Simulations
Transcription
Simulations
Intro Simulations Validation Applications Fluorescence Cross-Correlation for Flow Mapping: to monitor dynamics in parallel on extended field of views direct applications to: -hemodynamics in microcapillary bed -neurophysiology -chaotic dynamics in soft matter. Giberto Chirico Università degli Studi di Milano-Bicocca Dipartimento di Fisica G. Occhialini Intro Validation Simulations Applications Fluorescence Correlation Spectroscopy (FCS) open confocal volume Fluorescence Intensity I(t) Information from Noise Time • Brownian diffusion • Directional flow • (Photophysical reactions) Auto- and cross-correlation functions Intro Simulations Validation Applications Auto-correlation Function 1.0 V=100 µm G() 0.8 0.6 0.4 0.2 beam waist 0.0 1E-5 1E-4 1E-3 0.01 Lag time (s) D = diffusion coefficient Diffusion & Drift two relaxation times V = drift velocity 0.1 Validation Simulations Intro Applications Cross-correlation Function I1(t) flow t Time Detector1 Detector2 t R Time τV,R I2(t) flow t+τ Detector1 Detector2 Cross-correlation t t+τ Time Intro Validation Simulations Applications Cross-correlation Function R flux ω0 1 ω0 V 2 For a stationary flow with drift speed V: Quasi-Gaussian component de-coupled Brownian diffusion Drift Intro Validation Simulations Applications Simulations: Auto vs Cross 2 τ G (τ ) ≅ exp − 2 τ ( ) τ ω + 1 D 0 τ D 2 R − Vτ G (τ ) ≅ exp − 2 τ ω0 1 + τ D τD=2-4-30 ms τD=4ms τV<ττD V=500 – 125 µm/s τ max − τ V ,R = ατ D 0.3 ms < τV < 12 ms 10µm 20µ µm |R|=10µm V=2000 – 125 µm/s Sampling time 4 ms Vmax ≈ 8000 µm/s τ V ,R R = V Large diff times …. are «better» Validation Simulations Intro Applications Implementation of Fluorescence Correlation Spectroscopy on Imaging Intra-image (correlate over an image) RICS…. Drilling through a stack STICS…. or a line SLICS…. Intro Simulations Validation Applications Fluorescence Correlation Imaging (SFCS) Gratton, J.Biom. Opt. 2010 Digman, Biophys. J, 2009 Intro Simulations Validation Applications Fluorescence Correlation Imaging (RICS) Diffusion coefficients on uniform Region of Interest Correction for the Immobile fraction of Fluorophores. Intro Simulations Validation Applications Fluorescence Correlation Imaging (STICS) Velocity map of EGFP/α-actin flux on retracting lamellar extension of CHO cell plated on fibronectin Herbert 2005, Biophys. J. Intro Simulations Validation Applications Fluorescence Correlation Imaging ON PIXELATED DETECTORS • Hardware implementations Blood Flow • Software implementations Cell-cell interaction map • Validation on STICS Validation Simulations Intro Applications Hardware Implementations: dedicated multispot CCD system Flux in Flow out EM-CCD Detector Image stack Advantages: • variable interspot distance R • pixelated detector for two spots detection • dual spot scanning NIR LASER Twyman-Green Interferometer 250 fps Intro Simulations Validation Test of the dual spot system: - linearity vs. R - detection of D Rodamine D=300±30um2/s (V=310±10um/s) Gold Nanorods D=12±1um2/s (V=195±2um/s) gold nanorods (16x48 nm) in square microcapillary at different spots distances: R=3-4-14-17 um V=270±10um/s Applications Intro Validation Simulations Applications Scanning along the capillary: velocity profile |R| 100 nm fluorescent microbeads d=720±20 um d flow 1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13 F L O W Pozzi, Chirico, Mapelli, Gandolfi, D’Angelo et al. JBO, 2014 fimage=200Hz, pixel=7.4 um N=42 pixels Intro Simulations Validation Zebrafish Model system: Zebrafish embryo - Cold-blooded tropical freshwater teleost with two-chamber heart morphology - Simple and regenerative heart and circulatory system - Modeling of blood clotting, blood vessel development, heart failure - Two main vessels: dorsal aorta, cardinal vein (typical diameter ≈ 15-20 υm) Endothelial Cells expressing GFP Red Blood Cells expressing DsRed Intro Validation Simulations Zebrafish Dual-Spot Cross-correlation Spectroscopy FLOW ACROSS VEIN AND ARTERY embryos 4 dpf vein 50% F L O W 0.03 GX1,2(τ) 0.00 artery 20% 0.04 V(vein) = 630±70 um/s 0.00 V(s20%)= 980±120 um/s V(d20%)= 420±40 um/s V(s50%)= 1420±200 um/s V(d50%)= 380±20 um/s artery 50% 0.03 0.00 10 0.03 1000 Lag time [ms] 0.00 10 Pozzi JBO 2014 100 100 Lag time [ms] Validation Simulations Intro Zebrafish Dual-Spot Cross-correlation Spectroscopy vessel scan SPEED PROFILES ACROSS VEIN AND ARTERY 4dpf, 50half-way heart-tail 1400 R=40υm 0.06 (D) (C) 0.04 1200 1000 0.25d V [µ m/s] GX1,2(τ) flow 400 0.02 300 0.125d (B) (A) 0.08 700 650 V [µm/s] GX1,2(τ) 0.00 0.04 600 0.125d 0.25d 0.00 10 100 lag time [ms] 0 10 20 30 vessel radialcoordinate [µm] 550 Pozzi et al., JBO 2014 Validation Simulations Intro Zebrafish Dual-Spot Cross-correlation Spectroscopy vessel F L O W scan SPEED PROFILES: SENSITIVITY TO THE FLUX DIRECTION (i,i) Method strength (i-1,i) (i,j) GX1,2 (τ) 0.08 i-2 i-1 flow i i+1 i+2 0.04 (i+1,i) i-2 i-1 i (i+2,i) i+1 i+2 (i-2,i) 0.00 0 50 100 lag time [ms] 150 200 Intro Simulations Validation Zebrafish Software Implementations: raster scanning fluorescence correlation spectrometer Two galvanometric mirrors: the sample is raster scanned by the excitation laser beam x y Laser scanning confocal microscope Scan frequency: 2 Hz – 8000 Hz ( 0.5 s – 125 µs / line) Validation Simulations Intro Zebrafish Scanning Laser Image Cross-correlation (SLIC)* x A B C D E A1 B1 C1 D1 E1 A2 B2 C2 D2 E2 A3 B3 C3 D3 E3 A4 B4 C4 D4 E4 A5 B5 C5 D5 E5 A6 B6 C6 D6 E6 v x t * Rossow, Mantulin, Gratton, Jbiom Optics 2010 8000 lines 1s t x t x t Validation Simulations Intro Zebrafish 2 R − V fitτ G fit (τ ) ≅ G0 exp − 2 ω 1 + τ τ D , fit 0 Scanning Laser Image Cross-correlation (SLIC) changing the distance between the columns x t A B C D 0.025 τv (s) 0.020 G(τ) 0.015 E v 0.020 0.018 0.016 0.014 0.012 0.010 0.008 4 0.010 6 8 10 R (µm) 0.005 0.000 0.01 0.1 τ (s) x t x t Validation Simulations Intro Zebrafish Scanning Laser Image Cross-correlation ARTERY 80 υm <V> = 714±43 υm/s 8VEIN0 VEIN R = 10, 20 …υm 90 pixels= 1.6, 3.2 … 14.4 υm 80 υm 1.5 double component in the carpet: systolic and diastolic velocities. GXab(t) 1.0 0.5 R = 2.5, 5 … 22.5 µm 0.0 2.0 (vein) 1.5 -0.5 1.0 1E-4 1E-3 0.01 0.1 1.4 Lag time(s) 0.5 8000 Hz / line 125 µs / line 512x8192 100 nm / pixel Single component In the carpet: <V> = 715±40 µm/s GXab(τ) 0.0 1E-4 1E-3 0.01 0.1 (artery) 0.7 0.0 1E-4 1E-3 0.01 Lag time τ (s) 0.1 Intro Validation Simulations Zebrafish Scanning Laser Image Cross-correlation short time lapse analysis: Method Strength 3750 50 υm v (µ m/s) 3000 2250 1500 750 0 0.0 0.5 1.0 Time (s) ROI size ≈ 512x300 pixels ≈ 30 ms 1.5 2.0 Estimate of the cardiac output: CO ≈ 30 nL/min Intro Simulations Validation Neurophysiology Hardware Implementations: Spatial Ligth Modulator + CCD CMOS or CCD Advantages: • Variable spot array LCOS-SLM optical phase modulator • pixelated detector for parallel spots detection • Possibility of space mapping sample Gandolfi, Pozzi, Chirico, Mapelli, D’Angelo Frontiers in Cell. Neurosci. 2014 Intro Simulations Validation Neurophysiology Sliding grid Two-photon imaging Desired Excitation pattern Single acquired images SLM holograms reconstructed image cerebellar slice bulk-loaded with Fura-2AM Intro Simulations Sliding grid TPE Method strength Validation Neurophysiology Selected neurons Calcium signal from selected neurons Signal variation from the soma of granule cells in response to mossy fiber stimulation (10 pulses/50Hz) Intro Simulations Validation Epathite Virology Software Implementations: pair correlation on full raster scanned image flowing fluorescent objects… Cross-correlation On x-y images 1000 Hz 1 ms/line Zebrafish DsRed signal (red blood cells) vein 8000 Hz - 125 µs/line 10 µm Typical pixel size ≈ 30-100 nm Typical field of view ≈ 30-100 µm 10 µm The scan speed is chosen so that flowing objects produce diagonal lines: vscan > vflow Simulations Intro Validation Epathite Virology How to extract dynamic information from a single xy-image? Cross-correlation is computed among pairs of columns of the image: a 15 µm 2 3 4 1 400 6 col. I col. J 500 5 300 200 7 2000 1000 0 0 200 400 600 800 8 1000 12 3000 FJ (y) 100 9 10 11 2000 1000 0 0 200 400 600 y (pixel) 800 1000 94a.u. 12508a.u. 5-nm quantum dots; λexc=900 nm G (τ) FI (y) 3000 0 |v| (µm/s) 10 µm Intro Simulations Validation Applications the biophotonics people @ UNIMIB… Paolo Pozzi Margaux Bouzin Maddalena Collini Laura D’Alfonso Laura Sironi Cassia Marquezin Mykola Borzenkov Egidio D’Angelo Jonathan Mapelli Daniela Gandolfi Dept. of Human Physiology Univ. Pavia Piersandro Pallavicini Dept. of Chemistry Univ. Pavia Franco Cotelli Efrem Foglia Dept. of Lifesciences Univ. Milano Luca Guidotti Matteo Iannacone Donato Inverso San Raffaele Scientific Institute, Milano