CON IGYT - Conicyt
Transcription
CON IGYT - Conicyt
' CON IGYT COMISIÓN NACIONAL DE INVESTIGACIÓN CIENIIFICA Y IICNOLÓGICA GOBIERNO DE CHILE ni COMIS1ON NACIONAL DE INVESTIGACION CIENCIA Y TECNOLOGIA VERSION OFICIAL FECHA: 30/11/2009 PROYECTO INICIACION N°11060538 INVESTIGADOR RESPONSABLE: BARTLOMIEJ MARJUSZ SKORULSKJ FONDO NACIONAL DE DESARROLLO CIENTIFICO Y TECNOLOGICO (FONDECYT) Bernarda Morín 551, Providencia - casilla 297- y, Santiago 21 Telefono: 435 43 50 FAX 365 4435 Email: infoxmes.fondecytconicyt.c1 INFORME FINAL PROYECTO FONDECYT INICIACION AÑO ETAPA: 2008 DURACIÓN: 3 años N° PROYECTO: 11060538 TíTULO PROYECTO: INVARIANT MEASURES AND THERMODYNAMIC FORMALISM FOR MEROMORPHIC FUNCTIONS DISCIPLINA PRINCIPAL: SISTEMAS DINAMICOS GRUPO DE ESTUDIO: MATEMATICAS INVESTIGADOR(A) RESPONSABLE: BARTLOMIEJ MARI USZ SKORULSKI DIRECCIÓN : Altos del Mar '1001 dep. 151 torre B COMUNA: CIUDAD: ANTOFAGASTA REGIÓN: II REGION FONO: 56-55-355526 EMAIL: bskorulski@ucn.Cl INFORME OBJETIVOS Cumplimiento de los Objetivos planteados en el Proyecto. Recuerde que los objetivos del proyecto no se refieren a listar actividades desarro!IaUaS sino a ios oojettvus uaIIu. OBJETIVOS Undcrstanding the role of conformal measures in the dynamics of transcendental functions and the conditions which implies their existence Developing thc theory of the real transformation 2 CUMPLIMIENTO PARCIAL written a paper containing resuits which 1 was NO with fiat critical point Moving forward tbe study of the exponential 3 FUNDAMENTO 2 papers were finished and published, however they contain only partial results. Also J. Kotus has PARCIAL working on. With C. Vasquez we have written a preprint, hower N. Dobbs has got more general result before us With N. Dobbs we solved an open question related to the existence of acip for Misiurewicz maps. Now we are working on slowly escaping maps, which are already very compilcated. family Therefore CE-like conditiori is still out of out 4 Developing random dynamics for transcendental PARCIAL maps range. Before developing non-rational mcromorphic dynamics we started lo work on random expanding maps en compact fibers. With V. Mayer and M. Urbanski we have written a long paper on that (submitted). In this paper we gaye an answer to two conjectures. 1 was also working with G. lommi en similar problem in more specific situation. Now with Mayer and lirbanski 5 Proving stochastic stability for maps from 2 NO we work on meromorphic random dynamics. Since the point 2 was not done this as well. Otro(s) aspecto(s) que lid, considere importante(s) en la evaluación del cumplimiento de objetivos planteados en la propuesta original o en las modificaciones autorizadas por los Consejos. ¡ think the niost interesting part of this project was part related to point 4. When with V. Mayer and M. Urbanski we started to work on Random Non-Rational Maps we realized that There are still Iots of problems in the case of compact fibers (in transcendental settings fibers are equal to the complex plane and transformations have essential singularity at inlinity). We have found out that there are still sorne important question left without answer in the case of rational dynamics. Wc have given an answer to these conjectures. Moreover, we have found out that there is mostly not work done in the subject of multifractal spectrum of randoni maps. We also have spent lots of time trying to get a sufficiently good results in this subject. With G, lommi we also worked on the same problem in a very special case of random expansion of real nurnbers. We were trying (o find a direct formula for the level seis, which is a special case of radnom expanding maps. We however have realized that we can formulate and solve this problem in a completely different language of Cantor series. Now with V. Mayer an M. Urbanski we are working on transcendental case. Work is still in progress but promising. With the respect to point 3 we (with N. Dobbs) we obtained a very important result about not existence of acip. On one hand, this was an answer to an open question, on the other these result has opened a completely new way of working with meromorphic dynamics which seems to simplified a lot many partial results 1 havc obtained. With N. Dobbs and M. Urbanski we are now working on these problems. With respect to point 1 1 have got a partial results and working on more general settings while J. Kotus have published a paper which contained the missed case. Very similar thing has oecurred with work related the point 2. This time N. Dobbs have informed me about generalization of results 1 had. 1 also have not succeed in work on other issues addrcssed in this point and poinl 5 as well. RESULTS OBTAINED: Fui cadi specific gua! 7 describe or surninarize the results obtained. Relate cadi une tu work already published and/or inanuscripts suhrnitted. In the Annex sectiori include additional inforination deemed pertirient aiid relevant to the evaluation process. The maximum length for this section is 5 pages. (Aria! or Verdana, font size 10). Thermodynamic formalism for meromorphic functions In [6] with lon Coiculescu we construct a conforunal uneasure for expanding eiitire functions in farnily of function f of the forrn f(z) = R(exp(z)), where R is a ratiouial funetion and 1. does no llave a finite asyunptutic value. Then Wc show the existence of invariant uneasure which is equivalent to the conforinal ouie. This WS a part ial answer to the questioui of existeuice of invariant measures absolutely continuous with the respect to conformal measure for hyperbolic inaps of the forin R(exp(z)). Together with non-euitire case lorni Kotus' article [13] this solved coinpletely the probleun. In [6] we also get a version of Bowen formula. This formula plays important role in our second paper [5]. In this paper we proved real-analycity of the Hausdorff diunension of the radial Julia set. This paper gives an important foundation for study sume non-hyperbolic non-entire fuuictions. With Janina Kotus we studied a one-parainet.er fainily which unembers has ami a.syinptotic value eventually mapped onto infinity. For this family we proved that the Hausdorff dimension of the radial Julia set is also real-analytic. Tui order to get it we have to also showed a version uf Thcuremn of Mae-Sad-Sullivami for rational inaps or Ercmenko-Lyubich fui entire transformations. However, in this preprint we went ori a very couuiplicated ruad in order to overcome a difficulty related to the periodicity of considered function. Now, a new technique related of fice set, would make the prove rnuch easier. And we are working un that (see the next section). Exponential family With Neil Dobbs we were studing the exisitence of invariant ineasures absoultely [7] we solved an open (for a continuuus with respect to the Lebesgue measue. In [71 suprisingly long time) question. Wc shuwed tlmat Misiurewicz Expunential Maps cannot have aii finite absolutely invariant measure. Wc used a interesting techinique of uuice sets developed by Juan Rivera. This was the first time that somnebody applied this for transcendental maps. It turned out that, J. Kotus and G. Swiatek proved the sanie result. Huwever their pruof is defiuuite!y longer and more counplicatcd. The existence of ahsolutely invariant measures is know for Misiurewicz type transformnations and uiot existence is known for exponential maps with the orbit of zero of the first return map to the left half plane escaping very fast torwards infinity. So with N. Dobbs we are wurkiuig un puints which has a differcnt escaping rate. Let 1 y,-, := IT n(0)j where T is the return rnap to the left lialf of the plane. We proved that, if v > O(logn), then absoultely coritinuous irivariant measures caniiot cxist, and if y,., < O(loglogn) and v,. > d > 1 for ah largo n, then a absolutely continuous invariant measurc exist, however is not finite. Tu the prove of the theoreni we used techuiiques similar to studying the Browriian motion. It is however still rexnairis open if ono can find a coiiditioii which can guarantee that une of the both cases exist. Unfortunateiy the calculation are a bit complicated and we are still working un puttiiig everything together. Random Dynamical Systems In [14] with Volker Mayor aud Mariusz Urbaiiski we develop the thermodynamical formahisni for measurable expandmg raridom mappings. This theory then is appiied iii the context of conforinal expanding randoin mappings where we deal with the fractal gcometry. Measurable expanding random mappings. First we define measurable expanding random maps. The raiidomness is inodeled by an invertible ergodic trarisforniation O of a probability space (X, 8, m). Wc investigate the dynamics of compositions 7=TCr-l (x) O ... OTx ,n>1, where the T : jx - 3(x) (x E X) is a distance expanding Inapping. These inaps are only siipposed to be nieasurably cxpanding iii tite sense titat thcir expanding constant is ineasurable and a.e. Yx > 1 or f log 'Yx dm(x) > 0. Iii so general setting we first build the therinodynainical formahisrn for arbitrary Holder continuous potentials W , . We show, in particular, the existence, uniqueness and ergochicity of a faiiiily of Cibbs measures {'-'x}x€X. Followiiig ideas of Kifer [10], these measures are flrst produced in a pointwise nianner and then we carefuhly Check their measurabihity. Iii Reinark 3.3 and 3.4 of [9] Kifer aud Khaiiiri indicated a possibihty tu build thermodyiiarnic forinahisin for raridorn distance expandiiig Iriaps. They saw tite obstados to huild sucli formalisni ni tite lack of Markov partit.ioris sirice they needed tliein iii order to use syrnbohic representation froin [1]. Iii our approach we do not need any Markov partitions or (even auxihiary) syinboh dynainics. Moreover, itt [1] and [9] all fibers are iequired to be contained iii tite sanie compact mctric sparc. Wc do not even need these fibers to be coritained in une metric sparc. Our resuhts contain those in [1] and in [10] (see also the expository artiche [121). Throughout the entire paper where it is possibhe we avoid, iii hiypotheses, absohute coiistants. Our feelirig is that iii the eontext of random systems ah (or at least as mnany as possihle) al)soiute constants appearing in determiiiistic systems should becoine measurable functions. With this respect time thermodynamnical foriiialism devehoped in here represents also, up to our knowledge, new achievemnents in the 2 theory of random symbol dynainics or smooth expanding random inaps acting 011 Rieinaririiaii inaiiifolds. Wc show that this convergerice is exponential, which implies exponexitial decay of correlations. These results precede investigations of a pressure funetion x P(Ø) which satisfies the property 1Jo()(T(A)) = JA edu where A is any measurable set such that TXIA is injective. The integral, against t.he ineasure rn on the base X, of this function is a central parameter eP(p) of randoin systems called the expected pressure. If the poteiitial 0 depends analytically oil parameters, we show that the expected pressure also hehaves real analytically. Wc would like tu rnentiun that, contrary to the deterrriinistic case, the spectrai gap inethods (10 not work iii the randoni setting. Our proof utilizes the conccpt of complcx cones introduced by Rugh in [15]. Conformal random systems Wc then appiy the aboye results mainly to investigate fractal pruperties of fibers of conformal random systems. Tliey inelude Hausdorff dimension, Hausdorff and packing measures, as well as multifractal analysis. First, we establisli a version of Bowens formula (obtairied in somewhat different context iii [21) showing that the Hausdorff diinension of alinost every fiber ¿T1 is equal to h, the only zero of the expected pressure SP(), where O t = — tiog f'j and 1 E R. Tuco we analyze the behavior of h dimensional Hausdorff and packi ig nieasurcs, It turneci out that thc random d iiamical systems split into two categories. Systems from the first category, rather exceptional, behave like deterrninistic systems. Wc cali thern, therefore, quasi-deterrninistic. For thern tlie Hausdorff and packing measures are finite and positive. Other systems, called essentially random, are rather generic. For them the h-dimensional Hausdorff measure vanishes whuie the h-packing measure is infinite. This, iii particular, refutes the conjecture stated by Bogenschütz and Ochs iii [21 tliat the h—dimensional Flausdorff mneasure of fibers is always positive and limite. In fact, tlic (iist.inction hetween the quasi-determinist.ic and the essentially ranclom systems is deterrnined by the behavior of the Birkhoff sums P) = P0 i(ç) + ... + Pl) of the pressure funetion for potential O h = —h log If'L If tliese sums stay bounded theu we are in the quasi-determninistie case. Qn the other harid, if these sumos are mcifuer bounded below nor ahoye, the systemn is calied essentialiy random. rrIlc behavior of P, being random variables defined on X. the base map for our skew product map, is often governed by stochastic theorems such as tlie law of the iterated logarithrn 3 whenever it holds. This is the case for our priinary exainples, namely conforinal DGsystems aud elassical conformal randoin systems. Wc are then iii position to state that the quasi-deterrninistic systems correspond to rather exceptional case where the asymptotic variance a2 = O. Otlierwise the system is essent.ial. The fact that Hausdorff measures iii the Hausdorff dimensiori vaiiisli has further st.riking geometric consequenees. Namely, almost all fibers of an essential conforixial raridoin system are not hi-Lipschitz equivalent to any fiber of any quasi-cleterministie or determiuistic conforinal expanding system. In consequence almost every fiber of an essentially randorn systern is iiot a geometric circie nor even a piecewise analytie curve. Wc then show that thesc results do hoid for many explicit raxidwn dyiiamical systems, such as coiiformal DG-systems, classical conforinal randoin systems, and, perhaps rnost importantly, Brück and Bürger polynornial systems. As a coxisequence of the techniques we llave developed, we positively answer the question of Brück and Bürger (see [4] and Question 5.4 iii [3]) of whether the Hausdorff dimension of ahnost alT naturaily define(¡ random Julia set is strictly larger than 1. We also show that iii this sanie settixig thc Hausdorff dimeiision of alinost all Julia sets is strictly less than 2. If the systein is iii addition uniforinly expanding then we provide real analytieity of t.he pressure fuxiction. As a consequence and via Legendre transformation we ohtain real analyticity of the inultifractal spectruxn. Multifractal spectrum. Concerning the multifractal spectrum of Gibbs ineasures on fibers, we show that the multifractal forinalisin is valid, j.c. the inultifractal spectruin is Legendre conjugated to a ternperature function. As usual, t.he t.ernperature functioxi is iinplicitly given ni terms of the expected pressure. Here, the inost important, although perhaps not most strikingly visible, issue is to make sure thiat there exists a set Xma of fuhi measure iii the base such that the niultifractal foi'malism works for all x E X,,,, Hausdorff Diinension of Cantor Series. A very special exarnple of a Randoin Dynamical Systein is related te Cantor Series. Tuis a work we did with Godofredo ]S loinnu in 181. Let A = {b}n E N be a sequence of positive integers such that b n e N \ {1}. Every real number x e [0, 11 can be written as r; where e 72 (x) E {O, 1, . . . , - 1}. Wc write X = [ e 1 (x)e 2 (x) . . . €(x) . . . 4 and cail it the A— Cantor Series of x with respect to the base A = {b, L } flc. For every base A the Cantor series is unique exeept for a countable number of points. Note that if A is tlie sequence such that for every n E N WC liave b = b, theri tlie A—Cantor series corresponds to the base b expansion of x E [0, 1]. In [11] Y. Kifer obtained a variational formula for the Hausdorff dimension of tlie set of poin1s for which the frcquenies of tlie digits in the Cantor series expansion is givell. Wc present a slightly different approach to this problein that allow jis to solve the variational problein of Kifer's formula. His formula involves a supremuin while our can be caleulated directly. References [1] Thomas Bogerischütz and Volker Mathias Gundlach. Ruelle's transfer operator for randoiri subshifts of finite type. Ergodic Thcory Dyrta'rn. Systems, 15(3):413447, 1995. [21 Thomas Bogeiiscliiitz and Gunter Ochs. The Hausdorff dimension of conformal repeliers under randoiii perturbation. Nonlznearzty, 12(5):1323-1338, 1999. [3] Rainer Brück. Geomnetric properties of Julia sets of the comnposition of poiynomials of the form z2 + c. Pacific J. Math., 198(2):347-372, 2001. [4] Rainer Brück and Matthias Büger. Generalized iteration. Comput. Methods Funct. Theory, 3(1-2) :201-252, 2003. [5] Ion Coiculescu and Bartlorniej Skorulski. Perturbations in t.hc Speiser class. Rocky Mountain J. Math., 37(3):763-800. 2007. [6] Ion Coiculescu and Bartloiniej Skorulski. Therinodyiiamxiic foimnalismn of transcendental entire maps of finite singular type. Monatsh. Math., 152(2):105-123, 2007. [7] Neil Dobbs amid Bartlomiej Skorulski. Non-existence of absolutely continuous invariant probabilities for exponential maps. Fund. Math., 198(3):283-287, 2008. [8] Godofredo lomnmi and Bartlomniej Skorulski. Hausdorff dimnension of cantor series. submitcd. [9] K. Khanin and Y. Kifer. Thermodymiamic formnalism for randoin transforinatiomis and statistical meclianies. In Sina"s Moscow Semina, oit Dy'namical Systems, 5 volurne 171 of Amer. Math. Soc. Transi. Ser. 2, pages 107-140. Amer. Math. Soc., Providencu, Rl, 1996. [101 Yuri Nifer. Equilibriuin states for raiidoin expanding transforrnations. Random Comput. Dynam,, 1(1):1-31, 1992/93. [11] Yuri Nifer. Fractal dirnensions and random transforinations. Trans. Amer. Math. Soc., 348(5): 2003-2038 1996. [12] Yuri Nifer and Pei-Dong Liu. Random dynamics. Iii Handbook of dynamical systems. Vol. iB, pages 379-499. Elsevier B. V., Amsterdam, 2006. [13] Janimia Kotus. Proljabilistic invariant mncasures for non-entire funct.iuns with asymptotic values imiapped onto oc. Illinois J. Math., 49(4):1203-1220 (eleetronic), 2005. [14] Volker Mayer, Urhaúski Mariusz, aud Bartlomniej Skorulski. Distance expanding random inappings, therinodynamic formalismn, gibhs measures, and fractal geometry. submnit.ed. 151 Hans Hcnrik Rugli. Cones and gauges in coniplex spaces: Spectral gaps and complex Perromi Frobenius theor y . Preprint 2007, Ami of Math., to appear. 6 ACHIEVEMENTS OF THE PROJECT: - Research visit(s) to other institution(s). - Outreach activities related to the projects main topic. - Any other contribution, not addressed elsewhere, that you consider irnportant. The maximum length for this section is 1 page. (Anal or Verdana, font size lo). 1 was one of the organizer of the conferences: 1. Dynainical System II in Denton, USA, May 17-23, 2009 2. Dynarnical Systems Days, Antofagasta, Chile December 3-14 2007. 3. 1 was also a coorclinator of the session of Dynamical Systems duririg the conference COMCA 2009 in Antofagasta, Chile, August 2009. 1 have visted the following Institution. 1. Polish Academy of Sciences, Warsaw, Jun to Aug 2007 1 was invited by Prof. Janina Kotus and by Prof. F. Przytycki. We conducted research on dynamics of meromorphic functions. 2. Froni Mar to May 2007 1 visited University of North Texas, USA. With Prof. M. Urbanski we did a research on random dynamics. 3. University of North Texas (twice, 2008). 1 was working there with M. Urbanski on random transformations. 4. PUC (2008 twice). The first time 1 was mostly working with J. Riviera on Collet-Eckmann transformations and with G. Iommi on thermodynamic formalism for sorne non-continuous maps. The second time 1 visted PUC wheii M. Urbanski was there (he has spent 2 weeks in my University and two weeks in PUC). We were working together with J. Rivera on Collet-Eckmanri transforrnations (both deterministic and random). 5. North Texas University, Denton, June 10 May 30, 2009. With M. Urbanski we did research on Random Dynamical Systems, Meromorphic Dynamics anci Random Transcendental Dynamics. With my PhD student I. Inoquio we were working on her paper Therrnodynamic Formalism for Transcendental maps, symbolic dynamic outlook. This is another point of view at dynamics of meromorphic functions. 1 RESUMEN: The goal of this project was to study the existence of invariant measure for meromorphic function. The project has two important direction. Thc first one was deterministic, that is Wc consider a fixed ineromnorphic non-ratioiial function and we try to see if one can fiud an iiivariant measure ahsolutely continuous with time respect to Lebesgue measure, or, if the Julia set is not an entire sphere, with the respect t.o a Hausdorff ineasure iii the Hausdorff dimension, which is normally equivalent to time conformal measure. Another direction was take a different transformation each time we iterate. \Ve a.ssume that the transformation we take depends on sorne probabilistic rule. One can think that we are adding a white noise to a deterrninistic transformation. In the deterministic case the most important result was obtained for an exponential map f(z)=a exp(z), where a is a non-zero cornplex naumber. With N. Dobbs we proved that, if aii exponential mimap satisfies so-called Misiurewicz condition, then there does not exist an invariant probability. This is a bit surprise since in general simple transformation which satisfies this condition llave this kind of measure. Another result was that, for transformation of the form f(z)=R(exp(z)) where R is a rational map, and f does not llave a finite asymptotic values, we proved tliat hyperbolic maps llave a conformal measure and an absolutely continuous invariant measures absolutely continuous with the respect to these measures. In thc randomn case, with V. Mayer and M. Urbanski we first definicd mneasurahie expanding random systems, then we develop the thermodynamical formalismn anci establish, in particular, exponential dccay of correlations and analyticity of the expected pressure although the spectral gap property does not hoid. This theory is then used to investigate fractal properties of conformal random systems. We prove a Bowen's formula and develop the multifractal formalism of the Gibbs states. Depending oii the behavior of the Birkhoff sums of time pressure function we get a natural classifications of the systems into two classes: quasi-deterrninistic systems which share many properties of deterministic ones and essential random systems which are rather generic and never bi-Lipschitz equivalent to deterministic systems. Wc show iii the esseritial case that the Hausdorff measure vanishes which refutes a conjecture of Bogenschutz aud Ochs. Wc finally give applications of our results to various specific conforrnal random systems and positively answer a question of Bruck and Burger conceruing time Hausdorff diinensiomm of random Julia sets. Moreover, with G. Iomrni in sorne special case of random expansion of real number we ga ye a direct formula for the Husdorff dimnension of level sets, t.lmat is the set of points witim given frequency of random digits. 1 COOPERACIÓN INTERNACIONAL 7080227 N° Proyecto: Nombre Colaborador (a) Extranjero (a): NEIL DOBBS POLISH ACADEMY OF SCIENCES Afiliación Institucional Actual: Fechas de estadía Desde :2510912008 Hasta :10110/2008 Describa las actividades realizadas y resultados obtenidos. Destaque su contribución al logro de los objetivos del proyecto. Si es pertinente, indique las publicaciones conjuntas generadas, haciendo referencia a lo informado en la etapa Productos. Agregue en la - i With Neil Dobbs we were studying the existence of invariant measures absolutely continuous with respect to the Lebesgue measure. Thc existence of this measure is know for Misiurewicz type transformations and not existence for exponential maps with the orbit of zero of the first return map to the Ieft haif plane escaping very fast towards infinity. Let v_n IT'n(0)I where T is the return map to the Ieft half of the plane. Wc proved that, if v_n > O(log n), then absolutely contifluous invariant measures cannot exist, and if v_n < O(log log n) and vn > d>l for all large n, then a absolutely continuous invariant measure exist, however is not finite. In the preve of the theorem we used techniques similar to studying the Brownian motion. It is however still remains open ifone can find a condition WhiCh can guarantee that one of the both cases exist. Neil Dobbs also gay e two talks related to his work on non-differentiability of the prcssure function. The audience of the lectures was our faculty and PhD and master students. PRODUCTOS ARTÍCULOS Para trabajos en Prensa' Aceptados/Enviados adjunte copia de carta de aceptación o de recepción. N Coiculescu, 1.; Skorulski, B. Autor (a)(es/as) : Nombre Completo de la Revista: Monatshefte fur Mathematik Thermodynamic formalism of transcendental entire maps of finite type Título (Idioma original): LS! Indexación : 0026-9255 !SSN: 2007 Año: 152 Vol.: 2 N°: 105-123 Páginas: Estado de la publicación a la fecha : Publicada Otras Fuentes de financiamiento, si las hay [iish Science Foundation (KBN) Envía documento en papel : Archivo Asociado al artículo : http:/,I evalcyt.coni cyt.c 1/ informe si CoiSko07a.pdf 1920321/II 060538!2008/50161 2 Coiculescu 1.; Skorulski B. Rocky Mountain Journal of Mathematics Perturbations in the Speiser class ISI Indexación : 0035-7596 ISSN : 2007 Año: 37 Vol. : 3 N°: 763-800 Páginas : : Publicada fecha a la publicación Estado de la Otras Fuentes de financiamiento, si las hay Autor (a)(eslas) : Nombre Completo de la Revista: Título (Idioma original) : Polish Scicnce Foundation (KBN) Envía documento en papel: Archivo Asociado al artículo: si 3 N°: Dobbs N; Skorulski B., Autor (a)(es/as) : Nombre Completo de la Revista : Fundamenta Mathematicae Non-existence of absolutely continuous invariant probabilities for exponential maps Título (Idioma original): ISI Indexación : 0016-2736 ISSN : 2008 Año: 198 Vol.: 3 283-287 Páginas: Estado de la publicación a la fecha : Publicada Otras Fuentes de financiamiento, si las hay Research Network on Low Dimensional Dynamics, PBCT ACT 17, CONICYT, Chile, EU Research Training Network "Conforma] Structures and Dynamics" Envía documento en papel: Archivo Asociado al artículo Autor (a)(es/as) Nombre Completo de la Revista Título (Idioma original): Indexación ISSN: Año: Vol.: SI 4 Mayer, V.; Skorulski, B.; Urbanski, M. Annais of Mathematics Distance expanding random mappings, thermodynamic formalism, Gibbs measures and fractal geometry 'SI Páginas: Estado de la publicación a la fecha : Enviada Otras Fuentes de financiamiento, si las hay Research Network on Low Dimensional Dynamics, PBCT ACT 17, CONICYT, Chile Envía documento en papel : Archivo Asociado al artículo: si RDSmain.pdf 1920321/11060538/2008/5019/ 5 N°: lommi, G.; Skorulski, B. Autor (a)(es/as) Proceedings of the AMS Nombre Completo de la Revista Hausdorff Dimension of Cantor Series Título (Idioma original): 'SI Indexación: ISSN: Año: Vol.: N°: Páginas Estado de la publicación a la fecha : Enviada Otras Fuentes de financiamiento, si las hay Research Network on Low Dimensional Dynamics Envía documento en papel: Archivo Asociado al artículo : si IS.pdf http:!/evaIcyt.conicyt .cl/informc_aCademicO!index.PhP1iflveStigad0r/f4_aniCut0descarg8/2I 920321/11060538/2008/5020/ OTRAS PUBLICACIONES Sin información ingresada. CONGRESOS Autor (a)(es/as) Skorulski, B. Título (Idioma original): infinity Nombre del Congreso: Dynamics of sorne meromorphic functions with an asymptotic value eventually mapped onto País: Ciudad: Fecha Inicio Fecha Término Nombre Publicación POLONIA Warsaw 31/07/2007 03/08/2007 First Joint International Meeting between thc AMS and the PTM Año: Vol.: Páginas: Envía documento en papel: Archivo Asociado : no pl.pdf http:/!evalcyt.coflicyt.cI/infolTfleacademicO/ifldexPhp/iflVestlgadot!f4congresos/descarga/21920321111060538/2008/7393,' Autor (a)(eslas) : Título (Idioma original) : Nombre del Congreso : País: Ciudad: Fecha Inicio: Fecha Término: Nombre Publicación: 2 Bartlomiej Skorulski Dynamics of sorne meromorphic functions Conforma] Structures and Dynamics. The current state-of-art and perspectives REINO UNIDO DE GB E IRLANDA DEL NORTE Coventry 11/06/2007 15/06/2007 Año: Vol.: N°: Páginas Envía documento en papel : Archivo Asociado : si p2.pdf http:i/evaIcyt.conicyt.cI/infOrflle_aCadCmiCO/indCX . P hP/ifl v C stigad0tIf4_C0ngT0dcagw'2l 920321/1 1 060538/2008/7440i N" : Autor (a)(es/as) : 3 Bartlomiej Skorulski Título (Idioma original) : Nombre del Congreso: Exponential Misurewicz does not give acip COMCA 2008 País: CHILE Iquique 30/07/2008 01/08/2008 Ciudad : Fecha Inicio : Fecha Término Nombre Publicación Año: Vol.: Páginas: Envía documento en papel : Archivo Asociado : si p3.pdf http://evalcyt.conicyt.cl/informe academico/indcx.php/investigadOr/f4 congresos/descarga/21920321/11060538/2008/7441/ Autor (a)(es/as) : 4 Bartlorniej Skorulski Título (Idioma original) : Nombre del Congreso : Conjuntos aleatorios COMCA 2009 País: CHILE Antofagasta 05/0812009 07108/2009 Ciudad : Fecha inicio : Fecha Término: Nombre Publicación Año: Vol.: N°: Páginas: Envía documento en papel: Archivo Asociado : si p4.pdf http://evalcyt.conicylcllinformc_academico/index.php/investigadOr/f4 congresosldescargal21 920321/1106053S,2008/7442/ 5 Autor (a)(es/as): Bartlornicj Skorulski Título (Idioma original): fractal geometry Nombre del Congreso : Disance expanding random mappings, thermodynamic formalism, Gibbs measures and País: Ciudad : Fecha Inicio: Fecha Término: Nombre Publicación CHILE Antofagasta 07/09/2009 11/09/2009 Año: Vol.: N°: Páginas: Envía documento en papel : Archivo Asociado : Dynamical Systems at Valparaíso, a satellite conference of the III CLAM si p5.pdf htlp://evalcyt.conicyt.cl/inlbnnc acadcmico/index.php/investigador/f4_congresosldescargai2i92032 1/1 1060538/2008/7443/ N°: Autor (a)(es/as) : 6 Bartlomiej Skorulski Real-Analicity of the Hausdorffdimension of the Hausdorffdimension of the radial Julia set Título (Idioma original) : of sorne transcendental meromorphic functions Vil SIMPOSIO CHILENO DE MATEMÁTICA SOCIEDAD DE MATEMATICA DE Nombre del Congreso: CHILE País: Ciudad : Fecha Inicio : Fecha Término : Nombre Publicación Año: Vol.: N°: Páginas Envía documento en papel : Archivo Asociado: CHILE Punta de Traica 07/11/2007 10/11/2007 si p6.pdf http://evalcyt.conicyt.cl/informe academico/index.php/investigador/f4 congresos/descarga/21920321/11 06053812008/7444/ TESIS/MEMORIAS Resultados de analisis usados en dinamica comieja Título de Tesis : Nombre y Apellidos del(de la) Alumno(a) : Francisco Bravo Nombre y Apellidos del(de la) Tutor(a) : Rivera, J,; Skorulski B. Título Grado: Institución: Pregrado UCN País: Ciudad : Estado de Tesis : Fecha Inicio : Fecha Término : Envía documento en papel: Archivo Asociado CHILE Antofagasta Terminada 01/03/2006 29/12/2006 si 2 N°: El teorema de Perron-Frobenius y la generalizacion de Ruche Título de Tesis : Nombre y Apellidos del(de la) Alumno(a) : Oscar Santamaria Nombre y Apellidos del(de la) Tutor(a): Rivera, J,; Skorulski B. Título Grado : Institución: Magister UCN País: Ciudad : Estado de Tesis : Fecha Inicio : Fecha Término: Envía documento en papel : Archivo Asociado CHILE Antofagasta Terminada 01/0312007 29/06/2007 si 3 Análisis Multifractal de Medidas Autosimilares Título de Tesis : Adriana Tapia la) Alumno(a) : Nombre y Apellidos del(de Nombre y Apellidos del(de la) Tutor(a) : Bartlomiej Skorulski Título Grado : Institución: Magister UCN País: Ciudad : Estado de Tesis : Fecha Inicio : Fecha Término Envía documento en papel : Archivo Asociado CHILE Antofagasta En Ejecución 01/03/2008 N°: Título de Tesis : 4 Teoría de la Dimensión, Formalismo Termodinámico y Formula de Bowen si Nombre y Apellidos del(de la) Alumno(a) : Mery Choque Valdez Nombre y Apellidos del(de la) Tutor(a): Bartlomiej Skorulski Titulo Grado: Institución: Magister UCN País: Ciudad: Estado de Tesis : Fecha Inicio : Fecha Término : Envía documento en papel : Archivo Asociado CHILE Antofagasta Terminada 03/11/2008 03/07/2009 si 5 N°: Teoria de Nevanlinna Título de Tesis : Nombre y Apellidos del(de la) Alumno(a) : Sebastian Sarmiento Nombre y Apellidos del(de la) Tutor(a) : Bartlomiej Skorulski Título Grado : Institución: Magister UCN País: CHILE Antofagasta En Ejecución 01/12/2008 Ciudad : Estado de Tesis: Fecha Inicio : Fecha Término Envía documento en papel: Archivo Asociado si 6 N°: DIFFEOMORFISMOS PARCIALMENTE HIPERBOLICOS Título de Tesis : Nombre y Apellidos del(de la) Alumno(a) : Fabian Contreras Barraza Nombre y Apellidos del(de la) Tutor(a): Carlos Vasquez Título Grado : Institución : Magister UCN País: CHILE Antofagasta Terminada 03/1112006 01108/2008 si Ciudad : Estado de Tesis: Fecha Inicio : Fecha Término : Envía documento en papel : Archivo Asociado 7 TEOREMA DE DE RHAM Título de Tesis : Nombre y Apellidos del(de la) Alumno(a) : Daniela Ceron Urzua Nombre y Apellidos del(de la) Tutor(a): Richard Urzua Título Grado: Magister Institución : UCN País: Ciudad : Estado de Tesis: Fecha Inicio : Fecha Término Envía documento en papel: Archivo Asociado: CHILE Antofagasta En Ejecución 03/11/2006 si 8 La Ecuación de Tricomi, un Cálculo directo Título de Tesis : Nombre y Apellidos del(de la) Alumno(a) : Sebastian Sarmiento Nombre y Apellidos del(de la) Tutor(a) : Bartlomiej Skorulski Título Grado: Institución: Pregrado UCN País: CHILE Antofagasta Terminada 02/03/2007 03/03/2008 Ciudad : Estado de Tesis: Fecha Inicio : Fecha Término : Envía documento en papel : Archivo Asociado si 9 Rectificación de ecuaciones diferenciales: Diferencibilidad respecto de las condiciones iniciales. Nombre y Apellidos del(de la) Alumno(a) : Juan Roberto Carmona Herrera Título de Tesis : Nombre y Apellidos del(de la) Tutor(a) : Bernardo San Martin Título Grado : Institución: Pregrado UCN País: CHILE Antofagasta En Ejecución 03/08/2009 Ciudad : Estado de Tesis : Fecha Inicio : Fecha Término: Envía documento en papel : Archivo Asociado si ANEXOS A continuación se detallan los anexos fisicos/papel que no se incluyen en el informe en formato PDF. 1. Confirmations of submissions of articles 2. Information about students