T3-O1 Integrated solution - live monitoring of noise and
Transcription
T3-O1 Integrated solution - live monitoring of noise and
Comprehensive Nuclear-Test-Ban Treaty: Science & Technology 2011, Vienna, Austria Real-time monitoring of noise and acoustic events: listening, identifying and understanding Real-time monitoring of noise and acoustic events: listening to the deep, identifying and understanding Michel André Laboratory of Applied Bioacoustics (LAB) Technical University of Catalonia (UPC, BARCELONA Tech) http://www.lab.upc.es Laboratori d’Aplicacions Bioacústiques Universitat Politècnica de Catalunya Comprehensive Nuclear-Test-Ban Treaty: Science & Technology 2011, Vienna, Austria Real-time monitoring of noise and acoustic events: listening, identifying and understanding LIDO live data flow Country/Location Platform Data stream FRANCE ANTARES 36 x 250 kHz NEPTUNE CANADA Folger Passage 1 x 96 kHz NEPTUNE CANADA Barkley Canyon 1 x 96 kHz NEPTUNE CANADA Barkley Slope 1 x 96 kHz SPAIN (MED SEA) OBSEA 1 x 96 kHz JAPAN (JAMSTEC) Hatsushima 1 x 100 Hz JAPAN (JAMSTEC) Kushiro 3 x 100 Hz ITALY (ESONET) NEMO TSS/TSN 2x 4 x 96 kHz SPAIN (ATLANTIC) BIMEP 1 x 96 kHz CTBTO ? 11 HA 11 x 200 Hz Laboratori d’Aplicacions Bioacústiques Universitat Politècnica de Catalunya Comprehensive Nuclear-Test-Ban Treaty: Science & Technology 2011, Vienna, Austria Live monitoring of underwater noise and acoustic signals … in search of a balance intensidad 130 Laboratori d’Aplicacions Bioacústiques 100 mareas actividad sísmica 90 interacción 80 olas olas que se rompen olas, viento burbujas ruido de animales marinos cetáceos, crustáceos, etc. 2 - Shipping - Exploration and production of offshore fossil energy, - Navy and industrial sonar - Experimental acoustics - Underwater explosions -Engineering activities - Supersonic airplanes - Offshore windmills Intensité dB re 1 μPa /Hz a 1m Sources of Noise 110 70 turbulencias lluvia, nieve 60 tormentas 50 ruido antropogénico sonar industrial, militar exploración sísmica transporte marítimo nuclear testing 40 30 0.001 0.01 0.1 1 Fréquence [kHz] 10 100 frecuencia Universitat Politècnica de Catalunya Comprehensive Nuclear-Test-Ban Treaty: Science & Technology 2011, Vienna, Austria Real-time monitoring of noise and acoustic events: listening, identifying and understanding Controling the effects of noise Choice of “right” indicators INDICATORS FOR GOOD ENVIRONMENTAL STATUS FOR UNDERWATER NOISE AND OTHER FORMS OF ENERGY European Marine Strategy Framework Directive (International Council for the Exploration of the Sea) Laboratori d’Aplicacions Bioacústiques Universitat Politècnica de Catalunya Comprehensive Nuclear-Test-Ban Treaty: Science & Technology 2011, Vienna, Austria Real-time monitoring of noise and acoustic events: listening, identifying and understanding ATTRIBUTE Controling the effects of noise Underwater noise - Low and midfrequency impulsive sound TG11 Energy Criteria to assess the descriptor Indicators to be measured High amplitude impulsive anthropogenic sound within a frequency band between 10Hz and 10 kHz, assessed using either sound energy over time (Sound Exposure Level SEL) or peak sound level of the sound source. Sound thresholds set following review of received levels likely to cause effects on dolphins; these levels unlikely to be appropriate for all marine biota. The indicator addresses time and spatial extent of these sounds. The proportion of days within a calendar year, over areas of 15’N x 15’E/W in which anthropogenic sound sources exceed either of two levels, 183 dB re 1µPa2.s (i.e. measured as Sound Exposure Level, SEL) or 224 dB re 1µPapeak (i.e. measured as peak sound pressure level) when extrapolated to one metre, measured over the frequency band 10 Hz to 10 kHz Underwater noise – low frequency sounds Underwater noise – High frequency impulsive sounds Sounds from sonar sources below 200 KHz that potentially have adverse effects, mostly on marine mammals, appears to be increasing. This indicator would enable trends to be followed. The total number of vessels that are equipped with sonar systems generating sonar pulses below 200 kHz should decrease by at least x% per year starting in [2012]. Background noise without distinguishable sources can lead to masking of biological relevant signals, alter communication signals of marine mammals, and through chronic exposure, may permanently impair important biological functions. Anthropogenic input to this background noise has been increasing. This indicator requires a set of sound observatories and would enable trends in anthropogenic background noise to be followed. The ambient noise level measured by a statistical representative sets of observation stations in Regional Seas where noise within the 1/3 octave bands 63 and 125 Hz (centre frequency) should not exceed the baseline values of year [2012] or 100 dB (re 1µPa rms; average noise level in these octave bands over a year). The ambient noise level measured by a statistical representative sets of observation stations in Regional Seas where noise within the 1/3 octave bands 63 and 125 Hz (centre frequency) should not exceed the baseline values of year [2012] or 100 dB (re 1µPa rms; average noise level in these octave bands over a year). Underwater noise – low frequency continuous sound Laboratori d’Aplicacions Bioacústiques Universitat Politècnica de Catalunya Comprehensive Nuclear-Test-Ban Treaty: Science & Technology 2011, Vienna, Austria Live monitoring of underwater noise and acoustic signals … in search of a balance Sources of Noise & Acoustic Signals Sonar Shipping noise Nuclear Testing Unwanted against Intentional Explosions Offshore Construction Laboratori d’Aplicacions Bioacústiques Biological Sources Seismic Surveys Scientific Experiments Universitat Politècnica de Catalunya Comprehensive Nuclear-Test-Ban Treaty: Science & Technology 2011, Vienna, Austria Real-time monitoring of noise and acoustic events: listening, identifying and understanding Effects of Noise Mitigation actions & Long-term monitoring Is it possible to combine both objectives in a same approach/system? Real-time and Statistical Analysis Laboratori d’Aplicacions Bioacústiques Universitat Politècnica de Catalunya Comprehensive Nuclear-Test-Ban Treaty: Science & Technology 2011, Vienna, Austria Real-time monitoring of noise and acoustic events: listening, identifying and understanding Controling the effects of noise Standardization of methods to measure noise Classification methods to detect and identify acoustic sources NEED FOR A ROBUST AUTOMATED MONITORING SYSTEM ABLE TO SATISFY THE REQUIREMENTS OF THE SCIENTIFIC COMMUNITY AND ALLOW THE SUSTAINABLE DEVELOPMENT OF THE INDUSTRY Laboratori d’Aplicacions Bioacústiques Universitat Politècnica de Catalunya Comprehensive Nuclear-Test-Ban Treaty: Science & Technology 2011, Vienna, Austria Real-time monitoring of noise and acoustic events: listening, identifying and understanding Controling the effects of noise Marine soundscape * Cetacean whistles and calls * Cetacean clicks, bursts, creaks, buzzes ... * Tonal, impulsive and broadband ship noise * Explosions * Sonar, echosounder, * Waves, rain, bubbles, etc. * etc. Challenging for automated classification methods Laboratori d’Aplicacions Bioacústiques Universitat Politècnica de Catalunya Comprehensive Nuclear-Test-Ban Treaty: Science & Technology 2011, Vienna, Austria ... Real-time monitoring of noise and acoustic events: listening, identifying and understanding audio data stream Segment 1 Segment 2 Measure noise Discard segment with no acoustic event Assign acoustic events to broad categories FM-tonal sounds Impulses... Segment 3 Classifier 1 Classifier 2 ... Sperm whales Beaked whales Pilot whales Dolphins Explosions Ships Sonar Segment 4 Segment 5 Segment 6 ... Real-Time Mitigation Long term assessment and Control of the effects of noise sources on marine organisms Public outreach Localisation Tracking Bearing, Position Trajectory, … Stage 1 Stage 2 Laboratori d’Aplicacions Bioacústiques Stage 3 Universitat Politècnica de Catalunya Comprehensive Nuclear-Test-Ban Treaty: Science & Technology 2011, Vienna, Austria Real-time monitoring of noise and acoustic events: listening, identifying and understanding Controling the effects on Cetaceans RT Acoustic Software Development Acoustic Data Management SETUP ADS X-channel multicast data stream Transmission analysis results and mp3 channel Pre-Processing Server •Segments & tags data •Encodes 1 channel into mp3 •No data storage – we rely on the MADS Transmission of analysis results and mp3 data to Web Server Analysis Server •Source identification •Localisation and tracking of sources MADS Laboratori d’Aplicacions Bioacústiques Universitat Politècnica de Catalunya Comprehensive Nuclear-Test-Ban Treaty: Science & Technology 2011, Vienna, Austria Segment Localisation Classification Detection Real-time monitoring of noise and acoustic events: listening, identifying and understanding Impulse detector < 100 Hz, 0,1-1 kHz Impulse detector 1-5 kHz Impulse detector 5-20 kHz Buzz classifier Impulse classifier Impulse detector >20 kHz Short tonal sounds detector Constant tonal sounds detector Broadband shipping noise detector Short tonal sounds classifier Baleen whales Noise measurement Pinger/sonar Sperm whale clicks In the full bandwidth whistles Ultrasonic cetacean + inclicks all the aboveDolphin bandwidths Killer 63Hz whale calls Impulsive ship noise+ 1/3 Octave band Buzzes + 1/3 Octave band 125Hz Continuous shipping noise Killer whale clicks Explosions Impulse localiser Laboratori d’Aplicacions Bioacústiques Short tonal sounds localiser Universitat Politècnica de Catalunya Comprehensive Nuclear-Test-Ban Treaty: Science & Technology 2011, Vienna, Austria Localisation Classification Detection Real-time monitoring of noise and acoustic events: listening, identifying and understanding Laboratori d’Aplicacions Bioacústiques Universitat Politècnica de Catalunya Detection of short tonal sounds in the band 0.2-16 kHz. Acoustic data from Neptune, 3-24 Real-time monitoring of noise and acoustic events: listening, identifying and understanding March 2010, 10 min recorded every 3.5 hour. Comprehensive Nuclear-Test-Ban Treaty: Science & Technology 2011, Vienna, Austria DETECTION & CLASSIFICATION Fin whales, 29th April 2010, 02am, off Kushiro, JAPAN, JAMSTEC observatory (Feed Forward Neural Network) Zaugg, S., van der Schaar, M., Houégnigan, L., Gervaise, C., André, M. Real-time acoustic classification of sperm whale clicks and shipping impulses from deep-sea observatories. Applied Acoustics, issue doi:10.1016/j.apacoust.2010.05.005, 2010 Laboratori d’Aplicacions Bioacústiques Universitat Politècnica de Catalunya 2nd International Aquatic Noise Conference 2010, Cork City Ireland. Real-time monitoring of noise and acoustic events in cetacean acoustic niches LOCALIZATION Sperm whale tracking, 09th August 2005, 09pm, East-Sicily, NEMO observatory (Hybrid spatial spectral estimation: space-time methods and TDOA-based methods) Figure 3.9 : Sperm whale tracking, 09th August 2005, 09pm Houégnigan, S. Zaugg, M. van der Schaar, M. André. Space–time and hybrid algorithms for the passive acoustic 3D localisation of sperm whales and vessels. Appl ied Acoustics (2010), doi:10.1016/j.apacoust.2010.05.017 Laboratori d’Aplicacions Bioacústiques Universitat Politècnica de Catalunya Detection of short tonal sounds in the band 0.2-16 kHz. Acoustic data from Neptune, 3-24 Real-time monitoring of noise and acoustic events: listening, identifying and understanding March 2010, 10 min recorded every 3.5 hour. Comprehensive Nuclear-Test-Ban Treaty: Science & Technology 2011, Vienna, Austria INTERACTION WITH NOISE Sperm Whales at ANTARES (Ligurian Sea), July 2010 André, M., van der Schaar, M., Zaugg, S., Houégnigan, L., Sánchez, A., Mas, A. Listening to the Deep: realtime monitoring of noise pollution and cetacean acoustic signals. Marine Pollution Bulletin (accepted). Laboratori d’Aplicacions Bioacústiques Universitat Politècnica de Catalunya Detection of short tonal sounds in the band 0.2-16 kHz. Acoustic data from Neptune, 3-24 Real-time monitoring of noise and acoustic events: listening, identifying and understanding March 2010, 10 min recorded every 3.5 hour. Comprehensive Nuclear-Test-Ban Treaty: Science & Technology 2011, Vienna, Austria GLOBAL NOISE MEASUREMENTS (10 segment average) Laboratori d’Aplicacions Bioacústiques Universitat Politècnica de Catalunya Detection of short tonal sounds in the band 0.2-16 kHz. Acoustic data from Neptune, 3-24 Real-time monitoring of noise and acoustic events: listening, identifying and understanding March 2010, 10 min recorded every 3.5 hour. Comprehensive Nuclear-Test-Ban Treaty: Science & Technology 2011, Vienna, Austria GLOBAL CETACEAN DISTRIBUTION (50 segment average) Laboratori d’Aplicacions Bioacústiques Universitat Politècnica de Catalunya Detection of short tonal sounds in the band 0.2-16 kHz. Acoustic data from Neptune, 3-24 Real-time monitoring of noise and acoustic events: listening, identifying and understanding March 2010, 10 min recorded every 3.5 hour. Comprehensive Nuclear-Test-Ban Treaty: Science & Technology 2011, Vienna, Austria Laboratori d’Aplicacions Bioacústiques Universitat Politècnica de Catalunya Comprehensive Nuclear-Test-Ban Treaty: Science & Technology 2011, Vienna, Austria Real-time monitoring of noise and acoustic events: listening, identifying and understanding http://listentothedeep.com Laboratori d’Aplicacions Bioacústiques Universitat Politècnica de Catalunya Comprehensive Nuclear-Test-Ban Treaty: Science & Technology 2011, Vienna, Austria Real-time monitoring of noise and acoustic events: listening, identifying and understanding Deep-sea or shallow water cabled observatories Radio-linked , expandable or moored stand-alone buoys Underwater neutrino telescopes Laboratori d’Aplicacions Bioacústiques Towed arrays Underwater vehicles, e.g. gliders Past and Existing recordings Universitat Politècnica de Catalunya Comprehensive Nuclear-Test-Ban Treaty: Science & Technology 2011, Vienna, Austria CONCLUSIONS & PERSPECTIVES Real-time monitoring of noise and acoustic events: listening, identifying and understanding The system is designed to be modular and dynamic (allows the choice of detectors/classifiers) depending on the objectives and geographical areas The system successfully allows: - the real-time detection and classification of acoustic events - the real-time and long-term monitoring of noise - immediate mitigation actions - the online display of the audio stream and the statistical analysis The modular system can be implemented on: - cabled observatories, - autonomous radio-linked buoys, moored antennas - autonomous vehicles (e.g. gliders), - towed arrays - existing data sets, - etc. Laboratori d’Aplicacions Bioacústiques Universitat Politècnica de Catalunya Comprehensive Nuclear-Test-Ban Treaty: Science & Technology 2011, Vienna, Austria CONCLUSIONS & PERSPECTIVES Real-time monitoring of noise and acoustic events: listening, identifying and understanding The system can be applied (industry): -during offshore operations, seismic surveys (expandable buoys), windmills/wave energy (autonomous buoys during construction, cabled observatory during operation), shipping lines, coastal operations (e.g. harbour construction), etc. The system can be applied (science): - in existing and future acoustic observatories -during CEE and tagging to understand the acoustic ecology of the individual, - existing recordings The system will be implemented (Fall) with: - an alert procedure that will allow to automatically target acoustic events of interest and receive it live (e.g. mitigation or research) - automatic display of AIS data and correlation with noise measurements to determine the acoustic signature of ships cruising over the observatories Laboratori d’Aplicacions Bioacústiques Universitat Politècnica de Catalunya Comprehensive Nuclear-Test-Ban Treaty: Science & Technology 2011, Vienna, Austria CONCLUSIONS & PERSPECTIVES Real-time monitoring of noise and acoustic events: listening, identifying and understanding The data from the existing observatories are availlable to the Thank you…. scientific community The system can be operated by a non-expert The analysis is performed automatically and doesn’t require postprocessing The system is immediately available to be applied to CTBTO Hydroacoustics Observatories Laboratori d’Aplicacions Bioacústiques Universitat Politècnica de Catalunya