D - Mita
Transcription
D - Mita
MOKSLO, INOVACIJŲ IR TECHNOLOGIJŲ AGENTŪRA VILNIAUS UNIVERSITETAS Projektas „Programos „Eureka“ mokslinių tyrimų ir technologinės plėtros projektų įgyvendinimas“ – EUREKA” (EUREKA) Projekto kodas VP1-3.1-ŠMM-06-V-01-003 Poveiklė 1.2.1.14. "Eureka" projekto "OPTICAL DIAGNOSTICS Naujos optinės matavimo technologijos ir įrenginiai puslaidininkių diagnostikai“ vykdymas “ 2011-08-03 sutarties Nr. VP1-3.1-ŠMM-06-V-01-003 BAIGIAMOJI ATASKAITA Projekto vadovas: prof. habil. dr. Kęstutis Jarašiūnas Atsakingas vykdytojas:Dr. Ramūnas Aleksiejūnas Vilnius 2012 1 Eureka Projekto partneriai 1. Projekto koordinatorius ir vykdytojas Vilniaus universitetas, Taikomųjų mokslų institutas Projekto vadovas: Prof. habil. dr. Kęstutis Jarašiūnas 2. Partneris Lietuvoje UAB Ekspla Atsakingas uţ projektą: Direktorius Kęstutis Jasiūnas 3. Partneris uţsienyje Aixtron AG Atsakingas uţ projektą: Vice-president for Research and Development Prof. Dr. Mikhael Heuken 2 Projekto vykdytojo darbo grupės sąrašas 1. Projekto vadovas, vyriausiasis mokslo darbuotojas prof. habil. dr. Kęstutis Jarašiūnas 2. Atsakingas vykdytojas, vyresnysis mokslo darbuotojas dr. Ramūnas Aleksiejūnas 3. Mokslo darbuotojas dr.Vytautas Gudelis 4. Jaunesnysis mokslo darbuotojas Patrik Ščajev 5. Jaunesnysis mokslo darbuotojas Saulius Nargelas 6. Projekto finansininkė Vida Lapinskaitė 3 Projekto santrauka Pagrindinis Eureka projekto tikslas – plėtoti tarpdisciplininius puslaidininkinių junginių tyrimus, apjungiant netiesinės puslaidininkių optikos ir fotoelektrinių procesų sritis, tuo būdu tobulinti netiesines optines matavimo technologijas ir jų pagrindu sukurti optinės diagnostikos įrenginius – prototipus, skirtus plačiatarpių puslaidininkinių junginių charakterizavimui. Metodologinis darbo naujumas yra tame, kad panaudojant šviesa sukeltą lūţio rodiklio bei sugerties koeficiento erdvinę bei laikinę moduliaciją, tiriama nepusiausvyriųjų procesų dinamika ir nustatomi svarbūs puslaidininkių parametrai, atspindintys medţiagos kokybę ir jos panaudojimo optoelektronikoje galimybes. Darbe išplėtotos įvairios optinio „ţadinimo-zondavimo“ konfigūracijos bei stebėsenos metodai, skirti rekombinacijos ir difuzijos procesų diagnostikai puslaidininkiuose plačiame laiko, suţadinimų ir temperatūrų intervale. Metodai aprobuoti tiriant nitridinius puslaidininkių junginius, silicio karbidus bei deimantus, uţaugintus įvairiomis technologijomis, ir paruošti parametrų nustatymo algoritmai atitinkamoms tyrimo sąlygoms. Šios inovacijos, panaudojus difrakcinį šviesos pluoštelio daliklį dinaminės gardelės uţrašymui, įdiegtos naujame HOLO-3 modulyje-prototipe, kuris skirtas plačiatarpių puslaidininkinių junginių charakterizavimui ir pagal savo technines-eksploatacines charakteristikas pranoksta anksčiau sukurtą ir įdiegtą modulį HOLO-2. Apart to, sukurtas kompleksinis stendas krūvininkų gyvavimo trukmei matuoti plačiame laiko intervale – nuo dešimties pikosekundţių iki kelių dešimčių mikrosekundţių dėka jame apjungto optinio ir elektrinio zonduojančio pluoštelio uţlaikymo. Šie nauji techniniai sprendimai panaudoti daugelyje mokslinių publikacijų su paţangiais uţsienio ir Lietuvos mokslo centrais ir perduoti UAB Ekspla, siekiant naujų matavimo modulių komercializacijos. 4 Ataskaitos turinys 1. Įvadas. Projekto tikslai ir uždaviniai. 2. Taikomieji moksliniai tyrimai ir eksperimentinės plėtros darbai. 6 7 2.1. Tyrimo metodai ir jų tobulinimas. 7 2.2. Dinaminių gardelių ir diferencinio pralaidumo stendai. 7 2.3. Moksliniai tyrimai su naujomis optinėmis matavimo schemomis. 10 2.4. Gautų rezultatų reikšmė mokslo bei technologijų paţangai. 11 3. Išvados, mokslinės rekomendacijos, siūlymai. 12 4. Projekto rezultatų publikacijos. 13 5. 15 MTEP rezultatai. 5 1. Įvadas. Projekto tikslai ir uždaviniai. Vykdant projektą, buvo sprendţiami šie moksliniai-taikomieji ir matavimo technologijų uţdaviniai, būtini mokslinių inovacijų sukūrimui ir jų perdavimui projekto partneriui komercializavimo tikslu. I. Moksliniai-taikomieji uţdaviniai: 1. Plėtoti tarpdisciplininius puslaidininkinių tyrimus, apjungiant netiesinės puslaidininkių optikos ir fotoelektrinių procesų sritis, tuo būdu tobulinti netiesinius optinius metodus elektrinių parametrų nustatymui. 2. Sukurtus matavimo metodus pritaikyti modernių medţiagų tyrimams plačiame optinių suţadinimo tankio, spektro ir temperatūrų srityje (T=10-800 K). Krūvininkų dinamikos tyrimui su reikiama laikine bei erdvine skyra panaudoti pramoninius pikosekundinius kietojo kūno bei parametrinius lazerius, optinius kriostatus, duomenų surinkimo sistemas. Ištyrus įvairias medţiagas, paruošti algoritmus fotoelektrinių parametrų nustatymui –gyvavimo trukmei, difuzijos koeficientui, difuzijos ilgiui, jų priklausomybėms nuo injekcijos lygio. 3. Tyrimus atlikti įvairiose puslaidininkinėse medţiagose – nitridinių junginių sluoksniuose bei daugialypėse kvantinėse sandarose, tūriniuose silicio karbido bei sintetinių deimantų kristaluose, tame tarpe ir partnerio AIXTRON AG uţaugintuose nitridų sluoksniuose. Tuo būdus pademonstruoti naujų matavimo būdų universalumą. II. Technologiniai uţdaviniai siejami su matavimų įrangos modernizavimu: 1. Pritaikyti difrakcinius daliklius optinėse dinaminių gardelių uţrašymo konfigūracijose, išbandyti holografinių daliklių matricas, apjungiančias kelis holografinius daliklius viename luste. 2. Panaudoti naujus techninius sprendimus - holografinių daliklių matricas diagnostiniame modulyje HOLO-3. 3. Realizuoti optinį ir elektrinį zonduojančio pluoštelio uţlaikymą viename eksperimentiniame stende krūvininkų gyvavimo trukmės stebėsenai plačiame laiko intervale – nuo dešimties pikosekundţių iki kelių dešimčių mikrosekundţių. 4. Perduoti sukurtas technines inovacijas Projekto partneriui UAB Ekspla, o uţsienio partneriui teikti informaciją apie jų auginamų medţiagų parametrus. 6 2.Taikomieji moksliniai tyrimai ir eksperimentinės plėtros darbai. 2.1. Tyrimo metodai ir jų tobulinimas Darbe buvo panaudotos „optinio ţadinimo - zondavimo“ schemos su koherentiniais šviesos pluošteliais, kurios leido uţrašyti dinamines gardeles puslaidininkyje ir stebėti šviesa sukelto lūţio rodiklio erdvinę ir laikinę moduliaciją n(x,t) per zonduojančio pluoštelio difrakciją, ir tuo būdu matuoti krūvininkų difuzijos ir rekombinacijos spartą (nes n(x,t) irimas proporcingas generuotų krūvininkų tankio moduliacijai N(x,t)). Dinaminės gardelės (DG) uţrašymui buvo panaudoti difrakciniai optiniai elementai – įvairių periodų difrakcinės gardelės, išėsdintos kvarco padėkle. Šiame etape buvo panaudota vienfotonė ir dvifotonė krūvininkų injekcija GaN ir deimantų kristaluose, tuo būdu (i) išplečiant N intervalą, kuriame stebimi rekombinacijos-difuzijos procesai ir (ii) nustatant šių procesų charakteringas vertes (difuzijos koeficientą D ir gyvavimo trukmę ), kurios priklauso nuo injektuotų krūvininkų N koncentracijos bei temperatūros. Lyginant dvifotonio ir vienfotonio ţadinimo eksperimentų duomenis, galima gauti vertingą informaciją apie medţiagas: įvertinti krūvininkų sklaidos mechanizmus, legiravimo koncentraciją, defektų įtaką , netiesinės rekombinacijos spartą. Kita tyrimų kryptis – lėtų rekombinacijos procesų optinis zondavimas, papildantis greitu rekombinacijos komponenčių stebėseną DG metodu. Šiuo atveju zonduojamas diferencinio pralaidumo kinetika, apspręsta zondo pluoštelio sugerties laisvaisiais krūvininkais (t.y. zonduojamas sugerties koeficiento momentinis pokytis (t), proporcingas generuotam krūvininkų tankiui N(t). Tokiu būdu per indukuotą laisvakrūvę sugertį (LKS) stebimos rekombinacijos kinetikos nuo kelių nanosekundţių iki dešimčių-šimtų mikrosekundţių, kurios duoda įţvalgą į rekombinacijos procesų prigimtį , defektų ir pernašos įtaka, defektų energetinius lygmenis ir jų terminę aktyvaciją. Abiejų metodu – DG ir LKS panaudojimas – atveria naujas optinių netiesinių matavimo metodų metrologines galimybes, ko ir buvo siekiama šiame projekto vykdymo etape. Ţemiau pateikiamos optinės metodų konfigūracijos ir eksperimentiniai stendai jų realizavimui. 2.2. Dinaminių gardelių ir diferencinio pralaidumo stendai I. DG schema su difrakciniu-holografiniu pluoštelio dalikliu ir stendas šios inovacijos realizavimui pateiktas 1 paveiksle. Kairėje paveikslo pusėje pateiktas pikosekundinis lazerinis, generuojantis pagrindinę 1064 nm harmoniką (kuri naudojama kaip zondas) ir aukštesnes harmonikas, kurios 7 naudojamos krūvininkų generacijai tiriamajame bandinyje. Dešinėje pateiktas optinių-mechaninių komponentų rinkinys sudaro diagnostinį modulį HOLO-3, kurio pagrindinis naujumas - holografinis pluoštelio daliklis HPD ir jo matrica (2 pav.). Didelis difrakcinis efektyvumas (iki 60% pirmose difrakcijos eilėse) daro difrakcinį elementą perspektyvų DG metodo realizavimui, tačiau difrakcinis efektyvumas keletą kartų sumaţėja prie maţų periodų (<5 m), tuomet periodas maţinamas parenkant maţesnį lęšio ţidinio nuotolį f2. 1 pav. Eksperimentis stendas DG metodo realizavimui su difrakciniu-holografiniu pluoštelio dalikliu (HPD) ir pikosekundiniu lazeriu PL-2143 (UAB Ekspla). 2 pav. Holografinis pluoštelio daliklis HPD (su 10 m periodo gardele), suformuojantis koherentinius pluoštelius DG uţrašymui ir elektro-mechaniškai valdoma HPD matrica su skirtingo periodo gardelėmis (nuo 10 iki 40 m), surinkta ant posūkio stalelio (UAB Standa). II. Siekiant išplėsti diagnostinio HOLO-modulio galimybes, buvo surinktas eksperimentinis stendas, apjungiantis abi metodikas (DG ir LKS) ir turintis papildomą galimybę panaudoti elektroninį zondo uţlaikymą lėtų rekombinacijos procesų matavimui. Pastarajam tikslui panaudotas 2 ns trukmės 8 impulsinis Nd-YAG lazeris (lazeriniais diodais kaupinamas UAB Ekspla modelis NL-202, kurio impulso trukmė buvo sumaţinta iki 2 ns projekto reikmėms). Abu lazeriai (pikosekundinis ir nanosekundinis) sinchronizuojami elektroniškai. Stendas leido atlikti LKS kinetikų matavimus nuo kelių nanosekundţių iki dešimčių-šimtų mikrosekundţių. Šios matavimo sistemos leidţia matuoti difrakcijos signalą, atitinkantį dinaminės gardelės difrakcinį efektyvumą 0.01%, o tai atitinka suţadintų krūvininkų koncentraciją paviršiuje N 5×1017 cm-3. Tūrinio suţadinimo atveju jautris išauga iki N1015 cm-3 vertės. Diferencinio pralaidumo kinetikos leido matuoti T/T1% pokyčius. 3 pav. Optinis stendas greitų ir lėtų procesų stebėsenai, besiremiantis šviesa sukelto lūţio rodiklio bei sugerties koeficiento moduliacija ir tuo tikslu apjungiantis difrakcijos ir laisvakrūvės sugerties metodus su optiniu ir elektriniu zonduojančio pluoštelio vėlinimu. 4 pav. HOLO-3 modulio su paraboliniais veidrodţiais optinė schema ir modulio prototipas. 9 III. Siekiant išvengti optinių pluoštelių su skirtingais bangų ilgiais sferinės aberacijos optiniais didelio skersmens lęšiais DG schemose (ypač uţrašant maţo periodo gardeles), buvo realizuota DG uţrašymo ir zondavimo universali schema, naudojanti parabolinius veidrodţius (4 pav.). Ji buvo surinkta kaip demonstracinis HOLO-3 modulis ir su ja atlikti testiniai difuzijos koeficiento matavimai GaN epitaksiniame sluoksnyje su pikosekundinės trukmės lazerio impulsu. Čia abu pluošteliai (ţadinantis ir zonduojantis) praeina HPD ir paraboliniais veidrodţiais nukreipiami į bandinį. Schema ţenkliai palengvina difragavusiojo pluoštelio suradimą erdvėje (jis sklinda praėjusiojo zondo kryptimi) ir atveria galimybę padidinti matavimo jautrį dėka difrakcinio signalo heterodininio stiprinimo (t.y. difrgavusiojo ir praėjusiojo pluoštelio konstruktyvios interferencijos detektoriuje, kai jų tarpusavio fazės parenkamos sinfaziškomis stumdant HPD-elementą gardelės vektoriaus kryptimi). 2.3. Moksliniai tyrimai su naujomis optinėmis matavimo schemomis. Lentelėje pateikiama 2011-2012m. atliktų tyrimų suvestinė ir nuorodos į publikacijas. Uţduotys Tyrimo objektai Rezultatai ir publikacijos 1. Difuzijos koeficiento D ir gyvavimo trukmės R variacija InGaN sluoksniuose 50 nm storio InGaN epitaksinis sluoksnis su 13% In (pateiktas AIXTRON AG) Ištirtos nuo koncentracijos priklausančios difuzijos koeficiento ir gyvavimo trukmės vertės lokalizuotose ir laisvose būsenose, parodyta juostos renormalizacijos efekto įtaka pernašai. Paruoštas pranešimas tarpt. konferencijai ISSLED„2012 ( Berlynas) ir mokslinis straipsnis (pateiktas į J. Appl. Physics 2012.12) Nepoliniai GaN 2.Pernaša ir sugertis m- ir epitaksiniai sluoc-orientacijos GaN ksniai ant mLiAlO2 padėklo sluoksniuose (AIXTRON AG) ir tūrinis m-GaN (Kyma Inc. JAV) 2. Defektiškumo bei optinių savybių anizotropijos tyrimai įvairiomis optinėmis metodikomis (fotoliuminescencijos, netiesinės sugerties ir difrakcijos. Rezultatai atspausdinti ISI sąrašo ţurnaluose Journal of Crystal Growth (329, 33-38 (2011)) ir Applied Physics Letters (100, 022112 (2012)). 2. Fotoelektrinių parametrų nustatymas vienfotonės ir dvifotonės injekcijos sąlygomis Nustatyta nepusiausvyriųjų krūvininkų gyvavimo trukmė maţo defektiškumo GaN ir jos koreliacija su D(T) kitimu, tuo pagrįstas difuzinės pernašos ribotas rekombinacijos mechanizmas. Įvertinta D(N) priklausomybė leido nustatyti pusiausvyriąją elektronų koncentraciją. Parodytas netiesinių optinių matavimų pranašumas lyginant su fotoliuminescencijos kinetikomis GaN. Paskelbta straipsniuose Appl. Phys.Lett. (98, 202105 (2011)), Journal of Appl. Phys. 1.1 Tūrinis GaN (Kyma Inc, USA) 1.2. Tūriniai HPHT ir CVD technologijų deimantai (Ukraina, Belgija) 10 (111, 023702 (2012)), trys pranešimai tarpt. konferencijose (kviestinis SPIE Photonics West 2011, kviestinis MRS 2011 ir ţodinis SPIE Photonics West 2012). Krūvininkų dinamika deimantuose dvifotonės injekcijos sąlygomis ištirta pirmą karta, atvėrė naujas galimybes nustatyti krūvininkų judrius, gyvavimo laikų sparčias-lėtas kinetikas, jų netiesines priklausomybes nuo koncentracijos ir temperatūros. Paruoštas 1 pranešimas deimantų simpoziumui (Belgija, 2012) ir paskelbtas mokslinis straipsnis (Physica status solidi (a) 209, 1744–1749 (2012)). 2.4. Gautų rezultatų reikšmė mokslo bei technologijų paţangai. Kadangi šiame projekte buvo sprendţiami moksliniai-taikomieji uţdaviniai, susiję su optinės diagnostikos metodų pritaikymu kompleksiniam puslaidininkių charakterizavimui, pirmaeilės svarbos tyrimo objektu buvo defektiškumo sąlygoti medţiagų elektriniai parametrai (nes būtent jie parodo auginimo technologijos paţangą ir leidţia prognozuoti medţiagų tinkamumą taikymams optoelektronikoje). Todėl poreikis išmatuoti elektrinius parametrus bekontaktiniais optiniais metodais išlieka aktualus daugeliui medţiagų – GaN, InGaN, InN, bei SiC. Kita vertus, įgyta metodologinė patirtis (optinės konfigūracijos, matavimo reţimai, algoritmai) šių medţiagų tyrimuose gali būti panaudojami kitų medţiagų analizėje ( ZnO, AlGaN, deimantai). Šiame projekto etape atliktuose tyrimuose buvo gauti rezultatai, liudijantys apie pikosekundinių dinaminių gardelių metodo perspektyvumą pernašos ir rekombinacijos tyrimams InGaN epitaksiniuose sluoksniuose bei kvantinėse sandarose, kurių auginimas plėtojamas VU Taikomųjų mokslų institute. Jų fotoliuminescencijos efektyvumo įsotinimo mechanizmas stiprios injekcijos sąlygomis yra plačiai tiriamas pasaulyje ir yra diskusijų objektas iki šiol, todėl naujų optinių metodų panaudojimas, papildantis standartinius fotoliuminescencijos tyrimus, yra reikšmingas mokslui bei technologinės plėtros įvertinimui. Be to, krūvininkų parametrų nustatymas dvifotonės injekcijos sąlygomis tūriniuose GaN bei deimantų kristaluose suteikė papildomos informacijos apie dislokacijų sąlygotą rekombinacijos spartą GaN bei sklaidos mechanizmų esminį indėlį judrio vertei deimantuose (pataruoju atveju tai leidţia prognozuoti difuzijos lėkio esminį sumaţėjimą stiprios injekcijos prietaisuose). Metodikų plėtra buvo panaudota doktorantų moksliniuose tyrimuose (2012.12 apginta S.Nargelo disertacija), o rezultatai apie ištirtas nitridinių junginių savybes (InGaN, InN) buvo perduoti 11 projekto parneriui (AIXTRON, Vokietija), Hasselto universiteto Medţiagų mokslo institutui (Belgija), bei JAV kompanijai Kyma (su visais paskelbtos bendros publikacijos). Naujos ţinios bus naudojamos ir mokslinės grupės vykdomame ESF remiamame visuotinė dotacijos projekte „Optoelektronikos poreikiams skirtų nitridinių junginių heterosandarų netiesinė optinė ex-situ diagnostika ir optimizavimas (OPTO“ (2012-2015), Europos Komisijos BP7 M. Kiuri ITN projekte „Funkciniai interfeisai SiC (NetFiSiC)“ ( 2011-2014), Lietuvos - Baltarusijos dvišalio bendradarbiavimo mokslo ir technologijų srityje programos (2011-2012) projekte „Elektroninių ir šiluminių procesų dinamikos tyrimai optiniais metodais skirtingos morfologijos CVD deimantuose“, bei Baltijos-Amerikos Laisvės Fondo projektas „Krūvio pernaša ir rekombinacija optoelektronikai skirtuose nitridų junginiuose” (2011.04 - 2012.04). 3. Išvados, rekomendacijos ir siūlymai. Eureka projekto metu buvo tobulinami ir aprobuojami netiesinės optinės metrologijos metodai su įvairiomis puslaidininkinėmis medţiagomis bei sandaromis, uţaugintomis Lietuvoje bei uţsienio mokslo ir technologijų centruose. Todėl pasiekta paţanga didina Lietuvos mokslo tarptautinį prestiţą (buvo skaityti du kviestiniai pranešimai tarptautiniuose JAV forumuose – Photonics West ir Materials Research Society, 2012 m. paskelbti/paruošti 4 straipsniai). Tokia tarptautinė sklaida ir sukurtųjų netiesinių matavimo technologijų papildomumo demonstravimas atţvilgiu plačiai naudojamo standartinio fotoliuminescencijos metodo medţiagų charakterizavimui atlieka naudingą darbą mokslo komercializacijai, siekiant kad projekto partneris UAB EKSPLA rastų uţsakovus naujo diagnostinio modulio HOLO-3 gamybai. Būtina paminėti, jog 2011m. pradėtas GaN sluoksnių bei InGaN kvantinių sandarų auginimas Taikomųjų mokslų institute, todėl Eureka projekte išplėtoti optinės diagnostikos metodai padės šiai technologinei grupei įvertinti MOCVD reaktoriaus auginimo reţimus, o esant poreikiui – testuoti ir MBE technologija FTMC uţaugintus GaAsBi-GaAsN junginius . 12 4. Projekto rezultatų publikacijų sąrašas (su padėka Eureka Projektui). Moksliniai straipsniai 1. P. Ščajev, K. Jarašiūnas, Ü. Özgür, H. Morkoç, J. Leach, and T. Paskova, „Anisotropy of free- carrier absorption and mobility in m-GaN“. Applied Physics Letters 100, 022112 (2012). 2. K. Jarašiūnas, P. Ščajev, R. Aleksiejūnas, J. Leach, T. Paskova, S. Okur, Ü. Özgür, and H. Morkoç. „Recombination and diffusion processes in polar and nonpolar bulk GaN investigated by time-resolved photoluminescence and nonlinear optical techniques“, In: Gallium Nitride Materials and Devices VII, edited by Jen-Inn Chyi, Y. Nanishi, H.Morkoç, J. Piprek, E. Yoon, Proc. of SPIE Vol. 8262, 82620G1-10, 2012, DOI: 10.1117/12.906303 3. K. Jarašiūnas, R. Aleksiejūnas, T. Malinauskas, S. Nargelas and P. Ščajev, „Nonlinear Optical Techniques for Characterization of Wide Band Gap Semiconductor Electronic Properties: III-Nitrides, SiC, and Diamonds“ (Invited paper - MRS Fall meeting 2011), MRS Proceedings 2012 vol. 1396 (12 psl), Cambridge University Press, 2012, DOI: http://dx.doi.org/10.1557/opl.2012.497. 4. K. Jarašiūnas, S.Nargelas R. Aleksiejūnas,, S. Miasojedovas, M.Vengris, S. Okur, U. Ozgir, H. Morkoc, C.Giesen, O. Tuna, M. Heuken „Spectral distribution of excitation-dependent recombination rates jn InGaN“ (straipsnio rankraštis pateiktas 2012.12.10 ţurnalui „Journal of Applied Physics”) 2011 metais, nors Projektas nebuvo tiesiogiai finansuojamas , vyko metodikų plėtros ir jų aprobacijos darbai, bendradarbiaujant su uţsienio partneriu AIXTRON bei ankstesniųjų metų rezultatų sklaida tarptautiniu lygiu. Šią veiklą liudija šios publikacijos (su padėka Eureka projektui): 1. S. Miasojedovas, C. Mauder, S. Krotkus, A. Kadys, T. Malinauskas, K. Jarasiunas, M. Heuken, and H. A. Vescan, „High-excitation luminescence properties of m-plane GaN grown on LiAlO(2) substrates“, J. Crystal Growth 329, 33-38 (2011). 2. P. Ščajev, M. Kato and K. Jarašiūnas, „A diffraction-based technique for determination of interband absorption coefficients in bulk 3C-, 4H- and 6H-SiC crystals“, J. Phys. D: Appl. Phys. 44, 365402 (2011). 13 3. P. Ščajev, A. Usikov, V. Soukhoveev, R. Aleksiejūnas, and K. Jarašiūnas, „Diffusion-limited nonradiative recombination at extended defects in hydride vapor phase epitaxy GaN layers“, Appl. Phys. Lett. 98, 202105 (2011) 4. K. Jarašiūnas „Time-resolved nonlinear optical-holographic techniques for investigation of nonequilbrium carrier dynamics in semiconductors“ (Invited paper, Photonics West 2011), in ULTRAFAST PHENOMENA IN SEMICONDUCTORS AND NANOSTRUCTURE MATERIALS, Proc. SPIE, vol 7937, 7937W1-17, 2011 (DOI: 10.1117/12.877108 ). Tarptautinės konferencijos: 1. MRS Fall meeting (Bostonas JAV, 2011.12) kviestinis pranešimas: K.Jarašiūnas, R. Aleksiejūnas, T. Malinauskas, S. Nargelas and P. Ščajev, Nonlinear Optical Techniques for Characterization of Wide Band Gap Semiconductor Electronic Properties: III-Nitrides, SiC, and Diamonds 2. SPIE Photonics West 2012 ( San Francisco, JAV, 2012.01), pranešimas K. Jarašiūnas, P. Ščajev, R. Aleksiejūnas, J. Leach, T. Paskova, S. Okur, Ü. Özgür, and H. Morkoç. Recombination and diffusion processes in polar and nonpolar bulk GaN investigated by timeresolved photolumines-cence and nonlinear optical techniques. 3. Internatinal symposium on semiconductor light emitting structures ( ISSLED, Berlynas, 2012.07), pranešimas K. Jarašiūnas, R. Aleksiejūnas, S.Nargėlas, T. Malinauskas, S. Miasojedovas, A. Kadys, S. Okur, X.Li, U. Ozgir, H. Morkoc, O. Tuna, M. Heuken, „ On injection activated nonradiative recombination in InGaN”. 14 Finansinių paraiškų teikimo, jų vertinimo, lėšų skyrimo, ataskaitų teikimo ir vertinimo tvarkos aprašo 6 priedas MOKSLINĖS/TECHNOLOGINĖS PRODUKCIJOS APŽVALGA Poveiklė 1.2.1.14. OPTICALDIAGNOSTICS (VU) Metai, uţ kuriuos teikiami duomenys: 2011-2012 Eil. Nr. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. Produkcija Sukurtų, paruoštų diegti ar įdiegtų naujų technologijų skaičius Sukurtų naujų gaminių skaičius Pateiktų tarptautinių patentinių paraiškų pagal Patentinės kooperacijos sutartį ir Europos patentų konvenciją skaičius Pateiktų nacionalinių patentinių paraiškų skaičius Įgytų patentų skaičius Publikacijų ţurnaluose, įtrauktuose į Mokslinės informacijos instituto sąrašą (ISI), skaičius Apgintų disertacijų skaičius Sukurtų naujų darbo vietų verslo įmonėse skaičius Sukurtų naujų darbo vietų mokslininkams ir tyrėjams verslo įmonėse skaičius Įkurtų naujų įmonių skaičius Kiekis 2 Perskaitytų pranešimų konferencijose, seminaruose, kituose renginiuose skaičius Kiti projekto įgyvendinimo metu pasiekti rezultatai. 1 _____Kęstutis Jarašiūnas _________ Projekto vadovas (vardas, pavardė) (parašas) 0 0 0 0 4 1 0 0 2 _______________ 2012-12-31 (data) 15 PRIEDAI -----------------------------------------------------------------------------------------------------------Priedas 1. 2012 m. paskelbtų straipsnių kopijos ir įteikto spaudai straipsnio rankraščio kopija. Priedas 2. Projekto viešinimo plakato kopija. Priedas 3. Projekto partnerio EKSPLA UAB raštas dėl sukurtų matavimo technologijų priėmimo. 16 Priedas 1. 2012 m. paskelbtų straipsnių kopijos ir įteikto spaudai straipsnio rankraščio kopija. Anisotropy of free-carrier absorption and diffusivity in m-plane GaN P. Ščajev, K. Jarašiūnas, Ü. Özgür, H. Morkoç, J. Leach et al. Citation: Appl. Phys. Lett. 100, 022112 (2012); doi: 10.1063/1.3674306 View online: http://dx.doi.org/10.1063/1.3674306 View Table of Contents: http://apl.aip.org/resource/1/APPLAB/v100/i2 Published by the American Institute of Physics. Related Articles Large-area GaN n-core/p-shell arrays fabricated using top-down etching and selective epitaxial overgrowth Appl. Phys. Lett. 101, 241119 (2012) GaN-based platforms with Au-Ag alloyed metal layer for surface enhanced Raman scattering J. Appl. Phys. 112, 114327 (2012) Quadrupole effects in photoabsorption in ZnO quantum dots J. Appl. Phys. 112, 104323 (2012) An all optical mapping of the strain field in GaAsN/GaAsN:H wires Appl. Phys. Lett. 101, 191908 (2012) Temperature dependent effective mass in AlGaN/GaN high electron mobility transistor structures Appl. Phys. Lett. 101, 192102 (2012) Additional information on Appl. Phys. Lett. Journal Homepage: http://apl.aip.org/ Journal Information: http://apl.aip.org/about/about_the_journal Top downloads: http://apl.aip.org/features/most_downloaded Information for Authors: http://apl.aip.org/authors Downloaded 03 Jan 2013 to 193.219.83.91. Redistribution subject to AIP license or copyright; see http://apl.aip.org/about/rights_and_permissions APPLIED PHYSICS LETTERS 100, 022112 (2012) Anisotropy of free-carrier absorption and diffusivity in m-plane GaN P. Ščajev,1,a) K. Jarašiūnas,1,2 Ü. Özgür,2 H. Morkoç,2 J. Leach,3 and T. Paskova3 1 Institute of Applied Research, Vilnius University, Saulėtekio Ave. 9 - III, Vilnius 10222, Lithuania Department of Electrical and Computer Engineering, Virginia Commonwealth University, Richmond, Virginia 23284, USA 3 Kyma Technologies, Inc., 8829 Midway West Road, Raleigh, North Carolina 27617, USA 2 (Received 8 December 2011; accepted 13 December 2011; published online 13 January 2012) Polarization-dependent free-carrier absorption (FCA) in bulk m-plane GaN at 1053 nm revealed approximately 6 times stronger hole-related absorption for E\c than for Ejjc probe polarization both at low and high carrier injection levels. In contrast, FCA at 527 nm was found isotropic at low injection levels due to electron resonant transitions between the upper and lower conduction bands, whereas the anisotropic impact of holes was present only at high injection levels by temporarily blocking electron transitions. Carrier transport was also found to be anisotropic under two-photon C 2012 excitation, with a ratio of 1.17 for diffusivity perpendicular and parallel to the c-axis. V American Institute of Physics. [doi:10.1063/1.3674306] Development of nonpolar and semipolar GaN-based devices has been gaining interest as the polarization induced fields in the commonly employed polar c-plane orientation hamper the efficiency of light emitters and brings about constraints on the widths of quantum wells used in active regions. For device designs utilizing nonpolar and semipolar orientations, it is imperative that anisotropy of optical and electrical properties of wurtzite type nitrides is considered. However, the anisotropy of carrier transport or polarization-dependent absorption have not been investigated in sufficient detail, as the earlier studies utilized relatively thin c-plane GaN platelets which restricted the propagation of a probing optical beam along the symmetry axis (kjjc, E\c). Heretofore, only the polarization-state of emission in thin nonpolar m-plane GaN films has been investigated, confirming the polarization selection rules and revealing an anisotropic strain.1,2 Bulk nonpolar crystals allow coupling of an optical probe conveniently along or perpendicular to the c-axis and thus investigation of the anisotropic features. Indeed, a strong anisotropy of free-carrier absorption (FCA) has been observed in heavily doped hexagonal n-SiC polytypes due to anisotropy of electron effective mass.3,4 In nitride semiconductors, the valence band splitting and spin-orbit interaction lead to more favorable conditions for the hole-related FCA,5 and the indirect absorption processes have been numerically analyzed for GaN/InGaN heterostructures in the 400-670 nm spectral range.6 The latter calculations predicted up to two times higher intraband absorption cross-section by holes for light polarized perpendicular to c-axis (rh\) than that for the parallel polarization (rhjj) and rather weak isotropic absorption by free electrons. The experimental value of FCA for undoped c-GaN was reported for a bipolar free-carrier plasma only for the E\c polarization, providing a crosssection of reh ¼ (2.5 6 0.3) 1017 cm2 at 1053 nm.7 Here, we report on an experimental study of free-carrier absorption and carrier transport in a nonpolar m-plane bulk GaN substrate using optical probes at kp ¼ 1053 and 527 nm. a) Author to whom correspondence should be addressed. Electronic mail: patrik.scajev@ff.vu.lt. Telephone: þ370 5 2366036. Fax: þ370 5 2366037. 0003-6951/2012/100(2)/022112/4/$30.00 Taking advantage of the in-plane c-axis, we were able to investigate the anisotropy by directing the linearly polarized probe beam normal to the surface and rotating its polarization for full 360 . Measurements of polarization-dependent FCA revealed nearly 6-times stronger hole-related absorption at 1053 nm for E\c as compared to that for Ejjc. Isotropic and rather strong FCA was measured at 527 nm which we attributed to FCA in the conduction bands. The anisotropy of ambipolar and hole diffusivity was found to be much less pronounced. The measurements were carried out on a d ¼ 450 lmthick m-plane freestanding GaN wafer, sliced from a 7-mm thick freestanding Hydride Vapor Phase Epitaxy (HVPE) grown GaN boule (with an electron density of 9.5 1015 cm3, threading dislocation density varying from 1 106 cm2 at the edge side to 4 105 cm2 at the front side of the boule). For carrier injection to the entire bulk of the layer, we used two-photon (2P) excitation by 15 ps pulses at 527 nm from a neodymium-doped yttrium lithium fluoride laser. Single-photon (1P) carrier injection at 351 nm was used to reach higher injected carrier densities, in a photopumped slice of thickness d. Monitoring the probe beam differential transmission, ln(T0/T) ¼ Dad, we measured the FCA coefficient, Da, at kp ¼ 1053 nm and 527 nm probe wavelengths and determined the FCA cross-sections Ð reh ¼ ln(T0/T)/ DN(z)dz, where the injected carrier density DN(z) is integrated over the sample thickness.5 By varying the orientation of the linearly polarized probe beam with respect to the c-axis, the anisotropy of reh was measured. Carrier diffusivity was investigated by the light-induced transient grating technique8 under two-photon injection conditions, providing DN ¼ 1016 – 5 1017 cm3. Two orthogonal orientations of the grating vector K with respect to the caxis were used to determine the diffusion coefficient D along the two orthogonal directions (K\c and Kjjc) from the diffusion-governed grating decay time. In Fig. 1(a), we present the dependence of FCA on excitation energy density for 1053 nm probe. The FCA signal increased almost linearly with carrier injection at 351 nm, thus a constant reh value can be assumed in the range up to 100, 022112-1 C 2012 American Institute of Physics V Downloaded 03 Jan 2013 to 193.219.83.91. Redistribution subject to AIP license or copyright; see http://apl.aip.org/about/rights_and_permissions 022112-2 Ščajev et al. FIG. 1. (Color online) (a) Polarization-dependent FCA for a 1053 nm probe beam: dependence on excitation energy density and (b) FCA decay kinetics at high injected carrier density (5 1019 cm 3). The dashed lines are numerical fits and the inset in (b) shows FCA decay at low excess carrier density (1017 cm3). 7 mJ/cm2 (5 1019 cm3). The linear relationship allowed us to determine reh values. A varying FCA signal strength for different probe beam polarizations implies that reh is strongly anisotropic [Fig. 2(a)]. The FCA cross-section as a function of the polarization angle / was fitted using reh(/) ¼ reh \ – (reh \ – reh jj) cos2(/). For the 1053 nm probe, we obtained reh\ ¼ 2.2 1017 cm2, rehjj ¼ 3.4 1018 cm2, and an anisotropy ratio S ¼ r\/rjj ¼ 6.5. The same values of reh and S were obtained under two photon excitation, i.e., in the carrier density range from 1015 to 5 1017 cm3 [see FIG. 2. (Color online) (a) Polarization dependence of FCA cross-section reh for 1053 nm probe wavelength at high (351 nm) and low injection (527 nm) conditions. (b) reh for 527 nm probe at low (DN 5 1017 cm3, external circle) and high injection [two internal circles for reh at zero delay time (for DN 5 1019 cm3) and at 4 ns delay time (for DN 2.6 1019 cm3)]. (c) GaN energy band diagram with direct (vertical arrows) and indirect phononassisted intraband transitions (diagonal arrows) depicted (after Ref. 6). Appl. Phys. Lett. 100, 022112 (2012) Fig. 2(a)]. The injection-independent FCA at the given probe wavelength can be attributed to the polar optical phonon assisted FCA in valence bands,6 thus reh rh at 1053 nm. Polarization-dependent FCA measurements with the 527 nm probe were performed at low and high carrier injection conditions (i.e., by using excitation wavelengths of 527 nm or 351 nm, respectively). At low excess carrier densities, the measurements yielded smaller reh values compared to those for the 1053 nm probe and no dependence on polarization: reh\ ¼ rehjj ¼ 8 1018 cm2 [Fig. 2(b)]. This is a clear signature that holes that are responsible for FCA anisotropy at 1053 nm do not contribute noticeably to FCA in the visible spectral range, or at least at 527 nm. Therefore, the electron-related transitions within the conduction band must be invoked, contrary to the predictions.6 The measured FCA cross-section that is more than an order of magnitude larger than the predicted one re ¼ 4.6 1019 cm2 is ascribed to the isotropic conduction bands.9 The contribution of direct inter-valence-band hole transitions cannot be observed at 527 nm due to absence of appropriate valence bands [see Fig. 2(c)].6 At high injection levels, the measured FCA cross sections for kp ¼ 527 nm revealed anisotropic features and much smaller reh values with respect to those measured under low injection [Fig. 2(b)]. We note that the high injection reh values measured at zero delay [reh\ ¼ 1.2 1018 cm2, rehjj ¼ 6.7 1019 cm2, and S ¼ r\/rjj ¼ 1.8, see Fig. 2(b)] are close to the theoretical values for holes (rh\ ¼ 1.5 1018 cm2, rhjj ¼ 6.2 1019 cm2, S ¼ r\/rjj ¼ 2.4),6 thus indicating that interband transitions in the conduction band are fully suppressed at high excess carrier densities. Moreover, at longer probe delays, reh values slightly increased and became more isotropic [Fig. 2(b)]: at 4 ns delay, reh\ ¼ 1.8 1018 cm2, rehjj ¼ 1.3 1018 cm2, and S ¼ r\/rjj ¼ 1.4. To understand these observations, we analyzed the rate of nonequilibrium processes and the influence of high excess carrier density on the intraband transitions within the conduction bands. Single-photon excitation at 351 nm provides a carrier density of up to DN 1020 cm3 within a very thin photoexcited layer, d ¼ 1/a ¼ 0.1 lm, but ongoing rather fast diffusion processes as well as the plausible absorption bleaching for 351 nm wavelength may expand the excited layer thickness d up to a few micrometers.8 The injection-density (DN) dependent room-temperature bandgap, according to Ref. 10 is given by Eg,opt(DN) [eV] ¼ 3.452 – 4.27 108 DN1/3 þ 0.082 (DN/1019)2/3, where the second and the third terms on the right hand side represent the band gap renormalization (BGR) and band filling, respectively. Consequently, for the employed excitation wavelength of 351 nm (hm3¼3.53 eV), the injected average carrier density for I0¼7 mJ/cm2 fluence is limited to N*¼4.81019 cm 3 [assuming that Eg,opt(N*) ¼ hm3], and, therefore, carriers are distributed over d ¼ 2.6 lm depth, since N* d ¼ I0/hm3. In order to obtain the carrier density at 4 ns delay time [Fig. 1(b)], we fitted the FCA decay rate using the relationship 1/sR ¼ 1/snonR þ B(DN) DN and the measured nonradiative carrier lifetime of snonR ¼ 49 ns at low injection (see inset in [Fig. 1(b)]). The modeling of vertical carrier diffusion with varying diffusivity D(DN) and bimolecular recombination coefficient B(DN) values for the degenerate carrier plasma11,12 Downloaded 03 Jan 2013 to 193.219.83.91. Redistribution subject to AIP license or copyright; see http://apl.aip.org/about/rights_and_permissions 022112-3 Ščajev et al. provided a density of 2.6 1019 cm3 and an instantaneous lifetime of 11 ns at 4 ns delay. As the hole effective mass is some 10 times higher than that for electrons,10 band filling and BGR impact the conduction band more by lifting it up by 233 meV and shifting down by 155 meV, respectively, [obtained from Eg,opt(DN) at DN ¼ N*]. Assuming that higher energy electrons mostly contribute to interband transitions leads to detuning of the resonance transition energy between lower and upper conduction bands at 2.5 eV (Ref. 6) and to vanishing electron-related contribution to reh (see Fig. 2(c)). At longer probe delays, the impact of many-body effects decreases with decreasing carrier density causing the FCA cross-section to increase. Eventually, at the low injection limit (1017 cm3), the measured reh ¼ 8 10 18 cm2 value involves contributions from the isotropic electron cross-section, re ¼ 7 1018 cm2, and the much smaller anisotropic hole cross-section, rh (1.2-0.7) 1018 cm2, measured at zero delay [see Fig. 2(b)]. The fitting of rh in the 527-1064 nm range uncovered a tendency of its fast increase in accordance with the relationship rh ! k-p, accounting both the anisotropy in effective masses and relaxation times.6 Here, scattering by polar optical phonons would lead to p ¼ 2.5 (Ref. 13) whereas our fitting provided p values of 4.0 and 2.5 for E\c and Ejjc polarizations, respectively. The discrepancy with the theory for E\c polarization can be explained by band nonparabolicities and/or hole intervalence band transitions for 1053 nm.6 Injection independent rh at 1053 nm is verified by a linear dependence of FCA vs. injection [as predicted theoretically13 and confirmed by our data, Fig. 1(a)] and vs. temperature (as reported for E\c (Ref. 7)). For measurements of the diffusivity, D, the carriers were injected by two-photon interband transitions at 527 nm providing equal density of electrons and holes. The sample was rotated by 90 to obtain the orthogonal or parallel orientations of the grating vector K ¼ 2p/K (which is in the plane of grating recording beams) with respect to the c-axis. The refractive index spatial modulation Dn(x) by the injected carrier density DN(x) ¼ N02P(1 þ cos(Kx))2, where x is the in-plane spatial coordinate, creates a transient phase grating [Dn(x) ! DN(x)], on which the probe beam at 1053 nm diffracts and its efficiency decays with g(t)! DN2 exp(-2 t/sG).14 The measured exponential grating decay time sG is used to obtain the diffusive decay time sD ¼ 1/K2D through the relationship 1=sG ¼ 1=sR þ 1=sD for the given diffusion coefficient D, grating period K ¼ 1.74 lm and a very long nonradiative carrier lifetime sR snonR ¼ 49 ns. Two-photon band-to-band excitation created holes and electrons with equal densities DN ¼ DNn ¼ DNh, and the injected average carrier density Nav ¼ 1.5 N02P was calculated according to Ref. 14. The electrons and holes diffused together with the ambipolar diffusion coefficient given as:15 D(DN) ¼ (n0 þ DNn þ DNh)DnDh/ [(n0 þ DNn)Dn þ DNhDh], where n0 is the doped electron density and Dh and Dn are the hole and electron diffusivities, respectively. Assuming that Dh Dn for GaN due to the large hole effective mass, we determined the Dh value at low injections (DN n0) and the ambipolar diffusivity Da 2Dh at DN n0. A fitting of experimental diffusivity data (Fig. 3) as a function of Nav provided an average doping density of n0 ¼ 2 1016 cm3 as well as hole diffusion coefficients of Appl. Phys. Lett. 100, 022112 (2012) FIG. 3. (Color online) Anisotropy of diffusivity in bulk m-GaN. For comparison, the D values for free-standing c-GaN (with dislocation density 5 105 cm2) revealed a slightly higher Dh\ ¼ 0.81 cm/s value due to lower doping (n0 ¼ 8 1015 cm3). Dh\ ¼ 0.76 cm2/s and Dhjj ¼ 0.65 cm2/s. For modeling the diffusivity at low injections, Dn values of 36 and 26 cm2/s were used for c-plane and m-plane samples, respectively, based on the reported electron mobilities16 and their relationship to diffusivity, Dn ¼ kTle/e.15 The experimental data provided a 17% anisotropy of the room-temperature hole mobility in m-plane GaN for two orthogonal in-plane orientations. The rather small anisotropy of mobility can be attributed to the opposite anisotropy of the light-hole and split-off valence bands.9 In the m-plane GaN sample investigated, the acoustic phonon scattering is dominant at room temperature, as the ionized impurity scattering reduces the mobility in m-GaN with respect to c-GaN only by 7% based on the doping levels. Thus, according to Ref. 17, a ratio of D\/Djj ¼ 1.35 was calculated, using the GaN valence band parameters.9 The calculated diffusion anisotropy is in satisfactory agreement with the experimentally obtained value of D\/Djj ¼ 1.17. In conclusion, we investigated the FCA anisotropy and diffusivity in bulk m-plane GaN under low and high carrier injection conditions. A strong hole-related FCA anisotropy was observed at 1053 nm probe wavelength with the crosssection ratio of r\/rjj ¼ 6.5. FCA at 527 nm probe wavelength was isotropic and related to electron-transitions between the lower and upper conduction bands. Strong blocking of electron transitions at high injections due to band filling and renormalization revealed the anisotropic features of hole-related FCA at 527 nm. Small anisotropy of hole and ambipolar diffusivity was attributed to the opposite anisotropy of the light-hole and split-off valence bands. The research was sponsored by the Baltic-American Freedom Foundation and Eureka E!4473 Project. Work at VCU was supported by Grants from NSF and AFOSR. 1 P. Paskov, T. Paskova, P. O. Holtz, and B. Monemar, Phys. Rev. B 70, 035210 (2004). 2 C. Rivera, P. Misra, J. L. Pau, E. Muñoz, O. Brandt, H. T. Grahn, and K. H. Ploog, J. Appl. Phys. 101, 053527 (2007). 3 B. Ellis and T. S. Moss, Solid State Commun. 3, 109 (1965). 4 V. Grivickas, A. Galeckas, P. Grivickas, and J. Linnros, Mater. Sci. Forum 338–342, 555 (2000). 5 P. Ščajev, V. Gudelis, K. Jarašiūnas, and P. B. Klein, J. Appl. Phys. 108, 023705 (2010). Downloaded 03 Jan 2013 to 193.219.83.91. Redistribution subject to AIP license or copyright; see http://apl.aip.org/about/rights_and_permissions 022112-4 6 Ščajev et al. E. Kioupakis, P. Rinke, A. Schleife, F. Bechstedt, and C. G. Van de Walle, Phys. Rev. B 81, 241201(R) (2010). 7 P. Ščajev, A. Usikov, V. Soukhoveev, R. Aleksiejūnas, and K. Jarašiūnas, Appl. Phys. Lett. 98, 202105 (2011). 8 T. Malinauskas, K. Jarašiūnas, S. Miasojedovas, S. Juršėnas, B. Beaumont, and P. Gibart, Appl. Phys. Lett. 88, 202109 (2006). 9 Y. C. Yeo, T. C. Chong, and M. F. Li, J. Appl. Phys. 83, 1429 (1998). 10 M. Yoshikawa, M. Kunzer, J. Wagner, H. Obloh, P. Schlotter, R. Schmidt, N. Herres, and U. Kaufmann, J. Appl. Phys. 86, 4400 (1999). 11 T. Malinauskas, K. Jarašiūnas, M. Heuken, F. Scholz, and P. Brukner, Phys. Status Solidi C 6, S743 (2009). Appl. Phys. Lett. 100, 022112 (2012) For modeling, a lower B ¼ 0.3 1011 cm3/s was used with respect to a low-injection one, B ¼ (2-5) 1011 cm3/s. 13 B. K. Ridley, Quantum Processes in Semiconductors (Clarendon, Oxford, 1999). 14 P. Ščajev, V. Gudelis, E. Ivakin, and K. Jarašiūnas, Phys. Status Solidi A 208, 2067 (2011). 15 J. F. Schetzina and J. P. McKelvey, Phys. Rev. B 2, 1869 (1970). 16 D. Huang, F. Yun, M. A. Reshchikov, D. Wang, H. Morkoç, D. L. Rode, L. A. Farina, ç. Kurdak, K. T. Tsen, S. S. Park et al., Solid State Electron. 45, 711 (2001). 17 T. Kinoshita, K. M. Itoh, M. Schadt, and G. Pensl, J. Appl. Phys. 85, 8193 (1999). 12 Downloaded 03 Jan 2013 to 193.219.83.91. Redistribution subject to AIP license or copyright; see http://apl.aip.org/about/rights_and_permissions Mater. Res. Soc. Symp. Proc. Vol. 1396 © 2012 Materials Research Society DOI: 10.1557/opl.2012.497 Nonlinear Optical Techniques for Characterization of Wide Bandgap Semiconductor Electronic Properties: III-nitrides, SiC, and Diamonds Kęstutis Jarašiūnas1, 2, Ramūnas Aleksiejūnas1,Tadas Malinauskas1, Saulius Nargelas1, and Patrik Ščajev1 1 Department of Semiconductor Optoelectronics, Institute of Applied Research, Vilnius University, Saulėtekio al. 9-III, Vilnius, LT-10222 Lithuania 2 Department of Electrical and Computer Engineering, Virginia Commonwealth University, 601 W. Main Str., Richmond, Virginia 23284 USA ABSTRACT Combining interdisciplinary fields of nonlinear optics, dynamic holography, and photoelectrical phenomena, we developed the optical measurement technologies for monitoring the spatial and temporal non-equilibrium carrier dynamics in wide bandgap semiconductors at wide range of excitations (1015 to 1020 cm-3) and temperatures (10 to 800 K). We explored advantages of non-resonant optical nonlinearities, based on a short laser pulse induced refractive or absorption index modulation (Δn and Δk) by free excess carriers. This approach, based on a direct correlation between the electrical and optical processes, opened a possibility to analyze dynamics of electrical phenomena in “all-optical” way, i.e. without electrical contacts. Carrier diffusion and recombination processes have been investigated in various wide band gap materials - differently grown GaN, SiC, and diamonds - and their key electrical parameters determined, as carrier lifetime, diffusion coefficient, diffusion length and their dependences on temperature and injected carrier density. The studies provided deeper insight into nonradiative and radiative recombination processes in GaN crystals, revealed diffusiondriven long nonradiative carrier lifetimes in bulk GaN and SiC, disclosed impact of delocalization in InGaN layers, and suggested a trap-assisted Auger recombination in highlyexcited InN. Injection and temperature dependent diffusivity revealed a strong contribution of carrier-carrier scattering in diamond and bandgap renormalization in SiC. INTRODUCTION During the last two decades, a significant progress in growth techniques paved a way for development of novel device-quality wide bandgap semiconductors. The most prominent among them are III-nitrides [1], silicon carbide [2], and diamond [3], all featuring some superior characteristics for high power optical or electronic devices. Unfortunately, growth of these materials up to now remains challenging, which inevitably leads to relatively high defectiveness of the layers. Point and extended defects affect the dynamics of excess carriers, hence degrading performance and reliability of devices. In spite of a huge experimental and theoretical effort, many peculiarities of carrier recombination and transport processes remain unclear; especially this is true for highly excited semiconductors, when conditions are similar to those in operating high power devices. In this article, we address this problem in III-nitride, SiC, and diamond semiconductors by using two pump-probe optical techniques – Free Carrier Absorption (FCA) and Light Induced Transient Grating (LITG). They are based on correlation between instantaneous density of excess carriers and nonresonant modulation of complex refractive index; as a result, they allow a direct and contactless observation of temporal and spatial evolution of injected carrier pattern. Combined with versatility of nowadays lasers, pump-probe approach offers great flexibility of experimental conditions, like a wide range of excitation wavelengths, delay times, excess carrier density, etc. Exploiting the mention strengths of FCA and LITG, we managed to get a deeper insight into nonradiative and radiative recombination and transport processes GaN, SiC and diamond semiconductors. We also demonstrate a promising potential for investigation of carrier dynamics in InGaN layers for light-emitting diode applications. SAMPLES AND TECHNIQUES The samples used in this study cover a wide range of wide bandgap materials grown in different labs worldwide. A set of GaN layers with thickness d ranging from 10 to 145 μm was grown on sapphire by hydride vapor phase epitaxy (HVPE) technique at TDI Inc.[4]. GaN layers of d=80 μm on sapphire [5] and free standing one d=200 μm [6] were used to determine nonradiative carrier lifetimes and their dependence on dislocation density, temperature, and injected carrier density. A 200 μm thick free standing cubic SiC layer was grown non undulant Si in a cold wall low pressure reactor. The 3C layer was removed from the Si substrate by mechanical polishing and chemical etching. The background carrier density was ~1017 cm-3 [7]. A low nitrogen-doped 3C layer (n0=1014–15 cm-3) with thickness of ~60 µm was grown on nominally on-axis 4H-SiC substrate using the horizontal hot-wall chemical vapor deposition reactor at Linköping university [8]. The grown-in ~30 mm2 size 3C-SiC islands were revealed by room temperature PL under strong picosecond pulse excitation at 351 nm. The 0.9 mm thick HPHT diamond layer [9] was of II a type with concentration of nitrogen below 1017 cm-3, according to absence of characteristic absorption bands in 1000– 1500 cm-1 spectral range. The another sample was CVD grown 0.67 mm thick layer with very low residual nitrogen density of about 5×1014 cm-3 [10]. A set of InGaN/GaN QWs was grown on c-plane sapphire by metal-organic chemical vapor deposition (MOCVD). The nominal thickness of wells and barriers was 6 nm and 10 nm, correspondingly. The ratio of TMIn/TMGa was varied from 0.5 to 2.6 for the growth of QWs with different In content. In content in QWs was estimated from PL emission spectra and XRD measurements and varied from 3% to 16% in different samples. The reference sample was grown without In in the wells but keeping the same growth conditions. All samples were annealed insitu at 820 0C temperature for 20 minutes. InN layers of 0.6 μm and 2.3 μm thickness were grown by molecular beam epitaxy (MBE) on sapphire substrate [11] and typically had high background carrier density, (1–4)×1018 cm-3. The absorption spectra provided the bandgap values of 0.66 eV and 0.72 eV. For investigation of carrier dynamics and determination of recombination rates and diffusion coefficients in wide excitation range, we used powerful picosecond lasers. The Nd:YLF and Nd:YAG lasers operating at 10 Hz repetition rate (Ekspla Co., LT) provided 12 ps and 25 ps pulses at fundamental emission lines (10 mJ @ 1053nm and 30 mJ @ 1064 nm) as well as the higher harmonics, up to the 5th one with 2 mJ @ 213 nm. The harmonics were used to realize an interband carrier photoexcitation in GaN and SiC at λ3h=351/355 nm or λ4h=266 nm wave- lengths, as well in diamonds at λ5h=213 nm. The high power of pulses allowed two-photon excitation of bulk GaN and diamond crystals at λ2h =527 nm and λ3h=351 nm, correspondingly. Time-resolved FCA [7–10], LITG [4–6,12] (Fig. 1) and standard photoluminescence techniques were applied for investigation of spatial and temporal carrier dynamics. The LITG technique paves the way for the determination of carrier diffusion coefficient and mobility, while the FCA decay provides the carrier recombination times. The recombination and diffusion processes were monitored by a delayed probe beam at longer wavelengths (1053 or 1064 nm). The optically delayed (up to 4 ns) picosecond probe pulse at λ1=1053 nm was used to measure the fast decay transients. For the measurement of longer relaxation tails (up to hundreds of ns in the used crystals), an electronically delayed ~2 ns duration probe pulse from a diode-pumped Nd:YAG was used [7]. The measurements were performed in the 80–800 K range. Figure 1. Experimental setups of (a) LITG and (b) FCA techniques. For grating recording, a holographic beam splitter (HBS) and lenses with focal lengths f1and f2 were used. Light-induced transient grating technique For grating recording, the excitation beam at wavelength λ2h,3h passed a diffractive optical element (a permanent diffraction grating with a fixed spatial period), and the two first order diffracted beams, intersecting at an angle Θ, provided an interference pattern with a period Λ≈λ2h,3h/sin(Θ) in the sample [13]. The pump beam penetration depth under a single photon excitation (1P), α-11P, was determined by the interband absorption coefficient, and the carrier density near the surface was calculated as N01P=α1PI0/hν, where α is the interband absorption coefficient, I0=(1–R)Iinc is the excitation energy density in the sample (in mJ/cm2), R is the reflection coefficient, Iinc is the incident excitation density, and hν is the photon energy. Under two photon excitation (2P), a value of two-photon coefficient β [cm/GW] and the excitation beam instantaneous power density P(t)=2I0exp(-4t2/τ22h)π-1/2τ2h-1 [GW/cm2] determine the +∞ generated carrier density N02P= ∫− ∞ βP(t )2 dt / 2hν =bI02/2hν. The factor b = β /(τ 2h π / 2 ) describes a decrease of the incident fluence I(z) during propagation inside the crystal solely due to 2P absorption: I ( x, z ) = I (x ) , 1 + bzI (x ) (1) where I (x ) = I 0 [1 + cos(2πx / Λ )] (x is the direction of the grating vector K = 2π/Λ). Consequently, the injected carrier density ΔN(z) slightly decreases with the depth z: ΔN (x, z ) = N 02 P [1 + cos(2πx / Λ )]2 (1 + bzI (x )) 2 . (2) The above relationships allowed us to calculate an average carrier density Nav=1.5N02P/[1+bdI0] for various excitation power densities I0. The carrier density equals to N01P and 1.5N02P near the excited surface (at 1P and 2P injection condition, respectively), and the factor 1.5 is due to the nonsinusoidal profile of the grating at 2P excitation (see Eq. 2). The generated carriers lead to a refractive index change, Δn=nehΔN, according to Drude* Lorentz model [13], where neh = −e 2 λ12 / 8π 2 c 2 n1ε 0 meh × E g2 / E g2 − (hc / λ1 )2 is the refractive index ( ( ) ) change per one electron-hole pair, n1 is the refractive index for probe wavelength λ1, ε0 is the vacuum permittivity, Eg is the GaN bandgap, and m*eh is the reduced electron-hole effective mass [ 1 / m *eh = (1 / m *e + 1 / m *h ) ]. The following values were calculated for wide bandgap crystals for nonresonant probing at λ1=1053 (or 1064) nm: for GaN, neh=-1.36×10-21 cm-3 using averaged me=0.2 m0 and mh=1.5 m0, for diamond, neh=-5.8×10-22 cm3 using me=0.48 m0, mh=1.4 m0, and for SiC, neh=-8.7×10-22 cm-3 using its reduced optical mass meh=0.24. The refractive index spatial modulation Δn(x) creates a phase grating in the GaN crystal, on which the probe beam diffracts with efficiency η(t): 2 ⎛ 2t ⎞ ⎛ 2πn eh N 02 P d ⎞ ⎟⎟ exp⎜⎜ − ⎟⎟ η (t ) = ⎜⎜ λ1 ⎝ ⎠ ⎝ τG ⎠ (3) and provides the grating decay time τG: 1 τG = 1 τR + 1 τD , (4) where τR and τD=Λ2/4π2D are the carrier lifetime and diffusive decay time for the given diffusion coefficient D and grating period Λ. Equation 3 slightly overestimates the diffraction efficiency η due to depletion of pump beam (i.e. I(z) and ΔN(z) ∝ I(z)2 vary with depth at two-photon absorption conditions, see Eqs. 1 and 2); therefore, numerical calculations provided the η decrease (with respect to Eq. 3) of more than 50 % at excitations above 15 mJ/cm2. The exact value of the first order diffraction efficiency at arbitrary modulation profile Δn(x,z,t) was calculated numerically according to relationship (5) [13] and used for fitting the measured dependence η(I0). 2π 2 Λd ⎛ 2πx ⎞ η (t ) = Δn(x, z , t )dz cos⎜ ⎟dx . ∫ ∫ λ1 0 0 ⎝ Λ ⎠ (5) For determination of D, the grating decay rates 1/τG were measured at least for two different but small grating periods (Λ=1.74 μm and 7.8 μm) in order to separate the diffusive and the recombinative contributions. The diffusive decay is always dominant at Λ=1.74 μm period (according to Eq. (4)) and the corresponding τD≈0.3–1 ns was much shorter than the measured carrier lifetime τR ≈ 10 - 100 ns for bulk GaN at 10–800 K, i.e. condition τR>>τD was satisfied, leading to τG=τD. Moreover, the measured η value at a fixed excitation fluence (η∝ΔN2) allowed determination of the two-photon absorption coefficient (see Eqs. (3) and (5)). A deeper analysis of the FCA and LITG kinetics at injected carrier densities high excitations was undertaken by the numerical solution of the nonlinear continuity equation [7]: ∂N (z , t ) ΔN (z , t ) = D(ΔN )∇ 2 ΔN (z , t ) − − BΔN 2 (z , t ) − CΔN 3 (z , t ) + G (z , t ) , ∂t τR (6) delay, ps 20 200 1000 3400 7200 17 -3 ΔN (cm ) 10 16 10 15 10 14 10 (a) 0 1 z (μm) 2 3 PL intensity/carrier density (a. u.) where G(z,t) is the carrier generation rate, B and C are the bimolecular and Auger recombination coefficients. The carrier density and its evolution was calculated assuming carrier injection by a ~20 ps laser pulse at 351 nm and using the boundary condition Da δΔN(0,t)/δz=SΔN(0,t) at the front surface (z=0) and the determined D(ΔN) and τR values. The instantaneous carrier spatial profiles ΔN(z) (see Fig. 2a) provide impacts of carrier diffusion and surface recombination. (b) τ = 40 ns τ = 3.2 ns 0 10 FCA at 527 nm LITG at 351 nm PL at 266 nm τ = 1.1 ns -1 10 0.0 0.5 1.0 Delay (ns) 1.5 Figure 2. (a) Evolution of carrier depth profiles in bulk GaN after carrier injection to a thin surface layer at 266 nm wavelength. Surface recombination velocity S=1.1×104 cm/s and D value varying from the ambipolar D=1.6 cm2/s to the minority carrier one Dh=0.8 cm2/s were used for calculations. (b) Comparison of carrier decay transients revealed by various optical techniques at single photon (PL and LITG) and two-phonon (FCA) excitation conditions. The LITG decay is given for grating period Λ=7.8 μm at high injection conditions, 2×1019 cm-3 at t=0, and leads to decay time of 3.2 ns at t=1 ns (red dashed line). For comparison, FCA decay at 2P injection conditions (1017 cm-3) indicates 40 ns lifetime (black dashed line, determined from FCA decay in 200 ns range [6]). Diffusion expands the spatial profile up to 1–2 μm, thus surface-related recombination can be seen as a fast initial transient in the measured FCA and LITG decay. Surface recombination is strongly pronounced in GaAs and AlGaAs [14], where the S value reaches up to 5×105 cm/s. In case of GaN and SiC, S impact is much smaller and overlaps with the contribution of bimolecular recombination, also seen as the initial non-exponential decay. We note that the used FCA and LITG techniques exploit infrared probe beam to integrate the carrier density over the thickness, thus making them insensitive to diffusion coefficient value. On the other hand, timeresolved photoluminescence in direct bandgap materials is very strongly influenced both by diffusion and surface recombination, if a very thin surface layer is photoexcited. The TR PL technique also integrates the PL signal (Eq. 7), but reabsorption of emission allows only a thin 1– 2 μm layer contribute to the measured PL signal IPL: d I PL ∝ ∫ ΔN p (ΔN n + n0 ) exp(− α R z )dz . (7) 0 Therefore, carrier escape by diffusion away from the PL controlled layer (in case the carrier lifetime ensures the large diffusion length) is one of the main factors leading to fast PL decay initial transients, which often are present in TRPL kinetics [15–17]. Free-carrier absorption technique The FCA decay kinetics at 2P injection were used to determine carrier lifetime values τR at various temperatures and excitation densities. The carriers were injected by a single Gaussian beam, and the induced absorption transient, Δα(t)=σehΔN(t), was monitored via the measurements of IR probe beam differential transmission [T0-T(t)]/T0∝1-exp[-Δα(t)d] [7]. At two photon excitation, the following general equation describes the FCA decay: ln(T0 / T (t )) = σ eh d N 02 P exp(− t / τ R ) . 1 + bdI 0 (8) The dependence of FCA signal on the injected carrier density (at t*=2τ3h≈24 ps, following the excitation pulse) allowed determination of the free carrier absorption cross section σeh=ln[T0/T(t=t*)]/(N02Pd). This relationship is valid for relatively low fluences (I0<10 mJ/cm2) when the factor bdI0<<1. At higher I0, the depth-averaged carrier density for both FCA (N*=N02P) and LITG (N*=1.5N02P) techniques was calculated taking into account the beam depletion, as given above by Eq. 2 at 2P carrier injection. EXPERIMENTAL RESULTS The experimental investigations had a common goal to investigate fast nonequilbrium processes in different materials, determine carrier recombination rates and diffusion coefficients at various injected carrier densities and temperatures, and eventually disclose the factors which govern these parameters in wide excitation and temperature range. Therefore, we used singlephoton (1P) and two-photon (2P) carrier excitation conditions in order to study carrier dynamics in the ΔN~5×1017–5×1019 cm-3 (1P) and the 1015–3×1017 cm-3 (2P) ranges, correspondingly. The thickness of the photoexcited region δ under 2P excitation was three orders of magnitude larger (δ =α-12P ≈100 μm at 1 GW/cm2 power density) when compared to the 1P injection case (δ =α-11P ≈100 nm at 351 nm with a diffusion-expanded photoexcited region of a few micrometers, see Fig.2a). Consequently, two-photon excitation increased the photoexcited thickness δ and ensured detection of ΔN×δ , which is the measured quantity by these techniques. Thus, low excess carrier densities at 2P excitation allowed to study nonradiative recombination processes and avoid impact of many body effects, which may cause lifetime and diffusivity dependence on carrier density. The latter dependences were studied at 1P injection conditions. The measured dependences and determination of photoelectric parameters 80 K , τR = 9.8 ns -1 10 300 K, τR = 40 ns ln(T0/T) 800 K, τR = 122 ns -2 10 (a) 0 100 200 300 400 Electrical Delay (ns) Diffraction efficiency (a. u.) The standard kinetics of induced FCA absorption and LITG efficiency decay are single exponential and provide carrier lifetime values and diffusivity (see Eqs 4 and 6). In Fig. 3, we present these kinetics in bulk GaN at different temperatures. In this way, the carrier lifetimeτR dependence on T was determined in GaN (Fig. 5) as well in diamonds [9,18] at 2P excitations and in bulk SiC at 1P excitation [8]). We note that an electronically delayed 2 ns duration probe was used to measure FCA decay times above 5 ns (see Fig. 3a), whereas the optically delayed picosecond pulses probed the fast decay transients (see Fig. 7). The LITG decay at small grating periods (e.g. for Λ=1.74 μm in Fig. 3b) ensured solely diffusive grating decay with time τD=Λ2/4π2D<<τR, which led to D value (as well its dependence on T or N, see Fig. 6). 80 K , τG = 0.24 ns -2 300 K, τG = 0.50 ns 10 800 K, τG = 1.05 ns 17 Nav = 1.3×10 cm -3 10 -3 Λ = 1.74 μm -4 10 (b) 0 1 2 Optical delay (ns) 3 Figure 3. Kinetics of FCA decay (a) and LITG diffraction efficiency decay (b) in free standing 200 μm thick GaN under two-photon carrier injection. Another characteristic of these nonlinear techniques is the dependence of the induced optical signal (η or ln(T0/T)) on excitation beam energy density I0. These dependences in log-log plot are power functions with a slope index γ, which points out to carrier generation rate (see Fig. 4): the FCA slopes are linear (γ=1, SiC) and quadratic (γ=2, GaN) at 1P and 2P carrier excitation, while the γ values become doubled in diffraction characteristics, η vs I0. Moreover, the absolute values of η(I0) allowed determination of the injected carrier density ΔN, based on the calculated modulation coefficient neh (see Eq. 3). In turn, the FCA cross section σeh values were determined by fitting the measured ln (T0/T) dependences for known ΔN values. The determined σeh value for GaN and SiC and are given in Fig. 4. 0 GaN γ = 1.95 -2 10 -3 10 1 (a) cm -17 cm σeh=(2.5±0.5)×10 -5 10 -21 neh =1.34×10 2 I0 (mJ/cm ) -2 10 β =15 cm/GW 10 -1 10 γ = 3.6 -4 10 Diffraction efficiency, ln(T0/T) Diffraction efficiency, ln(T0/T) -1 10 -18 σeh (4H)=10x10 -18 σeh (3C)=4.1x10 2 cm 2 300 K 3C-SiC 4H-SiC -3 γ=2 -4 neh (4H)=8.9x10 cm -22 3 neh (3C)=8.5x10 cm 10 10 2 γ=1 FCA 10 3 cm -22 LITG 1 (b) 2 I0 (mJ/cm ) 3 10 Figure 4. Dependences of light-induced diffraction efficiency, η, and differential transmission DT on excitation energy fluence, I0, in GaN under two-photon carrier injection and in 3C-/4HSiC at interband injection. neh, σeh stand for the refractive index and absorption coefficient changes under carrier injection. The indices γ are the slopes of the curves in the log-log scale. Lifetime and diffusivity dependences on temperature and injection The very long lifetime values τR in bulk GaN at RT can be qualitatively attributed to very low dislocation density in this crystal (5×105 cm-2 [19]), while the unusual lifetime dependence τR(T) required a novel insight into the mechanism on nonradiative recombination (thermally activated lifetime would lead to an opposite tendency). The monotonous increase in lifetime with τR (ns) γ= 15 1. τinter τdiff d = 145 μm d = 90 μm d = 10 μm γ = 0.93 10 τR ×10 τdiff=23/Da(T) 1 10 (a) 100 -3 cm 16 -3 ΔN = 3×10 cm τinter + τdiff τR (ns) 17 ΔN = 5×10 2 10 -3 τinter=4.1×10 T 2 10 2 a /Da(T) fits 3/2 3 T (K) 10 (b) 10 2 3 T (K) 10 Figure 5. Dependences of carrier lifetime on temperature in the bulk GaN at for two different injection conditions: (a) at 2P injection providing low carrier density, indicated on the plot and (b) at 1P injections for three different thickness HVPE layers. Fittings of τR(T) are shown, accounting contribution of diffusion (τdiff∝1/D(T)) and interface defects (τinter∝T 3/2). increasing T was observed in different quality GaN layers on sapphire [4], as well in thick cubic SiC [8]. The observed inverse correlation between the measured τR(T) and D(T) (see Fig. 6a) pointed out to impact of diffusion-limited recombination in bulk semiconductors. Numerical fitting of these dependences by surface-limited lifetime (inversely dependent on D) at high excitations [4] and of interface recombination (τinter∝1/S) at lower injections [6] confirmed that the diffusive flow of carrier to internal grain boundaries of GaN hexagonal grains and subsequent interface recombination at dislocations determine the nonradiative recombination rate in lowdefect density GaN. The extremely high carrier density ΔN resulted in enhanced recombination rate due to bimolecular recombination (1/τR∝BΔN2) and revealed the enhanced carrier diffusivity due to plasma degeneracy in GaN [5]. The experimental D(N) dependence was approximated by D(N)=D0(1+N/N0) and parameters N0=2.2×1019 cm-3, D0=1.5 cm2/s [5]. Moreover, at moderate injections, the decrease of D was observed in SiC and especially in diamonds (Fig. 6b). This peculiarity was attributed to many-body effects which known to cause an enhanced carrier scattering and bandgap shrinking, resulting in decrease of D in SiC [20,21]. D(N) dependence for diamonds in wide excess carrier range (1015 to 1017 cm-3) was monitored under 2P carrier injection at 351 nm and explained the observed nearly 10-fold decrease of D in diamonds at high interband injections (using 213 nm wavelength [9,18]). In this way, LITG technique allowed contactless measurements of high mobility values in diamond, previously accessed only by electrical time-of-flight method. 1 2 10 0.1 (a) D (cm /s) 2 Da (cm /s) 100 17 T = 300 K 10 15 n0= 6 x 10 cm -3 -3 GaN, ~10 cm 16 -3 3C-SiC, ~10 cm 15 -3 HPHT diamond, ~10 cm 2 10 CVD diamond HPHT diamond 3C-SiC GaN 1 15 3 T (K) 10 15 n0= 9 x 10 cm (b) 10 16 10 17 10 -3 18 -3 10 ΔN (cm ) 19 10 Figure 6. Dependences of ambipolar carrier diffusivity in GaN, 3C-SiC, and diamond on temperature (a) and injection (b). The modeled solid curves in (a) take into account only phonon and defect scattering while in (b) also many body effects were included. The low-injection conditions were found useful to get deeper insight into mechanisms of carrier recombination in diamonds. The exponential FCA decays in 80–800 K range provided carrier lifetimes increasing with temperature and saturating at 360 ns at T ≥300K [9].The latter value was attributed to minority carrier lifetime governed by nitrogen defect with density NN=3×1015 cm-3. Fast FCA decay transients were measured at relatively low injections, 1016 to 1017 cm-3 (Fig.7a), exhibiting a linear decrease of carrier lifetime with injected carrier density. This feature of nonlinear recombination, (1/τ=B*(N0+ΔN)), was fitted with the coefficient B*=4×10-9 cm3/s value at 800 K. Thus, the observed nonlinear recovery of traps recharged by optical illumination follows the trap-assisted Auger recombination process (TAAR) with coefficient B*=BTAAR= CTAAR×NTrap,, which requires presence of active deep trap density in mid1015 cm-3 [9] (origin of the traps needs further studies). Similarly, carrier dynamics in InN revealed very fast nonradiative mechanism of recombination [11] which also followed the similar tendency as in HPHT diamond. The measurements of FCA decay at various photoexcitation densities ranging from 80 μJ/cm2 to 1.4 mJ/cm2 exhibited density-dependent 17 800 K -1 Normalized ln(T0/T) ln(T0/T) τ=0.76 ns 10 -3 3.0x10 cm 16 -3 9.9x10 cm 16 -3 4.2x10 cm 16 -3 1.1x10 cm τ=2.5 ns τ=6.4 ns 0 (a) 1 2 2 18 -3 n0 = 1.4×10 cm I (mJ/cm ) 0.08 0.24 0.44 0.72 1.44 0.1 τ=23 ns -2 10 InN 1 3 4 Optical Delay (ns) * -10 3 B = 4×10 cm /s τ = 1.45 ns 0 (b) 150 300 450 Probe delay (ps) Figure 7. Light induced absorption kinetics in HPHT diamond (a) and InN (b) layers under interband carrier injection conditions 10 0 10 -1 10 -2 (a) InxGa1-xN 2 excitation 50 μJ/cm Λ=9.6 μm 3.56 ns 2.79 ns 2.71 ns x=16% x=15% x=10.8% x=7.9% x=3.4% x=0 % 0 1 2 3 Probe delay (ns) 2.17 ns Lifetime (ns) 1 2 10 D (cm /s) Normalized η (a. u.) carrier lifetimes. Linear decrease of excess carrier lifetime with increase of photoexcited carrier density allowed us to determine nonlinear recombination coefficient B. The measured temperature dependence of B by using LITG has not revealed a feature of the bimolecular recombination mechanism, for which the B value must follow T-3/2 law. The data obtained by FCA and LITG techniques allowed us to propose that plausibly TAAR is the dominant mechanism, which governs carrier recombination in highly excited InN layers at room temperature. We note that the determined B* values varied with intrinsic carrier density N0 and were equal to 4×10-10 cm3/s (in a sample with N0=3×1018 cm-3) and 3×10-9 cm3/s in another sample with N0=4.7×1018 cm-3. 1.29 ns 1.06 ns (b) 3 1 x=15% x=10.8% x=3.4% 1 0.1 0.1 12 Excitation energy density (mJ/cm ) Figure 8. LITG kinetics in InGaN QWs with different In content (a) and the determined values of lifetime and D at various excitation fluences (b). Fig. 8 (a) shows LITG kinetics recorded in InxGa1-xN quantum wells (QW) with varying In content x. With increasing x, exponential decay with τR~1 ns for x=0.03 is gradually replaced by non-monotonous one with fast and slow components. Intuitively, the latter tendency could be attributed to longer carrier lifetime in high In-content QWs. However, more thorough analysis proves that non-exponential decay is caused by carrier localization (and, probably, internal electric fields), so the fast and slow components are related to recombination of carriers from extended and localized states, respectively [22]. As a proof, Fig. 8 (b) shows diffusion coefficient and lifetime measured in QWs of various x, as a function of excitation energy (i.e. excess carrier density). For the lowest excitation, diffusivity drops and lifetime increases with growing In content (e.g. compare D and lifetime at 0.05 mJ/cm2), as more carriers are captured into localized states. Low mobility of these carriers prevents them from moving around and finding a nonradiative recombination center, which causes an increase in lifetime. As pump is increased, localized states get gradually saturated and free carriers start to play relatively larger role in recombination. At high pump, shorter lifetime in high In content QW reflects higher recombination rate of free carriers due to higher concentration of defects. It has to be mentioned, though, that internal electrical fields would give qualitatively similar tendencies as carrier localization, thus these processes can not be fully distinguished by a single technique. CONCLUSIONS We reviewed time-resolved measurement techniques based on free carrier nonlinearities and their implementation to monitor carrier lifetimes, diffusion coefficients, and ambipolar diffusion length LD in various wide bandgap semiconductors. The latter value at room temperature varied from ~35–70 μm (in HPHT and CVD diamonds) and 6–17 μm (in 4H- and 3C-SiC) to LD =2.4 μm in bulk GaN and LD = 0.8 μm in InN layers. Long nonradiative lifetimes of ~40 ns in GaN were assigned to diffusion-limited recombination at internal grain boundaries of hexagonal grains. Two-photon carrier injection allowed studies of carrier dynamics in wide injection range and revealed density-dependent mobility decrease in SiC, and especially in diamond. Linearly increasing with excitation recombination rates in diamond and InN were attributed to trap-assisted Auger recombination process. Carrier transport features in LEDstructures is a promising area for studies by these time-resolved optical techniques. The performed investigations confirmed a high capability of time-resolved optical techniques for investigation of temporal and spatial carrier redistribution in advanced materials for electronics and optoelectronics. ACKNOWLEDGMENTS The authors acknowledge fruitful collaboration with advanced research and technological centers of wide bandgap materials at Linkoping University (Sweden), Ulm University (Germany), TDI Inc. and Virginia Commonwealth University (USA), Nagoya Technical University (Japan), Institute of Physics (Belorus), and Hasselt University (Belgium). Kęstutis Jarašiūnas acknowledges financial support of the Baltic-American Freedom Foundation. REFERENCES [1] H. Morkoc, Handbook of nitride semiconductor and devices (VILEY-VCH, 2008). [2] W.J. Choyke, H. Matsunami, G. Pensl, Silicon carbide: recent major advances, (Springer, 2004). [3] Physics and Applications of CVD diamonds, eds. S. Koizumi, C. Nebel, M. Nesladek, (VILEY-VCH, 2008). [4] P. Ščajev, A. Usikov, V. Soukhoveev, R. Aleksiejūnas, and K. Jarašiūnas, Appl. Phys. Lett. 98, 202105 (2011). [5] T. Malinauskas, K. Jarašiūnas, M. Heuken, F. Scholz, and P. Bruckner, Phys. Status Solidi C, 6, S743 (2009). [6] P. Ščajev, K. Jarašiūnas, Ü. Özgür, and H. Morkoç, Phys. Status Solidi B (in print). [7] P. Ščajev, V. Gudelis, K. Jarašiūnas, and P. B. Klein, J. Appl. Phys. 108, 023705 (2010) [8] P. Ščajev, J. Hasssan, K. Jarašiūnas, M. Kato, A. Henry, and P. Bergman, J. Electron. Materials 40, 394-399 (2011). [9] P. Ščajev, V. Gudelis, E. Ivakin, and K. Jarašiūnas, Phys. Status Solidi A, 208, 2067 (2011). [10] T. Malinauskas, K. Jarašiūnas, E. Ivakin, N. Tranchan, and M. Nesladek, Phys. Status Solidi A, 207, 2058 (2010). [11] S. Nargelas, R. Aleksiejūnas, M. Vengris, Malinauskas, K. Jarašiūnas, and E. Dimakis, Appl. Phys. Lett. 95, 162103 (2009). [12] K. Jarašiūnas, R. Aleksiejūnas, T. Malinauskas, V. Gudelis, T. Tamulevičius, S. Tamulevičius, A. Guobienė, A. Usikov, V. Dmitriev, and H.J. Gerritsen, Rev. Sc. Instrum. 78, 033901 (2007). [13] H. J. Eichler, P. Gunter, and D. W. Pohl, Light-induced Dynamic Gratings (Springer, Berlin, 1986). [14] K. Jarašiūnas, R. Aleksiejūnas, T.Malinauskas, V. Gudelis, M,Sudzius, A. Massdorf. F Brummer, and M Weyers, Eur. J. Appl. Physics 27, 181 (2004). [15] Ü. Özgür, Y. Fu, Y. T. Moon, F. Yun, H. Morkoç, and H. O. Everitt, J. Appl. Phys. 97, 103704 (2005). [16] H. Wang, K.S. Wong, B.A. Foreman, Z.Y. Yang, and G.K.L. Wong, J.Appl. Phys. 83, 4773 (1998). [17] T. Malinauskas, K. Jarašiūnas, S. Miasojedovas, S. Juršėnas, B. Beaumont, and P. Gibart, Appl. Phys. Lett. 88, 202109 (2006). [18] P. Ščajev, T. Malinauskas, L. Lubys, E. Ivakin, M. Nesladek, K. Haenen, and K. Jarašiūnas, Phys. Status Solidi RRL 5, 193 (2011). [19] M. A. Reshchikov, H. Morkoc, A.S. Park, and K.Y. Lee, Appl. Phys. Lett. 78, 3041 (2001). [20] C.Persson, U. Lindefelt, and B. E. Sernelius, Solid State Electronics 44, 471 (2000). [21] J. Pernot, P.N. Volpe, F. Omnes, P. Muret, V.Mortet, K. Haenen, and T. Teraji, Phys. Rev. B 81, 205203 ( 2010). [22] T. Malinauskas, S. Miasojedovas, R. Aleksiejūnas, S. Juršėnas, K. Jarašiūnas, M. Nomura, Y. Arakawa, T. Shimura, and K. Kuroda, Phys. Status Solidi C 8, 2381 (2011). Recombination and diffusion processes in polar and nonpolar bulk GaN investigated by time-resolved photoluminescence and nonlinear optical techniques Kęstutis Jarašiūnas1, Patrik Ščajev1, Saulius Nargelas1, Ramūnas Aleksiejūnas1, Jacob Leach2, Tania Paskova2, Serdal Okur3, Ümit Özgür3, and Hadis Morkoç3 1 Department of Semiconductor Optoelectronics, Institute of Applied Research, Vilnius University, Saulėtekio Ave. 9, Bld.3, Vilnius, LT-10222 Lithuania 2 Kyma Technologies, Inc. 8829 Midway West Road, Raleigh, NC 27617, USA 3 Department of Electrical and Computer Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA ABSTRACT Optically-injected carrier dynamics were investigated in bulk polar and nonpolar GaN in 1015-to-1020 cm-3 carrier density range, exploring single- and two-photon photoexcitation conditions. The excitation decay and recombination rates were monitored by time-resolved photoluminescence and free-carrier absorption techniques, while diffusivity was investigated by light-diffraction on transient grating technique. Carrier dynamics in c- and m-plane thick freestanding HVPE GaN revealed nearly linear increase of carrier lifetime with temperature in the 80 - 800 K range whereas the bipolar carrier diffusivity decreased with temperature. This feature suggests that the measured long lifetime values of 40-50 ns at RT result from diffusion-governed carrier flow to interface defects at GaN hexagons, which act as centers of nonradiative recombination. The fast PL transients under carrier injection to submicrometer thick layer were fitted by using the determined diffusivity and lifetime values and revealed a strong impact of vertical carrier diffusion, surface recombination, and reabsorption processes. Radiative and nonradiative emission rates were analyzed by various optical techniques to discriminate contribution of excitons and free carriers at various temperatures and injected carrier densities. Keywords: gallium nitride, two-photon carrier generation, diffusion, recombination, free carrier absorption, photoluminescence, transient gratings 1. INTRODUCTION A reliable determination of nonradiative and radiative recombination rates remains an open question for development of III-nitride materials even after decades of intensive studies. To address this very issue, investigation of carrier dynamics as well the relevant optical techniques able to characterize fast electronic properties are on demand. A wide arsenal of lasers with carrying pulse duration and wavelengths is available not only to generate excess carriers, but also monitor their decay in different ways - by recording photoluminescence (PL) transients or applying optical “pump-probe” techniques. The latter nonlinear optical techniques, based on strong correlation between the electrical and optical phenomena open a possibility to analyze electrical processes with high temporal resolution and without electrical contacts. Among various time-resolved “pump-probe” techniques, the light-induced transient gratings (LITG) [1-3] and free-carrier absorption (FCA) [4,5] techniques have been found most advantageous, as enabled access to carrier diffusion and recombination processes as well provided the direct and reliable relationships between the measured nonlinear optical response of a material and the electrical parameters of a semiconductor. Particular interest in polar and nonpolar GaN stems from the wide range of application of nitrides in high efficiency ultraviolet to green light emitting diodes and laser diodes, and high power/high frequency robust electronics. In this work, investigation of carrier dynamics was performed on c-plane-200-μm and m-plane-450-μm Gallium Nitride Materials and Devices VII, edited by Jen-Inn Chyi, Yasushi Nanishi, Hadis Morkoç, Joachim Piprek, Euijoon Yoon, Proc. of SPIE Vol. 8262, 82620G © 2012 SPIE · CCC code: 0277-786X/12/$18 · doi: 10.1117/12.906303 Proc. of SPIE Vol. 8262 82620G-1 Downloaded From: http://proceedings.spiedigitallibrary.org/ on 01/03/2013 Terms of Use: http://spiedl.org/terms thick freestanding HVPE GaN for a wide range of excitation intensities and temperatures. The excitation decay was monitored by photoluminescence and free-carrier absorption (FCA) techniques, while diffusivity was investigated by light-diffraction on transient grating technique (LITG). Interband carrier excitation was realized by laser pulses at 266 and 351 nm (photon energy hν > bandgap Eg, single excitatation conditions) and at 527 nm (hν < Eg, two20 photon excitation conditions). In this way, injection range varied from 1015 to 10 cm-3, paving the way for study of monopolar to bipolar carrier diffusivity as well as monomolecular (defect governed) and bimolecular interband recombination processes. The temperature dependences of carrier lifetime and diffusivity were investigated by different optical techniques to discriminate radiative and nonradiative recombination rates and get a deeper understanding of the origin of the fast PL transients. Numerical modeling was found helpful to reveal a strong impact of in-depth carrier diffusion, surface recombination, and reabsorption processes to the subnanosecond PL transients. The value of bimolecular recombination coefficient B was determined from the carrier-density dependent FCA decay. Radiative exciton lifetime, its temperature dependence, and dynamic interaction between the exciton and electron subsystems is analyzed experimentally. 2. TECHNIQUES AND BULK GAN SAMPLES For investigation of carrier dynamics and determination of recombination rates and diffusion coefficients in a wide excitation range, we used powerful picosecond and femtosecond lasers. The Nd:YLF and Nd:YAG lasers operating at 10 Hz repetition rate (Ekspla Co., LT) provided 12 ps and 25 ps pulses, respectively, at fundamental emission lines (1053 nm and 1064 nm, respectively) as well as the higher harmonics. The harmonics were used to realize a single interband carrier photoexcitation (at λ3h= 351/355 nm or λ4h=266 nm wavelengths) as well the interband twophoton excitation at λ2h =527 nm in GaN. For TRPL study, a standard setup of time-resolved PL spectroscopy was employed using ~150 fs frequency tripled pulses from a Ti-Sapphire laser at λ=266 nm along with a Hamamatsu streak camera. Time-resolved FCA, LITG (Fig. 1a,b) and standard photoluminescence techniques (Fig. 1c) were applied for investigation of spatial and temporal carrier dynamics. The LITG technique paves the way for the determination of carrier diffusion coefficient and mobility, while the FCA decay provides the carrier recombination times. The recombination and diffusion processes were monitored by a delayed probe beam at weakly absorbed longer wavelengths (1053 or 1064 nm). The optical delay (up to 4 ns) of the picosecond probe pulse was used to measure the fast decay transients. For the measurement of longer relaxation tails (up to a hundred of ns for the GaN samples investigated here), an electronically delayed ~2 ns duration probe pulse from a diode-pumped Nd:YAG was used [5]. The measurements were performed in 10–800 K range. (c) Fig.1. Experimental setups of LITG (a), FCA (b), and TRPL (c) techniques. For grating recording, a holographic beam splitter (HBS) and lenses with focal lengths f1 and f2 were used. FCA setup explores an additional pulsed Nd:YAG laser for probing slow decay components in carrier dynamics. The measurements were carried on two thick freestanding HVPE-grown GaN wafers. A d = 450 μm-thick mplane sample was sliced from a 7-mm thick boule with an electron density of n0= 9.5 × 1015 cm-3 and threading dislocation density NTD varying from ~1 x 106 cm-2 at the edge side to ~4 × 105 cm-2 at the front side of the boule. Proc. of SPIE Vol. 8262 82620G-2 Downloaded From: http://proceedings.spiedigitallibrary.org/ on 01/03/2013 Terms of Use: http://spiedl.org/terms The second one was a d = 200 μm thick c-GaN sample with electron concentration n0 = 1.3×1016 cm-3 and mobility μn = 1200 cm2/Vs. In the case of interband carrier generation the light was strongly absorbed in a thin surface layer of thickness d= 1/α (approx ~100 nm in GaN) and the carriers have a strong gradient towards the depth, N(z). For two photon excitation (2P), light at 527 nm was weakly absorbed and its large penetration depth d= 1/α2P ≈100-200 μm allowed to neglect the near-surface effects. A numerical solution of the continuity equation (1) was used to calculate spatiotemporal non-equilibrium carrier dynamics N(x, z, t) at single and 2P-injection conditions and fit the PL, FCA and LITG decay kinetics: ∂N ( x, z, t ) ΔN ( x , z , t ) = D(ΔN )∇ 2 ΔN ( x, z, t ) − − BΔN 2 ( x, z , t ) + G ( x, z, t ) , ∂t τR (1) where G is the carrier generation rate, D is the diffusion coefficient, and A=1/ τR and B are the coefficients of linear and bimolecular recombination, respectively. 3. EXPERIMENTAL RESULTS 3.1 Carrier lifetime measurements The explored time-resolved FCA and LITG techniques monitor the dynamics of injected carrier density N(z), integrated over the photoexcited layer of thickness z=δ (i.e. ∫ N(z)dz= N*(t)δ(t), which cause temporary changes of absorption coefficient Δα =σeh N* and refractive index spatial modulation Δn(x) = neh N*(x). Consequently, the probe beam monitors the differential transmission, ln(T0/T), or the diffraction efficiency of the grating (η (t) ∝ Δn(x,t)2 ∝ ΔN*2). In most experiments, the interband carrier injection by strongly absorbed beam was used and provide a high value of N (up to 1020 cm-3) whereas in a very thin layer δ (below 1 μm in direct bandgap materials). Τwo-photon (2P) absorption allows to increase the photoexcited depth thickness significantly, up to few hundred μm. The increased δ value compensates the decreased N value at 2P conditions, which is a few orders of magnitude lower, thus the integrated product N*(t)δ(t) provides high enough sensitivity of FCA an LITG techniques to monitor carrier dynamics at low injections as well. The used 2P carrier injection at 527 nm excitation wavelength provided carrier densities in the range 1015 to 1017 cm-3. Varying the probe-laser trigger delay Δt up to 300 ns electronically (see Fig. 1b), we measured FCA decay kinetics, and the plot of ln(T0/T) vs. Δt (see inset in Fig. 2a) provided a carrier lifetime of 50 ns for bulk mGaN crystal at room temperature (RT). Similar lifetime values of 24-40 ns at RT were reported for bulk c-GaN crystals [6,7] and attributed to nonradiative carrier capture by defects, located at internal boundaries of GaN hexagonal grains. Temperature dependence of lifetime for m-GaN (Fig. 2a) revealed nearly linear increase in the 80800K range, at both low injection 2P excitation (527 nm) and single photon injection conditions (351 nm). In the latter case, the injected carrier density was higher, but the slow FCA decay component also exhibited the lifetime increase with temperature. The observed peculiarity of a steep increase of lifetime in m-GaN at T > 600 K (with respect to c-GaN) is probably related to passivation of interface traps at grain boundaries, leading to a decrease of interface recombination velocity. We note that this feature was not present at 351 nm excitation in m-GaN, as the higher injected carrier density within a thin layer provided favorable conditions for the surface and bimolecular recombination [8]. The fast recombination transients were investigated by LITG technique using optical delay of the picosecond probe beam. The carrier dynamics at large grating period of Λ= 11.4 μm (see Fig. 2b) are governed by recombination as the measured decay time of 6-8 ns is a few times shorter than the estimated diffusive decay time of τD = Λ2/4π2D=20-24 ns. The initial decay component of 2 ns was observed in case of carrier injection to a very thin layer (δ = 0.1−0. 2 μm at 266 nm) and can be ascribed to contribution of surface recombination time, τs= δ/S, with the estimated upper limit of surface recombination coefficient S = 104 cm/s. Carrier diffusion from the surface to the bulk will increase the depth and diminish the surface impact with time. At higher excitations, the even faster initial decay component emerges; here, due to the linear increase of recombination rate with excitation this feature can be attributed to the bimolecular recombination. Numerical fitting of carrier dynamics using Eq. (1) provided the values of S=6×103 cm/s and bimolecular recombination coefficient B=6×10-12 cm3/s in GaN at RT. Proc. of SPIE Vol. 8262 82620G-3 Downloaded From: http://proceedings.spiedigitallibrary.org/ on 01/03/2013 Terms of Use: http://spiedl.org/terms 3.2 Optical measurements of carrier diffusion For measurements of the diffusivity by LITG technique, we explored advantage of 2P interband carrier injection providing equal density of electrons and holes (ΔN = ΔNn = ΔNh) and rater low injected carrier concentration (ΔN < n0). The probe beam diffraction efficiency on the grating decays according to a simple relationship η (t) ∝ ΔN2 exp(2t/τG) [3] with rate 1 / τ G = 1 / τ R + 1 / τ D , reflecting both carrier lifetime τR and diffusive decay time τD = Λ2/4π2D. Conditions of our experiment (grating period of Λ = 1.74 μm and a very long nonradiative carrier lifetime of τR ≈ τnonRad = 50 ns) ensured solely the diffusive grating decay (τD << τR) and a simple determination of D = Λ2/4π2τG. ln(T 0/T) -2 300 K λex = 527 nm 10 τR, ns 100 -3 10 0 50 100 150 200 Delay, ns γ .1 =1 5 c-GaN, 527 nm m-GaN, 527 nm m-GaN, 351 nm 10 (a) m-GaN τ = 50 ns Diffraction efficiency, a. u. -1 10 100 T, K 1000 10 1 10 0 10 -1 10 -2 10 -3 m-GaN, Λ =11.4 μm, 266 nm I0, mJ/cm 1.7 2 0.77 0.35 0.16 0.073 0.033 0.015 3 S = 6× 10 cm/s, B = 6× 10 0 (b) 1 2 Delay, ns -12 3 cm /s 3 Fig. 2. (a) Temperature dependence of nonradiative carrier lifetime determined by FCA technique at various excitation conditions. The inset in (a) shows FCA decay in m-GaN sample at two-photon carrier generation. (b) LITG kinetics at 266 nm excitation for different excitation levels I0, modeled by using continuity Eq. (1) and S, B values as given on the plot. In the bipolar plasma, the electrons and holes diffuse together with the ambipolar diffusion coefficient [9]: D(ΔN) = (n0+ΔNn+ΔNh)DnDh [(n0+ΔNn)Dn+ΔNhDh], (2) where n0 is the doped carrier density. Noting that the hole diffusivity is much smaller than that of electrons (Dh << Dn), the measurements in high excitation regime (ΔN >> n0) provided an ambipolar diffusion coefficient Da while at low injection conditions (ΔN << n0) the measured value was very close to the minority carrier (hole) diffusivity Dh. The experimental diffusivity data for the c- GaN and m-GaN samples (Fig. 2a) and the fitting as a function of ΔN provided an average doping density n0 of 8×1015 and 2×1016 cm-3 for c- and m-GaN, respectively. At high excitations, the bipolar diffusion coefficient of Da ≈ 2Dh= 1.6 cm2/s and hole mobility value μh = eDh/kT = 31 cm2/s were determined. We note that the m-plane layer allowed variation of the grating vector orientation with respect to the c-axis and determine the diffusion coefficient Da along the two orthogonal directions. Consequently, hole diffusion coefficients of Dh⊥= 0.76 cm2/s and Dh||= 0.65 cm2/s were measured in m-GaN for diffusion perpendicular to or parallel to the c-axis, respectively. A slightly higher Dh⊥=0.8 cm/s value in c-GaN is probably due to its lower doping (n0 = 8×1015 cm-3) and lower dislocation density (5×105 cm-2). The experimentally measured diffusion anisotropy ratio of 1.17 was found in satisfactory agreement with the calculated one of 1.35 in m-GaN [10]. A striking difference between these two bulk samples was a decrease of D value below the minority diffusivity at low injected carrier density (see Fig. 3a). Our previous study of bulk crystals at carrier generation from deep level states (e.g. EL2 in GaAs, vanadium in CdTe, etc [11,12]) have revealed a similar tendency of carrier diffusivity drop down to value by an order of magnitude smaller than the Da. Photoexcitation of donor type traps by light interference pattern and the electron diffusion along the grating vector creates a space-charge field between the mobile carriers and recharged traps. This field opposes carrier diffusion, and thus, the grating diffusive decay by drift current. At bipolar excitation conditions, the space charge field is formed between the electrons and holes and Proc. of SPIE Vol. 8262 82620G-4 Downloaded From: http://proceedings.spiedigitallibrary.org/ on 01/03/2013 Terms of Use: http://spiedl.org/terms the carrier modulation decay is governed by bipolar diffusion (as the former built in field between mobile carriers and ionized trap is screened). These processes seems to take place in m-GaN crystal and indicate presence of deep midgap traps with a density of about (2-3)×1015 cm-3. Understanding the origin of these traps need more detail studies. We note that presence of these traps was found also in intentionally doped HVPE grown n+ type bulk GaN crystals, when 532 nm wavelength was used for carrier photogeneration [13]. 1.6 1.4 ⊥c 1.2 1.0 0.8 0.6 0.2 14 (a) 15 10 16 10-3 Nav, cm 2.4 1.8 c-GaN 17 -3 Da at 10 cm 15 -3 Da, theor at 10 cm 0.0 10 2Dnpo 2Dac 1.2 m-gan c-gan fits 0.4 2Dpop + npo 2 D, cm /s ||c 2 D, cm /s 4.8 4.2 3.6 3 T = 300 K 0.6 17 10 100 T, K 1000 (b) Fig. 3. (a) Dependence of carrier diffusivity on injected excess carrier density (symbols- experimental data, lines – a numerical fitting by Eq (2). (b) The measured temperature dependence of diffusivity D (symbols) and the modelled one (red line). Theoretically calculated dependences for ambipolar diffusivity (Da = 2Dh, theor) account for acoustic (ac), polar (pop) and nonpolar (npo) optical phonon scattering (black dashed curves). For modeling of the measured diffusivity dependence on temperature (Fig. 3b), the equilibrium carrier densities were calculated using a previously determined concentration of donors (1×1016 cm-3) and acceptors (2.4×1015 cm-3) [14] with activation energies ED = 25 meV and EA = 140 meV. The concentration of free electrons vs. T was calculated accordingly [15], revealing its decrease to 3.2×1015 cm-3 at 80 K and saturation above RT at n0 = Nd – Na = 8×1015 cm-3. In order to fit the dependence Da(T), temperature-dependent scattering rates (see Dh,theor in Eq. 3) were used for acoustic, polar and nonpolar optical phonon scattering, according to equations [16] and appropriate parameters for GaN [17,14] were used for Dh,theor calculation: static and optical dielectric constants εr(0) = 10.4, εr(∞) = 5.43, density ρ = 6.1 g/cm3, longitudinal velocity v|| = 8 km/s, heavy and light hole density of states effective masses mHH/LH = 1.9/0.33 m0 [18], polar and nonpolar optical phonon energies 91 meV and 80 meV, respectively [19], and the acoustic and optical inter/intra-valley deformation potentials, Ca = 9.6 eV and Dii+jj = 1.34×109 eV/cm, respectively. The dependence Da =2 Dh,theor was fitted by the empirical relationship 1/Dh,theor = 1/Dap+ 1/Dop, where the Dap = 19.1×T -1/2 and Dop = 3.6×10-4×T[exp(–Eph/kT) – 1] correspond to acoustic and optical phonon (Eph = 91 meV) contributions, respectively. At temperatures T < 150 K the spatial bandgap renormalization (BGR) created periodic potential for carriers [20] and thus hindered carrier diffusion, leading to lower than calculated Da values (Fig. 3), as the given Dh, theor (T) calculations do not account for contribution of BGR. The experimental data pointed out that BGR at 1017 cm-3 carrier density may create barriers of 12 meV, which hinder the diffusion at low temperatures. At very high injections, the BGR in wide bandgap crystals may peak up to 100 meV at RT [21]. 3.3. Comparison of temporal and spatial carrier dynamics Comparison of Da(T) and τR(T) dependences (see Figs. 2a and 3b) pointed out strong correlation between the diffusion and recombination processes in bulk GaN: a decrease of D led to increase of carrier lifetime. This behavior was also observed in cubic SiC crystals, for which the extended defects are limiting the carrier lifetime values [22]. In GaN, threading dislocations (TD) are well known as centers for nonradiative recombination, and a correlation between the TD density and recombination rate was verified from carrier dynamics in epitaxial layers, Proc. of SPIE Vol. 8262 82620G-5 Downloaded From: http://proceedings.spiedigitallibrary.org/ on 01/03/2013 Terms of Use: http://spiedl.org/terms grown on different substrates (Si, SiC, and sapphire) [8]. That study provided nearly linear dependence of carrier lifetime on distance between the dislocations in highly defective layers with TD density > 108 cm-2 (Eq. 8). τ R [ns ] ≈ 2.6 ⋅ 10 4 / N TD [cm −2 ] (3) The observed inverse correlation between D and lifetime resembles the case of diffusion-limited surface recombination in a thin layer, when lifetime τS is dependent on the rate at which carriers diffuse from the photoexcited layer of thickness 2d* to the surface (τdiff ∝ d*2/Da) and recombine there with rate 1/τsurf ∝S/d* (S is the surface recombination velocity) [5]. Nevertheless, estimations for the studied 200-400 μm-thick layer provided τdiff ≥ 100 μs which is far from reality for GaN with low diffusivity (Da = 1.6 cm2/s [10]). Therefore, diffusion to the internal boundaries of GaN hexagonal grains [23] (assumed to be cylinders of radius rc for simplicity) must be considered, and τsurf should be replaced with τinter, which depends on the interface recombination velocity Sinter. Using this model wherein τSinter=τinter + τdiff = π-1/2rc/Sinter +π-3/2rc2/Da [6], the fit of the measured τR value at RT for cGaN provided rc = 3.6 μm and an effective interface recombination velocity of Sinter = 9500 cm/s at RT. Following this model, we fitted the experimentally measured temperature dependence of lifetime (τR ∝ T 1.15), inclusive of the defect related part, τinter ∝ T 3/2 , which corresponds to a capture of carriers by charged defects with their cross section strongly dependent on temperature, σc ~T -2 [24]. Consequently, the interface recombination rate rapidly decreases with temperature, 1/τinter =σcvthNtr ~ T -3/2, where vth ~T 1/2 is the carrier thermal velocity and Ntr is the interface trap density. Therefore, the extended defects (dislocations) and associated point defects near the grain boundaries must be assumed as effective “interface” centers of nonradiative recombination for the carriers reaching them by diffusion. Further investigations of carrier dynamics with the technologically modified point defects at grain boundaries will elucidate a way to passivate the dislocation-related centers of nonradiative recombination in GaN. 3.4. Analysis of fast decay transients probed by different optical techniques Two sets of measurement were performed by TRPL technique in bulk GaN. For comparison of carrier dynamics in the same crystals by different techniques, TRPL kinetics were measured at ~ 1018 cm-3 carrier injection by ~150 fs pulses of 267 nm wavelength. The PL transients at RT revealed very fast initial decay (about 150 ps) which became slower after 0.5- 1 ns. TRPL kinetics were compared with LITG decay at the same excitation wavelength while using ~20 ps duration pulses, providing carrier densities up to 2 × 1019 cm-3. The experimental data are presented in Fig 4a. Investigation of carrier dynamics under 266 nm injection was undertaken with the help of the numerical solution of the Eq.(1) , using the boundary condition Da δΔN(0,t)/δz = SΔN(0,t) at the front surface (z = 0) and the determined D(N) and τR values. The instantaneous carrier spatial profiles ΔN(z) are shown in Fig. 4b, providing impact of carrier diffusion and surface recombination. For calculation of the PL transients, the intensity of the PL emission was integrated over the excited layer thickness taking into account reabsorption of light emission αR [25]: d I PL ∝ ∫ ΔN p (ΔN n + n0 ) exp(− α R z )dz . (4) 0 Comparison of carrier decay transients at single and two-phonon excitation condition indicates that only FCA at 2P excitation conditions directly provide carrier lifetime in the bulk. The LITG decay at 1P excitation conditions, being insensitive to carrier diffusion to the depth (as the probe beam monitors the excess carrier density integrated over the photoexcited layer thickness, which increases with time, see Fig 4b) reveals mainly the contribution of bimolecular recombination, while the impact of surface recombination may also become noticeable at high injection conditions, plausibly due to surface potential screening (in GaN, it may be as large as 1 eV [26]. Indeed, modeling of LITG decay in m- and c-GaN revealed faster decay in c-GaN because of higher surface recombination coefficient S= 6×103 cm/s. PL decay was found very sensitive to both surface recombination and carrier diffusion to the depth, as PL signal originates from the carriers located nearby the surface (in 1-1.5 μm thick layer), while the carriers brought by diffusion to the larger distance from the surface become “invisible” to the PL technique due to reabsorption of emission (see Eq. 3). Much slower decay rate of PL in m-GaN is attributed to its high surface quality achieved by advanced chemical mechanical polishing, while the long-term self-oxidation of c-GaN surface after its growth resulted in a higher S value (1.1×104 cm/s). We note that different surface recombination rates obtained from the Proc. of SPIE Vol. 8262 82620G-6 Downloaded From: http://proceedings.spiedigitallibrary.org/ on 01/03/2013 Terms of Use: http://spiedl.org/terms 3 τ = 40 ns 10 16 -1 0.0 c-GaN: LITG TRPL 0.8 Delay, ns -3 16 10 τ = 1.1 ns m-GaN: TRPL LITG FCA 20 250 500 1000 2000 4000 n0=2×10 cm -3 τ = 6.4 ns 10 Δt, ps τ=50 ns τ = 4.1 ns -2 (a) 10 τ = 9.2 ns 0 10 S=6×10 cm/s 2 Dh=0.75 cm /s 17 ΔN, cm PL intensity/carrier density, a. u. modeling of carrier dynamics at different injected carrier densities (comparing LITG and TRPL decays) suggests possibility of surface potential screening [5, 26] at injections above 1018 cm-3 in the case of LITG. Contribution of bimolecular recombination at excess carrier density of 2×1019 cm-3 also lead to decreasing LITG decay time (τRad = 1/BΔN ) with excitation and its impact is clearly seen at excitations above 0.77 mJ/cm2 (see Fig. 2b). 15 10 1.6 0 (b) 1 z, μm 2 Fig. 4. (a) Comparison of TRPL, LITG and FCA decays. (b) Modeled carrier in depth distribution profiles at different delays and TRPL excitation level I0 =1 mJ/cm2 For modeling , the following parameters were used: for mGaN, τnonr=40 ns, Da = 1.5 cm2/s, B= 6×10-12 cm3/s, S= 6×103 cm/s (for LITG decay) and S= 1.1×103 cm/s (for TRPL); for c-GaN: τnonr=40 ns, Da = 1.6 cm2/s, B= 6×10-12 cm3/s, S= 4×104 cm/s (for LITG) and S= 1.1×104 cm/s for TRPL. In m-GaN, impact of carrier density accumulation was taken into account via modeling TRPL decay after 8 excitation pulses with 12 ns repetition time (i.e. at conditions typical for Ti-sapphire laser operation). These studies revealed the specificity of the PL kinetics, being strongly influenced by diffusion, reabsorption of emission, and surface recombination (in case of not properly processed surface). These peculiarities may mask the excitonic emission features which should be directly observed in PL kinetics even at RT. Therefore, we performed further TRPL studies in the bulk m-GaN layer in wide excitation and temperature ranges for study of exciton-related radiative emission features. 3.4. Analysis of PL decay transients In order to study radiative decay in m-plane GaN, temperature and excitation intensity dependent TRPL measurements were performed under 267 nm excitation (see Fig. 1c). Figure 5 shows PL kinetics at various temperatures for the excitation energy density of 4µJ/cm2, providing 1018 cm-3 injected carrier density at the surface. PL transients are composed of the fast initial component (~ 0.15 ns) which is followed by the slower decay, being temperature dependent. The fast PL decay has been observed in previous TRPL studies of HVPE GaN performed at similar conditions (267 nm excitation) and attributed to the surface recombination [27] or tentatively to diffusion of free excitons away from the surface [28]. In this study, we show essential impact of free carrier diffusion in m-GaN on fast PL decay transient (see Fig 4a). Fitting the PL longer decay transient by numerical modeling ( Eqs. 1 and 4), the PL decay time τPL = 6.4 ns was obtained. Assuming that relationship (4) is valid, this value correspond to radiative lifetime τRad = 2 τPL = 13 ns at RT. We note that radiative PL decay times measured at two-photon injection conditions (using 527 nm for injection of carrier density of 1016 cm-3 in the bulk) have been reported to be longer and varied from 2 to 17 ns at RT [29]. As the latter measurements eliminated the impact of diffusion and surface recombination, these PL decay values at low excitations were attributed to the exciton-related recombination mechanism. On the other hand, the reported experimental value of lifetime τPL= 17 ns at RT was much shorter than the calculated one, τRad = 1/BN > 2 μs, assuming a recombination coefficient of excitons B= (0.2-0.5) 10-10 cm3/s [17] and an exciton density of N = 1016cm-3. Proc. of SPIE Vol. 8262 82620G-7 Downloaded From: http://proceedings.spiedigitallibrary.org/ on 01/03/2013 Terms of Use: http://spiedl.org/terms Moreover, the expected dependence of τRad on temperature, τRad ∝T3/2, in accordance to B(T) dependence [17, 27], has not been observed in time-resolved measurements up to now, thus questioning the origin of PL at RT (except for Ref [27] providing the calculated τRad(T) dependence at T>50K, where the impact of bound excitons can be neglected). Absence of a clear signature of excitonic emission in a wide range of temperatures may result from exciton dissociation at elevated temperatures, screening of Coulomb potential by high carrier density at interband injection conditions, as well as impact of shallow donor-like defects that may lead to dominating radiative transitions involving free carriers (electrons and non-equilibrium holes). Our measurements of PL transients at different excitation densities (0.04, 0.4 and 4 µJ/cm2) and two temperatures (10 and 300 K) were approximated by double exponential decays (Fig. 6) and exhibited monotonous increase of τPL from 1.5 ns at 10 K to 4 ns at RT. The increase of τPL ∝ τRad with increasing excitation followed a power function with index of 0.2, which can be attributed to exciton screening at reaching carrier densities above Mott transition. The ratio of lifetimes for the highest and the lowest excitation was equal to 1.90 at 10 K and 1.68 at 300 K, thus indicating that exciton screening is more pronounced at lower temperatures. Comparison of PL spectra at 1018 cm-3 (4 µJ/cm2) and at ~ 15 times higher injection by 20 ps laser pulse at 266 nm (see inset in Fig 6b) has not revealed spectral features confirming the exciton-like recombination at 300K, whereas the bandgap renormalization pointed out to dominance of interband free carrier recombination. 350 K (4.0 ns) 350K 300K 250K 200K 100K 50K 10K PL Intensity (a.u.) 10 K (1.5 ns) system response 0 2 4 Delay Time (ns) 6 8 Figure 5. Temperature dependent time-resolved PL decay in m-GaN at 4 µJ/cm2 excitation density. System response of 40 ps is also shown in the figure. 300 K PL Intensity (arb. u.) 10 K 2 4 μJ/cm 2 0.4 μJ/cm 2 0.004 μJ/cm 2 4 μ J/cm 60 μ J/cm2 3.3 3.4 3.5 Photon P hotonenergy Energy ( eV) (eV) 2.9 ns τPL=1.3 ns 2.3 ns 0.7 ns 0.8 ns 0 3 τPL=1.7 ns 6 0 3 Delay Time (ns) 6 Figure 6. Excitation density-dependent TRPL kinetics in bulk m-GaN at 10 K and 300 K. The inset in Fig 6(b) shows PL spectra at 4 μJ (1018 cm-3) and 60 μJ (~1019 cm-3) excitations where the latter exhibits a ~11 meV red shift. Proc. of SPIE Vol. 8262 82620G-8 Downloaded From: http://proceedings.spiedigitallibrary.org/ on 01/03/2013 Terms of Use: http://spiedl.org/terms CONCLUSIONS Using various optical techniques we studied carrier dynamics in bulk c-plane and m-plane GaN at single- and twophoton carrier injection conditions. The photoelectric parameters, such as carrier lifetime, diffusion coefficient, bipolar and monopolar mobility, and carrier diffusion length were determined for a wide range of excitation densities and temperatures. The extremely long carrier lifetimes, varying from 40-50 ns at 300K and further increasing with temperature up to ~100 ns correlated well with the diffusivity decrease, thus justifying diffusionlimited recombination rate in the bulk at grain boundaries of the extended defects. The unexpected drop of diffusivity below its monopolar value indicated presence of residual deep defects in m-GaN. The subnanosecond PL transients were found less pronounced in m-GaN with respect to c-GaN due to lower surface recombination, while the initial fast decay in both crystals reveals unavoidable impact of diffusion at surface excitation conditions. Temperature and excitation intensity dependent photoluminescence decay times have not provided evidence of excitonic-related radiative decay at single-photon carrier injection conditions. ACKNOWLEDGMENTS Research at Vilnius University was partially funded by VU budget and Eureka Project E!4473. Virginia Commonwealth University acknowledges support from AFOSR and NSF grants. K.J. acknowledges sponsorship of the Baltic- American Freedom Foundation (BAFF). The authors are thankful for Dr. Miasojedovas at Vilnius University for photoluminescence spectra measurements at very high injections. REFERENCES [1] Eichler, H. J., Gunter P., and Pohl D., [Light-Induced Dynamic Gratings], Springer Series in Optical Sciences Vol. 50, Springer, Berlin (1986). [2] Jarašiūnas, K., Nonlinear optical characterization of photoelectrical properties of wide bandgap semiconductors by time-resolved four-wave mixing technique, in Syrjarvi, M. and Yakimova, R., Eds., [Wide Bandgap Materials and New Developments], Research Singpost, Chapter 5, 117-164 (2006). [3] Jarašiūnas, K., Aleksiejūnas, R., Malinauskas, T., Gudelis, V., Tamulevičius, T., Tamulevičius, S.,. Guobienė, A., Usikov, A., Dmitriev, V. and Gerritsen, H. J., “Implementation of diffractive optical element in four-wave mixing scheme for ex situ characterization of hydride vapor phase epitaxy-grown GaN layers”, Review of Scientific Instruments 78, 033901 (2007). [4] Linnros, J., “Carrier lifetime measurements using free carrier absorption transients. I. Principle and injection dependence”, Journal of Appl. Phys. 84, 275-282 (1998). [5] Ščajev, P., Gudelis, V., Jarašiūnas, K. and Klein, P. B., “Fast and slow carrier recombination transients in highly excited 4H and 3C SiC crystals at room temperature”, J. Appl. Phys. 108, 023705 (2010). [6] Ščajev, P., Usikov, A., Soukhoveev, V., Aleksiejūnas, R., and Jarašiūnas, K., “Diffusion-limited nonradiative recombination at extended defects in hydride vapor phase epitaxy GaN layers”, Appl. Phys. Lett. 98, 202105 (2011). [7] Ščajev, P., Jarašiūnas, K., Okur, S., Özgür, Ü., and Morkoç, H., “Nonequilibrium carrier dynamics in bulk GaN under two photon carrier excitation,” Phys. Status Solidi B, DOI 10.1002/pssb.201100307 (2011). [8] Malinauskas, T., Aleksiejūnas, R., Jarašiūnas, K., Beaumont, B., Gibart, P., Kakanakova, A., Janzen, E., Gogova, D., Monemar, B. and Heuken, M., “All-optical characterization of carrier lifetimes and diffusion lengths in MOCVD, ELO, and HVPE grown GaN”, J. Cryst Growth 300, 223-227 (2007). [9] Schetzina, J. F. and McKelvey, J. P., “Ambipolar transport of electrons and holes in anisotropic crystals”, Phys. Rev. B 2, 1869 (1970). [10] Ščajev, P., Jarašiūnas, K., Özgür, Ü., Morkoç, H., Leach, J., and Paskova, T., “Anisotropy of free-carrier absorption and diffusivity in m-plane GaN,” Appl. Phys. Lett. (in press). [11] Millerd, J. E., Ziari M., and Partovi, A., [Nonlinear Optics in Semiconductors], eds. Garmire, E. and Kost, A., Academic, San Diego, (1999). [12] Kadys, A., Jarašiūnas, K., and Verstraeten, D., “Optical discrimination of deep trap contribution to carrier recombination in semi-insulating crystals”, J. Appl. Phys. 106, 013704 (2009). Proc. of SPIE Vol. 8262 82620G-9 Downloaded From: http://proceedings.spiedigitallibrary.org/ on 01/03/2013 Terms of Use: http://spiedl.org/terms [13] Jarasiunas, K., Malinauskas, T., Aleksiejunas, R., Monemar, B., Ralchenko, V., Gontar, A., and Ivakin, E., “Optical characterization of defect-related carrier recombination and transport in GaN substrates and CVD diamonds”, Mater. Sci. Forum 600-603, 1301-1304 (2009). [14] Huang, D., Yun, F., Reshchikov, M. A., Wang, D., Morkoç, H., Rode, D. L., Farina, L. A., Kurdak, C., Tsen, K. T., Park, S. S., Lee, K. Y., “Hall mobility and carrier concentration in free-standing high-quality GaN templates grown by hydride vapor-phase epitaxy,” Solid State Electron. 45, 711-715 (2001). [15] Pernot, J., Zawadzki, W., Contreras, S., Robert, J. L., Neyret, E., and Cioccio, L. Di, “Electrical transport in n-type 4H silicon carbide,” J. Appl. Phys. 90, 1869-1878 (2001). [16] Pernot, J., Contreras, S., and Camassel J., “Electrical transport properties of aluminum-implanted 4H–SiC,” J. Appl. Phys. 98, 023706 (2005). [17] Dmitriev, A. and Oruzheinikov, A., “The rate of radiative recombination in the nitride semiconductors and alloys,” J. Appl. Phys. 86, 3241-3246 (1999). [18] Yeo, Y. C., Chong, T. C., and Li, M. F., “Electronic band structures and effective-mass parameters of wurtzite GaN and InN,” J. Appl. Phys. 83, 1429-1436 (1998). [19] Siegle, H., Kaczmarczyk, G., Filippidis, L., Litvinchuk, A. P., Hoffmann, A., and Thomsen, C., “Zoneboundary phonons in hexagonal and cubic GaN,” Phys. Rev. B 55, 7000-7004 (1997). [20] Persson, C., Lindefelt, U., and Sernelius, B. E., “Plasma-induced band edge shifts in 3C-, 2H-, 4H-, 6H–SiC and Si,” Solid State Electron. 44, 471-476 (2000). [21] Jarašiūnas, K., Ščajev, P., Malinauskas, T., Kato, M., Nesladek, M., Haenen, K., Özgür, Ü., and Morkoç, H., “Optical Study of Carrier Diffusivity in Highly Excited Bulk SiC, GaN, and Diamond Crystals,” Mater. Sci. Forum (in press). [22] Ščajev, P., Hassan, J., Jarašiūnas, K., Kato, M., Henry, A., and Bergman, J. P., “Comparative Studies of Carrier Dynamics in 3C-SiC Layers Grown on Si and 4H-SiC Substrates,” J. Electron. Mater. 40, 394-399 (2011). [23] Weimann, N. G. and Eastman, L. F., “Scattering of electrons at threading dislocations in GaN,” J. Appl. Phys. 83, 3656-3659 (1998). [24] Ridley, B. K., [Quantum processes in semiconductors], Clarendon Press, Oxford, (1999). [25] Malinauskas, T., Jarašiūnas, K., Miasojedovas, S., Juršėnas, S., Beaumont, B., and Gibart, P., “Optical monitoring of nonequilibrium carrier lifetime in freestanding GaN by time-resolved four-wave mixing and photoluminescence techniques,” Appl. Phys. Lett. 88, 202109 (2006). [26] Reshchikov, M. A., Fousekis M., and Baski A.A., “Surface photovoltage in undoped n-type GaN”, J. Appl. Phys. 107, 113535 (2010). [27] J. S. Im, A. Moritz, F. Stauber, V. Härle, F. Scholtz, and A. Hangleiter, “Radiative carrier lifetime, momentum matrix element, and hole effectibe mass in GaN”, Appl. Phys. Lett. 70, 631 (1997). [28] B. Monemar, P. P. Paskov, J. P. Bergman, A. A. Toporov, T. V. Shubina, T. Malinauskas, and A. Usui, “Recombination of free and bound excitons in GaN”, Phys. Stat. Sol. B 245, 1723-1740 (2008). [29] Y. Zhong, K. S. Wong, W. Zhang, D. C. Look, “Radiative recombination and ultralong exciton photoluminescence in GaN freestanding film via two-photon excitation”, Appl. Phys. Lett. 89, 022108 (2006). Proc. of SPIE Vol. 8262 82620G-10 Downloaded From: http://proceedings.spiedigitallibrary.org/ on 01/03/2013 Terms of Use: http://spiedl.org/terms Spectral distribution of excitation-dependent recombination rate in InGaN K. Jarašiūnas*1, S. Nargelas1, R. Aleksiejūnas1, S. Miasojedovas1, M. Vengris2, S. Okur3, Ü. Özgür3, H. Morkoç3, C. Giesen4, Ö. Tuna4,5, and M. Heuken4,5 1 Institute of Applied Research, Vilnius University, Vilnius 10222, Lithuania Laser center of Vilnius University, Vilnius 10222, Lithuania 3 Department of Electrical and Computer Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA 4 AIXTRON SE, Kaiserstr. 98, 52134 Herzogenrath, Germany 5 GaN Device Technology, RWTH Aachen University, 52074 Aachen, Germany 2 Time-resolved optical techniques of photoluminescence (PL), light-induced transient grating (LITG), and differential transmission (DT) spectroscopy were used to investigate carrier dynamics in a single 50-nm thick In0.13Ga0.97N epilayer at high photoexcitation levels. Data in wide spectral, temporal, excitation, and temperature ranges revealed novel features in spectral distribution of recombination rates as follows: at low injection levels, an inverse correlation of carrier lifetime increasing with temperature and diffusivity decreasing with temperature confirmed a mechanism of diffusion-limited nonradiative recombination at extended defects. Carrier dynamics in the spectral region below the absorption edge but ~70 meV above the PL band revealed a recombination rate that increased with excitation, while recombination rate in PL emission band (420–430 nm) decreased after saturation of trapping centers. Monitoring of spectrally-integrated carrier dynamics by LITG technique allowed us to ascribe the enhanced recombination rate to bimolecular recombination and determine its coefficient B=7×10-11 cm3/s. Complementary measurements unveiled the cause of PL efficiency saturation at injection levels above 5×1018 cm-3, attributable to bandgap renormalization in the extended states above the PL emission band which encumbers carrier transfer from highto-low energy states. These results provided insight that spectrally-resolved carrier generation-recombination rates are excitation-dependent and would play a critical role in saturation of internal quantum efficiency in InGaN alloys used in light emitters, such as light emitting diodes. Keywords InGaN, carrier dynamics, recombination, diffusivity, photoluminescence, transient gratings, differential transmission, bandgap renormalization. * Corresponding author: e-mail kestutis.jarasiunas@ff.vu.lt, Phone: +370 5 2366036, Fax: +370 5 2366037 1 I. INTRODUCTION Study of carrier dynamics in InGaN alloys and heterostructures allows determination of recombination parameters in part in response to the fact that the origin of photoluminescence efficiency degradation at relatively high optical (electrical) injections still remains an object of studies. This is a rather complicated task due to overlapping effects of carrier localization phenomena, presence of piezoelectric field, carrier leakage, and others in effect. They collectively lead to injection-dependent interplay of radiative and nonradiative recombination rates. Heretofore studies have been undertaken predominantly in InGaN/GaN light-emitting diode (LED) structures to understand “efficiency droop” which has been attributed to impact of Auger recombination, carrier delocalization, electron leakage out of active region, and carrier asymmetry (for a brief review see [1-4]). While the two latter effects seem to be more important for biased device structures, the two former ones may take place under optical carrier injection, when carriers reside mainly in the wells. Consequently, a more detailed study of carrier dynamics with temporal, spatial and spectral resolution is required to reveal recombination and diffusion processes in InGaN alloys and heterostructures under high injection. To date, time-integrated (TI) and time-resolved photoluminescence (TRPL) techniques have mostly been used for monitoring radiative recombination pathways and evaluation of internal quantum efficiency in semiconductor heterostructures. The advantage of PL based techniques that provide easy access to spectral features of emission is encumbered by rather vexing interpretation of TRPL decay kinetics as their non-exponential transients vary with injection and temperature because of simultaneous overlapping of different recombination mechanisms (excitonic and free carrier, radiative and nonradiative). A recent study of carrier dynamics in InGaN quantum wells using a number of optical timeresolved techniques has demonstrated the validity of excitation-enhanced nonradiative recombination of delocalized carriers, while the impact of this effect to PL efficiency was not disclosed [5]. Therefore, a deeper insight into any correlation of structural, optical, and photoelectrical properties of nitride semiconductors requires not a single, but several complementary spectrally, spatially, and time-resolved optical techniques for monitoring both the radiative and nonradiative recombination mechanisms, carrier diffusion, and features of these processes in a wider spectral region than the PL does, which is the subject matter of the present manuscript. Defect-insensitive emission has been intensively studied mainly in quantum well structures of InGaN [6,7], wherein many factors contribute to enhancement of PL efficiency (localization of holes and probably electrons at nanometer scale, screening of quantumconfined Stark effect, QCSE). At the same time, highly defective thick epitaxial InGaN films (where polarization field is negligibly weak and indium fluctuation at the few nanometer scale is unlikely) also exhibited high PL efficiency [8] and long nonradiative carrier lifetimes [9]. In these quasi-bulk layers, studies of carrier dynamics have been limited, while their investigation may clarify impact of larger scale inhomogeneities to PL efficiency enhancement and its gradual loss at high injections. Therefore, in this work, we focused on a detailed study of carrier dynamics in a single InGaN layer. We applied linear and nonlinear optical techniques to investigate excitationdependent recombination rates in a 50-nm thick epitaxial layer of In0.13GaN alloy. Timeintegrated PL and TRPL spectroscopy allowed measurement of PL efficiency as well as PL 2 decay kinetics at various injected carrier densities. By exploring time-resolved DT spectra, the narrow spectral range accessible by PL was extended well above the lowest band tail states of InGaN alloy. LITG technique was used to probe spectrally-integrated carrier dynamics with spatial and temporal resolution, thus providing directly the values of carrier lifetime and diffusion coefficient. Consequently, a full set of data from complementary optical techniques provided excitation energy density, spectral position, and temperature dependent recombination rates in the epitaxial InGaN layer, allowed direct determination of the bimolecular recombination coefficient, and unveiled causes of efficiency saturation of the main PL emission band. II. SAMPLE AND TECHNIQUES A 50-nm thick In0.13Ga0.87N epilayer was grown on a few-micrometer thick GaN-onsapphire template by using AIXTRON 3×2 Close-Coupled Showerhead reactor. A substrate temperature of 732 oC and a chamber pressure of 200 mbar were used for InGaN growth. Structural properties and the strain were studied by means of X-Ray diffraction (XRD), Rocking curve and reciprocal space mapping (RSM) of (10–15) reflection, respectively. Atomic force microcopy (AFM) was used for surface morphology investigation. The In content of the layer was determined through XRD ω-2θ measurement with the aid of simulations. The XRD spectra exhibited a sharp InGaN peak with very clear Fabry-Pérot interfaces and with a narrow full width at half maximum (FWHM) of 400 arcsec for the symmetric diffraction of (0002) revealing the high crystal quality of the InGaN layer. RSM confirmed that the InGaN layer is fully strained. Simulation of XRD data yielded an In content of 13%. The strain state of the InGaN layer was taken into consideration during the simulation of XRD ω-2θ scan in order to achieve reliable In content. The AFM measurements revealed a surface morphology dominated by terraces with a roughness of 0.8 nm and V-pits with density of about 2.5×108 cm-2. The latter value for InGaN is comparable with that in GaN layers suggesting that not many dislocations are formed at the InGaN/GaN interface which propagate through the InGaN layer and manifest themselves as V-pits on the surface. A standard PL spectroscopy setup was employed using ~150 fs pulses at 375 nm wavelength (the 2nd harmonic of an 80 MHz repetition rate Ti-Sapphire laser) for selective excitation of the InGaN layer. Using a spectrometer and a Hamamatsu streak camera, PL spectra and kinetics were measured for injected carrier densities in the range of ~1016 to 1018 cm-3. To reach higher injections, e.g. up to 5×1019 cm-3, another setup with 20 ps pulse duration at 266 nm (model PL2143, Ekspla) was used. In the latter setup, TRPL measurements with 25 ps temporal resolution were performed using a Kerr shutter with toluene. The experimental setup for time-resolved DT is based on a commercial Ti:Sapphire femtosecond amplifier (SuperSpitfire, Spectra Physics) delivering 800 nm pulses of 120 fs duration at 1 kHz repetition rate. The output of the amplifier was split into two equal parts. One was used to pump the optical parametric amplifier (TOPAS, Light Conversion) that provided 120 fs pulses set to 330 nm wavelength (3.75 eV). The second beam was delayed and used to generate white light continuum in a CaF2 window. The DT technique provided means to observe evolution of DT spectra in 380–480 nm range with high temporal resolution. LITG technique explores for excitation an interference pattern of two coherent beams of a YLF:Nd3+ laser (PL2243, Ekspla) emitting 8 ps duration pulses at 1053 nm or a 3 YAG:Nd3+ laser (PL2143, Ekspla) emitting 25 ps duration pulses at 1064 nm. The 3rd or 4th laser harmonics were used for recording the transient spatially-modulated free carrier pattern N(x)=N0+N[1+cos(2x/ with spacing , which modulates the refractive index n(x)N(x) and diffracts a delayed probe beam at 1053 nm. Diffraction efficiency of the grating, , and its decay, (t)=(2nehNd/probe)2exp(-2t/G), where neh is the refractive index change per one electron-hole pair and d is the layer thickness, provided a convenient way to discriminate the recombination-governed grating decay time R and the diffusive decay time D, according to the relationship 1/G=1/R+1/D. Measurements of grating period dependent diffusive decay time D=2/(42Da) were used for determination of the bipolar diffusion coefficient Da [10]. The measurements were performed at various photoexcited carrier densities (~1018–5×1019 cm-3) and temperatures (80 to 300 K). III. RESULTS AND DISCUSION A. Characterization by PL techniques. Time-integrated room-temperature PL spectra were measured at low excitations (I0≈6–10 J/cm2) using selective excitation at 375 nm (150 fs pulses) or at 266 nm (25 ps pulses). The emission line for the InGaN alloy with 13 % In content was positioned at 424±6 nm at FWHM (2.922±0.040 eV). TRPL kinetics at relatively weak selective excitation of the InGaN layer (in the 1016 to 1018 cm-3 range) revealed increasing PL decay times with increasing injection (Fig. 1), thus indicating a gradual saturation of nonradiative recombination centers. This tendency was also verified by a change of the power index, of PL intensity dependence on excitation density, IPLI0. Its plot in log-log scale (Fig. 2) revealed the change from to 2 at a carrier density of 1017 cm-3 at room temperature. After the saturation of trapping centers, the nonradiative carrier lifetime became constant and PL intensity increased quadratically with injection ( The latter value is indicative of the fact that the injected electron and hole density Ne,p is larger than the residual electron concentration n0, thus Ne=Np>n0 and PL intensity increase follows the relationship IPL(n0+Ne)NpI02. We note that at 10 K the change of index (from ~1.5 to 1, see Fig. 2) takes place also at the same carrier density as for RT (i.e. after the trapping centers – the residual acceptors with density of about 1017 cm-3 become saturated). At these conditions, two factors ensured the radiative PL emission being dominant: (i) the coefficient of radiative recombination B essentially increases at low temperatures (BT –3/2) [11] and (ii) excitonic nature of emission dominates due to relatively high exciton binding energy, leading to IPL~Bexnex [12] and thus providing the typical slope value. Excitation of the sample by picosecond pulses at 266 nm wavelength enabled us to reach excess carrier peak densities up to 1020 cm-3. At these high-excitation conditions, the backscattered PL spectra revealed only the features of spontaneous emission, while the underlying GaN layer showed both the spontaneous (at ~3.4 eV) and stimulated emission (SE) at ~3.32 eV. The absence of a clear SE peak from InGaN layer is typical for luminescence in case of spatial fluctuations of In content [13], thus only a slight narrowing of the emission peak above a threshold density of 0.33 mJ/cm2 was observed. Nevertheless, a very fast decay transient of PL (temporal shape of which repeated the laser pulse) confirmed the presence of SE. Further measurements of InGaN luminescence were performed using thin stripe excitation and edge emission detection [13]. The dependence of PL intensity on 4 excitation (Fig. 3) revealed the presence of SE with its threshold at I0≈0.1 mJ/cm2. The increase of up to 3.7 was observed at an excitation density above the SE threshold, while further increase in excitation led to saturation of luminescence intensity due to limited number of excited states. Knowledge of the SE threshold allowed us to limit the further measurements of carrier dynamics in InGaN epilayer up to this level (0.1 mJ/cm2), until the non-equilibrium processes reveal the peculiarities of spontaneous emission. We present below investigation of the recombination and transport features by using techniques of differential transmission (DT) and light-induced transient gratings (LITG). B. Differential transmission spectroscopy The PL spectroscopy allows access only to the limited spectral region of radiative emission from localized states, while a large Stokes shift in InGaN epilayers and QWs, linearly increasing with In content [14] suggests that there is a broad spectral distribution of localized and extended states. For the In0.13GaN layer investigated here, a 125 meV Stokes shift is expected [14]. Consequently, the emission peak at 2.922 eV predicts an effective bandgap energy of EB≈3.05 eV for this alloy. As PL emission originates from the lowest energy states near the band tail, where the density is lower than that in the extended states, the spectrally and temporally resolved DT measurements are needed to reveal the excitation relaxation dynamics of all available states, and especially of the states above the mobility edge, which will be occupied after filling the band tail states under strong excitation conditions (but still below the SE threshold). To explore the full spectral range and determine spectrally-dependent relaxation rates, we performed spectrally and temporally resolved DT measurements in wide spectral (390 to 440 nm) and excitation range (4 to 520 J/cm2). In Fig. 4 we present DT spectra measured at 10 ps and 1 ns after photoexcitation. The DT spectra are blue shifted with respect to those obtained by PL. This shift is ascribed to relatively larger density of higher energy states contributing to the absorption bleaching. The FWHM of DT spectra is rather narrow (~60 meV), but it broadens towards the blue energy wing due to temporary filling of extended states at higher excitations. The spectral broadening is followed by faster relaxation rates, and the DT spectra becomes symmetric after 1 ns (Fig. 4). Spectrally-integrated DT kinetics within 390–440 nm range exhibit faster decays with increasing excitation fluence (I0). The fast decay transient lasts only 1–2 ns and follows 1/I0 dependence, thus indicating shorter average carrier lifetimes in higher energy extended states than in the lower ones. The question then is whether the increasing decay rate is caused by transfer of delocalized and thus more mobile carriers to lower energy states or whether it is due to increasing recombination rate in extended states with excitation. In order to entertain an answer, we determined decay times of DT spectral components as well as their injection-dependences. In Fig. 5 we present spectrally-resolved DT kinetics at various excitation energy densities (in the range from 10 to 300 J/cm2) for two spectral positions, corresponding to the central line of PL peak (425 nm) and of DT blue wing (414 nm). In the spectral range of PL, the lowinjection DT decay is fast but slows and saturates with excitation, exhibiting DT=1.5 ns decay time (similarly to PL decay times at RT, see Fig. 1). Despite the fact that the DT measurements were performed at excitation energy densities up to 300 J/cm2 (i. e. by more 5 than an order of magnitude higher than the selective photoexcitation of PL up to 17 J/cm2), the DT kinetics did not reveal any faster recombination transient at 425 nm, which would confirm the PL radiative recombination being dominant. The observed long DT decay at the blue wing (at low excitations DT equals to 6–8 ns, which is 10-times longer with respect to DT decay in the PL window) does not support the common tendency of increasing PL decay rate at the high energy wing. Moreover, the DT decay time at the blue wing decreases with injection in the 30–100 J/cm2 range. Fig. 5c summarizes the variation of carrier lifetimes in the spectral range from the PL emission band up to absorption edge and their dependence on injected carrier density. The data clearly show that the spectral interval of ~415 nm (i.e. ~70 meV above the PL peak) is favorable for carrier accumulation at low injections. Consequently, prolonged carrier lifetime in the blue-wing of extended states and their subsequent faster decay at higher injections may strongly impact the PL characteristics indirectly. Namely, at low injections this wing plays the role of a reservoir to accumulate injected carriers to be transferred to the lower energy states responsible for the PL emission, while at higher injections the fast recombination rate in this wing consumes the carriers locally and diminishes their delivery to the PL band most likely due to bandgap renormalization, as will be discussed below. It is worth to note that the injection-enhanced DT decay at blue wing starts at I0=20–33 J/cm2 (5×1018 cm-3) (as can be seen both in spectrally-resolved kinetics (Fig. 5a,b) and spectrally-integrated ones) and lasts for about 1 ns, while at later times it slows to values typical for low-injection (6–8 ns for N1018 cm-3). As the DT technique in the vicinity of absorption edge monitors the overall decay rate, which is equal to the sum of the recombination rate and carrier transfer rate to the lower energy states [15], it is difficult to judge about the mechanism for enhanced decay rate in the blue wing. In general, the faster decay at high injection is attributed to increasing radiative recombination rate of localized carriers or excitons (especially in QWs [16]). Hypothesis of excitationenhanced defect related recombination has also been provided [4] within the framework of carrier delocalization in QWs. Moreover, screening of the potential barriers around deep charged defects [7] at high injections may reduce the effective barrier for diffusive carrier flow to electrically active dislocations. Therefore, for a deeper understanding of carrierdensity dependent effects in InGaN alloy we performed complementary measurements of carrier recombination and diffusivity in a wide excitation and temperature range, using the picosecond light-induced transient grating (LITG) technique. C. Characterization by light-induced transient gratings (LITGs) Time-resolved LITG technique allows direct monitoring of excess carrier dynamics and determination of excitation-dependent carrier recombination rates. It provides nonresonant probing of light-induced refractive index modulation, n, at wavelength well below the bandgap (1064 nm) [17]. Under these conditions, linear dependence of n on spectrallyintegrated nonequilibrium carrier density N makes the analysis of LITG characteristics relatively simple [18]. The probe beam diffraction efficiency of the TG depends quadratically on injected carrier density, N2(t)×exp(-2t/G). Single exponential kinetics of LITG at various grating periods allow determination of the carrier lifetime R and diffusion coefficient D. If, however, the lifetime or diffusivity is dependent on carrier density, the grating decay becomes nonexponential [19]. Another measurable characteristic is the 6 dependence of grating diffraction efficiency on the excitation energy density, I0. The latter dependence is a power function with the index value which equals to 2 at linear generation and recombination rates. However, excitation-dependent changes in carrier generation or recombination rates will lead to change of the index value [20]. Decay kinetics of LITG (at =12 mfor excitation energy densities in the range of 10–300 J/cm2 revealed a nearly single exponential decay with a characteristic time G=R=1.55 ns only at the lowest injection used (10 J/cm2). At higher excitation levels (above 5×1018 cm-3 at the front surface of the layer), the fast decay transient emerges in 1– 2 ns time interval characterizing the excitation-enhanced recombination rate. At I0=300 J/cm2, a very fast decay component appears which follows the laser pulse of width 25 ps, thus indicating stimulated decay of emission (SE). The latter feature was also observed in PL decay at similar injection levels. Comparison of excitation dependences for InGaN/GaN layers at various delay times t (Fig. 6) revealed some important features in injection-dependent recombination rate. For the InGaN layer under investigation, gradually decreasing index value γ in the I0= 10– 100 J/cm2 range points out that the carrier lifetime in InGaN becomes dependent on injected carrier density. In contrast, the index value γ=2 for underlying GaN layer (in the range I0=0.4–1 mJ/cm2) remains constant up to the threshold of stimulated emission (5×1019 cm-3). This behavior has been observed in other MOCVD-grown GaN layers as well [21] and can be explained as follows: the radiative recombination rate rad=1/BN in GaN increases with excess carrier density, but its impact is masked by a faster nonradiative recombination rate. Thus more sensitive response of InGaN layer to the excitation suggests a higher radiative recombination rate and requires numerical modeling of carrier dynamics. In order to carry out the above mentioned numerical modeling, the excess carrier density and the absorption coefficient at 355 nm for the InGaN layer are needed. The latter was determined from the measured dependence of (I0) (Fig. 6). Here, the diffraction efficiency from InGaN layer saturates near the SE threshold, and the subsequent increase of at I0>300 J/cm2 is due to contribution of the grating recorded in the underlying 2 m-thick GaN layer (we note that the diffraction efficiency from the GaN layer, GaN, also saturates when the SE threshold of 1.5 mJ/cm2 is reached). Extrapolation of GaN(I0) to the low injection range (see the solid line in the inset of Fig. 6) characterizes the ratio of diffraction efficiencies from both InGaN and GaN layers (InGaN/GaN=1/2=5.2) as well the ratio of excess carrier densities (InGaN/GaN=2.3), integrated over the depth of the layer. From these results, an absorption coefficient of 1.6×105 cm-1 was calculated at 355 nm and used for calibration of the excess carrier density in InGaN: for I0=10 J/cm2, NInGaN is equal to 2 ×1018 cm-3 at the front surface of the layer. A deeper insight into the enhanced recombination mechanisms requires measurements of temperature-dependent recombination rate and diffusivity in the InGaN layer. The LITG decay was measured at small grating periods to ensure diffusive grating decay and determine the values of D and lifetime R at carrier densities as low as 2×1018 cm-3. An inverse correlation between the decreasing bipolar diffusion coefficient (DT-1/2) and increasing lifetime with T (RT1/2) is observed (Fig. 7a), confirming that the nonradiative lifetime values of 0.15–1 ns in the 50 nm-thick InGaN layer are determined by carrier diffusion to 7 dislocations and associated point defects. Similar mechanism of diffusion-limited recombination rate was observed in HVPE-grown GaN layers, leading to nonradiative carrier lifetimes in range from 0.4 to 40 ns at 300 K [10,22]). We note that the typical recombination rate via point defects would follow the relationship 1/RT1/2, according to Shockley-ReadHall (SRH) recombination model: 1/R=NTvth, where vthT1/2. The observed opposite tendency in the investigated InGaN layer strongly supports the dominant role of extended defects, as centers of nonradiative recombination. As for the mobility, its temperature dependence followed the well-known relationship T-1.45, confirming the mechanism of carrier scattering by acoustic phonons. At half injection level (30 J/cm2) the decreased power index (T-1.2) indicates contribution of additional scattering, presumably by charged defects. Our observations suggest that screening of charged defects at relatively higher injection levels may lead to enhanced diffusivity, and thus to shorter nonradiative lifetimes (according to the dependence displayed in Fig. 7). Note that we experimentally observed decreasing lifetimes with excitation at RT (Fig. 8) but not an increase of D vs N (Fig. 7b). Absence of the latter dependence is probably due to compensation by a more dominant effect such as the bandgap renormalization (BGR), which is the strongest in the induced grating peaks and spatially modulates the bandgap Eg, thus diminishing the D value (Eg may reach 18 meV in GaN at 1019 cm-3 [10]). On the other hand, increase of both carrier diffusivity and bimolecular recombination rate may take place when the degenerate plasma density limit is reached [19]. D. Determination of InGaN bimolecular recombination coefficient Contribution of bimolecular recombination was analyzed by numerical fitting of the experimentally measured set of LITG decay kinetics at various injected carrier densities (Fig. 8) and temperatures in the 10–300 K range (Fig. 9). For modeling of spatial and temporal carrier distribution, we refer to the continuity equation [23] N x, z, t DN 2 N x, z, t AN x, z, t BN 2 x, z, t Gx, z, t t (1) where G(x, z, t)=I0(1-R)×exp(-z) is the carrier generation rate in InGaN layer, D is the ambipolar diffusion coefficient, A=1/R and B are the SRH and bimolecular recombination coefficients. The required modeling parameters 1/R(T) and D(T) for the investigated InGaN layer were measured at low injections (Fig. 7a), and the absorption coefficient =1.6×105 cm-1 at the excitation wavelength of 355 nm was determined as described above from the data in Fig. 6. Therefore, only one adjustable parameter, B, was used to fit the sets of LITG decay rates. Numerical solution of N(x, z, t) was used to calculate instantaneous profiles of N(z, t) and diffraction efficiency (t)=N2(t)dz, which in turn was experimentally measured. The data of (t) vs I0 provided B=7×10-11 cm3/s value at RT and its temperature dependence BT –3/2 in 100–300K range. The determined B value is slightly larger than that for bulk GaN (B=2–5×10-11 cm3/s) but very close to those for InGaN quantum wells (B=(7–10)×10-11 cm3/s) with 10% of In [16, 24]. The decreased value of B at T<100K (see inset in Fig. 9) can be a consequence of many-body effects in high-density carrier plasma which are more pronounced at low temperatures and may lead to saturation of radiative recombination rate at densities above 1018 cm-3 [16, 25]. 8 E. Analysis of carrier dynamics measured by different techniques To reiterate measurements by TRPL and DT techniques under selective excitation of InGaN layer allowed comparison of nonequilibrium processes in various spectral regions below the absorption edge. Let us discuss first the processes in the PL spectral window, which are commonly investigated for evaluation of the internal quantum efficiency. Gradual saturation of the nonradiative recombination centers at injections up to 30 J/cm2 was verified by longer decay times of PL and DT@425nm (nevertheless, NonRad<<Rad remained valid). The decreased nonradiative recombination rate was favorable for increase of PL efficiency up to the threshold of stimulated emission, while the PL increase was linear up to 20 J/cm2 (Fig. 2) and sublinear up to SE threshold (Fig. 3). It is important to note that DT@425nm decay time of 1.5 ns saturated at I0=30 J/cm2 (i.e. at a similar level as that for PL) and did not decrease with increasing excitation energy density up to I0=300–520 J/cm2. Under these conditions, the estimation based on the determined value of B=7×10-11 cm3/s and excess carrier density of 3–5×1019 cm-3 resulted in Rad=1/BN=0.3–0.6 ns and, thus, predicted the subnanosecond DT@425nm decay time at 300–520 J/cm2: DT=1/(1/NonRad+1/Rad). This discrepancy calls for the need for a more explicit approach to evaluate the spectral density of excess carriers at excitations above 30 J/cm2. After filling of the lowest states in the conduction and valence bands (this is clearly seen from DT broadening towards the highenergy wing in Fig. 4a), the absorbed fluence starts to create carriers in a much wider spectral range. Therefore, generation rate to PL spectral window is expected to decrease gradually with excitation. To verify this premise, we compared dependences of DT signal on excitation density (IDTI0, Fig. 10), spectrally-integrated over the PL spectral range (420–430 nm, DTPL) and over all the spectral range of photoexcited states (390–430 nm, DTfull). The decreasing ratio of DTPL/DTfull at I0>33 J/cm2 (N>6.7×1018 cm-3) pointed out to decrease in carrier density available for PL emission, which may cause the gradual saturation of PL intensity vs excitation. Comparison of the calculated DTPL integral with experimentally measured dependence of PL intensity on excitation energy density (Fig. 2) discloses rather similar features such as the initial steep increase of IPL with excitation (due to trap saturation), then quadratic increase of PL (=2 in Fig. 2, which corresponds to the linear growth of DTPL) [26], and the ongoing slower growth IPLI01.5 at high injections (Fig. 3). The observed decrease in the carrier generation rate in the spectral region of PL emission is critical for understanding the origin of PL saturation at high injections, i.e. what eventually leads to lower IQE values. This drawback is a consequence of nonequilibrium processes in extended states above the PL emission band, which are expected to transfer the photoexcited carriers without significant losses to the lower energy PL states. The reason that the carriers cannot be transferred efficiently to the PL states is probably hidden in the BGR for the occupied higher energy states: as the BGR effect grows with excitation, an additional potential barrier is built and adds to the likely existing potential fluctuations (thus blocking carrier transport to lower energy states). Assuming that holes are strongly localized in the InGaN alloy [7, 27] and their decreased diffusivity Dh limits the bipolar diffusion coefficient, Da≈2Dh, we can estimate a value of the valance band renormalization according to the following relationship [28] Ev(N)=Z[3 meV (N/1018)1/3+19 meV (N/1018)1/4] (2) 9 with a material dependent parameter Z=0.48 for GaN [10]. The renormalization value Ev varies from 13 to 23 meV for injected carrier densityN=2×1018–2×1019 cm-3 and adds to the initial localization energy. The impact of BGR is proved by decreasing with injection carrier diffusivity (see Da≈1 cm2/s within the interval I0=20–80 J/cm2 in Fig. 7c) while in highly excited GaN epilayer the Da value doubles with excitation (from 1.5 to ~3 cm2/s [19]). The above described observations of spectrally-dependent diffusivity and recombination rate seem feasible as the higher energy states (regions with lower In content) are spatially displaced from the lowest energy states (regions with high In content) and - what is upmost important- the photoexcitation creates very strong potential barrier between these regions which are retained up to SE threshold. This peculiarity allows carriers to be bunched in spectral region 415–420 nm and recombine here without transfer to the PL band. This is very different from the low injection regime, which does not block the injected carrier transfer from the high energy wing of PL to the low energy states, leading to enhanced PL efficiency. IV. CONCLUSIONS Complementary studies of spectral and spatial carrier dynamics in wide excitation and temperature ranges revealed novel features in recombination rates and diffusivity in an InGaN epilayer. We found an inverse correlation i.e. a carrier lifetime increasing with temperature and a diffusivity decreasing with temperature, which confirmed a mechanism of diffusion-limited nonradiative recombination at extended defects. At higher injections, monitoring of spectrally-integrated carrier dynamics by transient gratting technique alowed us to ascribe the enhanced recombination rate to bimolecular recombination and determine its coefficient B=7×10-11 cm3/s at room temperature. Increase of carrier recombination rate and decrease of diffusivity in the spectral interval above the PL emission band (415–420 nm), observed by differential transmittivity and transient grating techniques, was attributed to bandgap normalization effect in extended states. Impact of bandgap normalization increased with excitation, building an additional potential barrier for carriers in addition to the already existing potential fluctuations. In this scenario carrier transfer from high-to-low energy states is inhibited and even blocked, leading to efficiency saturation of the PL band (420–430 nm) at injection levels above 5×1018 cm-3. Based on these complementary results, we underscore the importance of spectrally-dependent carrier generation rate which unveiled the causes for efficiency saturation of the main PL emission band in 3D InGaN layer. The latter effect of saturation is seen already at 10 ps after photoexcitation in spectrally integrated DT signal, which in fact reflects the excitation dependence of PL band. Consequently, similar studies of PL efficiency together with spatial, spectral, and temporal carrier dynamics in InGaN quantum wells may provide deeper understanding of processes leading to saturation of internal quantum efficiency of LEDs. ACKNOWLEDGMENTS The work at VU is supported by the European Social Fund and Lithuanian Science Council. VCU team acknowledges support from NSF (Grant No EPMD 1128489). REFERENCES [1] Ü. Özgür, H. Liu, X. Li, X. Ni, and H. Morkoç, Proc. IEEE 98, 1180 (2010). 10 [2] J. Piprek, Phys. Stat.Sol. A 207, 2217 (2010). [3] D. S. Meyaard, G. B. Lin, Q. Shan. J. Cho, E. F. Schubert, H. Shim, M. H. Kim, and Ch. Sone, Appl. Phys. Lett. 99, 251115 (2011). [4] J. Hader, J.V. Maloney, and S. W. Koch, Appl. Phys. Lett. 96, 221106 (2011). [5] T. Malinauskas, A. Kadys, T. Grinys, S Nargelas, R. Aleksiejūnas, S. Miasojedovas, J. Mickevičius, R. Tomašiūnas, K. Jarašiūnas, M. Vengris, S. Okur, V. Avrutin, X. Li, F. Zhang, Ü. Özgür, and H Morkoç, in Gallium Nitride Materials and Devices VII, eds, J.I. Chyi, Y Nanishi, H. Morkoc, J. Piprek, E. Yoon, Proc. of SPIE, 8262, 8262S-1 (2012). [6] A. Kaneta, M Funato, and Y. Kawakami, Phys. Rev. B 78, 125317 (2008). [7] E. A. Oliver, S. E. Bennet, T. Zhu, D. J. Beesley, M. J. Kappers, D.W.Saxey, A. Cerezo, and C. J. Humphreys, J Phys D: Appl Phys. 5, 810 (2006). [8] S. F. Chichibu, A. Uedono, T. Onuma, B. A. Haskell, A.Chakraborty, T. Koyama, P. T. Fini, S. Keller, S. P. Denbaars, J. S. Speck, U. K. Mishra, S. Nakamura, S. Yamaguchi, S. Kamiyama. H. Amano, I. Akasaki, J.Han, and T.Sota, Nature Materials 5, 810 (2006). [9] K. Jarašiūnas, R. Aleksiejūnas, T. Malinauskas, M. Sūdţius, S.Miasojedovas, S. Juršėnas, A. Ţukauskas, R. Gaska, J. Zhang, M. S. Shur, J. W. Wang. E. Kuokštis, and M. A. Khan, Phys. Stat Sol. A 202, 820 (2005). [10] P. Ščajev, K. Jarašiūnas, S. Okur, Ü. Özgür, and H. Morkoç, J. Appl. Phys. 111, 023702 (2012). [11] J. S. Im, A. Moritz, F. Steuber, V. Härle, F. Scholtz, and A. Hangleiter, Appl. Phys. Lett. 70, 631 (1996). [12] C. Netzel, V. Hoffman, T. Wernicke, A. Knauer, M. Weyers, M. Kneissl, and N. Szabo, J Appl. Phys. 107, 033510 (2010). [13] S. Miasojedovas, S. Juršėnas, A. Ţukauskas, V. Yu. Ivanov, M. Godlewski, M. Leszczynski, P. Perlin, and T. Suski, Journal of Crystal Growth 281, 183 (2005). [14] R.W. Martin, P.G. Middleton, and K. P. O’Donnell, Appl. Phys. Lett. 74, 263 (1999). [15]. A. Satake, Y. Masumoto, T. Miyajima, T. Asatsuma, F. Nakamura, and M. Ikeda, Phys. Rev. B 57, R2041 (1998). [16] A. David, M. J. Grundman, Appl. Phys. Lett. 96, 103504 (2010). [17] H. J. Eichler, P. Gunter, and D. W. Pohl, Laser-Induced Dynamic Gratings (Springer, Berlin, 1986). [18] K. Jarašiūnas, Procedings of SPIE, 7937, 79371W (2011). [19] T. Malinauskas, K. Jarašiūnas, M. Heuken, F. Scholz, and P. Bruckner, Phys. Status Solidi C 6, S743 (2009) [20]. K. Jarašiūnas and H. J. Gerritsen, Appl. Phys. Lett. 33, 190 (1978). [21] T. Malinauskas, R. Aleksiejūnas, K. Jarašiūnas, B. Beaumont, P. Gibart, A. Kakanakova, E. Janzen, D. Gogova, B. Monemar, and M. Heuken, J. Cryst Growth 300, 223 (2007) . [22] P. Ščajev, A. Usikov, V. Soukhoveev, R. Aleksiejūnas, and K. Jarašiūnas. Appl. Phys. Lett. 98, 202105 (2011). [23] T. Malinauskas, K. Jarašiūnas R. Aleksiejunas, D. Gogova, B. Monemar, B. Beaumont, and P. Gibart, Phys. stat. sol. (b) 243, 1426–1430 (2006). [24] X. Li, S. Okur, F. Zhang, V. Avrutin, Ü. Özgür, H. Morkoç, S. M. Hong, S. H. Yen, T. C. Hsu, and A. Matulionis, J. Appl. Phys. 111, 063112 (2012). [25] J. I. Shim, H. Kim, D. S. Shin, H. Y. Yoo, J. Korean Physical Society 58, 503 (2011). 11 [26] Power index of IPL I0dependence is doubled with respect to index of IDT I0 dependence because of bimolecular origin of photoluminescence ( ). [27] L. Bellaiche, T. Matilla, L-W. Wang, S. W. H. Wei, and A. Zunger, Appl. Phys. Lett. 74, 842 (1999). [28] C. Persson, U. Lindefelt, and B. E. Sernelius, Solid State Electron. 44, 471 (2000). 12 List of Figure captions FIG. 1. PL decay kinetics measured using femtosecond pulses at 375 nm wavelength and various excitation densities I0, corresponding to injected carrier densities from 5×1016 to 1018 cm-3. FIG. 2. Dependence of time-integrated PL intensity on excitation energy density using femtosecond pulses at 375 nm. The curves can be approximated by a power-function IPL~I0 with slope values as indicated on the plot. FIG. 3. Dependence of time-integrated PL intensity on excitation energy density using edge emission geometry. PL spectra at injection levels below and above SE threshold are given in an inset. FIG. 4. DT spectra at various excitation energy densities I0 (here I0=4 J/cm2). The spectra are taken at 10 ps (a) and 1 ns (b) after photoexcitation by 200 fs duration laser pulses at 375 nm. For comparison, PL spectra at 20 J/cm2 (375 nm excitation) and 100 J/cm2 (266 nm excitation) are shown in (a). FIG. 5. Spectrally resolved DT kinetics (a, b) for two spectral lines which correspond to blue wing of DT at 414 nm and PL emission at 425 nm at various excitation energy densities I0=10 J/cm2 (1), 33 J/cm2 (2), 100 J/cm2 (3), and 300 J/cm2 (4). In (c), spectral distribution of the initial DT decay time is plotted for various I0. FIG. 6. Dependence of diffraction efficiency on excitation energy density I0 for different delay times t of a probe beam. The dependence at t=0 ps can be approximated by a power function I0 with slope value , as indicated in the plot. An inset shows enlarged view of (I0) for comparison of values from the InGaN layer (1) and GaN layer (2). FIG. 7. (a) Temperature dependences of diffusion coefficient D and lifetime R in InGaN layer at excess carrier density N=2–3×1018 cm-3 and (b) dependence of D on excitation energy density I0 (here, average excess carrier density at I0=10 J/cm2 corresponds to N=2×1018 cm-3 for used 266 nm excitation wavelength). FIG. 8. LITG decay kinetics in InGaN layer at various excitation energy densities I0, which extend over the excess carrier density range from 2×1018 to 3.2×1019 cm-3 (symbols) and their numerical fitting (lines) using parameters given in the legend. FIG. 9. Temperature-dependent LITG decay kinetics (symbols) at N=4×1018 cm-3 and their fitting (lines) using BT-3/2 dependence. The fitting provided value of B(300 K)=7×10-11 cm3/s. FIG. 10. Dependence of spectrally-integrated DT signal IDT on excitation energy density. The slope values correspond to approximation by a power function IDTI0 and are in relation 13 with slope values of IPLI0dependence as DT spectra are taken at 10 ps after photoexcitation, thus impact of recombination to DT value and slope is negligible. 14 FIG. 1. PL decay kinetics measured using femtosecond pulses at 375 nm wavelength and various excitation densities I0, corresponding to injected carrier densities from 5×1016 to 1018 cm-3. FIG. 2. Dependence of time-integrated PL intensity on excitation energy density using femtosecond pulses at 375 nm. The curves can be approximated by a power-function IPL~I0 with slope values as indicated on the plot. 15 FIG. 3. Dependence of time-integrated PL intensity on excitation energy density using edge emission geometry. PL spectra at injection levels below and above SE threshold are given in an inset. FIG. 4. DT spectra at various excitation energy densities I0 (here I0=4 J/cm2). The spectra are taken at 10 ps (a) and 1 ns (b) after photoexcitation by 200 fs duration laser pulses at 375 nm. For comparison, PL spectra at 20 J/cm2 (375 nm excitation) and 100 J/cm2 (266 nm excitation) are shown in (a). 16 FIG. 5. Spectrally resolved DT kinetics (a, b) for two spectral lines which correspond to blue wing of DT at 414 nm and PL emission at 425 nm at various excitation energy densities I0=10 J/cm2 (1), 33 J/cm2 (2), 100 J/cm2 (3), and 300 J/cm2 (4). In (c), spectral distribution of the initial DT decay time is plotted for various I0. FIG. 6. Dependence of diffraction efficiency on excitation energy density I0 for different delay times t of a probe beam. The dependence at t=0 ps can be approximated by a power function I0 with slope value , as indicated in the plot. An inset shows enlarged view of (I0) for comparison of values from the InGaN layer (1) and GaN layer (2). 17 FIG. 7. (a) Temperature dependences of diffusion coefficient D and lifetime R in InGaN layer at excess carrier density N=2–3×1018 cm-3 and (b) dependence of D on excitation energy density I0 (here, average excess carrier density at I0=10 J/cm2 corresponds to N=2×1018 cm-3 for used 266 nm excitation wavelength). FIG. 8. LITG decay kinetics in InGaN layer at various excitation energy densities I0, which extend over the excess carrier density range from 2×1018 to 3.2×1019 cm-3 (symbols) and their numerical fitting (lines) using parameters given in the legend. 18 FIG. 9. Temperature-dependent LITG decay kinetics (symbols) at N=4×1018 cm-3 and their fitting (lines) using BT-3/2 dependence. The fitting provided value of B(300 K)=7×10-11 cm3/s. FIG. 10. Dependence of spectrally-integrated DT signal IDT on excitation energy density. The slope values correspond to approximation by a power function IDTI0 and are in relation with slope values of IPLI0dependence as DT spectra are taken at 10 ps after photoexcitation, thus impact of recombination to DT value and slope is negligible. 19 Priedas 2. Projekto viešinimo plakato kopija. Naujos optinės matavimo technologijos ir įrenginiai puslaidininkių diagnostikai Eureka projektas E!4473 “Optical diagnostics” (VP1-3.1-ŠMM-06-V-01-003) Projekto vykdytojai: Partneriai: UAB “Ekspla” Savanorių pr. 231, Vilnius Tel. +370 264 9631 K. Jarašiūnas, V. Gudelis, R. Aleksiejūnas, S. Nargelas, P. Ščajev, V. Lapinskaitė 10-2 MOCVD/Al2O3: 1.1 ns GaN/SiC: 0.35 ns 10-3 GaN/Si: 0.15 ns 0.0 0.5 1.0 2.0 10 100 10-1 1.1 ns Storis d = 145 m d = 90 m d = 41 m d = 17 m d = 10 m 10-2 10-3 0.0 0.5 ns 0.4 0.8 1.2 1.6 2.0 Velinimas (ns) 3 pav. Dinaminių gardelių difrakcijos efektyvumo kinetikos bei nustatytieji parametrai skirtingo defektiškumo GaN sluoksniuose, užaugintuose įvairiomis technologijomis: MOCVD būdu epitaksiniuose sluoksniuose ant Si, SiC, Al2O3 padėklų, panaudojus ELO kaukę, bei tūriniuose skirtingo storio HVPE kristaluose. 0.1 1015 1016 1017 10-2 1018 1019 0.0 0.1 0.2 0.3 0.4 4 pav. (Kairėje viršuje) Difuzijos koeficiento D ir gyvavimo trukmės temperatūrinė priklausomybė 50 nm storio InGaN sluoksnyje (MOCVD, AIXTRON Co.); (kairėje apačioje) D priklausomybė nuo sužadinimo energijos tankio InGaN/GaN kvantiniuose lakštuose (MOCVD, VU) ir (dešinėje) nuo injektuotų krūvininkų tankio tūriniuose deimanto (HPHT, CVD), SiC (CVD) bei GaN (HVPE) kristaluose. (ns) 1 In0,15Ga0,85N In0,10Ga0,90N In0,03Ga0,97N 213,266,355 nm 1 pav. HOLO-3 prototipo optinė schema. Pikosekundinio lazerio PL2143 (Ekspla) spinduliuotės aukštesnės harmonikos (355nm, 266 nm, 213 nm) naudojamos žadinimui, o pagrindinė harmonika (1064 nm) - zondavimui. Gardelės užrašymui naudojami pirmųjų difrakcijos eilių pluošteliai. D (cm2/s) PL2143 Ekspla L2 1.1 5 = 1 1 0.1 0.1 2 Energijos tankis (mJ/cm ) exc = 527 nm 10 Difrakcijos efektyvumas (snt. vnt.) 3 HPD 2 0.5 Elektrinis velinimas (s) L1 3 N (cm-3) Temperatura (K) f2 n0= 9 x 1015 cm-3 100 2 1 100 10-1 1 80 K , G= 0.24 ns 300 K, G = 0.50 ns 800 K, G = 1.05 ns 10-2 -3 1 2 -3 1000 T (K) 7 pav. Laisvųjų krūvininkų rekombinacijos ir difuzijos procesai, išmatuoti laisvakrūvės sugerties (kairėje viršuje) ir dinaminių gardelių (kairėje apačioje) metodais tūriniame GaN kristale dvifotonės injekcijos sąlygomis. Tuo būdu gauta D ir R priklausomybė (dešinėje) atskleidžia R prigimtį, siejamą su krūvininkų difuzijos pernaša į rekombinacijos centrus GaN kristalitų ribose. 10-4 0 17 N = 10 cm 100 Nav = 1.31017 cm-3 = 1.74 m 10 Da (cm /s) 10 80 K , R= 9.8 ns 300 K, R = 40 ns 800 K, R = 122 ns 80 -0. D 10 T = 300 K n0= 6 x 1015 cm-3 R (ns) 1 CVD diamond HPHT diamond 3C-SiC GaN 6 pav. Optinė schema greitų (iki keletos nanosekundžių) ir lėtų (iki dešimčių mikrosekundžių) procesų stebėsenai, besiremianti šviesa sukelto lūžio rodiklio bei sugerties koeficiento moduliacija. ln(T0/T) DT T1/2 -1/2 D (cm2/s) 10 Optinė vėlinimo linija f1+f2 1.5 Velinimas (ns) 1 f1 Difrakcijos efektyvumas (snt. vnt.) ELO: 2.8 ns HVPE GaN serija 4.2 ns 3.1 ns 2.6 ns 1 = Naujame HOLO-3 modulyje panaudota tobulesnė dinaminių gardelių užrašymo schema su difrakciniais optiniais elementais lazerinio pluoštelio padalinimui ir žadinančiojo interferencinio pluoštelio suformavimui. Šioje optinėje schemoje (1 pav.) du pluošteliai, difragavę nuo difrakcinio-holografinio pluoštelio daliklio HPD, lęšių L1 ir L2 dėka labai paprastai ir patikimai sutapatinami laike ir erdviškai, sukurdami interferencines linijas bandinio plokštumoje. Tokiu būdu puslaidininkyje indukuotos dinaminės gardelės periodas pakeičiamas automatiškai, pasirenkant reikiamo periodo HPD. Patogumo dėlei skirtingų periodų HPD rinkinys sumontuojamas ant skritulio (2 pav.), kuris elektromechaniškai valdomas kompiuterio programa. HPD panaudojimas leido atsisakyti papildomų komponenčių ir procedūrų, kurios buvo būtinos HOLO-2 modulyje pasirinkus naują gardelės periodą, t.y. optinio vėlinimo linijos interferuojančių pluoštelių laikinei sichronizacijai bei elektromechaniškai valdomų veidrodžių erdviniam pluoštelių sutapatinimui bandinio plokštumoje. Naujas sprendimas leidžia paprastai ir pakartotinai suformuoti reikiamo periodiškumo interferencinį pluoštelį, jį panaudoti difuzijos ir rekombinacijos procesų vienalaikiam tyrimui. Optiškai vėlinamo zonduojančio pluoštelio difrakcija nuo dinaminės gardelės panaudota tirti vyksmams, kurių trukmė kinta nuo ~10-11 iki 10-8 s. Tokia sparta būdinga rekombinaciniams procesams nitridiniuose junginiuose - skirtingų technologijų GaN, InGaN ir InN sluoksniuose, InGaN bei AlGaN kvantinėse sandarose bei difuzinei krūvio pernašai SiC ir deimantuose. 10-1 (ns) Naujieji techniniai sprendimai HOLO-3 modulyje HVPE: 5 ns 2 Pagrindinis Eureka projekto tikslas - tobulinti netiesines optines matavimo technologijas, jų pagrindu sukurti optinės diagnostikos įrenginius-prototipus, skirtus plačiatarpių puslaidininkinių junginių charakterizavimui bei jų gamybos technologijų įvertinimui. Tokių tyrimų ir taikymų poreikis siejamas su naujais puslaidininkiniais junginiais, kurių optinės bei elektrinės savybės valdomos technologiškai. Nauji matavimo būdai panaudoja lazerio spinduliuotės sąveiką su puslaidininkiu, kai jo optinės ir elektrinės savybės moduliuojamos optiškai injektuotais krūvininkais. Tuo būdu tiriama erdvinė ir laikinė nepusiausvyriųjų procesų dinamika N(x,z,t), bekontaktiniu būdu nustatomi svarbūs puslaidininkio parametrai, atspindintys medžiagos kokybę ir jos panaudojimo galimybes optoelektronikoje bei elektronikoje. Tarpdisciplininiais tyrimais buvo sukurtos ir išplėtotos įvairios optinio „žadinimo-zondavimo“ konfigūracijos bei metodai rekombinacijos ir difuzijos procesų stebėsenai. Šios inovacijos buvo įdiegtos holografiniame diagnostikos modulyje HOLO-2, perduotos UAB Ekspla, kuri pagamino holografinį diagnostikos kompleksą Rensselaer Politechnikos Institutui JAV. Tačiau šis modulis reikalavo sudėtingų dinaminę gardelę užrašančių pluoštelių valdymo procedūrų. 0 10 D (cm /s) Eureka projekto tikslai Difrakcijos efektyvumas (snt.vnt.) Vilniaus Universitetas Saulėtekio al. 9-III, LT-10222, Vilnius AIXTRON Co. Kackerstr. 17-2, Aachen, 52072 Germany Phone/Fax +49 241 8909 154 3 Optinis velinimas (ns) Difrakciniai pluoštelio dalikliai HPD HPD PV1 FD3 FD2 Praėjęs 450 400 350 250 PV2 0 10 20 30 Bandinys OVL V8 40 HPD pozicija (m) 2 pav. HPD blokas su elektromechaniniu-programiniu valdymu (kairėje), difragavusio nuo kvarcinio HPD pluoštelio vaizdas ekrane (viduryje) ir registruojamo difrakcijos signalo priklausomybė nuo HPD poslinkio gardelės vektoriaus kryptimi (dešinėje). 400 x 600 mm 5 pav. HOLO-3 modulio su paraboliniais veidrodžiais optinė schema ir prototipas. Šioje schemoje abu pluošteliai (gardelę užrašantis ir zondojantis) difraguoja nuo HPD ir paraboliniais veidrodžiais nukreipiami į bandinį. 2 = 9.2 ns 0 10 = 4.1 ns = 6.4 ns 10-1 10-2 V9 300 200 PV2 1 = 40 ns FD3 PV1 Difragavęs Signalas (snt. vnt.) Registruojamo signalo intensyvumą fotodetektoriuje įtakoja fazių skirtumas tarp koheretinių pluoštelių patenkančių į detektorių: difragavusiojo ir bandinio išsklaidytos šviesos. Signalo vertė gali būti valdoma HPD poslinkiu gardelės vektoriaus kryptimi (pakeičiama Idifr fazė). Tai atveria galimybes registruoti difrakcijos signalą, mažesnį nei fono lygis bei stebėti lūžio rodiklio pokyčio ženklo kitimą difrakcijos signalo kinetikose. FD2 FD1 Signalas (snt. vnt.) Pluoštelio dalikliai (difrakcinės gardelės) buvo suformuoti kvarco padėkle (10x10 mm), panaudojus fotolitografijos ir joninio ėsdinimo technologijas. Gardelių erdvinis profilis leidžia pasiekti, kad 60-70% pluoštelio energijos būtų sukoncentruota pirmose difrakcijos eilėse. = 1.1 ns c-GaN: TRPL LITG FCA 0.0 0.5 3 m-GaN: LITG TRPL 1.0 1.5 2.0 Velinimas, ns 8 pav. Įvairių optinio charakterizavimo metodų palyginimas, nustatant rekombinacijios spartą GaN tūriniuose kristaluose: 1- laisvųjų krūvininkų rekombinacijos procesai, išmatuoti laisvakrūvės sugerties būdu dvifonio sužadinimo sąlygomis; 2 - difrakcijos nuo dinaminių gardelių būdu paviršinio žadinimo sąlygomis (355 nm) kristaluose su skirtinga paviršiaus kokybe; 3 - liuminescencijos gesimo kinetika paviršinio žadinimo sąlygomis (266 nm), įtakota difuzijos į gylį ir skirtingos paviršinės rekombinacijos spartos. Priedas 3. Projekto partnerio EKSPLA UAB raštas dėl sukurtų matavimo technologijų priėmimo.