Abstract Book
Transcription
Abstract Book
PROGRAM AND ABSTRACT BOOK June 6-7, 2002 Amphithéâtre P. Lehmann Orsay – FRANCE Foreword It is a great pleasure for us to introduce this users' meeting. We first want to thank the members of the users' committee for their work in preparing such an exciting program, and C. Jucha, C. Martelle, M. Le Monze and D. Michalowicz for their help in the organisation. We are happy that so many of our users will attend the meeting and present their work here. Last year has been marked by several important events, some of them happy, some other sad. You probably know that the death of Pierre Marin occurred abruptly last April, and that his disappearing was a shock for the laboratory. Pierre was tightly associated with the life of LURE, and he was one of the most active in the fight for SOLEIL. This last year, has also seen an acceleration of the participation of the LURE's staff to SOLEIL (around 100 persons working partially or full time), mainly for the machine and infrastructures, but also in the beam lines projects. LURE scientists are being actively involved in almost all beam line projects for SOLEIL. Concerning the functioning of the machines a small reduction of the available beam-time has been judged necessary in order to facilitate the participation of LURE's staff to SOLEIL. This reduction has been limited for the users, by nearly suppressing almost all machine dedicated shifts. As decided by LURE's council, the shutdown of DCI and SuperACO has been fixed at the end of December, 2003. An important point which will be discussed in the "open discussion" will be the ways of accessing to other facilities during the 2004-2006 period. Finally, several new experimental developments have been made accessible to users. Most of them are already operating at LURE. Many will be temporarily transfered in other facilities during the period 2004-2006 and will help maintaining the scientific activity of our community in Synchrotron Radiation. Abderrahmane Tadjeddine, Elisabeth Dartyge, Jean Daillant Hommage de la Direction du LURE à Pierre MARIN lors de l’ouverture du Colloque Utilisateurs 2002 Tribute of LURE and its USERS to the outstanding contribution of Pierre MARIN 1927-15th April 2002 1971: Preliminary contacts with potential users of the Synchrotron Radiation. 1973: Construction of the A8. Beam Line. 1975: Starting up of DCI. Equipped with the D1 Beam Line, soon followed by the D2 BL. 1976-1988: ACO as Synchrotron radiation facilities. 1979: Participation of members of the Ring Service of LURE to preliminary studies of ESRF leading to the so-called “Super ACO mesh”. 1980: Proposal for a low emittence VUV ring Super ACO. 1982-1986: Construction of S.ACO. 1987: Installation and starting-up of the first beam lines (BM and insertions). 1988: Shut-down of the 'ACO ring. 1987-1992: Participation to the Machine Advisory Council of the ESRF. 1992-1994: Collaboration to the conception and the design of the vacuum chamber of ESRF. 1992-2000: Active multifaceted defence of SOLEIL. Strong Commitment in the creation of Science ACO for the spreading of the scientific culture and education. Active support of the SESAME project. New developments in synchrotron instrumentation During the two last years important experimental developments have been made, with a special financial support from the CNRS for one part (option1) or in the frame of specific actions of the laboratory for the other part. 1) Option I The CNRS has allocated to LURE a budget for the "Option I" program, in order to upgrade a certain number of installations and make them transferable to SOLEIL. a) Some projects are "heavy projects" and will be directly implanted in a 3th generation source: XPEEM at ELETTRA. (responsible R. Belkhou, M. De Santis Y. Vogel). This project is a collaboration with the Louis Néel Laboratory and the Laboratory of Crystallography of Grenoble and will perform spectro-microscopic studies of surfaces as well as imaging of magnetic domains. Microfocus at SLS (A.-M. Flank). Micro XAS in the soft X-ray range will amplify the performances of this technique which is a specificity of LURE. A discussion about the access to these lines should be hold in the open session. An other project concerns the developing of a new kind of two-dimensional camera for protein crystallography, with unequaled performances. This camera will be tested at LURE and then at the ESRF (R. Fourme). The SFG setup of CLIO will be completely renewed and transferred in a new experimental room. The old YAG laser will be replaced by a cw YLF laser and several OPObased table lasers synchronized with the CLIO Free Electron Laser optimized in the high energy spectral range (Near IR and visible) will allow LURE to provide a unique laser facility up to 90µm. The other projects are various operations on beam lines of LURE, they will be operative at the end of the year and opened to the users for the next program committee: In the domain of low energies (5-40 eV) the atoms and molecules community will have several ameliorations of the available experiments: realization of a reflectron spectrometer, acquisition of new sources of radicals (SAPHIRS and CERISES experiments, the project leaders are M. Elhanine and Ch. Alcaraz on the lines SU5 and SA63), and also the developing of a spectrometer for the VUV dichroism by L. Nahon on SU5. Two inelastic scattering experiments in the soft X-ray range are developed: one is for magnetic resonant scattering of polarized X-rays (M. Sacchi, on SU7 and SB7), the other one analyses in energy the inelastically scattered photons near an absorption edge (C. Hague); these two experiments are designed to study surfaces in ultra high vacuum, and are mobile so they are installed in Lure and also move to other synchrotron sources. The experiment "high resolution in photoemission" is equipped with a SCIENTA detector of improved resolution (A. Taleb, SU3) The MBE coupled with SU22 or SU23 and who was principally dedicated to surface magnetism experiments, has been implemented with a oxygen plasma source, allowing to make spectroscopy measurements on oxides (F. Fortuna). In the hard X-ray range, the surface scattering line has been upgraded (Y. Garreau, DW12), and on the EXAFS beam-lines the priority has been to develop the possibility of environment of the samples: cryostats allowing any kind of detection, DSC…( A. Traverse, D42, S. Belin and V. Briois, D44) Concerning the high pressure experiments which are well developed in LURE for scattering as well as for absorption measurements, new cells allowing to extend the domain of energy to the low limits of 5 keV have been realized and successfully tested. This concerns the D11 line (F. Baudelet and Ch. Giorgetti), and J.-P. Itié, and is a collaboration between LURE and PMC at Jussieu. 2 Specific operations A cryostat allowing to perform magnetic dichroism in the soft X-rays at 100 mK and under 6 T has been constructed by a collaboration between LURE, the LMCP in Jussieu and the IPCMS in Strasbourg (P. Sainctavit, J.-P. Kappler). This cryostat will be part time in LURE (on SU22 and SU23), part time in ELETTRA and at the ESRF. The DW31 beam line is being equipped with diffraction set-up designed to support a CCD camera detector. This 2D detection allows not only recording a limited number of Bragg peaks, but also the exploration of the complete reciprocal space. This equipment-developed by E. Elkaïm- will be available for the users during 2002 and installed on DW31. Scientific Program June, Thursday 6 Chairperson 9:15 – 10:00 (V V. Etgens) LURE Director's Report 10:00 – 10:45 Invited Lecture I "Relating structure to mechanism in helicases" Dale Wigley, London Research Institute (London) 10:45 - 11:15 Coffee break Chairperson 11:15 – 12:35 (J. Daillant) Selected talks (20 min.) Biology "High pressure macromolecular crystallography" R. Fourme "Structure of the matrix protein of Vesicular Stomatitis Virus" M. Gaudier Selected talks (20 min.) Diffraction – Diffusion "High temperature x-ray diffraction analyses of oxide layers formed on zirconium alloys" J-L. Béchade "High-pressure behavior of manganites investigated by x-ray diffraction and optical spectroscopy" A. Congeduti 12:35 – 14:00 Lunch Chairperson 14:00 – 14:45 (P. Lefèvre) Invited Lecture II "Grazing incidence scattering techniques to study nano-structured thin films" Till Metzger, ESRF (Grenoble) 14:45 – 15:45 Selected talks (20 min.) Surfaces "Quantitative GIXD measurements of microscopic forces in chemisorbed self organised systems" B. Croset "Adsorption modes of organic molecules on Silicon (001) 2x1 surfaces: photoelectron analyses (XPS, NEXAFS) using the SCIENTA 200 at the SB7 beamline, complemented by STM" S. Kubsky "Reaction kinetics and magnetic properties of the Mn/Fe(100) interface" P. Torelli 15:45 – 16:15 Coffee Break Chairperson 16:15 – 17:55 (J.-P. Itié) Selected talks (20 min.) Physiques du Solides "XAFS study of short range order of thin films with picometer accuracy" J. Purans " Magnetic behaviour and magnetisation dynamics of exposed Fe nanoclusters " P. Prieto Selected talks (20 min.) Condensed Matter Chemistry "Reversible lithium Intercalation in α-Fe2O3 nanoparticules" D. Bonnin "Nanoscale bimetallic catalysts: is really bimetallic?" L. Guczi "Study of photo-induced electron transfer by x-ray absorption and diffraction in Co-Fe Prussian Blue analogues" A. Bleuzen 18:30 – 22:00 Posters and Discussions June, Friday 7 Chairperson 9:00 – 9:45 (D D. Dowek) Invited Lecture III "Advances in Synchrotron Radiation based Atomic and Molecular Physics" Uwe Becker, Fritz-Haber-Institut der MPG (Berlin) 9:50 – 10:30 Selected talks (20 min.) Atoms and Molecules "Photoionization of multiply charged ions" J.-P Champeaux "HCl ionization at the surface of ice" F. Bournel 10:30 – 11:00 Coffee break Chairperson (D. Chandesris) 11h00 – 11:30 Invited Lecture IV “An Overview of the Brazilian Synchrotron Light Laboratory” Jose Brum, Associacao Brasileira de Tecnologia de Luz (Campinas) 11:30 –13:00 SOLEIL ♦ Progress report ♦ First selected beam lines 13:00 – 14:30 Lunch Chairperson 14:30 – 17:00 (V. Etgens) Selected talks (20 min.) Atoms and Molecules “Absolute cross section measurement of the reactivity of stable doubly charged molecular ions CO2++, implications for the martian ionosphere” R. Thissen Users Committee report and Open discussion ♦ 2004-2006 … : Synchrotron experiment during the transition period Invited lectures Relating structure to mechanism in helicases Dale B. Wigley Cancer Research UK, Clare Hall Laborarories, South Mimms, Porters Bar, Herts EN6 3LD, UX. In order Io try to understand more about the mechanism of helicases, we have determined crystal structures of two different helicases complexed with DNA substrates. The mechanism that we proposed for the Superfamily 1 (SFl) helicase, PcrA, involved ATP-dependent translocation along single-stranded DNA. this suggestion was demonstrated directly by two different biochemical methods in addition to the crystallographic evidence. However, we wished to test the general applicability of this mechanism to helicases from other superfamilies. To this end, we have now determined the structure of the Supeffarnily 2 (SF2) helicase, REGG, in a complex with tés DNA substrate. a stalled rcplicetitm fork. The structure reveala how RecO recognises ehis class ot DNA junctions. Furthermom ft pwsein bas been ampped in the initial stages of unwindins DNA alkrwtng us to propose a mcchanism for this process. This mechwdsm suggeste Chat RecG, and potentially other SF2 hehcases, are capark of ATP-depeMent translocation along double-srronded DNA. Grazing incidence scattering techniques to study nano-structured thin films Till H. Metzger ESRF (Grenoble) We have developed x-ray scattering techniques at grazing incidence to analyse shape, strain and ordering of nano-structured thin films on substrates, i.e. semiconductor quantum dots. In grazing incidence small angle scattering (GISAXS) the morphology and the ordering of the dots is characterised. Using grazing incidence diffraction (GID) the crystalline properties of the dots are quantified, such as strain, shape, composition, and ordering. The beamline ID1 at the ESRF is shown to be especially well suited for this kind of techniques. Results on different semiconductor systems will be presented, demonstrating the versatility of the methods, which can be applied to free-standing and buried dots. Applying GISAXS to Ge islands grown on boron terminated Si(111) we find the shape and size-distribution of nearly perfect triangular pyramids, incoherently connected to the substrate [1]. While for the system InAs dots on GaAs (001) we find dome-like coherent InAs dots. An “iso-strain-scattering” technique has been developed in the GID geometry to determine the lattice parameter distribution and the chemical composition in dots. For free-standing InAs dots the lattice parameter ranges from GaAs at the foot to InAs at the top of the dots. Clear evidence for Ga inter-diffusion into the dots is found [2,3,4]. For QD embedded in multi-layers strong spatial correlations are expected. For Ge dots embedded in SiGe (001) superlattices, self-assembling processes yield vertical and lateral dot ordering. This ordering is quantified by applying a random walk argument to analyse grazing incidence diffraction measurements. The Ge dots on the sample surface form a disordered lateral square lattice [5]. The vertical stack ordering of the Ge dots increases with decreasing Si spacer layer thickness [6]. In the system GaN/AlN QD multiplayer the vertical stacking of the GaN QD was quantified from the analysis of Bragg sheets in the GISAXS region [7]. References: [1] M. Rauscher, R. Paniago, H. Metzger, Z. Kovats, J. Domke, J. Peisl, H.-D. Pfannes, J.Schulze and I. Eisele, J. Appl. Phys. 86, 6763 (1999) [2] I. Kegel, T. H. Metzger, A. Lorke, J. Peisl, J. Stangl, G. Bauer, J. M. Garcia, P. M. Petroff, Phys. Rev. Lett. 85,1694 (2000) [3] I.Kegel, T. H. Metzger, A. Lorke, J. Peisl, J. Stangl, G. Bauer,K. Nordlund, W.V. Schoenfeld and P. Petroff Phys. Rev. B. 63, 035318 (2001) [4] A.Malachias, R. Magalhães-Paniago, B.R.A. Neves,W. N. Rodrigues, M.V.B. Moreira, H.-D. Pfannes, S. Kycia, T. H. Metzger Appl. Phys. Lett. 79, 1287 (2001) [5] I. Kegel, T. H. Metzger, J. Peisl, P. Schittenhelm and G. Abstreiter; Appl. Phys. Lett. 74, 2978 (1999) [6] I. Kegel, T.H. Metzger, J. Peisl, J. Stangl, G. Bauer, D. Smilgies; Phys. Rev.B, 60, 2516 (1999) [7] V. Chamard, T. H. Metzger, E. Bellet-Amalric, B. Daudin, C. Adelmann, H. Mariette, G. Mula, appl. Phys. Lett. 79, (13), 1971 (2001) Advances in Synchrotron Radiation based Atomic and Molecular Physics Uwe Becker Fritz-Haber-Institut der MPG - Abteilung Oberflächenphysik - Faradayweg 4-6 DE 14195 Berlin - Germany An Overview of the Brazilian Synchrotron Light Laboratory J.-A. Brum Director-General - Associacao Brasileira de Tecnologia de Luz Sincrotron - C.P. 6192 13084-971 Campinas (SP), Brazil Oral Presentations High pressure macromolecular crystallography : from high resolution structure of a protein to the first experiments on crystallised macromolecular assembly, cowpea mosaic virus R. Fourme # , I. Ascone +, R. Kahn* , E. Girard* , M. Mezouar ++, T. Prangé +$ , J. E. Johnson§ # SYNCHROTRON SOLEIL, bât. 209H, Université Paris-Sud, 91898 Orsay cedex. +LURE, bât. 209D, Université Paris-Sud, 91898 Orsay cedex; *IBS, 41 rue Jules Horowitz, 38027 Grenoble cedex; ++ESRF, BP220, 38027 Grenoble cedex; $ UMR 8015 CNRS, Faculté de Pharmacie, 4 Av. de l'Observatoire 75270 Paris cedex 06 ; § Department of Molecular Biology, the Scripps Research Institute, 10550N, Torrey Pines Road, La Jolla, CA 92037 USA On beamline ID30 at the ESRF, the combination of a diamond anvil cell, ultra-short wavelength X-rays from undulators (0.3305 Å) and a large imaging plate has allowed the extension of the field of high-pressure macromolecular crystallography both for the accessible pressure range, increased by one order of magnitude with respect to previous studies with beryllium cells, and data quality. Results obtained on tetragonal hen egg-white lysozyme crystals at 7.0 kbar have demonstrated that high pressure data can meet usual standards (resolution 1.6 Å, Rmerge 0.057, multiplicity 7.2, completeness 0.93). These data were used for structure refinement. A detailed comparison between the structures at normal and high pressure respectively is in progress. The cowpea mosaic virus (CPMV) particle is the first example of crystallized macromolecular assembly studied at high pressure. Single oscillation images of a cubic crystal of CPMV were recorded at several pressures up to 4.4 kbar. The initial crystal (space group P23) at 1 bar, 1.1 and 2.0 kbar was disordered and diffracted to low resolution. At 3.3 kbar, a highly ordered I23 crystal was obtained, which diffracts at 2.6 Å resolution with high signal-to- noise ratio. Pressure induces a first order transition; long range three dimensional order is most likely reached through small rotations and translations of virus particles. At 4.4 kbar, the crystal no longer diffracted. The ordering effect of high pressure observed for CPMV is quite interesting : High pressure might indeed become a standard tool to improve order in macromolecular crystals, either by favouring a more ordered packing or by restricting amplitudes of atomic motions in regions which are disordered at atmospheric pressure. In a broader perspective, the demonstration that accurate structural information on macromolecular structures can be obtained at high pressure opens avenues such as exploration of sub-states in protein crystals, study of interactions between macromolecules and between subunits, and detection of the onset of pressure- induced denaturation. On the basis of these advances, high pressure macromolecular crystallography has been included in the scientific case of the avant-projet sommaire (APS) for a high pressure beamline at SOLEIL. References R. Fourme, R. Kahn, M. Mezouar, E. Girard, C. Hoerentrup, T. Prangé & I. Ascone (2001). High pressure protein crystallography (HPPX): Instrumentation, methodology and results on lysozyme crystals. J. Synchrotron Rad. 8, 1149-1156. R. Fourme, I. Ascone, R. Kahn, M. Mezouar, P. Bouvier, E. Girard, J. E. Johnson and T. Lin. Opening high-pressure crystallography beyond 2 kbar on protein and virus crystals (submitted to Structure). Structure of the Matrix protein of Vesicular Stomatitis Virus Gaudier M. 1 , Gaudin Y. 2 , Knossow M. 1 (1) Laboratoire d'Enzymologie et Biochimie Structurales, Gif sur Yvette, France. (2) Laboratoire de Génétique des virus, Gif sur Yvette, France. The Vesicular Stomatitis Virus (VSV) matrix protein (M) interacts with cellular membranes, self-associates and plays a major role in virus assembly and budding. We present the crystallographic structure of a soluble thermolysin resistant core of VSV M determined at 1.96Å resolution. The fold is a new fold shared by other vesiculovirus matrix proteins. The structure accounts for the loss of stability of M Ts mutants deficient in budding and reveals a flexible loop protruding from the globular core that is important for self-assembly (1). Membrane floatation experiments have shown that, together with the M lysine-rich N-terminal peptide that plays a major role in M membrane interactions, a second domain of the protein is involved in membrane binding. Indeed, the structure reveals a hydrophobic surface located close to the hydrophobic loop and surrounded by conserved basic residues that may constitute this domain. Lastly, comparison of the structures of the mononegaviridae matrix proteins suggests that the flexible link between the M major membrane binding domain and the rest of the structure is a common feature shared by these proteins. (1) Gaudier et all., Cleavage of vesicular stomatitis virus matrix protein prevents self assotiation and leads to crystallisation. Virology 2001, 288, 308-314. High temperature x-ray diffraction analyses of oxide layers formed on zirconium alloys J-L. Béchade1 , R. Brenner2 , P. Goudeau3 , M. Gailhanou4 1 CEA/DEN, SRMA, CEA/Saclay 91191 Gif Sur Yvette Cedex, France LPMTM-CNRS, Institut Galilée, av. J.B. Clément, 93430 Villetaneuse, France 3 LMP-UMR 6630 CNRS, Université de Poitiers, B.P. 179, 86960 Futuroscope, France 4 LURE, Université Paris-Sud, 91405 Orsay Cedex, France 2 In zirconia layers formed by oxidation of zirconium alloys that are used in Pressurised Water Reactor (PWR), the main monoclinic phase (stable at room temperature and atmospheric pressure) coexists with the tetragonal phase, which may be stabilized by high compressive stresses. The objective of this study is to link directly and if it is possible at a local scale, the stress level in the oxide film to the volume fraction of tetragonal phase for Zr alloys of different chemical compositions showing different oxidation kinetics. Using x-ray laboratory diffraction techniques, this study is very difficult because of the strong texture of the three phases associated to gradients of composition and stresses in the layer. Moreover, up to now the residual stresses in the oxide layer have been determined after cooling at Room Temperature (RT) and might be not representatives to the stress levels developed during the growth of the oxide layer at 400°C due to the textures, elastic constants and thermal expansion coefficients of the different phases [3]. That is why complementary analyses have been engaged in our laboratory using a more intense X-ray source, with a parallel beam and a wide range of wave lengths to allow stress levels in the oxide layer to be determined at high 2θ angles to improve the precision of the measurements [1, 2]. We present here recent temperature measurements performed in situ using the H10 beam line at LURE. The results show that the stress levels in the oxide (monoclinic phase) are consistent with the stress level previously determined at RT. These experimental results are in agreeme nt with calculations of residual stresses due to the thermal anisotropic behaviour of the monoclinic zirconia performed using a self- consistent thermoelastic. Finally, we show the strong influence of the chemical composition of the Zr alloy and the effect of the substrate texture on the oxidation kinetic, especially on the appearance of the different phases. References : [1] « X-ray diffraction analysis of ZrO2 oxide layers formed on Zircaloy-4 plates corroded at 400°C in steam », J.L. Béchade, P. Goudeau, M. Gailhanou, P. Yvon, ICRS5, Juin 1997, Linköping (Suède). [2] «Studies of zirconium alloy oxide layers using synchrotron radiation», J.L. Béchade, R. Dralet, P. Goudeau, P. Yvon, ECRS5, Septembre 1999, Delft-Noordwijkerhout, (Pays-Bas). [3] Thesis N. Pétigny-Putigny, LRRS Université de Dijon, 1998. High-pressure behavior of manganites investigated by x-ray diffraction and optical spectroscopy A. Congeduti1 , J.P. Itié 2 , P. Munsch2 , P. Postorino3 , A. Sacchetti3 1 2 L.U.R.E. Centre Universitaire Paris-Sud, Orsay - France, and Unita’ INFM Roma1, Italy. L.U.R.E. Centre Universitaire Paris-Sud, Orsay - France, and Laboratoire de Physique des Milieux Condenses, Universite’ Pierre et Marie Curie, Paris – France. 3 Dipartimento di Fisica and Unita' INFM, Universita' di Roma ''La Sapienza'', Italy A lot of effort has been devoted to investigate physical properties of the Ruddlesden-Popper series of manganites Ax A'n+1-x Mnn O3n+1 (with A a trivalent rare hearth and A' a divalent metal) [1] which have been often regarded as reference systems for both high temperature superconductivity and colossal magneto-resistance (CMR) phenomena. From a structural point of view the singlesheet (n=1) layered manganites are indeed isostructural to the Lax Sr2-x CuO 4 cuprates superconductors, and their crystal structure is characterized by a planar arrangement of MnO 6 octahedra, which are the main building blocks of pseudocubic CMR manganites (A1x A'x MnO 3 )[2]. In n=1 layered manganites the octahedra are arranged in a 2-D structure with MnO6 planes intercalated by planes of A ions while in pseudocubic manganites the A ions are trapped inside a 3-D pseudocubic lattice of octahedra. It is interesting to note that single-layer compounds show an insulating behavior regardless of doping concentration and temperature while, in the doping concentration range where CMR occurs, pseudocubic manganites exhibit a metallic phase associated to a ferromagnetic order below the I-M transition temperature TIM. The occurrence of the metallic phase and of the CMR seems to be related to the crystalline structure, which allows for a complete (pseudocubic) or at least a partial (bilayered) caging of the ion at the A-site. Quite recently we have investigated the pressure-behavior of pseudocubic manganites by infrared and Raman spectroscopy [3,4,5,6]. In the present work we present a x-ray diffraction and Raman study of La 0.5Sr1.5 MnO4 (LSMO) and Sr2 MnO4 (SMO) layered manganites, performed over a wide pressure range (0-20 GPa) using a diamond anvil cell. The pressure dependence of both lattice parameters and phonon peaks, as well as the mode-Gruneisen parameters, has been determined. The comparative analysis of the x-ray and Raman results allowed to give a reliable assignment of the phonon modes observed in the Raman spectra and, in particular, to id entify the peak at the highest frequency as a Jahn-Teller phonon [6]. The comparison of the pressure dependence of doped and pure samples highlighted the relevance of the J-T octahedral distortion on the lattice structural and dynamical properties [6]. This analysis, supported by the strong pressure dependence exhibited by the mode-Gruneisen parameter of the J- T phonon in the doped sample, reveals a progressive pressure- induced reduction of the J-T distortion. Finally, taking into account of the results obtained by infrared and Raman spectroscopy on pseudocubic manganites [3], the role of lattice dimensionality on the pressure- induced charge delocalisation process has been outlined [6]. [1] Y. Moritomo A. Asamitsu, H. Kuwahara, Y. Tokura, Nature 380, 141 (1996). [2] A. J. Millis, Nature 392, 147 (1998). [3] A. Congeduti, P. Postorino, M. Nardone, E. Caramagno, A. Kumar, D.D. Sarma, Phys. Rev. Lett. 86, 1251 (2001). [4] A. Congeduti, P. Postorino, P. Dore, A. Nucara, S. Lupi, S. Mercone, P. Calvani, A. Kumar, D.D. Sarma, Phys. Rev. B 63, 184410 (2001). [5] P. Postorino, A. Congeduti, P. Dore, F. A. Gorelli, A. Nucara, A. Sacchetti, L. Ulivi, High Press. Res. 00, 00 (2002). [6] P. Postorino, A. Congeduti, E. Degiorgi, J.P. Itié, P. Munsch, Phys. Rev. B 65, 2241XX (2002). Quantitative GIXD measurements of microscopic forces in chemisorbed self-organised systems B. Croseta, Y. Garreaub, Y. Girarda, R. Pinchauxb, G. Prévota, M. Sauvage-Simkinb, M. Sottoa (a) Groupe de Physique des Solides, UMR-CNRS 75-88, Universités Paris 6 et 7, 2, place Jussieu, 75251 Paris Cedex 05, France. (b) LURE, CNRS-MRES-CEA, Centre Universitaire Paris-Sud, 91898 Orsay Cedex, France. Since the theoretical predictions of Marchenko1, surface elasticity is generally admitted to be the driving force for self-organisation of bidimensionnal systems. Nevertheless, a measurement of the surface stress discontinuities is still a challenge in spite of the importance of this parameter. Our study by grazing incidence X-ray diffraction of the N/Cu(001) system allows us to evidence periodic bulk elastic relaxations originating from the stress discontinuities. Therefore, a quantitative measurement of this stress discontinuity can be obtained. Previous works have shown that activated nitrogen adsorbed on Cu(001) leading to selforganisation2,3: the careful and extensive STM study of Elmer et al. shows that square shape domains of c(2x2) structure are organised in rows, the intra-row period being constant and equal to 5.4 nm while the inter-row period decreases with coverage to reach 5.4 nm around 0.8 coverage which corresponds to a square array of domains. We performed a grazing incidence x-ray diffraction study of the N/Cu(001) system on the 6-axes diffractometre DW12 at LURE for several coverages between 0.4 and 0.8 monolayer5. Around each bulk truncation rod (CTR), we observed diffraction satellites associated with the inter-row period. An important point must be noted: the intensity of the satellites sharply increases for values of qper approaching the Bragg condition of the bulk Cu. Such a feature cannot be explained if the diffracted intensity is solely due to the periodic chemical contrast on the surface. On the contrary, it indicates that the diffracting periodic object has as main spatial period in the direction perpendicular to the surface, the interplanar distance of the bulk Cu crystal. Elastic relaxations of the substrate, which should penetrate deeply in the crystal, seem therefore excellent candidates to explain the variation of the satellite structure factors. For 0.8 coverage, the sharpness of the satellites allows to treat them as ordinary rows and we were able to measure 262 structure factors. By using quenched molecular dynamics, we compute the bulk elastic relaxations due to the surface stress discontinuity, ds, present on each domain boundary. The quantitative value of this stress discontinuity is the main parameter used for the fit of the diffraction data. We obtain a reliability factor of 0.06 for δσ = 2.4 10-9 N.at-1 = 7 N.m-1. This measure of the stress discontinuity at a microscopic scale agrees perfectly with channelling RBS experiments6 which indicate strong atomic disorder in the near surface region corresponding, in the elastic model, to δσ = 2.2 10-9 N.at-1. This quantitative analysis of the structure factors leads to the first direct evidence that surface stress is the driving force for self-organisation of a chemisorbed system. It convince us that grazing incidence X-ray diffraction will be a very useful tool in future studies of the physics of self-organised systems. References. 1. V. I. Marchenko, Sov. Phys. JETP, 54 605 (1982). 2. F.M. Leibsle, S.S. Dhesi, S.D. Barrett and A.W. Robinson, Surf. Sci., 317 309 (1994). 3. M. Sotto and B. Croset, Surf. Sci., 461 78 (2000). 4. H. Ellmer, V Repain, S. Rousset, B. Croset, M. Sotto, P. Zeppenfeld, Surf. Sci., 476 95 (2001). 5. B. Croset, Y. Girard, G. Prévot, M. Sotto, Y. Garreau, R. Pinchaux and M. Sauvage-Simkin, Phys. Rev. Lett., 88 056103.(2002) 6. C. Cohen, H. Ellmer, J.M. Guigner, A. L'Hoir, G. Prévot, D. Schmaus, M. Sotto, Surf. Sci., 490 336 (2001). Adsorption modes of organic molecules on Silicon (001) 2×1 surfaces: Photoelectron analyses (XPS, NEXAFS) using the SCIENTA 200 at the SB7 beamline, complemented by STM S. Kubsky1 , F. Bournel1 , G. Dufour1 , J.-J. Gallet1 , S. Rangan1 , F. Rochet1 , F. Sirotti2 M. Kneppe3 , U.K. Köhler3 , N. Capron1 , S. Carniato1 , G. Boureau1 1 2 Laboratoire de Chimie-Physique, Matière et Rayonnement, Université Pierre et Marie Curie, UMR 7614, 11 rue Pierre et Marie Curie, F-75 231 Paris Cedex 5, France Laboratoire pour l’Utilisation du Rayonnement Electromagnétique, Campus Paris-Sud, Bat. 209D, B.P. 34, F-91 898 Orsay Cedex, France 3 Institut für Experimentalphysik/Oberflächenphysik, Ruhr-Universität Bochum, D-44780 Bochum, Germany The understanding of the adsorption modes of organic molecules attached to the silicon surface via their functional groups such as the C=C and the C≡N group, are of crucial interest for various applications in semiconductor industry. Adsorption modes of a number of conjugated and non-conjugated « nitriles » molecules (Acetonitrile, Acrylonitrile, Benzonitrile and Allylcyanide) on the Si (001) 2×1 surface have been studied employing XPS and absorption (NEXAFS) spectroscopy. Valence-band (VB) and core- level (CL) photoemission spectra have been used to reveal the formation of new chemical bonds at the surface during exposure to the gas. In this respect the new experimental possibilities given by the SCIENTA 200 electron analyser were exploited. « Snapshots » of a given kinetic energy (KE) window- measured in the so-called fixed mode can be recorded each 5 s in the present configuration. This « fast » CL/VB photoemission experiments, performed as the surface is exposed to the gas, give interesting kinetical information on the molecular adsorption process. The fixed mode is also used to record « snapshots » of the Auger/VB region as a function of hν, more especially across an absorption edge : the 3D- maps (KE, hν, Intensity) permit to work out well-defined Auger yield NEXAFS curves of adsorbates (in the submonolayer range) on the Si surface. Analogously, resonant Auger/photoemission data of the adsorbate can be extracted. Using this new possibilities offered by the ABS6 experimental station, we have performed a comprehensive study of the adsorption of these « nitriles » on Si(001). The peculiarity of acrylonitrile is clearly evidenced. While the other nitriles bond preferentially via addition of the CN moiety to one Si- Si dimer, acrylonitrile – a planar molecule – bridges the trench between two dimers of two adjacent dimer rows. This leads to a flat lying geometry clearly evidenced by angular dependent NEXAFS spectroscopy. These views are substantiated by STM experiments performed in Bochum on the acrylonitrile and benzonitrile systems. In the STM images, the signature of acrylonitrile adsorbed at 300 K is clearly non-static. This has been evidenced by cooling the sample down to 80 K: the « movies » show that the molecule occupies alternately two symmetric positions (the residence time in a given position is of a few s at this temperature). These observations are supplemented by ab initio calculations performed at LCPMR. Reaction kinetics and magnetic properties of the Mn/Fe(100) interface Piero Torelli*, Fausto Sirotti* and Pietro Ballone** *Laboratoire pour l’Utilisation du Rayonnement Electromagnétique, Université Paris-SudB.P. 34, 91898 Orsay, France. **Universitá di Messina, salita sperone, 31 c/o facolta di scienze mm.ff.nn., Messina, Italy We have studied the formation of the Mn/Fe( 100) interface depositing Mn layers on a Fe(100) single crystal. The electronic structure and the magnetic properties of the films were studied using X-ray absorption and X-ray photoelectron spectroscopy with circularly polarized synchrotron radiation in dichroism experiments. The reaction kinetics of the deposited layers was followed in real time monitoring simultaneously the intensities and line shapes of the Fe 3p and Mn 3p photoelectron peaks. The annealing of the interface results in the formation of a Mn layer at the surface terminating the Fe(100) lattice stable over a temperature range of about 100 K. The interdiffusion process is also characterized from a binding energy shift of the Mn 3p photoelectron intensity. The Mn Layer obtained with the annealing is magnetic and ferromagnetically coupled with the Fe substrate. The orbital and spin magnetic moments of Mn atoms were determined from sum rules applied to the XMCD spectra. Both orbital and spin moments are higher in the annealed interface than in the original layer. Molecular dynamics and MonteCarlo simulations of the Mn/Fe(100) interface shows the stability of the 1 AL coverage and predicts an interdiffusion temperature in good agreement with the experimental results. XAFS study of short range order of thin films with picometer accuracy J. Purans,1 A. Kuzmin,1 Y. Mathey2 1 - Institute of Solid State Physics, University of Latvia, Riga, 2 - GPEC, Faculté des Sciences de Luminy, Université de la Méditerranée, Marseille XAFS spectroscopy using synchrotron radiation is extremely suitable technique to study local atomic and electronic structure of nanocrystalline and amorphous thin films [1,2]. Despite of XAFS technique overall success, the pico-meter barrier (10-2 Å) exists in an XAFS data analysis. Recently it has been demonstrated that high accuracy XAFS measurements and new XAFS data analysis software allowed to obtaine local structural parameters with picometer accuracy in solid state [1]. Here we summarise the results of our XAFS investigations on mono- and multi-component transition metal (5d, 4d and 3d) oxide thin films and chalcogenide compounds at the metals L and K absorption edges. The XAFS spectra at the Ni, Co, Mo, Nb, Se, Te… K-edges and at the Ta, W, Re L3 -edges have been recorded at LURE (Orsay) synchrotron radiation source. The dependence of thin films local structure on composition, probed with picometer accuracy, and new possibilities of XAFS data analysis will be presented. Finally, we present XAFS studies of the local atomic structure of low dimensional transition metal 1D and 2D compounds: niobium tellurides (NbTe 2 , Nb3 Te4 and NbTe 4 ) in comparison with ZrTe 2 . Using a multi-shell best fit analysis procedure, we have reconstructed the local environments of Nb and Te ions with picometer accuracy and compared them with the existing structural models. We found that at Nb K-edge the XAFS data of NbTe 4 are extremely sensitive to the metal clustering and to the subsequent departure from the average crystallographic positions. [1] Dalba G., Fornasini P., Grisenti R., Purans J., Phys. Rev.Lett. 82, L 4240 (1999). [2] Y. Mathey, J. Purans, and H. Sassoli, Alloys and Compounds 262-263, L 81 (1997). Magnetic Behaviour and Magnetisation Dynamics of Exposed Fe Nanoclusters C. Binns1, F. Sirotti2, S. H. Baker1, H. Cruguel3, P. Prieto4, S. H. Thornton1 1 Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH 2 LURE,CNRS, CEA, MESR, BP34, F-91485, France 3 ELETTRA Sincrotrone Trieste, Area di Ricerca, Padriciano 99, Trieste, Italy 4 Departamento Fisica Aplicada, C-XII, Universidad Autonama de Madrid, Spain Films made from pre-formed magnetic nanoclusters are an important scientific challenge and have enormous potential in the production of high-performance magnetic materials. Till recently little was known about the magnetic behaviour of exposed clusters adsorbed on a surface in UHV – especially the dynamical properties. We have studied the magnetic behaviour and magnetisation dynamics of size-selected (1 – 5nm) exposed Fe nanoclusters deposited in situ onto CoSi (vitrovac) substrates using a gas aggregation source. Magnetic alignment in the clusters is maintained during photoemission measurements by exchange coupling with the magnetic substrate. Magnetic Linear Dichroism in the Angular Distribution of photoelectrons (MLDAD) shows that the evolution of the spin moment as a function of coverage depends on the cluster size. We present evidence of a phase transition in particles of a specific size when they come into contact, in agreement with recent TEM results. Coating the clusters with Co in situ produces a significant increase in the Fe spin moment. The magnetisation reversal dynamics of the clusters was determined by time-resolved secondary electron spin polarisation measurements using the time structure of the synchrotron radiation from SuperACO. Experiments were carried out as a function of temperature, cluster size and coverage. Cluster interaction induces a significant change in the switching speed. The temperature and cluster-size dependence of the dynamics will be presented. Intercalation reversible du lithium dans des nanoparticules de α-FE2O3 Bonnin D.*, Larcher D.**, Juramy, C.*, Bodiguel H.*, Cortes R. +, Tarascon J.M.** • * Laboratoire de Physique Quantique FRE 2312 ESPCI 10 rue Vauquelin 75231 Paris Cedex05 • **Laboratoire de Réactivité et Chimie des Solides UMR 6007, UPJV, 33 rue Saint-Leu, Amiens, France • + LURE Bât 209D Centre Universitaire - B.P. 34 - 91898 Orsay Cedex De nouvelles approches ont été récemment initiées au LRCS, leur couplage pourrait ouvrir la voie vers toute une nouvelle gamme de matériaux d’électrodes ayant des propriétés électrochimiques originales et facilement contrôlables. Récemment, ce laboratoire a pu mettre en évidence qu’il est possible d’orienter l’intercalation vers un processus monophasique et réversible, et ce par le biais de l’utilisation de particules nanométriques de l’ordre de 20 nm. Ainsi, il était admis depuis le début des années 1980 que l’hématite α-Fe2 O3 subissait une transformation structurale importante rendant cet oxyde inapte à être le siège d’une réaction d’intercalation réversible. On mesure l’avancement de la réaction par le seul courant électronique circulant à l’extérieur de la batterie, c’est à dire la charge globale. Nous avons pu mesurer par Absorption des rayons X et spectrométrie Mössbauer les différentes espèces présentes au sein de la batterie. La charge est donc ainsi donnée à partir de la composition interne de la batterie (fer de degrés d’oxydation 0, 2+, 3+). Ces résultats sont bien sûr très importants puisqu’ils permettent de comprendre les réactions au sein de la batterie. 5 200 Å Fe2 O3 nanométrique 4.5 4 3.5 Voltage (Volts vs. Li+ /Li) 3 2.5 2 1.5 4.5 0 4 3.5 3 0.5 Fe2 O3 massif 1 2.5 2 1.5 1 0.5 0 0.5 x in LixFe2O3 1 Morphologie, taille et comportement électrochimique d’oxydes α-Fe2 O3 nanométrique et massif. Bien que la totalité de la capacité liée à ce couple Fe3+/Fe2+ ne soit pas encore atteinte, son optimisation permettrait d’atteindre une capacité réversible de l’ordre de 170 mAh/g à un voltage moyen se situant à 2,5 Volts vs. Li+/Li, et une tenue en cyclage considérablement améliorée. Les modules de Transformées de Fourier ci-contre montrent clairement le passage de Fe2 O3 (x=0, début de la décharge) jusqu’au fer métal (x=7, fin de la décharge). L’étude des seuils d’absorption permet de quantifier les concentrations des différentes espèces et ainsi de comprendre les réactions de réduction mises en jeu pour l’oxyde métallique et les réductions secondaires. Une comparaison est faite avec les résultats de la spectrométrie Mössbauer du fer qui permet de voir également les différents états des atomes de fer (degré d’oxydation, taille des agrégats). Nanoscale bimetallic catalysts: is it really bimetallic ? L. Guczi1 , Z. Schay1 , L. Borkó1 and D. Bazin2 , 1 Department of Surface Chemistry and Catalysis, Institute of Isotope and Surface Chemistry, CRC HAS, P. O. Box 77, H-1525 Budapest, Hungary 2 LURE, Université‚ Paris XI, Bât 209D, 91405, Orsay, France Decreasing the size of metallic particles to the range between 1-4 nm, the metallic character does not exist anymore and the valence electrons are localized in discrete energy states, but their properties is still far from that charateristic of molecular orbital. This transient state of the electron structure is reflected in peculiar physical and chemical behaviors, consequently, in the metal catalysis different activity is anticipated when nano-scale particles participate in the reaction. The character of the bimetallic catalysts is even more peculiar, because there are several additional effects governing the character of the catalytic sites, such high metal dispersion, the omission of the various intermetallic phases, strong metal support interaction and the increased importance of the interface at the metal particles The question arises what the role of the high dispersion is in the formation of bimetallic particles. Application of several In situ physical and chemical surface techniques (EXAFS, XPS, TPR, etc) is capable to elucidate whether, or not the macroscopic properties reflected in e.g. reducibility, location of bimetallic particles on the support, etc. describe the micro-structure of bimetallic particles. Ru-Co/NaY and Pt-Co/NaY bimetallic samples in various states (reduced, oxidized states) have been studied. Theoretical approach verifies the usefulness of the in situ EXAFS spectra providing structural information on the metal clusters in the bimetallic states. It has been established that in some cases monometallic clusters maintains their identity, while in other case the existence of bimetallic small particles can be established. The structure revealed by EXAFS is able to explain the anomalies in the catalytic activity shown in the CO hydrogenation. REFERENCES 1 D. Bazin, P. Parent, C. Laffon, O. Ducreux, J. Lynch, I. Kovacs and L. Guczi, J. Synchrotron Radiat. New. 6, 430 (1999) 2 L. Guczi and D. Bazin, Appl. Catal. A., 188,163 (1999) 3 D. Bazin, P. Parent, C. Laffon, O. Ducreux, J. Lynch, I. Kovacs and L. Guczi, J. Catal, 189, 456 (2000) 4 L. Guczi, D. Bazin, I. Kovács, L. Borkó, and I. Kiricsi, Natural Gas Conversion VI. (Eds.: E. Iglesia, J. J. Spivey and T. H. Fleisch) Stud. Surf. Sci. Catal.,136, 111 (2001) 5 L. Guczi, D. Bazin, I. Kovács, L. Borkó, Z. Schay, J. Lynch, P. Parent, C. Lafon, G. Stefler, Zs. Koppány and I. Sajó, Topics in Catal, 20, (2002), in press Study of Photo-Induced Electron Transfer by X-ray Absorption and Diffraction in Co-Fe Prussian Blue Analogues A. Bleuzen1 , V. Escax1 , M. Verdaguer1 C. Cartier , F. Villain2 , J.-P. Itié2 , P. Munsch2 , F. Baudelet2 2 1 Laboratoire de Chimie Inorganique et Matériaux Moléculaires, Université Pierre et Marie Curie, Bat F E4, case 42, 4 place Jussieu, 75252 Paris cedex 05 (France). 2 Laboratoire pour l’Utilisation du Rayonnement Electromagnétique, CNRS-CEA-MENRS, Bat 209d, Université Paris-sud, BP34, 91898 Orsay cedex (France) The Prussian Blue Analogue of chemical formula K0,2 Co1,4 [Fe(CN) 6 ]•6.9H 2O is the first threedimensional compound to show photo-induced magnetic properties due to a metal-metal electron transfer: CoIII(BS)-Fe II → CoII(HS)-Fe III 1 . We determined the conditions required to observe the photo-induced process. X-ray absorption spectroscopy (cobalt and iron K and L2,3 edges, EXAFS at the cobalt K edge) turned out to be a key technique (2,3,4,5) which allowed us to evidence two necessary conditions: presence of CoIII-Fe II diamagnetic pairs together with iron vacancies giving the network flexibility since the cobalt atom undergoes a spin transition and a logical sizeable lengthening of its first neighbour bonds during the electron transfer. It is possible to tune the amount of diamagnetic pairs , or more generally to displace the : CoIII(BS)-Fe II ↔ CoII(HS)-Fe III equilibrium by acting on internal strain such as the ligand field around cobalt (chemistry) or external strains such as temperature or pressure. Once again, X-ray absorption and X-ray diffraction under extreme conditions were well-adapted to evidence the electron transfers induced by the various strains. Electron transfers or spin transitions occurring under such conditions have been largely studied. The originality of our compounds lies in the inorganic structure . In fact, Co and Fe are chemically linked through short -CN- bridges in the three directions of space, whereas the usually studied compounds are composed of isolated molecules in a crystal. How the face centred structure manage to accommodate CoII(HS) and CoIII(BS) with different first neighbour bond length during the different electron transfers ? Evidence of the macroscopic scale mechanism has been obtained using X-Ray diffraction under irradiation. References : O O O O O hν, T, P, ∆ Co O O O O O O O O O O O O O C-N O O a = 10 Å CoIII -FeII 1. 2. C-N O O a = 10.3 Å CoII -FeIII O. Sato, T. Iyoda, A. Fujishima, K. Hashimoto, Science., 1996, 272, 704-705. A. Bleuzen, C. Lomenech, V. Escax, F. Villain, F. Varret, C. Cartier dit Moulin and M. Verdaguer, J. Am. Chem. Soc., 2000, 122, 6648-6652. 3. C. Cartier dit Moulin, F. Villain, A. Bleuzen, P. sainctavit, C. Lomenech, V. Escax, F. Baudelet, E. Dartyge, J.J. Gallet and M. Verdaguer, J. Am. Chem. Soc., 2000, 122, 6653-6658. 4. V. Escax, A. Bleuzen, C. Cartier dit Moulin, F. Villain, A. Goujon, F. Varret, M. Verdaguer J. Am. Chem. Soc. 2001, 123, 12536-12543. 5. G. Champion, V. Escax, C. Cartier dit Moulin, A. Bleuzen, F. Villain, F. Baudelet, E. Dartyge, M. Verdaguer J. Am. Chem. Soc. 2001, 123, 12544-12546. Photoionization of multiply charged ions (Absolute Measurements of Photoionization Cross Sections) J.-P.Champeaux1,2, J.-M.Bizau1 , D.Cubaynes1 ,C.Blancard2 , J.Bruneau2 , S.Nahar3 , D.Hitz4 and F. J.Wuilleumier1 1 LIXAM, Unité Mixte CNRS No.8624, Université Paris Sud XI, Bat 350, 91405 Orsay, France 2 Commissariat à l’Energie Atomique, CEA/DAM BP12, 91680 Bruyères-le-Châtel, France 3 Departement of Astronomy , Ohio State University, Columbus, USA 4 CEA-CENG, Service des Basses Températures, Grenoble, France Because of its large abundance in astrophysical and laboratory plasma spectra, oxygen ions are of crucial interest to be studied in order to interpret observations and, more generally, to validate the different codes of atomic structure used for plasma model, such as R-Matrix or MCDF codes. Recently, we have investigated photoionization of multiply charged ions of the oxygen isonuclear sequences up to O4+ using the end-station for studies of photon- ion interactions at the SU6 beamline undulator of Super ACO synchrotron radiation source in Orsay (LURE). Absolute cross sections have been measured for O2+ and O3+ ions. Figure 1 As an example, Figure 1 shows the photoionization cross section of O3+ on absolute scale, measured over 67 to 99eV photon energy range. Some of the resonances have been identified using both MCDF and R-Matrix [1] calculation. The resonances 1 to 7 (full bars on figure 1) are belonging to a Rydberg series that is corresponding to the photoexcitation of the metastable state 2s2p2 (4 P1/2,3/2,5/2 ) of O3+ to 2s2pnd states with n>4. This Rydberg series converges to the 2s2p threshold of O4+ at 87.5eV (MCDF results), above the 2s2 ground state threshold of O4+ observed experimentally at 77.3 eV in figure 1. Our results on oxygen ions will be presented and discussed at this meeting. [1] S.Nahar and Al., Phys. Rev. Lett. 58, p 3766 (1991) HCl ionization at the surface of ice F. Bournel+, C. Mangeney+, M. Tronc +, C. Laffon* and Ph. Parent* + Laboratoire Chimie Physique, Matière et Rayonnement, Université P. et M. Curie, et CNRS UMR 7614 11 rue Pierre et Marie Curie, 75231 PARIS Cedex 05, France * Laboratoire pour l’Utilisation du Rayonnement Electromagnétique (LURE), CNRS - UMR 130, Bât 209 D, B.P. 34, Université Paris-Sud, 91898 ORSAY Cedex, France The interaction (solvation, ionization, dissolution) of HCl with ice is still not well known although it is of considerable implications in many areas such as heterogeneous chemistry in the atmosphere and interstellar space, biological transformations on icy dusts and particulates, physical chemistry, in particular because HCl is one of the major products resulting from dissociation of chlorofluorocarbons. Starting with the 1985 discovery of large seasonal loss of total ozone in the antartic stratosphere due to the presence of polar stratospheric cloud (PSC) ice particles and their active role in heterogeneous catalytic reactions [1], extensive efforts have been made both from the theoretical side and with laboratory experimental approaches. In spite of these efforts, our understanding of HCl-ice interaction at the molecular level is still very limited and a clear picture and detailed mechanisms for solvation, ionization and penetration of HCl in ice is lacking [2]. We have studied the adsorption of a HCl monolayer on an ice film under UHV conditions using near-edge X-ray absorption spectroscopy (NEXAFS), both at the Cl2p (200 eV) and O1s edges (530 eV) [3]. This technique probes the bulk of ice (>50 Å), but also, by detecting the photoions produced after the photoexcitation, the probing depth is reduced down to 2 Å and only the outmost layer of the ice surface is seen. This technique is called PSD-NEXAFS (Photo-StimulatedDesorption NEXAFS). Fig. 1 Fig. 2 O1s, TIY ion yield (arb. units) electron yield (arb. units) Cl2p, TEY 5s 0 mn 140 mn 1 ML HCl (120 K) / H2O Ih HCl reference 4p 4s 5 mn σ*(Cl-H) 200 205 210 215 220 Energy (eV) 225 230 530 535 540 545 550 Energy (eV) Figure 1 compares the Cl2p NEXAFS spectra of a pure HCl film (bottom) with that of HCl adsorbed on ice (top). The disappearance of the σ*(Cl-H) resonance when HCl is adsorbed on ice indicates the breakage of the Cl-H valence bond. This directly evidences the HCl ionization on ice. In addition, the broad resonance at 221 eV will provide structural informations on the solvation cage around the Cl- species within the ice network. Figure 2 presents the evolution with time of the ice surface (measured in PSD-NEXAFS) before (0 min.) and after the HCl dosing (5 min., 140 min.). The strong decrease followed by the re -increase of the ion signal at the ice surface indicate that the ionized HCl species slowly incorporate in the lattice and that the ice surface thus reconstructs. In addition, the PSD-NEXAFS measurements at the Cl2p edge (not presented here) have shown that HCl is not molecularly adsorbed, and that its ionization occurs directly at the surface. These results indicate that the reactivity of HCl with ice must be understood mostly as a chemical interaction between ice and the chlorine ion, that at any step of the reaction. [1] S. Solomon, R. R. Garcia, F. S. Rowland, D. J. Wuebbles, Nature 321, 755 (1986); M. J. Molina, T. L. Tso, L. T. Molina, F. C. Wang, Science 238, 1253 (1987). [2] B. J. Gertner, J. T. Hynes, Science 271, 1563 (1996). [3] F. Bournel, C. Mangeney, M. Tronc, C. Laffon, P. Parent, submitted to Phys. Rev. Lett. Absolute cross section measurement of the reactivity of stable doubly charged molecular ions CO 2++, implications for the martian ionosphere R. Thissen (1), J. Zabka (1) C. Alcaraz (2), O. Dutuit (1) (1) LCP, Univ. Paris-sud, Orsay, France (2) LURE, Univ. Paris-sud, Orsay, France The molecular dication CO2 ++ presents a non- negligible production in the upper ionosphere of mars. However, to determine its concentration, it was necessary to evaluate the major loss channels of these ions. To this end, we have determined the absolute reaction cross section of the stable dications with the major neutral species of mars ionosphere: CO2 . Using an MS/MS device, we have produced the CO2 ++, either by photoionisation or by electron impact, and we have measured the disappearance of the parent ion intensity in a cell filled with 13 CO2 . A value of 45 Å2 is found for the loss of dication. The results show also that the reaction leads to charge transfer or to collision induced dissociation, and that the branching ratio between these two reactivities is depending on the internal energy content of the dication. Those results were integrated in a model showing the presence of an ion layer in mars ionosphere. The calculation of the dication CO2 ++ density in the atmosphere of Mars was performed for the first time. The lifetime of these species reaches 4 seconds. A layer centered around 155-160 km altitude can reach from 3 to and 5 *106 ions/m3 . The ions are produced by the CO2 photoionization and photoelectron impact on CO2 . They are lost by dissociative recombination with the thermal electrons and chemical reaction with CO2 . We suggest that this ion layer is detectable by a mass spectrometer onboard the Mars 2007 orbiter. Figure below presents the results of dication concentration modelisation, showing the presence of a CO2 ++ layer in the outer martian atmosphere. Posters Posters P01 Cryostat 4 K - 300 K for Transmission, Fluorescence, TEY Thermal properties of Co, Cu clusters in matrices C. Adjouri, F. Bouamrane, M. Ribbens, E. Fonda, A. Traverse P02 Study of the formation of 2D and 3D mesotructured silica and organo-silica thin films B. Alonso, R. Balkenende, P.-A. Albouy, D. Durand, F. Babonneau P03 Etude structurale de nanoparticules d'oxyde de magnésium enrobés M. Benzakour P04 Etude structurale de la décomposition d'oxaliplatine par des nucléophiles soufrés par spectroscopie d'absorption des rayons X D. Bouvet, K. Provost, E. Curis, I. Nicolis, S. Benazeth, S. Crauste-Manciet, D. Brossard P05 Size effect on local magnetic moments in ferrimagnetic molecular complexes : an XMCD investigation G. Champion, M.-A. Arrio, Ph. Sainctavit, M. Finazzi, C. Mathonière, J.-P. Kappler, M. Verdaguer, Ch. Cartier dit Moulin P06 Réactivité des sites créés par le Rayonnement Synchrotron sur une surface de diamant hydrogéné K. Bobrov, G. Comtet, L. Hellner, G. Dujardin P07 Adsorption du diphényl sur la surface de Si(100)-(2x1) L. Soukiassian, K. Bobrov, M. Carbone, D. Riedel, G. Comtet, G. Dujardin, L. Hellner P08 Intra-atomic versus inter-atomic processes in resonant Auger spectra at the Ti L2,3 edges in TiO2 J. Danger, P. Le Fèvre, H. Magnan, D. Chandesris, J. Jupille, S. Bourgeois, A. Verdini, R. Gotter, A. Morgante P09 Characterization of Silica Supported Tantalum Catalysts A. De Mallmann, M. Taoufik, G. Saggio, C. Copéret, J. Thivolle-Cazat, J. M. Basset P10 Optimisation de la presse Paris-Edimbourg pour la mesure de la densité et des propriétés élastiques des matériaux sous conditions extrêmes R. Debord, F. Decremps, D. Leguillon, G. Syfosse, M. Fischer, J.-P. Itié, A. Polian P11 Study of the neutral products of the acetylene photolysis between 12 and 16 eV S. Boyé, A. Campos, S. Douin, D. Gauyacq, A.L Roche et N. Shafizadeh P12 Studying biological tissues using synchrotron infrared microspectroscopy N. Gross, S. Marull, J.M. Ortega, T. Marin et P. Dumas P13 Photoemission study of Fe-ZnSe(001) interface : Schottky-barrier height M. Eddrief, M. Marangolo, G.-M. Guichar, V.H. Etgens, D.H Mosca, F. Sirotti P14 Bidimensional segregation of mixed Langmuir films of hydrogenated and fluorinated fatty acids M.-C. Fauré, Ph. Fontaine, N. Puff, L. Tamisier, M. Goldmann P15 Micro-XAS at the Swiss Light Source A.-M. Flank, P. Lagarde, G. Cauchon, S. Bac, J.-M. Dubuisson P16 Oxygen as a surfactant in the growth of (Co, Ni) / Al multilayers E. Fonda, A. Traverse P17 X-ray surface radiolysis : formation of metal-organic interface Ph. Fontaine, F. Muller, S. Rémita, M. Goldmann P18 Etude de la structure locale d'ions aqua d'éléments produits de fission à vie longue par exafs: pd(ii) complexes J. Purans, F. David, B. Fourest, S. Hubert, V.Sladkov, P. Baron P19 Resonant auger spectrocopy on acrylonitrile multilayers, comparison with the gas phase J.-J. Gallet, F. Bournel, S. Kubsky, G. Dufour, F. Rochet, F. Sirotti, E. Kukk P20 Elastic properties of supported polycrystalline thin films: an x-ray diffraction study P. Goudeau, P. Villain, P.-O. Renault, K.F. Badawi P21 X-ray diffraction from crystals under electric fields. Results on a-quartz R. Guillot, P. All, P. Fertey, N.K. Hansen, E. Elkam P22 Characterization of Th1-xUxO2 solid solutions by EXAFS G. Heisbourg, J. Purans, N. Dacheux, and S. Hubert P23 Photoemission studies of clean Si(100) surface and of Mn/Si(100)-H interface formation L. Lechevallier, R. Brochier, R. Flammini, C.M. Teodorescu, O. Heckmann, C. Richter,V. Ilakovac, V.L. Than, A. Taleb-Ibrahimi, K. Hricovini P24 XAS study of Chromium in Cr:Li2MgSiO4 C. Jousseaume, F. Ribot, F. Villain, A. Kahn-Harari, D. Vivien P25 Study of amorphization by Alkali-Aggregate Reaction in SiO2 aggregate by XANES and X-ray diffraction J. Verstraete, L. Khouchaf, D. Bulteel, E. Garcia-Diaz, R. Cortès, A.M Flank, M.H. Tuilier P26 Structure and fragmentation dynamics of N2++ and NO++ ions M. Ahmad, J.G. Lambourne, P. Lablanquie, J.H.D. Eland, R.I. Hall, F. Penent P27 Autoionizing Neon Resonances Separated From Multiple Ionization Continua J.G. Lambourne, P. Lablanquie , F. Penent, R.I. Hall, M. Ahmad, P. Hammond P28 Quadrupolar transitions evidenced by resonant Auger J. Danger, P. Le Fèvre, H. Magnan, D. Chandesris, J. Jupille, S. Bourgeois, T. Eickhoff, W. Drube P29 Imaging and time-of-flight resolved coincidence studies of dissociative photoionization of small molecules M. Lebech, J.-C. Houver, R.-R. Lucchese, D. Dowek P30 Characterization and calibration of a silicon drift detector M.-C. Lépy, L. Ferreux, Ch. Rémond P31 Relevance of the drying step in the preparation by impregnation of Zn/SiO2 supported catalysts C. Chouillet , M. Kermarec, H. Lauron-Pernot, C. Louis, F. Villain P32 Caractérisation structurale d’ions par spectroscopie IR : couplage d’un piège à ions FT-ICR avec le LEL IR Ph. Maitre P33 XAS study of the interaction of Pt species with basic sites in zeolites P. Massiani, C. Pommier, L. Stievano, F. Villain P34 Structure and morphology of thin cobalt films deposited on vicinal surface Cu(115) A. Chaumin-Midoir, H. Magnan, L. Barbier, P. Le Fèvre, D. Chandesris, F. Scheurer P35 DRX et EXAFS du Nb dans LiNbO3 fondu B. Moulin , P. Simon , L. Hennet , D. Thiaudière, M. Gailhanou P36 Etude de complexes Tb / antiinflammatoires non-stroïdiens par EXAFS I. Nicolis, A. Rieutord, V. Hernando, E. Curis, P. Prognon, S. Bénazeth P37 A Vacuum-ultaviolet study of fragments formed in the neutral photodissociation of ethylene J. O'Reilly, S. Douin, N. Shafizadeh, S. Boyé, Ph. Bréchignac, D. Gauyacq P38 Metastable metallic phases formed at low temperature by Cs and Na on GaAs(001) D. Paget, O.E. Tereshchenko, J.-J. Bonnet, P. Chiaradia, F. Wiame, R. Belkhou, A. Taleb-Ibrahimi P39 Raman and X-ray Absorption Spectroscopies for the determination of the molybdenum symmetry in oxomolybdenum species: Application to supported oxomolybdate catalysts G. Plazenet, E. Payen, J. Lynch P40 Study of an E-glass vitrifiable mixture fusion S. Pédèche, G. Matzen, Ph. Melin, L. Hennet, D. Thiaudière, P. Forian, A. Douy P41 Observation and characterization of the cinnabar phase in ZnSe at high pressure J. Pellicer-Porres, A. Segura, V. Munoz, J.P. Itié, P. Munsch, A. Polian P42 High-T coordination of Ln(III) in clay : in situ diffraction and XAFS D.H. Powell, C. Pitteloud, H.E. Fischer, M. Gailhanou, J. Purans P43 Square planar di-N-carboxamido, dithiolato-cobalt(III) complex related to the Nitrile hydratase metallic site. Addition of axial ligands and oxygenation of the sulfur atoms : an EXAFS study K. Provost, L. Heinrich, Y. Li, A. Michalowicz P44 Eu2+ and Eu3+ complexes in solid state and solutions J. Purans, G. Moreau, L. Helm, A.-E. Merbach P45 X-Rays absorption spectroscopy applied to layered magnetic materials using the linear polarisation M. Richard-Plouet, M. Guillot, D. Chateigner, A. Traverse, S. Vilminot P46 EXAFS study of the hydrogenation in Ti-Zr-Ni quasicrystals and approximants A. Sadoc, E.H. Majzoub, V.T. Huett, K.F. Kelton P47 X-ray reflectivity study of the muscovite-water interface in KCl and CsCl solutions M.L. Schlegel, K.L. Nagy, P. Fenter, N.C. Sturchio, L. Cheng P48 Magnetic coupling in Co/Cu multilayers: field dependent antiferromagnetic ordering investigated by resonant X-ray scattering C. Spezzani, P. Torelli, M. Sacchi, R. Delaunay, C.-F. Hague, A. Mirone, R. Capelli, F. Salmassi, E.- M. Gullikson, J.-H. Underwood P49 IRMA: Instrument pour la Réflectivité Magnétique M. Sacchi, C. Spezzani, R. Delaunay, A. Avila P50 H10 : A material and high temperature beamline at DCI/LURE M. Gailhanou, J.-M. Dubuisson, M. Ribbens, L. Roussier, D. Bétaille, C. Créoff, M. Lemonnier, J. Denoyer, A. Jucha, A. Lena, M. Idir, M. Bessière, D. Thiaudière, L. Hennet, C. Landron, P. Melin, Y. Auger, J.-P. Coutures P51 Fe(II)-Fe(III) hydrolysis and complexation with As(III)-As(V) in the presence of PO4 ions S. Thoral, J. Rose, A.-M.Flank, J.-M. Garnier, J.-Y. Bottero P52 Polyfunctional tris(oxalato)metalate based magnets : Structure and Magnetism from X.A.S. and X.M.C.D. C. Train, F. Pointillart, F. Villain, F. Baudelet, C. Giorgetti, Ch. Cartier dit Moulin, M. Gruselle, M. Verdaguer P53 Structural characterisation of the Ni-Al (111) interface by Surface X-ray Absorption Spectroscopy L. Damoc, E. Fonda, P. Le Fèvre, A. Traverse P54 X-ray Absorption Spectroscopy of a strongly anisotropic bimetallic Iron-Cobalt Ferromagnetic Double Chain : dehydration and magnetism F. Villain, Ch. Cartier dit Moulin, M. Verdaguer, R. Lescouezec, M. Julve P55 Non-rigidity in organometallic oxides V. Artero, M. Bénard, P. Gouzerh, P. Herson, D. Laurencin, A. Proust, M.-M. Rohmer, R. Thouvenot, F. Villain, R. Villanneau P56 X-ray diffraction on liquid iron oxides - influence of oxygen partial pressure on short-range order G. Wille, L. Hennet, C. Landron, J.C. Rifflet, F. Millot, M. Gailhanou, D. Thiaudière Post deadline P57 Sources of radicals: application to the chemistry of planetary ionospheres C. Alcaraz, C. Nicolas, R. Thissen, J. Zabka , O. Dutuit P58 Soft X-ray absorption spectroscopy at the cutting edge for nanomaterials : the state of art D. Bazin, J. Rehr P59 Optimisation d'une nanotechnologie liée à la Post combustion automobile : Étude par EXAFS, RMN & DRX de catalyseurs industriels Zn/Al2O3 D. Bazin, R.Revel, I. Klur, A. Pourpoint P60 An in situ Exafs study of the influence of the H2S/H2 ratio and the temperature on the local order of Pd, Ni and Mo atoms in the case of a highly dispersed multimetallic catalyst : Pd-Ni-Mo/Al2O3 F. Maire, D. Bazin P61 Solid state concepts to understand catalysis using nanoscale metallic particles D. Bazin P62 Microfabrication using synchrotron radiation : LIGA F. Bouamrane, T. Bouvet, R. Kupka, S. Megtert P63 Ru-Co/NaY bimetallic catalysts: in situ exafs study at Co K- and Ru K- absorption edges D. Bazin, I. Kovács, J. Lynch, L. Guczi P64 Soft x-ray grating spectrometer for high resolution resonant inelastic x-ray scattering C. F. Hague, J. H. Underwood, A. Avila, R. Delaunay, L. Journel, J.-M. Mariot, J.-P. Rueff P65 Resonant inelastic X-ray Scattering at L2,3 edges of CaF2 and ScAl2: configuration interaction in the final state L. Journel, J.-M. Mariot, J.-P. Rueff, C. F. Hague, M. Sacchi, C. Dallera, L. Braicovich, G. Ghiringelli, A. Tagliaferri, M. Taguchi P66 Catalyse Hétérogène et Rayonnement Synchrotron Bilan et Perspectives D. Bazin, P. Parent, C. Laffon, E. Elkaim P67 XMCD at LII,III edges or Er and K edges of Fe and Co in ErFe2 and ErCo2 C. Giorgetti P68 Expériences couplées : SAX/ATP, SAX/Spectroscopie UV-visible at SAX/Raman V. Briois, S. Belin, F. Bouamrane, F. Alves, F. Villain P69 EPICEAAA Option I : first results D. Céolin, C. Miron, M. Simon ; N. Leclercq, P. Morin P70 CO adsorption on PtxPd1-x(111) single crystal alloy surfaces : a core level and valence band photoemission study N. Barrett P71 Deep X-Ray LIGA at the Institut für Mikrotechnik Mainz GmbH L. Singleton, A. Tunayan, O. Haverbeck, Ch. Krempel, R. Dinges, E. Weinbender, P. Detemple Cryostat 4 K – 300 K for Transmission, Fluorescence, TEY Thermal properties of Co, Cu clusters in matrices C. Adjouri*, F. Bouamrane°, M. Ribbens°, E. Fonda° and A. Traverse° * LASMEA, Université Blaise Pascal, 24 Avenue des Landais, 63 177 Aubière ° LURE, Bât 209D, Centre Universitaire Paris-Sud. BP34. 91 898 Orsay Cedex A new cryostat with helium bath (4K-300K) has been build up for X-ray absorption spectroscopy with the aim to be used in the Transmission, Florescence and Total Electron Yield (TEY) detection modes. The low temperature range 4K-300K can now be investigated and extends the possibilities of previous cryostats working in Fluorescence and TEY detection modes (80K-300K). We have checked the cryostat in Total Electron Yield. In this cryostat, the sample is surrounded by Helium gas, thus the gas is ionized by the emitted electrons and acts as a multiplier of the measured electron signal. The evolution of the extended x-ray absorption fine structure (EXAFS) has been investigated by temperature dependent measurements (20K-300K) on foils and clusters of Co and Cu (average diameters about 0.9 nm). The first measurement (Figure 1) shows clearly a different evolution of the bulk and the clusters indicating that thermal properties are size dependent. The Debye temperature, the Debye –Waller parameter and its temperature evolution are investigated in this work. The thermal evolution of the EXAFS data will be studied using a cumulant analysis. 50 10 (a) 45 1 0.9 40 0.8 35 Co clusters - fcc D = 9Å - 30 To 40 atoms F(R) (b) 1 8.5 0.95 8 8 0.7 30 6 0.9 7.5 0.85 7 Relative intensity 30 1.1 Relative intensity F(R) : first peak max 40 50 F(R) : first peak max Co foil - hcp F(R) 0.8 6.5 0.75 0.6 25 0 50 100 150 200 250 300 6 350 0 50 100 T (K) 150 200 250 300 0.7 350 T(K) 20 21K 116K 197K 300K 4 23K 100K 10 189K 300K 2 0 0 2 4 6 R(Å) 8 10 0 0 2 4 R (Å) 6 8 10 Figure 1. Evolution of the modulus of the Fourier transforms F(R ) of the Co K- edge EXAFS oscillation functions k3 χ (k) of (a) Co foil and (b) Co clusters .The figures in insert shows the evolution of the first peak maximum F(R ) as a function of the temperature. Study of the formation of 2D and 3D mesotructured silica and organo-silica thin films Bruno Alonso,a Ruud Balkenende, b Pierre-Antoine Albouy, c Dominique Durand,d and Florence Babonneaue a CRMHT, CNRS UPR 4212, 1D av. de la Recherche Scientifique, 45071 Orléans Cedex 2, France. alonso@cnrs-orleans.fr b c Lab. de Physique des Solides, Université Paris-Sud, 91405 Orsay Cedex, France. d e Philips Research Lab., Prof. Holstlaan 4, 5656 AA Eindhoven, Netherlands. LURE, bât. 209D, Centre Universitaire, BP 34, 91898 Orsay Cedex, France. Lab. Chimie de la Matière Condensée, Université P. et M. Curie, 75252 Paris Cedex 05, France. Important advances have been made recently in the formation of ordered mesoporous oxide thin films. In the case of silica, the identification of porous structures, their selective formation from adequate chemical conditions, and the study of the underlying mechanisms have been studied. We took advantage of this emergent knowledge to optimise and understand the formation of silica and organo-silica mesostruc tured thin films. Our synthetic procedure has been simplified to its maximum in order to reduce the number of parameters. It was based on the three following steps: 1) hydrolysis by aqueous HCl (10-1 or 10-2 M) of ethanolic solutions containing the precursors (Si(OEt)4 , PhSi(OEt)3 , MeSi(OEt)3 ) and the surfactant (CTAB). 2) deposition of the films by dip-coating; 3) stabilisation of the network and removal of the surfactant by a combination thermal treatments and ethanol extraction. We investigated the relationships between mesotructures (p6mm, P63 /mmc, Pm3n) determined by ex situ and in situ small angle X-ray diffraction techniques, and chemical parameters (nature of the precursors, pH, surfactant/silicon molar ratio, sol ageing times). The dependence on HCl content was found to be one of the most important parameters. In this sense, we studied the advancement of hydrolysis and condensation reactions by spectroscopic techniques such as 29 Si liquid-state NMR. Also, we demonstrate the directing role of vapour ethanol concentration during film formation. Modifications of these two parameters (pH, EtOH) allow to obtain by dip coating the three different mesostructures. Etude structurale de nanoparticules d’oxyde de magnésium enrobés M. Benzakour Groure de Physique des Milieux Denses, Créteil, France Avec une grande surface spécifique et à une porosité assez importante, les nanoparticules d’oxydes d’alcalino-terreux présentent une grande réactivité, celle-ci peut être augmentée en enrobant ces nanoparticules d’une couche d’oxyde métallique tel que l’oxyde ferrique (Fe2O3). De telles entités chimiques sont capables de décomposer les gaz polluants comme CCl4 ou SO2 et de stocker la fraction polluante à l’intérieur de la nanoparticule. Le mécanisme peut être décrit en deux étapes : une réaction de surface où la molécule du gaz polluant réagit avec l’oxyde métallique, puis une réaction entre cet enrobage et le volume de la nanoparticule : la fraction toxique du gaz polluant est finalement piégée à l’intérieur de la nanoparticule. Afin de mieux comprendre ces mécanismes du point de vue structural une étude par spectroscopie d’absorption des rayons X a été engagée, la partie EXAFS du spectre d’absorption nous permet de connaître l’ordre local de l’alcalino-terreux et de l’oxyde de l’enrobage. Ce dernier étant très désordonné, la diffraction des rayons X n’a pas pu nous donner de renseignements sur la structure de la surface. Nous montrerons les résultats obtenus sur les nanoparticules de MgO enrobées avec Fe2O3 avant et après réaction avec CCl4. Etude structurale de la décomposition d’oxaliplatine par des nucléophiles soufrés par spectroscopie d’absorption des rayons X Diane Bouvet (1), Karine Provost (1), Emmanuel Curis (2) ,Ioannis Nicolis (3), Simone Benazeth (2,3) ,Sylvie Crauste-Manciet (4,5), D. Brossard (4,5) (1) Groupe de physique des milieux denses, Université PARIS XII, France (2) LURE, Bat. 209 D, Centre Universitaire Paris-Sud, Orsay, France (3) Laboratoire de biomathématique, Faculté de pharmacie, Université Paris V, France (4) Laboratoire de pharmacie Galénique, Université Paris V, France (5) CHI Poissy - Saint Germain en Laye, Saint Germain en Laye, France e-mail: bouvet@univ-paris12.fr Mots-Clefs : oxaliplatine, spectroscopie, soufre. Depuis la découverte du cisplatine, les complexes de platine (II) ont suscité un vif intérêt en chimiothérapie1. Un des complexes de deuxième génération, l’oxaliplatine (figure), est utilisé en France comme alternative au cisplatine dans les cancers colo-rectaux . C H2 N O O C Pt C N H2 O C O L’oxaliplatine présente une haute réactivité aux nucléophiles en solution 2. Cette propriété peut d’une part, compromettre les effets pharmacologiques par la production d’autres métabolites, et d’autre part compromettre la stabilité de l’anticancéreux avant administration. De plus, l’interaction entre l’oxaliplatine et ces composés 3in vivo pourrait expliquer ses toxicités différentes vis a vis des autres anticancéreux de platines . La spectroscopie d’absorption X est une technique particulièrement adaptée à ce type d’étude, puisqu’elle permet de suivre l’évolution de la sphère de coordination du platine et ce, en solide ou en solution. Dans un premier temps, nous avons mis au point les conditions de simulation sur des complexes de structure connue. Ces modélisations ont conduit à la mise en évidence des caractéristiques des deux ligands (oxalate et cyclohexanediamine) dans le spectre de l' oxaliplatine. Dans un deuxième temps, nous avons étudié l’effet de différents nucléophiles sur l’oxaliplatine, le diéthyldithiocarbamate et le thiosulfate, qui protègent tous deux contre la néphrotoxicité du platine 4. La caractérisation des produits de réaction a permis de montrer le déplacement du cyclohexane diamine par les nucléophiles soufrés. Cette étude complète les travaux effectués5, par notre équipe sur le comportement des complexes de platine en présence d’ions chlorures 6. 1 Long, DF, Repta AJ, Biopharm Drug Dispos. 1981, 2, 1-16. Reedijk J, Hanbook of metal ligand interaction in biological fluids, 967-989. 3 Roberts JJ, Pera MP Jr, Molecular aspects of anti-cancer drug action, 83, 183-231. 4 Dedon PC, Borch RF, biological pharm, 1987, 36, n°12, 1955-64. 5 Curis E, Provost K, Nicolis I, Bouvet D, Benazeth S, Briond F, Crauste-Manciet S, Brossard D, New J. Chem, 2000, 24, 1003-8. 6 Curis E, Provost K, Bouvet D, Nicolis I, Crauste-Manciet S, Brossard D, Benazeth S, J. synch rad, 2001, 8, 71618. 2 Size effect on local magnetic moments in ferrimagnetic molecular complexes : an XMCD investigation Guillaume Champion, 1,2 Marie-Anne Arrio,3 Philippe Sainctavit,1,3 Marco Finazzi, 4 Corine Mathonière,5 Jean-Paul Kappler,6 Michel Verdaguer,2 Christophe Cartier dit Moulin1,2 * 1 Laboratoire pour l’Utilisation du Rayonnement Electromagnétique, BP34, Université Paris-Sud, 91 898 Orsay cedex, France 2 Laboratoire de Chimie Inorganique et Matériaux Moléculaires, Université Pierre et Marie Curie, 4 place Jussieu, 75 252 Paris cedex 05, France 3 Laboratoire de Minéralogie Cristallographie de Paris, Universités Paris 6 et 7, 4 place Jussieu, 75 252 Paris cedex 05, France 4 Elettra, Sincrotrone Trieste ScpA, Experimental Division, S.S. 14 Km. 163.5, 34012 Basovizza, Trieste, Italy 5 Institut de Chimie de la Matière Condensée, 87, Avenue du Docteur Schweitzer, 33608 Pessac cedex, France 6 Institut de Physique et Chimie des Matériaux de Strasbourg, 23, rue du Loess F - 67037 Strasbourg cedex, France Molecular chemistry allows to synthesise new magnetic systems with controlled properties such as size, magnetisation or anisotropy. The theoretical study of the magnetic properties of small molecules (from 2 up to 10 metallic cations per molecule) predicts that the magnetisation at saturation of each ion does not reach the expected value for uncoupled ions when the magnetic interaction is antiferromagnetic. The quantum origin of this effect is due to the linear combination of several spin states building the wave function of the ground state and clusters of finite size and of finite spin value exhibit this property. When monocrystals are available, spin densities on atoms can be experimentally given by Polarised Neutron Diffraction (PND) experiments. In the case of bimetallic MnCu powdered samples, we will show that X-ray Magnetic Circular Dichroism (XMCD) spectroscopy can be used to follow the evolution of the spin distribution on the MnII and CuII sites when passing from a binuclear MnCu unit to a one dimensional (MnCu) n compound. Keywords : X-ray absorption spectroscopy, XMCD, quantum size effects. Réactivité des sites créés par le Rayonnement Synchrotron sur une surface de diamant hydrogéné K. Bobrov1, G. Comtet1, 2, L. Hellner1, 2, G. Dujardin1, 2 1) Laboratoire de Photophysique Moléculaire Bât 210, Université Paris-Sud, 91405 Orsay Cedex, France 2) Laboratoire pour l'Utilisation du Rayonnement Electromagnétique (LURE) Bât. 209 D, Centre Universitaire Paris-Sud, BP 34, 91898 Orsay Cedex, France Après irradiation par le faisceau sans sélection spectrale de Super ACO, les surfaces hydrogénées de silicium et de diamant (100)2x1 présentent des sites originaux. Ces sites originaux ont été mis en évidence par leur signature spectrale en photoémission dans la bande de valence et NEXAFS (1, 2). Ces nouveaux sites ne sont pas présents sur les surfaces hydrogénées, partiellement déshydrogénées par chauffage et complètement déshydrogénées. Nous étudions ici leur réactivité chimique spécifique. L’oxygène moléculaire réagit avec la surface de diamant partiellement déshydrogénée par irradiation alors qu’il ne réagit pas avec les surfaces de diamant hydrogénée, de diamant partiellement déshydrogénée par chauffage, de diamant complètement déshydrogénée. Ces études ont été menées par photoémission dans la bande de valence, la diminution ou la stabilité de l’intensité des bandes associées aux états de surface du diamant étant la signature d’un processus d’adsorption ou d’une absence d’adsorption. Ces résultats mettent en évidence la réactivité spécifique de ces sites créés par irradiation, c. à d. par excitation électronique. Dans le cas d’un chauffage, la désorption simultanée des deux atomes d’hydrogène d’un dimère conduit à la formation d’une liaison π entre les deux atomes de carbone du dimère, liaison qui ne s’ouvre pas pour accueillir l’oxygène. Dans le cas d’une irradiation, l’excitation électronique produit la désorption d’un des atomes d’hydrogène du dimère et donc la création d’une liaison pendante σ avec laquelle l’oxygène réagit. Le même type d’étude, la réactivité spécifique des sites créés par irradiation d’une surface hydrogénée, a été réalisé dans le cas du silicium hydrogéné (3). L’interprétation des résultats dans ce cas est moins immédiate car l’oxygène moléculaire, bien que ne réagissant pas avec les dimères de la surface de Si(100)2x1, réagit avec les défauts de surface. Les études sur les surfaces de diamant ont l’avantage d’avoir des résultats directement interprétables. (1) K. Bobrov, G. Comtet, L. Hellner, G. Dujardin, Phys. Rev. Lett. 84, 2255 (2000). (2) K. Bobrov, G. Comtet, G. Dujardin, L. Hellner, P. Bergonzo, C. Mer Phys. Rev. B63, 165421 (2001). (3) G. Comtet, G. Dujardin, L. Hellner, communication privée Adsorption du diphényl sur la surface de Si(100)-(2x1) L. Soukiassian1, K. Bobrov1, M. Carbone2, D. Riedel1, G. Comtet1,3, G. Dujardin1,3, L. Hellner1,3 1. Laboratoire de Photophysique Moléculaire, Université Paris-Sud, Orsay 2. Dip. Di Scienze e Tecnologie, Università Tor Vergata,, Roma, Italy 3. Laboratoire pour l’Utilisation du Rayonnement Electromagnétique, Université Paris-Sud, Orsay Nous avons étudié l’interaction du diphényl avec les surfaces de Si (100)-(2x1). Ces études s’inscrivent dans le cadre d’une recherche de molécules organiques susceptibles de conduire le courant électrique et de jouer ainsi le rôle des composants électroniques. La molécule de diphényl possède deux cycles benzéniques. Nous l’avons d’abord étudiée en phase condensée (80 K) et comparée au benzène condensé. Le spectre NEXAFS du diphényl condensé possède comme celui du benzène condensé deux résonances π∗. Les énergies des premières résonances π∗ sont dans les deux cas de 284.6 +/- 0.2 eV (calibration à partir des résonances du diamant) et leurs largeurs sont équivalentes. La deuxième résonance π∗ est 3.8 eV plus haut dans le cas du benzène et 4.0 eV plus haut dans le cas du diphényl. Les énergies des résonances associées aux orbitales σC-H et aux deux orbitales σ∗C-C ont été mesurées. Rappelons que le couplage des orbitales p des 6 atomes de carbone du benzène crée deux orbitales π∗, la première étant doublement dégénérée. Le diphényl qui a deux cycles benzéniques est lui aussi caractérisé par deux orbitales π∗. Nous avons déposé 0.5 Langmuir de diphényl sur la surface de Si (100)-(2x1) à température ambiante, ce qui correspond à un recouvrement de la surface bien inférieur à la monocouche. Le spectre NEXAFS associé ne présente qu’une résonance π∗ à 284.6 eV, un peu plus large que la résonance π∗ du diphényl condensé (1.15 eV au lieu de 1.03 eV). La résonance σC-H* est toujours à 2.1 eV au-dessus de la résonance π∗. Les faibles taux de comptage rendent difficiles la mesure des énergies des résonances σ*. Quand l’adsorption du diphényl a lieu sur la surface de Si (100)-(2x1) portée à 80 K, l’intensité de la première résonance π∗ du spectre NEXAFS est multipliée par 1.4, sa position est inchangée et sa largeur augmente de 0.3 eV. De plus, la deuxième résonance π∗ qui n’apparaissait pas à 300 K est présente à 80 K. Le caractère π∗ de cette résonance est déduit d’une étude angulaire. Ces résultats nous permettent de conclure qu’à 300 K, les molécules de diphényl sont chimisorbées et ne possèdent plus de noyau benzénique (présence d’une seule résonance π*). Par contre, dans le cas d’une adsorption à 80 K, il existe encore des noyaux benzéniques (présence de deux résonances π*) ; la présence simultanée de cycles chimisorbés et de cycles physisorbés expliquerait pourquoi la résonance π∗ à 284.6 eV est plus large pour le diphényl adsorbé à 80 K que pour le diphényl condensé. Des études XPS nous ont permis de déterminer l’énergie de la première résonance π∗ par rapport au niveau de Fermi. Ce positionnement est important pour connaître le mode de transfert des électrons de la molécule adsorbée à la surface. Intra-atomic versus inter-atomic processes in resonant Auger spectra at the Ti L2,3 edges in TiO 2 J. Danger1,2, P. Le Fèvre1 , H. Magnan1,2, D. Chandesris 1 , J. Jupille3 , S. Bourgeois4 , A. Verdini6 , R. Gotter6 and A. Morgante6,7 1 LURE, CNRS-Université Paris Sud, Bât. 209d, BP34, 91898 Orsay cedex, FRANCE 2 SPCSI, CEA Saclay, 91 191 Gif sur Yvette, FRANCE 3 GPS, CNRS-Université Paris VI et VII, 2 place Jussieu, 75251 Paris cedex 05, FRANCE 4 LRRS, CNRS -Université de Bourgogne, BP47870, 21078 Dijon cedes, FRANCE 5 TASC-INFM, 34012 Basovizza, Trieste, ITALY 6 Dipartimento di Fisica, Universita’ degli studi, Trieste, ITALY The chemical nature and environment of an element often manifest themselves through the occurrence of specific electronic transitions. In ionocovalent compounds, the severely depleted valence population of the cations favors a possible interatomic core hole Auger decay. Furthermore, it has been evidenced recently that core level electrons of neighboring atoms can be direct actors in the resonant photoemission process of the excited atom which can have applications as a probe of the hybridization with the external orbitals of neighboring atoms [1]. In transition metal oxides, the occurrence of interatomic transitions in Auger decays involving valence electron has suggested to make use of them to determine the surface stoichiometry. In TiO 2 , the stoichiometry has been shown to be directly related to the ratio of the two components of the Ti L23 M23 V Auger transition [2]. Due to its appearance when the metal is oxidized and its increase in intensity upon increasing the oxidation state of the metal, the low kinetic energy component is assigned to a so-called “interatomic LMV(O)” decay, while the other component is associated to an “intra-atomic LMV(Ti)” process (V(Ti) and V(O) refer to Ti and O contributions to the oxide valence band). In this work, the two components of the Ti L2,3M2,3V Auger transition recorded on a stoichiometric rutile crystal are identified as L2 M2,3V and L3 M2,3V contributions. This assignment is evidenced by concordant data relative to resonances of the LMV decay at the Ti L2,3 thresholds and to Auger emission recorded in coincidence with the 2p1/2 and 2p3/2 photoemission at a photon energy far above the Ti L2,3 edges. The L3 M2,3 V transition is shown to follow either the direct photoexcitation of a 2p3/2 electron or the fast Coster-Kronig decay of a 2p1/2 photohole. Although specific LMV contributions related to valence orbitals are identified, the long-suggested dual description of the L2,3M2,3V Auger line as intra-atomic and interatomic transitions is discarded. References [1] M. Garnier et al., MAX Lab report and submitted to Phys. Rev. B; A. Kay et al., Science 281, 679 (1998). [2] C.N. Rao, D.D.Sarma, Phys. Rev. B 25, 2927 (1982). Characterization of Silica Supported Tantalum Catalysts A. De Mallmann*, M. Taoufik, G. Saggio, C. Copéret, J. Thivolle-Cazat, J. M. Basset L.C.O.M.S.; UMR9986 CNRS/CPE-Lyon; 43, Bd du 11 Novembre 1918 69616 Villeurbanne cedex - France X-ray absorption spectroscopy has been used to study several silica supported tantalum species used as catalyst precursors or which are presumed intermediates (i) in alkane metathesis reactions (e.g. 2 C2 H6 → CH4 + C3 H8 ) or (ii) in the asymmetric epoxidation of allyl alcohols (e.g. H2 C=CH-CH2 OH + ROOH → H2C O CHCH2OH + ROH). The first step in the preparation of these species is the grafting of tantalum trisneopentyl neopentylidene Ta(=CHt-Bu)(Np)3 onto silica. The solids were then treated under hydrogen or by an alcohol to lead respectively (i) to TaIII species or (ii) to Ta V surface alkoxides. The samples were characterized by different techniques including microanalysis, IR and solid state NMR (1 H, 13 C, 31 P). Then they were studied by EXAFS at the LIII edge of tantalum (E0 = 9881 ev) to get information on the structure of the supported species which could valid, precise or infirm the models we could propose from other characterization techniques and inspired by model compounds known in molecular organometallic and inorganic chemistry. The scheme below will be presented and discussed in detail in the poster H O Ta O Si O Si PMe3 H Si H2 O O Si O O O Si O Si Si Si OEt EtO Ta Ta O PMe3 H O EtOH Si Si H2 Ta O O Si O Si O Si C5 H10 CH Ta O H2 Np Np Si EtOH OEt OEt Ta OEt EtO O O Si Si Si O Ta O Si O Si OEt O Ta O t-Bu O O O Si 200ºC 2 H2 COOEt COOEt O Ta O Si O Si O O Ta O COOEt t-Bu O O COOEt O Si (?) Optimisation de la presse Paris-Edimbourg pour la mesure de la densité et des propriétés élastiques des matériaux sous conditions extrêmes Régis DEBORD, Frédéric DECREMPS, *Dominique LEGUILLON, Gérard SYFOSSE, Myriam FISCHER, Jean Paul ITIE, Alain POLIAN PMC (UMR 7602 CNRS/UPMC) Tour 13 E2, 4 Place Jussieu 75252 Paris Cedex 05 * LMM (UMR 7607 CNRS/UPMC) 8 Rue du Capitaine Scott 75015 Paris La presse Paris-Edimbourg permet de réaliser simultanément des mesures de vitesses de propagation d’ondes ultrasonores dans des échantillons contraints (P ≅ 7 GPa) et de diffraction X à température ambiante. Nous présentons ici une étude par éléments finis d’un four entourant l’échantillon afin d’effectuer ces mesures jusqu'à 1000 K. Dans un joint en bore-époxy (dont le diamètre extérieur est de 10mm) qui sert à confiner et à transmettre la pression se trouvent l’échantillon à étudier, le nitrure de bore (BN) utilisé comme isolant électrique et comme milieu transmetteur de pression et une poudre de sel. La poudre de sel compactée est utilisée à la fois comme milieu transmetteur de pression et comme calibrant pour déterminer la pression in situ. Celle ci est mesurée en étudiant le déplacement des raies de diffraction de rayons X du sel avec la pression et en ajustant les résultats avec l’équation d’état établie par Decker (1965), pour des pressions inférieures à 30 GPa. Une ouverture de la culasse de la presse permet le collage d’un transducteur piézoélectrique sur le noyau en carbure de tungstène de l’enclume supérieure. Les transducteurs, pour l’étude d’échantillons millimétriques, sont en LiNbO3 et ont une fréquence de résonance comprise entre 10 et 30 MHz. Ainsi par la mesure du temps de transit de l’onde ultrasonore dans l’échantillon on peut déterminer les constantes élastiques du matériaux étudié en fonction du chemin thermodynamique suivi. Afin d’obtenir les hautes températures une différence de potentiel est appliquée entre les deux enclumes de la presse, permettant ainsi le chauffage par effet joule de l’échantillon via un four tubulaire en graphite amorphe. Une approche thermique du dispositif expérimental a été menée sur un code de calcul d’éléments finis nommé Modulef, au Laboratoire de Modélisation en Mécanique (LMM) de l’Université Pierre et Marie Curie. Le but de cette étude est de définir un volume expérimental thermiquement homogène et techniquement réalisable. Les premiers calculs ont permis de montrer que la forme et la valeur des isothermes à l’intérieur du four dépendent de trois critères importants : - la nature du matériau utilisé comme amené de courant ; - la géométrie de ces contacts ; - la géométrie du four et de ses isolants internes (nitrure de bore). Références : Besson, J.M. et al. 1992, Physica, 180&181, pp. 907 Decremps F. 1998, Propriétés structurales et vibrationnelles des cristaux ioniques bidimensionnels de type PbFCl, Thèse de l’université Paris VI Decker, D.L 1965, Journal of Applied Physics, 36, pp 157 Hammi, Y. 1995 Calcul par élément finis de l’équilibre thermique d’un four à résistance de graphite, Rapport de Stage de DEA de Mécanique, UPMC-ParisVI. Le Godec, Y. 1999 Etude du nitrure de bore sous hautes pression et température, Thèse de l’université Paris VII. Lheureux, D. 2000 Propriétés élastique non linéaires sous pression et diagramme de phase du titanate de strontium, Thèse de l’université Paris VI. Study of the neutral products of the acetylene photolysis between 12 and 16 eV S.Boyé, A. Campos, S. Douin, D.Gauyacq, A.L Roche et N. Shafizadeh Laboratoire de Photophysique Moléculaire, Bat 210 Université de Paris-Sud 91405 Orsay Acetylene is the most abundant molecule, after H2 and CO, in the circumstellar envelopes of carbonated stars. This molecule, as well as its neutral photodissociation products, play a crucial role in the carbon chemistry taking place in other astrophysical media such as interstellar clouds and planetary and cometary atmospheres. Surprisingly, the various photodissociation mechanisms as well as the photolysis energy dependant branching ratios are not yet well known or understood. The present work is focused in the photolysis region above the first IP of acetylene and below the first dissociative ionization threshold, that is, in the region where ionization only competes with neutral fragment production. By using the high resolution SU5 beam line of Super-ACO, the photolysis of this molecule has been performed between 12 and 16 eV and the dispersed florescence of the fragments has been recorded in the visible region. The different fragmentation pathways have been characterized and apparition thresholds have been measured. Fragment internal energy distribution and branching ratios towards the various fragmentation channels have been determined for a set of photolysis wavelengths. This new data yields additional information regarding the fragmentation mechanisms and their evolution with increasing excitation energy. It is expected that these findings will be incorporated into photochemical models to better understand the carbon chemistry in the above astrophysical media. Studying biological tissues using synchrotron infrared microspectroscopy N. Gross (1) , S. Marull(2) , J.M. Ortega(1) ,T. Marin(1) and P. Dumas(1) 1- LURE Bat 209D, Centre Universitaire Paris Sud, F91898 ORSAY cédex 2- Yves Rocher, 101, Quai du Président Roosevelt, 92 444 Issy les Moulineaux Cedex, France Point spectroscopy is a valuable tool for biological tissue analysis. However, it suffers from a particular drawback: the distribution of chemical or histological entities cannot be addressed throughout the tissue section. To achieve this, the tissue must be either mapped or imaged. Mapping experiments are currently very popular in IR studies. However, the IR images are of much lower contrast compared to Raman imaging , due the low brightness of the IR source. With the use of a synchrotron radiation , the lateral resolution has been improved drastically, and the resolution becomes diffraction limited.1 Synchrotron IR microscopy can be achieved at LURE, at the MIRAGE beamline 2. We have studied the composition and distribution profile of several components in skin section. The achieved resolution allowed us to distinguish clearly between Stratum Corneum to Startum Granulosum in skin section. Morever, IR spectroscopy is a very powerful method in determining and imaging the secondary structure of peptides backbones. Fig. 1 shows the distribution of lipids in a skin cut. One can clearly see their location, mainly in in the Stratum Corneum . Phospholipids ( in m ) 20 tan ce 60 Dis 40 20 0 0 Fig. 2 shows the image of the relative concentration of β-sheets over α-helix . 1630cm -1/1655 cm -1 60 40 20 Dis ta n ce ( in m ) 20 0 These studies opened up new understanding of the composition and structure of biological tissues, and will be extended towards the study of the penetrating agent behaviour and diagnostic of disease. 1 L.M. Miller, G.L. Carr, M. Jackson, P. Dumas and G.P. Williams Synchrotron radiation News vol. 13, (5) ( 2000) 31-38. 2 F.Polack, R. Mercier, L.Nahon, C.Armellin, J.P. Marx, M.Tanguy, M.E.Couprie, P.Dumas, SPIE, Eds : P.Dumas and G.L. Carr Vol.3575 ( 1999) 13. Photoemission study of Fe-ZnSe(001) interface : Schottky-barrier height M. Eddrief a , M. Marangolo a , G.-M. Guichara , V. H. Etgens a , D.H Moscab and F. Sirottic a Laboratoire de Minéralogie et de Cristallographie de Paris-CNRS-Universités Paris VI et VII, IPGP, 4 Place Jussieu, 75252 Paris Cédex–France, b Departamento de Física- UFPR, Centro Politécnico CP 19091 81531-990 Curitiba PR, Brasil, c Laboratoire pour l’Utilisation du Rayonnement Electromagnétique, CNRS -Université de Paris-Sud Bat. 209-D, 91405 Orsay-France. Spin injection into a semiconductor is expected to utilize a ferromagnetic material as the electrical contact. One system of potential interest consists of Fe contacts to a ZnSe semiconductor. In particular, the Fe/ZnSe bilayer is considered to be promising canditate as spin aligner in semiconductor based device structures since the wide gap semiconductor ZnSe (Eg = 2.7 eV) could provide the interface resistance (tunnel barrier)1 . Thus it is fundamental to get well characterized Fe/ZnSe interface, namely to determine the Schottky-barrier height, the interfacial electronic features and the chemical enviromnent of the species during the Fe contact. In this work, synchrotron x-ray and ultraviolet radiation based high-resolution photoemission at LURE-Orsay has been used to study the Fe growth sequentially on ZnSe surfaces (reconstructed Zn terminated c(2x2) or Se terminated 2x1). The ZnSe samples were prepared by MBE at LMCP-Jussieu, in a double growth chamber system one for III-V and another for II-VI semiconductors. GaAs (001) substrates (highly n-doped) were overgrown with a GaAs buffer layer and ZnSe epilayers. After deposition of a 100Å pseudomorphic ZnSe epilayer, the surface was stabilized under Zn flux to get a c(2x2)-Zn terminated surface or under Se flux a (2x1)-Se terminated. These ZnSe surfaces were transferred into a ultrahigh vacuum transfer box (base pressure ~ 2 10 –10 torr) and transported to an electron spectrometer at the synchrotron facility (SB7 beam line at SUPERACO-LURE). Also, the ZnSe samples capped with thick-Se for protection during ambient transfer has been also used. After introduced in the UHV photoemission set-up, the samples were slowly heated up to 320°C in order to desorb the Se capping layer and to stabilize the Zn terminated c(2x2) surface. These two transfer and transport procedures conserves clean ZnSe surfaces without C and O contaminations. The analysis of the photoemission spectra reveals that the formation of the Fe/ZnSe interface is essentially abrupt with minimal chemical contact interaction between the topmost atomic layers of the ZnSe epilayer and the Fe atoms where interacted species are buried in a limited zone at one or two monolayers near the interface. Also, bulk-like d-band electronic structure are recovered at 2 ML-Fe coverage. This is in perfect agreement with the previous XMCD experiment where it has been found that Fe recors its bulk magnetic properties for this same thickness without magnetic dead layer even below Fe coverage 2 . For 2 ML-thick films, the Fe-Fermi level position is stabilized at 1.6 eV above the valence-band maximum of the n-type undoped-ZnSe which corresponds to a Schottky-barrier height value of 1.1 eV 3 . References : 1 A. Fert, H. Jaffrès, Phys. Rev. B 64, 184420 (2001). M. Marangolo, F. Gustavsson, M. Eddrief, Ph. Sainctavit, V.H. Etgens, V. Cros, F. Petroff, J.M. George, P. Bencok, N.B. Brookes, to be published in Phys. Rev. Lett. 3 M. Eddrief, M. Marangolo, S. Corlevi, G.-M. Guichar, V. H. Etgens, R. Mattana, D. H. Mosca and F. Sirotti, submitted in Appl. Phys. Lett. 2 Bidimensional segregation of mixed Langmuir films of hydrogenated and fluorinated fatty acids Marie-Claude Fauré1 , Philippe Fontaine 2 , Nicolas Puff1 , Luc Tamisier1 , Michel Goldmann1&2 (1) Objets Complexes et Interfaces d’Intérêt Biologique (OCIIB), Univ ersité Paris 5, 45, Rue des Saints Pères, 75270 Paris Cedex 06 ; (2) Laboratoire pour l’Utilisation du Rayonnement Electromagnétique (LURE), Centre Universitaire Paris Sud, Bât 209D, BP 34, 91 898 Orsay Cedex. Langmuir monolayers are formed by adsorbing amphiphilic molecules at the air-water interface. Mixtures of hydrogenated (CH3 (CH2 )n COOH) and fluorinated (CF3 (CH2 )mCOOH) fatty acids monolayers are efficient systems for the study of two dimensional segregation processes. Moreover, the understanding of the mixing behaviour of hydrogenated and fluorinated chains is of prime importance for a vast field of applications[1]. We studied two different mixtures of the perfluorododecanoïc acid (CF3 (CH2 )10COOH) with stearic acid (CH3 (CH2 )16 COOH) and myristic acid (CH3 (CH2 )12 COOH) (H/F mixtures). The former hydrogenated fatty acid exhibits at room temperature a phase transition upon compression of the pure monolayer from a gas phase to an ordered condensed liquid phase. The latter hydrogenated fatty acid exhibits at room temperature a transition from the 2D gas phase to a disordered liquid (expanded) phase followed by a transition between the expanded liquid to the ordered condensed liquid phase. Although the molecular structures of the two hydrogenated fatty acids are rather similar, the behaviour of the two mixtures H/F are different. The perfluorododecanoic/stearic acid mixture exhibits a thermodynamical (Surface pressure vs. Area per molecule isotherms – π-A diagram) behaviour in favour of a total segregation of the mixture in pure fluorinated and pure hydrogenated domains. This is confirmed by Grazing Incidence x-ray Diffraction (GIXD) measurements performed on the D41-B beamline at LURE. Indeed, on the diffraction patterns of this mixture, two peaks are measured which both respectively correspond to the structures of pure monolayers of each compound. The perfluorododecanoic/myristic acid mixture exhibits a completely different and complex behaviour at any length scales. The evolution of the π-A isotherms with the fraction of fluorinated molecules is rather complex and is not in favour of a complete segregation of the mixture. GIXD patterns exhibit a single diffraction peak, which corresponds to the fluorinated chains structure. However its width is rather large indicating a weak organisation compared to the pure case. The behaviour of this mixture is rather complex and the experiments (π -A isotherms and GIXD) do not enable to discriminate between two hypotheses: intimate mixing at the molecula r level or segregation in small domains. In order to discriminate between these hypotheses, we performed Grazing Incidence Small Angle x-ray scattering (GISAXS) at the air water interface on the Troïka II beamline at ESRF. The results of these experiments indicate an inhomogeneous layer (segregated mixture) and then a segregation in small domains of the system[2]. References: [1] M.P. Krafft, Adv. Drug Delivery Rev. 47, (2001) 209. [2] M.C. Fauré, N. Puff, P. Fontaine, L. Tamisier, M. Goldmann, O. Konovalov, in preparation. Micro-XAS at the Swiss Light Source A.-M. Flank*, P. Lagarde*, G. Cauchon*, S. Bac*, J.-M. Dubuisson& * LURE, Bât 209D, BP. 34, 91898 Orsay (France) SOLEIL, Bât 209H, BP. 34, 91898 Orsay (France) & Initiated as a part of the “Option 1” of LURE’s equipment program, this project is a collaboration between LURE, SOLEIL, and the Swiss Light Source (SLS), which is running since mid-2001 at a nominal energy of 2.4GeV. This project is now in its “APD” phase (avant projet détaillé) : this XAS beam line is planned to cover the 0.8-7 keV energy domain, which corresponds, on an undulator with a period of about 55 mm, to the best performance in term of brillance of both machines SLS and SOLEIL. The goal of this beamline is to achieve a spot size on the sample of the order of 1x1 µm2, keeping the possibility to widely scan the energy. To insure the best focalisation and the achromaticity, we have chosen a “Kirkpatrick-Baez” focusing optic, with an horizontal prefocalisation by a spherical miror. The energy range covered by this project extends from 0.8 keV, which is the lower limit of a double-crystal monochromator, to about 7 keV which corresponds to the cut-off of nickel coated mirrors. This energy domain presents large overlaps, at both ends, with grating and hard x-rays beam lines. It will cover the K edges of elements from Ne to Fe, L edges of the 3d and 4d transition metals and of the first rare earths, M edges of rare earths, actinides and 5d elements. The use of a x-ray micro beam for spectroscopy (XAS) can be considered from different points of view. First of all, one gets access to element-specific micro-cartography experiments, where a characteristic signature of a given element, like its fluorescence emission, is monitored as a function of the spatial position of the exciting beam on the sample.. This element imaging, with spatial resolution at the photon spot scale, is combined to x-ray absorption fine structure measurements, for an element-specific structural and electronic characterization of the sample. The expected lateral scales range (depending on the energy range and on the technique used) from a few thousands of Å to a few microns. Second, the focusing of the incoming beam can be of a fundamental interest because the sample environment (in a very general meaning) or the kind of experiment will benefit from a spot size of microscopic dimensions. New experiments appear then to be possible just because of a dramatic technical improvement. And finally, it must be kept in mind that the proposed beam line is intended to be built on a very brilliant source. Therefore, all experiments that are highly photon consuming, like surface physics or highly dilute systems, will make profit of the increase of the photon density on the sample which is expected to be greater that four orders of magnitude at 2 keV, compared to Super-ACO. The project presented here has taken the opportunity to be built on a third generation machine, the Swiss Light Source first. This beamline will be transferred later to SOLEIL. Oxygen as a surfactant in the growth of (Co, Ni) / Al multilayers E. Fonda, A. Traverse Laboratoire pour l’Utilisation du Rayonnement Electromagnétique, CNRS Normalised Absorption (a.u.) Al−Ni alloys have many practical applications as anti−oxidation coatings, light heat− resistant materials and metallisation of microelectronic devices [1,2,3]. In this contest, the Ni/Al(111) system have been recently studied by our group and the first steps of the interface formation have been addressed by x−ray absorption spectroscopy [4]. The study has been extended to the structures and magnetic properties of Ni/Al multilayers prepared by electron− gun evaporation [5]. Stacks containing Ni layers with a thickness smaller than 3 nm show no ferromagnetic behaviour, while structural analysis reveals complete Ni/Al mixing. Other authors, credited to a simple lowering of the Curie temperature this lack of magnetic moment. A 1.6 metallic Ni fraction is found only for a deposited layer thickness equal or exceeding 3nm. In the 1.4 making of magnetic multilayers ferromagnet (a) (FM)/Al intermixing is a drawback. FM/Al (b) (c) 1.2 Ni foil intermixing draw to a net loss of magnetic moment (d) for thin layers. The use of oxidated Al in the form of 1.0 AlOx or sputtered Al2O3 left some open questions on the actual effect of post oxidation of deposited 0.8 layers [6,7]. Finally, the effect of oxidation of Al instead of Al2O3 sputtering showed to improves layer roughness [8]. We have tested the effect of 0.6 mild oxidation after each layer deposition in (Co, Ni) /Al multilayers. An exposure at a stream of dry 0.4 air at the pressure of 10−3 mbar for 5’, is sufficient to produce unmixed Al/Ni stacks without producing Ni 0.2 oxides at thicknesses as low as 1.5 nm. XAS data suggest that Ni oxide layers formed should be 0.0 reduced by the following Al vapour deposition. 8325 8350 8375 Our work is in quick progress in the Energy (eV) characterisation of the thermal stability of the (a) Ni 15Å; (b) Ni 30 Å; (c) Ni 60 Å; −3 produced stacks and in the characterisation of Co/Al (d) Ni 15 Å post−oxidated at 10 mbar stacks. Finally, the different effect of Al post− oxidation versus Al+FM post−oxidation is shown. [1] P. Hannu, P. Kattelus, and M. A. Nicolet, in Diffusion Phenomena in Thin Films and Microelectronic Materials, edited by D. Gupta and P. S. Ho (Noyes Publications, Park ridge, NJ, 1988), p. 432. [2] F. Fitzer and J. Schlichting, in High Temperature Corrosion, edited by R. A. Rapp (National Association of of Corrosion Engineers, Houston TX, 1983), p.604 [3] N. S. Bornstein, J. Phys. IV Colloque C9 3. Supplement au J. Phys. III 3 (1993) 367 [4] L. Damoc, E. Fonda, P. Le Fevre, A. Traverse, submitted to J. of Appl. Phys. (2002) [5] E. Fonda, F. Petroff, A. Traverse, to be submitted to J. Appl. Phys. [6] R. Schad, K. Mayen, J. McCord, D. Allen, D. Yang, M. Tondra, D. Wang, J. of Appl. Phys. 89 (2001) 6659 [7] J. Fujicata, T. Ishi, S. Mori, K. Matsuda, K. Mori, H. Yokota, K. Hayashi, M. Nakada, A. Kamijo, K. Ohashi, J. of Appl. Phys. 89 (2001) 7558 [8] M. J. Plisch, J. L. Chang, J. Silcox, R. A. Buhrman, Appl. Phys. Lett. 79 (2001) 391 X-ray surface radiolysis : formation of metal-organic interface Philippe Fontaine 1 , François Muller1&2 , Samy Rémita3 , Michel Goldmann1&2 (1) Laboratoire pour l’Utilisation du Rayonnement Electromagnétique (LURE), Centre, Bât 209D, BP 34, 91 898 Orsay Cedex (2) Objets Complexes et Interfaces d’Intérêt Biologique (OCIIB), Université Paris 5, 45, Rue des Saints Pères, 75270 Paris Cedex 05 ; (3) Laboratoire de Chimie et de Biochimie Pharmacologique et Toxicologique (LCBPT), Université René Descartes, 45, Rue des Saints Pères, 75270 Paris Cedex 06 The formation of a Metal – Organic interface is an open question in material science. Its applications are numerous from colloïds (nano-shells for micro-catalysis), to thin layers (for microelectronics). In the radiolysis method, the irradiation of an aqueous solution of metal ions (such as Ag+ ) induces the radiolysis of water in H• and OH• radicals. H• is a strong reductive agent against metal ions (Ag+) and induces the reduction into metal atoms (Ag) which latter aggregates. OH• is a strong oxidative agent which is able to oxidize the metal ions and to counterbalance the reduction. Ethanol is added to the solution to scavenge the OH• radicals[1]. Our original approach consists in applying the radiolysis method to solution of surfactants selfassembled in supramolecular assemblies and metal ions. The aggregation of metal atoms induced by the radiolysis around the surfactants polar head will create a metalic thin layer around the supramolecular assembly used as a template. We explore two geometies. The spherical geometry of surfactants micelles and the planar geometry of Langmuir monolayers on silver ions solutions. In this system, we shown than the irradiation by the x-ray beam at grazing incidence of the water surface covered by a Langmuir film made of behenic acid leads to the formation of a thin silver layer beneath the organic film[2]. These experiments have been performed on the D41B beamline at LURE. We followed the formation and studied the structure of the metal layer by two techniques. By measuring the diffuse scattering of the incident x-ray beam by height fluctuations of the interface, we followed the transition of the spectrum from a featureless curve corresponding to the organic Langmuir films to a curve featuring oscillations characteristics of a thin, dense layer at the interface[3]. By measuring the in-plane diffraction of the x-ray beam, we have recorded the apparition of diffraction peaks which intensity and width are characteristic of a cristalline, surface oriented lattice of heavy atoms, which is unambiguously attributed to a silver clusters. References: [1] J. Belloni, M. Mostafavi, H. Remita, J.L. Marignier, M.O. Delcourt, New. J. Chem., (1998) 1239 [2] F. Muller, P. Fontaine, S. Remita, M. Goldmann, soumis à J. Am. Chem. Soc. [3] C. Gourier, J. Daillant, A. Braslau, M. Alba, K. Quinn, D. Luzet, C. Blot, D. Chatenay, G. Grübel, J.-F. Legrand, and G. Vignaud Phys. Rev. Lett. 78, (1997) 3157. Étude de la structure locale d’ions aqua d’éléments produits de fission a vie longue par exafs : pd(ii) complexes J. Purans1,3, F. David1, B. Fourest1, V.Sladkov1, L. Venault2 1 - Institut de Physique Nucléaire, 91406 Orsay 2 - CEA Valrho, Marcoule, BP 171, 30207 Bagnols 3 - Institute of Solid State Physics University of Latvia, Riga Les produits de fission à vie longue du combustible nucléaire représentent un enjeu crucial relatif à la radiotoxicité à long terme des déchets de haute activité. L’impact après stockage sur l’environnement est, en particulier, un problème de tout premier ordre et une stratégie de séparation suivie de transmutation ou de séparation, puis conditionnement, est à envisager. Parmi l’ensemble des produits de fission à vie longue, le sélénium-79, le zirconium-93, le paladium107 et l’étain-126 sont ceux pour lesquels la chimie est la plus mal connue et la nature même des ions aqua est très controversée. Puisque les éléments considérés existent à l’état naturel, on peut entreprendre ces recherches en absence de radioactivité. Pendant l’année 2001, on s’est limité à l’étude du palladium. Les données structurales (XANES et EXAFS) sur le palladium en solution, sont, à notre connaissance, pratiquement inexistantes!!! L’ensemble des mesures représente 7 échantillons en solution qui ont été préparés par voie chimique (IPN) et 1 solide. Dans le cas du palladium, seul l’état bivalent est stable en milieu acide nitrique. Pd(II) est donc complexé par les nitrates. La position et l’amplitude des pics dans le XANES ne varient pas avec la concentration d’acide nitrique. Pour raison électronique (d8), la configuration des premiers voisins de Pd(II) est plane carrée. Les spectres XANES ont été calculés d’après les données cristallines de Pd(NO3)2*2H2O par FEFF8. Les données XANES et EXAFS sur Pd(II), présent en milieu acide nitrique, ont été enregistrées à température ambiante en transmission. Nous avons recherché tout d’abord à mettre en évidence : • la formation des complexes : Pd(NO3)+, Pd(NO3)2, Pd(NO3)3– et Pd(NO3)42• la structure des ions : Pd2+ aqua, Pd(NO3)+, Pd(NO3)2, Pd(NO3)3– et Pd(NO3)42-. Les résultats de l’analyse EXAFS sont les suivants : • La position et l’amplitude du premier pic (Pd-O) dans le TF d’EXAFS ne varient pas avec la concentration d’acide nitrique. L’analyse EXAFS des premiers voisins de Pd(II) en milieu acide nitrique donne : N(Pd-O)=4 ; R= 2.00±0.02 Å ; DW = 0.003±0.0005 Å2. • En revanche, l’amplitude du deuxième pic dans le TF d’EXAFS varie fortement avec la concentration d’acide nitrique. L’analyse EXAFS des deuxièmes voisins de Pd(II) en milieu acide nitrique donne : HNO3 10 M N=4 (NO3) formation des complexes: Pd(NO3)3– et Pd(NO3)42HNO3 6 M et 3M N=2 (NO3) formation du complexe Pd(NO3)2 HNO3 1 M et 2M N=1 (NO3) formation du complexe Pd(NO3)HNO3 0.45 M et HClO4 2M formation de l’ion aquo du palladium : Pd(H2O)42+ Resonant auger spectrocopy on acrylonitrile multilayers, comparison with the gas phase J.-J. Galleta, F. Bournela, S. Kubskya, G. Dufour a, F. Rocheta,b, F. Sirottib, E. Kukkc a Laboratoire de Chimie Physique, Université Paris 6, Paris, France. b LURE, Centre universitaire Paris-Sud, Orsay, France. c Department of Physical Sciences, Oulu University, Oulu, Finland. We present a resonant Auger spectroscopy study of solid acrylonitrile condensed on a Si(001) substrate at the N K-edge of the NEXAFS spectra. The three Pi* NEXAFS transitions, denoted 3a", 13a' and 4a" in the Cs symmetry group of the molecule, are polarized in the molecular plane (a' symmetry) or perpendicular to it (a" symmetry), the highest energy transition, 4a", being close to the ionization potential (the term value is about –1 eV). A strong selectivity with the symmetry of the probed unoccupied orbital is observed for both participator and spectator channels intensities. When the incidence energy is tuned to the first peak (3a" transition) we observed strong resonant photoemission channel mainly from the HOMO, 2a" symmetry, whereas at the 13a', the resonant photoemission channel essentially concerns orbitals of a' symmetry. At both 3a" and 13a' NEXAFS resonances, intense participator channels and strong spectator shifts are observed (4.7 and 6.6 eV, respectively), indicative of a localization of the promoted electron around the core-hole. Departures from a Raman behavior are also seen and discussed in terms of possible vibronic effects. At the third NEXAFS resonance (4a"), two spectator Auger contributions are observed at kinetic energy 1.5 and 4.7 eV above the normal Auger position. Beyond the edge only one Auger (at 1.5 eV above the normal position) persists. We propose that the promoted electron into the 4a" orbital remains localized around the core hole, however it has a non-zero probability of being transferred into a more delocalized level. This study is compared with a resonant Auger spectroscopy study of the acrylonitrile gas phase. Auger decay peaks are strongly modified as a function of excitation energy, and shifts from the centroïd position are observed due to the presence of vibrational state. Moreover at the third NEXAFS resonance 4a", no configuration interaction are observed as in the solid phase meaning a strong localisation of the promoted electron. Elastic properties of supported polycrystalline thin films: an x-ray diffraction study P. Goudeau, P. Villain, P.-O. Renault, K.F. Badawi Laboratoire de Métallurgie Physique – UMR 6630 CNRS – Université de Poitiers SP2MI, Bvd Marie et Pierre Curie, B.P. 30179, F-86962 Futuroscope Chasseneuil Cedex Thin films deposited on non epitaxial substrates by ion beam sputtering often exhibit large compressive residual stresses and nanocrystalline structures. Theses features are tightly controlled by the deposition process (mainly the deposited atom energy) and confer to the films interesting physical properties. Among the most widely used methods to study thin film mechanical properties, x-ray diffraction (and in particular the sin2ψ method) is the unique non destructive and phase selective technique which allows to study both the micro structural and mechanical state in crystalline samples; the inter planar atomic distance is used as an internal strain gauge. However, x-ray diffraction is difficult to use in low dimensional systems because the diffracted intensities are weak due to the reduced thicknesses and nanocrystalline character of such materials. These problems may be solved using intense x-ray sources such as synchrotron radiation (S.R.). In addition to the high flux characteristic of S.R. facilities, the wide wavelength spectra and the optics (micro beam) which are now available on 3rd generation SR beam lines only allow to perform specific XRD experiments which are not possible with classical x-ray sources in laboratories. This communication will focus on the two following research axis: - In situ tensile testing for elastic constant determination (Beam Lines H10, D. Thiaudière & M. Gailhanou and DW22, E. Elkaïm): due to the particular microstructure (grain size effect – multilayers), the thin film elastic constants may differ from the bulk material ones (if there exist!). When applying in situ strains to the sample, it is then possible to extract elastic constants from X-ray diffraction data, - X-ray micro beam for thin film buckling analysis - residual stress mapping (ALS Berkeley, N. Tamura & H. Padmore): depending on the deposited thickness and substrate nature, relaxation of the stored elastic energy in the films may lead to thin film delamination. µXRD local stress measurements have been done on the blister shown in fig. 1 with 2x3 µm2 spot size. Figure 1: AFM image of a Blister presents in a 630 nm gold film sputter deposited on Si substrate; the in plane width is around 40 µm and the height of 1.2 µm. References: Philippe.Goudeau@univ-poitiers.fr X-ray diffraction from crystals under electric fields. Results on a-quartz R. Guillot a, P. Allé a, P. Fertey a, N.K. Hansen a, and E. Elkaïm b a Laboratoire de Cristallographie et Modélisation de Matériaux Minéraux et Biologiques, CNRS -7036, Université Henri Poincaré – Nancy I, B.P. 239, 54506 Vandoeuvre-lès-Nancy CEDEX, France. b LURE, Bât.209D, Centre Universitaire Paris-Sud, B.P. 34 - 91898 Orsay CEDEX, France. The aim of our work is to analyse using of X-ray diffraction, the correlations between structural and physical properties of crystals onto which an electric field is applied. In Nancy we have, based on the ideas of previous work [1,2], build a device using a field switching technique. It consists of a high voltage supply (Vmax= 5 kV), the electronics for switching the field (+,0,-,0) at frequencies between 104 and 10-2 Hz, and synchronous counting on four chains combined with a control for step-scanning the diffraction profiles. By using this 'stroboscopic' technique, it is possible to measure very small changes in the Bragg angles due to the strain resulting from the converse piezoelectric effect, and also to measure minute changes in the Bragg intensities due to polarisations of atomic structure and electron density [3]. Measurements were carried out at LURE with the 4-circle diffractometer WDIF-4C on α-quartz. Quartz is a well-characterised piezo-electric material and perfect crystals are available. Electrodes were vapour deposited onto the (2-10) extended faces of a crystal plate of dimensions 5 x 5 x 0.52 mm. We have been able to determine the known d11 piezo-electric tensor coefficients by measuring changes in the Bragg angles as small as 0.0002°. The changes in Bragg intensities for 26 reflections were also measured. Different models have been investigated for explaining the origin of piezoelectric effect by a refinement of the modification of an initial structure by a least squares method. The result of this refinement is a reorientations without any modification of the tetrahedron Si(2)O 4 which make up chains in direction of the electric field, a modification of the angles of the second tetrahedron which bind the chains imply a modification of the bridge angles Si- O-Si(2). O3 O Si O O_3 O O3 Si Si_2 O_2 Electric field We will continue with a study of the effect of electric fields on the isostructural compounds AlPO4 and GaPO4 . [1] A. Paturle, H. Graafsma, H.-S. Sheu, P. Coppens & P. Becker (1991) Phys.Rev.B43,14683-14691. [2] H. Graafsma, G.W.J.C. Heunen, S. Dahaoui, A. El Haouzi, N.K. Hansen & G. Marnier (1997) Acta Cryst.B53, 565-567. [3] R. Guillot, P. Allé, P. Fertey, N. K. Hansen and E. Elkaim (2002) Applied Crystallography. in press. Characterization of Th1-xUxO2 solid solutions by EXAFS G. Heisbourg, J. Purans, N. Dacheux, and S. Hubert Institut de Physique Nucléaire, 91406- Orsay In the last decade, there has been a renewal of interest in studying the faisability of thorium based fuel reactors as a potential advanced fuel for Generation IV nuclear energy systems that can be operated to relatively high burn-ups, and producing less minor actinides than uranium based fuel. In addition, ThO 2 -UO2 fuels will result in a more stable and insoluble waste form, very resistant to weapons- material proliferation. Also solid solutions of uranium and thorium oxide are being developed as fuel for the thermal breeding reactors and high temperature gas cooled reactors. If ThO 2 -UO2 solid solutions have been often characterized by using XRD, no any XAFS data on the local structure on solid solutions of this system exists in the literature. In this study, various compositions of mixed oxides have been prepared through the coprecipitation of the mixed oxalates from nitrate solutions. Both XRD and EXAFS have been tested to characterize the structure of the ThO 2 -UO2 solid solutions. The lattice parameters, the fine atomic structure and the ionic distances of the cubic ThO 2 -UO2 solid solutions are determined respectively from X-ray powder diffraction and EXAFS. Experimental x-ray absorption spectra were recorded at the uranium and thorium LIII edge in the transmission mode at the LURE DCI hot line storage ring on the D44 (XAS4) beamline. The U-O and Th-O distances obtained varie slightly upon dilution. These values of the are close to the ones expected from the Vegard’s law but are always smaller than the ones expected in VCA. On the contrary, the U-U(Th) and Th-Th(U) distances varie strongly upon dilution and the values are close to the ones expected from the VCA model but are always smaller than the ones expected by the Vegard’s law. Therefore we conclude that thorium and uranium ions form solid solution. The dependences of the Th-O and Th- Th(U) distances from the composition have a break at x≈0.2 and Th-O distance is almost constant at x≤0.2 and slightly decreases upon dilution. There are also a few XRD reports where slight deviation from the ideality has been observed. The values of the Th-Th(U) distance in the comparison with U-U(Th) are closer to the ones expected from the Vegard’s law. Photoemission studies of clean Si(100) surface and of Mn/Si(100)-H interface formation L. Lechevallier (a), R. Brochier (a), R. Flammini (b) , C.M. Teodorescu (b) , O. Heckmann(a)(b) , C. Richter (a),V. Ilakovac (a), V.L. Than (c), A. Taleb-Ibrahimi (b) , K. Hricovini (a)(b) (a) LPMS, Université de Cergy-Pontoise, 95031 Cergy-Pontoise (b) LURE, Centre universitaire Paris Sud, Bât. 209d, B.P. 34, 91898 Orsay (c) IEF, Centre Universitaire Paris-Sud, Bât. 220, F-91405 Orsay, France We have studied clean Si(100)-H surface by core- level photoemission spectroscopy. Deconvolution of Si 2p spectra recorded with different photon energies enabled us to show the presence of 4 components on the clean Si(100)-H surface. In addition to the bulk component, we found 2 surface components lying at higher binding energies that can be attributed to Si- H2 (42meV) and to Si- H (24meV) bonds. Finally, there is a fourth component at lower binding energy (-16meV), as compared to the bulk one. Its origin still today leads to numerous discussions and whose behaviour differs from Si- H and Si-H2 components. The second part of our work concerns the growth of Mn thin layers (0.5 - 8 monolayers) on the Si(100)-H surface. We show that the reactivity of Mn is inhibited by the presence of Si- H bonds and the growth of Mn is essentially layer-by layer. XAS study of Chromium in Cr:Li2MgSiO 4 C. Jousseaume a, F. Ribot b, F. Villainc, A. Kahn-Hararia, D. Viviena a Laboratoire de Chimie Appliquée de l’Etat Solide (UMR 7574) – ENSCP 11, rue Pierre et Marie Curie – 75231 Paris Cedex 05 – France. b Laboratoire de Chimie de la Matière Condensée (UMR 7574) – Université P. et M. Curie 4, place Jussieu, Tour 54 – 5 ème étage – 75252 Paris Cedex 05, France. c Laboratoire de Chimie Inorganique et Matériaux Moléculaires, ESA CNRS 7071 U.P.M.C, 4 place Jussieu, 75252, Paris Cedex 05 – France. c LURE, UMR 130, Université Paris-Sud, 91898 Orsay Cedex – France. The knowledge of chromium environment is necessary to understand the remarkable optical properties of CrIV in Li2 MgSiO 4 where the fluorescence lifetime is 10 times greater than for similar materials like forsterite (Mg2 SiO 4 ) and yttrium aluminium garnet Y3 Al5 O12 (YAG) [1]. The aim of our EXAFS work was to determine the environment of CrIV (d2 ion) in Li2 MgSiO 4 very weakly doped with chromium (~0.05%), and to follow by XANES the oxidation states of Cr (IV, V, VI) during the different elaboration steps of Cr:Li2 MgSiO 4 . Such a matrix contains several tetra-coordinated sites, so the determination of chromium location is not straightforward. Indeed, CrIV should rather substitute for Mg or Li, considering its size, but due to its charge, the Si site would be more appropriate. EXAFS and XANES investigations on polycrystalline samples, prepared by solid state reaction, have allowed to identify a parasitic phase (LiCrO 2 ) which was below X-ray diffraction sensitivity. This phase, LiCrO 2 even though in small proportion, contained most of the chromium atoms and prevented from analysing the environment of chromium included in Li2 MgSiO 4 . Recently, and for the first time in the laboratory, single crystals of Cr:Li2 MgSiO 4 were obtained by the flux method [2]. EXAFS and XANES indicate, first, that chromium is in fourfold coordination; second, that the Cr-O bond length, is about 1.68 Å. Studies have also been performed on Cr:Li2 ZnSiO 4 which exhibits the same structure and same optical behaviour, but contains second shell neighbours (Zn and Si) that can be differentiated through their retrodiffusion characteristics, which was not possible with Mg and Si in Li2 MgSiO 4 . Results tend to indicate that Cr substitute for Si in Li2 MgSiO 4 ; this is consistent with its characteristics (charge and size). The knowledge of the chromium environment will now allow us to achieve crystal field calculations. [1] - K.A. Soubbotin, V.A. Smirnov, S.V. Kovaliov, H.J. Scheel, E.V. Zharikov, Opt. Mater. 13 405-410 (2000). [2] - C. Jousseaume, A. Kahn-Harari, D. Vivien, J. Derouet, F. Ribot, F. Villain, J. Mat. Chem., accepted for publication. Study of amorphization by Alkali-Aggregate Reaction in SiO 2 aggregate by XANES and X-ray diffraction J. Verstraete1 , L. Khouchaf1 , D. Bulteel1 , E. Garcia-Diaz1 , R. Cortès2 , A.M Falnk 2 and M.H. Tuilier3 1-Centre de Recherche de l’Ecole des Mines de Douai, 941, rue Charles Bourseul BP.838 59508 DOUAI- France. (e.mail : khouchaf@ensm-douai.fr). 2) LURE, Bât 209D 91405 ORSAY Cedex France. 3-Laboratoire de Physique et de spectroscopie Electronique, FST, 4, rue des Frères Lumière F-68093 – Mulhouse France Cedex The effect of the Alkali- Aggregate Reaction on the structure of the concrete has been largely studied. Several assumptions are proposed to explain the origins and the mechanisms of this reaction and its role in the degradation of the concrete. We have been using a new approach which seems very promising and which consists in characterising the change of the crystal structure of the SiO 2 aggregate. X-ray diffraction and XANES spectroscopy have been used. Dien Li et al. showed the interest of the X-ray absorption XANES to observe the amorphization in compounds containing SiO 2 [1,2] and contributed to the interpretation of the structures which appear in the Si XANES spectra. Through a recent study we showed the interest of the X-ray diffraction to study the evolution of the crystal structure of the flint aggregate during the reaction [3]. We showed that the mode of degradation of the aggregate and its speed constitue significant parameters to evaluate the structural state of concrete. In this study we present the evolution of the degradation of the crystal structure of the flint aggregate by Alkali- Aggregate Reaction attack. These results will be combined with the results of the NMR and the chemical analysis. Thanks to Si-K XANES results we have highlighted the amorphization of this aggregate during the reaction (fig.1). X-ray diffraction enabled us to estimate the percentage of the fraction of the amorphous aggregate in agreement with the results of the chemical analysis (fig.2). We show that the degradation of the aggregate during the reaction is more complex than a single transformation of c-SiO 2 into amorphous silica. A study by EXAFS is in hand to quantify the local environment of silicon. These data should contribute to understanding the mechanisms of the Alcali- Aggregate Reaction in the concrete. fig .1 : XANES spectra of (a) quartz, (b) flint aggregate after 168 hours of attack by the Alcali-Aggregate Reaction fig .2 : Evolution of the rate of the amorphous fraction according to the duration of the reaction. [1] DIEN LI et al, « High-Resolution Si K and L2,3 edge XANES of α-quartz and sishtovite », Solid State Communication, 87, 613-617 (1993). [2] DIEN LI et al, « X-ray absorption of silicon dioxide (SiO2) polymorphs : The structural characterization of opal » American Mineralogist, 79, 622-632 (1994). [3] D. Bulteel, E. Garcia -Diaz, J. Dürr, L. Khouchaf, C.Vernet, J.M. Siwak, « Etude d’un granulat alcali-réactif par diffraction des rayons X », J.Phys.IV, 10, 513-520 (2000). Structure and fragmentation dynamics of N 2++ and NO ++ ions M. Ahmad1 , J. G. Lambourne 1 , P. Lablanquie2 , J.H.D. Eland 3 , R.I. Hall1 and F. Penent 1, 1 DIAM, Université P & M Curie, 75005 Paris, France. 2 LURE, Centre Universitaire Paris-Sud, 91898 Orsay, France. 3 PTCL, Oxford University, Oxford OX1 3QZ, UK Doubly charged molecular ions or dications can be expected to dissociate rapidly due to the Coulomb repulsion between the two positively charged ions. However, quasi-stable states can exist above the dissociation limit because of chemical bonding between electrons at short internuclear distances. A local potential minimum, deep enough to host vibrational states, can be present. Thus, depending on the properties of the potential surface, these doubly charged ions can be either (meta)stable or fragment to lower dissociation limits. We investigate the structure and the dissociation dynamics of dications through the double photoionisation processes. Our experimental method uses synchrotron radiation and threshold photoelectrons coincidence spectroscopy (TPEsCO) combined with ion time-of- flight spectroscopy. We are thus able to obtain information on the vibrational structure of the different electronic states and characterize the stability, lifetimes, and dissociation paths of these vibrational states [1]. This TPEsCO technique has allowed us to observe, for the first time, indirect doublephotoionization below the adiabatic double- ionization threshold for N2 ++ formation. These below-threshold cation pairs were first observed in ion- ion coincidence experiments on H2 O [2] and CO [3] and in threshold photoelectron-photoelectron coincidence observations for O2 ++ [4]. Following our initial study of the CO++ dication [1], we have extended our observations to the N2 ++ and NO++ species. In the case of N2 ++, we observe a sharp transition from metastable states to rapidly dissociating states, as a function of the dication internal energy. This occurs for an internal energy of near 2.5 eV indicating the high stability of the lowest states of this dication. The N2 ++ and NO++ ions are the only ones for which optical data also exists [5,6]). The states known from fluorescence studies, D1 Σ u+ (v=0) for N2 ++ and B2 Σ + (v=0) for NO++, evolve to stable states of the dication by fluorescence. We have demonstrated, in each case, that these processes are in competition with fragmentation. Branching ratios between fluorescence and fragmentation paths can then be established. References [1] F. Penent et al, Phys. Rev. Lett. 81, 3619 (1998) [2] D. Winkoun, G. Dujardin et al, J. Phys. B 21, 1385 (1988) [3] P. Lablanquie, et al., Phys. Rev. A 40, 5673 (1989) [4] P. Bolognesi, et al., Phys. Rev. Lett 82, 5673 (1999) [5] D.Cossart et al, J.Mol.Spectrosc. 113, 142, (1985) [6] D.Cossart et al, J.Mol.Spectrosc. 125, 142, (1987) Autoionizing Neon Resonances Separated From Multiple Ionization Continua J. G. Lambourne1, P. Lablanquie2, F. Penent1, R.I. Hall1, M. Ahmad1, P. Hammond3 1 DIAM, Université P & M Curie, 75252 Paris Cedex 05, France LURE, Centre Universitaire Paris-sud, Bâtiment 209D, BP 34, 91898 Orsay, France 3 Department of Physics, University of Western Australia, Crawley, Perth, WA6009, Australia 2 The fluorescent decay of the Ne 2s2p6(2S)np 1Po series of autoionizing states has been observed previously by Lablanquie et al [1]. The fluorescence of doubly excited resonances converging to higher thresholds of Ne+ is hidden by the fluorescence of excited ion states. The experiment presented here uses the time structure of Super ACO, operating in two-packet mode, to distinguish this prompt fluorescence from the slow secondary fluorescence of long lived singly excited states (lifetimes of the order of 30ns [2]). The possible excitation and decay processes are as follows Ne+ + hv (Prompt) hv + Ne Ne** Ne+* + e- (Prompt) Ne* + hv (Prompt) Ne (Ground State) + hv (Secondary Fluorescence τ=30ns [2]) NeM (Metastable State) + hv (Low Energy) The detection system consists of a micro-channel plate Z stack behind two grids, polarized to repel ions and electrons. Metastable states and photons with energy greater than 10eV were detected. Signal arriving within a 10ns window, which covered the 500ps incident light pulses, was recorded separately from signal arriving in the 110ns interval between pulses. The yield of threshold electrons was also recorded. Figure 1 shows the resulting spectra. As the lifetime of the Ne+ 2s2p6 2S state is 110ps [3] interference with the 2s2p6 2S continuum is completely removed from the secondary fluorescence and metastable atom yield. 4 1 3 62 2s2p np Series 5 6 2 2p ( D)3s( D)np Series Prompt Photons 4 5 6 7 8 7 89 2 Secondary Fluorescence and Metatstable Atoms 4 3 2 2s 2p ( P)3s( P3/ 2)np1/ 2,3/2 Series 6 7 8 9 2 4 3 2 2s 2p ( P)3s( P1/ 2)np1/ 2 Series 4 6 7 8 Threshold Electrons 62 2s2p S1/ 2 Threshold 2 4 3 2 2s 2p ( P)3s P3/2, 1/2 Thresholds 48 49 50 51 Photon Energy (eV) 52 Figure 1: Prompt photon yield (t<10ns), secondary fluorescence and metastable atom yield (t>10ns) and threshold electrons. [1] P. Lablanquie et al, Phys. Rev. Lett. 84, 431 (2000) [2] D. J. Chornay et al, J. Phys. B, 17, 3173 (1984) [3] C. T. Johnson and A. E. Kingston, J. Phys. B 20, 5663 (1987) Quadrupolar transitions evidenced by resonant Auger J. Danger1,2, P. Le Fèvre1 , H. Magnan1,2, D. Chandesris 1 , J. Jupille3 , S. Bourgeois4 , T. Eickhoff5 and W. Drube5 1 LURE, CNRS-Université Paris Sud, Bât. 209d, BP34, 91898 Orsay cedex, FRANCE 2 SPCSI, CEA Saclay, 91 191 Gif sur Yvette, FRANCE 3 GPS, CNRS-Université Paris VI et VII, 2 place Jussieu, 75251 Paris cedex 05, FRANCE 4 LRRS, CNRS -Université de Bourgogne, BP47870, 21078 Dijon cedes, FRANCE 5 HASYLAB at DESY, Notkestraße 85, 22603 Hamburg, GERMANY The hamiltonian describing the interaction between a photon and matter can be written to second order as a sum of electric dipolar and quadrupolar terms [1]. If most of the simple absorption experiments can be interpreted within the electric dipolar approximation, the introduction of quadrupolar transitions is necessary for the interpretation of magnetic effects in absorption measurements. For instance, the magnetism of selected orbitals can be probed by X-ray Magnetic Circular Dichroism; for experiments at the L2,3 edges of rare earths, quadrupolar transitions from the 2p levels towards the 4f orbitals (which generally carry most of the magnetic moment in rare earths compounds) give a signal of the same order of magnitude as the one due to the dipolar 2p→5d transitions [2]. In Resonant X-ray Magnetic Scattering, the signal due to quadrupolar transitions is predominant at the L3 -edge of rare earths (2p→4f) [3] or at the K-edge of transition metals (1s→3d) [4]. For a better understanding of the experimental data obtained from these techniques, it is of key importance to be able to bring to the fore the occurrence of quadrupolar transitions in absorption spectra, as well as to quantify their intensities. From absorption spectra, quadrupolar transitions can only be studied by angular-dependent measurements [5]. Resonant spectroscopies offer a new opportunity to get more insight into excited states of atom by studying lineshapes and intensities of decay processes. We show that resonant Auger spectra carry a clear signature of an additional electron promoted in localized empty states via a quadrupolar transition. In our measurements on TiO 2 , we were able to determine the relative weight of quadrupolar transitions at the Ti K-edge, as well as the symetries of the orbitals reached by the photoexcited electron. References [1] C. Brouder, J. Phys.: Condens. Matter 2, 701 (1990). [2] F. Baudelet, Ch. Giorgetti, S. Pizzini, Ch. Brouder, E. Dartyge, A. Fontaine, J. P. Kappler and G. Krill, J. Electron Spectrosc. Relat. Phenom. 62, 153 (1993); H. Matsuyama, K. Fukui, K. Okada, I. Harada and A. Kotani, J. Electron Spectrosc. Relat. Phenom. 92, 31 (1998). [3] K. Dumesnil, C. Dufour, A. Stunault and Ph. Mangin, J. Phys.: Condens. Matter 12, 3091 (2000). [4] W. Neubeck, C. Vettier, K.-B Lee and F. De Bergevin, Phys. Rev. B 60, R9912 (1999). [5] G. Dräger, R. Frahm, G. Materlik and O. Brümmer, Phys. Stat. Sol. (b) 146, 287 (1988). Imaging and time-of-flight resolved coincidence studies of dissociative photoionization of small molecules M. Lebech1, J. C. Houver1, R. R. Lucchese2, and D. Dowek1 1 Laboratoire des Collisions Atomiques et Moléculaires, Université Paris-Sud, 91405 Orsay, France. 2 Department of Chemistry, Texas A&M University, College Station, Texas 77842-3012, USA Time-of-flight resolved ion-electron coincidence detection and imaging techniques with two delay-line anode position sensitive detectors (PSD) have been combined to develop the vector correlation method [1] for the study of dissociative photoionization (DPI) of simple molecules. In DPI of XY molecules, induced by VUV linearly polarized pulsed synchrotron radiation (P) (Super ACO, LURE) XY + h?(P) → (XY)** → X+ + Y* + e X and Y being either atomic or molecular fragments, the vector correlation approach consists in measuring for each event the Vx + and Ve nascent ion and electron velocity vectors. Ions and electrons are extracted from the interaction region by a DC uniform electric field, whose magnitude insures a 4p collection of both particles. For each (X+, e) coincident event the time-of-flight T and impact coordinates (x, y) on the PSD are measured for both particles, thus providing the (Vx +, Ve) velocity vectors [2]. Electrostatic lenses have been implemented after the extraction region and allow us to increase the resolution of the determination of the velocity components [3]. The magnitudes of the Vx + and Ve velocities provide the ion and electron kinetic energy correlation which identifies the pathway for each process, intermediate state and dissociation limit, and leads to the branching ratios between different processes. The complete 3D angular distribution I(?x+, ?e, f e), where ?x+ is the polar angle of Vx + referred to P, ?e and f e are the polar and azimuthal electron emission angles in the molecular frame, is derived from the spatial analysis of the (Vx +, Ve, P) vector correlation for each process. In particular it gives access to the I(?e, f e) molecular frame photoelectron angular distributions (MFPADs) for any orientation of the molecular axis with respect to the polarization [4]. These observables provide original information about the symmetry of the (XY)** states of the continuum, including shape resonances or autoionizing states, and of the dynamics of the ionization and fragmentation processes. Recent results will be presented for DPI of small polyatomic molecules like N2O and CO2 and compared with related PEPICO studies [5]. The MFPADs for photoionization of N2O into the N ? 2O+(C 2S+) state will be presented and compared with recent theoretical investigations [6]. [1] A. Lafosse, M. Lebech, J. C. Brenot, P. M. Guyon, O. Jagutzki, L. Spielberger, M. Vervloet, J. C. Houver, and D. Dowek, Phys. Rev. Lett. 84, 5987 (2000) [2] A. Lafosse, J. C. Brenot, A. V. Golovin, P. M. Guyon , K. Hoejrup, J. C. Houver, M. Lebech, and D. Dowek, J. Chem. Phys., 114 6605 (2001) [3] M. Lebech, J. C. Houver, and D. Dowek, Rev. Sci. Instrum. 73, 1866 (2002) [4] R. R. Lucchese, A. Lafosse, J. C. Brenot, P. M. Guyon, J. C. Houver, M. Lebech, G. Raseev, and D. Dowek, Phys. Rev. A 65, 020702 (2002) [5] E. Kinmond, J.H.D. Eland, and L. Karlsson, Int. J. Mass Spectrom., 185 (1999) 437 [6] M. Lebech, J. C. Houver, R. R. Lucchese, and D. Dowek, submitted to J. Chem. Phys. Characterization and calibration of a silicon drift detector Marie-Christine Lépy1, Laurent Ferreux1, Christian Rémond2 1 : Bureau National de Métrologie / Laboratoire National Henri Becquerel CEA Saclay - 91191 GIF-SUR-YVETTE Cedex 2 : Commissariat à l’Energie Atomique / DCRE DE LDX B.P.12 - 91680 BRUYÈRES-LE-CHÂTEL Semiconductor (Si or Ge) detectors are traditionnally used for X-ray spectrometry and analysis ; however, to attain optimum resolution, they need to be cooled with liquid nitrogen what results in relatively cumbersome setups, needing frequent filling operations. In front of these drawbacks, the recently available silicon drift detectors (SDD) a priori presents interesting characteristics. The peculiarity of such detectors is the extremely low anode capacitance which is moreover completely independent of the active area. This feature allows reaching higher energy resolution because the signal is less sensitive to the noise contribution of the subsequent amplifying electronics. Thus, it can be used without cooling or with a moderate cooling such as obtained using a thermoelectric cooler (Peltier element). Thus, the detector and its cooling element are included in a compact module, easy to use and to store. To derive the actual interest of such detectors for routine uses, the calibration and characterization of a SDD have been performed at the SuperACO SB3 beamline in the 800 eV – 6 keV energy range. The exit of the monochromating setup is equipped with a proportional counter (Ar-CH4), with a well-regulated pressure, used as the reference detector for efficiency calibration [1]. The detector has an active surface of diameter 2,5 cm and is equipped with a 8 µm beryllium window. The detector resolution (FWHM) is 170 eV à 5.9 keV (it is a "medium" quality detector, as better quality one can attain resolution of 140 eV). The efficiency calibration is obtained over the energy range with a mean relative uncertainty of 2 %, and the thickness of the different absorbers (window + anode material) can be deduced. The detector response function is also studied versus the energy : the spectra are fitted using a Hypermet function. This shape includes a gaussian peak with an exponential left tail superimposed over a constant background ; the evolution of the different shape parameters over the energy range is determined, including the shape change at the silicon K edge. Using a thin collimator (diameter = 100 µm), the detector active area has also been scanned what allows to show relatively constant efficiency, but significant degradation in the shape of response function, even in the detector central part. Thus, at first sight, the studied SDD presents a satisfying global behaviour, however, when looking more carefully, the above-mentionned amazing details will require further studies. Moreover, a major last point is the electronic module « black box » what excludes any intervention from the user. As the evolution of the peak position versus the energy shows a unique slope, the one of the peak width exhibits a dramatic change when the background increases : this is unexpected and should be taken into account for detailed spectra processing. Reference : [1] Experimental study of the response of semiconductor detectors to low-energy photons. M.C. Lépy, J.L. Campbell, J.M. Laborie, J. Plagnard, P. Stemmler and W.J. Teesdale Nuclear Instruments and Methods in Physic Research A 439 (2000) 239-246. Relevance of the drying step in the preparation by impregnation of Zn/SiO 2 supported catalysts Cyril Chouillet a , Maggy Kermarec a, Hélène Lauron-Pernot a, Catherine Louis a, Françoise Villain b,c a) Laboratoire de Réactivité de Surface, UMR 7609 CNRS, b) Laboratoire de Chimie Inorganique et Matériaux Moléculaires, UMR 7071 CNRS, Université Pierre et Marie Curie, 4 place Jussieu, F75252 Paris Cedex 05, France c) Laboratoire pour l'Utilisation du Rayonnement Electromagnétique, Bât 209D Centre Universitaire - B.P. 34 - 91898 Orsay Cedex The method of impregnation is the most basic and simple method for the preparation of supported catalysts. It is usually admitted that after impregnation of an oxide support with a precursor salt followed by drying and calcination, the corresponding metal oxide is formed onto the support. The results presented here for the preparation of silica-supported zinc show that the formation of ZnO is not straightforward and that XAS is a very useful tool to identify the nature of the zinc. Impregnation of silica with a small volume of solution of zinc nitrate leads to a highly spreaded zinc nitrate phase. Three types of samples are obtained depending on the temperature of drying : 1. After drying at 25 or 50 °C, the supported zinc phase is amorphous in XRD, but it was clearly identified as [Zn(H2O)6]2+ by XAS. 2. When the samples are dried between 90 and 150 °C, part of the zinc nitrate transforms into zinc hydroxynitrate detected by XRD: Zn(OH)(NO3).H2O at 90 and 120 °C and Zn5(OH)8(NO3)2.2H2O at 150 °C while the other part which is amorphous, was identified thanks to XAS as a mixture of [Zn(H2O)6]2+ and zinc silicate phase of hemimorphite-type (Zn4Si2O7(OH).H2O). This indicates that part of the zinc reacts with the silica surface during the drying step. 3. After drying at 200 °C, the supported zinc phase is also amorphous and XAS showed that most of the zinc (85 %) is of hemimorphite-type. After calcination, the Zn/SiO 2 samples which do not contain zinc hydroxynitrate after drying, i.e., the samples dried at 25, 50 and 200 °C, are amorphous (XRD). XAS shows that they contain only the zinc silicate phase of hemimorphite-type. In contrast, those which contain zinc hydroxynitrate after drying (samples dried at 90, 120 and 150 °C), also contain ZnO after calcination, but the ZnO particle size depend on the drying temperature. Drying at 150 °C leads to large ZnO particles (>100 Å) after calcination, which are also detected by XRD. Drying at 90 °C leads to small ZnO particles (about 30 Å) after calcination, detectable only by UV-visible and electron microscopy. In both cases, XAS reveals that the main Zn specie is again the silicate phase of hemimorphite-type. Caractérisation structurale d'ions par spectroscopie IR : couplage d'un piège à ions FT-ICR avec le LEL IR Philippe Maitre Laboratoire de Chimie Physique, Université de Paris XI, Bâtiment 350 91405 Orsay Cedex, FRANCE L'étude en phase gazeuse de molécules ou d'agrégats permet une compréhension détaillée de l'influence de paramètres structuraux ou énergétiques sur les propriétés physico-chimiques de systèmes complexes. A cet égard, l'étude des ions et des réactions ions-molécule s'avère particulièrement intéressante, notamment dans les domaines de la chimie organique et organométallique, de la modélisation des milieux dilués (planétaire, interstellaire, ...) et de la biochimie, domaine en plein essor. Notre objectif est d'exploiter la source Infra-Rouge intense et accordable délivrée par le laser à électrons libres de CLIO pour caractériser les ions en phase gazeuse par spectroscopie Infra-Rouge. Nous utiliserons un piège à ions transportable (MICRA: Mobile ICR Analyser) basé sur l'approche FT-ICR-MS (Fourier Transform Ion Cyclotron Resonance Mass spectrometry), technique offrant notamment une excellente résolution en masse et un piégeage efficace sur des temps longs (plusieurs secondes). Le long temps de piégeage en FT-ICR-MS est essentiel car il offre la possibilité de sonder la structure de l'ion via des réactions chimiques avec des molécules neutres, des collisions avec des gaz rares ou l'interaction avec un rayonnement lumineux. En maintenant une faible pression de gaz dans la cellule de réaction, ces diverses approches permettent la préparation et la sélection d'édifices moléculaires typiquement observés dans les milieux dilués ainsi que d'intermédiaires réactionnels. La sélection reposant sur le rapport masse/charge, la caractérisation structurale par spectroscopie infra-rouge serait essentielle. Des études très récentes montrent que l’utilisation d’un rayonnement IR intense et accordable permet d’accéder au spectre IR d’ions polyatomiques M+ isolés dans un piège à ions. La densité d'ions étant faible, la détection de l'absorption n'est pas envisageable. En revanche, la forte intensité du rayonnement IR délivré par un LEL permet d'induire une fragmentation de l'ion (M+->M’++neutre) via l'absorption consécutive de plusieurs dizaines de photons IR. L'intensité de la fragmentation de l’ion M+, suivie par spectrométrie de masse, en fonction de la longueur d’onde IR donne accès au spectre IR. Il semble en effet établi que la fragmentation de l'ion n'est observée que lorsque la longueur d'onde λ permet l'excitation d'un mode normal i (vi->vi+1). Le principe d’une telle dissociation induite par plusieurs photons IR de même longueur d’onde λ repose sur une redistribution très rapide de l’énergie apportée dans le mode normal i autorisant ainsi plusieurs dizaines de séquences du type (i) excitation du mode normal vi->vi+1, (ii) redistribution de l’énergie de vibration permettant le retour du mode i au niveau vi. Cette spectroscopie d'ions paraît particulièrement prometteuse, au point que le groupe Hollandais de FELIX projette de construire un LEL spécialement dévolu à cette application afin d'insérer la cellule FTICR dans la cavité. En ce qui concerne CLIO, grâce à la transportabilité d'un FT-ICR récemment développé au LCP, des premiers résultats ont été obtenus en mars 2002 mettant en évidence les potentialités intéressantes de cette approche pour la caractérisation d'intermédiaires réactionnels organométalliques. Parmi les autres études envisagées, la caractérisation spectroscopique IR d'ions polyatomiques tiendra une large place. Il est en effet maintenant bien établi que les bandes IR observées en émission dans le milieu interstellaire sont dues à des espèces polyaromatiques hydrogénées (PAH). La technique FT-ICR est sans conteste la plus adaptée pour préparer et piéger des PAH insaturés, c'est-à-dire avec un rapport H/C faible, éventuellement "chauds" qui semblent les candidats les plus intéressants. Enfin, l'Infra-Rouge offre une perspective intéressante pour caractériser les interactions faibles dans des agrégats moléculaires et des macromolécules biologiques. Des expériences de type pompe-sonde pourraient être envisagées afin d'initier et de caractériser les changements de conformation. A plus court terme, la caractérisation des changements de conformation de petits peptides induits par un cation métallique est envisagée. XAS study of the interaction of Pt species with basic sites in zeolites Pascale Massiani1 , Catherine Pommier1 , Lorenzo Stievano 1 , Françoise Villain2 1 LRS and 2 LCIM2, Université Pierre et Marie Curie, 4 place Jussieu, 75252 Paris Cedex 05, France. Background Metal supported on acidic zeolites have been widely characterised in the past (industrial catalysts for refining and petrochemistry). A recent approach consists in developing basic properties in zeolites that can be used as such (basic catalysts for fine chemistry) or as new basic supports of metals (example of the industrial aromatisation Pt/KL catalyst). Our recent spectroscopic and catalytic studies of Pd/Faujasite1,2 and Pt/BEA3-5 suggest that the metal species formed during the successive steps of preparation of the catalysts are stabilized by the basic sites, leading to higher metal dispersions after reduction. Methodology and Results In order to better identify the interactions that are involved between the zeolitic basic framework and the metal species, we have compared by XAS at the LIII edge of Pt, the oxidation state and environment of Pt in supported zeolite samples in which we have varied the zeolitic structure (Faujasite or BEA) and the basic character (change of the alkali compensating cation and/or impregnation by Cs species). Once confirmed the feasibility of the study (ex-situ experiments), we have undertaken in-situ experiments in which we have followed the state of the Pt species during thermal treatments (300-500°C) in flowing air then hydrogen. The more striking results will be presented: 1) After calcination, the oxidation state of the Pt species is significantly higher in the more basic zeolitic supports, especially in the Cs-enriched ones in which the presence of highly dispersed and strongly basic Cs2 O clusters is assumed. Moreover, the EXAFS analysis of calcined Pt/NaX reveals the presence of Si neighbours in the coordination sphere of Pt2+, supporting our previous hypothesis obtained from 29 Si MAS NMR1 of a strong interaction between the Pt2+ cations and the zeolitic framework. 2) The basicity strongly modifies the reducibility of the calcined Pt species. Thus, autoreduction by the NH3 ligands of the Pt(NH3 )4 2+ precursor, and reduction at room temperature in the presence of hydrogen are observed in the less basic samples, whereas on the more basic ones the temperatures of reduction identified by XANES are higher than 200°C and agree with those previously obtained by TPR (Temperature Programmed Reduction). The XAS data allow the interpretation of the various peaks shown by TPR profiles. Références 1- A. Sauvage, M. Oberson de Souza, M.J. Peltre, P. Massiani, D. Barthomeuf, J. Chem. Soc., Chem. Commun., 1325 (1996). 2- A. Sauvage, M. Oberson de Souza, P. Massiani, D. Barthomeuf, DGMK Tagungsbericht., Proc. DGMK-Conf. on "Catalysis on solid acids and bases", Berlin, Germany, march 4-15, 1996, 295-302. 3- F. J. Maldonado, T.Bécue, J. M. Silva, M. F. Ribeiro, P. Massiani and M. Kermarec, J. Catal., 195, 342 (2000). 4- C. Jia, A.P. Antunes, J.M. Silva, M.F. Ribeiro, M. Lavergne, M. Kermarec, P. Massiani, Stud. Surf. Sci. Catal., 130c, 2993 (2000). 5- T. Becue, F.J. Maldonado-Hodar, A.P. Antunes, J.M. Silva, M.F. Ribeiro, P. Massiani, M. Kermarec, J. Catal., 181, 244 (1999). Structure and morphology of thin cobalt films deposited on vicinal surface Cu(115) Anne Chaumin-Midoir 1,2, Hélène Magnan1,3, Luc Barbier3 , Patrick Le Fèvre1 , Dominique Chandesris1 , and Fabrice Scheurer4 1 LURE, CNRS-Université Paris Sud, Bât. 209d, BP34, 91898 Orsay cedex, FRANCE 2 GPMD, Université Paris XII, 94010 Créteil Cedex, FRANCE 3 SPCSI, CEA Saclay, 91 191 Gif sur Yvette, FRANCE 4 IPCMS, 23 rue du Loess 67037 Strasbourg FRANCE Thin magnetic films deposited on single-crystal substrates are well known to present magnetic properties that cannot be found in bulk solids. Surface magneto-optic Kerr measurements on Co/Cu(115) show no loops below 5 ML and an in-plane uniaxial magnetic anisotropy with an easy axis parallel to the step edges for thicker films. The origin of this uniaxial anisotropy is currently believed to arise from missing bonds at the step edges (Néel-type anisotropy) and/or strain in the film (magnetoelastic anisotropy). In order to determine the origin of these magnetic properties, we present here a detailed study of morphology and crystallographic structure of thin Co/Cu(115) films. We used the combination of two techniques: STM and SEXAFS at the Kedge of cobalt. The Cu(115) surface is a vicinal surface of Cu(001): (001) terraces with a width of 2.5 atomic spacing, separated by steps along [-110]. The clean surface presents wide flat (115) domains. Co films were evaporated at room temperature in UHV conditions. At the very first stage of Co growth (0.01 ML), the size of the domains is strongly decreased, showing collective displacement of Cu atoms. The second stage of growth (between 1 and 3 ML) is characterised by quite isotropic islands. High-resolution analysis of their height profile along [110] at 1 ML show that their ascending side is (111) oriented while their descending side is (001) oriented. At 3 ML, the islands are more regularly organised on the surface with an average size of about 60-70Å. They are constituted of about four Co layers (115) flat topped with (111) and (001) oriented sides along [110]. At the third stage of growth (above 5 ML), these islands coalesce but some deep holes are formed on the surface. We see relatively straight steps aligned with the [-110] easy magnetic axis. For 8 ML a surface faceting is evidenced with (113) and (001) facet planes along [110] and a complete vanishing of (111) facets. EXAFS measurements were performed at 77K on thin Co/Cu(115) films evaporated at room temperature for thicknesses above 1ML. For each sample, we have recorded three spectra using three unequivalent directions of the linear polarisation of the X-rays ([-110], [110] and [001]) This allows to measure the lattice parameters in all the crystallographic directions with the same accuracy. For 1 ML, as on the flat Cu(001), we find a tetragonaly distorted structure with a lattice parameter parallel to the interface equal to the bulk Cu one [1]. For 3 ML on Cu(115), the structure is completely isotropic with a first nearest neighbour distance of 2.53 Å (a value between Cu and Co bulk lattice parameters). This partial relaxation can be correlated with the presence of islands and holes on the surface. For higher thicknesses (5 and 8 ML), Co adopts a slightly anisotropic face centred tetragonal structure. The nearest neighbour distance remains the same for the two in-plane directions and is smaller than in copper. Coming back on the magnetic properties of the films, one concludes that the step- induced anisotropy is not due to an in-plane magnetoelastic anisotropy but results from the morphology of the film. A model describing the magnetic anisotropy should take into account the distribution of missing bonds. This distribution is given by the islands shapes and faceting effects and it is found to be dependent on the film thickness. It differs notably from the distribution given by a model assuming no Cu atoms motion and a layer by layer Co growth. References [1] O. Heckmann, H. Magnan, P. Le Fèvre, D. Chandesris, and J. J. Rehr, Surf. Sci. 312, 62 (1994). DRX et EXAFS du Nb dans LiNbO3 fondu Béatrice Moulin a, Patrick Simon a, Louis Hennet a, Dominique Thiaudière a,b, Marc Gailhanou b a C.R.M.H.T. – C.N.R.S., 45071 Orléans Cedex 2 b LURE , 91405 Orsay Cedex Fax 02 38 63 81 03 - e-mail : moulin@cnrs-orleans.fr Le niobate de lithium est très connu pour ses propriétés en optique non linéaire. Paradoxalement pour un matériau ayant un champ d'applications aussi important, la phase liquide, au-dessus de Tf=1250°C (pour une stœchiométrie Li/(Li+Nb)=0.485, correspondant à une fusion congruente), est relativement peu connue, bien que largement utilisée pour l'élaboration de monocristaux. Cette phase liquide présente néanmoins des caractéristiques inhabituelles, avec l'existence d'inclusions solides au-dessus de la température de liquidus (de quelques microns d'après des mesures de diffusion X et neutrons aux petits angles), ainsi qu'un coefficient de dilatation thermique négatif.1-3 Juste en dessous de la température de fusion, LiNbO3 subit une transition de phase ferroélectrique – paraélectrique (Tc=1160°C=Tf-100°C). Nous avons entrepris une étude par spectroscopie de diffusion Raman qui, couplée à un microscope optique, nous a permis d’observer directement l’apparition de ces inclusions environ 10°C au dessus de la température de fusion. Cependant, rien ne nous permet d’identifier de façon certaine la composition de ces inclusions et leur provenance. Un changement d'ordre local dans le liquide, autour du niobium, pourrait être à l'origine de ce comportement surprenant d'un point de vue thermodynamique, et induire un caractère métastable pour l'une des phases en présence. Des mesures de diffraction X et d’EXAFS ont été entreprises sur la ligne H10 du LURE en température afin de vérifier l’apparition ou non d’une phase solide dans le liquide et afin de suivre l’environnement local du niobium avec la température. Les résultats que nous avons obtenus sont en accord avec le fait que les inclusions solides sont du niobate de lithium. Nous présenterons ici le système utilisé pour les mesures de diffraction X et d’EXAFS à haute température sur la ligne H10 et les résultats obtenus pour le niobate de lithium. 1. 2. 3. 4. P. Andonov, S. Kimura et P. Palleau, J. Non-Cryst. Solids 1996, 205-207, 163. X. Chen, Q. Wang, X. Wu et K. Lu, J. Cryst. Growth 1999, 204, 163. YS Kuz'minov, Lithium niobate crystals, Cambridge International Science Publishing (1999), et références incluses B. Moulin et al, Ferroelectrics, sous presse. Etude de complexes Tb / antiinflammatoires non-stéroïdiens par EXAFS I. Nicolis1,2, A. Rieutord3 , V. Hernando4 , E. Curis 1,2, P. Prognon4 , S. Bénazeth1,2 1. Laboratoire de Biomathématiques et Informatique, Faculté de Pharmacie Paris V, 75270 Paris 2. L.U.R.E. / 91898 Orsay 3. Hôpital Robert Debré / 48, boulevard Sérurier / 75019 Paris 4. Laboratoire de Chimie Analytique, Faculté de Pharmacie Paris XI, 92296 Châtenay-Malabry Les techniques de marquage par luminescence sont depuis les vingt dernières années de plus en plus utilisées pour l’analyse de composés organiques soit directement soit comme mode de détection des techniques chromatographiques ou électrophorétiques (1). Dans ce cadre, la potentialisation de la luminescence du terbium, du samarium, de l’europium ou du dysprosium par les molécules organiques apparaît une approche séduisante du fait des caractéristiques spectroscopiques de ces ions métalliques. Cette potentialisation procède le plus souvent sur le plan moléculaire d’une chélation du métal par la molécule organique qui joue le rôle de ligand. Parmi les composés d’intérêt pharmacothérapeutique susceptibles d’être dosé par chélation d’un lanthanide, les dérivés anthraniliques présentent des structures moléculaires pour lesque lles un transfert d’énergie avec le terbium a été décrit (2). Cette famille chimique appartient à une classe pharmacothérapeutique majeure, les anti- inflammatoires non stéroïdiens (AINS). Des études spectroscopiques en solutions de ces différents complexes organométalliques ont montré que le transfert d’énergie est variable en fonction des différents ligands et lanthanides utilisés. Ces observations suggèrent des conformations spatiales différentes pour les complexes formés. La littérature sur les données structurales de ces derniers est inexistante. Il devenait donc nécessaire d’étudier de tels complexes en solution. Pour les AINS de la famille des anthraniliques, les composés sélectionnés sont l’acide méclofénamique, l’acide niflumique, l’acide tolfénamique, l’acide méfénamique et l’acide flufénamique. La faible solubilité de ces AINS en milieu aqueux, combinée à la nécessité de procéder en excès de ligand résulte à des spectres très bruyants, ce qui nous a conduit à utiliser le méthanol comme solvant. Des spectres ont été enregistrés avec un détecteur fluorescence multi-éléments à partir des solutions méthanoliques de TbCl3 , en présence d’acides méclofénamique, niflumique, tolfénamique, et méfénamique mais aussi d’EDTA et de benzoylacétone, les deux derniers complexes servant comme modèles. Des changements significatifs au niveau des spectres XANES accompagnent la complexation. Par ailleurs, une deuxième couche apparaît clairement sur les transformées de Fourier du signal EXAFS des solutions contenant les AINS ou l’EDTA, compatible avec une complexation. Les ajustements du signal EXAFS indiquent une diminution du nombre de coordination en passant de la solution aqueuse à la solution méthanolique, la complexation étant accompagnée d’un rapprochement des ligands. Références : 1. Rieutord A, Prognon P, and Mahuzier G. Luminescence par transfert d'énergie : apport des lanthanides dans la détection de composés d'intérêt pharmaceutique et biologique, en chromatographie liquide et électrophorèse capillaire. Analusis, (1996), 24, (349-360) 2. Rieutord A, Prognon P, Brion F, and Mahuzier G. Luminescence probes for drugs and xenobiotics: advantages and limitations. Analyst, (1997), 122, (59R-66R) A Vacuum-ultaviolet study of fragments formed in the neutral photodissociation of ethylene John O’Reilly, Stéphane Douin, Niloufar Shafizadeh, Séverine Boyé, Philippe Bréchignac and Dolores Gauyacq Laboratoire de Photophysique Moléculaire, Bat. 210, Université de Paris-Sud, 91405 Orsay, France The photoabsorption and fluorescence excitation spectra of ethylene (C2H4) have been simultaneously recorded using monochromated synchrotron radiation in the excitation wavelength range of 60 to 100 nm. The apparatus employed is adapted for the detection of fluorescence in the visible region, which was dispersed using a grating monochromator to yield information on the fragments formed. C2, C2H, CH and H fragments were observed to originate from the neutral dissociation of states that lie considerably above the first Ionisation Potential (IP) in energy. Seven dissociation channels have been identified, namely, CH+CH3, 2CH+H2, C2H+H2+H, C2H+3H, C2H2+2H, C2+2H2, and C2+H2+2H. From the present limited data set a preliminary determination of the thresholds for these channels has been performed. Upper limits for the barriers associated with each of these channels are presented and their values discussed in relation to the dissociation dynamics. Evidence is presented for the existence of the isomer ethylidene (CHCH3) which has been the subject of considerable theoretical debate but which has never been experimentally detected. Metastable metallic phases formed at low temperature by Cs and Na on GaAs(001) D. Paget,1 O. E. Tereshchenko,2 J. E. Bonnet,3 P. Chiaradia, 4 F. Wiame, 3 R. Belkhou, 3 A. Taleb- Ibrahimi. 3 1 2 Lab. Phys. Mat. Cond., Ecole Polytechnique, 91128 Palaiseau, France Institute of Semiconductor Physics, Novosibirsk State University, 630090 Novosibirsk, Russia 3 LURE, bât 209 D, Université Paris-Sud, 91405 Orsay, France 4 Dipartimento di Fisica and INFM, Università di Roma Tor Vergata, 00133 Roma, Italy We have found, using photoemission spectroscopy at Super Aco ( on the high resolution SU3 beamline ), that Na and Cs adsorbates on the GaAs(001) surface, kept at 50 K all over the experiment, form metallic phases at submonolayer coverage (0.5 ML). Above this coverage, all criteria for metallicity are fulfilled : there appear plasmon satellites in the core level spectra of the alkali metal ( AM) and of the substrate atoms, as well as a clear Fermi edge in the valence band spectrum, and the surface photovoltage disappears. These findings are in agreement with the results of indirect optical investigations (1, 2) on the same systems. The metallic phases are metastable, since all the manifestations of metallicity irreversibly disappear under cycling to RT. The analysis of the change of the shape of the core level spectra gives us indications on the mechanism of the bonding between the atoms of alkali metal (AM) and the GaAs substrate. Near the transition coverage in the AM core level spectra, there appears a component with a very narrow width, developing from coverage increase . This component also disappears under cycling to RT and is characteristic of the metallic phase. With respect to the component at low coverage, due to insulating AM, the chemical shift of this narrow component is negative for Cs and positive for Na. These results can be understood using a simple model. 1 D. Paget, B. Kierren, and R. Houdré, J. Vac. Sci. Technol. A16, 2350, (1998). 2 O. E. Tereshchenko, D. V. Daïneka, and D. Paget, Phys. Rev. B64, 085310, (2001). Raman and X-ray Absorption Spectroscopies for the determination of the molybdenum symmetry in oxomolybdenum species: Application to supported oxomolybdate catalysts G. Plazeneta, b, E. Payena, J. Lynchb a Laboratoire de Catalyse de Lille, UPRESA CNRS 8010, Université des Sciences et Technologies de Lille, Bât. C3, 59655 Villeneuve d’Ascq Cedex, France. b Institut Français du Pétrole, 1 & 4 Avenue de Bois-Préau, 92852 Rueil-Malmaison Cedex, France. The oxidic precursors of hydrodesulfurization (HDS) catalysts are obtained through incipient wetness impregnation of the support with an ammonium heptamolybdate (AHM) solution. The understanding of the genesis and the structure of the active phase imposes a precise determination of that of the preliminary oxidic phase. Numerous studies have dealt with that issue and considered many kinds of molybdate compounds to describe it. Due to the many possible reactions at the surface of the support, the possibility of concurrent phases, and the wide range of possible symmetries of molybdenum, it is of higher interest to be able to distinguish clearly between the various molybdate compounds by spectroscopic techniques. The two techniques considered here, i.e. X-ray Absorption Spectroscopy (XAS) and Raman spectroscopy, are widely used in the characterisation of catalysts. On one hand, Raman spectroscopy, a vibrational one, can convey molecular informations, whereas XAS, i;e. EXAFS and XANES, which are able to analyse one specific element, can give respectively structural (neighbouring) and atomic (symmetry) informations. It is therefore interesting to correlate the results gained by both techniques, in order to identify structures and/or similarities between reference compounds and supported species. In this work, we analysed by means of Raman spectroscopy and Mo K-edge XANES and EXAFS a wide molybdate panel, with distorted symmetries going from the octahedral to the tetrahedral one. The fit of the EXAFS spectra enabled us to show the difficulty to determine a molybdate structure from raw, due to the structural complexities often met. The criteria to sort the symmetries in Raman spectroscopy and XANES were therefore compared. Based only on the stretching mode wavenumber of the Mo=Ot (where t stands for terminal oxygen atom), it was evidenced that Raman spectroscopy cannot lead to a precise classification, due to the low specificity of this criterion. On the other hand, XANES is much more reliable through the analysis of the pre-edge peak. A correlation between the Mo=Ot stretching wavenumber and the XANES intensity pre-edge has been established for the reference compounds which allows us to define more precisely the structure of the bulk and of alumina-supported oxomolybdates. Study of an E-glass vitrifiable mixture fusion Stéphan Pédèche1, Guy Matzen1, Philippe Melin1, Louis Hennet1, 2 Dominique Thiaudière1, 2, Pierre Forian1 and André Douy1 1 - Centre de Recherche sur les Matériaux à Haute Température, 1 D avenue de la recherche scientifique 45071Orléans cedex 2, France 2 - LURE Laboratoire pour l’Utilisation du Rayonnement Electromagnétique, Bat 209D, Université Paris Sud, 91405 Orsay cedex, France An approach of the fusion mechanism understanding is presented. The oxide weight composition is: SiO2 56.7%, CaO 23.4%, Al2O3 13.2%, B2O3 6.3%, SO3 0.4%. The raw materials come directly from the glass industry. The system is characterised by different techniques: thermogravimetric analysis, differential scanning calorimetry, dilatometry, electric conductivity, X-ray diffraction at room temperature and in-situ measurements (a ribbon is heated by Joule effect), nuclear magnetic resonance, Raman spectroscopy,. The study of the vitrifiable mixture that has been heated then quenched is compared with an in-situ study using increasing temperature. These X-ray diffraction experiments can only be done with synchrotron radiation which offers a very large diffracted intensity even for short acquisition times. Decomposition reactions of the raw materials occur at first. Then solid-solid reactions take place and lead to the formation of new solid phases. The first liquid phase appears at 1050°C. Crystals and quartz are then digested into the liquid phase. Observation and characterization of the cinnabar phase in ZnSe at high pressure J. Pellicer-Porresa,b, A. Seguraa, V. Muñoza, J.P. Itiéc, P. Munschb and A. Polianc a Laboratoire de Physique des Milieux Condensés, Université P. et M. Curie - B 77 4 Place Jussieu - F 75252 Paris Cedex 05 b Institut de Ciència dels Materials, Universitat de València, Dpt. de Física Aplicada, Ed. Investigació, E-46100 Burjassot (València), Spain It is well known that ZnO, ZnS and ZnSe transform from either the wurtzite or zincblende (ZB) structures to rocksalt (RS) under high pressure. The behaviour of ZnTe is richer. A combined Extended X-ray Absorption Fine Structure (EXAFS) and Energy Dispersive X-Ray Diffraction (EDXRD) proposed the transformation from zincblende to cinnabar (C) at 9.5 GPa.[1]. Using Angle Dispersive X-Ray Diffraction (ADXRD) authors in Refs.[2] confirmed the existence of a cinnabar phase in ZnTe, with atomic co-ordinates u(Zn)=0.540 and v(Te)=0.504. Up to our knowledge, the cinnabar phase has not been found in any other zinc chalcogenide. In parallel with the experimental research, a number of theoretical investigations on the stability of the cinnabar structure have been performed. The calculations result in a similar total energy for the structures involved, so the establishment of the high pressure systematic is very difficult. In addition, the presence of energy barriers can hinder some phase transitions. In this paper we present evidences of the existence of the cinnabar structure in ZnSe and investigate its properties. Our conclusions are derived from an EDXRD experiment carried out on the ZnSexTe1-x alloy under high pressure. The samples studied correspond to Se concentrations given by x=1, 0.95,0.9 and 0.8. All the spectra were taken at room temperature. The samples were grown using the vapor phase transport method, and then reduced to powder. We used a diamond anvil cell to generate pressure. A 16:3:1 methanol/ethanol/water mixture was used as pressure transmitting medium. The pressure was measured using the linear ruby fluorescence scale. All the samples studied show similar behavior under high pressure. In the upstroke the samples undergo the well-known ZB-RS phase transformation. In the downstroke a new high pressure phase appears. The analysis of EDXRD pattern of ZnSe at 10.5 GPa indicates that the new phase has a hexagonal symmetry with a= 3.785 Å and c=8.844 Å. We propose that the new phase observed has the cinnabar structure. The cinnabar range of existence diminishes as the Te content is reduced. In pure ZnSe the new phase coexists with ZB and RS. Without the whole series of compositions studied it would have been very difficult to measure its lattice parameters in ZnSe. Some hypothesis concerning the conservation of the first neighbor distances in the RSC and C-ZB transition allow for an estimation of the internal parameters. References 1. A. San-Miguel, A. Polian, M. Gauthier and J.P. Itié, Phys. Rev. B 48, 8683 (1993). 2. R. J. Nelmes and M.I. MacMahon, N. G. Wright and D.R. Allan, Phys. Rev. Letters 73, 1805 (1994). High-T coordination of Ln(III) in clay : in situ diffraction and XAFS D.H. Powella, C. Pitteloud b, H.E. Fischerc, M. Gailhanouc, J. Purans d a b Department of Chemistry, University of Durham, South Road, Durham DH1 3LE, GB. Insitut de Chime Minérale et Analytique, Université de Lausanne - BCH, CH-1015 Lausanne. c Laboratoire LURE, Bat. 209d, Centre Universitaire Paris-Sud, B.P. 34, F-91898 Orsay. d Institute of Solid State Physics, Kengaraga Street 8, LV-1063 Riga Montmorillonite is a clay mineral consisting of regular stacks of negatively charged aluminosilicate sheets (or layers) separated by charge-balancing interlayer cations. With increasing humidity, water enters the interlayer region, swelling the clay in a series of steps known as one-, two- and three- layer hydrates with well-defined interlayer spacings. The lanthanide(III)-exchanged forms are used in catalysis and pharmaceuticals and are of interest as models for the interaction of actinide(III) ions with clay used barriers in waste repositories. In these applications, the question of the coordination geometry of the hydrated ions and whether they are partially coordinated to the clay surface is of prime importance. Particularly for understanding catalytic and containment barrier applications, the temperature dependence of this coordination needs to be taken into account. The aim of this experiment was to use high temperature in situ XAFS/diffraction to study simultaneously the effect of progressive dehydration on the coordination of Ln3+ ions intercala ted in montmorillonite clay and the associated collapse of the clay interlayer spacing. The samples were thin films (~ 0.2 mm thick) with the clay platelets oriented preferentially parallel to the film. The mosaic of the clay particles was sufficient to allow observation of the (001) reflection (interlayer spacing) with the film held at 30o to the incident beam. We were able to use this arrangement to make the first combined in situ EXAFS and diffraction measurements in transmission mode on the H10 beamline at temperatures up to 368 o C. In order to investigate the effect of ionic radius of the interlayer cation, we obtained data for Nd-, Gd- and Lumontmorillonite. The temperature dependence of the (001) reflection of Lu- montmorillonite in Fig. 1a, and the associated d-spacings in Fig. 1b, show the decrease in interlayer spacing on dehydration of the clay at high temperatures. For all three interlayer cations, the spacing changes from that associated with a ‘two- layer’ hydrate at around ambient temperature to a ‘one- layer’ hydrate at 80 - 100 oC, then decreases progressively at higher temperatures the hydration layer is removed. The absorption spectra for Lu- montmorillonite in Fig. 1c show a reduction in amplitude of EXAFS oscillations with temperature corresponding to the decrease of the coordination number of the interlayer Lu3+. We are therefore able for the first time to link unambiguously the coordination of the Ln3+ ion with a given interlayer spacing. -0.4 (b) 16 50000 (a) (c) Lu-mont 15 20000 t=185C t=275C t=368C 10000 14 100 C 13 12 11 10 3 5 7 2 theta (degrees) 9 -0.8 -1 9 8 0 60 C -0.6 Gd-mont log10(I0/I) 30000 16 C Nd-mont d(001) / Angstrom t=23C t=50C t=70C t=100C t=150C 40000 -1.2 0 100 200 t(°C) 300 400 9.2 9.3 9.4 9.5 9.6 9.7 Energy (keV) Fig. 1: The temperature variation of (a) the diffraction pattern (001 reflection) of the Lumontmorillonite sample, (b) the interlayer spacing d001 for the three samples, and (c) the raw absorption spectra for the Lu L3 edge. Square planar di-N-carboxamido, dithiolato-cobalt(III) complex related to the Nitrile hydratase metallic site. Addition of axial ligands and oxygenation of the sulfur atoms : an EXAFS study K. Provost (1), L. Heinrich (2), Y. Li (2) and A. Michalowicz (1) (1) Groupe de Physique des Milieux Denses, Université Paris XII, 61 avenue du Général de Gaulle, 94010 Creteil Cedex, France. (2) Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601 CNRS, 45 rue des Saints Pères, 75170 PARIS Cedex 06, France A square planar cobalt(III) complex with a N2S2 di-N-carboxamido di-thiolato tetradentate ligand mimics the metal core of the Cobalt containing Nitrile hydratases. It forms hexacoordinated complexes upon addition of ligands like cyanide or isocyanides. The oxygenation of the equatorial sulfur atoms is possible only in the case of hexacoordinated complexes, with strongly donors axial ligands (1). The oxygenated species only may present a catalytic activity. We performed an EXAFS study of the square planar complex, cyanide and isocyanide hexacoordinated complexes, thiolato, sulfenato and sulfinato. In the case of the square planar complex, the EXAFS spectra can be fitted with distances in good agreement with the crystallographic data (2). The addition of strongly donor axial ligands leads to a huge increase of the axial distances. This increase induces an enhancement of the multiple scattering signal in the equatorial plane. When the sulfur atoms are oxygenated, we always observed a Cobalt Sulfur bond. (1) L. Heinrich, thèse de l’Université Paris VI. (2) L. Heinrich, Y. Li, K. Provost, A. Michalowicz, J. Vaissermann, and J-C. Chottard, Inorganica Chemica Acta 318 (2001) 117-126. Eu2+ and Eu3+ complexes in solid state and solutions Juris Purans a,b, Gilles Moreau, a Lothar Helm,a and André E. Merbacha a Institut de Chimie Moléculaire et Biologique, EPFL - BCH, CH - 1015 Lausanne, Switzerland; b Institute of Solid State Physics, University of Latvia, LV-1063 Riga In general the rate of water exchange is significantly faster for Eu2+ complexes than for corresponding isoelectronic Gd 3+ analogues used as MRI contrast agent. Eu2+ aqua ions represents the fastest rate of water exchange measured on a non-Jahn- Teller ions, but Eu2+ ion was one of the few cations for which the hydration structure has not be established by structural techniques. Here we present a comparative XAFS analysis of Eu2+, Sr2+ and Eu3+, Gd 3+ complexes in solid state and solutions with picometer accuracy, as the dynamic properties of the analogous complexes should be closely related to the structure of the first coordination sphere. The XAFS spectra at the Eu2+, Eu3+, Gd 3+ L3 -edges and at the Sr2+ K-edge have been recorded at LURE. In-situ XANES measurements of white lines amplitudes (Eu2+ and Eu3+ separated about 8 eV) have clearly demonstrated that sealed, oxygen free aqueous, DMF, DMSO and CH3 CN solutions of Eu2+ ion and Eu2+ poly(aminocarboxylates) are stable in the cell at least 3h (Eu3+ smaller than 1%). In aqueous solutions, a first coordination shell of Eu2+ is formed by 7.2 (3) water molecules at a Eu-O distance of 2.584 (5) Å with a high fluctuation of interatomic distance of σ2 =0.0138 (5) Å2 that correlate with the fast rate of water exchange. In the nonaqueous solutions (DMF, DMSO and CH3 CN) the coordination number, the distance and DW factor decrease in comparison with aqueous solutions. Finally, the local structure of Eu2+ poly(aminocarboxylates) have been probed in both solid state and aqueous solution, using the XAFS method. More specifically, the method allowed us to compare these complexes with the isostructural Sr2+ homologues, and with the related Eu3+ and Gd3+ complexes. [1] G. Moreau, L. Helm, J. Purans, A. E. Merbach, Structural Investigation of the Aqueous Eu 2+ Ion: Comparison with Sr2+ Using the XAFS Technique, J. Phys.Chem. A 106 (2002) 3034-3043. [2] G. Moreau, L. Helm, J. Purans, A. E. Merbach XAFS Study of the Eu2+ and Sr2+ Solvation in Non-Aqueous Solvents: Confrontation with the Aqua Ions, J. Phys.Chem. A, submitted (2002) X-Ray absorption spectroscopy applied to layered magnetic materials using the linear polarisation Mireille Richard-Plouet1 , Murielle Guillot1 , D. Chateigner2-3 , A. Traverse4 and Serge Vilminot1 1.Groupe des Matériaux Inorganiques, IPCMS, UMR 7504, 23 rue du Loess 67037 STRASBOURG Cedex, 2. LPEC, UMR-CNRS 6087, Université du Maine, 72000 LE MANS , 3. CRISMAT-ISMRA, UMRCNRS 6508, Boulevard Mal Juin, 14050 CAEN Cedex, 4. LURE, Bât. 209A, BP 34, 91898 ORSAY Cedex. Numerous works are dealing with magnetism of low dimensionnal structures. In order to understand the exchange mechanisms, a fine structural characterisation of the studied compounds is necessary to model the magnetic behaviour. Our studies are focused on the hydrothermal synthesis of nickel silicates obtained from transition metal acetates and a propylamine modified alkoxysilane (Si(OC2 H5 )3C3 H6NH2 ). Depending on the experimental conditions, different phases were isolated presenting a transition towards a ferromagnetic ordering with a ferromagnetic ground state at low temperature, with Ni/Si≈3/2 or an antiferromagnetic one with Ni/Si≈3/1 [1]. These compounds are bad crystallised finely divided powders. Powder diffraction data are too poor to allow a structural model refinement, due in particular to the small grain size. The interlayer distance is close to 21 Å for both compounds. However, from several spectroscopies (IR and XPS), Ni2+ are known to be located in octahedral sites sharing edges as in the hydroxide structure (brucite). The absorption coefficients at the Ni K edge were recorded. Fitting the inverse Fourier transform of the first peak of the Fourier transform confirms on the one hand that Ni cations are in octahedra with 2.05(2) Å Ni- O distances, in agreement with the expected value. On the other hand, fitting the second peak allows us to bring to the fore the existence of 6 second Ni neighbours at 3.11(2) Å together with 2 Si neighbours at 3.24(2) Å et 3.29(2), for the two silicates [2]. Moreover, it was possible to perform orientated self supported films which were also recorded at the Ni K edge for different incident angles using the polarised character of the synchrotron beam. The Ni K edge was recorded on the D42 station of the DCI ring in LURE. Such an experiment was already successfully applied on minerals [3] and gave structural information on phyllosilicates from which our compounds are derived. Thus we record the absorption coefficients (χ(α)) for α=70, 60, 50, 35, 20, 0°, where α is the angle between the incident beam and the normal to the preparation. Experimentally α=90° spectrum (χ(90°)) can not be performed because the beam would have to be tangent to the film surface. Nevertheless the latter can be calculated from the other ones by extrapolating χ(α) = (χ(0°)-χ(90°))cos2 α+χ(90°). The linear relation between χ and cos2 α has been checked, for every k values. The polarisation effect strongly affect the Fourier transforms of EXAFS oscillations. This is due to the layered structure of the compound and its texture. In case α=90°, it is clearly seen that the contribution of the out of plane scattering atoms is lowered. Structural parameters such as the flattening angle of the NiO 6 octahedra were evaluated : 58 and 60°, which are expected values. The trioctahedral nature of the layers was confirmed. Lastly, we demonstrated that the condensation mode of the Si tetrahedra is different from the one observed in clay structures [4]. 1. M. Richard-Plouet, M. Guillot, S. Vilminot and M. Kurmoo, submitted to Chem. Mat. 2. M. Guillot, M. Richard-Plouet and S. Vilminot, J. Mater. Chem. (2002) 12(4); 851-857. 3. A. Manceau, D. Chateigner and W. P. Gates, Phys. Chem. Minerals, (1998) 25; 347-356. 4. M. Richard-Plouet, M. Guillot, D. Chateigner, A. Traverse and S. Vilminot (submitted to J. Coll. Inter. Sc.) EXAFS study of the hydrogenation in Ti-Zr-Ni quasicrystals and approximants A. Sadoc 1,2, E.H. Majzoub 3, V.T. Huett 4, K.F. Kelton 4 1 LPMS, Université de Cergy-Pontoise, Neuville sur Oise, 95031 Cergy-Pontoise Cedex, France 2 LURE, Centre Universitaire Paris-Sud, BP 34, 91898 Orsay Cedex, France 3 Sandia National Laboratories, 7011 East Avenue, Livermore, CA 95441, USA. 4 Department of Physics, Washington University, St. Louis, MO 63130, USA. An understanding of the mechanism of hydrogen absorption in metals and intermetallics is of considerable importance for both technological and scientific reasons. Metal-hydrogen systems are used in a variety of technological applications, including hydrogen storage materials and metal-hydride batteries. Since the discovery of intermetallic alloys with both long-range aperiodic order and crystallographically forbidden rotational symmetries (1984), a large body of theoretical and experimental work has been devoted to the study of these materials, known as quasicrystals (QC’s). Among their physical properties, it has been found that some titanium/zirconium-based QCs have a larger capacity for hydrogen storage than competing crystalline materials [1]. In most transition metal alloys, hydrogen atoms prefer to sit in tetrahedrally coordinated sites. Icosahedral QC’s are also likely dominated by tetrahedral order and thus provide a variety of sites for interstitial hydrogen. The effect of hydrogenation on the local structure of Ti-Zr-Ni alloys, quasicrystals and bcc crystalline approximants, has been studied by means of extended X-ray absorption fine structure (EXAFS) experiments, performed above the Ti, Zr and Ni K absorption edges, using the synchrotron radiation. The alloys were loaded to different hydrogen to metal ratios (0, 0.84, 1.2, 1.4, 1.56 and 1.7) in order to follow the evolution of the local structure with hydrogenation. Drastic changes are observed in the hydrogenated alloys with modifications of distances and increase of disorder [2]. 1 2 Kelton, K.F and Gibbons, P.C., 1997, MRS Bull., 22, 69. Sadoc, A., Kim, J.Y. and Kelton, K.F., Phil. Mag. A, 79, 2763 (1999) and 81, 2911 (2001). X-ray reflectivity study of the muscovite-water interface in KCl and CsCl solutions M. L. Schlegel1,*, K. L. Nagy1 , P. Fenter2 , N. C. Sturchio 3 , and L. Cheng2 1 Dept. of Geological Sciences, Univ. of Colorado, 399 UCB, Boulder, CO 80309, USA, 2 Environmental Research Division, Argonne National Laboratory, Argonne, IL 60439, USA, 3 Dept. of Earth and Environmental Sciences, Univ. of Illinois at Chicago, Chicago, IL 60607, USA, * Present affiliation: CEN de Saclay, DEN/DPC/SCPA, Bat 450-BP 11, F-91 191 Gif-sur-Yvette Cedex. The basal surfaces of micas and most clay minerals carry a structural negative charge resulting from cation substitution in the bulk that is compensated by sorption of solution cations. While much is known macroscopically about this sorption mechanism, there is little direct information on the atomic-scale structure of surface complexes formed by sorbed cations, and its effect on solid relaxation at the mineral- water interface. In micas, the permanent negative charge results from substitution in the basal tetrahedral sheets, and it is balanced by interlayer cations that bind layers together electrostatically. These relatively weak electrostatic bonds can be easily truncated by cleaving mica, resulting in a large, atomically flat surface whose structural properties can be determined by X-ray reflectivity. We report the first successful atomic-scale structural analysis of the interface between muscovite mica and solutions of KCl and CsCl. ASTM V-1 grade muscovite (KAl3 Si3 O10 (OH)2 ) sheets were freshly cleaved and immersed in 50 mL of 0.01 m KCl or 0.01 m CsCl for ≥ 1 hour to ensure cation saturation of the surface. The sheets were mounted in a thin film cell [1], and X-ray reflectivity data were collected on the wet surfaces at the 12-BM station (BESSRC-CAT, Advanced Photon Source, Argonne National Laboratory) at an X-ray wavelength of 0.6358 Å. Reflected X-ray intensity was measured as a function of the momentum transfer Q (=(4π/λ)sin(θ)??) by rocking-curve scans through the specular reflection condition followed by background subtraction and area integration of the rocking-curve peaks. High-resolution (~1.5-1.0 Å) reflectivity data were modeled using atomistic structural models that include surface relaxation, cation concentration and position, and water structure. Best fits of reflectivity data for muscovite in 0.01 m KCl indicated that K+ is located at 1.67 ± 0.06 Å above the oxygen basal plane. This distance is similar to that observed between interlayer K+ and oxygen basal planes in the mica structure (1.697 Å) [2] and indicates that sorbed K+ is located in the ditrigonal cavities of muscovite surfaces. Water is also present at the same distance from the basal planes than K+. Structural relaxation of muscovite was significant to a depth of 20 Å, but relaxation of individual atomic layers was always ≤ 0.05 Å.. The best fit model for the muscovite in 0.01 m CsCl was obtained for Cs+ possibly cosorbed with water and located at 2.15 ± 0.09 Å above the basal plane oxygens. This distance is larger than observed between interlayer Cs+ and oxygen basal planes in nanpingite, a Cs mica (1.922 Å) [3], but substantially smaller than the calculated distance for Cs located above the basal plane of a substituted tetrahedron (2.58 Å). It is therefore proposed that sorbed Cs+ is located in the ditrigonal cavities of muscovite surfaces. The relaxation of mica layers in CsCl solutions parallels that observed in KCl solution, with layer relaxation ≤ 0.07 Å, and relaxation propagating to a depth of 20 Å. References: [1]. P. Fenter, H. Teng, P. Geissbühler, et al. Geochim. Cosmochim. Acta 64, 3663-3673 (2000). [2]. S. Guggenheim, Y.-H. Chang and A.F. Koster Van Groos. Amer. Mineral. 72, 537-550 (1987). [3]. Y. Ni and J.M. Hughes. Amer. Mineral. 81, 105-110 (1996). Magnetic coupling in Co/Cu multilayers: field dependent antiferromagnetic ordering investigated by resonant X-ray scattering Carlo Spezzani 1 , Piero Torelli 1 , Maurizio Sacchi 1 , Renaud Delaunay 2 , Coryn F. Hague 2 Alessandro Mirone 3 , Raffaella Capelli. 4 , Fahrad Salmassi 5 , Eric M. Gullikson5 and James H. Underwood 5 1 Laboratoire pour l’Utilisation du Rayonnement Electromagnétique, B.P. 34, 91898 Orsay (France) 2 Laboratoire de Chimie-Physique – Matière et Rayonnement, 11 rue Pierre et Marie Curie, 75005 Paris (France) 3 ISRF, BP.220 38042 Grenoble (France) 4 Consiglio Nazionale delle Ricerche Istituto per lo Studio dei Materiali Nanostrutturati – Via P. Gobetti 101 - 40129 Bologna 5 Center for X-ray Optics, Ernest Orlando Lawrence Berkeley National Laboratory,University of California, Berkeley, California 94720, USA Multilayers comprising ferromagnetic and non- magnetic 3d elements exhibit, for appropriate choices of materials and thickness, giant magneto-resistance (GMR) [1]. GMR arises from field induced variations in the interlayer magnetic coupling, associated with spin dependent electron scattering in the transport process. High/low resistance states are schematically associated to antiparallel (or antiferromagnetic) and parallel (or ferromagnetic) coupling between adjacent layers. The high resistance state has been associated, in certain systems, with biquadratic coupling, giving 90° rotated magnetic domains in adjacent layers [2-3]. Resonant scattering of polarized X-rays (XRMS) can be used to analyze the magnetization profile, element selectively. Moreover, with an appropriate choice of light polarization and scattering geometry, both parallel and antiparallel alignment of the magnetic moments can be probed. In this work we present the results obtained using XRMS to analyze magnetic ordering in Co/Cu multilayer. Specular and off-specular scattering was measured as a function of orientation and direction of the applied magnetic field, and compared to simultaneously recorded resistivity values. 1 - Baibich et al Phys. Rev. Lett. 61, 2472, (1988) 2 - C. H. Morrows and B. J. Hickey Phys. Rev. B 59, 463, (1998) 3 - T. P. A. Hase et al. Phys. Rev. B 61, 15331, (1999) IRMA: Instrument pour la Réflectivité Magnétique Maurizio Sacchi 1 , Carlo Spezzani 1, Renaud Delaunay 2 , Antoine Avila 2 1 Laboratoire pour l’Utilisation du Rayonnement Electromagnétique, B.P. 34, 91898 Orsay (France). 2 Laboratoire de Chimie-Physique – Matière et Rayonnement, 11 rue Pierre et Marie Curie, 75005 Paris (France). Resonant scattering of polarized soft X-rays for the investigation of the magnetic properties of low dimensional systems is a research topic intensively developed at LURE over the last few years. This technique is capable of structural analysis (X-rays scattering) with chemical selectivity (photon energy corresponding to an absorption edge) and is sensitive to the system symmetry (polarized X-rays). For these reasons, it is a useful tool to study nano-structured material. The IRMA project, started in 2001, aims at the construction of a new reflectometer capable of working under UHV conditions. It will make it possible to prepare and measure the samples in situ, permitting the extension of soft X-rays resonant scattering techniques to surface physics. At present, we have constructed and tested a UHV compatible two-axes goniometer, including sample translations. Tests employing X-rays have been performed on the beamline SU-7 in superACO at LURE using reference samples. The system works in a base pressure of 2·10-10 . The two axes can rotate independently with an angular accuracy better than 0.01º. H10 : A material and high temperature beamline at DCI/LURE M. Gailhanou, J.-M. Dubuisson, M. Ribbens, L. Roussier, D. Bétaille, C. Créoff, M. Lemonnier, J. Denoyer, A. Jucha, A. Lena, M. Idir, M. Bessière Laboratoire pour l'Utilisation du rayonnement Electromagnétique Centre Universitaire Paris Sud, Bat. 209D, F-91898 Orsay D. Thiaudière, L. Hennet, C. Landron, P. Melin, Y. Auger, J.-P. Coutures Centre de Recherches sur les Matériaux à Haute Température 1D, avenue de la Recherche Scientifique, F-45071 Orléans H10 is a beamline at DCI / LURE which is dedicated to materials sciences and high temperature studies. This beamline fulfils several purposes : - the need for a beamline doing diffraction coupled with X-ray absorption spectroscopy on the same experimental conditions in the 4 – 20 keV energy range. - the interest of CRMHT (Centre de Recherche sur le Matériaux à Haute Température) to study structural properties of Oxydes in the molten state (up to 3000° K) using synchrotron radiation. - To have a higher flux than the other DCI/LURE bending magnet beamlines to achieve time resolved XRD experiments or XAS on more diluted systems. - The optics will be transfered to the future synchrotron SOLEIL In this poster, we will show a general description of the beamline and we will present different examples such as DAFS experiments on FeCo alloys or WAXS / EXAFS experiments at high temperature. Fe(II)-Fe(III) hydrolysis and complexation with As(III)-As(V) in the presence of PO4 ions Thoral, S.*; Rose, J.*; Flank, A. M.**; Garnier, J. M.* and Bottero, J. Y.* * CEREGE UMR 6635 Europôle Méditerranéen de l'Arbois BP80 13545 Aix-en Provence Cedex 4 ** LURE Centre Universitaire Paris Sud 91405 Orsay Cedex Arsenic (As) concentrations above 10 µg/l in Bangladesh and West Bengal groudwaters (the Maximum Contamination Level for drinking water ), are found in over 50% of the wells, placing an estimated 20 million people at risk of developing cancer 1, The key result obtained so far on field by our teams, sampling wells in a 16 km2 area in Bangladesh (30 km East of Dacca), is that both initial dissolved As and Fe concentrations in these waters decrease drastically following oxidation. However phosphate and silicates seem to inhibite As-Fe complexation during oxidation (unpublished results). It thus appear essential to better describe these complex As and Fe interactions to develop efficient water treatment procedures Adsorption and stability of arsenate, As(V), and arsenite, As(III), on highly reactive hydrous ferric oxides 2, 3 as well as adsorption of arsenate on Green Rust 4 (mixed Fe(II)-Fe(III) oxyhydroxides) were already well investigated using X-ray absorption spectroscopy. However, coprecipitation mechanisms between arsenic and iron have not been well established so far at the molecular scale. We then performed Fe and As K-edge EXAFS measurements at beam line D42 of DCI in October 2001 for synthetic freeze-dried Fe(III)-As(V)/As(III), Fe(III)-As(V)/As(III)-P coprecipitations and for Fe(II)-As(V)/As(III) anoxic solutions. The pH values and concentrations/ratios used describe at best Bangladesh groudwaters conditions (6.5<pH<7.5, 0<As/Fe<1, 0<As+P/Fe<1). Under both oxidizing and reducing conditions, As(III) has only minor effects on the local structure of the Fe-P coprecipitates while the use of experimental Fe-As amplitude and phase shift fonctions for Fe-As(V)-P systems greatly increased the fit quality of the partial EXAFS spectra corresponding to the second coordination sphere. These preleminary results will allow us next September at beam line D42 of DCI to study the local evolution of the Fe(II)-As(III) system during oxidation as the initial reduced state and final oxidized state are now well known. [1] Smith, A. H. et al. (2000). Contamination of drinking water by As in Bangladesh : a public health emergency. Bull. World Health Organization, 78(9), 1093-1103. [2]Manceau, A. (1995). The mechanism of anion adsorption on iron oxides : evidence for the bonding of arsenate tetraedra on free Fe(O,OH)6 edges. Geochimica and Cosmochimica Acta, 59, 3647-3653. [3]Raven, K. P.et al (1998). Arsenite and Arsenate adsorption on ferrihydrite : kinetics, equilibrium, and adsorption envelopes, Environmental Science and Technology, 32, 344-349. [4]Randall, S. R. et al. (2001). Sorption of As(V) on green rust and lepidocrocite : susrface complexes from EXAFS spectroscopy. Geochimica and Cosmochimica Acta, 65, 1015-1023. Polyfunctional tris(oxalato)metalate based magnets : Structure and Magnetism from X.A.S. and X.M.C.D. Train Cyrille°*, Pointillart Fabrice°, Villain Françoise°‡, Baudelet François ‡, Giorgetti Christine‡, Cartier dit Moulin Christophe°‡, Gruselle Michel° and Verdaguer Michel° °Laboratoire de Chimie Inorganique et Matériaux Moléculaires, Unité CNRS 7071, Université Pierre et Marie Curie, 4 place Jussieu, Case 42, 75252 Paris Cedex 05, France ‡ LURE, Bât. 209d,Université Paris-Sud, 92405 Orsay Cedex, France e-mail: train@ccr.jussieu.fr Molecule based magnets have been widely studied using X-ray absorption spectroscopy (XAS). Fine structural changes have thus been correlated with changes in the magnetic properties. More recently, X-ray magnetic circular dichroism (XMCD) has brought a decisive understanding in the local magnetism of Prussian Blue derivatives [1]. Thank to the richness and the versatility of the oxalate chemistry, it is possible to conceive oxalatebased systems which combine magnetism - at the molecular level or with long-range order - with other physico-chemical properties. We are exploiting this potentiality to create optically active tris-oxalatometalate based magnets. The tris-oxalato-metalate molecular synthon leads to two-dimensional (2D) or three-dimensional (3D) anionic networks [M1M2(ox) 3]-/2- (ox = C2O42-, M1,M2 = first transition series metal ions). The dimensionality depends on the choice of the cationic counterpart [2]. In a first part, we report results about [Ru(bpy) 3][Cu2(ox) 3] (bpy=2,2'-bipyridine). The material includes a 3D anionic network obtained in its optically active forms from [Cu(H2O)6]2+ and free oxalate using the strong chiral template effect of enantiomerically pure [Ru(bpy) 3]2+. According to powder X-ray diffraction (XRD), the environment around the copper is a regular octahedron while XAS reveals a "4+2" coordination, as shown in [3]. The two complementary sources of information leads to a better understanding of the exchange coupling in the system. The second part is devoted to the XMCD study of the optically active magnet [TBA][NiCr(ox) 3] (TBA = tetrabutylammonium) between 11 and 30 K with magnetic fields ranging between 0 and 2 T, at the Cr and Ni K-edges. The compound orders magnetically below TC = 16 K. The measurements give a local confirmation of the nature of the exchange coupling deduced from macroscopic magnetic measurements. Moreover, the dichroïc signal, under an applied field of 2 T, is multiplied by 3 when the temperature decreases from 25 K to 11 K, e.g. when going from the paramagnetic phase to the ferromagnetic one, through the Curie temperature TC. The high coercivity displayed by the material (0.28 T at 2 K) was exploited to measure the dichroïc signal in zero applied field. We observed a remnant signal divided by 3 compared to the one observed at 2 Teslas. The later experiment is particularly important in the study of polyfunctional magnets that can include paramagnetic cations embedded in the magnetically ordered anionic network. The XMCD measurements in these optically active materials represents an important step towards the observation by X-rays of the so-called magnetochiral dichroism, a weak crosseffect between magnetic and natural circular dichroism [4]. References [1] (a) C. Cartier dit Moulin, P. Sainctavit, F. Baudelet, E. Dartyge, et al. J. Am. Chem. Soc. 1998, 120, 11347-11352 ; (b) C. Cartier dit Moulin, F. Villain et al. J. Am. Chem. Soc. 2000, 122, 6653-6658. [2] (a) L.O. Atovmyan, G.V. Shilov, R.N. Lyuobovskaya, E.I. Zhilyaeva, N.S. Ovanesyan, O.A. Bogdanova, S.I. Perumova, Russ. J. Coord. Chem. 23 (1997) 640 (b) R. Andrés*, M. Brissard, M. Gruselle, C. Train, J. Vaissermann, B. Malézieux, J.P. Jamet and M. Verdaguer, Inorg. Chem. 40 (2001) 4633-4640 [3] F. Villain, M. Verdaguer, Y. DromzéeJ. Phys IV France, 1997, 7, Colloque C2-659-660. [4] G.L.J.A. Rikken, E. Raupach, Nature (London) 390 (1997) 493-494 Structural characterisation of the Ni-Al (111) interface by Surface X-ray Absorption Spectroscopy L. Damoc, E. Fonda, P. Le Fevre and A. Traverse Laboratoire pour l’Utilisation du Rayonnement Electromagnétique, Bât. 209D, Centre Universitaire, BP 34, 91898 Orsay Cedex, France The evolution of the Ni/Al(111) interface has been studied in situ by X-ray absorption spectroscopy at the Ni- K edge on the DW21 beam line of DCI. Deposited thickness of the Ni films on Al(111) were 2 monolayers (ML), 5 ML, 12 ML and 30 ML. The aim was to determine the diffusion length of Ni and the phases that have formed. The structure of Ni/Al(111) mixed interface have been characterized by XANES and EXAFS. The EXAFS oscillations have been fitted using the Fefffit code. The XANES features have been interpreted by comparing experimental spectra and calculations performed with the FEFF 8.1 code on Nix Aly compounds. We found that Ni diffused spontaneously at room temperature to a depth that we estimated to be of the order of 11 ML. The first system formed on Al(111) for 2 ML is Al3 Ni2 like instead of AlNi- like as found by V. Shutthanandan et al (1) on Al(110). Between 2 and 11 ML, we identified a AlNi3 phase, in agreement with (1), then pure Ni grows. We propose that the pure Ni growth observed after deposition of 11 ML is due to the presence of the AlNi3 aluminide that acts as a diffusion barrier preventing deeper Ni penetration into Al at room temperature. No presence of a Nix Al (x~2) system as mentioned by Arranz and Palacio (2) was detected. (1) V. Shutthanandan, Adli A. Saleh, R. J. Smith, Surf. Sci.450 (2000) 204 (2) A. Arranz and C. Palacio, Thin Solid Films, 317 (1998) 55 X-ray Absorption Spectroscopy of a strongly anisotropic bimetallic Iron-Cobalt Ferromagnetic Double Chain : dehydration and magnetism Françoise Villain1,2, Christophe Cartier dit Moulin1,2, Michel Verdaguer1 , Rodrigue Lescouezec3 , Miguel Julve 1 Laboratoire de Chimie Inorganique et Matériaux Moléculaires, UMR 7071, Université P. et M. Curie, 4 Place Jussieu, 75252 Paris Cedex 05, France. 2 Laboratoire pour l’Utilisation du Rayonnement Electromagnétique, UMR 130, Université Paris-Sud, BP 34, 91898 Orsay Cedex, France. 3 Departament de Quimica inorgànica,Facultat de Quimica de la Universitat de València, Dr Moliner 50, 46100 Burjassot, València, Spain. e-mail: villain@ccr.jussieu.fr Using the facilities available at LURE to study in situ chemical reactions and to follow the sample changes under constraints (temperature and controlled atmosphere), we studied the effect on thermal dehydration on the structure of the double chain [FeIII(bipy)(CN)4 ]2 [CoII(H2 O)2 ]•4H2 O, the structure of which has been determined by single crystal X-ray Diffraction (XRD). In the fully hydrated chain III II [Fe (bipy)(CN)4 ]2 [Co (H2 O)2 ]•4H 2O, the cobalt and iron ions are bridged by cyanide ligands, with two kinds of water molecules: two are linked to the cobalt ion and four are hydration water molecules. The magnetic coupling between the iron and the cobalt is ferromagnetic. After cooling in an applied magnetic field, a very slow relaxation of the magnetisation is observed when the magnetic field is set to zero. The chain appears to be one of the first « linear nanomagnet ». Two rates of relaxation are observed which can be attributed to dehydration or to species implying a photoinduced electron transfer. XAS studies at the cobalt and iron K edges (XANES, EXAFS) were performed at different temperatures under nitrogen atmosphere. The local surrounding of the cobalt(II) and of the iron(III) was carefully established. No change occurs in the oxidation degrees of the two metallic ions. The data analysis allows to conclude that the species responsible of the two relaxation rates are the fully hydrated chain and the chain after loss of the four water molecules of crystallisation. Co K edge: XANES spectra and modulus of Fourier transforms of the EXAFS signals of [FeIII(bipy)(CN)4 ]2 [CoII(H2 O)2 ]•4H2 O recorded at 25°C, 100°C and after heating at 180°C. Non-Rigidity of Organometallic Oxides V. Artero‡, M. Bénard†, P. Gouzerh‡, P. Herson‡, D. Laurencin‡, A. Proust‡, M.-M. Rohmer†, R. Thouvenot‡, F. Villain‡, ƒ, R. Villanneau‡ ‡ Laboratoire de Chimie Inorganique et Matériaux Moléculaires, UPMC, 75252 Paris, France. Laboratoire de Chimie Quantique, CNRS / Université Louis Pasteur, 67000 Strasbourg, France. ƒ Laboratoire d’Utilisation du Rayonnement Electromagnétique, Université Paris-Sud, Orsay, France. † Organometallic oxides have been defined as compounds in which an oxometal core is surrounded by organometallic moieties. Organometallic derivatives of polyoxometalates form a specific class of organometallic oxides.1,2 They are of interest owing to their ability to provide discrete analogues of solid-oxide-supported heterogeneous catalysts, to provide new insights into surface dynamics, to serve as precursors for transition metal nanoclusters and to display synergetic or bifunctional catalytic activity. In this poster, we will focus on the dynamic behavior of the organometallic oxides [M4O16{Ru(arene)}4] ( M = Mo, W) in solution. The cluster [{Ru(p-cym)}4Mo4O16] (p-cym = pC6H4(Me)(i-Pr)) was first reported in 1997 by Süss-Fink et al.3 In the solid-state, this compound displays the so-called windmill-like structure, which consists in a {Mo4O16}8- cubic core capped by four [Ru(p-cym)]2+ groups each bound to three oxygen atoms of the {Mo4O16}8- core. However, its structural characterization in solution (multinuclear NMR, Raman and X-ray absorption spectroscopies) indicates the presence of two species in equilibrium.4 The possibility of interconversion is a sign of flexibility and perhaps it could have interesting consequences on the catalytic activity. 0,15 60 TC + 40 Eol CHCl3 0,1 k* χ (k) 0,05 0 -0,05 -0,1 -0,15 4 6 8 10 12 14 16 k (Å-1) 350 95 300 250 ppm 200 150 Mo NMR spectrum of [{Ru(p-cym)}4Mo4O16] i) ii) Structure of [{Ru(p-cym)}4Mo4O16] EXAFS signal of the first shell (Mo-On) of [Mo4O16{Ru(p-cym)}4] in CHCl3 In this poster, we will show how : the metal atom (Mo vs. W) has a high influence on the equilibrium. in the case of Mo, the nature of the ligand allowed us to control the equilibrium and the distribution of the products. References : 1 P. Gouzerh, A. Proust, 1998, Chem. Rev., 98, 77 2 R. Villanneau, R. Delmont, A. Proust, P. Gouzerh, 2000, Chem. Eur. J., 6, 1184 ; V. Artero, A. Proust, P. Herson, P. Gouzerh, 2001, Chem. Eur. J., 7, 3901 3 G. Süss-Fink, L. Plasseraud, V. Ferrand, H. Stoeckli-Evans, 1997, Chem. Commun., 1657 4 V. Artero, A. Proust, P. Herson, P. Gouzerh, 2000, Chem. Commun., 883 X-ray diffraction on liquid iron oxides - influence of oxygen partial pressure on short-range order G. Wille1* , L. Hennet1,2, C. Landron1,2, J.C. Rifflet1 , F. Millot1 , M. Gailhanou2 , D. Thiaudière1,2 1. CRMHT – CNRS 1D, avenue de la recherche scientifique 45071 Orléans cedex 2. 2. LURE Centre Universitaire Paris Sud F-91898 Orsay Cedex. * e-mail : wille@cnrs-orleans.fr This work is a part of the thesis of G. Wille. The goal is to relate thermophysical properties (density, surface tension) of liquid Iron [1] and Iron oxides to the local environment of Fe in this liquids. Solid Iron oxides have been extensively studied using EXAFS [2] and X-ray diffraction. X-ray diffraction has been performed on H10 using a special system based on aerodynamic levitation and laser heating, developed for EXAFS and X-ray diffraction. This method has been successfully used for neutron and X-ray scattering [3]. The experimental cell has been developped in order to be adapted to liquid iron oxides under controlled atmosphere : the experimental cell has been closed, an oxygen 2,5 7 d Fe-O (Ä) 6 analyser is used to control oxygen partial 2,3 feo 5 fe3o4 (Fe-O 1) pressure and a new levitation nozzle has been 2,1 4 fe3o4 (Fe-O 2) 3 designed : the nozzle is generally a ceramic 1,9 fe2o3 (Fe-O 1) 2 fe2o3 (Fe-O 2) 1,7 nozzle. But liquid iron oxides study requires 1 coordinence 1,5 0 oxidant atmosphere and a new metallic nozzle 0 20 40 60 has been developed, in order to avoid nozzle % (Ar/2.5% H2) mixed with (Ar/3.5% O2) deterioration and to improve the stability of the levitated liquid drop. This nozzle has been x-ray diffraction on liquid iron successfully used for x-ray diffraction [4] on liquid iron oxydes at T = 1900 K under different atmospheres obtained by mixing (Ar / 3.5% O2 ) and (Ar / 2.5% H2 ). Results show an increase of the Fe-O distance with decreasing oxygen partial pressure corresponding to Fe3 O4 domain in the solid oxides part of the phase diagram. Coordinence of Fe is approximately constant. Complementary experiences have been performed recently on liquid FeO and Fe3 O4 . Liquid oxides have been studied by x-ray diffraction and EXAFS under different oxidation conditions. It give information on liquid iron oxides in less oxidant conditions and confirm results obtained from previous experiences. [1] G. WILLE, F. MILLOT, J.C. RIFFLET - communication at the 6th international workshop on subsecond thermophysics - to be published in Int. J. Thermophys. (2002) [2] Z.Y. WU, S. GOTA, F. JOLLET, M. POLLAK, M. GAUTIER-SOYER, C.R. NATOLI - Phys. Rev B vol. 55 n° 4 (01/1997) p. 2570 - 2577 [3] L. HENNET, C. LANDRON, P. BERTHET, J.P. COUTURES, T. JENKINS, C. ALETRU, N. GRAVES Jpn. J. Appl. Phys. Vol. 38 (1999) suppl. 38-1, pp.115-117 [4] S. KRISHNAN, D.L.PRICE - J. Phys. condens. matter vol. 12 (2000) p. R145-R176 List of Participants ADJOURI Caroline 04 73 40 79 42 04 73 40 72 62 adjouri@lure.u-psud.fr AHMAD Muthanna 01 44 27 73 66 01 44 27 70 82 muthanna@ccr.jussieu.fr ALCARAZ Christian 01 64 46 81 85 01 64 46 41 48 Christian.Alcaraz@lure.u-psud.fr ALONSO Bruno 02 38 25 76 82 02 38 63 81 03 LASMEA Université Blaise Pascal 24, Avenue des Landais Clermont Ferrand 63177 AUBIERE FRANCE DIAM Université P&M Curie 4, place jussieu T12-B75 75252 PARIS FRANCE LURE Centre Universitaire Paris-Sud Bât. 209D BP 34 91898 ORSAY FRANCE CRMHT 1D, av. de la Recherche Scientifique 45071 ORLÉANS FRANCE alonso@cnrs-orleans.fr ASCONE Isabella 01 64 46 80 92 01 64 46 41 48 isabella.ascone@lure.u-psud.fr BARRETT Nicolas 01 64 46 80 44 01 64 46 41 48 barrett@lure.u-psud.fr LURE Centre Universitaire Paris-Sud Bât. 209D BP 34 91898 ORSAY FRANCE LURE Centre Universitaire Paris-Sud Bât. 209 D BP 34 91898 ORSAY CEDEX FRANCE BAUDOT Grégory 01 44 27 79 46 Groupe de Physique des Solides Tour 23, 2 place Jussieu 75251 PARIS FRANCE baudot@gps.jussieu.fr BAZIN Dominique 01 64 46 80 72 LURE Centre Universitaire Paris-Sud Bât. 209D 01 64 46 41 48 BP 34 dominique.bazin@lure.u-psud.fr 91898 ORSAY BECHADE Jean-Luc CEA/SRMA 01 69 08 41 42 01 69 08 71 30 FRANCE CEA Saclay 91191 GIF SUR YVETTE CEDEX FRANCE jean-luc.bechade@cea.fr BECKER Uwe 493084135694 Fritz-Haber-Institut der MPG Abteilung Oberflächenphysik Faradayweg 4-6 DE 14195 BERLIN becker_u@fhi-berlin.mp GERMANY BELIN Stéphanie LURE 01 64 46 82 50 Centre Universitaire Paris-Sud Bât 209D 01 64 46 41 48 91898 ORSAY stephanie.belin@lure.u-psud.fr FRANCE BENAZETH Simone Lab. de Biomathématique 01 53 73 98 48 Faculté de Pharmacie 4, avenue de l'observatoire 75006 PARIS benazeth@pharmacie.univ-paris5.fr FRANCE BENZAKOUR Mouad 01 45 17 65 83 01 45 17 15 79 Groupe de Physique des Milieux Denses 61 Av. Général De Gaulle 94010 CRÉTEIL FRANCE benzakour@univ-paris12.fr BERTRAN François 01 64 46 82 34 LURE Université Paris-Sud Bât. 209D 01 64 46 41 48 BP 34 bertran@lure.u-psud.fr 91898 ORSAY BESSIERE Michel SOLEIL 01 64 46 81 25 01 64 46 88 61 michel.bessiere@soleil.u-psud.fr BIZAU Jean-Marc 01 69 15 75 04 FRANCE Centre Universitaire Paris-Sud Bât. 209H BP 34 91898 ORSAY CEDEX FRANCE LIXAM Centre Universitaire Paris-Sud Bât. 350 01 69 15 58 11 91405 ORSAY CEDEX jean-marc.bizau@lixam.u-psud.fr FRANCE BLEUZEN Anne CIM2 01 44 27 32 77 4, place jussieu 75252 PARIS FRANCE bleuzen@ccr.jussieu.fr BONNET Jacques 01 64 46 80 12 01 64 46 81 48 jacques.bonnet@lure.u-psud.fr LURE Centre Universitaire Paris-Sud Bât. 209D BP 34 91898 ORSAY CEDEX FRANCE BONNIN Dominique 01 40 79 46 24 Laboratoire de Physique Quantique ESPCI 10, rue Vauquelin 01 40 79 47 44 75231 PARIS CEDEX 05 dominique.bonnin@espci.fr FRANCE BOUAMRANE Fayçal LURE 01 64 46 80 84 Université Paris Sud Bât 209D 01 64 46 41 42 BP 34 faycal.bouamrane@lure.u-psud.fr 91898 ORSAY BOURGAUX Claudie LURE 01 64 46 81 37 01 64 46 41 48 claudie.bourgaux@lure.u-psud.fr BOURNEL Fabrice 01 44 27 62 22 FRANCE Centre Universitaire Paris-Sud Bât 209D BP 34 91898 ORSAY FRANCE Laboratoire de Chimie-Physique Université Paris 6 11 rue P. et M. Curie 01 44 27 66 26 75231 PARIS bournel@ccr.jussieu.fr FRANCE BOUVET Diane Groupe de Physique des Milieux Denses (GPMD) 01 45 17 65 83 01 45 17 15 79 bouvet@univ-paris12.fr BRIAT Michelle 01 69 26 41 82 Universite Paris XII-Val de Marne Bât. Marie Curie (P2)-346 61, Avenue du Général de Gaulle 94010 CRÉTEIL CEDEX FRANCE CEA DCRE/SDE BP 12 91680 BRUYÈRES-LE-CHATEL michelle.briat@cea.fr FRANCE BRIOIS Valérie 01 64 46 80 20 LURE Centre Universitaire Paris-Sud Bât. 209D 01 64 46 41 48 BP 34 valerie.briois@lure.u-psud.fr 91898 ORSAY BRUM Jose Director-General 551932874520 FRANCE Associacao Brasileira de Tecnologia de Luz CP 6192 551932874632 BR13084-971 CAMPINAS (SP) brum@lnls.br BRAZIL BUSSON Bertrand LURE 01 64 46 81 22 01 64 46 41 48 Bertrand.Busson@lure.u-psud.fr CARTIER dit MOULIN Christophe 01 44 27 39 60 01 44 27 38 41 cartier@ccr.jussieu.fr CHAMPEAUX Jean-Philippe 01 69 15 75 04 Centre Universitaire Paris-Sud Bât. 209 D BP. 34 91898 ORSAY France LCIM2 Université P. et M. Curie 4 place jussieu Case 42 75252 PARIS CEDEX 05 FRANCE CEA/LIXAM Université Paris Sud XI Bât 350 91405 ORSAY jean-philippe.champeaux@lixam.u-psud.fr FRANCE CHAMPION Guillaume LURE 01 64 46 81 08 Centre Universitaire Paris-Sud BP 34 01 64 46 41 48 91898 ORSAY CEDEX champion@lure.u-psud.fr FRANCE CHANDESRIS Dominique 01 69 29 37 13 LURE/SOLEIL Université Paris Sud Bât. H 01 64 46 88 61 BP 34 dominique.chandesris@lure.u-psud.fr 91898 ORSAY CHARBONNIER Jean-Baptiste Laboratoire de Radiobiologie de l'ADN 01 46 54 88 57 FRANCE Dept d'Ingénierie et d'Etudes des Protéines Bât. 5 01 46 54 88 59 60, rue du Général Leclerc jb.charbonnier@cea.fr 92265 FONTENAY AUX ROSES CEDEX COATI Alessandro LURE 01 64 46 80 90 01 64 46 41 48 alessandro.coati@lure.u-psud.fr CONGEDUTI Alberta 01 64 46 88 25 01 64 46 41 16 alberta.congeduti@lure.u-psud.fr CREUZE Jérôme 01 64 46 80 90 01 64 46 41 48 jerome.creuze@lure.u-psud.fr CROSET Bernard 01 44 27 76 88 01 43 54 28 78 croset@gps.jussieu.fr FRANCE Centre Universitaire Paris-Sud Bât. 209D BP 34 91898 ORSAY CEDEX FRANCE LURE, Orsay - France, and Unita' INFM Roma1-Italy Centre Universitaire Paris-Sud Bât 209D BP 34 91898 ORSAY FRANCE LURE Centre Universitaire Paris-Sud Bât. 209 D BP 34 91848 ORSAY CEDEX FRANCE Groupe de Physique des Solides Universités Paris 6 et 7 tour 23 2, place Jussieu 75251 PARIS CEDEX FRANCE DAILLANT Jean 01 64 46 82 25 01 64 46 41 48 jean.daillant@lure.u-psud.fr DARTYGE Elisabeth 01 64 46 82 04 01 64 46 41 48 elisabeth.dartyge@lure.u-psud.fr De MALLMANN Aimery 04 72 43 18 02 LURE Centre Universitaire Paris-Sud Bât. 209D BP 34 91898 ORSAY CEDEX FRANCE LURE Centre Universitaire Paris-Sud Bât. 209D BP 34 91898 ORSAY CEDEX FRANCE L.C.O.M.S. CPE Lyon 43, bd du 11 Novembre 1918 04 72 43 17 95 69616 VILLEURBANNE aimery@cpe.fr FRANCE DEBORD Régis Physique Des Milieux Condensés 01 44 27 44 64 Tour 13é2 Université P. et M. Curie 4, Place Jussieu 01 44 27 44 69 75005 PARIS RD@PMC.JUSSIEU.FR FRANCE DOUIN Stéphane Photophysique moléculaire 01 69 15 72 42 Centre Universitaire Paris-Sud bât. 210 01 69 15 67 77 91470 ORSAY CEDEX stephane.douin@ppm.u-psud.fr FRANCE DOWEK Danielle Laboratoire des Collisions Atomiques et Moléculaires 01 69 15 76 72 Centre Universitaire Paris-Sud Bât. 351 01 69 15 76 71 91405 ORSAY dowek@lcam.u-psud.fr FRANCE DUMAS Paul 01 64 46 81 86 LURE Centre Universitaire Paris Sud Bât. 209D 01 64 46 41 48 BP34 paul.dumas@lure.u-psud.fr 91898 ORSAY DUTUIT Odile LURE 01 64 46 81 22 01 64 46 41 48 oduile.dutuit@lure.u-psud.fr EDDRIEF Mahmoud 01 44 27 52 37 or 01 44 27 45 14 01 44 27 37 85 mahmoud.eddrief@lmcp.jussieu.fr ELKAIM Eric 01 64 46 82 19 01 64 46 41 48 eric.elkaim@lure.u-psud.fr ETGENS Victor 01 44 27 52 25 01 44 27 37 85 etgens@lmcp.jussieu.fr FISCHER Henry 01 64 46 88 55 01 64 46 41 48 Henry.Fischer@lure.u-psud.fr FRANCE Centre Universitaire Paris-Sud Bât. 209D BP 34 91898 ORSAY CEDEX FRANCE LMCP Université Pierre et Marie Curie Case 115, Tour 16 4 place Jussieu 75252 PARIS CEDEX 05 FRANCE LURE Centre Universitaire Paris-Sud Bât. 209D BP 34 91898 ORSAY CEDEX FRANCE LMCP Université Pierre et Marie Curie Bât. 16, 2e Etage - Case 115 4, place Jussieu 75252 PARIS CEDEX 05 FRANCE LURE Centre Universitaire Paris-Sud Bât. 209D BP 34 91898 ORSAY FRANCE FLANK Anne-Marie 01 64 46 81 15 LURE Centre Universitaire Paris-Sud Bât 209D 01 64 46 41 48 BP 34 flank@lure.u-psud.fr 91898 ORSAY FONDA Emiliano LURE 01 64 46 80 53 FRANCE Centre Universitaire Paris-Sud Bât 209D 01 64 46 41 48 91400 ORSAY fonda@lure.u-psud.fr FRANCE FONTAINE Philippe LURE 01 64 46 88 19 01 64 46 41 48 philippe.fontaine@lure.u-psud.fr FONTAINE Alain 01 44 96 42 55 Centre Universitaire Paris Sud Bât 209D BP 34 91898 ORSAY FRANCE Dept SPM/CNRS 3, rue Michel Ange 75794 PARIS CEDEX 16 FRANCE Alain.Fontaine@cnrs-dir.fr FORTUNA Franck 01 64 46 81 86 01 64 46 41 48 franck.fortuna@lure.u-psud.fr FOUREST Blandine 01 69 15 74 85 LURE Centre Universitaire Paris-Sud Bât. 209 D BP 34 91898 ORSAY CEDEX FRANCE Institut de Physique Nucléaire Centre Universitaire Paris-Sud Bât 100 01 69 15 64 70 91406 ORSAY CEDEX fourest@ipno.in2p3.fr FRANCE FOURME Roger 01 64 46 81 26 LURE/SOLEIL Centre Universitaire Paris-Sud Bât. 209H 91898 ORSAY roger.fourme@soleil.u-psud.fr FRANCE GALLET Jean-Jacques Chimie Physique-Matière et Rayonnement 01 44 27 62 68 01 44 27 62 26 11, rue Pierre et Marie Curie 75231 PARIS CEDEX 05 FRANCE jjgallet@ccr.jussieu.fr GARREAU Yves 01 64 46 80 90 01 64 46 41 48 Yves.Garreau@lure.u-psud.fr GAUDIER Martin 01 69 82 34 76 LURE Centre universitaire Paris-Sud Bât 209D BP 34 91898 ORSAY FRANCE Laboratoire d'enzymologie et biochimie structurales CNRS Avenue de la Terrasse Bât. 34 01 69 82 31 29 91198 GIF SUR YVETTE CEDEX gaudier@lebs.cnrs-gif.fr FRANCE GIORGETTI Christine LURE 01 64 46 82 21 01 64 46 41 48 Christine.Giorgetti@lure.u-psud.fr GOLDMANN Michel 01 42 86 22 80 01 42 86 20 85 michel.goldmann@biomedicale.univ-paris5.fr Centre Universitaire Paris-Sud Bât 209D BP 34 91898 ORSAY FRANCE O.C.I.I.B. 45, rue des Saints Pères 75270 PARIS FRANCE GOUDEAU Philippe 05 49 49 67 26 LMP Université de Poitiers - SP2MI Bvd Marie et Pierre Curie 05 49 49 66 92 BP 30179 Philippe.Goudeau@univ-poitiers.fr 86962 FUTUROSCOPE CHASSENEUIL GUCZI Laszlo Dept of Surface Chemistry & Catalysis 3613959001 3613959001 guczi@alpha0.iki.kfki.hu HAGUE Coryn 01 44 27 66 15 01 44 27 62 26 FRANCE Institute of Isotope and Surface Chemistry CRC HAS P. O. Box 77 H-1525 BUDAPEST HUNGARY LCP-MR 11, rue Pierre et Marie Curie 75231 PARIS CEDEX 05 FRANCE hague@ccr.jussieu.fr HAMOUDA Frédéric 01 64 46 80 10 01 64 46 41 48 Frederic.Hamouda@lure.u-psud.fr HILAIRE Lionel 03 88 13 69 65 LURE Centre Universitaire Paris-Sud Bât. 209D BP 34 91898 ORSAY FRANCE LMSCP Institut Le Bel Strasbourg - Université Louis Pasteur 4 rue Blaise Pascal 03 88 13 69 68 67070 STRASBOURG hilaire@chimie.u-strasbg.fr FRANCE HRICOVINI Karol LPMS 01 34 25 70 29 01 34 25 70 71 karol.hricovini@lpms.u-cergy.fr Université de Cergy-Pontoise 95031 CERGY-PONTOISE FRANCE HUBERT Solange 01 69 15 73 44 IPN Centre Universitaire Paris-Sud Bât. 100 01 69 15 57 15 15, rue G. Clemenceau shubert@ipno.in2p3.fr 91406 ORSAY HUETZ Alain LSAI 01 69 15 55 34 FRANCE Centre Universitaire Paris-Sud Bât. 350 01 69 15 58 11 91405 ORSAY CEDEX alain.huetz@lsai.u-psud.fr FRANCE JEZEQUEL Guy PALMS - Groupe Surfaces-Interfaces 02 23 23 61 96 02 23 23 61 98 guy.jezequel@univ-rennes1.fr JONES William Campus Beaulieu Bât. 11C avenue du Général Leclerc 35042 RENNES CEDEX FRANCE LCP Centre Universitaire Paris-Sud Bât. 490 91405 ORSAY FRANCE JOURNEL Loïc 01 44 27 62 68 01 44 27 62 26 LCPMR 11, rue Pierre et Marie Curie 75005 PARIS FRANCE journel@ccr.jussieu.fr JOUSSEAUME Cécile 01 44 27 67 24 Laboratoire de Chimie Appliquée de l'Etat Solide ENSCP 11, rue Pierre et Marie Curie 01 46 34 74 89 75005 PARIS jousseau@ext.jussieu.fr FRANCE KAHN-HARARI Andrée 01 44 27 67 07 Chimie Appliquée de l'Etat Solide E.N.S.C.P. 11 rue P. et M. Curie 01 46 34 74 89 75231 PARIS CEDEX 05 kahnari@ext.jussieu.fr FRANCE KHOUCHAF Lahcen Laboratoire Analyse Physique 03 27 71 23 19 Ecole des Mines de Douai 941, rue Charles Bourseul 03 27 71 29 18 BP 838 khouchaf@ensm-douai.fr 59508 DOUAI KUBSKY Stefan LPCMR 01 44 27 66 23 FRANCE Université Pierre et Marie Curie 11 rue Pierre et Marie Curie 75231 PARIS kubsky@ccr.jussieu.fr FRANCE LABLANQUIE Pascal LURE 01 64 46 80 26 01 64 46 41 48 pascal.lablanquie@lure.u-psud.fr LAGARDE Pierre 01 64 46 80 19 01 64 46 41 48 pierre.lagarde@lure.u-psud.fr LAMBOURNE Joe 01 44 27 73 66 01 44 27 70 82 lambourn@ccr.jussieu.fr Centre Universitaire Paris-Sud Bât. 209D BP 34 91898 ORSAY CEDEX FRANCE LURE Centre Universitaire Paris-Sud Bât 209D BP 34 91898 ORSAY FRANCE DIAM Université P & M Curie 4, place Jussieu T12-B75 75252 PARIS CEDEX 05 FRANCE LE FEVRE Patrick 01 64 46 88 17 LURE Centre Universitaire Paris Sud Bât. 209D 01 64 46 41 48 BP34 patrick.le.fevre@lure.u-psud.fr 91898 ORSAY CEDEX LE REUN Emmanuelle GPMD 01 45 17 15 81 01 45 17 15 79 FRANCE Université Paris 12, Val de Marne Faculté des Sciences et Technologies 61 avenue du Général de Gaulle 94010 CRÉTEIL CEDEX FRANCE LEBECH Mogens 01 69 15 76 96 Laboratoire des Collisions Atomiques et Moléculaires Université Paris-Sud Bât. 351 01 69 15 76 71 91405 ORSAY mogens@lcam.u-psud.fr FRANCE LECANTE Jean LURE Centre Universitaire Paris-Sud Bât. 209 D 91898 ORSAY CEDEX FRANCE LEPY Marie-Christine 01 69 08 24 48 01 69 08 26 19 LNHB CEA Saclay 91191 GIF SUR YVETTE CEDEX FRANCE marie-christine.lepy@cea.fr LETARD Isabelle 01 44 27 50 59 01 44 27 37 85 letard@lmcp.jussieu.fr LMCP Université Pierre et Marie Curie Tour 16, 2e Etage - Case 115 4, place Jussieu 75252 PARIS CEDEX 05 FRANCE LLORENS Isabelle 01 45 17 15 84 01 45 17 15 79 GPMD Université Paris 12, Val de Marne Faculté des Sciences et Technologies 61 avenue du Général de Gaulle 94010 CRÉTEIL CEDEX FRANCE LOUIS Catherine 01 44 27 30 50 Réactivité de Surface Univ. P. et M. Curie 4, place Jussieu 01 44 27 60 33 75252 PARIS CEDEX 05 louisc@ccr.jussieu.fr FRANCE MAGNAN Hélène LURE 01 64 46 80 11 01 64 46 41 48 helene.magnan@lure.u-psud.fr MAGNUSON Martin Centre Universitaire Paris-Sud Bât. 209D BP 34 91898 ORSAY FRANCE Laboratoire de Chimie Physique 11, rue P. et M. Curie 75231 PARIS CEDEX 05 FRANCE magnuson@fysik.uu.se MAITRE Philippe 01 69 15 74 63 Laboratoire de Chimie Physique Université de Paris XI Bât. 350 01 69 15 61 88 91405 ORSAY CEDEX maitre@lcp.u-psud.fr FRANCE MARANGOLO Massimiliano Lab. de Minéralogie Cristallographie de Paris 01 44 27 52 37 01 44 27 37 85 marangol@lmcp.jussieu.fr Université Pierre et Marie Curie Bât. 16, 2e Etage - Case 115 4, place Jussieu 75252 PARIS CEDEX 05 FRANCE MARIOT Jean-Michel 01 44 27 66 25 01 44 27 62 26 Lab. de Chimie Physique - Matière et Rayonnement 11 rue Curie 75231 PARIS CEDEX 05 FRANCE jmma@ccr.jussieu.fr MAURIANGES Gilles 01 45 17 65 84 01 45 17 15 79 GPMD Université Paris 12, Val de Marne Faculté des Sciences et Technologies 61 avenue du Général de Gaulle 94010 CRÉTEIL CEDEX FRANCE METZGER Till Hartmut 04 76 88 22 80 04 76 88 25 42 ESRF BP 220 38043 GRENOBLE CEDEX FRANCE metzger@esrf.fr MICHALOWICZ Alain 01 45 17 15 81 01 45 17 15 79 michalov@univ-paris12.fr MORIN Paul 01 69 29 37 22 01 64 46 88 61 paul.morin@soleil.u-psud.fr MOULIN Béatrice 02 38 25 55 32 02 38 63 81 03 moulin@cnrs-orleans.fr GPMD Université Paris 12, Val de Marne Faculté des Sciences et Technologies 61 avenue du Général de Gaulle 94010 CRÉTEIL CEDEX FRANCE SOLEIL Centre Universitaire Paris-Sud Bât. 209H BP 34 91898 ORSAY CEDEX FRANCE CRMHT - CNRS 1d avenue de la recherche scientifique 45071 ORLÉANS CEDEX 2 FRANCE MUNSCH Pascal 01 64 46 88 57 LURE Centre Universitaire Paris-Sud Bât. 209 D 01 64 46 41 48 BP 34 munsch@lure.u-psud.fr 91898 ORSAY CEDEX NICOLIS Ioannis Biomathématiques et Informatique 01 53 73 97 78 FRANCE 4, av. de l'Observatoire Faculté de Pharmacie Université Paris V nicolis@pharmacie.univ-paris5.fr OUVRARD Guy 02 40 37 39 21 75006 PARIS FRANCE Institut des Matériaux Jean Rouxel 2, rue de la Houssinière BP 32229 02 40 37 39 95 44322 NANTES CEDEX 3 ouvrard@cnrs-imn.fr FRANCE PAGET Daniel Lab. de Physique de la Matière Condensée 01 69 33 46 52 Ecole Polytechnique Route de Saclay 01 69 33 30 04 91128 PALAISEAU daniel.paget@polytechnique.fr FRANCE PAYEN Edmond Lab. de Catalyse Hétérogène et Homogène 03 20 43 49 47 03 20 43 65 61 edmond.payen@univ-lille1.fr PEDECHE Stéphan 02 38 25 76 82 02 38 63 81 03 pedeche@cnrs-orleans.fr Univ. des Sciences et Technologies de Lille Bât. C3 BP 48 59655 LILLE FRANCE CRMHT 1D, av de la recherche scientifique 45071 ORLÉANS CEDEX 2 FRANCE PELLICER-PORRES Julio 01 44 27 44 70 01 44 27 44 69 jp@pmc.jussieu.fr PENENT Francis 01 44 27 43 10 01 44 27 70 82 penent@ccr.jussieu.fr PORCHERON Lucette 01 64 46 80 10 01 64 46 41 48 lucette.porcheron@lure.u-psud.fr PRIETO Pilar 34913974924 Physique Milieux Condenses Université P. et M. Curie B 77, Tour 13-14, 2ème étage 4 Place Jussieu 75252 PARIS FRANCE DIAM Université P. et M. Curie T12 B75 4, place Jussieu 75252 PARIS CEDEX 05 FRANCE LURE Centre Universitaire Paris-Sud Bât. 209D BP 34 91898 ORSAY CEDEX FRANCE Dpto Fisica Aplicada C-XII Universidad Autonoma de Madrid Cantoblanco 401 34913973969 ES 28049 MADRID pilar.pietro@uam.es SPAIN PROVOST Karine GPMD 01 45 17 65 84 01 45 17 15 79 provost@univ-paris12.fr PURANS juris 3712251691 U.F.R. Sciences et Technologie Université Paris XII-Val de Marne 61 avenue du Général de Gaulle 94010 CRÉTEIL CEDEX FRANCE Institut of Solids State Physics University of Latvia Kengarara Strasse 8 3717112583 LV 1063 RIGA xas@latnet.lv LATVIA RAMOS Aline 551932874520 551932874632 Lab Nacional de Luz Sincrotron CP6192 13084-971 CAMPINAS -SP BRASIL aramos@lnls.br RAOUX Denis 01 64 46 88 80 SOLEIL Centre Universitaire Paris-Sud Bât. 209H 01 64 46 88 61 BP 34 denis.raoux@soleil.u-psud.fr 91898 ORSAY CEDEX REMOND Christian CEA 01 69 26 40 02 FRANCE DCRE/SDE BP 12 91680 BRUYÈRES-LE-CHATEL christian.remond@cea.fr FRANCE RIBOT François Chimie de la Matière Condensée 01 44 27 41 35 01 44 27 47 69 fri@ccr.jussieu.fr ROULLIAY Marc 01 64 46 88 07 01 64 46 41 48 marc.roulliay@lure.u-psud.fr ROUZIERE Stephan 01 64 64 82 50 Université Pierre et Marie Curie Case 174 4, place Jussieu 75252 PARIS FRANCE LURE Centre Universitaire Paris-Sud Bât. 209D BP 34 91898 ORSAY CEDEX FRANCE LURE Centre Universitaire Paris-Sud Bât. 209 A 91898 ORSAY stephan.rouziere@lure.u-psud.fr FRANCE ROY Pascale 01 64 46 82 89 LURE Centre Universitaire Paris-Sud Bât. 209D 01 64 46 41 48 BP 34 pascale.roy@lure.u-psud.fr 91898 ORSAY SADOC Anne LPMS 01 34 25 70 28 01 34 25 70 71 Anne.Sadoc@lpms.u-cergy.fr SAUVAGE Michèle 01 64 46 80 18 01 64 46 88 61 michele.sauvage@soleil.u-psud.fr SCHLEGEL Michel 01 69 08 93 84 01 69 08 32 42 michel.schlegel@cea.fr SHAFIZADEH Niloufar 01 69 15 75 02 FRANCE Université de Cergy-Pontoise 5 Mail Gay-Lussac Neuville 95031 CERGY-PONTOISE FRANCE SOLEIL Centre Universitaire Paris-Sud Bât. 209H BP 34 91898 ORSAY CEDEX FRANCE Lab. for the study of radioelements in their environment CEN Saclay DEN/DPC/SCPA/LCRE Bât 450 - BP 11 91191 GIF SUR YVETTE CEDEX FRANCE Photophysique moléculaire Université Paris-Sud Bât. 210 01 69 15 67 77 91405 ORSAY niloufar.Shafizadeh@ppm-u.psud.fr FRANCE SINGLETON Lawrence IMM 496131990142 496131990205 singleton@imm.mainz.de Carl-Zeiss strass,18-20 DE 55129 MAINZ GERMANY SIROTTI Fausto 01 64 46 80 94 LURE Centre Universitaire Paris-Sud Bât. 209D 01 64 46 41 48 BP 34 fausto.sirotti@lure.u-psud.fr 91898 ORSAY CEDEX TADJEDDINE Abderrahmane LURE 01 64 46 80 02 01 64 46 41 48 abderrahmane.tadjeddine@lure.u-psud.fr TALEB-IBRAHIMI Amina 01 64 46 82 87 01 64 46 41 48 amina.taleb@lure.u-psud.fr THIAUDIÈRE Dominique 01 64 46 80 72 01 64 46 41 48 thiaudiere@lure.u-psud.fr THISSEN Roland 01 69 15 75 73 FRANCE Centre Universitaire Paris-Sud Bât. 209D BP 34 91898 ORSAY CEDEX FRANCE LURE Centre Universitaire Paris-Sud Bât. 209D BP 34 91898 ORSAY CEDEX FRANCE LURE - CRMHT Centre Universitaire Paris-Sud Bât. 209D BP 34 91898 ORSAY FRANCE Laboratoire de Chimie physique Centre Universitaire Paris-Sud Bât 350 01 69 15 30 53 91405 ORSAY roland.thissen@lcp.u-psud.fr FRANCE TOLAS Pascal Lab. Chimie Physique Mat. TORELLI Piero 01 64 46 80 94 LURE Centre Universitaire Paris-Sud Bât. 209D 01 64 46 41 48 BP 34 piero.torelli@lure.u-psud.fr 91898 ORSAY CEDEX TOUGARD Pierre Lab. de Modélisation et d’Ingénierie des Protéines 01 69 15 71 41 FRANCE Centre Universitaire Paris-Sud Bât. 432 01 69 85 37 15 91405 ORSAY CEDEX pierre.tougard@mip.u-psud.fr FRANCE TRAIN Cyrille CIM2 01 44 27 30 59 UPMC 4 Place Jussieu - Case 42 01 44 27 38 41 75252 PARIS CEDEX 05 train@ccr.jussieu.fr FRANCE TRAVERSE Agnès LURE 01 64 46 88 26 Centre Universitaire Paris-Sud Bât 209A BP 34 agnes.traverse@lure.u-psud.fr VACHETTE Patrice 01 64 46 88 55 01 64 46 41 48 patrice.vachette@lure.u-psud.fr VERSTRAETE Johan 03 27 71 23 19 03 27 71 29 18 verstraete@ensm-douai.fr 91898 ORSAY CEDEX FRANCE LURE Centre Universitaire Paris-Sud Bât. 209D BP 34 91898 ORSAY FRANCE Laboratoire Analyse Physique Ecole des Mines de Douai Rue Charles Bourseul BP 838 59508 DOUAI FRANCE VIDAL Franck 01 64 46 81 22 LURE Centre Universitaire Paris-Sud Bât. 209D 01 64 46 41 48 BP 34 Franck.Vidal@lure.u-psud.fr 91898 ORSAY CEDEX VILLANNEAU Richard Chimie Inorganique et Matériaux Moléculaires 01 44 27 55 53 01 44 27 38 41 villane@ccr.jussieu.fr WIGLEY Dale B. 442072693930 442072693803 d.wigley@cancer.org.uk WILLE Guillaume 02 38 25 56 87 02 38 63 81 03 FRANCE Université Pierre et Marie Curie case 42 Bat. F pièce 429bis 4, Place Jussieu 75252 PARIS CEDEX 05 FRANCE Molecular Enzymology Laboratory London Research Institute Clare Hall Laboratories Cancer Research UK Herts EN6 3LD BLANCHE LANE, SOUTH MIMMS UK CRMHT 1d avenue de la recherche scientifique 45071 ORLÉANS CEDEX 2 FRANCE wille@cnrs-orleans.fr WUILLEUMIER François 01 69 15 65 36 LIXAM Université Paris Sud Bât. 350 01 69 15 58 11 91405 ORSAY francois.wuilleumier@lixam.U-psud.fr FRANCE ZOBELLI Alberto LURE 01 64 46 80 90 01 64 46 41 48 alberto.zobelli@lure.u-psud.fr Centre Universitaire Paris-Sud Bât. 209D BP 34 91898 ORSAY CEDEX FRANCE LURE Laboratoire pour l’Utilisation du Rayonnement Electromagnétique Bât. 209D – BP 34 – 91898 Orsay cedex (France) Tél. : 33 01 64 46 80 00