SM2010 “Marco” * Line preamplifier

Transcription

SM2010 “Marco” * Line preamplifier
SM2010
“Marco”
*
Line preamplifier
with tone controls
* A friend of mine
A. E. Rinaldo
2011
Line preamplifier SM 2010
PRE MARCO 2010
Controlli di tono ??? decisamente si!!
Preamplificatore linea descrizione del circuito
Il mio progetto è ispirato dal famoso PST 200 di Bartolomeo Aloia degli anni ’80. Un circuito ancora attuale e all’avanguardia dal punto di vista delle prestazioni.
Il circuito impiega, in cascata, due stadi di amplificazione in configurazione “Totem Pole” . Tale configurazione è stata descritta in molteplici riviste e articoli tecnici nel passato per cui non ne riproporrò la spiegazione. Comunque, chi non fosse familiare con detta circuitazione potrà trovare una ampia illustrazione in un
mio libro “Valvole e Dintorni HI-FI” –L’alta fedeltà tra le mura domestiche- edito da Sanditlibri.
Ogni stadio guadagna circa 20 db (10 volte in tensione) mentre il circuito del controllo del tono posto tra i
due, attenua il segnale di altrettanti db alla frequenza di 1000 Hz che vengono ripristinati dallo stadio che
segue. Il guadagno complessivo è quindi di 20 decibel che è un valore più che sufficiente per un amplificatore linea. Il circuito completo è riportato nella fig. 1.
Il segnale, allo stadio di ingresso (V1), è fornito attraverso un selettore di ingressi commerciale a 5 relays.
Relays che possono essere attuati manualmente o tramite un telecomando. L’insieme, del tipo GA5 è fornito, completo, da “Audioselection” e include il dispositivo per il telecomando e un potenziometro motorizzato per il volume. (foto 1).
Dall’ingresso, attraverso i connettori di tipo RCA, ogni segnale viene applicato ai potenziometri semifissi
con lo scopo di calibrare il loro livello per garantire una uscita dal pre, equilibrata quando si passa da una
sorgente all’altra. Questa opzione può essere omessa se l’hobbista non ha interesse a questa soluzione.
L’uscita dal primo stadio alimenta il circuito di controllo dei toni quando il relay RY1 è attivato tramite
l’interruttore SW1 posto sul pannello frontale. Viceversa il segnale prelevato dal cursore di P6 “bypassa” i
toni ed entra direttamente nello stadio di uscita. V3/V4. L’accorgimento del partitore e la regolazione di P6
assicura che, durante la commutazione di SW1, non ci siano salti di livello in uscita con i controlli di tono
in posizione “flat” –nessuna esaltazione ne attenuazioneL’alimentazione
I circuiti ad alta fedeltà necessitano di una alimentazione anodica e dei filamenti “curata” Io ho scelto di
stabilizzare l’anodica con un semplice regolatore a Mos-Fet , di tenere l’alimentazione dei due canali separata e di alimentare i filamenti con una tensione stabilizzata continua di 12 volts.
I filamenti sono collegati in serie e la tensione è fornita tramite gli alimentatori costituiti dai 2 integrati del
tipo L7812.
La scelta di separare l’alimentazione dei filamenti è dettata dal fatto che le valvole “alte” (V2 e V4) hanno
il catodo ad un potenziale continuo di circa 130 volts di gran lunga oltre il limite Vkf consentito dalle specifiche delle valvole E88CC. (tensione massima permessa tra filamento e catodo).
Questa soluzione permette di polarizzare i filamenti delle valvole superiori con una tensione di 130 volt
prelevandola da un partitore di tensione sull’alimentatore principale e quindi di riportare la differenza di
potenziale, altrimenti esistente, entro i limiti di specifica.
Altre soluzioni, quali quelle di lasciare i filamenti “floating” -sospesi- ha delle controindicazioni per il rischio di effetti imprevedibili e non quantificabili.
Lo schema completato da un alimentatore di servizio, atto a fornire le tensioni per i led’s, i relays etc, e visibile nella fig. 2 ed è semplice da comprendere.
Il cablaggio e l’assiematura finale
La foto 2 mostra la vista superiore del preamplificatore. Sulla sinistra è visibile la sezione alimentazione e
la posizione del trasformatore di alimentazione piuttosto lontana dagli ingressi dei segnali. Questo accorgimento garantisce l’assenza (o minimizza il rischio) di rumori captati accidentalmente dal campo magnetico
spurio del trasformatore stesso.
Le uscite dai vari alimentatori fanno capo ad un connettore che all’occorrenza può essere scollegato per
manutenzione o altro e facilitare la rimozione di componenti o assiemi.
Gli alimentatori sono stati realizzati su circuiti stampati eseguiti manualmente e visibili in fig. 3 e fig. 4
Alla prova di ascolto il preamplificatore non esibisce alcuna peculiarità, è pulito, fedele, limpido, senza
colorazioni …. e in più per chi lo desidera dispone di buoni controlli di tono
PRE MARCO SM 2010
Tone controls? Definitely yes!
Circuit description
High end class preamplifiers neglect the use of tones control. Reason: they introduce distortion to the system end therefore they must be eliminated. True! Tone includes some sort of distortion but ... what happen
when you lower the volume? What happen when your room response is far from ideal? What amount of
distortion do they introduce? Can it be really heard?
It is widely known how our hears respond to sound level at different frequencies. Fletcher and Munson,
back in the thirties (and more recently Robertson & Dadson in the fifties) have established how variations
in the perceived loudness of sounds changes with sound frequency. They depicted the curves shown in fig
1 below.
If you hear an orchestra live, its sound amplitude may easily reach 80 – 90db, or even more. If, with your
reproduction set, you desire to have same sensation of the original sound you should therefore push the volume to reproduce that particular level. However your lovely wife, your neighbor or even the acoustics limit
of your room may force you to lower the volume to, say 60- 70 db.
As you do that, the perception of lower frequencies, with reference to 1kHz, changes significantly.
For example, with reference to a frequency of 1kHz, at 80/90 db of sound pressure level, the sensation is
about the same for all frequencies.
As you lower the volume, (say at 60
db), in order to maintain same dynamic, a frequency of 100 Hz must
be compensated by at least 15 db
The perception of the lower frequency spectrum in fact, has completely changed. This is where tone
controls come into the picture by
providing a means of compensation.
An additional example could be that
your room carpeting, curtains, or
library may absorb excessively the
highest frequencies and therefore
you need to boost that particular
range of the audio spectrum to rebalance your perception. Vice versa,
an empty room may produces excessive bass or high frequencies and
therefore a means of cutting them
must be provided.
It must be clear that the amount of boost or cut of both high or low frequency span is absolutely arbitrary
and it must be applied to fulfill your hearing pleasure and nothing else.
It is said : tone controls introduce distortion.
The level of this distortion is hardly heard; certainly it is by far less than the distortion caused by your room
acoustics, by the change in the frequencies perception as you lower the volume and by other factors.
The circuit to include them may be design in such a way that tones control can be completely bypassed; in
this way it is your choice to include them.
The line amplifier schematic
My design resembles the line stage of famous (almost 30 years old now) PST 200 of B. Aloia, an Italian
HI-FI authority in this field; the circuit makes use of two totem pole in a cascade configuration. The complete circuit is shown in fig.1.
Totem pole has been thoroughly described in this magazine several time and therefore I’m not going to
address it again. Each stage gains about 20 db while the tone controls, inserted between the two stages, introduces a loss of the same amount when positioned to zero boost/cut. The end results is a total gain of 20
db which is quite good for a line preamplifier.
The input stage is fed from a commercially available inputs selector assembly actuated by means of 5 relays. The switching operation can be performed manually or it can be remotely controlled. This assembly,
is an OEM part - model GA5- supplied and fully tested by Audioselection and includes also a motorized
volume control feature. (photo 1)
The signal level of each input can be adjusted with the 5 dual ganged potentiometers (P1 through P5 of fig.
3) in order to level out various input signals and balance the preamplifier output level.
This option can be omitted if DIYer’s elect to allow the output levels to track each input source level. (the
higher the input the higher the output and viceversa).
The output of the first stage (V1 and V2) feeds the tone control circuit and, in turn, the second totem pole
output stage, when relay RY1 is energized by SW1 (tone controls on). The output stage (V3 and V4) restores the loss of tone controls circuit and provide a low impedance output through volume control P7.
When tone controls SW1 is off (RY1 not energized) they are totally bypassed and the audio signal is taken
from cursor of P6.
P6 needs to be adjusted once, to equal the level of tone controls when in a flat position.
V3/V4 act as buffer with its 20 db gain and assure a low output impedance connection to volume control
and, from there, to the power amplifier.
Power supply
High End/high quality circuits requires a lot of attention on how voltages are supplied. My choice was to
keep right and left channels plate voltage separated and to provide a certain level of regulation.
Totem pole is fed with 260 Vcc (130Vcc drop on each valve). Regulation is achieved by a series of zeners
diodes and a suitable MOS-FET transistor.
The circuit is shown in fig. 2 and fairly simple to comprehend.
Totem pole has the cathode of upper valve tied to a potential of about 130 Vcc. This exceeds the Vkf limit
(voltage between cathode and filament) specified for the E88CC/6DJ6 when one side of the filament is
connected to ground. To overcome this problem, upper filament must be properly biased to off set this potential difference. To prevent this I’ve seen circuits, using a solution with a floating filaments; this is not a
good practice and I’m not recommending it; if done, there may be unpredictable and unexpected negative
side effects.
In addition, filaments, when heated by an a.c. current, may introduce some level of hum that is absolutely
unacceptable on an High End class preamplifier.
To resolve both problems I’ve elected to feed heaters in series with 12,6 Vcc using a simple three lead regulators, IC1 – IC2, type L7812 and, in addition, to provide a 130 Vcc bias to the upper filament by taking it
from a power supply voltage partition.
Lastly, a small service circuit, supplies 12 Vac required by the input selector switch circuit and 12 Vcc for
RY1 on the tone controls and all LED diodes.
Assembly operation
Photo 2 shows a top view of the preamplifier. To the left, the power supplies section with the transformer
positioned far away from all inputs to minimize adverse effect of stray field. All output voltages are terminated on a pluggable terminal board to facilitate assembly or removal of any parts.
Power supplies are assembled on a hand made printed circuit as shown on photo 3 and 4.
How does it sound
Clean, neutral, no coloration at all, extreme bandwidth……… and in addition it has, for those who want
them, the tone controls.
Line preamplifier SM2010 Left channel
f
f
a
g
k’
g’
E88CC
pin side
k
s
47µ /400
250klog
n/c
126V
9
P7
4V 3
Out
lower tubes
330
RY1
Motorized
50k log
68k
47k
V2
1
2
Tone ctrl ASM
V3
12 V low
22k
n/o
1M
P6
1/2 V1
V1
47k
1µ
1,2k
Power Gnd
560
3
3,9k
150k
Signal Gnd
2
9
4,5V
20k
1µ
127V
9
130V
3
9
2,2k
250klog
3,9k
330
1
1µ
130V
3
470k
CD
Tun
TV
Sat
Aux
upper tubes
2
410k
9
47µ /400
1
4 x E88CC/6922
1,2k
2
+ 260 Vcc
330
1
8,2k
Relays
1/2 V4
4,7k
39k
fig 1
Blu LED
a’
1/2 V2
6.8k
Note: Right channel uses
other half of tube’s pins
(6, 7, 8)
Screen (pin 9) must be
connected to signal gnd
SW1 Tone ctrl on
1/2 V3
V4
+
-
12 V high
12 V Service P. S.
fig 2
390
D4
10µ
470µ
I = Input
ON
+
IC 3
TO-220
O = Output
-
G
I L7812 O
470µ
TO-3
G= Gnd
TB-7
12 V cc
G= Gnd
O = Output
G= Gnd
I = Input
7812
7812 bot. view
12 V 15 mA
IRFU420
12 V 1A
12Vac~
D5
1N4007
1 ohm 5W
F1 0,5A
1µ
IRFP
1µ
18 V 1A
IC 2
2 x4700µ
Heaters 12 V 0,7A
Lower tubes
L7812 O
I
G
D1
12 V low
12 V high
G D S
TB-4
1 ohm 5W
L7812 O
I
G
D2
1µ
T!
18 V 1A
1N4007
IC 1
2 x4700µ
+135 V heater bias
1µ
80 VA
Heaters 12 V 0,7A
upper tubes
T2
Gnd
390k
68k 1 W
9,1V
TB-1
22µ 350 Vl
22µ 350 Vl
1k
9,1V
G
1k
68k 1W
2x100 + 2 x 30
100k 2W
2 x 120 1W
IRFU420
2 x 68V
S
T1
50µ f 400 Vl
e lect ros tat ic
screen
TB position
IRFP450 D
390k
390 4W
D3
50µ f 400 Vl
270 V 0,1A
Gnd
+260 V Dx 5 mA
+260 V Sx 5 mA
Regulated Power
supplies
Bill of Material
Bill of Material
Preamp section
Resistors 150K
330 Ω
3,9K
470K
39K
3,3K
47K
68K
6,8K
Poti Tones 250+250K
Resistors 1M
1,2K
4,7K
390K
Poti Vol.
100+100K
2
4
4
2
2
2
4
2
2
2
2
4
2
2
1
1/2 W
1/2 W
1/2 W
1/2 W
Tubes
E88CC
4
(6DJ8)
Capacitors
Elettrol.
Poliprop.
Poliprop.
Poliprop.
Poliprop.
Poliprop.
400 V
47µ f
1µ
560 p
8,2kpf
2,2kpf
22kpf
4
4
2
2
2
2
Miscellanea
RCA in/out plug
socket
Noval
Trimmer
100+100K
Remote ctrl Asm
Relay
2ways
Tones 1/4W
Log
1/2 W
1/2 W
1/2 W
1/2 W
Log (see text)
Axial
14
4
5
1
1
Power regulators section
Trasformer T1
80VA toroidal
diode bridge
1000V 1,5A W10M
“
100V 5A
SABV10A
Diode
1N4007 1000V 1A
Regulators IC
L7812 -TO3Transistor Mosfet IRFP 450/IRF830
Zener diodes
68V1W 1N5369
9,1V BZV85C
1
1
2
2
2
2
6
2
Resistors
1Ω
1,2k
100k
47K
68k
1k
120
Capacitors
Electrolitic
Polipropilene
Paper oil*
5W
4W
1/2 W
2W
2W
1/2 W
1W
Radial
4700µ f
1µ f
50µ f
350V
100V
350VL ac
2
1
1
1
1
2
2
2
4
2
Toni
* Alternative electrolitic 450 V
golden choice
ceramic
Log
see text
12V
Transformer specifications
Power
80 V
audio grade
Primary
120/230
Vac
Secondary: 18V
1 Amp.
18V
1 Amp.
270V
0,1 Amp.
- Heaters winding insulation < 500V
- Electrostatic screen between primary
and secondary windings
- Minimum output wires length 15 cm.
Symbol Parameter Value Uni t of IFRP450
VDS Drain-source Voltage (VGS = 0) 500 V
VDGR Drain- gate Voltage (RGS = 20 kW) 500 V
VGS Gate-source Voltage ± 20 V
ID Drain Current (continuous) at Tc = 25 oC 14 A
ID Drain Current (continuous) at Tc = 100 oC 8.7 A
IDM(•) Drain Current (pulsed) 56 A
Ptot Total Dissipation at Tc = 25 oC 190 W
Derating Factor 1.5 W/oC
dv/dt(1) Peak Diode Recovery voltage slope 3.5 V/ns
Tstg Storage Temperature -65 to 150 oC
Tj Max. Operating Junction Temperature 150 oC
(•) Pulse width limited by safe operating area (1) ISD 314 A,
di/dt 3 130 A/ms, VDD 3 V(BR)DSS, Tj 3 TJMAX
Inputs selector and level control
Right Channel
Remote control*
to remote
control decoder
to Pre input R
Left channel
GND
to remote
control decoder
to Pre input L
GND
12 V common line
NOTE:
All trimmers are 100 kOhm HQ logaritmic type, dual gang, 100+ 100 KΩ (they may be omitted if
inputs level regulation is not required)
Adjustements are made to get equal output level from all the sources.
Start with lower input signal first.
* Selectors shown are remotely controlled and actuated though a series of relays
Doyer’s may elect to switch inputs manually by means of a 5 positions, 2 way rotare sw.
Note:
Balanced inputs not used.
Unbalanced inputs exits on +L or +R
Ingressi bilanciati non usati
Ingressi sbilanciati su pins +L, *R
Audioselection.it
Input selector type GA5
Balanced inputs
R
L
R
L
R
RY1
L
RY2
R
RY3
L
RY4
Volume
Motor
RY5
Selector
-L -R +L +R
RY5
1 G 5V
IR
9-12 Vac
1……...5 +5
gnd
Unbalanced inputs
-L
-R
+L
+R
gnd
a b c
Gnd when active
a b c
IR
Selector
Output
Red
2
Yellow
3
Green
5
15k
1
4
G 5V
White
-L
-R
+L
+R
gnd
L
R
Loudness
1,5k
1
Volume control
pot 4 x 100k log
paralleled = 2 x 50k
Blue
Remote control connections
Fig
Tone control schematic
N/O
39k
N/C
47k
To V3
+
8,2kp
6.8k
20k
47k
250klog
250klog
C
12 V
22kp
Fig
Motorized
Volume ctrl
-
GND
GND
IN
SX
47k
680p
10kp
10kp
47k
C
47k
2,2kp
47k
22kp
N/O
N/C
680p
2,2kp
22kp
20k
Vout
20k
39k
39k
+12V —
68k
68k
6.8k
6.8k
DX GND SX
GND DX
12
top view
Fig
BASS
TREBLE
IN
DX GND SX
20k
N/O
680p
2,2kp
47k
2,2kp
680p
12
22kp
47k
10kp
47k
- 12 +
C
10kp
N/C
68k
68k
39k
39k
47k
SX GND DX
Vout
20k
22kp
wiring view
Red Right channel
Green left channel
Blu ground
TREBLE
BASS
6.8k
6.8k
TONE BOARD
Motor Pot.
68k
2,2kp
2,2kp
560 p
IN
Wiring scheme
Schema collegamenti
IR
Volume
Treble
Acuti
tones circuit
input
out
out
input
Bass
Bassi
- +
not used
motor
L
R
330
L
1,2 k
R
410k
1M
1,2 k
Blk
Red
Yel
+12 S
Orange
Or/Red
Gray
Blu
+L
V3
V4
d
b
1,2 k
e
c
1M
+R
1,2 k
410k
330
3,9k
3,9k
a
b
V1
470k
330
470k
3,9k
4,7k
3,9k
V2
150k
power gnd
150k
330
4,7k
f e
L
330
+
+
R
Inputs selection card
Selettore di ingresso
BOTTOM VIEW
Visto lato filatura
Pre -SM 2010
Cablatura/Cabling
Performance measurements
Gain
N. of inputs
inputs voltage
Overload
Bass boost
Bass cut
Treble boost
Treble cut
21 db
5 (Remotely controlled)
100 mV(1,1 V output)
5V
+ 16 db @ 100 Hz
- 15 db @ 100 Hz
+ 20 db @ 10 kHz
- 20 db @ 10 kHz
Freq. response
Distortion -TDH-
10 - 40kHz ±1 db (- 3db 80kHz)
below 0.02% 20 - 40kHz (@ 1V output)
Anode voltage
filament voltage
Service voltage
Input power
Inputs selection
260 Vcc
5 mA max per channel
12 Vcc 0,7 A (two E88CC in serie) x 2
12 Vcc 15 mA
220 Vac
70VA
via rotary sw and/or remote control
Distortion measurements
HP 3585A Spectrum analyser
top/sopra
1 k Hz
Top/sopra:
40 kHz
Top/sopra
100 Hz
- 61 db 2° harmonic
- 80 db 5° harmonic
Top/sopra:
10 k Hz
- 64 db 2° harmonic
- 85 db noise
- 61 db
- 80 db 5° harmonic
- 61 db 2° harmonic
- 85 db noise
PRE SM 2010
1
0
-1
-2
-3
-4
-5
10
100
1000
F r eq uency
Frequency response plot.
Flat from 10 Hz to 40kHz -1db
10000
100000
Selettore di ingressi e telecomando
Inputs selector and remote control asm
FIG: 3 Alimentatore per filamenti in cc
Heaters power supply asm.
Photo 2 Alimentatore completo
Complete power supplies section and cabling
Controlli di tono
Tone control asm (top view)
FIG. 4 Alimentatore alta tensione (260V)
High voltage power supply asm.(260 V)
Cablaggio del circuito
Preamplifier section, components layout and cables routing
Vista superiore. A
sinistra l’alimentazione e a destra i
tubi elettronici e il
circuito selettore
degli ingressi.
Top Asm view.
On the left thta
power supplies
sectin and, on the
right, the line amplifier with its
tone control circuit and the input
selector
Visione dell’amplificatore completo .
Final asm view.
Through the front
panel a small
windows allows
to see all the vacuum tubes illuminated by four
blu LEd’S inserted into the sokets.
Vista
posteriore
con gli ingressi e,
sotto i fori di accesso ai potenziometri
di livello.
Back view. On the left five inputs RCA connectors and, at the bottom, the output.
On the right, mains receptacle and a 1A protection fuse.