!! )! ( NN N N + = ��

Transcription

!! )! ( NN N N + = ��
CEM-004 –Termodinâmica dos Sólidos – 1° semestre 2015.
Lista de exercícios (3) 24/03/2015
1. Considere Au mantido na forma de liquido super-resfriado a 1238 K em uma condição
adiabática. Calcule a fração de Au que se solidifica espontaneamente, para manter o equilíbrio
sólido – líquido à temperatura de fusão do Au.
2. Supondo que 02 elementos A e B se misturem de maneira
( N A  N B )!
homogênea e, portanto todas as configurações dos átomos A e B são
 conf 
igualmente prováveis, o número de maneiras distintas de arranjar os
N A! N B !
átomos nos sítios atômicos será dado pela equação ao lado:
Esquematize o número de maneiras distintas que se pode arranjar 3 bolas pretas e 3 bolas brancas
num arranjo retangular. Compare sua resposta com a equação acima.
3. Calculate the number of microstates corresponding to each of the following combinations:
(a) A system with three particles and four energy levels.
(b) A system with 15 particles and four energy levels.
(c) A system with four particles and 15 energy levels.
(d) A cluster of 50 particles each of which may reside in any of 30 energy levels.
(e) 1000 particles that may reside in 100 energy levels.
4. A system containing 500 particles and 15 energy levels is in the following macrostate:
{14,18,27,38,51,78,67,54,32,27,23,20,19,17,15}
This system experiences a process in which the number of particles in each energy level changes by
the following amounts:
{0, 0,-1,-1,-2, 0,+1,+1,+2,+2,+1, 0,-1,-1,-1}
Estimate the change in entropy for this process.
5. Discuta o significado da equação S = k.lnΩ + constante enfatizando as diferenças entre a
termodinâmica fenomenológica e a termodinâmica estatística.
6. Discuta o significado e importância da função de partição, P. Indique como obter as funções
termodinâmicas macroscópicas em termos da função de partição. Exemplifique através da energia
livre de Helmholtz e energia interna.
7. Consider a box of volume V divided in two by a partition. One one side of the partition are N gas
molecules, and there is a vacuum on the other side. When the partition is removed, the gas
molecules will distribute themselves randomly. Calculate the entropy difference between the two
states, using the Boltzmann relation.
8. Calculate the probability that upon filling six boxes at random with six objects, one box will
contain three, two will contain none, and three boxes will contain one each.
9. It will be recalled that the second law states, for a spontaneous process, ΔSsyst+ΔSsurr > 0. What is
ΔSsyst for the mixing process? What will be the sign of (ΔSsyst+ΔSsurr) ?
10. Consider a crystal containing N sites. Let us fill only Na sites with atoms, leaving (N - Na)
vacant. Calculate the mixing entropy change for this process.