifs Canadian Association of Physicists // Association canadienne des physiciens et physiciennes The Corporate Members of the Canadian Association of Physicists are a group of corporations, laboratories, and institutions w h o , through their membership, support the educational activities of the Association. Les membres corporatifs de l'Association canadienne physiciens et physiciennes sont un groupe corporations, de laboratoires ou d'institutions supportent financièrement les activités éducatives l'Association. des de qui de The entire proceeds of corporate membership contributions are paid into the CAP Educational Trust Fund and are tax deductible. Les revenus de leurs contributions déductibles aux fins d'impôt sont entièrement versés au Fonds Educatif de I'ACP. A t l a n t i c N u c l e a r S e r v i c e s Ltd. Atmospheric Environment Service A t o m i c Energy of C a n a d a L i m i t e d B e l l - N o r t h e r n R e s e a r c h Ltd. C T F S y s t e m s Inc. E d w a r d s High V a c u u m C a n a d a EG&G Instruments F a i r C o p y S e r v i c e s Inc. G e n n u m Corporation G e o r g e Kelk C o r p o r a t i o n G l a s s m a n H i g h V o l t a g e Inc. Harvard Apparatus Canada Hydro-Québec Institut national d'optique L e C r o y C a n a d a Inc. L e y b o l d C a n a d a Inc. Lumonics Inc. M P B Technologies Inc. N e w p o r t Instruments Canada Corp. Ontario Hydro O p t e c h Incorporated Spectra Research Corporation TRIUMF The Canadian Association of Physicists cordially invites interested corporations and institutions to make application for Corporate membership and will welcome the inquiries addressed t o the Executive Director. L'Association canadienne des physiciens et physiciennes invite cordialement corporations et institutions à faire partie des membres corporatifs. Renseignements auprès de la directrice exécutive. CANADIAN ASSOCIATION OF PHYSICISTS / ASSOCIATION CANADIENNE DES PHYSICIENS ET PHYSICIENNES 151 Slater, Suite 903 Ottawa, Ontario K 1 P 5 H 3 Phone: (613) 237-3392 or Fax: (613) 238-1677 E-mail: CAP@physics.carleton.ca Excellent light reading. Newport's new laser diode instrumentation line consists of a complete family of multichannel, modular controllers and stand-alone laser diode drivers, temperature controllers, and mounts. Newport offers the industry's widest range of fiber a l i g n m e n t systems, including the new 562F Precision Alignment Stage, a robust and reliable platform for repetitive fiber positioning applications. TWo new fiber optic component families, fiber-pigtailed filters and isolators, and twenty new optical fibers are featured in the fiber optics section. In the light measurement instrument section, you'll find our new dual-channel, lowpower optical meter along with an extensive line of hand-held and bench-top models. Newport's new family of high-speed detectors features bandwidths of 1.5 t o 29 GHz, and operates in the 400 t o 1700 n m range. Our extensive detector line also includes low-power, highpower and energy detectors. Whether you need to control a laser diode, launch light into an optical fiber, align fibers and fiber optic components, or measure an optical signal — you'll find a solution in the Newport Photonics Catalog. It represents the broadest photonics product offering available from one source. With components and systems for applications in R&D, test and measure- ® 1 ment, and manufacturing. All are brought together in one easy-to-use format, a 160-page adjunct to the industry-standard Newport Catalog. So now your light reading can be the source of some serious photonics solutions. For your free copy of the Newport Photonics Catalog, call 1-800-267-8999. Or visit our Web site at http://www.newport.com. Newport Instruments. Canada Corporation, 2650 Meadowvale Blvd.. Unit 3, Mississauga, Ont. L5N 6M5 Tel: (905| 567-0390 Fax: (905) 567-0392. Toll Free 1-800-267-8999 Newport/Klinger Headquarters, U.S.A. Tel. 1-800-222-6440 FM27207 The breadth of products in Newport's Photonics Catalog makes it the ideal source book for implementing your complete fiber optic system solutions. Come see us at OFC '96. viewport