jblobel@tmse.nl TOSHIBA
Transcription
jblobel@tmse.nl TOSHIBA
CT-Volumenrekonstruktion mit dem MUSCOT-Algorithmus und TCOT-Algorithmus (MUltiSlice COnebeam Tomographie) (True COnebeam Tomographie) jblobel@tmse.nl TOSHIBA Einzelschicht- Helical CT r Focus β Axial y x Saggital jblobel@tmse.nl Coronal TOSHIBA Conebeam- Geometrie Kegelwinkel Fächerwinkel Röntgenstrahler Kegelwinkel Z- Richtung jblobel@tmse.nl TOSHIBA Outline Step-and-shoot (non-helical) scan fan-beam reconstruction Cone-beam reconstruction (Feldkamp) Helical scan Review of single-slice and 4-slice CT HFK (TCOT): Cone-beam ASSR (AMPR & SMPR): Quasi cone-beam HFI+ (MUSCOT): Fan-beam jblobel@tmse.nl TOSHIBA Cone-beam geometry Quasi cone-beam geometry Fan-beam geometry HFK ASSR HFI+ w w w z jblobel@tmse.nl TOSHIBA MUSCOT- Rekonstruktion Rotationsachse (z- Achse) Primärprojektionen mit verschiedenen Kegelwinkel Rekonstruktionsebenen Schichtdicke Filterprozess für z- Richtung mit variabler Filterweite (FW) Sekundärprojektionsdaten ohne Kegelwinkeleffekt 1. 2. 3. 4. Schicht jblobel@tmse.nl TOSHIBA MUSCOT- Rekonstruktion 1. 0 2. 3. Rot. Pitch 4.5:1 (1.125:1) 1 2 3 4 Schicht 180 360 Zusätzliche Projektionen für die gewichtete Interpolation Rekonstruktionsebene jblobel@tmse.nl TOSHIBA MUSCOT- Rekonstruktion jblobel@tmse.nl TOSHIBA MUSCOT- Rekonstruktion HP=2.5 Ergebnis: Dosiseinsparung ≈ 30- 40% jblobel@tmse.nl TOSHIBA jblobel@tmse.nl TOSHIBA Problem für Cone-beam Helical Problem in cone-beam helical scan Scan -Verstärkter Kegelwinkel -Kleine Messintervalle in z-Richtung -Tischgeschwindigkeiten (Bewegung) Problem wird stärker Z 8 x 1 mm Z 16 x 1 mm Z 8 x 2 mm jblobel@tmse.nl TOSHIBA HFK (TCOT) Datenbeitrag zur Bildebene Bildebene HFI >> w HFK (TCOT) z w Gut im Zentrum hp = 7 jblobel@tmse.nl Gut im Zentrum und am Bildrand TOSHIBA Feldkamp Algorithmus für Conebeam Geometry Schichtprofil jblobel@tmse.nl TOSHIBA Feldkamp Algorithmus für Conebeam Geometry Schichtprofil jblobel@tmse.nl TOSHIBA Relative evaluation [A > B > C] Algorithm HFK ASSR Cone-angle problem accurate partial 1. Artifact A B 2. Z resolution (SSP) @ center B C @ off-center A B 3. Practical maximum helical pitch A A 4. Required computation power C B 5. Easy to implement C B HFK ASSR HFI+ neglect C A C C A A HFI+ Amount of error or z resolution z jblobel@tmse.nl TOSHIBA HFK (TCOT) Accurate 3-D backprojection along x-ray path Weighting data considering cone-angle and view angle jblobel@tmse.nl TOSHIBA Kopf- Scans Scanschichtdicke [mm] 10 9 8 7 6 5 4 4-Schicht- CT (hp = 6) 3 2 1 0 5 10 15 8 x 4 mm 4 x 5 mm 8-Schicht- CT (hp = 10) 8 x 3 mm 4 x 4 mm 16 x 2 mm 16-Schicht- CT (hp = 20) 20 25 30 35 40 45 50 Tischgeschw. [mm/Rot.] jblobel@tmse.nl TOSHIBA Abdomen-Scans Scanschichtdicke [mm] 10 9 8 7 6 5 4-Schicht- CT 4 (hp = 6) 3 2 1 0 5 10 15 8- Schicht- CT (hp = 10) 4 x 5 mm 8 x 4 mm 4 x 4 mm 8 x 3 mm 16 x 2 mm 16- Schicht- CT (hp = 20) 20 25 30 35 40 45 50 Tischgeschw. [mm/Rot.] jblobel@tmse.nl TOSHIBA Reference of algorithms HFK: Helical Feldkamp w/ weighting function = TCOT (True cone-beam tomography) Aradate H and Nambu K, Japanese Patent No. 2,825,352 (filed in 1990) Taguchi K, U.S. Patent No. 5,825,842 (Filed in 1995) ASSR (Advanced single-slice rebinning) Machida Y, Japanese patent disclosure (KOKAI) H8-187240 (Filed in 1995) Kachelriess M, Schaller S, Kalender WA, “Advanced single-slice rebinning in cone-beam spiral CT,” Med Phys 2000; 27: 754-772 à AMPR (Adaptive multiple-plane reconstruction) Schaller S, et al, “Novel approximate approach for high-quality image reconstruction in helical cone beam CT at arbitrary pitch,” SPIE 2001; 4322: 113-127. à SMPR (Segmented multiple-plane reconstruction) Stierstorfer K, et al, “Segmented multiple plane reconstruction – A novel approximate reconstruction scheme for multislice spiral CT,” The 6th international meeting of fully 3D image reconstruction in Radiology and Nuclear Medicine 2001: 95-97. Flohr TG, et al, “A new cone-beam spiral CT reconstruction approach for a 16-slice scanner with full dose utilization at arbitrary pitch,” Radiology 2001; 221(P): 543. HFI+ (Helical filter interpolation with “cross-over correction”) Taguchi K and Aradate H, “Algorithm for image reconstruction in multi-slice helical CT”, Med Phys 1998; 25: 550-561. Zmora I, Taguchi K, Silver MD, and Han KS, “Correction of a new type of artifact in helical multi-slice CT,” Radiology, 1998, 209(P): 434 Hsieh, et al, “A generalized helical reconstruction algorithm for multi-slice CT,” Radiology 2001; 221(P): 217. jblobel@tmse.nl TOSHIBA Literatur 1. Fallbeispiele von P. Rogalla, R. Klingebiel Charitè Berlin Campus Mitte 2. K. Taniguchi et al Algorithm for image reconstruction in multi-slice spiral CT Med. Phys. 25 (1998) 550-561 2. Y. Saito Multislice X-Ray CT Scanner Medical Review 66 (1999) 1-8 3. M.D. Silver et al Field-of-view dependent helical pitch in multislice CT Spie Medical Imaging 2001, paper 4320-103, 2001 4. Dosiskalkulationsprogramm „CT-Expo“ jblobel@tmse.nl TOSHIBA Vergleich der 16 Schicht- Detektoren 32 mm 24 mm 1mm x 12 20 mm 1mm x 6 1.25mm * 16 0.5mm x 16 0.75mm x 16 1mm x 12 1mm x 6 GE Siemens/Marconi jblobel@tmse.nl Toshiba TOSHIBA 32 mm 40 Elemente Advanced V-Detektor 1mm x 12 Elemente 0.5mm x 16 Elemente ? Septendicke in µm- Technologie ? StreustrahlenenergieUnterdrückung 1mm x 12 Elemente 35,840 Element jblobel@tmse.nl TOSHIBA Combination of proven 0.5 mm technology and detector system for 32-mm/16-row acquisition channel direction 32 mm slice direction 1 mm x 12 rows 0.5 mm x 16 rows 1 mm x 12 rows 4-row multislice CT 16-row advanced multislice CT jblobel@tmse.nl TOSHIBA 1mm x 12 row 0.5mm x 16 row 1.25mm x 16 Detector Comparison 1mm x 12 row 4 slice x 0.5/1/2/3/4/5/8mm 8 slice x 0.5/1/2/3/4mm 16 slice x 0.5/1/2mm Competitor 4 slice x 1.25/2.5/3.75/5mm 8 slice x 1.25/2.5mm jblobel@tmse.nl TOSHIBA Adaptive Filterung in z- Richtung MUSCOT kann die die Schichtbreite und das Rauschen rekursiv verändern und optimieren. Parameter : Filter Weite (FW) und Filter Form (FF). Wt Wt z Wt z FW ? z FW jblobel@tmse.nl TOSHIBA Weighting function in TCOT (a) OS w 1.0 hp ≤ 8 (b) NHS w hp ≥ 9 (c) HS hp ≈ max Time reso. = T 0.5 0 π 2π projection angle: β 1.0 Time reso. = T/2 0.5 w 0 π 2π projection angle: β 1.0 Time reso. = T/2 0.5 0 π 2π jblobel@tmse.nl projection angle: β TOSHIBA
Similar documents
Diagnosis of Brain Tumor Using Area Detector CT
Diagnosis of Cerebral
Aneurysm Using Area
Detector CT
Kazuhiro Katada
Department of Radiology
Fujita Health University, School of Medicine
kkatada@fujita-hu.ac.jp