Trasduttori Polimerici IPMC-Ionic Polymer Metal Composite IP2C
Transcription
Trasduttori Polimerici IPMC-Ionic Polymer Metal Composite IP2C
Trasduttori Polimerici IPMC-Ionic Polymer Metal Composite IP2C -Ionic Polymer -Polymer Composite Ing. Elena Umana Cosa sono gli IPMC? La realizzazione di dispositivi di interesse in ambiti quale la robotica, le applicazioni aerospaziali, la protezione civile e la medicina richiede la sintesi e lo studio di nuovi materiali utilizzabili come sensori e attuatori. Gli Ionic Polymer Metal Composites (IPMCs) sono: materiali innovativi a basso costo morbidi e leggeri; sono biocompatibili; presentano interessanti fenomi di conversione elettromeccanica, quindi possono essere usati nella realizzazione di attuatori di movimento a bassa tensione di alimentazione (muscoli artificiali) o come sensori di movimento (è possibile la realizzazione di materiali intelligenti con proprietà di sensing e attuazione). Cosa sono gli IPMC? IP Ionic Polimer: Perfluorinate Ionic-Exchange Membrane Nafion#117® (DuPont ®) [ -( CF2 - CF2 ) n – ( CF - CF2 ) m -] O -CF - CF2 - O - CF2 -SO-3 …M+ CF3 ione positivo (catione) Ione libero: H+, Li+, Na+ M Metal: Platino (generalmente) depositato su entrambe le superfici C Composite Gruppo fisso Come sono fatti gli IPMC? Problemi attuali: problemi legati ai processi produttivi; mancano dimostratori in applicazioni reali. Processo di fabbricazione Si deposita sul Nafion® un sottile strato metallico in tre fasi: 1. scambio ionico tra gli ioni idrogeno e gli ioni platino; 2. riduzione; 3. diffusione degli ioni che hanno un numero di idratazione più alto rispetto al singolo idrogeno (ioni sodio Na+, ioni litio Li+, etc.) From IPMC to IP2C Actuators IPMCs tranduce an applied voltage signal (along with the corresponding absorbed current) into a deflection and/or a force. From IPMC to IP2C Sensors A bending deformation produces charges migration and hence a voltage signal that can be suitably collected. From IPMC to IP2C Models have been developed for IPMCs by using the EuleroBernoulli theory for the beam in cantilever configuration. i 3d t wY s 4 Ls f 1 3 Y d t2 L I C sL Lt Lclamp 4 Ls s c F A=wt x t 2 3d Ls 1 1 Lt 4 I C s Ld Lclamp wt 2 12 Ld 1 s 4Yt 2 z w 2 3 d t Y 1 s 4 Ls Lt Lclamp 1 s1 v From IPMC to IP2C IPMCs suffer for a number of drawbacks: 1) The realization of electrodes via noble metals is expensive because of used materials and requires a time consuming chemical deposition technique. IP2C have been introduced, by researchers in this working group, that uses conducting polymers. They are: •cheap; •easier to be deposited; •suitable for all-polymeric device realization. From IPMC to IP2C Basic procedure to fabricate IP2Cs: 1. Sandblasting 2. Chemical cleaning with solvent or ionic liquid used 3. Organic conductor deposition through coating techniques Spin coating Drop casting Dip coating Solvent Evaporation Manufacturing procedure easier, faster and cheaper From IPMC to IP2C Used conducting polymers are: Conductivity [S/cm] Materials 10-2 10-1 100 101 102 103 104 105 106 Pedot:PSS Pani Poly-Pirrole Fe, Au, Cu, Ag SEM images of IP2C membranes Cross-Section View 6.236μm Tilted View PEDOT:PS S PEDOT:PS S NAFION Organic Conductor Trade Name PEDOT:PSS CLEVIOS ® PH 500 PEDOT:PSS CLEVIOS ® P HC V4 PEDOT:PSS CLEVIOS ® PH 510 PEDOT:PSS ORGACON™ EL-P 3040 NAFION PANI Polyaniline From IPMC to IP2C IPMCs suffer for a number of drawbacks: 2) as actuators their performance is strongly depending on the quantity of solvent (generally water) and this leaves the device very quickly. Liquids with high molecular weight or ionic liquids have been proposed to alleviate such problem. We used the same approach for IP2C, obtaining devices with very long lasting times in air. Different solvents used inside Nafion® membranes Solvent Deionized water Solvent Ethylene Glycol Ionic Liquid EmI Tf 5 0 -5 0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30 0.5 0 -0.5 Deformation (mm) Absorbed Current (A) Actuator measurements Input Voltage (V) From IPMC to IP2C 7 6 5 4 GPIB interface DAQ Blocking Force (N) Sensor measurements Waveform Generator Displacement (mm) s 1 0 -1 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 0 5 10 15 20 s 25 30 35 40 0.02 Laser Proximity Sensor f(t) Load Cell 0 d(t) Mechanical Vibration Generator i(t) IP2C Current Amplifier Sensing Current (A) -0.02 5 0 -5 From IPMC to IP2C Also for the case of IP2C models have been tested against experimental data. The actuator…. From IPMC to IP2C …and the sensor Bode plot of experimental and modeled sensing transfer function Experimental Predicted Magnitude [dB] 0 -20 -40 -60 -80 -100 -1 10 0 10 10 Frequency [Hz] 1 Predicted Experimental Power Spectrum Magnitude [dB] 20 -100 -150 -200 2 10 200 Experimental Predicted Phase [deg] 0 -1 10 0 1 10 10 2 10 Power spectral density of experimental and predicted current signals -100 -200 -250 Frequency [Hz] 100 -1 10 0 10 10 Frequency [Hz] 1 2 10 Applications A motor with smoth motion (I) Applications A motor with smoth motion (II) Applications A robot with a bioinspired motion control system Applications Biomedical applications Applications Biomedical applications Applications Time domain Resonant vibrating probe: Frequency domain Applications Robotic applications Applications And systems for energy harvesting. Confronto Potenza W2,EMI1,EG3,W1 e W1dry -8 10 -10 Power Magnitude[W/mm 2] 10 EG3 (Glicole Etilene - PHCV4) EMI1 (EMI-Tf - PHCV4) W2 (Acqua - PHCV4) W1 (Acqua - Platino) W1dry (Acqua - Platino) -12 10 -14 10 1 2 10 10 Frequency [Hz]